1 //===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 47 #include "llvm/ADT/DenseMap.h" 48 #include "llvm/ADT/DenseSet.h" 49 #include "llvm/ADT/DepthFirstIterator.h" 50 #include "llvm/ADT/StringExtras.h" 51 #include "llvm/ADT/Triple.h" 52 #include "llvm/Analysis/ValueTracking.h" 53 #include "llvm/IR/DebugInfo.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstVisitor.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/MDBuilder.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/SpecialCaseList.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include <algorithm> 69 #include <iterator> 70 #include <set> 71 #include <utility> 72 73 using namespace llvm; 74 75 // External symbol to be used when generating the shadow address for 76 // architectures with multiple VMAs. Instead of using a constant integer 77 // the runtime will set the external mask based on the VMA range. 78 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask"; 79 80 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 81 // alignment requirements provided by the input IR are correct. For example, 82 // if the input IR contains a load with alignment 8, this flag will cause 83 // the shadow load to have alignment 16. This flag is disabled by default as 84 // we have unfortunately encountered too much code (including Clang itself; 85 // see PR14291) which performs misaligned access. 86 static cl::opt<bool> ClPreserveAlignment( 87 "dfsan-preserve-alignment", 88 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 89 cl::init(false)); 90 91 // The ABI list files control how shadow parameters are passed. The pass treats 92 // every function labelled "uninstrumented" in the ABI list file as conforming 93 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 94 // additional annotations for those functions, a call to one of those functions 95 // will produce a warning message, as the labelling behaviour of the function is 96 // unknown. The other supported annotations are "functional" and "discard", 97 // which are described below under DataFlowSanitizer::WrapperKind. 98 static cl::list<std::string> ClABIListFiles( 99 "dfsan-abilist", 100 cl::desc("File listing native ABI functions and how the pass treats them"), 101 cl::Hidden); 102 103 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 104 // functions (see DataFlowSanitizer::InstrumentedABI below). 105 static cl::opt<bool> ClArgsABI( 106 "dfsan-args-abi", 107 cl::desc("Use the argument ABI rather than the TLS ABI"), 108 cl::Hidden); 109 110 // Controls whether the pass includes or ignores the labels of pointers in load 111 // instructions. 112 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 113 "dfsan-combine-pointer-labels-on-load", 114 cl::desc("Combine the label of the pointer with the label of the data when " 115 "loading from memory."), 116 cl::Hidden, cl::init(true)); 117 118 // Controls whether the pass includes or ignores the labels of pointers in 119 // stores instructions. 120 static cl::opt<bool> ClCombinePointerLabelsOnStore( 121 "dfsan-combine-pointer-labels-on-store", 122 cl::desc("Combine the label of the pointer with the label of the data when " 123 "storing in memory."), 124 cl::Hidden, cl::init(false)); 125 126 static cl::opt<bool> ClDebugNonzeroLabels( 127 "dfsan-debug-nonzero-labels", 128 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 129 "load or return with a nonzero label"), 130 cl::Hidden); 131 132 133 namespace { 134 135 StringRef GetGlobalTypeString(const GlobalValue &G) { 136 // Types of GlobalVariables are always pointer types. 137 Type *GType = G.getValueType(); 138 // For now we support blacklisting struct types only. 139 if (StructType *SGType = dyn_cast<StructType>(GType)) { 140 if (!SGType->isLiteral()) 141 return SGType->getName(); 142 } 143 return "<unknown type>"; 144 } 145 146 class DFSanABIList { 147 std::unique_ptr<SpecialCaseList> SCL; 148 149 public: 150 DFSanABIList() {} 151 152 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 153 154 /// Returns whether either this function or its source file are listed in the 155 /// given category. 156 bool isIn(const Function &F, StringRef Category) const { 157 return isIn(*F.getParent(), Category) || 158 SCL->inSection("fun", F.getName(), Category); 159 } 160 161 /// Returns whether this global alias is listed in the given category. 162 /// 163 /// If GA aliases a function, the alias's name is matched as a function name 164 /// would be. Similarly, aliases of globals are matched like globals. 165 bool isIn(const GlobalAlias &GA, StringRef Category) const { 166 if (isIn(*GA.getParent(), Category)) 167 return true; 168 169 if (isa<FunctionType>(GA.getValueType())) 170 return SCL->inSection("fun", GA.getName(), Category); 171 172 return SCL->inSection("global", GA.getName(), Category) || 173 SCL->inSection("type", GetGlobalTypeString(GA), Category); 174 } 175 176 /// Returns whether this module is listed in the given category. 177 bool isIn(const Module &M, StringRef Category) const { 178 return SCL->inSection("src", M.getModuleIdentifier(), Category); 179 } 180 }; 181 182 class DataFlowSanitizer : public ModulePass { 183 friend struct DFSanFunction; 184 friend class DFSanVisitor; 185 186 enum { 187 ShadowWidth = 16 188 }; 189 190 /// Which ABI should be used for instrumented functions? 191 enum InstrumentedABI { 192 /// Argument and return value labels are passed through additional 193 /// arguments and by modifying the return type. 194 IA_Args, 195 196 /// Argument and return value labels are passed through TLS variables 197 /// __dfsan_arg_tls and __dfsan_retval_tls. 198 IA_TLS 199 }; 200 201 /// How should calls to uninstrumented functions be handled? 202 enum WrapperKind { 203 /// This function is present in an uninstrumented form but we don't know 204 /// how it should be handled. Print a warning and call the function anyway. 205 /// Don't label the return value. 206 WK_Warning, 207 208 /// This function does not write to (user-accessible) memory, and its return 209 /// value is unlabelled. 210 WK_Discard, 211 212 /// This function does not write to (user-accessible) memory, and the label 213 /// of its return value is the union of the label of its arguments. 214 WK_Functional, 215 216 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 217 /// where F is the name of the function. This function may wrap the 218 /// original function or provide its own implementation. This is similar to 219 /// the IA_Args ABI, except that IA_Args uses a struct return type to 220 /// pass the return value shadow in a register, while WK_Custom uses an 221 /// extra pointer argument to return the shadow. This allows the wrapped 222 /// form of the function type to be expressed in C. 223 WK_Custom 224 }; 225 226 Module *Mod; 227 LLVMContext *Ctx; 228 IntegerType *ShadowTy; 229 PointerType *ShadowPtrTy; 230 IntegerType *IntptrTy; 231 ConstantInt *ZeroShadow; 232 ConstantInt *ShadowPtrMask; 233 ConstantInt *ShadowPtrMul; 234 Constant *ArgTLS; 235 Constant *RetvalTLS; 236 void *(*GetArgTLSPtr)(); 237 void *(*GetRetvalTLSPtr)(); 238 Constant *GetArgTLS; 239 Constant *GetRetvalTLS; 240 Constant *ExternalShadowMask; 241 FunctionType *DFSanUnionFnTy; 242 FunctionType *DFSanUnionLoadFnTy; 243 FunctionType *DFSanUnimplementedFnTy; 244 FunctionType *DFSanSetLabelFnTy; 245 FunctionType *DFSanNonzeroLabelFnTy; 246 FunctionType *DFSanVarargWrapperFnTy; 247 Constant *DFSanUnionFn; 248 Constant *DFSanCheckedUnionFn; 249 Constant *DFSanUnionLoadFn; 250 Constant *DFSanUnimplementedFn; 251 Constant *DFSanSetLabelFn; 252 Constant *DFSanNonzeroLabelFn; 253 Constant *DFSanVarargWrapperFn; 254 MDNode *ColdCallWeights; 255 DFSanABIList ABIList; 256 DenseMap<Value *, Function *> UnwrappedFnMap; 257 AttrBuilder ReadOnlyNoneAttrs; 258 bool DFSanRuntimeShadowMask; 259 260 Value *getShadowAddress(Value *Addr, Instruction *Pos); 261 bool isInstrumented(const Function *F); 262 bool isInstrumented(const GlobalAlias *GA); 263 FunctionType *getArgsFunctionType(FunctionType *T); 264 FunctionType *getTrampolineFunctionType(FunctionType *T); 265 FunctionType *getCustomFunctionType(FunctionType *T); 266 InstrumentedABI getInstrumentedABI(); 267 WrapperKind getWrapperKind(Function *F); 268 void addGlobalNamePrefix(GlobalValue *GV); 269 Function *buildWrapperFunction(Function *F, StringRef NewFName, 270 GlobalValue::LinkageTypes NewFLink, 271 FunctionType *NewFT); 272 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 273 274 public: 275 DataFlowSanitizer( 276 const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), 277 void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); 278 static char ID; 279 bool doInitialization(Module &M) override; 280 bool runOnModule(Module &M) override; 281 }; 282 283 struct DFSanFunction { 284 DataFlowSanitizer &DFS; 285 Function *F; 286 DominatorTree DT; 287 DataFlowSanitizer::InstrumentedABI IA; 288 bool IsNativeABI; 289 Value *ArgTLSPtr; 290 Value *RetvalTLSPtr; 291 AllocaInst *LabelReturnAlloca; 292 DenseMap<Value *, Value *> ValShadowMap; 293 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 294 std::vector<std::pair<PHINode *, PHINode *> > PHIFixups; 295 DenseSet<Instruction *> SkipInsts; 296 std::vector<Value *> NonZeroChecks; 297 bool AvoidNewBlocks; 298 299 struct CachedCombinedShadow { 300 BasicBlock *Block; 301 Value *Shadow; 302 }; 303 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> 304 CachedCombinedShadows; 305 DenseMap<Value *, std::set<Value *>> ShadowElements; 306 307 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 308 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), 309 IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr), 310 LabelReturnAlloca(nullptr) { 311 DT.recalculate(*F); 312 // FIXME: Need to track down the register allocator issue which causes poor 313 // performance in pathological cases with large numbers of basic blocks. 314 AvoidNewBlocks = F->size() > 1000; 315 } 316 Value *getArgTLSPtr(); 317 Value *getArgTLS(unsigned Index, Instruction *Pos); 318 Value *getRetvalTLS(); 319 Value *getShadow(Value *V); 320 void setShadow(Instruction *I, Value *Shadow); 321 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 322 Value *combineOperandShadows(Instruction *Inst); 323 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 324 Instruction *Pos); 325 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, 326 Instruction *Pos); 327 }; 328 329 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 330 public: 331 DFSanFunction &DFSF; 332 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 333 334 const DataLayout &getDataLayout() const { 335 return DFSF.F->getParent()->getDataLayout(); 336 } 337 338 void visitOperandShadowInst(Instruction &I); 339 340 void visitBinaryOperator(BinaryOperator &BO); 341 void visitCastInst(CastInst &CI); 342 void visitCmpInst(CmpInst &CI); 343 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 344 void visitLoadInst(LoadInst &LI); 345 void visitStoreInst(StoreInst &SI); 346 void visitReturnInst(ReturnInst &RI); 347 void visitCallSite(CallSite CS); 348 void visitPHINode(PHINode &PN); 349 void visitExtractElementInst(ExtractElementInst &I); 350 void visitInsertElementInst(InsertElementInst &I); 351 void visitShuffleVectorInst(ShuffleVectorInst &I); 352 void visitExtractValueInst(ExtractValueInst &I); 353 void visitInsertValueInst(InsertValueInst &I); 354 void visitAllocaInst(AllocaInst &I); 355 void visitSelectInst(SelectInst &I); 356 void visitMemSetInst(MemSetInst &I); 357 void visitMemTransferInst(MemTransferInst &I); 358 }; 359 360 } 361 362 char DataFlowSanitizer::ID; 363 INITIALIZE_PASS(DataFlowSanitizer, "dfsan", 364 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 365 366 ModulePass * 367 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles, 368 void *(*getArgTLS)(), 369 void *(*getRetValTLS)()) { 370 return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS); 371 } 372 373 DataFlowSanitizer::DataFlowSanitizer( 374 const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(), 375 void *(*getRetValTLS)()) 376 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS), 377 DFSanRuntimeShadowMask(false) { 378 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 379 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 380 ClABIListFiles.end()); 381 ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles)); 382 } 383 384 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 385 llvm::SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 386 ArgTypes.append(T->getNumParams(), ShadowTy); 387 if (T->isVarArg()) 388 ArgTypes.push_back(ShadowPtrTy); 389 Type *RetType = T->getReturnType(); 390 if (!RetType->isVoidTy()) 391 RetType = StructType::get(RetType, ShadowTy); 392 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 393 } 394 395 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 396 assert(!T->isVarArg()); 397 llvm::SmallVector<Type *, 4> ArgTypes; 398 ArgTypes.push_back(T->getPointerTo()); 399 ArgTypes.append(T->param_begin(), T->param_end()); 400 ArgTypes.append(T->getNumParams(), ShadowTy); 401 Type *RetType = T->getReturnType(); 402 if (!RetType->isVoidTy()) 403 ArgTypes.push_back(ShadowPtrTy); 404 return FunctionType::get(T->getReturnType(), ArgTypes, false); 405 } 406 407 FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 408 llvm::SmallVector<Type *, 4> ArgTypes; 409 for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end(); 410 i != e; ++i) { 411 FunctionType *FT; 412 if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>( 413 *i)->getElementType()))) { 414 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 415 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 416 } else { 417 ArgTypes.push_back(*i); 418 } 419 } 420 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 421 ArgTypes.push_back(ShadowTy); 422 if (T->isVarArg()) 423 ArgTypes.push_back(ShadowPtrTy); 424 Type *RetType = T->getReturnType(); 425 if (!RetType->isVoidTy()) 426 ArgTypes.push_back(ShadowPtrTy); 427 return FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()); 428 } 429 430 bool DataFlowSanitizer::doInitialization(Module &M) { 431 llvm::Triple TargetTriple(M.getTargetTriple()); 432 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; 433 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 || 434 TargetTriple.getArch() == llvm::Triple::mips64el; 435 bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64 || 436 TargetTriple.getArch() == llvm::Triple::aarch64_be; 437 438 const DataLayout &DL = M.getDataLayout(); 439 440 Mod = &M; 441 Ctx = &M.getContext(); 442 ShadowTy = IntegerType::get(*Ctx, ShadowWidth); 443 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 444 IntptrTy = DL.getIntPtrType(*Ctx); 445 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 446 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); 447 if (IsX86_64) 448 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 449 else if (IsMIPS64) 450 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 451 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 452 else if (IsAArch64) 453 DFSanRuntimeShadowMask = true; 454 else 455 report_fatal_error("unsupported triple"); 456 457 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 458 DFSanUnionFnTy = 459 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 460 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 461 DFSanUnionLoadFnTy = 462 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 463 DFSanUnimplementedFnTy = FunctionType::get( 464 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 465 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 466 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 467 DFSanSetLabelArgs, /*isVarArg=*/false); 468 DFSanNonzeroLabelFnTy = FunctionType::get( 469 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 470 DFSanVarargWrapperFnTy = FunctionType::get( 471 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 472 473 if (GetArgTLSPtr) { 474 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 475 ArgTLS = nullptr; 476 GetArgTLS = ConstantExpr::getIntToPtr( 477 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), 478 PointerType::getUnqual( 479 FunctionType::get(PointerType::getUnqual(ArgTLSTy), false))); 480 } 481 if (GetRetvalTLSPtr) { 482 RetvalTLS = nullptr; 483 GetRetvalTLS = ConstantExpr::getIntToPtr( 484 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), 485 PointerType::getUnqual( 486 FunctionType::get(PointerType::getUnqual(ShadowTy), false))); 487 } 488 489 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 490 return true; 491 } 492 493 bool DataFlowSanitizer::isInstrumented(const Function *F) { 494 return !ABIList.isIn(*F, "uninstrumented"); 495 } 496 497 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 498 return !ABIList.isIn(*GA, "uninstrumented"); 499 } 500 501 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 502 return ClArgsABI ? IA_Args : IA_TLS; 503 } 504 505 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 506 if (ABIList.isIn(*F, "functional")) 507 return WK_Functional; 508 if (ABIList.isIn(*F, "discard")) 509 return WK_Discard; 510 if (ABIList.isIn(*F, "custom")) 511 return WK_Custom; 512 513 return WK_Warning; 514 } 515 516 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 517 std::string GVName = GV->getName(), Prefix = "dfs$"; 518 GV->setName(Prefix + GVName); 519 520 // Try to change the name of the function in module inline asm. We only do 521 // this for specific asm directives, currently only ".symver", to try to avoid 522 // corrupting asm which happens to contain the symbol name as a substring. 523 // Note that the substitution for .symver assumes that the versioned symbol 524 // also has an instrumented name. 525 std::string Asm = GV->getParent()->getModuleInlineAsm(); 526 std::string SearchStr = ".symver " + GVName + ","; 527 size_t Pos = Asm.find(SearchStr); 528 if (Pos != std::string::npos) { 529 Asm.replace(Pos, SearchStr.size(), 530 ".symver " + Prefix + GVName + "," + Prefix); 531 GV->getParent()->setModuleInlineAsm(Asm); 532 } 533 } 534 535 Function * 536 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 537 GlobalValue::LinkageTypes NewFLink, 538 FunctionType *NewFT) { 539 FunctionType *FT = F->getFunctionType(); 540 Function *NewF = Function::Create(NewFT, NewFLink, NewFName, 541 F->getParent()); 542 NewF->copyAttributesFrom(F); 543 NewF->removeAttributes( 544 AttributeList::ReturnIndex, 545 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 546 547 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 548 if (F->isVarArg()) { 549 NewF->removeAttributes(AttributeList::FunctionIndex, 550 AttrBuilder().addAttribute("split-stack")); 551 CallInst::Create(DFSanVarargWrapperFn, 552 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 553 BB); 554 new UnreachableInst(*Ctx, BB); 555 } else { 556 std::vector<Value *> Args; 557 unsigned n = FT->getNumParams(); 558 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 559 Args.push_back(&*ai); 560 CallInst *CI = CallInst::Create(F, Args, "", BB); 561 if (FT->getReturnType()->isVoidTy()) 562 ReturnInst::Create(*Ctx, BB); 563 else 564 ReturnInst::Create(*Ctx, CI, BB); 565 } 566 567 return NewF; 568 } 569 570 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 571 StringRef FName) { 572 FunctionType *FTT = getTrampolineFunctionType(FT); 573 Constant *C = Mod->getOrInsertFunction(FName, FTT); 574 Function *F = dyn_cast<Function>(C); 575 if (F && F->isDeclaration()) { 576 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 577 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 578 std::vector<Value *> Args; 579 Function::arg_iterator AI = F->arg_begin(); ++AI; 580 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 581 Args.push_back(&*AI); 582 CallInst *CI = CallInst::Create(&*F->arg_begin(), Args, "", BB); 583 ReturnInst *RI; 584 if (FT->getReturnType()->isVoidTy()) 585 RI = ReturnInst::Create(*Ctx, BB); 586 else 587 RI = ReturnInst::Create(*Ctx, CI, BB); 588 589 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 590 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 591 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 592 DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; 593 DFSanVisitor(DFSF).visitCallInst(*CI); 594 if (!FT->getReturnType()->isVoidTy()) 595 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 596 &*std::prev(F->arg_end()), RI); 597 } 598 599 return C; 600 } 601 602 bool DataFlowSanitizer::runOnModule(Module &M) { 603 if (ABIList.isIn(M, "skip")) 604 return false; 605 606 if (!GetArgTLSPtr) { 607 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 608 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 609 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) 610 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 611 } 612 if (!GetRetvalTLSPtr) { 613 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 614 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) 615 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 616 } 617 618 ExternalShadowMask = 619 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 620 621 DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy); 622 if (Function *F = dyn_cast<Function>(DFSanUnionFn)) { 623 F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); 624 F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone); 625 F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 626 F->addParamAttr(0, Attribute::ZExt); 627 F->addParamAttr(1, Attribute::ZExt); 628 } 629 DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy); 630 if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) { 631 F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); 632 F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone); 633 F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 634 F->addParamAttr(0, Attribute::ZExt); 635 F->addParamAttr(1, Attribute::ZExt); 636 } 637 DFSanUnionLoadFn = 638 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy); 639 if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) { 640 F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); 641 F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly); 642 F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 643 } 644 DFSanUnimplementedFn = 645 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 646 DFSanSetLabelFn = 647 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy); 648 if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) { 649 F->addParamAttr(0, Attribute::ZExt); 650 } 651 DFSanNonzeroLabelFn = 652 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 653 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 654 DFSanVarargWrapperFnTy); 655 656 std::vector<Function *> FnsToInstrument; 657 llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI; 658 for (Function &i : M) { 659 if (!i.isIntrinsic() && 660 &i != DFSanUnionFn && 661 &i != DFSanCheckedUnionFn && 662 &i != DFSanUnionLoadFn && 663 &i != DFSanUnimplementedFn && 664 &i != DFSanSetLabelFn && 665 &i != DFSanNonzeroLabelFn && 666 &i != DFSanVarargWrapperFn) 667 FnsToInstrument.push_back(&i); 668 } 669 670 // Give function aliases prefixes when necessary, and build wrappers where the 671 // instrumentedness is inconsistent. 672 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 673 GlobalAlias *GA = &*i; 674 ++i; 675 // Don't stop on weak. We assume people aren't playing games with the 676 // instrumentedness of overridden weak aliases. 677 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 678 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 679 if (GAInst && FInst) { 680 addGlobalNamePrefix(GA); 681 } else if (GAInst != FInst) { 682 // Non-instrumented alias of an instrumented function, or vice versa. 683 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 684 // below will take care of instrumenting it. 685 Function *NewF = 686 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 687 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 688 NewF->takeName(GA); 689 GA->eraseFromParent(); 690 FnsToInstrument.push_back(NewF); 691 } 692 } 693 } 694 695 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 696 .addAttribute(Attribute::ReadNone); 697 698 // First, change the ABI of every function in the module. ABI-listed 699 // functions keep their original ABI and get a wrapper function. 700 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 701 e = FnsToInstrument.end(); 702 i != e; ++i) { 703 Function &F = **i; 704 FunctionType *FT = F.getFunctionType(); 705 706 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 707 FT->getReturnType()->isVoidTy()); 708 709 if (isInstrumented(&F)) { 710 // Instrumented functions get a 'dfs$' prefix. This allows us to more 711 // easily identify cases of mismatching ABIs. 712 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 713 FunctionType *NewFT = getArgsFunctionType(FT); 714 Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M); 715 NewF->copyAttributesFrom(&F); 716 NewF->removeAttributes( 717 AttributeList::ReturnIndex, 718 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 719 for (Function::arg_iterator FArg = F.arg_begin(), 720 NewFArg = NewF->arg_begin(), 721 FArgEnd = F.arg_end(); 722 FArg != FArgEnd; ++FArg, ++NewFArg) { 723 FArg->replaceAllUsesWith(&*NewFArg); 724 } 725 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 726 727 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 728 UI != UE;) { 729 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 730 ++UI; 731 if (BA) { 732 BA->replaceAllUsesWith( 733 BlockAddress::get(NewF, BA->getBasicBlock())); 734 delete BA; 735 } 736 } 737 F.replaceAllUsesWith( 738 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 739 NewF->takeName(&F); 740 F.eraseFromParent(); 741 *i = NewF; 742 addGlobalNamePrefix(NewF); 743 } else { 744 addGlobalNamePrefix(&F); 745 } 746 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 747 // Build a wrapper function for F. The wrapper simply calls F, and is 748 // added to FnsToInstrument so that any instrumentation according to its 749 // WrapperKind is done in the second pass below. 750 FunctionType *NewFT = getInstrumentedABI() == IA_Args 751 ? getArgsFunctionType(FT) 752 : FT; 753 Function *NewF = buildWrapperFunction( 754 &F, std::string("dfsw$") + std::string(F.getName()), 755 GlobalValue::LinkOnceODRLinkage, NewFT); 756 if (getInstrumentedABI() == IA_TLS) 757 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 758 759 Value *WrappedFnCst = 760 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 761 F.replaceAllUsesWith(WrappedFnCst); 762 763 UnwrappedFnMap[WrappedFnCst] = &F; 764 *i = NewF; 765 766 if (!F.isDeclaration()) { 767 // This function is probably defining an interposition of an 768 // uninstrumented function and hence needs to keep the original ABI. 769 // But any functions it may call need to use the instrumented ABI, so 770 // we instrument it in a mode which preserves the original ABI. 771 FnsWithNativeABI.insert(&F); 772 773 // This code needs to rebuild the iterators, as they may be invalidated 774 // by the push_back, taking care that the new range does not include 775 // any functions added by this code. 776 size_t N = i - FnsToInstrument.begin(), 777 Count = e - FnsToInstrument.begin(); 778 FnsToInstrument.push_back(&F); 779 i = FnsToInstrument.begin() + N; 780 e = FnsToInstrument.begin() + Count; 781 } 782 // Hopefully, nobody will try to indirectly call a vararg 783 // function... yet. 784 } else if (FT->isVarArg()) { 785 UnwrappedFnMap[&F] = &F; 786 *i = nullptr; 787 } 788 } 789 790 for (Function *i : FnsToInstrument) { 791 if (!i || i->isDeclaration()) 792 continue; 793 794 removeUnreachableBlocks(*i); 795 796 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 797 798 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 799 // Build a copy of the list before iterating over it. 800 llvm::SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 801 802 for (BasicBlock *i : BBList) { 803 Instruction *Inst = &i->front(); 804 while (1) { 805 // DFSanVisitor may split the current basic block, changing the current 806 // instruction's next pointer and moving the next instruction to the 807 // tail block from which we should continue. 808 Instruction *Next = Inst->getNextNode(); 809 // DFSanVisitor may delete Inst, so keep track of whether it was a 810 // terminator. 811 bool IsTerminator = isa<TerminatorInst>(Inst); 812 if (!DFSF.SkipInsts.count(Inst)) 813 DFSanVisitor(DFSF).visit(Inst); 814 if (IsTerminator) 815 break; 816 Inst = Next; 817 } 818 } 819 820 // We will not necessarily be able to compute the shadow for every phi node 821 // until we have visited every block. Therefore, the code that handles phi 822 // nodes adds them to the PHIFixups list so that they can be properly 823 // handled here. 824 for (std::vector<std::pair<PHINode *, PHINode *> >::iterator 825 i = DFSF.PHIFixups.begin(), 826 e = DFSF.PHIFixups.end(); 827 i != e; ++i) { 828 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 829 ++val) { 830 i->second->setIncomingValue( 831 val, DFSF.getShadow(i->first->getIncomingValue(val))); 832 } 833 } 834 835 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 836 // places (i.e. instructions in basic blocks we haven't even begun visiting 837 // yet). To make our life easier, do this work in a pass after the main 838 // instrumentation. 839 if (ClDebugNonzeroLabels) { 840 for (Value *V : DFSF.NonZeroChecks) { 841 Instruction *Pos; 842 if (Instruction *I = dyn_cast<Instruction>(V)) 843 Pos = I->getNextNode(); 844 else 845 Pos = &DFSF.F->getEntryBlock().front(); 846 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 847 Pos = Pos->getNextNode(); 848 IRBuilder<> IRB(Pos); 849 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); 850 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 851 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 852 IRBuilder<> ThenIRB(BI); 853 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 854 } 855 } 856 } 857 858 return false; 859 } 860 861 Value *DFSanFunction::getArgTLSPtr() { 862 if (ArgTLSPtr) 863 return ArgTLSPtr; 864 if (DFS.ArgTLS) 865 return ArgTLSPtr = DFS.ArgTLS; 866 867 IRBuilder<> IRB(&F->getEntryBlock().front()); 868 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS, {}); 869 } 870 871 Value *DFSanFunction::getRetvalTLS() { 872 if (RetvalTLSPtr) 873 return RetvalTLSPtr; 874 if (DFS.RetvalTLS) 875 return RetvalTLSPtr = DFS.RetvalTLS; 876 877 IRBuilder<> IRB(&F->getEntryBlock().front()); 878 return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS, {}); 879 } 880 881 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 882 IRBuilder<> IRB(Pos); 883 return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx); 884 } 885 886 Value *DFSanFunction::getShadow(Value *V) { 887 if (!isa<Argument>(V) && !isa<Instruction>(V)) 888 return DFS.ZeroShadow; 889 Value *&Shadow = ValShadowMap[V]; 890 if (!Shadow) { 891 if (Argument *A = dyn_cast<Argument>(V)) { 892 if (IsNativeABI) 893 return DFS.ZeroShadow; 894 switch (IA) { 895 case DataFlowSanitizer::IA_TLS: { 896 Value *ArgTLSPtr = getArgTLSPtr(); 897 Instruction *ArgTLSPos = 898 DFS.ArgTLS ? &*F->getEntryBlock().begin() 899 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 900 IRBuilder<> IRB(ArgTLSPos); 901 Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos)); 902 break; 903 } 904 case DataFlowSanitizer::IA_Args: { 905 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 906 Function::arg_iterator i = F->arg_begin(); 907 while (ArgIdx--) 908 ++i; 909 Shadow = &*i; 910 assert(Shadow->getType() == DFS.ShadowTy); 911 break; 912 } 913 } 914 NonZeroChecks.push_back(Shadow); 915 } else { 916 Shadow = DFS.ZeroShadow; 917 } 918 } 919 return Shadow; 920 } 921 922 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 923 assert(!ValShadowMap.count(I)); 924 assert(Shadow->getType() == DFS.ShadowTy); 925 ValShadowMap[I] = Shadow; 926 } 927 928 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 929 assert(Addr != RetvalTLS && "Reinstrumenting?"); 930 IRBuilder<> IRB(Pos); 931 Value *ShadowPtrMaskValue; 932 if (DFSanRuntimeShadowMask) 933 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 934 else 935 ShadowPtrMaskValue = ShadowPtrMask; 936 return IRB.CreateIntToPtr( 937 IRB.CreateMul( 938 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 939 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 940 ShadowPtrMul), 941 ShadowPtrTy); 942 } 943 944 // Generates IR to compute the union of the two given shadows, inserting it 945 // before Pos. Returns the computed union Value. 946 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 947 if (V1 == DFS.ZeroShadow) 948 return V2; 949 if (V2 == DFS.ZeroShadow) 950 return V1; 951 if (V1 == V2) 952 return V1; 953 954 auto V1Elems = ShadowElements.find(V1); 955 auto V2Elems = ShadowElements.find(V2); 956 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 957 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 958 V2Elems->second.begin(), V2Elems->second.end())) { 959 return V1; 960 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 961 V1Elems->second.begin(), V1Elems->second.end())) { 962 return V2; 963 } 964 } else if (V1Elems != ShadowElements.end()) { 965 if (V1Elems->second.count(V2)) 966 return V1; 967 } else if (V2Elems != ShadowElements.end()) { 968 if (V2Elems->second.count(V1)) 969 return V2; 970 } 971 972 auto Key = std::make_pair(V1, V2); 973 if (V1 > V2) 974 std::swap(Key.first, Key.second); 975 CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; 976 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 977 return CCS.Shadow; 978 979 IRBuilder<> IRB(Pos); 980 if (AvoidNewBlocks) { 981 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); 982 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 983 Call->addParamAttr(0, Attribute::ZExt); 984 Call->addParamAttr(1, Attribute::ZExt); 985 986 CCS.Block = Pos->getParent(); 987 CCS.Shadow = Call; 988 } else { 989 BasicBlock *Head = Pos->getParent(); 990 Value *Ne = IRB.CreateICmpNE(V1, V2); 991 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 992 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 993 IRBuilder<> ThenIRB(BI); 994 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); 995 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 996 Call->addParamAttr(0, Attribute::ZExt); 997 Call->addParamAttr(1, Attribute::ZExt); 998 999 BasicBlock *Tail = BI->getSuccessor(0); 1000 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1001 Phi->addIncoming(Call, Call->getParent()); 1002 Phi->addIncoming(V1, Head); 1003 1004 CCS.Block = Tail; 1005 CCS.Shadow = Phi; 1006 } 1007 1008 std::set<Value *> UnionElems; 1009 if (V1Elems != ShadowElements.end()) { 1010 UnionElems = V1Elems->second; 1011 } else { 1012 UnionElems.insert(V1); 1013 } 1014 if (V2Elems != ShadowElements.end()) { 1015 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1016 } else { 1017 UnionElems.insert(V2); 1018 } 1019 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1020 1021 return CCS.Shadow; 1022 } 1023 1024 // A convenience function which folds the shadows of each of the operands 1025 // of the provided instruction Inst, inserting the IR before Inst. Returns 1026 // the computed union Value. 1027 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1028 if (Inst->getNumOperands() == 0) 1029 return DFS.ZeroShadow; 1030 1031 Value *Shadow = getShadow(Inst->getOperand(0)); 1032 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1033 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1034 } 1035 return Shadow; 1036 } 1037 1038 void DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1039 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1040 DFSF.setShadow(&I, CombinedShadow); 1041 } 1042 1043 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1044 // Addr has alignment Align, and take the union of each of those shadows. 1045 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1046 Instruction *Pos) { 1047 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1048 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 1049 AllocaShadowMap.find(AI); 1050 if (i != AllocaShadowMap.end()) { 1051 IRBuilder<> IRB(Pos); 1052 return IRB.CreateLoad(i->second); 1053 } 1054 } 1055 1056 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1057 SmallVector<Value *, 2> Objs; 1058 GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout()); 1059 bool AllConstants = true; 1060 for (Value *Obj : Objs) { 1061 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1062 continue; 1063 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1064 continue; 1065 1066 AllConstants = false; 1067 break; 1068 } 1069 if (AllConstants) 1070 return DFS.ZeroShadow; 1071 1072 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1073 switch (Size) { 1074 case 0: 1075 return DFS.ZeroShadow; 1076 case 1: { 1077 LoadInst *LI = new LoadInst(ShadowAddr, "", Pos); 1078 LI->setAlignment(ShadowAlign); 1079 return LI; 1080 } 1081 case 2: { 1082 IRBuilder<> IRB(Pos); 1083 Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr, 1084 ConstantInt::get(DFS.IntptrTy, 1)); 1085 return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign), 1086 IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos); 1087 } 1088 } 1089 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) { 1090 // Fast path for the common case where each byte has identical shadow: load 1091 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1092 // shadow is non-equal. 1093 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1094 IRBuilder<> FallbackIRB(FallbackBB); 1095 CallInst *FallbackCall = FallbackIRB.CreateCall( 1096 DFS.DFSanUnionLoadFn, 1097 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1098 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1099 1100 // Compare each of the shadows stored in the loaded 64 bits to each other, 1101 // by computing (WideShadow rotl ShadowWidth) == WideShadow. 1102 IRBuilder<> IRB(Pos); 1103 Value *WideAddr = 1104 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1105 Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1106 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 1107 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); 1108 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); 1109 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1110 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1111 1112 BasicBlock *Head = Pos->getParent(); 1113 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1114 1115 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1116 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1117 1118 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1119 for (auto Child : Children) 1120 DT.changeImmediateDominator(Child, NewNode); 1121 } 1122 1123 // In the following code LastBr will refer to the previous basic block's 1124 // conditional branch instruction, whose true successor is fixed up to point 1125 // to the next block during the loop below or to the tail after the final 1126 // iteration. 1127 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1128 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1129 DT.addNewBlock(FallbackBB, Head); 1130 1131 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; 1132 Ofs += 64 / DFS.ShadowWidth) { 1133 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1134 DT.addNewBlock(NextBB, LastBr->getParent()); 1135 IRBuilder<> NextIRB(NextBB); 1136 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1137 ConstantInt::get(DFS.IntptrTy, 1)); 1138 Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1139 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1140 LastBr->setSuccessor(0, NextBB); 1141 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1142 } 1143 1144 LastBr->setSuccessor(0, Tail); 1145 FallbackIRB.CreateBr(Tail); 1146 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1147 Shadow->addIncoming(FallbackCall, FallbackBB); 1148 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1149 return Shadow; 1150 } 1151 1152 IRBuilder<> IRB(Pos); 1153 CallInst *FallbackCall = IRB.CreateCall( 1154 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1155 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1156 return FallbackCall; 1157 } 1158 1159 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1160 auto &DL = LI.getModule()->getDataLayout(); 1161 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1162 if (Size == 0) { 1163 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); 1164 return; 1165 } 1166 1167 uint64_t Align; 1168 if (ClPreserveAlignment) { 1169 Align = LI.getAlignment(); 1170 if (Align == 0) 1171 Align = DL.getABITypeAlignment(LI.getType()); 1172 } else { 1173 Align = 1; 1174 } 1175 IRBuilder<> IRB(&LI); 1176 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); 1177 if (ClCombinePointerLabelsOnLoad) { 1178 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1179 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1180 } 1181 if (Shadow != DFSF.DFS.ZeroShadow) 1182 DFSF.NonZeroChecks.push_back(Shadow); 1183 1184 DFSF.setShadow(&LI, Shadow); 1185 } 1186 1187 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, 1188 Value *Shadow, Instruction *Pos) { 1189 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1190 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 1191 AllocaShadowMap.find(AI); 1192 if (i != AllocaShadowMap.end()) { 1193 IRBuilder<> IRB(Pos); 1194 IRB.CreateStore(Shadow, i->second); 1195 return; 1196 } 1197 } 1198 1199 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1200 IRBuilder<> IRB(Pos); 1201 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1202 if (Shadow == DFS.ZeroShadow) { 1203 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); 1204 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1205 Value *ExtShadowAddr = 1206 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1207 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1208 return; 1209 } 1210 1211 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; 1212 uint64_t Offset = 0; 1213 if (Size >= ShadowVecSize) { 1214 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); 1215 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1216 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1217 ShadowVec = IRB.CreateInsertElement( 1218 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1219 } 1220 Value *ShadowVecAddr = 1221 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1222 do { 1223 Value *CurShadowVecAddr = 1224 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1225 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1226 Size -= ShadowVecSize; 1227 ++Offset; 1228 } while (Size >= ShadowVecSize); 1229 Offset *= ShadowVecSize; 1230 } 1231 while (Size > 0) { 1232 Value *CurShadowAddr = 1233 IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset); 1234 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1235 --Size; 1236 ++Offset; 1237 } 1238 } 1239 1240 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1241 auto &DL = SI.getModule()->getDataLayout(); 1242 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1243 if (Size == 0) 1244 return; 1245 1246 uint64_t Align; 1247 if (ClPreserveAlignment) { 1248 Align = SI.getAlignment(); 1249 if (Align == 0) 1250 Align = DL.getABITypeAlignment(SI.getValueOperand()->getType()); 1251 } else { 1252 Align = 1; 1253 } 1254 1255 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1256 if (ClCombinePointerLabelsOnStore) { 1257 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1258 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1259 } 1260 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); 1261 } 1262 1263 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1264 visitOperandShadowInst(BO); 1265 } 1266 1267 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1268 1269 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } 1270 1271 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1272 visitOperandShadowInst(GEPI); 1273 } 1274 1275 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1276 visitOperandShadowInst(I); 1277 } 1278 1279 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1280 visitOperandShadowInst(I); 1281 } 1282 1283 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1284 visitOperandShadowInst(I); 1285 } 1286 1287 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1288 visitOperandShadowInst(I); 1289 } 1290 1291 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1292 visitOperandShadowInst(I); 1293 } 1294 1295 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1296 bool AllLoadsStores = true; 1297 for (User *U : I.users()) { 1298 if (isa<LoadInst>(U)) 1299 continue; 1300 1301 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1302 if (SI->getPointerOperand() == &I) 1303 continue; 1304 } 1305 1306 AllLoadsStores = false; 1307 break; 1308 } 1309 if (AllLoadsStores) { 1310 IRBuilder<> IRB(&I); 1311 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1312 } 1313 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1314 } 1315 1316 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1317 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1318 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1319 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1320 1321 if (isa<VectorType>(I.getCondition()->getType())) { 1322 DFSF.setShadow( 1323 &I, 1324 DFSF.combineShadows( 1325 CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); 1326 } else { 1327 Value *ShadowSel; 1328 if (TrueShadow == FalseShadow) { 1329 ShadowSel = TrueShadow; 1330 } else { 1331 ShadowSel = 1332 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1333 } 1334 DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); 1335 } 1336 } 1337 1338 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1339 IRBuilder<> IRB(&I); 1340 Value *ValShadow = DFSF.getShadow(I.getValue()); 1341 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1342 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1343 *DFSF.DFS.Ctx)), 1344 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1345 } 1346 1347 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1348 IRBuilder<> IRB(&I); 1349 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1350 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1351 Value *LenShadow = IRB.CreateMul( 1352 I.getLength(), 1353 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); 1354 Value *AlignShadow; 1355 if (ClPreserveAlignment) { 1356 AlignShadow = IRB.CreateMul(I.getAlignmentCst(), 1357 ConstantInt::get(I.getAlignmentCst()->getType(), 1358 DFSF.DFS.ShadowWidth / 8)); 1359 } else { 1360 AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(), 1361 DFSF.DFS.ShadowWidth / 8); 1362 } 1363 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1364 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); 1365 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1366 IRB.CreateCall(I.getCalledValue(), {DestShadow, SrcShadow, LenShadow, 1367 AlignShadow, I.getVolatileCst()}); 1368 } 1369 1370 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1371 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1372 switch (DFSF.IA) { 1373 case DataFlowSanitizer::IA_TLS: { 1374 Value *S = DFSF.getShadow(RI.getReturnValue()); 1375 IRBuilder<> IRB(&RI); 1376 IRB.CreateStore(S, DFSF.getRetvalTLS()); 1377 break; 1378 } 1379 case DataFlowSanitizer::IA_Args: { 1380 IRBuilder<> IRB(&RI); 1381 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1382 Value *InsVal = 1383 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1384 Value *InsShadow = 1385 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1386 RI.setOperand(0, InsShadow); 1387 break; 1388 } 1389 } 1390 } 1391 } 1392 1393 void DFSanVisitor::visitCallSite(CallSite CS) { 1394 Function *F = CS.getCalledFunction(); 1395 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { 1396 visitOperandShadowInst(*CS.getInstruction()); 1397 return; 1398 } 1399 1400 // Calls to this function are synthesized in wrappers, and we shouldn't 1401 // instrument them. 1402 if (F == DFSF.DFS.DFSanVarargWrapperFn) 1403 return; 1404 1405 IRBuilder<> IRB(CS.getInstruction()); 1406 1407 DenseMap<Value *, Function *>::iterator i = 1408 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); 1409 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1410 Function *F = i->second; 1411 switch (DFSF.DFS.getWrapperKind(F)) { 1412 case DataFlowSanitizer::WK_Warning: { 1413 CS.setCalledFunction(F); 1414 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1415 IRB.CreateGlobalStringPtr(F->getName())); 1416 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1417 return; 1418 } 1419 case DataFlowSanitizer::WK_Discard: { 1420 CS.setCalledFunction(F); 1421 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1422 return; 1423 } 1424 case DataFlowSanitizer::WK_Functional: { 1425 CS.setCalledFunction(F); 1426 visitOperandShadowInst(*CS.getInstruction()); 1427 return; 1428 } 1429 case DataFlowSanitizer::WK_Custom: { 1430 // Don't try to handle invokes of custom functions, it's too complicated. 1431 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1432 // wrapper. 1433 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { 1434 FunctionType *FT = F->getFunctionType(); 1435 FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT); 1436 std::string CustomFName = "__dfsw_"; 1437 CustomFName += F->getName(); 1438 Constant *CustomF = 1439 DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT); 1440 if (Function *CustomFn = dyn_cast<Function>(CustomF)) { 1441 CustomFn->copyAttributesFrom(F); 1442 1443 // Custom functions returning non-void will write to the return label. 1444 if (!FT->getReturnType()->isVoidTy()) { 1445 CustomFn->removeAttributes(AttributeList::FunctionIndex, 1446 DFSF.DFS.ReadOnlyNoneAttrs); 1447 } 1448 } 1449 1450 std::vector<Value *> Args; 1451 1452 CallSite::arg_iterator i = CS.arg_begin(); 1453 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1454 Type *T = (*i)->getType(); 1455 FunctionType *ParamFT; 1456 if (isa<PointerType>(T) && 1457 (ParamFT = dyn_cast<FunctionType>( 1458 cast<PointerType>(T)->getElementType()))) { 1459 std::string TName = "dfst"; 1460 TName += utostr(FT->getNumParams() - n); 1461 TName += "$"; 1462 TName += F->getName(); 1463 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1464 Args.push_back(T); 1465 Args.push_back( 1466 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1467 } else { 1468 Args.push_back(*i); 1469 } 1470 } 1471 1472 i = CS.arg_begin(); 1473 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1474 Args.push_back(DFSF.getShadow(*i)); 1475 1476 if (FT->isVarArg()) { 1477 auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy, 1478 CS.arg_size() - FT->getNumParams()); 1479 auto *LabelVAAlloca = new AllocaInst( 1480 LabelVATy, getDataLayout().getAllocaAddrSpace(), 1481 "labelva", &DFSF.F->getEntryBlock().front()); 1482 1483 for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) { 1484 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); 1485 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1486 } 1487 1488 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 1489 } 1490 1491 if (!FT->getReturnType()->isVoidTy()) { 1492 if (!DFSF.LabelReturnAlloca) { 1493 DFSF.LabelReturnAlloca = 1494 new AllocaInst(DFSF.DFS.ShadowTy, 1495 getDataLayout().getAllocaAddrSpace(), 1496 "labelreturn", &DFSF.F->getEntryBlock().front()); 1497 } 1498 Args.push_back(DFSF.LabelReturnAlloca); 1499 } 1500 1501 for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i) 1502 Args.push_back(*i); 1503 1504 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1505 CustomCI->setCallingConv(CI->getCallingConv()); 1506 CustomCI->setAttributes(CI->getAttributes()); 1507 1508 if (!FT->getReturnType()->isVoidTy()) { 1509 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca); 1510 DFSF.setShadow(CustomCI, LabelLoad); 1511 } 1512 1513 CI->replaceAllUsesWith(CustomCI); 1514 CI->eraseFromParent(); 1515 return; 1516 } 1517 break; 1518 } 1519 } 1520 } 1521 1522 FunctionType *FT = cast<FunctionType>( 1523 CS.getCalledValue()->getType()->getPointerElementType()); 1524 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1525 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1526 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), 1527 DFSF.getArgTLS(i, CS.getInstruction())); 1528 } 1529 } 1530 1531 Instruction *Next = nullptr; 1532 if (!CS.getType()->isVoidTy()) { 1533 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1534 if (II->getNormalDest()->getSinglePredecessor()) { 1535 Next = &II->getNormalDest()->front(); 1536 } else { 1537 BasicBlock *NewBB = 1538 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 1539 Next = &NewBB->front(); 1540 } 1541 } else { 1542 assert(CS->getIterator() != CS->getParent()->end()); 1543 Next = CS->getNextNode(); 1544 } 1545 1546 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1547 IRBuilder<> NextIRB(Next); 1548 LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS()); 1549 DFSF.SkipInsts.insert(LI); 1550 DFSF.setShadow(CS.getInstruction(), LI); 1551 DFSF.NonZeroChecks.push_back(LI); 1552 } 1553 } 1554 1555 // Do all instrumentation for IA_Args down here to defer tampering with the 1556 // CFG in a way that SplitEdge may be able to detect. 1557 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1558 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1559 Value *Func = 1560 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); 1561 std::vector<Value *> Args; 1562 1563 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1564 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1565 Args.push_back(*i); 1566 1567 i = CS.arg_begin(); 1568 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1569 Args.push_back(DFSF.getShadow(*i)); 1570 1571 if (FT->isVarArg()) { 1572 unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); 1573 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1574 AllocaInst *VarArgShadow = 1575 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 1576 "", &DFSF.F->getEntryBlock().front()); 1577 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 1578 for (unsigned n = 0; i != e; ++i, ++n) { 1579 IRB.CreateStore( 1580 DFSF.getShadow(*i), 1581 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 1582 Args.push_back(*i); 1583 } 1584 } 1585 1586 CallSite NewCS; 1587 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1588 NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(), 1589 Args); 1590 } else { 1591 NewCS = IRB.CreateCall(Func, Args); 1592 } 1593 NewCS.setCallingConv(CS.getCallingConv()); 1594 NewCS.setAttributes(CS.getAttributes().removeAttributes( 1595 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 1596 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType()))); 1597 1598 if (Next) { 1599 ExtractValueInst *ExVal = 1600 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); 1601 DFSF.SkipInsts.insert(ExVal); 1602 ExtractValueInst *ExShadow = 1603 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); 1604 DFSF.SkipInsts.insert(ExShadow); 1605 DFSF.setShadow(ExVal, ExShadow); 1606 DFSF.NonZeroChecks.push_back(ExShadow); 1607 1608 CS.getInstruction()->replaceAllUsesWith(ExVal); 1609 } 1610 1611 CS.getInstruction()->eraseFromParent(); 1612 } 1613 } 1614 1615 void DFSanVisitor::visitPHINode(PHINode &PN) { 1616 PHINode *ShadowPN = 1617 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1618 1619 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1620 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1621 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1622 ++i) { 1623 ShadowPN->addIncoming(UndefShadow, *i); 1624 } 1625 1626 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1627 DFSF.setShadow(&PN, ShadowPN); 1628 } 1629