1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/DenseSet.h" 52 #include "llvm/ADT/DepthFirstIterator.h" 53 #include "llvm/ADT/None.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/ADT/StringRef.h" 58 #include "llvm/ADT/Triple.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/IR/Argument.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalValue.h" 71 #include "llvm/IR/GlobalVariable.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstVisitor.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/MDBuilder.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/InitializePasses.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/ErrorHandling.h" 91 #include "llvm/Support/SpecialCaseList.h" 92 #include "llvm/Support/VirtualFileSystem.h" 93 #include "llvm/Transforms/Instrumentation.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstddef> 99 #include <cstdint> 100 #include <iterator> 101 #include <memory> 102 #include <set> 103 #include <string> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 109 // External symbol to be used when generating the shadow address for 110 // architectures with multiple VMAs. Instead of using a constant integer 111 // the runtime will set the external mask based on the VMA range. 112 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask"; 113 114 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 115 // alignment requirements provided by the input IR are correct. For example, 116 // if the input IR contains a load with alignment 8, this flag will cause 117 // the shadow load to have alignment 16. This flag is disabled by default as 118 // we have unfortunately encountered too much code (including Clang itself; 119 // see PR14291) which performs misaligned access. 120 static cl::opt<bool> ClPreserveAlignment( 121 "dfsan-preserve-alignment", 122 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 123 cl::init(false)); 124 125 // The ABI list files control how shadow parameters are passed. The pass treats 126 // every function labelled "uninstrumented" in the ABI list file as conforming 127 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 128 // additional annotations for those functions, a call to one of those functions 129 // will produce a warning message, as the labelling behaviour of the function is 130 // unknown. The other supported annotations are "functional" and "discard", 131 // which are described below under DataFlowSanitizer::WrapperKind. 132 static cl::list<std::string> ClABIListFiles( 133 "dfsan-abilist", 134 cl::desc("File listing native ABI functions and how the pass treats them"), 135 cl::Hidden); 136 137 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 138 // functions (see DataFlowSanitizer::InstrumentedABI below). 139 static cl::opt<bool> ClArgsABI( 140 "dfsan-args-abi", 141 cl::desc("Use the argument ABI rather than the TLS ABI"), 142 cl::Hidden); 143 144 // Controls whether the pass includes or ignores the labels of pointers in load 145 // instructions. 146 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 147 "dfsan-combine-pointer-labels-on-load", 148 cl::desc("Combine the label of the pointer with the label of the data when " 149 "loading from memory."), 150 cl::Hidden, cl::init(true)); 151 152 // Controls whether the pass includes or ignores the labels of pointers in 153 // stores instructions. 154 static cl::opt<bool> ClCombinePointerLabelsOnStore( 155 "dfsan-combine-pointer-labels-on-store", 156 cl::desc("Combine the label of the pointer with the label of the data when " 157 "storing in memory."), 158 cl::Hidden, cl::init(false)); 159 160 static cl::opt<bool> ClDebugNonzeroLabels( 161 "dfsan-debug-nonzero-labels", 162 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 163 "load or return with a nonzero label"), 164 cl::Hidden); 165 166 // Experimental feature that inserts callbacks for certain data events. 167 // Currently callbacks are only inserted for loads, stores, memory transfers 168 // (i.e. memcpy and memmove), and comparisons. 169 // 170 // If this flag is set to true, the user must provide definitions for the 171 // following callback functions: 172 // void __dfsan_load_callback(dfsan_label Label, void* addr); 173 // void __dfsan_store_callback(dfsan_label Label, void* addr); 174 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 175 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 176 static cl::opt<bool> ClEventCallbacks( 177 "dfsan-event-callbacks", 178 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 179 cl::Hidden, cl::init(false)); 180 181 // Use a distinct bit for each base label, enabling faster unions with less 182 // instrumentation. Limits the max number of base labels to 16. 183 static cl::opt<bool> ClFast16Labels( 184 "dfsan-fast-16-labels", 185 cl::desc("Use more efficient instrumentation, limiting the number of " 186 "labels to 16."), 187 cl::Hidden, cl::init(false)); 188 189 // Controls whether the pass tracks the control flow of select instructions. 190 static cl::opt<bool> ClTrackSelectControlFlow( 191 "dfsan-track-select-control-flow", 192 cl::desc("Propagate labels from condition values of select instructions " 193 "to results."), 194 cl::Hidden, cl::init(true)); 195 196 static StringRef GetGlobalTypeString(const GlobalValue &G) { 197 // Types of GlobalVariables are always pointer types. 198 Type *GType = G.getValueType(); 199 // For now we support excluding struct types only. 200 if (StructType *SGType = dyn_cast<StructType>(GType)) { 201 if (!SGType->isLiteral()) 202 return SGType->getName(); 203 } 204 return "<unknown type>"; 205 } 206 207 namespace { 208 209 class DFSanABIList { 210 std::unique_ptr<SpecialCaseList> SCL; 211 212 public: 213 DFSanABIList() = default; 214 215 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 216 217 /// Returns whether either this function or its source file are listed in the 218 /// given category. 219 bool isIn(const Function &F, StringRef Category) const { 220 return isIn(*F.getParent(), Category) || 221 SCL->inSection("dataflow", "fun", F.getName(), Category); 222 } 223 224 /// Returns whether this global alias is listed in the given category. 225 /// 226 /// If GA aliases a function, the alias's name is matched as a function name 227 /// would be. Similarly, aliases of globals are matched like globals. 228 bool isIn(const GlobalAlias &GA, StringRef Category) const { 229 if (isIn(*GA.getParent(), Category)) 230 return true; 231 232 if (isa<FunctionType>(GA.getValueType())) 233 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 234 235 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 236 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 237 Category); 238 } 239 240 /// Returns whether this module is listed in the given category. 241 bool isIn(const Module &M, StringRef Category) const { 242 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 243 } 244 }; 245 246 /// TransformedFunction is used to express the result of transforming one 247 /// function type into another. This struct is immutable. It holds metadata 248 /// useful for updating calls of the old function to the new type. 249 struct TransformedFunction { 250 TransformedFunction(FunctionType* OriginalType, 251 FunctionType* TransformedType, 252 std::vector<unsigned> ArgumentIndexMapping) 253 : OriginalType(OriginalType), 254 TransformedType(TransformedType), 255 ArgumentIndexMapping(ArgumentIndexMapping) {} 256 257 // Disallow copies. 258 TransformedFunction(const TransformedFunction&) = delete; 259 TransformedFunction& operator=(const TransformedFunction&) = delete; 260 261 // Allow moves. 262 TransformedFunction(TransformedFunction&&) = default; 263 TransformedFunction& operator=(TransformedFunction&&) = default; 264 265 /// Type of the function before the transformation. 266 FunctionType *OriginalType; 267 268 /// Type of the function after the transformation. 269 FunctionType *TransformedType; 270 271 /// Transforming a function may change the position of arguments. This 272 /// member records the mapping from each argument's old position to its new 273 /// position. Argument positions are zero-indexed. If the transformation 274 /// from F to F' made the first argument of F into the third argument of F', 275 /// then ArgumentIndexMapping[0] will equal 2. 276 std::vector<unsigned> ArgumentIndexMapping; 277 }; 278 279 /// Given function attributes from a call site for the original function, 280 /// return function attributes appropriate for a call to the transformed 281 /// function. 282 AttributeList TransformFunctionAttributes( 283 const TransformedFunction& TransformedFunction, 284 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 285 286 // Construct a vector of AttributeSet for each function argument. 287 std::vector<llvm::AttributeSet> ArgumentAttributes( 288 TransformedFunction.TransformedType->getNumParams()); 289 290 // Copy attributes from the parameter of the original function to the 291 // transformed version. 'ArgumentIndexMapping' holds the mapping from 292 // old argument position to new. 293 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 294 i < ie; ++i) { 295 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 296 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 297 } 298 299 // Copy annotations on varargs arguments. 300 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 301 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 302 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 303 } 304 305 return AttributeList::get( 306 Ctx, 307 CallSiteAttrs.getFnAttributes(), 308 CallSiteAttrs.getRetAttributes(), 309 llvm::makeArrayRef(ArgumentAttributes)); 310 } 311 312 class DataFlowSanitizer { 313 friend struct DFSanFunction; 314 friend class DFSanVisitor; 315 316 enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 }; 317 318 /// Which ABI should be used for instrumented functions? 319 enum InstrumentedABI { 320 /// Argument and return value labels are passed through additional 321 /// arguments and by modifying the return type. 322 IA_Args, 323 324 /// Argument and return value labels are passed through TLS variables 325 /// __dfsan_arg_tls and __dfsan_retval_tls. 326 IA_TLS 327 }; 328 329 /// How should calls to uninstrumented functions be handled? 330 enum WrapperKind { 331 /// This function is present in an uninstrumented form but we don't know 332 /// how it should be handled. Print a warning and call the function anyway. 333 /// Don't label the return value. 334 WK_Warning, 335 336 /// This function does not write to (user-accessible) memory, and its return 337 /// value is unlabelled. 338 WK_Discard, 339 340 /// This function does not write to (user-accessible) memory, and the label 341 /// of its return value is the union of the label of its arguments. 342 WK_Functional, 343 344 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 345 /// where F is the name of the function. This function may wrap the 346 /// original function or provide its own implementation. This is similar to 347 /// the IA_Args ABI, except that IA_Args uses a struct return type to 348 /// pass the return value shadow in a register, while WK_Custom uses an 349 /// extra pointer argument to return the shadow. This allows the wrapped 350 /// form of the function type to be expressed in C. 351 WK_Custom 352 }; 353 354 Module *Mod; 355 LLVMContext *Ctx; 356 Type *Int8Ptr; 357 IntegerType *ShadowTy; 358 PointerType *ShadowPtrTy; 359 IntegerType *IntptrTy; 360 ConstantInt *ZeroShadow; 361 ConstantInt *ShadowPtrMask; 362 ConstantInt *ShadowPtrMul; 363 Constant *ArgTLS; 364 Constant *RetvalTLS; 365 Constant *ExternalShadowMask; 366 FunctionType *DFSanUnionFnTy; 367 FunctionType *DFSanUnionLoadFnTy; 368 FunctionType *DFSanUnimplementedFnTy; 369 FunctionType *DFSanSetLabelFnTy; 370 FunctionType *DFSanNonzeroLabelFnTy; 371 FunctionType *DFSanVarargWrapperFnTy; 372 FunctionType *DFSanCmpCallbackFnTy; 373 FunctionType *DFSanLoadStoreCallbackFnTy; 374 FunctionType *DFSanMemTransferCallbackFnTy; 375 FunctionCallee DFSanUnionFn; 376 FunctionCallee DFSanCheckedUnionFn; 377 FunctionCallee DFSanUnionLoadFn; 378 FunctionCallee DFSanUnionLoadFast16LabelsFn; 379 FunctionCallee DFSanUnimplementedFn; 380 FunctionCallee DFSanSetLabelFn; 381 FunctionCallee DFSanNonzeroLabelFn; 382 FunctionCallee DFSanVarargWrapperFn; 383 FunctionCallee DFSanLoadCallbackFn; 384 FunctionCallee DFSanStoreCallbackFn; 385 FunctionCallee DFSanMemTransferCallbackFn; 386 FunctionCallee DFSanCmpCallbackFn; 387 MDNode *ColdCallWeights; 388 DFSanABIList ABIList; 389 DenseMap<Value *, Function *> UnwrappedFnMap; 390 AttrBuilder ReadOnlyNoneAttrs; 391 bool DFSanRuntimeShadowMask = false; 392 393 Value *getShadowAddress(Value *Addr, Instruction *Pos); 394 bool isInstrumented(const Function *F); 395 bool isInstrumented(const GlobalAlias *GA); 396 FunctionType *getArgsFunctionType(FunctionType *T); 397 FunctionType *getTrampolineFunctionType(FunctionType *T); 398 TransformedFunction getCustomFunctionType(FunctionType *T); 399 InstrumentedABI getInstrumentedABI(); 400 WrapperKind getWrapperKind(Function *F); 401 void addGlobalNamePrefix(GlobalValue *GV); 402 Function *buildWrapperFunction(Function *F, StringRef NewFName, 403 GlobalValue::LinkageTypes NewFLink, 404 FunctionType *NewFT); 405 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 406 void initializeCallbackFunctions(Module &M); 407 void initializeRuntimeFunctions(Module &M); 408 409 bool init(Module &M); 410 411 public: 412 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 413 414 bool runImpl(Module &M); 415 }; 416 417 struct DFSanFunction { 418 DataFlowSanitizer &DFS; 419 Function *F; 420 DominatorTree DT; 421 DataFlowSanitizer::InstrumentedABI IA; 422 bool IsNativeABI; 423 AllocaInst *LabelReturnAlloca = nullptr; 424 DenseMap<Value *, Value *> ValShadowMap; 425 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 426 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 427 DenseSet<Instruction *> SkipInsts; 428 std::vector<Value *> NonZeroChecks; 429 bool AvoidNewBlocks; 430 431 struct CachedCombinedShadow { 432 BasicBlock *Block; 433 Value *Shadow; 434 }; 435 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> 436 CachedCombinedShadows; 437 DenseMap<Value *, std::set<Value *>> ShadowElements; 438 439 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 440 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 441 DT.recalculate(*F); 442 // FIXME: Need to track down the register allocator issue which causes poor 443 // performance in pathological cases with large numbers of basic blocks. 444 AvoidNewBlocks = F->size() > 1000; 445 } 446 447 Value *getArgTLS(unsigned Index, Instruction *Pos); 448 Value *getShadow(Value *V); 449 void setShadow(Instruction *I, Value *Shadow); 450 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 451 Value *combineOperandShadows(Instruction *Inst); 452 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 453 Instruction *Pos); 454 void storeShadow(Value *Addr, uint64_t Size, Align Alignment, Value *Shadow, 455 Instruction *Pos); 456 }; 457 458 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 459 public: 460 DFSanFunction &DFSF; 461 462 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 463 464 const DataLayout &getDataLayout() const { 465 return DFSF.F->getParent()->getDataLayout(); 466 } 467 468 // Combines shadow values for all of I's operands. Returns the combined shadow 469 // value. 470 Value *visitOperandShadowInst(Instruction &I); 471 472 void visitUnaryOperator(UnaryOperator &UO); 473 void visitBinaryOperator(BinaryOperator &BO); 474 void visitCastInst(CastInst &CI); 475 void visitCmpInst(CmpInst &CI); 476 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 477 void visitLoadInst(LoadInst &LI); 478 void visitStoreInst(StoreInst &SI); 479 void visitReturnInst(ReturnInst &RI); 480 void visitCallBase(CallBase &CB); 481 void visitPHINode(PHINode &PN); 482 void visitExtractElementInst(ExtractElementInst &I); 483 void visitInsertElementInst(InsertElementInst &I); 484 void visitShuffleVectorInst(ShuffleVectorInst &I); 485 void visitExtractValueInst(ExtractValueInst &I); 486 void visitInsertValueInst(InsertValueInst &I); 487 void visitAllocaInst(AllocaInst &I); 488 void visitSelectInst(SelectInst &I); 489 void visitMemSetInst(MemSetInst &I); 490 void visitMemTransferInst(MemTransferInst &I); 491 }; 492 493 } // end anonymous namespace 494 495 DataFlowSanitizer::DataFlowSanitizer( 496 const std::vector<std::string> &ABIListFiles) { 497 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 498 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 499 ClABIListFiles.end()); 500 // FIXME: should we propagate vfs::FileSystem to this constructor? 501 ABIList.set( 502 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 503 } 504 505 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 506 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 507 ArgTypes.append(T->getNumParams(), ShadowTy); 508 if (T->isVarArg()) 509 ArgTypes.push_back(ShadowPtrTy); 510 Type *RetType = T->getReturnType(); 511 if (!RetType->isVoidTy()) 512 RetType = StructType::get(RetType, ShadowTy); 513 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 514 } 515 516 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 517 assert(!T->isVarArg()); 518 SmallVector<Type *, 4> ArgTypes; 519 ArgTypes.push_back(T->getPointerTo()); 520 ArgTypes.append(T->param_begin(), T->param_end()); 521 ArgTypes.append(T->getNumParams(), ShadowTy); 522 Type *RetType = T->getReturnType(); 523 if (!RetType->isVoidTy()) 524 ArgTypes.push_back(ShadowPtrTy); 525 return FunctionType::get(T->getReturnType(), ArgTypes, false); 526 } 527 528 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 529 SmallVector<Type *, 4> ArgTypes; 530 531 // Some parameters of the custom function being constructed are 532 // parameters of T. Record the mapping from parameters of T to 533 // parameters of the custom function, so that parameter attributes 534 // at call sites can be updated. 535 std::vector<unsigned> ArgumentIndexMapping; 536 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 537 Type* param_type = T->getParamType(i); 538 FunctionType *FT; 539 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 540 cast<PointerType>(param_type)->getElementType()))) { 541 ArgumentIndexMapping.push_back(ArgTypes.size()); 542 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 543 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 544 } else { 545 ArgumentIndexMapping.push_back(ArgTypes.size()); 546 ArgTypes.push_back(param_type); 547 } 548 } 549 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 550 ArgTypes.push_back(ShadowTy); 551 if (T->isVarArg()) 552 ArgTypes.push_back(ShadowPtrTy); 553 Type *RetType = T->getReturnType(); 554 if (!RetType->isVoidTy()) 555 ArgTypes.push_back(ShadowPtrTy); 556 return TransformedFunction( 557 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 558 ArgumentIndexMapping); 559 } 560 561 bool DataFlowSanitizer::init(Module &M) { 562 Triple TargetTriple(M.getTargetTriple()); 563 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 564 bool IsMIPS64 = TargetTriple.isMIPS64(); 565 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 566 TargetTriple.getArch() == Triple::aarch64_be; 567 568 const DataLayout &DL = M.getDataLayout(); 569 570 Mod = &M; 571 Ctx = &M.getContext(); 572 Int8Ptr = Type::getInt8PtrTy(*Ctx); 573 ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 574 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 575 IntptrTy = DL.getIntPtrType(*Ctx); 576 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 577 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 578 if (IsX86_64) 579 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 580 else if (IsMIPS64) 581 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 582 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 583 else if (IsAArch64) 584 DFSanRuntimeShadowMask = true; 585 else 586 report_fatal_error("unsupported triple"); 587 588 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 589 DFSanUnionFnTy = 590 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 591 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 592 DFSanUnionLoadFnTy = 593 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 594 DFSanUnimplementedFnTy = FunctionType::get( 595 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 596 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 597 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 598 DFSanSetLabelArgs, /*isVarArg=*/false); 599 DFSanNonzeroLabelFnTy = FunctionType::get( 600 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 601 DFSanVarargWrapperFnTy = FunctionType::get( 602 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 603 DFSanCmpCallbackFnTy = FunctionType::get(Type::getVoidTy(*Ctx), ShadowTy, 604 /*isVarArg=*/false); 605 Type *DFSanLoadStoreCallbackArgs[2] = {ShadowTy, Int8Ptr}; 606 DFSanLoadStoreCallbackFnTy = 607 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 608 /*isVarArg=*/false); 609 Type *DFSanMemTransferCallbackArgs[2] = {ShadowPtrTy, IntptrTy}; 610 DFSanMemTransferCallbackFnTy = 611 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 612 /*isVarArg=*/false); 613 614 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 615 return true; 616 } 617 618 bool DataFlowSanitizer::isInstrumented(const Function *F) { 619 return !ABIList.isIn(*F, "uninstrumented"); 620 } 621 622 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 623 return !ABIList.isIn(*GA, "uninstrumented"); 624 } 625 626 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 627 return ClArgsABI ? IA_Args : IA_TLS; 628 } 629 630 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 631 if (ABIList.isIn(*F, "functional")) 632 return WK_Functional; 633 if (ABIList.isIn(*F, "discard")) 634 return WK_Discard; 635 if (ABIList.isIn(*F, "custom")) 636 return WK_Custom; 637 638 return WK_Warning; 639 } 640 641 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 642 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 643 GV->setName(Prefix + GVName); 644 645 // Try to change the name of the function in module inline asm. We only do 646 // this for specific asm directives, currently only ".symver", to try to avoid 647 // corrupting asm which happens to contain the symbol name as a substring. 648 // Note that the substitution for .symver assumes that the versioned symbol 649 // also has an instrumented name. 650 std::string Asm = GV->getParent()->getModuleInlineAsm(); 651 std::string SearchStr = ".symver " + GVName + ","; 652 size_t Pos = Asm.find(SearchStr); 653 if (Pos != std::string::npos) { 654 Asm.replace(Pos, SearchStr.size(), 655 ".symver " + Prefix + GVName + "," + Prefix); 656 GV->getParent()->setModuleInlineAsm(Asm); 657 } 658 } 659 660 Function * 661 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 662 GlobalValue::LinkageTypes NewFLink, 663 FunctionType *NewFT) { 664 FunctionType *FT = F->getFunctionType(); 665 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 666 NewFName, F->getParent()); 667 NewF->copyAttributesFrom(F); 668 NewF->removeAttributes( 669 AttributeList::ReturnIndex, 670 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 671 672 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 673 if (F->isVarArg()) { 674 NewF->removeAttributes(AttributeList::FunctionIndex, 675 AttrBuilder().addAttribute("split-stack")); 676 CallInst::Create(DFSanVarargWrapperFn, 677 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 678 BB); 679 new UnreachableInst(*Ctx, BB); 680 } else { 681 std::vector<Value *> Args; 682 unsigned n = FT->getNumParams(); 683 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 684 Args.push_back(&*ai); 685 CallInst *CI = CallInst::Create(F, Args, "", BB); 686 if (FT->getReturnType()->isVoidTy()) 687 ReturnInst::Create(*Ctx, BB); 688 else 689 ReturnInst::Create(*Ctx, CI, BB); 690 } 691 692 return NewF; 693 } 694 695 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 696 StringRef FName) { 697 FunctionType *FTT = getTrampolineFunctionType(FT); 698 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 699 Function *F = dyn_cast<Function>(C.getCallee()); 700 if (F && F->isDeclaration()) { 701 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 702 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 703 std::vector<Value *> Args; 704 Function::arg_iterator AI = F->arg_begin(); ++AI; 705 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 706 Args.push_back(&*AI); 707 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 708 ReturnInst *RI; 709 if (FT->getReturnType()->isVoidTy()) 710 RI = ReturnInst::Create(*Ctx, BB); 711 else 712 RI = ReturnInst::Create(*Ctx, CI, BB); 713 714 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 715 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 716 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 717 DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; 718 DFSanVisitor(DFSF).visitCallInst(*CI); 719 if (!FT->getReturnType()->isVoidTy()) 720 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 721 &*std::prev(F->arg_end()), RI); 722 } 723 724 return cast<Constant>(C.getCallee()); 725 } 726 727 // Initialize DataFlowSanitizer runtime functions and declare them in the module 728 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 729 { 730 AttributeList AL; 731 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 732 Attribute::NoUnwind); 733 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 734 Attribute::ReadNone); 735 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 736 Attribute::ZExt); 737 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 738 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 739 DFSanUnionFn = 740 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 741 } 742 { 743 AttributeList AL; 744 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 745 Attribute::NoUnwind); 746 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 747 Attribute::ReadNone); 748 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 749 Attribute::ZExt); 750 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 751 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 752 DFSanCheckedUnionFn = 753 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 754 } 755 { 756 AttributeList AL; 757 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 758 Attribute::NoUnwind); 759 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 760 Attribute::ReadOnly); 761 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 762 Attribute::ZExt); 763 DFSanUnionLoadFn = 764 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 765 } 766 { 767 AttributeList AL; 768 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 769 Attribute::NoUnwind); 770 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 771 Attribute::ReadOnly); 772 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 773 Attribute::ZExt); 774 DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction( 775 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); 776 } 777 DFSanUnimplementedFn = 778 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 779 { 780 AttributeList AL; 781 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 782 DFSanSetLabelFn = 783 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 784 } 785 DFSanNonzeroLabelFn = 786 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 787 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 788 DFSanVarargWrapperFnTy); 789 } 790 791 // Initializes event callback functions and declare them in the module 792 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 793 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 794 DFSanLoadStoreCallbackFnTy); 795 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 796 DFSanLoadStoreCallbackFnTy); 797 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 798 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 799 DFSanCmpCallbackFn = 800 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 801 } 802 803 bool DataFlowSanitizer::runImpl(Module &M) { 804 init(M); 805 806 if (ABIList.isIn(M, "skip")) 807 return false; 808 809 const unsigned InitialGlobalSize = M.global_size(); 810 const unsigned InitialModuleSize = M.size(); 811 812 bool Changed = false; 813 814 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 815 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 816 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) { 817 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 818 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 819 } 820 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 821 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) { 822 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 823 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 824 } 825 826 ExternalShadowMask = 827 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 828 829 initializeCallbackFunctions(M); 830 initializeRuntimeFunctions(M); 831 832 std::vector<Function *> FnsToInstrument; 833 SmallPtrSet<Function *, 2> FnsWithNativeABI; 834 for (Function &i : M) { 835 if (!i.isIntrinsic() && 836 &i != DFSanUnionFn.getCallee()->stripPointerCasts() && 837 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && 838 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && 839 &i != DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts() && 840 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && 841 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && 842 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && 843 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() && 844 &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() && 845 &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() && 846 &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() && 847 &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts()) 848 FnsToInstrument.push_back(&i); 849 } 850 851 // Give function aliases prefixes when necessary, and build wrappers where the 852 // instrumentedness is inconsistent. 853 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 854 GlobalAlias *GA = &*i; 855 ++i; 856 // Don't stop on weak. We assume people aren't playing games with the 857 // instrumentedness of overridden weak aliases. 858 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 859 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 860 if (GAInst && FInst) { 861 addGlobalNamePrefix(GA); 862 } else if (GAInst != FInst) { 863 // Non-instrumented alias of an instrumented function, or vice versa. 864 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 865 // below will take care of instrumenting it. 866 Function *NewF = 867 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 868 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 869 NewF->takeName(GA); 870 GA->eraseFromParent(); 871 FnsToInstrument.push_back(NewF); 872 } 873 } 874 } 875 876 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 877 .addAttribute(Attribute::ReadNone); 878 879 // First, change the ABI of every function in the module. ABI-listed 880 // functions keep their original ABI and get a wrapper function. 881 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 882 e = FnsToInstrument.end(); 883 i != e; ++i) { 884 Function &F = **i; 885 FunctionType *FT = F.getFunctionType(); 886 887 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 888 FT->getReturnType()->isVoidTy()); 889 890 if (isInstrumented(&F)) { 891 // Instrumented functions get a 'dfs$' prefix. This allows us to more 892 // easily identify cases of mismatching ABIs. 893 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 894 FunctionType *NewFT = getArgsFunctionType(FT); 895 Function *NewF = Function::Create(NewFT, F.getLinkage(), 896 F.getAddressSpace(), "", &M); 897 NewF->copyAttributesFrom(&F); 898 NewF->removeAttributes( 899 AttributeList::ReturnIndex, 900 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 901 for (Function::arg_iterator FArg = F.arg_begin(), 902 NewFArg = NewF->arg_begin(), 903 FArgEnd = F.arg_end(); 904 FArg != FArgEnd; ++FArg, ++NewFArg) { 905 FArg->replaceAllUsesWith(&*NewFArg); 906 } 907 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 908 909 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 910 UI != UE;) { 911 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 912 ++UI; 913 if (BA) { 914 BA->replaceAllUsesWith( 915 BlockAddress::get(NewF, BA->getBasicBlock())); 916 delete BA; 917 } 918 } 919 F.replaceAllUsesWith( 920 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 921 NewF->takeName(&F); 922 F.eraseFromParent(); 923 *i = NewF; 924 addGlobalNamePrefix(NewF); 925 } else { 926 addGlobalNamePrefix(&F); 927 } 928 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 929 // Build a wrapper function for F. The wrapper simply calls F, and is 930 // added to FnsToInstrument so that any instrumentation according to its 931 // WrapperKind is done in the second pass below. 932 FunctionType *NewFT = getInstrumentedABI() == IA_Args 933 ? getArgsFunctionType(FT) 934 : FT; 935 936 // If the function being wrapped has local linkage, then preserve the 937 // function's linkage in the wrapper function. 938 GlobalValue::LinkageTypes wrapperLinkage = 939 F.hasLocalLinkage() 940 ? F.getLinkage() 941 : GlobalValue::LinkOnceODRLinkage; 942 943 Function *NewF = buildWrapperFunction( 944 &F, std::string("dfsw$") + std::string(F.getName()), 945 wrapperLinkage, NewFT); 946 if (getInstrumentedABI() == IA_TLS) 947 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 948 949 Value *WrappedFnCst = 950 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 951 F.replaceAllUsesWith(WrappedFnCst); 952 953 UnwrappedFnMap[WrappedFnCst] = &F; 954 *i = NewF; 955 956 if (!F.isDeclaration()) { 957 // This function is probably defining an interposition of an 958 // uninstrumented function and hence needs to keep the original ABI. 959 // But any functions it may call need to use the instrumented ABI, so 960 // we instrument it in a mode which preserves the original ABI. 961 FnsWithNativeABI.insert(&F); 962 963 // This code needs to rebuild the iterators, as they may be invalidated 964 // by the push_back, taking care that the new range does not include 965 // any functions added by this code. 966 size_t N = i - FnsToInstrument.begin(), 967 Count = e - FnsToInstrument.begin(); 968 FnsToInstrument.push_back(&F); 969 i = FnsToInstrument.begin() + N; 970 e = FnsToInstrument.begin() + Count; 971 } 972 // Hopefully, nobody will try to indirectly call a vararg 973 // function... yet. 974 } else if (FT->isVarArg()) { 975 UnwrappedFnMap[&F] = &F; 976 *i = nullptr; 977 } 978 } 979 980 for (Function *i : FnsToInstrument) { 981 if (!i || i->isDeclaration()) 982 continue; 983 984 removeUnreachableBlocks(*i); 985 986 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 987 988 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 989 // Build a copy of the list before iterating over it. 990 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 991 992 for (BasicBlock *i : BBList) { 993 Instruction *Inst = &i->front(); 994 while (true) { 995 // DFSanVisitor may split the current basic block, changing the current 996 // instruction's next pointer and moving the next instruction to the 997 // tail block from which we should continue. 998 Instruction *Next = Inst->getNextNode(); 999 // DFSanVisitor may delete Inst, so keep track of whether it was a 1000 // terminator. 1001 bool IsTerminator = Inst->isTerminator(); 1002 if (!DFSF.SkipInsts.count(Inst)) 1003 DFSanVisitor(DFSF).visit(Inst); 1004 if (IsTerminator) 1005 break; 1006 Inst = Next; 1007 } 1008 } 1009 1010 // We will not necessarily be able to compute the shadow for every phi node 1011 // until we have visited every block. Therefore, the code that handles phi 1012 // nodes adds them to the PHIFixups list so that they can be properly 1013 // handled here. 1014 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 1015 i = DFSF.PHIFixups.begin(), 1016 e = DFSF.PHIFixups.end(); 1017 i != e; ++i) { 1018 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 1019 ++val) { 1020 i->second->setIncomingValue( 1021 val, DFSF.getShadow(i->first->getIncomingValue(val))); 1022 } 1023 } 1024 1025 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1026 // places (i.e. instructions in basic blocks we haven't even begun visiting 1027 // yet). To make our life easier, do this work in a pass after the main 1028 // instrumentation. 1029 if (ClDebugNonzeroLabels) { 1030 for (Value *V : DFSF.NonZeroChecks) { 1031 Instruction *Pos; 1032 if (Instruction *I = dyn_cast<Instruction>(V)) 1033 Pos = I->getNextNode(); 1034 else 1035 Pos = &DFSF.F->getEntryBlock().front(); 1036 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1037 Pos = Pos->getNextNode(); 1038 IRBuilder<> IRB(Pos); 1039 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); 1040 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1041 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1042 IRBuilder<> ThenIRB(BI); 1043 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1044 } 1045 } 1046 } 1047 1048 return Changed || !FnsToInstrument.empty() || 1049 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1050 } 1051 1052 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 1053 IRBuilder<> IRB(Pos); 1054 return IRB.CreateConstGEP2_64(ArrayType::get(DFS.ShadowTy, 64), DFS.ArgTLS, 0, 1055 Idx); 1056 } 1057 1058 Value *DFSanFunction::getShadow(Value *V) { 1059 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1060 return DFS.ZeroShadow; 1061 Value *&Shadow = ValShadowMap[V]; 1062 if (!Shadow) { 1063 if (Argument *A = dyn_cast<Argument>(V)) { 1064 if (IsNativeABI) 1065 return DFS.ZeroShadow; 1066 switch (IA) { 1067 case DataFlowSanitizer::IA_TLS: { 1068 Value *ArgTLSPtr = DFS.ArgTLS; 1069 Instruction *ArgTLSPos = 1070 DFS.ArgTLS ? &*F->getEntryBlock().begin() 1071 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 1072 IRBuilder<> IRB(ArgTLSPos); 1073 Shadow = 1074 IRB.CreateLoad(DFS.ShadowTy, getArgTLS(A->getArgNo(), ArgTLSPos)); 1075 break; 1076 } 1077 case DataFlowSanitizer::IA_Args: { 1078 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1079 Function::arg_iterator i = F->arg_begin(); 1080 while (ArgIdx--) 1081 ++i; 1082 Shadow = &*i; 1083 assert(Shadow->getType() == DFS.ShadowTy); 1084 break; 1085 } 1086 } 1087 NonZeroChecks.push_back(Shadow); 1088 } else { 1089 Shadow = DFS.ZeroShadow; 1090 } 1091 } 1092 return Shadow; 1093 } 1094 1095 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1096 assert(!ValShadowMap.count(I)); 1097 assert(Shadow->getType() == DFS.ShadowTy); 1098 ValShadowMap[I] = Shadow; 1099 } 1100 1101 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1102 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1103 IRBuilder<> IRB(Pos); 1104 Value *ShadowPtrMaskValue; 1105 if (DFSanRuntimeShadowMask) 1106 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1107 else 1108 ShadowPtrMaskValue = ShadowPtrMask; 1109 return IRB.CreateIntToPtr( 1110 IRB.CreateMul( 1111 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1112 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 1113 ShadowPtrMul), 1114 ShadowPtrTy); 1115 } 1116 1117 // Generates IR to compute the union of the two given shadows, inserting it 1118 // before Pos. Returns the computed union Value. 1119 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1120 if (V1 == DFS.ZeroShadow) 1121 return V2; 1122 if (V2 == DFS.ZeroShadow) 1123 return V1; 1124 if (V1 == V2) 1125 return V1; 1126 1127 auto V1Elems = ShadowElements.find(V1); 1128 auto V2Elems = ShadowElements.find(V2); 1129 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1130 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1131 V2Elems->second.begin(), V2Elems->second.end())) { 1132 return V1; 1133 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1134 V1Elems->second.begin(), V1Elems->second.end())) { 1135 return V2; 1136 } 1137 } else if (V1Elems != ShadowElements.end()) { 1138 if (V1Elems->second.count(V2)) 1139 return V1; 1140 } else if (V2Elems != ShadowElements.end()) { 1141 if (V2Elems->second.count(V1)) 1142 return V2; 1143 } 1144 1145 auto Key = std::make_pair(V1, V2); 1146 if (V1 > V2) 1147 std::swap(Key.first, Key.second); 1148 CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; 1149 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1150 return CCS.Shadow; 1151 1152 IRBuilder<> IRB(Pos); 1153 if (ClFast16Labels) { 1154 CCS.Block = Pos->getParent(); 1155 CCS.Shadow = IRB.CreateOr(V1, V2); 1156 } else if (AvoidNewBlocks) { 1157 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); 1158 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1159 Call->addParamAttr(0, Attribute::ZExt); 1160 Call->addParamAttr(1, Attribute::ZExt); 1161 1162 CCS.Block = Pos->getParent(); 1163 CCS.Shadow = Call; 1164 } else { 1165 BasicBlock *Head = Pos->getParent(); 1166 Value *Ne = IRB.CreateICmpNE(V1, V2); 1167 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1168 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1169 IRBuilder<> ThenIRB(BI); 1170 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); 1171 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1172 Call->addParamAttr(0, Attribute::ZExt); 1173 Call->addParamAttr(1, Attribute::ZExt); 1174 1175 BasicBlock *Tail = BI->getSuccessor(0); 1176 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1177 Phi->addIncoming(Call, Call->getParent()); 1178 Phi->addIncoming(V1, Head); 1179 1180 CCS.Block = Tail; 1181 CCS.Shadow = Phi; 1182 } 1183 1184 std::set<Value *> UnionElems; 1185 if (V1Elems != ShadowElements.end()) { 1186 UnionElems = V1Elems->second; 1187 } else { 1188 UnionElems.insert(V1); 1189 } 1190 if (V2Elems != ShadowElements.end()) { 1191 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1192 } else { 1193 UnionElems.insert(V2); 1194 } 1195 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1196 1197 return CCS.Shadow; 1198 } 1199 1200 // A convenience function which folds the shadows of each of the operands 1201 // of the provided instruction Inst, inserting the IR before Inst. Returns 1202 // the computed union Value. 1203 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1204 if (Inst->getNumOperands() == 0) 1205 return DFS.ZeroShadow; 1206 1207 Value *Shadow = getShadow(Inst->getOperand(0)); 1208 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1209 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1210 } 1211 return Shadow; 1212 } 1213 1214 Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1215 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1216 DFSF.setShadow(&I, CombinedShadow); 1217 return CombinedShadow; 1218 } 1219 1220 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1221 // Addr has alignment Align, and take the union of each of those shadows. 1222 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1223 Instruction *Pos) { 1224 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1225 const auto i = AllocaShadowMap.find(AI); 1226 if (i != AllocaShadowMap.end()) { 1227 IRBuilder<> IRB(Pos); 1228 return IRB.CreateLoad(DFS.ShadowTy, i->second); 1229 } 1230 } 1231 1232 const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes); 1233 SmallVector<const Value *, 2> Objs; 1234 getUnderlyingObjects(Addr, Objs); 1235 bool AllConstants = true; 1236 for (const Value *Obj : Objs) { 1237 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1238 continue; 1239 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1240 continue; 1241 1242 AllConstants = false; 1243 break; 1244 } 1245 if (AllConstants) 1246 return DFS.ZeroShadow; 1247 1248 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1249 switch (Size) { 1250 case 0: 1251 return DFS.ZeroShadow; 1252 case 1: { 1253 LoadInst *LI = new LoadInst(DFS.ShadowTy, ShadowAddr, "", Pos); 1254 LI->setAlignment(ShadowAlign); 1255 return LI; 1256 } 1257 case 2: { 1258 IRBuilder<> IRB(Pos); 1259 Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr, 1260 ConstantInt::get(DFS.IntptrTy, 1)); 1261 return combineShadows( 1262 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr, ShadowAlign), 1263 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr1, ShadowAlign), Pos); 1264 } 1265 } 1266 1267 if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) { 1268 // First OR all the WideShadows, then OR individual shadows within the 1269 // combined WideShadow. This is fewer instructions than ORing shadows 1270 // individually. 1271 IRBuilder<> IRB(Pos); 1272 Value *WideAddr = 1273 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1274 Value *CombinedWideShadow = 1275 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1276 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1277 Ofs += 64 / DFS.ShadowWidthBits) { 1278 WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1279 ConstantInt::get(DFS.IntptrTy, 1)); 1280 Value *NextWideShadow = 1281 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1282 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1283 } 1284 for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) { 1285 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1286 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1287 } 1288 return IRB.CreateTrunc(CombinedWideShadow, DFS.ShadowTy); 1289 } 1290 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) { 1291 // Fast path for the common case where each byte has identical shadow: load 1292 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1293 // shadow is non-equal. 1294 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1295 IRBuilder<> FallbackIRB(FallbackBB); 1296 CallInst *FallbackCall = FallbackIRB.CreateCall( 1297 DFS.DFSanUnionLoadFn, 1298 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1299 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1300 1301 // Compare each of the shadows stored in the loaded 64 bits to each other, 1302 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 1303 IRBuilder<> IRB(Pos); 1304 Value *WideAddr = 1305 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1306 Value *WideShadow = 1307 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1308 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 1309 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 1310 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); 1311 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1312 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1313 1314 BasicBlock *Head = Pos->getParent(); 1315 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1316 1317 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1318 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1319 1320 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1321 for (auto Child : Children) 1322 DT.changeImmediateDominator(Child, NewNode); 1323 } 1324 1325 // In the following code LastBr will refer to the previous basic block's 1326 // conditional branch instruction, whose true successor is fixed up to point 1327 // to the next block during the loop below or to the tail after the final 1328 // iteration. 1329 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1330 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1331 DT.addNewBlock(FallbackBB, Head); 1332 1333 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1334 Ofs += 64 / DFS.ShadowWidthBits) { 1335 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1336 DT.addNewBlock(NextBB, LastBr->getParent()); 1337 IRBuilder<> NextIRB(NextBB); 1338 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1339 ConstantInt::get(DFS.IntptrTy, 1)); 1340 Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), 1341 WideAddr, ShadowAlign); 1342 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1343 LastBr->setSuccessor(0, NextBB); 1344 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1345 } 1346 1347 LastBr->setSuccessor(0, Tail); 1348 FallbackIRB.CreateBr(Tail); 1349 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1350 Shadow->addIncoming(FallbackCall, FallbackBB); 1351 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1352 return Shadow; 1353 } 1354 1355 IRBuilder<> IRB(Pos); 1356 FunctionCallee &UnionLoadFn = 1357 ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn; 1358 CallInst *FallbackCall = IRB.CreateCall( 1359 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1360 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1361 return FallbackCall; 1362 } 1363 1364 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1365 auto &DL = LI.getModule()->getDataLayout(); 1366 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1367 if (Size == 0) { 1368 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); 1369 return; 1370 } 1371 1372 Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1); 1373 Value *Shadow = 1374 DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI); 1375 if (ClCombinePointerLabelsOnLoad) { 1376 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1377 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1378 } 1379 if (Shadow != DFSF.DFS.ZeroShadow) 1380 DFSF.NonZeroChecks.push_back(Shadow); 1381 1382 DFSF.setShadow(&LI, Shadow); 1383 if (ClEventCallbacks) { 1384 IRBuilder<> IRB(&LI); 1385 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1386 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {Shadow, Addr8}); 1387 } 1388 } 1389 1390 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, Align Alignment, 1391 Value *Shadow, Instruction *Pos) { 1392 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1393 const auto i = AllocaShadowMap.find(AI); 1394 if (i != AllocaShadowMap.end()) { 1395 IRBuilder<> IRB(Pos); 1396 IRB.CreateStore(Shadow, i->second); 1397 return; 1398 } 1399 } 1400 1401 const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes); 1402 IRBuilder<> IRB(Pos); 1403 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1404 if (Shadow == DFS.ZeroShadow) { 1405 IntegerType *ShadowTy = 1406 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 1407 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1408 Value *ExtShadowAddr = 1409 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1410 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1411 return; 1412 } 1413 1414 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; 1415 uint64_t Offset = 0; 1416 if (Size >= ShadowVecSize) { 1417 auto *ShadowVecTy = FixedVectorType::get(DFS.ShadowTy, ShadowVecSize); 1418 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1419 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1420 ShadowVec = IRB.CreateInsertElement( 1421 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1422 } 1423 Value *ShadowVecAddr = 1424 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1425 do { 1426 Value *CurShadowVecAddr = 1427 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1428 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1429 Size -= ShadowVecSize; 1430 ++Offset; 1431 } while (Size >= ShadowVecSize); 1432 Offset *= ShadowVecSize; 1433 } 1434 while (Size > 0) { 1435 Value *CurShadowAddr = 1436 IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset); 1437 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1438 --Size; 1439 ++Offset; 1440 } 1441 } 1442 1443 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1444 auto &DL = SI.getModule()->getDataLayout(); 1445 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1446 if (Size == 0) 1447 return; 1448 1449 const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1); 1450 1451 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1452 if (ClCombinePointerLabelsOnStore) { 1453 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1454 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1455 } 1456 DFSF.storeShadow(SI.getPointerOperand(), Size, Alignment, Shadow, &SI); 1457 if (ClEventCallbacks) { 1458 IRBuilder<> IRB(&SI); 1459 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1460 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {Shadow, Addr8}); 1461 } 1462 } 1463 1464 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 1465 visitOperandShadowInst(UO); 1466 } 1467 1468 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1469 visitOperandShadowInst(BO); 1470 } 1471 1472 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1473 1474 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 1475 Value *CombinedShadow = visitOperandShadowInst(CI); 1476 if (ClEventCallbacks) { 1477 IRBuilder<> IRB(&CI); 1478 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 1479 } 1480 } 1481 1482 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1483 visitOperandShadowInst(GEPI); 1484 } 1485 1486 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1487 visitOperandShadowInst(I); 1488 } 1489 1490 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1491 visitOperandShadowInst(I); 1492 } 1493 1494 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1495 visitOperandShadowInst(I); 1496 } 1497 1498 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1499 visitOperandShadowInst(I); 1500 } 1501 1502 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1503 visitOperandShadowInst(I); 1504 } 1505 1506 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1507 bool AllLoadsStores = true; 1508 for (User *U : I.users()) { 1509 if (isa<LoadInst>(U)) 1510 continue; 1511 1512 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1513 if (SI->getPointerOperand() == &I) 1514 continue; 1515 } 1516 1517 AllLoadsStores = false; 1518 break; 1519 } 1520 if (AllLoadsStores) { 1521 IRBuilder<> IRB(&I); 1522 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1523 } 1524 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1525 } 1526 1527 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1528 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1529 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1530 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1531 Value *ShadowSel = nullptr; 1532 1533 if (isa<VectorType>(I.getCondition()->getType())) { 1534 ShadowSel = DFSF.combineShadows(TrueShadow, FalseShadow, &I); 1535 } else { 1536 if (TrueShadow == FalseShadow) { 1537 ShadowSel = TrueShadow; 1538 } else { 1539 ShadowSel = 1540 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1541 } 1542 } 1543 DFSF.setShadow(&I, ClTrackSelectControlFlow 1544 ? DFSF.combineShadows(CondShadow, ShadowSel, &I) 1545 : ShadowSel); 1546 } 1547 1548 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1549 IRBuilder<> IRB(&I); 1550 Value *ValShadow = DFSF.getShadow(I.getValue()); 1551 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1552 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1553 *DFSF.DFS.Ctx)), 1554 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1555 } 1556 1557 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1558 IRBuilder<> IRB(&I); 1559 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1560 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1561 Value *LenShadow = 1562 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 1563 DFSF.DFS.ShadowWidthBytes)); 1564 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1565 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 1566 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1567 auto *MTI = cast<MemTransferInst>( 1568 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 1569 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 1570 if (ClPreserveAlignment) { 1571 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 1572 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 1573 } else { 1574 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1575 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1576 } 1577 if (ClEventCallbacks) { 1578 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 1579 {RawDestShadow, I.getLength()}); 1580 } 1581 } 1582 1583 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1584 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1585 switch (DFSF.IA) { 1586 case DataFlowSanitizer::IA_TLS: { 1587 Value *S = DFSF.getShadow(RI.getReturnValue()); 1588 IRBuilder<> IRB(&RI); 1589 IRB.CreateStore(S, DFSF.DFS.RetvalTLS); 1590 break; 1591 } 1592 case DataFlowSanitizer::IA_Args: { 1593 IRBuilder<> IRB(&RI); 1594 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1595 Value *InsVal = 1596 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1597 Value *InsShadow = 1598 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1599 RI.setOperand(0, InsShadow); 1600 break; 1601 } 1602 } 1603 } 1604 } 1605 1606 void DFSanVisitor::visitCallBase(CallBase &CB) { 1607 Function *F = CB.getCalledFunction(); 1608 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 1609 visitOperandShadowInst(CB); 1610 return; 1611 } 1612 1613 // Calls to this function are synthesized in wrappers, and we shouldn't 1614 // instrument them. 1615 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 1616 return; 1617 1618 IRBuilder<> IRB(&CB); 1619 1620 DenseMap<Value *, Function *>::iterator i = 1621 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 1622 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1623 Function *F = i->second; 1624 switch (DFSF.DFS.getWrapperKind(F)) { 1625 case DataFlowSanitizer::WK_Warning: 1626 CB.setCalledFunction(F); 1627 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1628 IRB.CreateGlobalStringPtr(F->getName())); 1629 DFSF.setShadow(&CB, DFSF.DFS.ZeroShadow); 1630 return; 1631 case DataFlowSanitizer::WK_Discard: 1632 CB.setCalledFunction(F); 1633 DFSF.setShadow(&CB, DFSF.DFS.ZeroShadow); 1634 return; 1635 case DataFlowSanitizer::WK_Functional: 1636 CB.setCalledFunction(F); 1637 visitOperandShadowInst(CB); 1638 return; 1639 case DataFlowSanitizer::WK_Custom: 1640 // Don't try to handle invokes of custom functions, it's too complicated. 1641 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1642 // wrapper. 1643 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1644 FunctionType *FT = F->getFunctionType(); 1645 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 1646 std::string CustomFName = "__dfsw_"; 1647 CustomFName += F->getName(); 1648 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 1649 CustomFName, CustomFn.TransformedType); 1650 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 1651 CustomFn->copyAttributesFrom(F); 1652 1653 // Custom functions returning non-void will write to the return label. 1654 if (!FT->getReturnType()->isVoidTy()) { 1655 CustomFn->removeAttributes(AttributeList::FunctionIndex, 1656 DFSF.DFS.ReadOnlyNoneAttrs); 1657 } 1658 } 1659 1660 std::vector<Value *> Args; 1661 1662 auto i = CB.arg_begin(); 1663 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1664 Type *T = (*i)->getType(); 1665 FunctionType *ParamFT; 1666 if (isa<PointerType>(T) && 1667 (ParamFT = dyn_cast<FunctionType>( 1668 cast<PointerType>(T)->getElementType()))) { 1669 std::string TName = "dfst"; 1670 TName += utostr(FT->getNumParams() - n); 1671 TName += "$"; 1672 TName += F->getName(); 1673 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1674 Args.push_back(T); 1675 Args.push_back( 1676 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1677 } else { 1678 Args.push_back(*i); 1679 } 1680 } 1681 1682 i = CB.arg_begin(); 1683 const unsigned ShadowArgStart = Args.size(); 1684 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1685 Args.push_back(DFSF.getShadow(*i)); 1686 1687 if (FT->isVarArg()) { 1688 auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy, 1689 CB.arg_size() - FT->getNumParams()); 1690 auto *LabelVAAlloca = new AllocaInst( 1691 LabelVATy, getDataLayout().getAllocaAddrSpace(), 1692 "labelva", &DFSF.F->getEntryBlock().front()); 1693 1694 for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) { 1695 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); 1696 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1697 } 1698 1699 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 1700 } 1701 1702 if (!FT->getReturnType()->isVoidTy()) { 1703 if (!DFSF.LabelReturnAlloca) { 1704 DFSF.LabelReturnAlloca = 1705 new AllocaInst(DFSF.DFS.ShadowTy, 1706 getDataLayout().getAllocaAddrSpace(), 1707 "labelreturn", &DFSF.F->getEntryBlock().front()); 1708 } 1709 Args.push_back(DFSF.LabelReturnAlloca); 1710 } 1711 1712 for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i) 1713 Args.push_back(*i); 1714 1715 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1716 CustomCI->setCallingConv(CI->getCallingConv()); 1717 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, 1718 CI->getContext(), CI->getAttributes())); 1719 1720 // Update the parameter attributes of the custom call instruction to 1721 // zero extend the shadow parameters. This is required for targets 1722 // which consider ShadowTy an illegal type. 1723 for (unsigned n = 0; n < FT->getNumParams(); n++) { 1724 const unsigned ArgNo = ShadowArgStart + n; 1725 if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy) 1726 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 1727 } 1728 1729 if (!FT->getReturnType()->isVoidTy()) { 1730 LoadInst *LabelLoad = 1731 IRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.LabelReturnAlloca); 1732 DFSF.setShadow(CustomCI, LabelLoad); 1733 } 1734 1735 CI->replaceAllUsesWith(CustomCI); 1736 CI->eraseFromParent(); 1737 return; 1738 } 1739 break; 1740 } 1741 } 1742 1743 FunctionType *FT = CB.getFunctionType(); 1744 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1745 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1746 IRB.CreateStore(DFSF.getShadow(CB.getArgOperand(i)), 1747 DFSF.getArgTLS(i, &CB)); 1748 } 1749 } 1750 1751 Instruction *Next = nullptr; 1752 if (!CB.getType()->isVoidTy()) { 1753 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 1754 if (II->getNormalDest()->getSinglePredecessor()) { 1755 Next = &II->getNormalDest()->front(); 1756 } else { 1757 BasicBlock *NewBB = 1758 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 1759 Next = &NewBB->front(); 1760 } 1761 } else { 1762 assert(CB.getIterator() != CB.getParent()->end()); 1763 Next = CB.getNextNode(); 1764 } 1765 1766 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1767 IRBuilder<> NextIRB(Next); 1768 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.DFS.RetvalTLS); 1769 DFSF.SkipInsts.insert(LI); 1770 DFSF.setShadow(&CB, LI); 1771 DFSF.NonZeroChecks.push_back(LI); 1772 } 1773 } 1774 1775 // Do all instrumentation for IA_Args down here to defer tampering with the 1776 // CFG in a way that SplitEdge may be able to detect. 1777 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1778 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1779 Value *Func = 1780 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 1781 std::vector<Value *> Args; 1782 1783 auto i = CB.arg_begin(), E = CB.arg_end(); 1784 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1785 Args.push_back(*i); 1786 1787 i = CB.arg_begin(); 1788 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1789 Args.push_back(DFSF.getShadow(*i)); 1790 1791 if (FT->isVarArg()) { 1792 unsigned VarArgSize = CB.arg_size() - FT->getNumParams(); 1793 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1794 AllocaInst *VarArgShadow = 1795 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 1796 "", &DFSF.F->getEntryBlock().front()); 1797 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 1798 for (unsigned n = 0; i != E; ++i, ++n) { 1799 IRB.CreateStore( 1800 DFSF.getShadow(*i), 1801 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 1802 Args.push_back(*i); 1803 } 1804 } 1805 1806 CallBase *NewCB; 1807 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 1808 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 1809 II->getUnwindDest(), Args); 1810 } else { 1811 NewCB = IRB.CreateCall(NewFT, Func, Args); 1812 } 1813 NewCB->setCallingConv(CB.getCallingConv()); 1814 NewCB->setAttributes(CB.getAttributes().removeAttributes( 1815 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 1816 AttributeFuncs::typeIncompatible(NewCB->getType()))); 1817 1818 if (Next) { 1819 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 1820 DFSF.SkipInsts.insert(ExVal); 1821 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 1822 DFSF.SkipInsts.insert(ExShadow); 1823 DFSF.setShadow(ExVal, ExShadow); 1824 DFSF.NonZeroChecks.push_back(ExShadow); 1825 1826 CB.replaceAllUsesWith(ExVal); 1827 } 1828 1829 CB.eraseFromParent(); 1830 } 1831 } 1832 1833 void DFSanVisitor::visitPHINode(PHINode &PN) { 1834 PHINode *ShadowPN = 1835 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1836 1837 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1838 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1839 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1840 ++i) { 1841 ShadowPN->addIncoming(UndefShadow, *i); 1842 } 1843 1844 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1845 DFSF.setShadow(&PN, ShadowPN); 1846 } 1847 1848 namespace { 1849 class DataFlowSanitizerLegacyPass : public ModulePass { 1850 private: 1851 std::vector<std::string> ABIListFiles; 1852 1853 public: 1854 static char ID; 1855 1856 DataFlowSanitizerLegacyPass( 1857 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 1858 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 1859 1860 bool runOnModule(Module &M) override { 1861 return DataFlowSanitizer(ABIListFiles).runImpl(M); 1862 } 1863 }; 1864 } // namespace 1865 1866 char DataFlowSanitizerLegacyPass::ID; 1867 1868 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 1869 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 1870 1871 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 1872 const std::vector<std::string> &ABIListFiles) { 1873 return new DataFlowSanitizerLegacyPass(ABIListFiles); 1874 } 1875 1876 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 1877 ModuleAnalysisManager &AM) { 1878 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 1879 return PreservedAnalyses::none(); 1880 } 1881 return PreservedAnalyses::all(); 1882 } 1883