1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/DenseSet.h" 52 #include "llvm/ADT/DepthFirstIterator.h" 53 #include "llvm/ADT/None.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/ADT/StringRef.h" 58 #include "llvm/ADT/Triple.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/IR/Argument.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalValue.h" 71 #include "llvm/IR/GlobalVariable.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstVisitor.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/MDBuilder.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/InitializePasses.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/ErrorHandling.h" 91 #include "llvm/Support/SpecialCaseList.h" 92 #include "llvm/Support/VirtualFileSystem.h" 93 #include "llvm/Transforms/Instrumentation.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstddef> 99 #include <cstdint> 100 #include <iterator> 101 #include <memory> 102 #include <set> 103 #include <string> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 109 // This must be consistent with ShadowWidthBits. 110 static const Align kShadowTLSAlignment = Align(2); 111 112 // The size of TLS variables. These constants must be kept in sync with the ones 113 // in dfsan.cpp. 114 static const unsigned kArgTLSSize = 800; 115 static const unsigned kRetvalTLSSize = 800; 116 117 // External symbol to be used when generating the shadow address for 118 // architectures with multiple VMAs. Instead of using a constant integer 119 // the runtime will set the external mask based on the VMA range. 120 const char kDFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; 121 122 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 123 // alignment requirements provided by the input IR are correct. For example, 124 // if the input IR contains a load with alignment 8, this flag will cause 125 // the shadow load to have alignment 16. This flag is disabled by default as 126 // we have unfortunately encountered too much code (including Clang itself; 127 // see PR14291) which performs misaligned access. 128 static cl::opt<bool> ClPreserveAlignment( 129 "dfsan-preserve-alignment", 130 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 131 cl::init(false)); 132 133 // The ABI list files control how shadow parameters are passed. The pass treats 134 // every function labelled "uninstrumented" in the ABI list file as conforming 135 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 136 // additional annotations for those functions, a call to one of those functions 137 // will produce a warning message, as the labelling behaviour of the function is 138 // unknown. The other supported annotations are "functional" and "discard", 139 // which are described below under DataFlowSanitizer::WrapperKind. 140 static cl::list<std::string> ClABIListFiles( 141 "dfsan-abilist", 142 cl::desc("File listing native ABI functions and how the pass treats them"), 143 cl::Hidden); 144 145 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 146 // functions (see DataFlowSanitizer::InstrumentedABI below). 147 static cl::opt<bool> ClArgsABI( 148 "dfsan-args-abi", 149 cl::desc("Use the argument ABI rather than the TLS ABI"), 150 cl::Hidden); 151 152 // Controls whether the pass includes or ignores the labels of pointers in load 153 // instructions. 154 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 155 "dfsan-combine-pointer-labels-on-load", 156 cl::desc("Combine the label of the pointer with the label of the data when " 157 "loading from memory."), 158 cl::Hidden, cl::init(true)); 159 160 // Controls whether the pass includes or ignores the labels of pointers in 161 // stores instructions. 162 static cl::opt<bool> ClCombinePointerLabelsOnStore( 163 "dfsan-combine-pointer-labels-on-store", 164 cl::desc("Combine the label of the pointer with the label of the data when " 165 "storing in memory."), 166 cl::Hidden, cl::init(false)); 167 168 static cl::opt<bool> ClDebugNonzeroLabels( 169 "dfsan-debug-nonzero-labels", 170 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 171 "load or return with a nonzero label"), 172 cl::Hidden); 173 174 // Experimental feature that inserts callbacks for certain data events. 175 // Currently callbacks are only inserted for loads, stores, memory transfers 176 // (i.e. memcpy and memmove), and comparisons. 177 // 178 // If this flag is set to true, the user must provide definitions for the 179 // following callback functions: 180 // void __dfsan_load_callback(dfsan_label Label, void* addr); 181 // void __dfsan_store_callback(dfsan_label Label, void* addr); 182 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 183 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 184 static cl::opt<bool> ClEventCallbacks( 185 "dfsan-event-callbacks", 186 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 187 cl::Hidden, cl::init(false)); 188 189 // Use a distinct bit for each base label, enabling faster unions with less 190 // instrumentation. Limits the max number of base labels to 16. 191 static cl::opt<bool> ClFast16Labels( 192 "dfsan-fast-16-labels", 193 cl::desc("Use more efficient instrumentation, limiting the number of " 194 "labels to 16."), 195 cl::Hidden, cl::init(false)); 196 197 // Controls whether the pass tracks the control flow of select instructions. 198 static cl::opt<bool> ClTrackSelectControlFlow( 199 "dfsan-track-select-control-flow", 200 cl::desc("Propagate labels from condition values of select instructions " 201 "to results."), 202 cl::Hidden, cl::init(true)); 203 204 static StringRef GetGlobalTypeString(const GlobalValue &G) { 205 // Types of GlobalVariables are always pointer types. 206 Type *GType = G.getValueType(); 207 // For now we support excluding struct types only. 208 if (StructType *SGType = dyn_cast<StructType>(GType)) { 209 if (!SGType->isLiteral()) 210 return SGType->getName(); 211 } 212 return "<unknown type>"; 213 } 214 215 namespace { 216 217 class DFSanABIList { 218 std::unique_ptr<SpecialCaseList> SCL; 219 220 public: 221 DFSanABIList() = default; 222 223 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 224 225 /// Returns whether either this function or its source file are listed in the 226 /// given category. 227 bool isIn(const Function &F, StringRef Category) const { 228 return isIn(*F.getParent(), Category) || 229 SCL->inSection("dataflow", "fun", F.getName(), Category); 230 } 231 232 /// Returns whether this global alias is listed in the given category. 233 /// 234 /// If GA aliases a function, the alias's name is matched as a function name 235 /// would be. Similarly, aliases of globals are matched like globals. 236 bool isIn(const GlobalAlias &GA, StringRef Category) const { 237 if (isIn(*GA.getParent(), Category)) 238 return true; 239 240 if (isa<FunctionType>(GA.getValueType())) 241 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 242 243 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 244 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 245 Category); 246 } 247 248 /// Returns whether this module is listed in the given category. 249 bool isIn(const Module &M, StringRef Category) const { 250 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 251 } 252 }; 253 254 /// TransformedFunction is used to express the result of transforming one 255 /// function type into another. This struct is immutable. It holds metadata 256 /// useful for updating calls of the old function to the new type. 257 struct TransformedFunction { 258 TransformedFunction(FunctionType* OriginalType, 259 FunctionType* TransformedType, 260 std::vector<unsigned> ArgumentIndexMapping) 261 : OriginalType(OriginalType), 262 TransformedType(TransformedType), 263 ArgumentIndexMapping(ArgumentIndexMapping) {} 264 265 // Disallow copies. 266 TransformedFunction(const TransformedFunction&) = delete; 267 TransformedFunction& operator=(const TransformedFunction&) = delete; 268 269 // Allow moves. 270 TransformedFunction(TransformedFunction&&) = default; 271 TransformedFunction& operator=(TransformedFunction&&) = default; 272 273 /// Type of the function before the transformation. 274 FunctionType *OriginalType; 275 276 /// Type of the function after the transformation. 277 FunctionType *TransformedType; 278 279 /// Transforming a function may change the position of arguments. This 280 /// member records the mapping from each argument's old position to its new 281 /// position. Argument positions are zero-indexed. If the transformation 282 /// from F to F' made the first argument of F into the third argument of F', 283 /// then ArgumentIndexMapping[0] will equal 2. 284 std::vector<unsigned> ArgumentIndexMapping; 285 }; 286 287 /// Given function attributes from a call site for the original function, 288 /// return function attributes appropriate for a call to the transformed 289 /// function. 290 AttributeList TransformFunctionAttributes( 291 const TransformedFunction& TransformedFunction, 292 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 293 294 // Construct a vector of AttributeSet for each function argument. 295 std::vector<llvm::AttributeSet> ArgumentAttributes( 296 TransformedFunction.TransformedType->getNumParams()); 297 298 // Copy attributes from the parameter of the original function to the 299 // transformed version. 'ArgumentIndexMapping' holds the mapping from 300 // old argument position to new. 301 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 302 i < ie; ++i) { 303 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 304 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 305 } 306 307 // Copy annotations on varargs arguments. 308 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 309 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 310 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 311 } 312 313 return AttributeList::get( 314 Ctx, 315 CallSiteAttrs.getFnAttributes(), 316 CallSiteAttrs.getRetAttributes(), 317 llvm::makeArrayRef(ArgumentAttributes)); 318 } 319 320 class DataFlowSanitizer { 321 friend struct DFSanFunction; 322 friend class DFSanVisitor; 323 324 enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 }; 325 326 /// Which ABI should be used for instrumented functions? 327 enum InstrumentedABI { 328 /// Argument and return value labels are passed through additional 329 /// arguments and by modifying the return type. 330 IA_Args, 331 332 /// Argument and return value labels are passed through TLS variables 333 /// __dfsan_arg_tls and __dfsan_retval_tls. 334 IA_TLS 335 }; 336 337 /// How should calls to uninstrumented functions be handled? 338 enum WrapperKind { 339 /// This function is present in an uninstrumented form but we don't know 340 /// how it should be handled. Print a warning and call the function anyway. 341 /// Don't label the return value. 342 WK_Warning, 343 344 /// This function does not write to (user-accessible) memory, and its return 345 /// value is unlabelled. 346 WK_Discard, 347 348 /// This function does not write to (user-accessible) memory, and the label 349 /// of its return value is the union of the label of its arguments. 350 WK_Functional, 351 352 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 353 /// where F is the name of the function. This function may wrap the 354 /// original function or provide its own implementation. This is similar to 355 /// the IA_Args ABI, except that IA_Args uses a struct return type to 356 /// pass the return value shadow in a register, while WK_Custom uses an 357 /// extra pointer argument to return the shadow. This allows the wrapped 358 /// form of the function type to be expressed in C. 359 WK_Custom 360 }; 361 362 Module *Mod; 363 LLVMContext *Ctx; 364 Type *Int8Ptr; 365 /// The shadow type for all primitive types and vector types. 366 IntegerType *PrimitiveShadowTy; 367 PointerType *PrimitiveShadowPtrTy; 368 IntegerType *IntptrTy; 369 ConstantInt *ZeroPrimitiveShadow; 370 ConstantInt *ShadowPtrMask; 371 ConstantInt *ShadowPtrMul; 372 Constant *ArgTLS; 373 Constant *RetvalTLS; 374 Constant *ExternalShadowMask; 375 FunctionType *DFSanUnionFnTy; 376 FunctionType *DFSanUnionLoadFnTy; 377 FunctionType *DFSanUnimplementedFnTy; 378 FunctionType *DFSanSetLabelFnTy; 379 FunctionType *DFSanNonzeroLabelFnTy; 380 FunctionType *DFSanVarargWrapperFnTy; 381 FunctionType *DFSanCmpCallbackFnTy; 382 FunctionType *DFSanLoadStoreCallbackFnTy; 383 FunctionType *DFSanMemTransferCallbackFnTy; 384 FunctionCallee DFSanUnionFn; 385 FunctionCallee DFSanCheckedUnionFn; 386 FunctionCallee DFSanUnionLoadFn; 387 FunctionCallee DFSanUnionLoadFast16LabelsFn; 388 FunctionCallee DFSanUnimplementedFn; 389 FunctionCallee DFSanSetLabelFn; 390 FunctionCallee DFSanNonzeroLabelFn; 391 FunctionCallee DFSanVarargWrapperFn; 392 FunctionCallee DFSanLoadCallbackFn; 393 FunctionCallee DFSanStoreCallbackFn; 394 FunctionCallee DFSanMemTransferCallbackFn; 395 FunctionCallee DFSanCmpCallbackFn; 396 MDNode *ColdCallWeights; 397 DFSanABIList ABIList; 398 DenseMap<Value *, Function *> UnwrappedFnMap; 399 AttrBuilder ReadOnlyNoneAttrs; 400 bool DFSanRuntimeShadowMask = false; 401 402 Value *getShadowAddress(Value *Addr, Instruction *Pos); 403 bool isInstrumented(const Function *F); 404 bool isInstrumented(const GlobalAlias *GA); 405 FunctionType *getArgsFunctionType(FunctionType *T); 406 FunctionType *getTrampolineFunctionType(FunctionType *T); 407 TransformedFunction getCustomFunctionType(FunctionType *T); 408 InstrumentedABI getInstrumentedABI(); 409 WrapperKind getWrapperKind(Function *F); 410 void addGlobalNamePrefix(GlobalValue *GV); 411 Function *buildWrapperFunction(Function *F, StringRef NewFName, 412 GlobalValue::LinkageTypes NewFLink, 413 FunctionType *NewFT); 414 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 415 void initializeCallbackFunctions(Module &M); 416 void initializeRuntimeFunctions(Module &M); 417 418 bool init(Module &M); 419 420 /// Returns whether the pass tracks labels for struct fields and array 421 /// indices. Support only fast16 mode in TLS ABI mode. 422 bool shouldTrackFieldsAndIndices(); 423 424 /// Returns a zero constant with the shadow type of OrigTy. 425 /// 426 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 427 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 428 /// getZeroShadow(other type) = i16(0) 429 /// 430 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices 431 /// returns false. 432 Constant *getZeroShadow(Type *OrigTy); 433 /// Returns a zero constant with the shadow type of V's type. 434 Constant *getZeroShadow(Value *V); 435 436 /// Checks if V is a zero shadow. 437 bool isZeroShadow(Value *V); 438 439 /// Returns the shadow type of OrigTy. 440 /// 441 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 442 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 443 /// getShadowTy(other type) = i16 444 /// 445 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices 446 /// returns false. 447 Type *getShadowTy(Type *OrigTy); 448 /// Returns the shadow type of of V's type. 449 Type *getShadowTy(Value *V); 450 451 public: 452 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 453 454 bool runImpl(Module &M); 455 }; 456 457 struct DFSanFunction { 458 DataFlowSanitizer &DFS; 459 Function *F; 460 DominatorTree DT; 461 DataFlowSanitizer::InstrumentedABI IA; 462 bool IsNativeABI; 463 AllocaInst *LabelReturnAlloca = nullptr; 464 DenseMap<Value *, Value *> ValShadowMap; 465 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 466 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 467 DenseSet<Instruction *> SkipInsts; 468 std::vector<Value *> NonZeroChecks; 469 bool AvoidNewBlocks; 470 471 struct CachedShadow { 472 BasicBlock *Block; // The block where Shadow is defined. 473 Value *Shadow; 474 }; 475 /// Maps a value to its latest shadow value in terms of domination tree. 476 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 477 /// Maps a value to its latest collapsed shadow value it was converted to in 478 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 479 /// used at a post process where CFG blocks are split. So it does not cache 480 /// BasicBlock like CachedShadows, but uses domination between values. 481 DenseMap<Value *, Value *> CachedCollapsedShadows; 482 DenseMap<Value *, std::set<Value *>> ShadowElements; 483 484 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 485 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 486 DT.recalculate(*F); 487 // FIXME: Need to track down the register allocator issue which causes poor 488 // performance in pathological cases with large numbers of basic blocks. 489 AvoidNewBlocks = F->size() > 1000; 490 } 491 492 /// Computes the shadow address for a given function argument. 493 /// 494 /// Shadow = ArgTLS+ArgOffset. 495 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 496 497 /// Computes the shadow address for a retval. 498 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 499 500 Value *getShadow(Value *V); 501 void setShadow(Instruction *I, Value *Shadow); 502 /// Generates IR to compute the union of the two given shadows, inserting it 503 /// before Pos. The combined value is with primitive type. 504 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 505 /// Combines the shadow values of V1 and V2, then converts the combined value 506 /// with primitive type into a shadow value with the original type T. 507 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 508 Instruction *Pos); 509 Value *combineOperandShadows(Instruction *Inst); 510 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 511 Instruction *Pos); 512 void storePrimitiveShadow(Value *Addr, uint64_t Size, Align Alignment, 513 Value *PrimitiveShadow, Instruction *Pos); 514 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 515 /// the expanded shadow value. 516 /// 517 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 518 /// EFP([n x T], PS) = [n x EFP(T,PS)] 519 /// EFP(other types, PS) = PS 520 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 521 Instruction *Pos); 522 /// Collapses Shadow into a single primitive shadow value, unioning all 523 /// primitive shadow values in the process. Returns the final primitive 524 /// shadow value. 525 /// 526 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 527 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 528 /// CTP(other types, PS) = PS 529 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 530 531 private: 532 /// Collapses the shadow with aggregate type into a single primitive shadow 533 /// value. 534 template <class AggregateType> 535 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 536 IRBuilder<> &IRB); 537 538 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 539 540 /// Returns the shadow value of an argument A. 541 Value *getShadowForTLSArgument(Argument *A); 542 543 /// The fast path of loading shadow in legacy mode. 544 Value *loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 545 Align ShadowAlign, Instruction *Pos); 546 547 /// The fast path of loading shadow in fast-16-label mode. 548 Value *loadFast16ShadowFast(Value *ShadowAddr, uint64_t Size, 549 Align ShadowAlign, Instruction *Pos); 550 }; 551 552 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 553 public: 554 DFSanFunction &DFSF; 555 556 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 557 558 const DataLayout &getDataLayout() const { 559 return DFSF.F->getParent()->getDataLayout(); 560 } 561 562 // Combines shadow values for all of I's operands. Returns the combined shadow 563 // value. 564 Value *visitOperandShadowInst(Instruction &I); 565 566 void visitUnaryOperator(UnaryOperator &UO); 567 void visitBinaryOperator(BinaryOperator &BO); 568 void visitCastInst(CastInst &CI); 569 void visitCmpInst(CmpInst &CI); 570 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 571 void visitLoadInst(LoadInst &LI); 572 void visitStoreInst(StoreInst &SI); 573 void visitReturnInst(ReturnInst &RI); 574 void visitCallBase(CallBase &CB); 575 void visitPHINode(PHINode &PN); 576 void visitExtractElementInst(ExtractElementInst &I); 577 void visitInsertElementInst(InsertElementInst &I); 578 void visitShuffleVectorInst(ShuffleVectorInst &I); 579 void visitExtractValueInst(ExtractValueInst &I); 580 void visitInsertValueInst(InsertValueInst &I); 581 void visitAllocaInst(AllocaInst &I); 582 void visitSelectInst(SelectInst &I); 583 void visitMemSetInst(MemSetInst &I); 584 void visitMemTransferInst(MemTransferInst &I); 585 586 private: 587 // Returns false when this is an invoke of a custom function. 588 bool visitWrappedCallBase(Function &F, CallBase &CB); 589 }; 590 591 } // end anonymous namespace 592 593 DataFlowSanitizer::DataFlowSanitizer( 594 const std::vector<std::string> &ABIListFiles) { 595 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 596 llvm::append_range(AllABIListFiles, ClABIListFiles); 597 // FIXME: should we propagate vfs::FileSystem to this constructor? 598 ABIList.set( 599 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 600 } 601 602 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 603 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 604 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 605 if (T->isVarArg()) 606 ArgTypes.push_back(PrimitiveShadowPtrTy); 607 Type *RetType = T->getReturnType(); 608 if (!RetType->isVoidTy()) 609 RetType = StructType::get(RetType, PrimitiveShadowTy); 610 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 611 } 612 613 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 614 assert(!T->isVarArg()); 615 SmallVector<Type *, 4> ArgTypes; 616 ArgTypes.push_back(T->getPointerTo()); 617 ArgTypes.append(T->param_begin(), T->param_end()); 618 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 619 Type *RetType = T->getReturnType(); 620 if (!RetType->isVoidTy()) 621 ArgTypes.push_back(PrimitiveShadowPtrTy); 622 return FunctionType::get(T->getReturnType(), ArgTypes, false); 623 } 624 625 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 626 SmallVector<Type *, 4> ArgTypes; 627 628 // Some parameters of the custom function being constructed are 629 // parameters of T. Record the mapping from parameters of T to 630 // parameters of the custom function, so that parameter attributes 631 // at call sites can be updated. 632 std::vector<unsigned> ArgumentIndexMapping; 633 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 634 Type* param_type = T->getParamType(i); 635 FunctionType *FT; 636 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 637 cast<PointerType>(param_type)->getElementType()))) { 638 ArgumentIndexMapping.push_back(ArgTypes.size()); 639 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 640 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 641 } else { 642 ArgumentIndexMapping.push_back(ArgTypes.size()); 643 ArgTypes.push_back(param_type); 644 } 645 } 646 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 647 ArgTypes.push_back(PrimitiveShadowTy); 648 if (T->isVarArg()) 649 ArgTypes.push_back(PrimitiveShadowPtrTy); 650 Type *RetType = T->getReturnType(); 651 if (!RetType->isVoidTy()) 652 ArgTypes.push_back(PrimitiveShadowPtrTy); 653 return TransformedFunction( 654 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 655 ArgumentIndexMapping); 656 } 657 658 bool DataFlowSanitizer::isZeroShadow(Value *V) { 659 if (!shouldTrackFieldsAndIndices()) 660 return ZeroPrimitiveShadow == V; 661 662 Type *T = V->getType(); 663 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 664 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 665 return CI->isZero(); 666 return false; 667 } 668 669 return isa<ConstantAggregateZero>(V); 670 } 671 672 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() { 673 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS && ClFast16Labels; 674 } 675 676 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 677 if (!shouldTrackFieldsAndIndices()) 678 return ZeroPrimitiveShadow; 679 680 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 681 return ZeroPrimitiveShadow; 682 Type *ShadowTy = getShadowTy(OrigTy); 683 return ConstantAggregateZero::get(ShadowTy); 684 } 685 686 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 687 return getZeroShadow(V->getType()); 688 } 689 690 static Value *expandFromPrimitiveShadowRecursive( 691 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 692 Value *PrimitiveShadow, IRBuilder<> &IRB) { 693 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 694 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 695 696 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 697 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 698 Indices.push_back(Idx); 699 Shadow = expandFromPrimitiveShadowRecursive( 700 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 701 Indices.pop_back(); 702 } 703 return Shadow; 704 } 705 706 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 707 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 708 Indices.push_back(Idx); 709 Shadow = expandFromPrimitiveShadowRecursive( 710 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 711 Indices.pop_back(); 712 } 713 return Shadow; 714 } 715 llvm_unreachable("Unexpected shadow type"); 716 } 717 718 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 719 Instruction *Pos) { 720 Type *ShadowTy = DFS.getShadowTy(T); 721 722 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 723 return PrimitiveShadow; 724 725 if (DFS.isZeroShadow(PrimitiveShadow)) 726 return DFS.getZeroShadow(ShadowTy); 727 728 IRBuilder<> IRB(Pos); 729 SmallVector<unsigned, 4> Indices; 730 Value *Shadow = UndefValue::get(ShadowTy); 731 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 732 PrimitiveShadow, IRB); 733 734 // Caches the primitive shadow value that built the shadow value. 735 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 736 return Shadow; 737 } 738 739 template <class AggregateType> 740 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 741 IRBuilder<> &IRB) { 742 if (!AT->getNumElements()) 743 return DFS.ZeroPrimitiveShadow; 744 745 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 746 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 747 748 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 749 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 750 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 751 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 752 } 753 return Aggregator; 754 } 755 756 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 757 IRBuilder<> &IRB) { 758 Type *ShadowTy = Shadow->getType(); 759 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 760 return Shadow; 761 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 762 return collapseAggregateShadow<>(AT, Shadow, IRB); 763 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 764 return collapseAggregateShadow<>(ST, Shadow, IRB); 765 llvm_unreachable("Unexpected shadow type"); 766 } 767 768 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 769 Instruction *Pos) { 770 Type *ShadowTy = Shadow->getType(); 771 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 772 return Shadow; 773 774 assert(DFS.shouldTrackFieldsAndIndices()); 775 776 // Checks if the cached collapsed shadow value dominates Pos. 777 Value *&CS = CachedCollapsedShadows[Shadow]; 778 if (CS && DT.dominates(CS, Pos)) 779 return CS; 780 781 IRBuilder<> IRB(Pos); 782 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 783 // Caches the converted primitive shadow value. 784 CS = PrimitiveShadow; 785 return PrimitiveShadow; 786 } 787 788 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 789 if (!shouldTrackFieldsAndIndices()) 790 return PrimitiveShadowTy; 791 792 if (!OrigTy->isSized()) 793 return PrimitiveShadowTy; 794 if (isa<IntegerType>(OrigTy)) 795 return PrimitiveShadowTy; 796 if (isa<VectorType>(OrigTy)) 797 return PrimitiveShadowTy; 798 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 799 return ArrayType::get(getShadowTy(AT->getElementType()), 800 AT->getNumElements()); 801 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 802 SmallVector<Type *, 4> Elements; 803 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 804 Elements.push_back(getShadowTy(ST->getElementType(I))); 805 return StructType::get(*Ctx, Elements); 806 } 807 return PrimitiveShadowTy; 808 } 809 810 Type *DataFlowSanitizer::getShadowTy(Value *V) { 811 return getShadowTy(V->getType()); 812 } 813 814 bool DataFlowSanitizer::init(Module &M) { 815 Triple TargetTriple(M.getTargetTriple()); 816 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 817 bool IsMIPS64 = TargetTriple.isMIPS64(); 818 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 819 TargetTriple.getArch() == Triple::aarch64_be; 820 821 const DataLayout &DL = M.getDataLayout(); 822 823 Mod = &M; 824 Ctx = &M.getContext(); 825 Int8Ptr = Type::getInt8PtrTy(*Ctx); 826 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 827 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 828 IntptrTy = DL.getIntPtrType(*Ctx); 829 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 830 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 831 if (IsX86_64) 832 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 833 else if (IsMIPS64) 834 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 835 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 836 else if (IsAArch64) 837 DFSanRuntimeShadowMask = true; 838 else 839 report_fatal_error("unsupported triple"); 840 841 Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy}; 842 DFSanUnionFnTy = 843 FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false); 844 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 845 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 846 /*isVarArg=*/false); 847 DFSanUnimplementedFnTy = FunctionType::get( 848 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 849 Type *DFSanSetLabelArgs[3] = {PrimitiveShadowTy, Type::getInt8PtrTy(*Ctx), 850 IntptrTy}; 851 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 852 DFSanSetLabelArgs, /*isVarArg=*/false); 853 DFSanNonzeroLabelFnTy = 854 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 855 DFSanVarargWrapperFnTy = FunctionType::get( 856 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 857 DFSanCmpCallbackFnTy = 858 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 859 /*isVarArg=*/false); 860 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 861 DFSanLoadStoreCallbackFnTy = 862 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 863 /*isVarArg=*/false); 864 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 865 DFSanMemTransferCallbackFnTy = 866 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 867 /*isVarArg=*/false); 868 869 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 870 return true; 871 } 872 873 bool DataFlowSanitizer::isInstrumented(const Function *F) { 874 return !ABIList.isIn(*F, "uninstrumented"); 875 } 876 877 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 878 return !ABIList.isIn(*GA, "uninstrumented"); 879 } 880 881 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 882 return ClArgsABI ? IA_Args : IA_TLS; 883 } 884 885 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 886 if (ABIList.isIn(*F, "functional")) 887 return WK_Functional; 888 if (ABIList.isIn(*F, "discard")) 889 return WK_Discard; 890 if (ABIList.isIn(*F, "custom")) 891 return WK_Custom; 892 893 return WK_Warning; 894 } 895 896 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 897 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 898 GV->setName(Prefix + GVName); 899 900 // Try to change the name of the function in module inline asm. We only do 901 // this for specific asm directives, currently only ".symver", to try to avoid 902 // corrupting asm which happens to contain the symbol name as a substring. 903 // Note that the substitution for .symver assumes that the versioned symbol 904 // also has an instrumented name. 905 std::string Asm = GV->getParent()->getModuleInlineAsm(); 906 std::string SearchStr = ".symver " + GVName + ","; 907 size_t Pos = Asm.find(SearchStr); 908 if (Pos != std::string::npos) { 909 Asm.replace(Pos, SearchStr.size(), 910 ".symver " + Prefix + GVName + "," + Prefix); 911 GV->getParent()->setModuleInlineAsm(Asm); 912 } 913 } 914 915 Function * 916 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 917 GlobalValue::LinkageTypes NewFLink, 918 FunctionType *NewFT) { 919 FunctionType *FT = F->getFunctionType(); 920 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 921 NewFName, F->getParent()); 922 NewF->copyAttributesFrom(F); 923 NewF->removeAttributes( 924 AttributeList::ReturnIndex, 925 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 926 927 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 928 if (F->isVarArg()) { 929 NewF->removeAttributes(AttributeList::FunctionIndex, 930 AttrBuilder().addAttribute("split-stack")); 931 CallInst::Create(DFSanVarargWrapperFn, 932 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 933 BB); 934 new UnreachableInst(*Ctx, BB); 935 } else { 936 std::vector<Value *> Args; 937 unsigned n = FT->getNumParams(); 938 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 939 Args.push_back(&*ai); 940 CallInst *CI = CallInst::Create(F, Args, "", BB); 941 if (FT->getReturnType()->isVoidTy()) 942 ReturnInst::Create(*Ctx, BB); 943 else 944 ReturnInst::Create(*Ctx, CI, BB); 945 } 946 947 return NewF; 948 } 949 950 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 951 StringRef FName) { 952 FunctionType *FTT = getTrampolineFunctionType(FT); 953 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 954 Function *F = dyn_cast<Function>(C.getCallee()); 955 if (F && F->isDeclaration()) { 956 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 957 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 958 std::vector<Value *> Args; 959 Function::arg_iterator AI = F->arg_begin(); ++AI; 960 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 961 Args.push_back(&*AI); 962 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 963 ReturnInst *RI; 964 if (FT->getReturnType()->isVoidTy()) 965 RI = ReturnInst::Create(*Ctx, BB); 966 else 967 RI = ReturnInst::Create(*Ctx, CI, BB); 968 969 // F is called by a wrapped custom function with primitive shadows. So 970 // its arguments and return value need conversion. 971 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 972 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 973 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 974 Value *Shadow = 975 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 976 DFSF.ValShadowMap[&*ValAI] = Shadow; 977 } 978 DFSanVisitor(DFSF).visitCallInst(*CI); 979 if (!FT->getReturnType()->isVoidTy()) { 980 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 981 DFSF.getShadow(RI->getReturnValue()), RI); 982 new StoreInst(PrimitiveShadow, &*std::prev(F->arg_end()), RI); 983 } 984 } 985 986 return cast<Constant>(C.getCallee()); 987 } 988 989 // Initialize DataFlowSanitizer runtime functions and declare them in the module 990 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 991 { 992 AttributeList AL; 993 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 994 Attribute::NoUnwind); 995 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 996 Attribute::ReadNone); 997 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 998 Attribute::ZExt); 999 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1000 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1001 DFSanUnionFn = 1002 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 1003 } 1004 { 1005 AttributeList AL; 1006 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1007 Attribute::NoUnwind); 1008 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1009 Attribute::ReadNone); 1010 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1011 Attribute::ZExt); 1012 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1013 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1014 DFSanCheckedUnionFn = 1015 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 1016 } 1017 { 1018 AttributeList AL; 1019 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1020 Attribute::NoUnwind); 1021 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1022 Attribute::ReadOnly); 1023 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1024 Attribute::ZExt); 1025 DFSanUnionLoadFn = 1026 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1027 } 1028 { 1029 AttributeList AL; 1030 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1031 Attribute::NoUnwind); 1032 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1033 Attribute::ReadOnly); 1034 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1035 Attribute::ZExt); 1036 DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction( 1037 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); 1038 } 1039 DFSanUnimplementedFn = 1040 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1041 { 1042 AttributeList AL; 1043 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1044 DFSanSetLabelFn = 1045 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1046 } 1047 DFSanNonzeroLabelFn = 1048 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1049 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1050 DFSanVarargWrapperFnTy); 1051 } 1052 1053 // Initializes event callback functions and declare them in the module 1054 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1055 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1056 DFSanLoadStoreCallbackFnTy); 1057 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1058 DFSanLoadStoreCallbackFnTy); 1059 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1060 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1061 DFSanCmpCallbackFn = 1062 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1063 } 1064 1065 bool DataFlowSanitizer::runImpl(Module &M) { 1066 init(M); 1067 1068 if (ABIList.isIn(M, "skip")) 1069 return false; 1070 1071 const unsigned InitialGlobalSize = M.global_size(); 1072 const unsigned InitialModuleSize = M.size(); 1073 1074 bool Changed = false; 1075 1076 Type *ArgTLSTy = ArrayType::get(Type::getInt64Ty(*Ctx), kArgTLSSize / 8); 1077 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 1078 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) { 1079 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1080 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1081 } 1082 Type *RetvalTLSTy = 1083 ArrayType::get(Type::getInt64Ty(*Ctx), kRetvalTLSSize / 8); 1084 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", RetvalTLSTy); 1085 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) { 1086 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1087 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1088 } 1089 1090 ExternalShadowMask = 1091 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 1092 1093 initializeCallbackFunctions(M); 1094 initializeRuntimeFunctions(M); 1095 1096 std::vector<Function *> FnsToInstrument; 1097 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1098 for (Function &i : M) { 1099 if (!i.isIntrinsic() && 1100 &i != DFSanUnionFn.getCallee()->stripPointerCasts() && 1101 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && 1102 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && 1103 &i != DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts() && 1104 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && 1105 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && 1106 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && 1107 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() && 1108 &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() && 1109 &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() && 1110 &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() && 1111 &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts()) 1112 FnsToInstrument.push_back(&i); 1113 } 1114 1115 // Give function aliases prefixes when necessary, and build wrappers where the 1116 // instrumentedness is inconsistent. 1117 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 1118 GlobalAlias *GA = &*i; 1119 ++i; 1120 // Don't stop on weak. We assume people aren't playing games with the 1121 // instrumentedness of overridden weak aliases. 1122 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 1123 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1124 if (GAInst && FInst) { 1125 addGlobalNamePrefix(GA); 1126 } else if (GAInst != FInst) { 1127 // Non-instrumented alias of an instrumented function, or vice versa. 1128 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1129 // below will take care of instrumenting it. 1130 Function *NewF = 1131 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1132 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1133 NewF->takeName(GA); 1134 GA->eraseFromParent(); 1135 FnsToInstrument.push_back(NewF); 1136 } 1137 } 1138 } 1139 1140 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1141 .addAttribute(Attribute::ReadNone); 1142 1143 // First, change the ABI of every function in the module. ABI-listed 1144 // functions keep their original ABI and get a wrapper function. 1145 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 1146 e = FnsToInstrument.end(); 1147 i != e; ++i) { 1148 Function &F = **i; 1149 FunctionType *FT = F.getFunctionType(); 1150 1151 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1152 FT->getReturnType()->isVoidTy()); 1153 1154 if (isInstrumented(&F)) { 1155 // Instrumented functions get a 'dfs$' prefix. This allows us to more 1156 // easily identify cases of mismatching ABIs. 1157 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 1158 FunctionType *NewFT = getArgsFunctionType(FT); 1159 Function *NewF = Function::Create(NewFT, F.getLinkage(), 1160 F.getAddressSpace(), "", &M); 1161 NewF->copyAttributesFrom(&F); 1162 NewF->removeAttributes( 1163 AttributeList::ReturnIndex, 1164 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1165 for (Function::arg_iterator FArg = F.arg_begin(), 1166 NewFArg = NewF->arg_begin(), 1167 FArgEnd = F.arg_end(); 1168 FArg != FArgEnd; ++FArg, ++NewFArg) { 1169 FArg->replaceAllUsesWith(&*NewFArg); 1170 } 1171 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 1172 1173 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 1174 UI != UE;) { 1175 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 1176 ++UI; 1177 if (BA) { 1178 BA->replaceAllUsesWith( 1179 BlockAddress::get(NewF, BA->getBasicBlock())); 1180 delete BA; 1181 } 1182 } 1183 F.replaceAllUsesWith( 1184 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 1185 NewF->takeName(&F); 1186 F.eraseFromParent(); 1187 *i = NewF; 1188 addGlobalNamePrefix(NewF); 1189 } else { 1190 addGlobalNamePrefix(&F); 1191 } 1192 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1193 // Build a wrapper function for F. The wrapper simply calls F, and is 1194 // added to FnsToInstrument so that any instrumentation according to its 1195 // WrapperKind is done in the second pass below. 1196 FunctionType *NewFT = getInstrumentedABI() == IA_Args 1197 ? getArgsFunctionType(FT) 1198 : FT; 1199 1200 // If the function being wrapped has local linkage, then preserve the 1201 // function's linkage in the wrapper function. 1202 GlobalValue::LinkageTypes wrapperLinkage = 1203 F.hasLocalLinkage() 1204 ? F.getLinkage() 1205 : GlobalValue::LinkOnceODRLinkage; 1206 1207 Function *NewF = buildWrapperFunction( 1208 &F, std::string("dfsw$") + std::string(F.getName()), 1209 wrapperLinkage, NewFT); 1210 if (getInstrumentedABI() == IA_TLS) 1211 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 1212 1213 Value *WrappedFnCst = 1214 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1215 F.replaceAllUsesWith(WrappedFnCst); 1216 1217 UnwrappedFnMap[WrappedFnCst] = &F; 1218 *i = NewF; 1219 1220 if (!F.isDeclaration()) { 1221 // This function is probably defining an interposition of an 1222 // uninstrumented function and hence needs to keep the original ABI. 1223 // But any functions it may call need to use the instrumented ABI, so 1224 // we instrument it in a mode which preserves the original ABI. 1225 FnsWithNativeABI.insert(&F); 1226 1227 // This code needs to rebuild the iterators, as they may be invalidated 1228 // by the push_back, taking care that the new range does not include 1229 // any functions added by this code. 1230 size_t N = i - FnsToInstrument.begin(), 1231 Count = e - FnsToInstrument.begin(); 1232 FnsToInstrument.push_back(&F); 1233 i = FnsToInstrument.begin() + N; 1234 e = FnsToInstrument.begin() + Count; 1235 } 1236 // Hopefully, nobody will try to indirectly call a vararg 1237 // function... yet. 1238 } else if (FT->isVarArg()) { 1239 UnwrappedFnMap[&F] = &F; 1240 *i = nullptr; 1241 } 1242 } 1243 1244 for (Function *i : FnsToInstrument) { 1245 if (!i || i->isDeclaration()) 1246 continue; 1247 1248 removeUnreachableBlocks(*i); 1249 1250 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 1251 1252 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1253 // Build a copy of the list before iterating over it. 1254 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 1255 1256 for (BasicBlock *i : BBList) { 1257 Instruction *Inst = &i->front(); 1258 while (true) { 1259 // DFSanVisitor may split the current basic block, changing the current 1260 // instruction's next pointer and moving the next instruction to the 1261 // tail block from which we should continue. 1262 Instruction *Next = Inst->getNextNode(); 1263 // DFSanVisitor may delete Inst, so keep track of whether it was a 1264 // terminator. 1265 bool IsTerminator = Inst->isTerminator(); 1266 if (!DFSF.SkipInsts.count(Inst)) 1267 DFSanVisitor(DFSF).visit(Inst); 1268 if (IsTerminator) 1269 break; 1270 Inst = Next; 1271 } 1272 } 1273 1274 // We will not necessarily be able to compute the shadow for every phi node 1275 // until we have visited every block. Therefore, the code that handles phi 1276 // nodes adds them to the PHIFixups list so that they can be properly 1277 // handled here. 1278 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 1279 i = DFSF.PHIFixups.begin(), 1280 e = DFSF.PHIFixups.end(); 1281 i != e; ++i) { 1282 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 1283 ++val) { 1284 i->second->setIncomingValue( 1285 val, DFSF.getShadow(i->first->getIncomingValue(val))); 1286 } 1287 } 1288 1289 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1290 // places (i.e. instructions in basic blocks we haven't even begun visiting 1291 // yet). To make our life easier, do this work in a pass after the main 1292 // instrumentation. 1293 if (ClDebugNonzeroLabels) { 1294 for (Value *V : DFSF.NonZeroChecks) { 1295 Instruction *Pos; 1296 if (Instruction *I = dyn_cast<Instruction>(V)) 1297 Pos = I->getNextNode(); 1298 else 1299 Pos = &DFSF.F->getEntryBlock().front(); 1300 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1301 Pos = Pos->getNextNode(); 1302 IRBuilder<> IRB(Pos); 1303 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1304 Value *Ne = 1305 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1306 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1307 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1308 IRBuilder<> ThenIRB(BI); 1309 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1310 } 1311 } 1312 } 1313 1314 return Changed || !FnsToInstrument.empty() || 1315 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1316 } 1317 1318 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1319 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1320 if (ArgOffset) 1321 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1322 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1323 "_dfsarg"); 1324 } 1325 1326 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1327 return IRB.CreatePointerCast( 1328 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1329 } 1330 1331 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1332 unsigned ArgOffset = 0; 1333 const DataLayout &DL = F->getParent()->getDataLayout(); 1334 for (auto &FArg : F->args()) { 1335 if (!FArg.getType()->isSized()) { 1336 if (A == &FArg) 1337 break; 1338 continue; 1339 } 1340 1341 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1342 if (A != &FArg) { 1343 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1344 if (ArgOffset > kArgTLSSize) 1345 break; // ArgTLS overflows, uses a zero shadow. 1346 continue; 1347 } 1348 1349 if (ArgOffset + Size > kArgTLSSize) 1350 break; // ArgTLS overflows, uses a zero shadow. 1351 1352 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1353 IRBuilder<> IRB(ArgTLSPos); 1354 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1355 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1356 kShadowTLSAlignment); 1357 } 1358 1359 return DFS.getZeroShadow(A); 1360 } 1361 1362 Value *DFSanFunction::getShadow(Value *V) { 1363 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1364 return DFS.getZeroShadow(V); 1365 Value *&Shadow = ValShadowMap[V]; 1366 if (!Shadow) { 1367 if (Argument *A = dyn_cast<Argument>(V)) { 1368 if (IsNativeABI) 1369 return DFS.getZeroShadow(V); 1370 switch (IA) { 1371 case DataFlowSanitizer::IA_TLS: { 1372 Shadow = getShadowForTLSArgument(A); 1373 break; 1374 } 1375 case DataFlowSanitizer::IA_Args: { 1376 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1377 Function::arg_iterator i = F->arg_begin(); 1378 while (ArgIdx--) 1379 ++i; 1380 Shadow = &*i; 1381 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1382 break; 1383 } 1384 } 1385 NonZeroChecks.push_back(Shadow); 1386 } else { 1387 Shadow = DFS.getZeroShadow(V); 1388 } 1389 } 1390 return Shadow; 1391 } 1392 1393 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1394 assert(!ValShadowMap.count(I)); 1395 assert(DFS.shouldTrackFieldsAndIndices() || 1396 Shadow->getType() == DFS.PrimitiveShadowTy); 1397 ValShadowMap[I] = Shadow; 1398 } 1399 1400 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1401 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1402 IRBuilder<> IRB(Pos); 1403 Value *ShadowPtrMaskValue; 1404 if (DFSanRuntimeShadowMask) 1405 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1406 else 1407 ShadowPtrMaskValue = ShadowPtrMask; 1408 return IRB.CreateIntToPtr( 1409 IRB.CreateMul( 1410 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1411 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 1412 ShadowPtrMul), 1413 PrimitiveShadowPtrTy); 1414 } 1415 1416 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1417 Instruction *Pos) { 1418 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1419 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1420 } 1421 1422 // Generates IR to compute the union of the two given shadows, inserting it 1423 // before Pos. The combined value is with primitive type. 1424 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1425 if (DFS.isZeroShadow(V1)) 1426 return collapseToPrimitiveShadow(V2, Pos); 1427 if (DFS.isZeroShadow(V2)) 1428 return collapseToPrimitiveShadow(V1, Pos); 1429 if (V1 == V2) 1430 return collapseToPrimitiveShadow(V1, Pos); 1431 1432 auto V1Elems = ShadowElements.find(V1); 1433 auto V2Elems = ShadowElements.find(V2); 1434 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1435 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1436 V2Elems->second.begin(), V2Elems->second.end())) { 1437 return collapseToPrimitiveShadow(V1, Pos); 1438 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1439 V1Elems->second.begin(), V1Elems->second.end())) { 1440 return collapseToPrimitiveShadow(V2, Pos); 1441 } 1442 } else if (V1Elems != ShadowElements.end()) { 1443 if (V1Elems->second.count(V2)) 1444 return collapseToPrimitiveShadow(V1, Pos); 1445 } else if (V2Elems != ShadowElements.end()) { 1446 if (V2Elems->second.count(V1)) 1447 return collapseToPrimitiveShadow(V2, Pos); 1448 } 1449 1450 auto Key = std::make_pair(V1, V2); 1451 if (V1 > V2) 1452 std::swap(Key.first, Key.second); 1453 CachedShadow &CCS = CachedShadows[Key]; 1454 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1455 return CCS.Shadow; 1456 1457 // Converts inputs shadows to shadows with primitive types. 1458 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1459 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1460 1461 IRBuilder<> IRB(Pos); 1462 if (ClFast16Labels) { 1463 CCS.Block = Pos->getParent(); 1464 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1465 } else if (AvoidNewBlocks) { 1466 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2}); 1467 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1468 Call->addParamAttr(0, Attribute::ZExt); 1469 Call->addParamAttr(1, Attribute::ZExt); 1470 1471 CCS.Block = Pos->getParent(); 1472 CCS.Shadow = Call; 1473 } else { 1474 BasicBlock *Head = Pos->getParent(); 1475 Value *Ne = IRB.CreateICmpNE(PV1, PV2); 1476 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1477 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1478 IRBuilder<> ThenIRB(BI); 1479 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2}); 1480 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1481 Call->addParamAttr(0, Attribute::ZExt); 1482 Call->addParamAttr(1, Attribute::ZExt); 1483 1484 BasicBlock *Tail = BI->getSuccessor(0); 1485 PHINode *Phi = 1486 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1487 Phi->addIncoming(Call, Call->getParent()); 1488 Phi->addIncoming(PV1, Head); 1489 1490 CCS.Block = Tail; 1491 CCS.Shadow = Phi; 1492 } 1493 1494 std::set<Value *> UnionElems; 1495 if (V1Elems != ShadowElements.end()) { 1496 UnionElems = V1Elems->second; 1497 } else { 1498 UnionElems.insert(V1); 1499 } 1500 if (V2Elems != ShadowElements.end()) { 1501 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1502 } else { 1503 UnionElems.insert(V2); 1504 } 1505 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1506 1507 return CCS.Shadow; 1508 } 1509 1510 // A convenience function which folds the shadows of each of the operands 1511 // of the provided instruction Inst, inserting the IR before Inst. Returns 1512 // the computed union Value. 1513 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1514 if (Inst->getNumOperands() == 0) 1515 return DFS.getZeroShadow(Inst); 1516 1517 Value *Shadow = getShadow(Inst->getOperand(0)); 1518 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1519 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1520 } 1521 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1522 } 1523 1524 Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1525 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1526 DFSF.setShadow(&I, CombinedShadow); 1527 return CombinedShadow; 1528 } 1529 1530 Value *DFSanFunction::loadFast16ShadowFast(Value *ShadowAddr, uint64_t Size, 1531 Align ShadowAlign, 1532 Instruction *Pos) { 1533 // First OR all the WideShadows, then OR individual shadows within the 1534 // combined WideShadow. This is fewer instructions than ORing shadows 1535 // individually. 1536 IRBuilder<> IRB(Pos); 1537 Value *WideAddr = 1538 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1539 Value *CombinedWideShadow = 1540 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1541 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1542 Ofs += 64 / DFS.ShadowWidthBits) { 1543 WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1544 ConstantInt::get(DFS.IntptrTy, 1)); 1545 Value *NextWideShadow = 1546 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1547 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1548 } 1549 for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) { 1550 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1551 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1552 } 1553 return IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy); 1554 } 1555 1556 Value *DFSanFunction::loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 1557 Align ShadowAlign, 1558 Instruction *Pos) { 1559 // Fast path for the common case where each byte has identical shadow: load 1560 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1561 // shadow is non-equal. 1562 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1563 IRBuilder<> FallbackIRB(FallbackBB); 1564 CallInst *FallbackCall = FallbackIRB.CreateCall( 1565 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1566 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1567 1568 // Compare each of the shadows stored in the loaded 64 bits to each other, 1569 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 1570 IRBuilder<> IRB(Pos); 1571 Value *WideAddr = 1572 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1573 Value *WideShadow = 1574 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1575 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy); 1576 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 1577 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); 1578 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1579 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1580 1581 BasicBlock *Head = Pos->getParent(); 1582 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1583 1584 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1585 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1586 1587 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1588 for (auto *Child : Children) 1589 DT.changeImmediateDominator(Child, NewNode); 1590 } 1591 1592 // In the following code LastBr will refer to the previous basic block's 1593 // conditional branch instruction, whose true successor is fixed up to point 1594 // to the next block during the loop below or to the tail after the final 1595 // iteration. 1596 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1597 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1598 DT.addNewBlock(FallbackBB, Head); 1599 1600 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1601 Ofs += 64 / DFS.ShadowWidthBits) { 1602 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1603 DT.addNewBlock(NextBB, LastBr->getParent()); 1604 IRBuilder<> NextIRB(NextBB); 1605 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1606 ConstantInt::get(DFS.IntptrTy, 1)); 1607 Value *NextWideShadow = 1608 NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), WideAddr, ShadowAlign); 1609 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1610 LastBr->setSuccessor(0, NextBB); 1611 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1612 } 1613 1614 LastBr->setSuccessor(0, Tail); 1615 FallbackIRB.CreateBr(Tail); 1616 PHINode *Shadow = 1617 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1618 Shadow->addIncoming(FallbackCall, FallbackBB); 1619 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1620 return Shadow; 1621 } 1622 1623 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1624 // Addr has alignment Align, and take the union of each of those shadows. The 1625 // returned shadow always has primitive type. 1626 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1627 Instruction *Pos) { 1628 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1629 const auto i = AllocaShadowMap.find(AI); 1630 if (i != AllocaShadowMap.end()) { 1631 IRBuilder<> IRB(Pos); 1632 return IRB.CreateLoad(DFS.PrimitiveShadowTy, i->second); 1633 } 1634 } 1635 1636 const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes); 1637 SmallVector<const Value *, 2> Objs; 1638 getUnderlyingObjects(Addr, Objs); 1639 bool AllConstants = true; 1640 for (const Value *Obj : Objs) { 1641 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1642 continue; 1643 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1644 continue; 1645 1646 AllConstants = false; 1647 break; 1648 } 1649 if (AllConstants) 1650 return DFS.ZeroPrimitiveShadow; 1651 1652 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1653 switch (Size) { 1654 case 0: 1655 return DFS.ZeroPrimitiveShadow; 1656 case 1: { 1657 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 1658 LI->setAlignment(ShadowAlign); 1659 return LI; 1660 } 1661 case 2: { 1662 IRBuilder<> IRB(Pos); 1663 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 1664 ConstantInt::get(DFS.IntptrTy, 1)); 1665 return combineShadows( 1666 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign), 1667 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign), 1668 Pos); 1669 } 1670 } 1671 1672 if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) 1673 return loadFast16ShadowFast(ShadowAddr, Size, ShadowAlign, Pos); 1674 1675 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) 1676 return loadLegacyShadowFast(ShadowAddr, Size, ShadowAlign, Pos); 1677 1678 IRBuilder<> IRB(Pos); 1679 FunctionCallee &UnionLoadFn = 1680 ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn; 1681 CallInst *FallbackCall = IRB.CreateCall( 1682 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1683 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1684 return FallbackCall; 1685 } 1686 1687 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1688 auto &DL = LI.getModule()->getDataLayout(); 1689 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1690 if (Size == 0) { 1691 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 1692 return; 1693 } 1694 1695 Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1); 1696 Value *PrimitiveShadow = 1697 DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI); 1698 if (ClCombinePointerLabelsOnLoad) { 1699 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1700 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, &LI); 1701 } 1702 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 1703 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 1704 1705 Value *Shadow = 1706 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, &LI); 1707 DFSF.setShadow(&LI, Shadow); 1708 if (ClEventCallbacks) { 1709 IRBuilder<> IRB(&LI); 1710 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1711 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 1712 } 1713 } 1714 1715 void DFSanFunction::storePrimitiveShadow(Value *Addr, uint64_t Size, 1716 Align Alignment, 1717 Value *PrimitiveShadow, 1718 Instruction *Pos) { 1719 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1720 const auto i = AllocaShadowMap.find(AI); 1721 if (i != AllocaShadowMap.end()) { 1722 IRBuilder<> IRB(Pos); 1723 IRB.CreateStore(PrimitiveShadow, i->second); 1724 return; 1725 } 1726 } 1727 1728 const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes); 1729 IRBuilder<> IRB(Pos); 1730 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1731 if (DFS.isZeroShadow(PrimitiveShadow)) { 1732 IntegerType *ShadowTy = 1733 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 1734 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1735 Value *ExtShadowAddr = 1736 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1737 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1738 return; 1739 } 1740 1741 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; 1742 uint64_t Offset = 0; 1743 if (Size >= ShadowVecSize) { 1744 auto *ShadowVecTy = 1745 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 1746 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1747 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1748 ShadowVec = IRB.CreateInsertElement( 1749 ShadowVec, PrimitiveShadow, 1750 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1751 } 1752 Value *ShadowVecAddr = 1753 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1754 do { 1755 Value *CurShadowVecAddr = 1756 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1757 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1758 Size -= ShadowVecSize; 1759 ++Offset; 1760 } while (Size >= ShadowVecSize); 1761 Offset *= ShadowVecSize; 1762 } 1763 while (Size > 0) { 1764 Value *CurShadowAddr = 1765 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 1766 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 1767 --Size; 1768 ++Offset; 1769 } 1770 } 1771 1772 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1773 auto &DL = SI.getModule()->getDataLayout(); 1774 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1775 if (Size == 0) 1776 return; 1777 1778 const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1); 1779 1780 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1781 Value *PrimitiveShadow; 1782 if (ClCombinePointerLabelsOnStore) { 1783 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1784 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1785 } else { 1786 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 1787 } 1788 DFSF.storePrimitiveShadow(SI.getPointerOperand(), Size, Alignment, 1789 PrimitiveShadow, &SI); 1790 if (ClEventCallbacks) { 1791 IRBuilder<> IRB(&SI); 1792 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1793 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 1794 } 1795 } 1796 1797 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 1798 visitOperandShadowInst(UO); 1799 } 1800 1801 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1802 visitOperandShadowInst(BO); 1803 } 1804 1805 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1806 1807 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 1808 Value *CombinedShadow = visitOperandShadowInst(CI); 1809 if (ClEventCallbacks) { 1810 IRBuilder<> IRB(&CI); 1811 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 1812 } 1813 } 1814 1815 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1816 visitOperandShadowInst(GEPI); 1817 } 1818 1819 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1820 visitOperandShadowInst(I); 1821 } 1822 1823 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1824 visitOperandShadowInst(I); 1825 } 1826 1827 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1828 visitOperandShadowInst(I); 1829 } 1830 1831 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1832 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 1833 visitOperandShadowInst(I); 1834 return; 1835 } 1836 1837 IRBuilder<> IRB(&I); 1838 Value *Agg = I.getAggregateOperand(); 1839 Value *AggShadow = DFSF.getShadow(Agg); 1840 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 1841 DFSF.setShadow(&I, ResShadow); 1842 } 1843 1844 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1845 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 1846 visitOperandShadowInst(I); 1847 return; 1848 } 1849 1850 IRBuilder<> IRB(&I); 1851 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 1852 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 1853 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 1854 DFSF.setShadow(&I, Res); 1855 } 1856 1857 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1858 bool AllLoadsStores = true; 1859 for (User *U : I.users()) { 1860 if (isa<LoadInst>(U)) 1861 continue; 1862 1863 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1864 if (SI->getPointerOperand() == &I) 1865 continue; 1866 } 1867 1868 AllLoadsStores = false; 1869 break; 1870 } 1871 if (AllLoadsStores) { 1872 IRBuilder<> IRB(&I); 1873 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 1874 } 1875 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 1876 } 1877 1878 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1879 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1880 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1881 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1882 Value *ShadowSel = nullptr; 1883 1884 if (isa<VectorType>(I.getCondition()->getType())) { 1885 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 1886 FalseShadow, &I); 1887 } else { 1888 if (TrueShadow == FalseShadow) { 1889 ShadowSel = TrueShadow; 1890 } else { 1891 ShadowSel = 1892 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1893 } 1894 } 1895 DFSF.setShadow(&I, ClTrackSelectControlFlow 1896 ? DFSF.combineShadowsThenConvert( 1897 I.getType(), CondShadow, ShadowSel, &I) 1898 : ShadowSel); 1899 } 1900 1901 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1902 IRBuilder<> IRB(&I); 1903 Value *ValShadow = DFSF.getShadow(I.getValue()); 1904 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1905 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1906 *DFSF.DFS.Ctx)), 1907 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1908 } 1909 1910 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1911 IRBuilder<> IRB(&I); 1912 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1913 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1914 Value *LenShadow = 1915 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 1916 DFSF.DFS.ShadowWidthBytes)); 1917 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1918 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 1919 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1920 auto *MTI = cast<MemTransferInst>( 1921 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 1922 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 1923 if (ClPreserveAlignment) { 1924 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 1925 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 1926 } else { 1927 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1928 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1929 } 1930 if (ClEventCallbacks) { 1931 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 1932 {RawDestShadow, I.getLength()}); 1933 } 1934 } 1935 1936 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1937 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1938 switch (DFSF.IA) { 1939 case DataFlowSanitizer::IA_TLS: { 1940 Value *S = DFSF.getShadow(RI.getReturnValue()); 1941 IRBuilder<> IRB(&RI); 1942 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1943 unsigned Size = 1944 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 1945 if (Size <= kRetvalTLSSize) { 1946 // If the size overflows, stores nothing. At callsite, oversized return 1947 // shadows are set to zero. 1948 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), 1949 kShadowTLSAlignment); 1950 } 1951 break; 1952 } 1953 case DataFlowSanitizer::IA_Args: { 1954 IRBuilder<> IRB(&RI); 1955 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1956 Value *InsVal = 1957 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1958 Value *InsShadow = 1959 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1960 RI.setOperand(0, InsShadow); 1961 break; 1962 } 1963 } 1964 } 1965 } 1966 1967 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 1968 IRBuilder<> IRB(&CB); 1969 switch (DFSF.DFS.getWrapperKind(&F)) { 1970 case DataFlowSanitizer::WK_Warning: 1971 CB.setCalledFunction(&F); 1972 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1973 IRB.CreateGlobalStringPtr(F.getName())); 1974 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 1975 return true; 1976 case DataFlowSanitizer::WK_Discard: 1977 CB.setCalledFunction(&F); 1978 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 1979 return true; 1980 case DataFlowSanitizer::WK_Functional: 1981 CB.setCalledFunction(&F); 1982 visitOperandShadowInst(CB); 1983 return true; 1984 case DataFlowSanitizer::WK_Custom: 1985 // Don't try to handle invokes of custom functions, it's too complicated. 1986 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1987 // wrapper. 1988 CallInst *CI = dyn_cast<CallInst>(&CB); 1989 if (!CI) 1990 return false; 1991 1992 FunctionType *FT = F.getFunctionType(); 1993 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 1994 std::string CustomFName = "__dfsw_"; 1995 CustomFName += F.getName(); 1996 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 1997 CustomFName, CustomFn.TransformedType); 1998 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 1999 CustomFn->copyAttributesFrom(&F); 2000 2001 // Custom functions returning non-void will write to the return label. 2002 if (!FT->getReturnType()->isVoidTy()) { 2003 CustomFn->removeAttributes(AttributeList::FunctionIndex, 2004 DFSF.DFS.ReadOnlyNoneAttrs); 2005 } 2006 } 2007 2008 std::vector<Value *> Args; 2009 2010 // Adds non-variable arguments. 2011 auto *I = CB.arg_begin(); 2012 for (unsigned n = FT->getNumParams(); n != 0; ++I, --n) { 2013 Type *T = (*I)->getType(); 2014 FunctionType *ParamFT; 2015 if (isa<PointerType>(T) && 2016 (ParamFT = dyn_cast<FunctionType>( 2017 cast<PointerType>(T)->getElementType()))) { 2018 std::string TName = "dfst"; 2019 TName += utostr(FT->getNumParams() - n); 2020 TName += "$"; 2021 TName += F.getName(); 2022 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2023 Args.push_back(T); 2024 Args.push_back( 2025 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2026 } else { 2027 Args.push_back(*I); 2028 } 2029 } 2030 2031 // Adds non-variable argument shadows. 2032 I = CB.arg_begin(); 2033 const unsigned ShadowArgStart = Args.size(); 2034 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2035 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2036 2037 // Adds variable argument shadows. 2038 if (FT->isVarArg()) { 2039 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2040 CB.arg_size() - FT->getNumParams()); 2041 auto *LabelVAAlloca = 2042 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2043 "labelva", &DFSF.F->getEntryBlock().front()); 2044 2045 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2046 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2047 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2048 LabelVAPtr); 2049 } 2050 2051 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2052 } 2053 2054 // Adds the return value shadow. 2055 if (!FT->getReturnType()->isVoidTy()) { 2056 if (!DFSF.LabelReturnAlloca) { 2057 DFSF.LabelReturnAlloca = new AllocaInst( 2058 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2059 "labelreturn", &DFSF.F->getEntryBlock().front()); 2060 } 2061 Args.push_back(DFSF.LabelReturnAlloca); 2062 } 2063 2064 // Adds variable arguments. 2065 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 2066 2067 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2068 CustomCI->setCallingConv(CI->getCallingConv()); 2069 CustomCI->setAttributes(TransformFunctionAttributes( 2070 CustomFn, CI->getContext(), CI->getAttributes())); 2071 2072 // Update the parameter attributes of the custom call instruction to 2073 // zero extend the shadow parameters. This is required for targets 2074 // which consider PrimitiveShadowTy an illegal type. 2075 for (unsigned N = 0; N < FT->getNumParams(); N++) { 2076 const unsigned ArgNo = ShadowArgStart + N; 2077 if (CustomCI->getArgOperand(ArgNo)->getType() == 2078 DFSF.DFS.PrimitiveShadowTy) 2079 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2080 } 2081 2082 // Loads the return value shadow. 2083 if (!FT->getReturnType()->isVoidTy()) { 2084 LoadInst *LabelLoad = 2085 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 2086 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2087 FT->getReturnType(), LabelLoad, &CB)); 2088 } 2089 2090 CI->replaceAllUsesWith(CustomCI); 2091 CI->eraseFromParent(); 2092 return true; 2093 } 2094 return false; 2095 } 2096 2097 void DFSanVisitor::visitCallBase(CallBase &CB) { 2098 Function *F = CB.getCalledFunction(); 2099 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 2100 visitOperandShadowInst(CB); 2101 return; 2102 } 2103 2104 // Calls to this function are synthesized in wrappers, and we shouldn't 2105 // instrument them. 2106 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 2107 return; 2108 2109 DenseMap<Value *, Function *>::iterator i = 2110 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 2111 if (i != DFSF.DFS.UnwrappedFnMap.end()) 2112 if (visitWrappedCallBase(*i->second, CB)) 2113 return; 2114 2115 IRBuilder<> IRB(&CB); 2116 2117 FunctionType *FT = CB.getFunctionType(); 2118 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2119 // Stores argument shadows. 2120 unsigned ArgOffset = 0; 2121 const DataLayout &DL = getDataLayout(); 2122 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 2123 unsigned Size = 2124 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 2125 // Stop storing if arguments' size overflows. Inside a function, arguments 2126 // after overflow have zero shadow values. 2127 if (ArgOffset + Size > kArgTLSSize) 2128 break; 2129 IRB.CreateAlignedStore( 2130 DFSF.getShadow(CB.getArgOperand(I)), 2131 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 2132 kShadowTLSAlignment); 2133 ArgOffset += alignTo(Size, kShadowTLSAlignment); 2134 } 2135 } 2136 2137 Instruction *Next = nullptr; 2138 if (!CB.getType()->isVoidTy()) { 2139 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2140 if (II->getNormalDest()->getSinglePredecessor()) { 2141 Next = &II->getNormalDest()->front(); 2142 } else { 2143 BasicBlock *NewBB = 2144 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 2145 Next = &NewBB->front(); 2146 } 2147 } else { 2148 assert(CB.getIterator() != CB.getParent()->end()); 2149 Next = CB.getNextNode(); 2150 } 2151 2152 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2153 // Loads the return value shadow. 2154 IRBuilder<> NextIRB(Next); 2155 const DataLayout &DL = getDataLayout(); 2156 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 2157 if (Size > kRetvalTLSSize) { 2158 // Set overflowed return shadow to be zero. 2159 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2160 } else { 2161 LoadInst *LI = NextIRB.CreateAlignedLoad( 2162 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 2163 kShadowTLSAlignment, "_dfsret"); 2164 DFSF.SkipInsts.insert(LI); 2165 DFSF.setShadow(&CB, LI); 2166 DFSF.NonZeroChecks.push_back(LI); 2167 } 2168 } 2169 } 2170 2171 // Do all instrumentation for IA_Args down here to defer tampering with the 2172 // CFG in a way that SplitEdge may be able to detect. 2173 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 2174 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 2175 Value *Func = 2176 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 2177 std::vector<Value *> Args; 2178 2179 auto i = CB.arg_begin(), E = CB.arg_end(); 2180 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 2181 Args.push_back(*i); 2182 2183 i = CB.arg_begin(); 2184 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 2185 Args.push_back(DFSF.getShadow(*i)); 2186 2187 if (FT->isVarArg()) { 2188 unsigned VarArgSize = CB.arg_size() - FT->getNumParams(); 2189 ArrayType *VarArgArrayTy = 2190 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 2191 AllocaInst *VarArgShadow = 2192 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 2193 "", &DFSF.F->getEntryBlock().front()); 2194 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 2195 for (unsigned n = 0; i != E; ++i, ++n) { 2196 IRB.CreateStore( 2197 DFSF.getShadow(*i), 2198 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 2199 Args.push_back(*i); 2200 } 2201 } 2202 2203 CallBase *NewCB; 2204 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2205 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 2206 II->getUnwindDest(), Args); 2207 } else { 2208 NewCB = IRB.CreateCall(NewFT, Func, Args); 2209 } 2210 NewCB->setCallingConv(CB.getCallingConv()); 2211 NewCB->setAttributes(CB.getAttributes().removeAttributes( 2212 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 2213 AttributeFuncs::typeIncompatible(NewCB->getType()))); 2214 2215 if (Next) { 2216 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 2217 DFSF.SkipInsts.insert(ExVal); 2218 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 2219 DFSF.SkipInsts.insert(ExShadow); 2220 DFSF.setShadow(ExVal, ExShadow); 2221 DFSF.NonZeroChecks.push_back(ExShadow); 2222 2223 CB.replaceAllUsesWith(ExVal); 2224 } 2225 2226 CB.eraseFromParent(); 2227 } 2228 } 2229 2230 void DFSanVisitor::visitPHINode(PHINode &PN) { 2231 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 2232 PHINode *ShadowPN = 2233 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 2234 2235 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 2236 Value *UndefShadow = UndefValue::get(ShadowTy); 2237 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 2238 ++i) { 2239 ShadowPN->addIncoming(UndefShadow, *i); 2240 } 2241 2242 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 2243 DFSF.setShadow(&PN, ShadowPN); 2244 } 2245 2246 namespace { 2247 class DataFlowSanitizerLegacyPass : public ModulePass { 2248 private: 2249 std::vector<std::string> ABIListFiles; 2250 2251 public: 2252 static char ID; 2253 2254 DataFlowSanitizerLegacyPass( 2255 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 2256 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 2257 2258 bool runOnModule(Module &M) override { 2259 return DataFlowSanitizer(ABIListFiles).runImpl(M); 2260 } 2261 }; 2262 } // namespace 2263 2264 char DataFlowSanitizerLegacyPass::ID; 2265 2266 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 2267 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 2268 2269 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 2270 const std::vector<std::string> &ABIListFiles) { 2271 return new DataFlowSanitizerLegacyPass(ABIListFiles); 2272 } 2273 2274 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 2275 ModuleAnalysisManager &AM) { 2276 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 2277 return PreservedAnalyses::none(); 2278 } 2279 return PreservedAnalyses::all(); 2280 } 2281