1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/DenseSet.h" 51 #include "llvm/ADT/DepthFirstIterator.h" 52 #include "llvm/ADT/None.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/ADT/StringRef.h" 57 #include "llvm/ADT/Triple.h" 58 #include "llvm/Analysis/ValueTracking.h" 59 #include "llvm/IR/Argument.h" 60 #include "llvm/IR/Attributes.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DataLayout.h" 65 #include "llvm/IR/DerivedTypes.h" 66 #include "llvm/IR/Dominators.h" 67 #include "llvm/IR/Function.h" 68 #include "llvm/IR/GlobalAlias.h" 69 #include "llvm/IR/GlobalValue.h" 70 #include "llvm/IR/GlobalVariable.h" 71 #include "llvm/IR/IRBuilder.h" 72 #include "llvm/IR/InlineAsm.h" 73 #include "llvm/IR/InstVisitor.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/MDBuilder.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/User.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/InitializePasses.h" 85 #include "llvm/Pass.h" 86 #include "llvm/Support/Casting.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/SpecialCaseList.h" 90 #include "llvm/Support/VirtualFileSystem.h" 91 #include "llvm/Transforms/Instrumentation.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstddef> 97 #include <cstdint> 98 #include <iterator> 99 #include <memory> 100 #include <set> 101 #include <string> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 107 // External symbol to be used when generating the shadow address for 108 // architectures with multiple VMAs. Instead of using a constant integer 109 // the runtime will set the external mask based on the VMA range. 110 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask"; 111 112 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 113 // alignment requirements provided by the input IR are correct. For example, 114 // if the input IR contains a load with alignment 8, this flag will cause 115 // the shadow load to have alignment 16. This flag is disabled by default as 116 // we have unfortunately encountered too much code (including Clang itself; 117 // see PR14291) which performs misaligned access. 118 static cl::opt<bool> ClPreserveAlignment( 119 "dfsan-preserve-alignment", 120 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 121 cl::init(false)); 122 123 // The ABI list files control how shadow parameters are passed. The pass treats 124 // every function labelled "uninstrumented" in the ABI list file as conforming 125 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 126 // additional annotations for those functions, a call to one of those functions 127 // will produce a warning message, as the labelling behaviour of the function is 128 // unknown. The other supported annotations are "functional" and "discard", 129 // which are described below under DataFlowSanitizer::WrapperKind. 130 static cl::list<std::string> ClABIListFiles( 131 "dfsan-abilist", 132 cl::desc("File listing native ABI functions and how the pass treats them"), 133 cl::Hidden); 134 135 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 136 // functions (see DataFlowSanitizer::InstrumentedABI below). 137 static cl::opt<bool> ClArgsABI( 138 "dfsan-args-abi", 139 cl::desc("Use the argument ABI rather than the TLS ABI"), 140 cl::Hidden); 141 142 // Controls whether the pass includes or ignores the labels of pointers in load 143 // instructions. 144 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 145 "dfsan-combine-pointer-labels-on-load", 146 cl::desc("Combine the label of the pointer with the label of the data when " 147 "loading from memory."), 148 cl::Hidden, cl::init(true)); 149 150 // Controls whether the pass includes or ignores the labels of pointers in 151 // stores instructions. 152 static cl::opt<bool> ClCombinePointerLabelsOnStore( 153 "dfsan-combine-pointer-labels-on-store", 154 cl::desc("Combine the label of the pointer with the label of the data when " 155 "storing in memory."), 156 cl::Hidden, cl::init(false)); 157 158 static cl::opt<bool> ClDebugNonzeroLabels( 159 "dfsan-debug-nonzero-labels", 160 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 161 "load or return with a nonzero label"), 162 cl::Hidden); 163 164 // Experimental feature that inserts callbacks for certain data events. 165 // Currently callbacks are only inserted for loads, stores, memory transfers 166 // (i.e. memcpy and memmove), and comparisons. 167 // 168 // If this flag is set to true, the user must provide definitions for the 169 // following callback functions: 170 // void __dfsan_load_callback(dfsan_label Label); 171 // void __dfsan_store_callback(dfsan_label Label); 172 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 173 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 174 static cl::opt<bool> ClEventCallbacks( 175 "dfsan-event-callbacks", 176 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 177 cl::Hidden, cl::init(false)); 178 179 static StringRef GetGlobalTypeString(const GlobalValue &G) { 180 // Types of GlobalVariables are always pointer types. 181 Type *GType = G.getValueType(); 182 // For now we support blacklisting struct types only. 183 if (StructType *SGType = dyn_cast<StructType>(GType)) { 184 if (!SGType->isLiteral()) 185 return SGType->getName(); 186 } 187 return "<unknown type>"; 188 } 189 190 namespace { 191 192 class DFSanABIList { 193 std::unique_ptr<SpecialCaseList> SCL; 194 195 public: 196 DFSanABIList() = default; 197 198 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 199 200 /// Returns whether either this function or its source file are listed in the 201 /// given category. 202 bool isIn(const Function &F, StringRef Category) const { 203 return isIn(*F.getParent(), Category) || 204 SCL->inSection("dataflow", "fun", F.getName(), Category); 205 } 206 207 /// Returns whether this global alias is listed in the given category. 208 /// 209 /// If GA aliases a function, the alias's name is matched as a function name 210 /// would be. Similarly, aliases of globals are matched like globals. 211 bool isIn(const GlobalAlias &GA, StringRef Category) const { 212 if (isIn(*GA.getParent(), Category)) 213 return true; 214 215 if (isa<FunctionType>(GA.getValueType())) 216 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 217 218 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 219 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 220 Category); 221 } 222 223 /// Returns whether this module is listed in the given category. 224 bool isIn(const Module &M, StringRef Category) const { 225 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 226 } 227 }; 228 229 /// TransformedFunction is used to express the result of transforming one 230 /// function type into another. This struct is immutable. It holds metadata 231 /// useful for updating calls of the old function to the new type. 232 struct TransformedFunction { 233 TransformedFunction(FunctionType* OriginalType, 234 FunctionType* TransformedType, 235 std::vector<unsigned> ArgumentIndexMapping) 236 : OriginalType(OriginalType), 237 TransformedType(TransformedType), 238 ArgumentIndexMapping(ArgumentIndexMapping) {} 239 240 // Disallow copies. 241 TransformedFunction(const TransformedFunction&) = delete; 242 TransformedFunction& operator=(const TransformedFunction&) = delete; 243 244 // Allow moves. 245 TransformedFunction(TransformedFunction&&) = default; 246 TransformedFunction& operator=(TransformedFunction&&) = default; 247 248 /// Type of the function before the transformation. 249 FunctionType *OriginalType; 250 251 /// Type of the function after the transformation. 252 FunctionType *TransformedType; 253 254 /// Transforming a function may change the position of arguments. This 255 /// member records the mapping from each argument's old position to its new 256 /// position. Argument positions are zero-indexed. If the transformation 257 /// from F to F' made the first argument of F into the third argument of F', 258 /// then ArgumentIndexMapping[0] will equal 2. 259 std::vector<unsigned> ArgumentIndexMapping; 260 }; 261 262 /// Given function attributes from a call site for the original function, 263 /// return function attributes appropriate for a call to the transformed 264 /// function. 265 AttributeList TransformFunctionAttributes( 266 const TransformedFunction& TransformedFunction, 267 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 268 269 // Construct a vector of AttributeSet for each function argument. 270 std::vector<llvm::AttributeSet> ArgumentAttributes( 271 TransformedFunction.TransformedType->getNumParams()); 272 273 // Copy attributes from the parameter of the original function to the 274 // transformed version. 'ArgumentIndexMapping' holds the mapping from 275 // old argument position to new. 276 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 277 i < ie; ++i) { 278 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 279 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 280 } 281 282 // Copy annotations on varargs arguments. 283 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 284 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 285 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 286 } 287 288 return AttributeList::get( 289 Ctx, 290 CallSiteAttrs.getFnAttributes(), 291 CallSiteAttrs.getRetAttributes(), 292 llvm::makeArrayRef(ArgumentAttributes)); 293 } 294 295 class DataFlowSanitizer : public ModulePass { 296 friend struct DFSanFunction; 297 friend class DFSanVisitor; 298 299 enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 }; 300 301 /// Which ABI should be used for instrumented functions? 302 enum InstrumentedABI { 303 /// Argument and return value labels are passed through additional 304 /// arguments and by modifying the return type. 305 IA_Args, 306 307 /// Argument and return value labels are passed through TLS variables 308 /// __dfsan_arg_tls and __dfsan_retval_tls. 309 IA_TLS 310 }; 311 312 /// How should calls to uninstrumented functions be handled? 313 enum WrapperKind { 314 /// This function is present in an uninstrumented form but we don't know 315 /// how it should be handled. Print a warning and call the function anyway. 316 /// Don't label the return value. 317 WK_Warning, 318 319 /// This function does not write to (user-accessible) memory, and its return 320 /// value is unlabelled. 321 WK_Discard, 322 323 /// This function does not write to (user-accessible) memory, and the label 324 /// of its return value is the union of the label of its arguments. 325 WK_Functional, 326 327 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 328 /// where F is the name of the function. This function may wrap the 329 /// original function or provide its own implementation. This is similar to 330 /// the IA_Args ABI, except that IA_Args uses a struct return type to 331 /// pass the return value shadow in a register, while WK_Custom uses an 332 /// extra pointer argument to return the shadow. This allows the wrapped 333 /// form of the function type to be expressed in C. 334 WK_Custom 335 }; 336 337 Module *Mod; 338 LLVMContext *Ctx; 339 IntegerType *ShadowTy; 340 PointerType *ShadowPtrTy; 341 IntegerType *IntptrTy; 342 ConstantInt *ZeroShadow; 343 ConstantInt *ShadowPtrMask; 344 ConstantInt *ShadowPtrMul; 345 Constant *ArgTLS; 346 Constant *RetvalTLS; 347 void *(*GetArgTLSPtr)(); 348 void *(*GetRetvalTLSPtr)(); 349 FunctionType *GetArgTLSTy; 350 FunctionType *GetRetvalTLSTy; 351 Constant *GetArgTLS; 352 Constant *GetRetvalTLS; 353 Constant *ExternalShadowMask; 354 FunctionType *DFSanUnionFnTy; 355 FunctionType *DFSanUnionLoadFnTy; 356 FunctionType *DFSanUnimplementedFnTy; 357 FunctionType *DFSanSetLabelFnTy; 358 FunctionType *DFSanNonzeroLabelFnTy; 359 FunctionType *DFSanVarargWrapperFnTy; 360 FunctionType *DFSanLoadStoreCmpCallbackFnTy; 361 FunctionType *DFSanMemTransferCallbackFnTy; 362 FunctionCallee DFSanUnionFn; 363 FunctionCallee DFSanCheckedUnionFn; 364 FunctionCallee DFSanUnionLoadFn; 365 FunctionCallee DFSanUnimplementedFn; 366 FunctionCallee DFSanSetLabelFn; 367 FunctionCallee DFSanNonzeroLabelFn; 368 FunctionCallee DFSanVarargWrapperFn; 369 FunctionCallee DFSanLoadCallbackFn; 370 FunctionCallee DFSanStoreCallbackFn; 371 FunctionCallee DFSanMemTransferCallbackFn; 372 FunctionCallee DFSanCmpCallbackFn; 373 MDNode *ColdCallWeights; 374 DFSanABIList ABIList; 375 DenseMap<Value *, Function *> UnwrappedFnMap; 376 AttrBuilder ReadOnlyNoneAttrs; 377 bool DFSanRuntimeShadowMask = false; 378 379 Value *getShadowAddress(Value *Addr, Instruction *Pos); 380 bool isInstrumented(const Function *F); 381 bool isInstrumented(const GlobalAlias *GA); 382 FunctionType *getArgsFunctionType(FunctionType *T); 383 FunctionType *getTrampolineFunctionType(FunctionType *T); 384 TransformedFunction getCustomFunctionType(FunctionType *T); 385 InstrumentedABI getInstrumentedABI(); 386 WrapperKind getWrapperKind(Function *F); 387 void addGlobalNamePrefix(GlobalValue *GV); 388 Function *buildWrapperFunction(Function *F, StringRef NewFName, 389 GlobalValue::LinkageTypes NewFLink, 390 FunctionType *NewFT); 391 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 392 void initializeCallbackFunctions(Module &M); 393 void initializeRuntimeFunctions(Module &M); 394 395 public: 396 static char ID; 397 398 DataFlowSanitizer( 399 const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), 400 void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); 401 402 bool doInitialization(Module &M) override; 403 bool runOnModule(Module &M) override; 404 }; 405 406 struct DFSanFunction { 407 DataFlowSanitizer &DFS; 408 Function *F; 409 DominatorTree DT; 410 DataFlowSanitizer::InstrumentedABI IA; 411 bool IsNativeABI; 412 Value *ArgTLSPtr = nullptr; 413 Value *RetvalTLSPtr = nullptr; 414 AllocaInst *LabelReturnAlloca = nullptr; 415 DenseMap<Value *, Value *> ValShadowMap; 416 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 417 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 418 DenseSet<Instruction *> SkipInsts; 419 std::vector<Value *> NonZeroChecks; 420 bool AvoidNewBlocks; 421 422 struct CachedCombinedShadow { 423 BasicBlock *Block; 424 Value *Shadow; 425 }; 426 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> 427 CachedCombinedShadows; 428 DenseMap<Value *, std::set<Value *>> ShadowElements; 429 430 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 431 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 432 DT.recalculate(*F); 433 // FIXME: Need to track down the register allocator issue which causes poor 434 // performance in pathological cases with large numbers of basic blocks. 435 AvoidNewBlocks = F->size() > 1000; 436 } 437 438 Value *getArgTLSPtr(); 439 Value *getArgTLS(unsigned Index, Instruction *Pos); 440 Value *getRetvalTLS(); 441 Value *getShadow(Value *V); 442 void setShadow(Instruction *I, Value *Shadow); 443 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 444 Value *combineOperandShadows(Instruction *Inst); 445 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 446 Instruction *Pos); 447 void storeShadow(Value *Addr, uint64_t Size, Align Alignment, Value *Shadow, 448 Instruction *Pos); 449 }; 450 451 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 452 public: 453 DFSanFunction &DFSF; 454 455 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 456 457 const DataLayout &getDataLayout() const { 458 return DFSF.F->getParent()->getDataLayout(); 459 } 460 461 // Combines shadow values for all of I's operands. Returns the combined shadow 462 // value. 463 Value *visitOperandShadowInst(Instruction &I); 464 465 void visitUnaryOperator(UnaryOperator &UO); 466 void visitBinaryOperator(BinaryOperator &BO); 467 void visitCastInst(CastInst &CI); 468 void visitCmpInst(CmpInst &CI); 469 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 470 void visitLoadInst(LoadInst &LI); 471 void visitStoreInst(StoreInst &SI); 472 void visitReturnInst(ReturnInst &RI); 473 void visitCallBase(CallBase &CB); 474 void visitPHINode(PHINode &PN); 475 void visitExtractElementInst(ExtractElementInst &I); 476 void visitInsertElementInst(InsertElementInst &I); 477 void visitShuffleVectorInst(ShuffleVectorInst &I); 478 void visitExtractValueInst(ExtractValueInst &I); 479 void visitInsertValueInst(InsertValueInst &I); 480 void visitAllocaInst(AllocaInst &I); 481 void visitSelectInst(SelectInst &I); 482 void visitMemSetInst(MemSetInst &I); 483 void visitMemTransferInst(MemTransferInst &I); 484 }; 485 486 } // end anonymous namespace 487 488 char DataFlowSanitizer::ID; 489 490 INITIALIZE_PASS(DataFlowSanitizer, "dfsan", 491 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 492 493 ModulePass * 494 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles, 495 void *(*getArgTLS)(), 496 void *(*getRetValTLS)()) { 497 return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS); 498 } 499 500 DataFlowSanitizer::DataFlowSanitizer( 501 const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(), 502 void *(*getRetValTLS)()) 503 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) { 504 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 505 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 506 ClABIListFiles.end()); 507 // FIXME: should we propagate vfs::FileSystem to this constructor? 508 ABIList.set( 509 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 510 } 511 512 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 513 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 514 ArgTypes.append(T->getNumParams(), ShadowTy); 515 if (T->isVarArg()) 516 ArgTypes.push_back(ShadowPtrTy); 517 Type *RetType = T->getReturnType(); 518 if (!RetType->isVoidTy()) 519 RetType = StructType::get(RetType, ShadowTy); 520 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 521 } 522 523 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 524 assert(!T->isVarArg()); 525 SmallVector<Type *, 4> ArgTypes; 526 ArgTypes.push_back(T->getPointerTo()); 527 ArgTypes.append(T->param_begin(), T->param_end()); 528 ArgTypes.append(T->getNumParams(), ShadowTy); 529 Type *RetType = T->getReturnType(); 530 if (!RetType->isVoidTy()) 531 ArgTypes.push_back(ShadowPtrTy); 532 return FunctionType::get(T->getReturnType(), ArgTypes, false); 533 } 534 535 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 536 SmallVector<Type *, 4> ArgTypes; 537 538 // Some parameters of the custom function being constructed are 539 // parameters of T. Record the mapping from parameters of T to 540 // parameters of the custom function, so that parameter attributes 541 // at call sites can be updated. 542 std::vector<unsigned> ArgumentIndexMapping; 543 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 544 Type* param_type = T->getParamType(i); 545 FunctionType *FT; 546 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 547 cast<PointerType>(param_type)->getElementType()))) { 548 ArgumentIndexMapping.push_back(ArgTypes.size()); 549 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 550 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 551 } else { 552 ArgumentIndexMapping.push_back(ArgTypes.size()); 553 ArgTypes.push_back(param_type); 554 } 555 } 556 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 557 ArgTypes.push_back(ShadowTy); 558 if (T->isVarArg()) 559 ArgTypes.push_back(ShadowPtrTy); 560 Type *RetType = T->getReturnType(); 561 if (!RetType->isVoidTy()) 562 ArgTypes.push_back(ShadowPtrTy); 563 return TransformedFunction( 564 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 565 ArgumentIndexMapping); 566 } 567 568 bool DataFlowSanitizer::doInitialization(Module &M) { 569 Triple TargetTriple(M.getTargetTriple()); 570 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 571 bool IsMIPS64 = TargetTriple.isMIPS64(); 572 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 573 TargetTriple.getArch() == Triple::aarch64_be; 574 575 const DataLayout &DL = M.getDataLayout(); 576 577 Mod = &M; 578 Ctx = &M.getContext(); 579 ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 580 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 581 IntptrTy = DL.getIntPtrType(*Ctx); 582 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 583 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 584 if (IsX86_64) 585 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 586 else if (IsMIPS64) 587 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 588 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 589 else if (IsAArch64) 590 DFSanRuntimeShadowMask = true; 591 else 592 report_fatal_error("unsupported triple"); 593 594 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 595 DFSanUnionFnTy = 596 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 597 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 598 DFSanUnionLoadFnTy = 599 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 600 DFSanUnimplementedFnTy = FunctionType::get( 601 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 602 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 603 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 604 DFSanSetLabelArgs, /*isVarArg=*/false); 605 DFSanNonzeroLabelFnTy = FunctionType::get( 606 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 607 DFSanVarargWrapperFnTy = FunctionType::get( 608 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 609 DFSanLoadStoreCmpCallbackFnTy = 610 FunctionType::get(Type::getVoidTy(*Ctx), ShadowTy, /*isVarArg=*/false); 611 Type *DFSanMemTransferCallbackArgs[2] = {ShadowPtrTy, IntptrTy}; 612 DFSanMemTransferCallbackFnTy = 613 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 614 /*isVarArg=*/false); 615 616 if (GetArgTLSPtr) { 617 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 618 ArgTLS = nullptr; 619 GetArgTLSTy = FunctionType::get(PointerType::getUnqual(ArgTLSTy), false); 620 GetArgTLS = ConstantExpr::getIntToPtr( 621 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), 622 PointerType::getUnqual(GetArgTLSTy)); 623 } 624 if (GetRetvalTLSPtr) { 625 RetvalTLS = nullptr; 626 GetRetvalTLSTy = FunctionType::get(PointerType::getUnqual(ShadowTy), false); 627 GetRetvalTLS = ConstantExpr::getIntToPtr( 628 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), 629 PointerType::getUnqual(GetRetvalTLSTy)); 630 } 631 632 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 633 return true; 634 } 635 636 bool DataFlowSanitizer::isInstrumented(const Function *F) { 637 return !ABIList.isIn(*F, "uninstrumented"); 638 } 639 640 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 641 return !ABIList.isIn(*GA, "uninstrumented"); 642 } 643 644 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 645 return ClArgsABI ? IA_Args : IA_TLS; 646 } 647 648 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 649 if (ABIList.isIn(*F, "functional")) 650 return WK_Functional; 651 if (ABIList.isIn(*F, "discard")) 652 return WK_Discard; 653 if (ABIList.isIn(*F, "custom")) 654 return WK_Custom; 655 656 return WK_Warning; 657 } 658 659 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 660 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 661 GV->setName(Prefix + GVName); 662 663 // Try to change the name of the function in module inline asm. We only do 664 // this for specific asm directives, currently only ".symver", to try to avoid 665 // corrupting asm which happens to contain the symbol name as a substring. 666 // Note that the substitution for .symver assumes that the versioned symbol 667 // also has an instrumented name. 668 std::string Asm = GV->getParent()->getModuleInlineAsm(); 669 std::string SearchStr = ".symver " + GVName + ","; 670 size_t Pos = Asm.find(SearchStr); 671 if (Pos != std::string::npos) { 672 Asm.replace(Pos, SearchStr.size(), 673 ".symver " + Prefix + GVName + "," + Prefix); 674 GV->getParent()->setModuleInlineAsm(Asm); 675 } 676 } 677 678 Function * 679 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 680 GlobalValue::LinkageTypes NewFLink, 681 FunctionType *NewFT) { 682 FunctionType *FT = F->getFunctionType(); 683 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 684 NewFName, F->getParent()); 685 NewF->copyAttributesFrom(F); 686 NewF->removeAttributes( 687 AttributeList::ReturnIndex, 688 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 689 690 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 691 if (F->isVarArg()) { 692 NewF->removeAttributes(AttributeList::FunctionIndex, 693 AttrBuilder().addAttribute("split-stack")); 694 CallInst::Create(DFSanVarargWrapperFn, 695 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 696 BB); 697 new UnreachableInst(*Ctx, BB); 698 } else { 699 std::vector<Value *> Args; 700 unsigned n = FT->getNumParams(); 701 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 702 Args.push_back(&*ai); 703 CallInst *CI = CallInst::Create(F, Args, "", BB); 704 if (FT->getReturnType()->isVoidTy()) 705 ReturnInst::Create(*Ctx, BB); 706 else 707 ReturnInst::Create(*Ctx, CI, BB); 708 } 709 710 return NewF; 711 } 712 713 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 714 StringRef FName) { 715 FunctionType *FTT = getTrampolineFunctionType(FT); 716 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 717 Function *F = dyn_cast<Function>(C.getCallee()); 718 if (F && F->isDeclaration()) { 719 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 720 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 721 std::vector<Value *> Args; 722 Function::arg_iterator AI = F->arg_begin(); ++AI; 723 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 724 Args.push_back(&*AI); 725 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 726 ReturnInst *RI; 727 if (FT->getReturnType()->isVoidTy()) 728 RI = ReturnInst::Create(*Ctx, BB); 729 else 730 RI = ReturnInst::Create(*Ctx, CI, BB); 731 732 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 733 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 734 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 735 DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; 736 DFSanVisitor(DFSF).visitCallInst(*CI); 737 if (!FT->getReturnType()->isVoidTy()) 738 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 739 &*std::prev(F->arg_end()), RI); 740 } 741 742 return cast<Constant>(C.getCallee()); 743 } 744 745 // Initialize DataFlowSanitizer runtime functions and declare them in the module 746 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 747 { 748 AttributeList AL; 749 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 750 Attribute::NoUnwind); 751 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 752 Attribute::ReadNone); 753 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 754 Attribute::ZExt); 755 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 756 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 757 DFSanUnionFn = 758 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 759 } 760 { 761 AttributeList AL; 762 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 763 Attribute::NoUnwind); 764 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 765 Attribute::ReadNone); 766 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 767 Attribute::ZExt); 768 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 769 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 770 DFSanCheckedUnionFn = 771 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 772 } 773 { 774 AttributeList AL; 775 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 776 Attribute::NoUnwind); 777 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 778 Attribute::ReadOnly); 779 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 780 Attribute::ZExt); 781 DFSanUnionLoadFn = 782 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 783 } 784 DFSanUnimplementedFn = 785 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 786 { 787 AttributeList AL; 788 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 789 DFSanSetLabelFn = 790 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 791 } 792 DFSanNonzeroLabelFn = 793 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 794 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 795 DFSanVarargWrapperFnTy); 796 } 797 798 // Initializes event callback functions and declare them in the module 799 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 800 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 801 DFSanLoadStoreCmpCallbackFnTy); 802 DFSanStoreCallbackFn = Mod->getOrInsertFunction( 803 "__dfsan_store_callback", DFSanLoadStoreCmpCallbackFnTy); 804 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 805 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 806 DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback", 807 DFSanLoadStoreCmpCallbackFnTy); 808 } 809 810 bool DataFlowSanitizer::runOnModule(Module &M) { 811 if (ABIList.isIn(M, "skip")) 812 return false; 813 814 const unsigned InitialGlobalSize = M.global_size(); 815 const unsigned InitialModuleSize = M.size(); 816 817 bool Changed = false; 818 819 if (!GetArgTLSPtr) { 820 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 821 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 822 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) { 823 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 824 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 825 } 826 } 827 if (!GetRetvalTLSPtr) { 828 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 829 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) { 830 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 831 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 832 } 833 } 834 835 ExternalShadowMask = 836 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 837 838 initializeCallbackFunctions(M); 839 initializeRuntimeFunctions(M); 840 841 std::vector<Function *> FnsToInstrument; 842 SmallPtrSet<Function *, 2> FnsWithNativeABI; 843 for (Function &i : M) { 844 if (!i.isIntrinsic() && 845 &i != DFSanUnionFn.getCallee()->stripPointerCasts() && 846 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && 847 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && 848 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && 849 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && 850 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && 851 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() && 852 &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() && 853 &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() && 854 &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() && 855 &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts()) 856 FnsToInstrument.push_back(&i); 857 } 858 859 // Give function aliases prefixes when necessary, and build wrappers where the 860 // instrumentedness is inconsistent. 861 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 862 GlobalAlias *GA = &*i; 863 ++i; 864 // Don't stop on weak. We assume people aren't playing games with the 865 // instrumentedness of overridden weak aliases. 866 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 867 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 868 if (GAInst && FInst) { 869 addGlobalNamePrefix(GA); 870 } else if (GAInst != FInst) { 871 // Non-instrumented alias of an instrumented function, or vice versa. 872 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 873 // below will take care of instrumenting it. 874 Function *NewF = 875 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 876 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 877 NewF->takeName(GA); 878 GA->eraseFromParent(); 879 FnsToInstrument.push_back(NewF); 880 } 881 } 882 } 883 884 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 885 .addAttribute(Attribute::ReadNone); 886 887 // First, change the ABI of every function in the module. ABI-listed 888 // functions keep their original ABI and get a wrapper function. 889 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 890 e = FnsToInstrument.end(); 891 i != e; ++i) { 892 Function &F = **i; 893 FunctionType *FT = F.getFunctionType(); 894 895 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 896 FT->getReturnType()->isVoidTy()); 897 898 if (isInstrumented(&F)) { 899 // Instrumented functions get a 'dfs$' prefix. This allows us to more 900 // easily identify cases of mismatching ABIs. 901 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 902 FunctionType *NewFT = getArgsFunctionType(FT); 903 Function *NewF = Function::Create(NewFT, F.getLinkage(), 904 F.getAddressSpace(), "", &M); 905 NewF->copyAttributesFrom(&F); 906 NewF->removeAttributes( 907 AttributeList::ReturnIndex, 908 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 909 for (Function::arg_iterator FArg = F.arg_begin(), 910 NewFArg = NewF->arg_begin(), 911 FArgEnd = F.arg_end(); 912 FArg != FArgEnd; ++FArg, ++NewFArg) { 913 FArg->replaceAllUsesWith(&*NewFArg); 914 } 915 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 916 917 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 918 UI != UE;) { 919 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 920 ++UI; 921 if (BA) { 922 BA->replaceAllUsesWith( 923 BlockAddress::get(NewF, BA->getBasicBlock())); 924 delete BA; 925 } 926 } 927 F.replaceAllUsesWith( 928 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 929 NewF->takeName(&F); 930 F.eraseFromParent(); 931 *i = NewF; 932 addGlobalNamePrefix(NewF); 933 } else { 934 addGlobalNamePrefix(&F); 935 } 936 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 937 // Build a wrapper function for F. The wrapper simply calls F, and is 938 // added to FnsToInstrument so that any instrumentation according to its 939 // WrapperKind is done in the second pass below. 940 FunctionType *NewFT = getInstrumentedABI() == IA_Args 941 ? getArgsFunctionType(FT) 942 : FT; 943 944 // If the function being wrapped has local linkage, then preserve the 945 // function's linkage in the wrapper function. 946 GlobalValue::LinkageTypes wrapperLinkage = 947 F.hasLocalLinkage() 948 ? F.getLinkage() 949 : GlobalValue::LinkOnceODRLinkage; 950 951 Function *NewF = buildWrapperFunction( 952 &F, std::string("dfsw$") + std::string(F.getName()), 953 wrapperLinkage, NewFT); 954 if (getInstrumentedABI() == IA_TLS) 955 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 956 957 Value *WrappedFnCst = 958 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 959 F.replaceAllUsesWith(WrappedFnCst); 960 961 UnwrappedFnMap[WrappedFnCst] = &F; 962 *i = NewF; 963 964 if (!F.isDeclaration()) { 965 // This function is probably defining an interposition of an 966 // uninstrumented function and hence needs to keep the original ABI. 967 // But any functions it may call need to use the instrumented ABI, so 968 // we instrument it in a mode which preserves the original ABI. 969 FnsWithNativeABI.insert(&F); 970 971 // This code needs to rebuild the iterators, as they may be invalidated 972 // by the push_back, taking care that the new range does not include 973 // any functions added by this code. 974 size_t N = i - FnsToInstrument.begin(), 975 Count = e - FnsToInstrument.begin(); 976 FnsToInstrument.push_back(&F); 977 i = FnsToInstrument.begin() + N; 978 e = FnsToInstrument.begin() + Count; 979 } 980 // Hopefully, nobody will try to indirectly call a vararg 981 // function... yet. 982 } else if (FT->isVarArg()) { 983 UnwrappedFnMap[&F] = &F; 984 *i = nullptr; 985 } 986 } 987 988 for (Function *i : FnsToInstrument) { 989 if (!i || i->isDeclaration()) 990 continue; 991 992 removeUnreachableBlocks(*i); 993 994 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 995 996 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 997 // Build a copy of the list before iterating over it. 998 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 999 1000 for (BasicBlock *i : BBList) { 1001 Instruction *Inst = &i->front(); 1002 while (true) { 1003 // DFSanVisitor may split the current basic block, changing the current 1004 // instruction's next pointer and moving the next instruction to the 1005 // tail block from which we should continue. 1006 Instruction *Next = Inst->getNextNode(); 1007 // DFSanVisitor may delete Inst, so keep track of whether it was a 1008 // terminator. 1009 bool IsTerminator = Inst->isTerminator(); 1010 if (!DFSF.SkipInsts.count(Inst)) 1011 DFSanVisitor(DFSF).visit(Inst); 1012 if (IsTerminator) 1013 break; 1014 Inst = Next; 1015 } 1016 } 1017 1018 // We will not necessarily be able to compute the shadow for every phi node 1019 // until we have visited every block. Therefore, the code that handles phi 1020 // nodes adds them to the PHIFixups list so that they can be properly 1021 // handled here. 1022 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 1023 i = DFSF.PHIFixups.begin(), 1024 e = DFSF.PHIFixups.end(); 1025 i != e; ++i) { 1026 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 1027 ++val) { 1028 i->second->setIncomingValue( 1029 val, DFSF.getShadow(i->first->getIncomingValue(val))); 1030 } 1031 } 1032 1033 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1034 // places (i.e. instructions in basic blocks we haven't even begun visiting 1035 // yet). To make our life easier, do this work in a pass after the main 1036 // instrumentation. 1037 if (ClDebugNonzeroLabels) { 1038 for (Value *V : DFSF.NonZeroChecks) { 1039 Instruction *Pos; 1040 if (Instruction *I = dyn_cast<Instruction>(V)) 1041 Pos = I->getNextNode(); 1042 else 1043 Pos = &DFSF.F->getEntryBlock().front(); 1044 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1045 Pos = Pos->getNextNode(); 1046 IRBuilder<> IRB(Pos); 1047 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); 1048 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1049 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1050 IRBuilder<> ThenIRB(BI); 1051 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1052 } 1053 } 1054 } 1055 1056 return Changed || !FnsToInstrument.empty() || 1057 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1058 } 1059 1060 Value *DFSanFunction::getArgTLSPtr() { 1061 if (ArgTLSPtr) 1062 return ArgTLSPtr; 1063 if (DFS.ArgTLS) 1064 return ArgTLSPtr = DFS.ArgTLS; 1065 1066 IRBuilder<> IRB(&F->getEntryBlock().front()); 1067 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLSTy, DFS.GetArgTLS, {}); 1068 } 1069 1070 Value *DFSanFunction::getRetvalTLS() { 1071 if (RetvalTLSPtr) 1072 return RetvalTLSPtr; 1073 if (DFS.RetvalTLS) 1074 return RetvalTLSPtr = DFS.RetvalTLS; 1075 1076 IRBuilder<> IRB(&F->getEntryBlock().front()); 1077 return RetvalTLSPtr = 1078 IRB.CreateCall(DFS.GetRetvalTLSTy, DFS.GetRetvalTLS, {}); 1079 } 1080 1081 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 1082 IRBuilder<> IRB(Pos); 1083 return IRB.CreateConstGEP2_64(ArrayType::get(DFS.ShadowTy, 64), 1084 getArgTLSPtr(), 0, Idx); 1085 } 1086 1087 Value *DFSanFunction::getShadow(Value *V) { 1088 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1089 return DFS.ZeroShadow; 1090 Value *&Shadow = ValShadowMap[V]; 1091 if (!Shadow) { 1092 if (Argument *A = dyn_cast<Argument>(V)) { 1093 if (IsNativeABI) 1094 return DFS.ZeroShadow; 1095 switch (IA) { 1096 case DataFlowSanitizer::IA_TLS: { 1097 Value *ArgTLSPtr = getArgTLSPtr(); 1098 Instruction *ArgTLSPos = 1099 DFS.ArgTLS ? &*F->getEntryBlock().begin() 1100 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 1101 IRBuilder<> IRB(ArgTLSPos); 1102 Shadow = 1103 IRB.CreateLoad(DFS.ShadowTy, getArgTLS(A->getArgNo(), ArgTLSPos)); 1104 break; 1105 } 1106 case DataFlowSanitizer::IA_Args: { 1107 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1108 Function::arg_iterator i = F->arg_begin(); 1109 while (ArgIdx--) 1110 ++i; 1111 Shadow = &*i; 1112 assert(Shadow->getType() == DFS.ShadowTy); 1113 break; 1114 } 1115 } 1116 NonZeroChecks.push_back(Shadow); 1117 } else { 1118 Shadow = DFS.ZeroShadow; 1119 } 1120 } 1121 return Shadow; 1122 } 1123 1124 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1125 assert(!ValShadowMap.count(I)); 1126 assert(Shadow->getType() == DFS.ShadowTy); 1127 ValShadowMap[I] = Shadow; 1128 } 1129 1130 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1131 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1132 IRBuilder<> IRB(Pos); 1133 Value *ShadowPtrMaskValue; 1134 if (DFSanRuntimeShadowMask) 1135 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1136 else 1137 ShadowPtrMaskValue = ShadowPtrMask; 1138 return IRB.CreateIntToPtr( 1139 IRB.CreateMul( 1140 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1141 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 1142 ShadowPtrMul), 1143 ShadowPtrTy); 1144 } 1145 1146 // Generates IR to compute the union of the two given shadows, inserting it 1147 // before Pos. Returns the computed union Value. 1148 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1149 if (V1 == DFS.ZeroShadow) 1150 return V2; 1151 if (V2 == DFS.ZeroShadow) 1152 return V1; 1153 if (V1 == V2) 1154 return V1; 1155 1156 auto V1Elems = ShadowElements.find(V1); 1157 auto V2Elems = ShadowElements.find(V2); 1158 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1159 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1160 V2Elems->second.begin(), V2Elems->second.end())) { 1161 return V1; 1162 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1163 V1Elems->second.begin(), V1Elems->second.end())) { 1164 return V2; 1165 } 1166 } else if (V1Elems != ShadowElements.end()) { 1167 if (V1Elems->second.count(V2)) 1168 return V1; 1169 } else if (V2Elems != ShadowElements.end()) { 1170 if (V2Elems->second.count(V1)) 1171 return V2; 1172 } 1173 1174 auto Key = std::make_pair(V1, V2); 1175 if (V1 > V2) 1176 std::swap(Key.first, Key.second); 1177 CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; 1178 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1179 return CCS.Shadow; 1180 1181 IRBuilder<> IRB(Pos); 1182 if (AvoidNewBlocks) { 1183 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); 1184 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1185 Call->addParamAttr(0, Attribute::ZExt); 1186 Call->addParamAttr(1, Attribute::ZExt); 1187 1188 CCS.Block = Pos->getParent(); 1189 CCS.Shadow = Call; 1190 } else { 1191 BasicBlock *Head = Pos->getParent(); 1192 Value *Ne = IRB.CreateICmpNE(V1, V2); 1193 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1194 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1195 IRBuilder<> ThenIRB(BI); 1196 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); 1197 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1198 Call->addParamAttr(0, Attribute::ZExt); 1199 Call->addParamAttr(1, Attribute::ZExt); 1200 1201 BasicBlock *Tail = BI->getSuccessor(0); 1202 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1203 Phi->addIncoming(Call, Call->getParent()); 1204 Phi->addIncoming(V1, Head); 1205 1206 CCS.Block = Tail; 1207 CCS.Shadow = Phi; 1208 } 1209 1210 std::set<Value *> UnionElems; 1211 if (V1Elems != ShadowElements.end()) { 1212 UnionElems = V1Elems->second; 1213 } else { 1214 UnionElems.insert(V1); 1215 } 1216 if (V2Elems != ShadowElements.end()) { 1217 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1218 } else { 1219 UnionElems.insert(V2); 1220 } 1221 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1222 1223 return CCS.Shadow; 1224 } 1225 1226 // A convenience function which folds the shadows of each of the operands 1227 // of the provided instruction Inst, inserting the IR before Inst. Returns 1228 // the computed union Value. 1229 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1230 if (Inst->getNumOperands() == 0) 1231 return DFS.ZeroShadow; 1232 1233 Value *Shadow = getShadow(Inst->getOperand(0)); 1234 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1235 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1236 } 1237 return Shadow; 1238 } 1239 1240 Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1241 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1242 DFSF.setShadow(&I, CombinedShadow); 1243 return CombinedShadow; 1244 } 1245 1246 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1247 // Addr has alignment Align, and take the union of each of those shadows. 1248 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1249 Instruction *Pos) { 1250 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1251 const auto i = AllocaShadowMap.find(AI); 1252 if (i != AllocaShadowMap.end()) { 1253 IRBuilder<> IRB(Pos); 1254 return IRB.CreateLoad(DFS.ShadowTy, i->second); 1255 } 1256 } 1257 1258 const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes); 1259 SmallVector<const Value *, 2> Objs; 1260 GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout()); 1261 bool AllConstants = true; 1262 for (const Value *Obj : Objs) { 1263 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1264 continue; 1265 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1266 continue; 1267 1268 AllConstants = false; 1269 break; 1270 } 1271 if (AllConstants) 1272 return DFS.ZeroShadow; 1273 1274 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1275 switch (Size) { 1276 case 0: 1277 return DFS.ZeroShadow; 1278 case 1: { 1279 LoadInst *LI = new LoadInst(DFS.ShadowTy, ShadowAddr, "", Pos); 1280 LI->setAlignment(ShadowAlign); 1281 return LI; 1282 } 1283 case 2: { 1284 IRBuilder<> IRB(Pos); 1285 Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr, 1286 ConstantInt::get(DFS.IntptrTy, 1)); 1287 return combineShadows( 1288 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr, ShadowAlign), 1289 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr1, ShadowAlign), Pos); 1290 } 1291 } 1292 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) { 1293 // Fast path for the common case where each byte has identical shadow: load 1294 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1295 // shadow is non-equal. 1296 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1297 IRBuilder<> FallbackIRB(FallbackBB); 1298 CallInst *FallbackCall = FallbackIRB.CreateCall( 1299 DFS.DFSanUnionLoadFn, 1300 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1301 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1302 1303 // Compare each of the shadows stored in the loaded 64 bits to each other, 1304 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 1305 IRBuilder<> IRB(Pos); 1306 Value *WideAddr = 1307 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1308 Value *WideShadow = 1309 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1310 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 1311 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 1312 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); 1313 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1314 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1315 1316 BasicBlock *Head = Pos->getParent(); 1317 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1318 1319 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1320 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1321 1322 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1323 for (auto Child : Children) 1324 DT.changeImmediateDominator(Child, NewNode); 1325 } 1326 1327 // In the following code LastBr will refer to the previous basic block's 1328 // conditional branch instruction, whose true successor is fixed up to point 1329 // to the next block during the loop below or to the tail after the final 1330 // iteration. 1331 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1332 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1333 DT.addNewBlock(FallbackBB, Head); 1334 1335 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1336 Ofs += 64 / DFS.ShadowWidthBits) { 1337 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1338 DT.addNewBlock(NextBB, LastBr->getParent()); 1339 IRBuilder<> NextIRB(NextBB); 1340 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1341 ConstantInt::get(DFS.IntptrTy, 1)); 1342 Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), 1343 WideAddr, ShadowAlign); 1344 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1345 LastBr->setSuccessor(0, NextBB); 1346 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1347 } 1348 1349 LastBr->setSuccessor(0, Tail); 1350 FallbackIRB.CreateBr(Tail); 1351 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1352 Shadow->addIncoming(FallbackCall, FallbackBB); 1353 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1354 return Shadow; 1355 } 1356 1357 IRBuilder<> IRB(Pos); 1358 CallInst *FallbackCall = IRB.CreateCall( 1359 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1360 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1361 return FallbackCall; 1362 } 1363 1364 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1365 auto &DL = LI.getModule()->getDataLayout(); 1366 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1367 if (Size == 0) { 1368 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); 1369 return; 1370 } 1371 1372 uint64_t Align; 1373 if (ClPreserveAlignment) { 1374 Align = LI.getAlignment(); 1375 if (Align == 0) 1376 Align = DL.getABITypeAlignment(LI.getType()); 1377 } else { 1378 Align = 1; 1379 } 1380 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); 1381 if (ClCombinePointerLabelsOnLoad) { 1382 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1383 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1384 } 1385 if (Shadow != DFSF.DFS.ZeroShadow) 1386 DFSF.NonZeroChecks.push_back(Shadow); 1387 1388 DFSF.setShadow(&LI, Shadow); 1389 if (ClEventCallbacks) { 1390 IRBuilder<> IRB(&LI); 1391 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, Shadow); 1392 } 1393 } 1394 1395 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, Align Alignment, 1396 Value *Shadow, Instruction *Pos) { 1397 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1398 const auto i = AllocaShadowMap.find(AI); 1399 if (i != AllocaShadowMap.end()) { 1400 IRBuilder<> IRB(Pos); 1401 IRB.CreateStore(Shadow, i->second); 1402 return; 1403 } 1404 } 1405 1406 const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes); 1407 IRBuilder<> IRB(Pos); 1408 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1409 if (Shadow == DFS.ZeroShadow) { 1410 IntegerType *ShadowTy = 1411 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 1412 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1413 Value *ExtShadowAddr = 1414 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1415 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1416 return; 1417 } 1418 1419 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; 1420 uint64_t Offset = 0; 1421 if (Size >= ShadowVecSize) { 1422 auto *ShadowVecTy = FixedVectorType::get(DFS.ShadowTy, ShadowVecSize); 1423 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1424 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1425 ShadowVec = IRB.CreateInsertElement( 1426 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1427 } 1428 Value *ShadowVecAddr = 1429 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1430 do { 1431 Value *CurShadowVecAddr = 1432 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1433 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1434 Size -= ShadowVecSize; 1435 ++Offset; 1436 } while (Size >= ShadowVecSize); 1437 Offset *= ShadowVecSize; 1438 } 1439 while (Size > 0) { 1440 Value *CurShadowAddr = 1441 IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset); 1442 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1443 --Size; 1444 ++Offset; 1445 } 1446 } 1447 1448 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1449 auto &DL = SI.getModule()->getDataLayout(); 1450 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1451 if (Size == 0) 1452 return; 1453 1454 const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1); 1455 1456 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1457 if (ClCombinePointerLabelsOnStore) { 1458 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1459 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1460 } 1461 DFSF.storeShadow(SI.getPointerOperand(), Size, Alignment, Shadow, &SI); 1462 if (ClEventCallbacks) { 1463 IRBuilder<> IRB(&SI); 1464 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, Shadow); 1465 } 1466 } 1467 1468 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 1469 visitOperandShadowInst(UO); 1470 } 1471 1472 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1473 visitOperandShadowInst(BO); 1474 } 1475 1476 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1477 1478 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 1479 Value *CombinedShadow = visitOperandShadowInst(CI); 1480 if (ClEventCallbacks) { 1481 IRBuilder<> IRB(&CI); 1482 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 1483 } 1484 } 1485 1486 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1487 visitOperandShadowInst(GEPI); 1488 } 1489 1490 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1491 visitOperandShadowInst(I); 1492 } 1493 1494 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1495 visitOperandShadowInst(I); 1496 } 1497 1498 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1499 visitOperandShadowInst(I); 1500 } 1501 1502 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1503 visitOperandShadowInst(I); 1504 } 1505 1506 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1507 visitOperandShadowInst(I); 1508 } 1509 1510 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1511 bool AllLoadsStores = true; 1512 for (User *U : I.users()) { 1513 if (isa<LoadInst>(U)) 1514 continue; 1515 1516 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1517 if (SI->getPointerOperand() == &I) 1518 continue; 1519 } 1520 1521 AllLoadsStores = false; 1522 break; 1523 } 1524 if (AllLoadsStores) { 1525 IRBuilder<> IRB(&I); 1526 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1527 } 1528 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1529 } 1530 1531 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1532 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1533 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1534 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1535 1536 if (isa<VectorType>(I.getCondition()->getType())) { 1537 DFSF.setShadow( 1538 &I, 1539 DFSF.combineShadows( 1540 CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); 1541 } else { 1542 Value *ShadowSel; 1543 if (TrueShadow == FalseShadow) { 1544 ShadowSel = TrueShadow; 1545 } else { 1546 ShadowSel = 1547 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1548 } 1549 DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); 1550 } 1551 } 1552 1553 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1554 IRBuilder<> IRB(&I); 1555 Value *ValShadow = DFSF.getShadow(I.getValue()); 1556 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1557 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1558 *DFSF.DFS.Ctx)), 1559 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1560 } 1561 1562 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1563 IRBuilder<> IRB(&I); 1564 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1565 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1566 Value *LenShadow = 1567 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 1568 DFSF.DFS.ShadowWidthBytes)); 1569 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1570 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 1571 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1572 auto *MTI = cast<MemTransferInst>( 1573 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 1574 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 1575 if (ClPreserveAlignment) { 1576 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 1577 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 1578 } else { 1579 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1580 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1581 } 1582 if (ClEventCallbacks) { 1583 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 1584 {RawDestShadow, I.getLength()}); 1585 } 1586 } 1587 1588 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1589 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1590 switch (DFSF.IA) { 1591 case DataFlowSanitizer::IA_TLS: { 1592 Value *S = DFSF.getShadow(RI.getReturnValue()); 1593 IRBuilder<> IRB(&RI); 1594 IRB.CreateStore(S, DFSF.getRetvalTLS()); 1595 break; 1596 } 1597 case DataFlowSanitizer::IA_Args: { 1598 IRBuilder<> IRB(&RI); 1599 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1600 Value *InsVal = 1601 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1602 Value *InsShadow = 1603 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1604 RI.setOperand(0, InsShadow); 1605 break; 1606 } 1607 } 1608 } 1609 } 1610 1611 void DFSanVisitor::visitCallBase(CallBase &CB) { 1612 Function *F = CB.getCalledFunction(); 1613 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 1614 visitOperandShadowInst(CB); 1615 return; 1616 } 1617 1618 // Calls to this function are synthesized in wrappers, and we shouldn't 1619 // instrument them. 1620 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 1621 return; 1622 1623 IRBuilder<> IRB(&CB); 1624 1625 DenseMap<Value *, Function *>::iterator i = 1626 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 1627 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1628 Function *F = i->second; 1629 switch (DFSF.DFS.getWrapperKind(F)) { 1630 case DataFlowSanitizer::WK_Warning: 1631 CB.setCalledFunction(F); 1632 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1633 IRB.CreateGlobalStringPtr(F->getName())); 1634 DFSF.setShadow(&CB, DFSF.DFS.ZeroShadow); 1635 return; 1636 case DataFlowSanitizer::WK_Discard: 1637 CB.setCalledFunction(F); 1638 DFSF.setShadow(&CB, DFSF.DFS.ZeroShadow); 1639 return; 1640 case DataFlowSanitizer::WK_Functional: 1641 CB.setCalledFunction(F); 1642 visitOperandShadowInst(CB); 1643 return; 1644 case DataFlowSanitizer::WK_Custom: 1645 // Don't try to handle invokes of custom functions, it's too complicated. 1646 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1647 // wrapper. 1648 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1649 FunctionType *FT = F->getFunctionType(); 1650 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 1651 std::string CustomFName = "__dfsw_"; 1652 CustomFName += F->getName(); 1653 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 1654 CustomFName, CustomFn.TransformedType); 1655 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 1656 CustomFn->copyAttributesFrom(F); 1657 1658 // Custom functions returning non-void will write to the return label. 1659 if (!FT->getReturnType()->isVoidTy()) { 1660 CustomFn->removeAttributes(AttributeList::FunctionIndex, 1661 DFSF.DFS.ReadOnlyNoneAttrs); 1662 } 1663 } 1664 1665 std::vector<Value *> Args; 1666 1667 auto i = CB.arg_begin(); 1668 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1669 Type *T = (*i)->getType(); 1670 FunctionType *ParamFT; 1671 if (isa<PointerType>(T) && 1672 (ParamFT = dyn_cast<FunctionType>( 1673 cast<PointerType>(T)->getElementType()))) { 1674 std::string TName = "dfst"; 1675 TName += utostr(FT->getNumParams() - n); 1676 TName += "$"; 1677 TName += F->getName(); 1678 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1679 Args.push_back(T); 1680 Args.push_back( 1681 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1682 } else { 1683 Args.push_back(*i); 1684 } 1685 } 1686 1687 i = CB.arg_begin(); 1688 const unsigned ShadowArgStart = Args.size(); 1689 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1690 Args.push_back(DFSF.getShadow(*i)); 1691 1692 if (FT->isVarArg()) { 1693 auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy, 1694 CB.arg_size() - FT->getNumParams()); 1695 auto *LabelVAAlloca = new AllocaInst( 1696 LabelVATy, getDataLayout().getAllocaAddrSpace(), 1697 "labelva", &DFSF.F->getEntryBlock().front()); 1698 1699 for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) { 1700 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); 1701 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1702 } 1703 1704 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 1705 } 1706 1707 if (!FT->getReturnType()->isVoidTy()) { 1708 if (!DFSF.LabelReturnAlloca) { 1709 DFSF.LabelReturnAlloca = 1710 new AllocaInst(DFSF.DFS.ShadowTy, 1711 getDataLayout().getAllocaAddrSpace(), 1712 "labelreturn", &DFSF.F->getEntryBlock().front()); 1713 } 1714 Args.push_back(DFSF.LabelReturnAlloca); 1715 } 1716 1717 for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i) 1718 Args.push_back(*i); 1719 1720 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1721 CustomCI->setCallingConv(CI->getCallingConv()); 1722 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, 1723 CI->getContext(), CI->getAttributes())); 1724 1725 // Update the parameter attributes of the custom call instruction to 1726 // zero extend the shadow parameters. This is required for targets 1727 // which consider ShadowTy an illegal type. 1728 for (unsigned n = 0; n < FT->getNumParams(); n++) { 1729 const unsigned ArgNo = ShadowArgStart + n; 1730 if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy) 1731 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 1732 } 1733 1734 if (!FT->getReturnType()->isVoidTy()) { 1735 LoadInst *LabelLoad = 1736 IRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.LabelReturnAlloca); 1737 DFSF.setShadow(CustomCI, LabelLoad); 1738 } 1739 1740 CI->replaceAllUsesWith(CustomCI); 1741 CI->eraseFromParent(); 1742 return; 1743 } 1744 break; 1745 } 1746 } 1747 1748 FunctionType *FT = CB.getFunctionType(); 1749 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1750 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1751 IRB.CreateStore(DFSF.getShadow(CB.getArgOperand(i)), 1752 DFSF.getArgTLS(i, &CB)); 1753 } 1754 } 1755 1756 Instruction *Next = nullptr; 1757 if (!CB.getType()->isVoidTy()) { 1758 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 1759 if (II->getNormalDest()->getSinglePredecessor()) { 1760 Next = &II->getNormalDest()->front(); 1761 } else { 1762 BasicBlock *NewBB = 1763 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 1764 Next = &NewBB->front(); 1765 } 1766 } else { 1767 assert(CB.getIterator() != CB.getParent()->end()); 1768 Next = CB.getNextNode(); 1769 } 1770 1771 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1772 IRBuilder<> NextIRB(Next); 1773 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.getRetvalTLS()); 1774 DFSF.SkipInsts.insert(LI); 1775 DFSF.setShadow(&CB, LI); 1776 DFSF.NonZeroChecks.push_back(LI); 1777 } 1778 } 1779 1780 // Do all instrumentation for IA_Args down here to defer tampering with the 1781 // CFG in a way that SplitEdge may be able to detect. 1782 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1783 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1784 Value *Func = 1785 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 1786 std::vector<Value *> Args; 1787 1788 auto i = CB.arg_begin(), E = CB.arg_end(); 1789 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1790 Args.push_back(*i); 1791 1792 i = CB.arg_begin(); 1793 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1794 Args.push_back(DFSF.getShadow(*i)); 1795 1796 if (FT->isVarArg()) { 1797 unsigned VarArgSize = CB.arg_size() - FT->getNumParams(); 1798 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1799 AllocaInst *VarArgShadow = 1800 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 1801 "", &DFSF.F->getEntryBlock().front()); 1802 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 1803 for (unsigned n = 0; i != E; ++i, ++n) { 1804 IRB.CreateStore( 1805 DFSF.getShadow(*i), 1806 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 1807 Args.push_back(*i); 1808 } 1809 } 1810 1811 CallBase *NewCB; 1812 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 1813 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 1814 II->getUnwindDest(), Args); 1815 } else { 1816 NewCB = IRB.CreateCall(NewFT, Func, Args); 1817 } 1818 NewCB->setCallingConv(CB.getCallingConv()); 1819 NewCB->setAttributes(CB.getAttributes().removeAttributes( 1820 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 1821 AttributeFuncs::typeIncompatible(NewCB->getType()))); 1822 1823 if (Next) { 1824 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 1825 DFSF.SkipInsts.insert(ExVal); 1826 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 1827 DFSF.SkipInsts.insert(ExShadow); 1828 DFSF.setShadow(ExVal, ExShadow); 1829 DFSF.NonZeroChecks.push_back(ExShadow); 1830 1831 CB.replaceAllUsesWith(ExVal); 1832 } 1833 1834 CB.eraseFromParent(); 1835 } 1836 } 1837 1838 void DFSanVisitor::visitPHINode(PHINode &PN) { 1839 PHINode *ShadowPN = 1840 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1841 1842 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1843 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1844 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1845 ++i) { 1846 ShadowPN->addIncoming(UndefShadow, *i); 1847 } 1848 1849 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1850 DFSF.setShadow(&PN, ShadowPN); 1851 } 1852