1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x300200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x300000000000 (kUnionTableAddr) 32 /// | origin | 33 /// +--------------------+ 0x200000008000 (kOriginAddr) 34 /// | shadow memory | 35 /// +--------------------+ 0x000000010000 (kShadowAddr) 36 /// | reserved by kernel | 37 /// +--------------------+ 0x000000000000 38 /// 39 /// To derive a shadow memory address from an application memory address, 40 /// bits 44-46 are cleared to bring the address into the range 41 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 42 /// account for the double byte representation of shadow labels and move the 43 /// address into the shadow memory range. See the function 44 /// DataFlowSanitizer::getShadowAddress below. 45 /// 46 /// For more information, please refer to the design document: 47 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 48 // 49 //===----------------------------------------------------------------------===// 50 51 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 52 #include "llvm/ADT/DenseMap.h" 53 #include "llvm/ADT/DenseSet.h" 54 #include "llvm/ADT/DepthFirstIterator.h" 55 #include "llvm/ADT/None.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Triple.h" 61 #include "llvm/Analysis/ValueTracking.h" 62 #include "llvm/IR/Argument.h" 63 #include "llvm/IR/Attributes.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalValue.h" 73 #include "llvm/IR/GlobalVariable.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/InlineAsm.h" 76 #include "llvm/IR/InstVisitor.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/IntrinsicInst.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/MDBuilder.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/PassManager.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/InitializePasses.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/ErrorHandling.h" 93 #include "llvm/Support/SpecialCaseList.h" 94 #include "llvm/Support/VirtualFileSystem.h" 95 #include "llvm/Transforms/Instrumentation.h" 96 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 97 #include "llvm/Transforms/Utils/Local.h" 98 #include <algorithm> 99 #include <cassert> 100 #include <cstddef> 101 #include <cstdint> 102 #include <iterator> 103 #include <memory> 104 #include <set> 105 #include <string> 106 #include <utility> 107 #include <vector> 108 109 using namespace llvm; 110 111 // This must be consistent with ShadowWidthBits. 112 static const Align kShadowTLSAlignment = Align(2); 113 114 static const Align kMinOriginAlignment = Align(4); 115 116 // The size of TLS variables. These constants must be kept in sync with the ones 117 // in dfsan.cpp. 118 static const unsigned kArgTLSSize = 800; 119 static const unsigned kRetvalTLSSize = 800; 120 121 // External symbol to be used when generating the shadow address for 122 // architectures with multiple VMAs. Instead of using a constant integer 123 // the runtime will set the external mask based on the VMA range. 124 const char kDFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; 125 126 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 127 // alignment requirements provided by the input IR are correct. For example, 128 // if the input IR contains a load with alignment 8, this flag will cause 129 // the shadow load to have alignment 16. This flag is disabled by default as 130 // we have unfortunately encountered too much code (including Clang itself; 131 // see PR14291) which performs misaligned access. 132 static cl::opt<bool> ClPreserveAlignment( 133 "dfsan-preserve-alignment", 134 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 135 cl::init(false)); 136 137 // The ABI list files control how shadow parameters are passed. The pass treats 138 // every function labelled "uninstrumented" in the ABI list file as conforming 139 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 140 // additional annotations for those functions, a call to one of those functions 141 // will produce a warning message, as the labelling behaviour of the function is 142 // unknown. The other supported annotations are "functional" and "discard", 143 // which are described below under DataFlowSanitizer::WrapperKind. 144 static cl::list<std::string> ClABIListFiles( 145 "dfsan-abilist", 146 cl::desc("File listing native ABI functions and how the pass treats them"), 147 cl::Hidden); 148 149 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 150 // functions (see DataFlowSanitizer::InstrumentedABI below). 151 static cl::opt<bool> ClArgsABI( 152 "dfsan-args-abi", 153 cl::desc("Use the argument ABI rather than the TLS ABI"), 154 cl::Hidden); 155 156 // Controls whether the pass includes or ignores the labels of pointers in load 157 // instructions. 158 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 159 "dfsan-combine-pointer-labels-on-load", 160 cl::desc("Combine the label of the pointer with the label of the data when " 161 "loading from memory."), 162 cl::Hidden, cl::init(true)); 163 164 // Controls whether the pass includes or ignores the labels of pointers in 165 // stores instructions. 166 static cl::opt<bool> ClCombinePointerLabelsOnStore( 167 "dfsan-combine-pointer-labels-on-store", 168 cl::desc("Combine the label of the pointer with the label of the data when " 169 "storing in memory."), 170 cl::Hidden, cl::init(false)); 171 172 static cl::opt<bool> ClDebugNonzeroLabels( 173 "dfsan-debug-nonzero-labels", 174 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 175 "load or return with a nonzero label"), 176 cl::Hidden); 177 178 // Experimental feature that inserts callbacks for certain data events. 179 // Currently callbacks are only inserted for loads, stores, memory transfers 180 // (i.e. memcpy and memmove), and comparisons. 181 // 182 // If this flag is set to true, the user must provide definitions for the 183 // following callback functions: 184 // void __dfsan_load_callback(dfsan_label Label, void* addr); 185 // void __dfsan_store_callback(dfsan_label Label, void* addr); 186 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 187 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 188 static cl::opt<bool> ClEventCallbacks( 189 "dfsan-event-callbacks", 190 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 191 cl::Hidden, cl::init(false)); 192 193 // Use a distinct bit for each base label, enabling faster unions with less 194 // instrumentation. Limits the max number of base labels to 16. 195 static cl::opt<bool> ClFast16Labels( 196 "dfsan-fast-16-labels", 197 cl::desc("Use more efficient instrumentation, limiting the number of " 198 "labels to 16."), 199 cl::Hidden, cl::init(false)); 200 201 // Controls whether the pass tracks the control flow of select instructions. 202 static cl::opt<bool> ClTrackSelectControlFlow( 203 "dfsan-track-select-control-flow", 204 cl::desc("Propagate labels from condition values of select instructions " 205 "to results."), 206 cl::Hidden, cl::init(true)); 207 208 // Controls how to track origins. 209 // * 0: do not track origins. 210 // * 1: track origins at memory store operations. 211 // * 2: TODO: track origins at memory store operations and callsites. 212 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 213 cl::desc("Track origins of labels"), 214 cl::Hidden, cl::init(0)); 215 216 static StringRef GetGlobalTypeString(const GlobalValue &G) { 217 // Types of GlobalVariables are always pointer types. 218 Type *GType = G.getValueType(); 219 // For now we support excluding struct types only. 220 if (StructType *SGType = dyn_cast<StructType>(GType)) { 221 if (!SGType->isLiteral()) 222 return SGType->getName(); 223 } 224 return "<unknown type>"; 225 } 226 227 namespace { 228 229 class DFSanABIList { 230 std::unique_ptr<SpecialCaseList> SCL; 231 232 public: 233 DFSanABIList() = default; 234 235 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 236 237 /// Returns whether either this function or its source file are listed in the 238 /// given category. 239 bool isIn(const Function &F, StringRef Category) const { 240 return isIn(*F.getParent(), Category) || 241 SCL->inSection("dataflow", "fun", F.getName(), Category); 242 } 243 244 /// Returns whether this global alias is listed in the given category. 245 /// 246 /// If GA aliases a function, the alias's name is matched as a function name 247 /// would be. Similarly, aliases of globals are matched like globals. 248 bool isIn(const GlobalAlias &GA, StringRef Category) const { 249 if (isIn(*GA.getParent(), Category)) 250 return true; 251 252 if (isa<FunctionType>(GA.getValueType())) 253 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 254 255 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 256 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 257 Category); 258 } 259 260 /// Returns whether this module is listed in the given category. 261 bool isIn(const Module &M, StringRef Category) const { 262 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 263 } 264 }; 265 266 /// TransformedFunction is used to express the result of transforming one 267 /// function type into another. This struct is immutable. It holds metadata 268 /// useful for updating calls of the old function to the new type. 269 struct TransformedFunction { 270 TransformedFunction(FunctionType* OriginalType, 271 FunctionType* TransformedType, 272 std::vector<unsigned> ArgumentIndexMapping) 273 : OriginalType(OriginalType), 274 TransformedType(TransformedType), 275 ArgumentIndexMapping(ArgumentIndexMapping) {} 276 277 // Disallow copies. 278 TransformedFunction(const TransformedFunction&) = delete; 279 TransformedFunction& operator=(const TransformedFunction&) = delete; 280 281 // Allow moves. 282 TransformedFunction(TransformedFunction&&) = default; 283 TransformedFunction& operator=(TransformedFunction&&) = default; 284 285 /// Type of the function before the transformation. 286 FunctionType *OriginalType; 287 288 /// Type of the function after the transformation. 289 FunctionType *TransformedType; 290 291 /// Transforming a function may change the position of arguments. This 292 /// member records the mapping from each argument's old position to its new 293 /// position. Argument positions are zero-indexed. If the transformation 294 /// from F to F' made the first argument of F into the third argument of F', 295 /// then ArgumentIndexMapping[0] will equal 2. 296 std::vector<unsigned> ArgumentIndexMapping; 297 }; 298 299 /// Given function attributes from a call site for the original function, 300 /// return function attributes appropriate for a call to the transformed 301 /// function. 302 AttributeList TransformFunctionAttributes( 303 const TransformedFunction& TransformedFunction, 304 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 305 306 // Construct a vector of AttributeSet for each function argument. 307 std::vector<llvm::AttributeSet> ArgumentAttributes( 308 TransformedFunction.TransformedType->getNumParams()); 309 310 // Copy attributes from the parameter of the original function to the 311 // transformed version. 'ArgumentIndexMapping' holds the mapping from 312 // old argument position to new. 313 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 314 i < ie; ++i) { 315 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 316 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 317 } 318 319 // Copy annotations on varargs arguments. 320 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 321 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 322 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 323 } 324 325 return AttributeList::get( 326 Ctx, 327 CallSiteAttrs.getFnAttributes(), 328 CallSiteAttrs.getRetAttributes(), 329 llvm::makeArrayRef(ArgumentAttributes)); 330 } 331 332 class DataFlowSanitizer { 333 friend struct DFSanFunction; 334 friend class DFSanVisitor; 335 336 enum { 337 ShadowWidthBits = 16, 338 ShadowWidthBytes = ShadowWidthBits / 8, 339 OriginWidthBits = 32, 340 OriginWidthBytes = OriginWidthBits / 8 341 }; 342 343 /// Which ABI should be used for instrumented functions? 344 enum InstrumentedABI { 345 /// Argument and return value labels are passed through additional 346 /// arguments and by modifying the return type. 347 IA_Args, 348 349 /// Argument and return value labels are passed through TLS variables 350 /// __dfsan_arg_tls and __dfsan_retval_tls. 351 IA_TLS 352 }; 353 354 /// How should calls to uninstrumented functions be handled? 355 enum WrapperKind { 356 /// This function is present in an uninstrumented form but we don't know 357 /// how it should be handled. Print a warning and call the function anyway. 358 /// Don't label the return value. 359 WK_Warning, 360 361 /// This function does not write to (user-accessible) memory, and its return 362 /// value is unlabelled. 363 WK_Discard, 364 365 /// This function does not write to (user-accessible) memory, and the label 366 /// of its return value is the union of the label of its arguments. 367 WK_Functional, 368 369 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 370 /// where F is the name of the function. This function may wrap the 371 /// original function or provide its own implementation. This is similar to 372 /// the IA_Args ABI, except that IA_Args uses a struct return type to 373 /// pass the return value shadow in a register, while WK_Custom uses an 374 /// extra pointer argument to return the shadow. This allows the wrapped 375 /// form of the function type to be expressed in C. 376 WK_Custom 377 }; 378 379 Module *Mod; 380 LLVMContext *Ctx; 381 Type *Int8Ptr; 382 IntegerType *OriginTy; 383 PointerType *OriginPtrTy; 384 ConstantInt *OriginBase; 385 ConstantInt *ZeroOrigin; 386 /// The shadow type for all primitive types and vector types. 387 IntegerType *PrimitiveShadowTy; 388 PointerType *PrimitiveShadowPtrTy; 389 IntegerType *IntptrTy; 390 ConstantInt *ZeroPrimitiveShadow; 391 ConstantInt *ShadowPtrMask; 392 ConstantInt *ShadowPtrMul; 393 Constant *ArgTLS; 394 ArrayType *ArgOriginTLSTy; 395 Constant *ArgOriginTLS; 396 Constant *RetvalTLS; 397 Constant *RetvalOriginTLS; 398 Constant *ExternalShadowMask; 399 FunctionType *DFSanUnionFnTy; 400 FunctionType *DFSanUnionLoadFnTy; 401 FunctionType *DFSanLoadLabelAndOriginFnTy; 402 FunctionType *DFSanUnimplementedFnTy; 403 FunctionType *DFSanSetLabelFnTy; 404 FunctionType *DFSanNonzeroLabelFnTy; 405 FunctionType *DFSanVarargWrapperFnTy; 406 FunctionType *DFSanCmpCallbackFnTy; 407 FunctionType *DFSanLoadStoreCallbackFnTy; 408 FunctionType *DFSanMemTransferCallbackFnTy; 409 FunctionType *DFSanChainOriginFnTy; 410 FunctionType *DFSanMemOriginTransferFnTy; 411 FunctionType *DFSanMaybeStoreOriginFnTy; 412 FunctionCallee DFSanUnionFn; 413 FunctionCallee DFSanCheckedUnionFn; 414 FunctionCallee DFSanUnionLoadFn; 415 FunctionCallee DFSanUnionLoadFast16LabelsFn; 416 FunctionCallee DFSanLoadLabelAndOriginFn; 417 FunctionCallee DFSanUnimplementedFn; 418 FunctionCallee DFSanSetLabelFn; 419 FunctionCallee DFSanNonzeroLabelFn; 420 FunctionCallee DFSanVarargWrapperFn; 421 FunctionCallee DFSanLoadCallbackFn; 422 FunctionCallee DFSanStoreCallbackFn; 423 FunctionCallee DFSanMemTransferCallbackFn; 424 FunctionCallee DFSanCmpCallbackFn; 425 FunctionCallee DFSanChainOriginFn; 426 FunctionCallee DFSanMemOriginTransferFn; 427 FunctionCallee DFSanMaybeStoreOriginFn; 428 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 429 MDNode *ColdCallWeights; 430 DFSanABIList ABIList; 431 DenseMap<Value *, Function *> UnwrappedFnMap; 432 AttrBuilder ReadOnlyNoneAttrs; 433 bool DFSanRuntimeShadowMask = false; 434 435 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 436 Value *getShadowAddress(Value *Addr, Instruction *Pos); 437 // std::pair<Value *, Value *> 438 // getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 439 bool isInstrumented(const Function *F); 440 bool isInstrumented(const GlobalAlias *GA); 441 FunctionType *getArgsFunctionType(FunctionType *T); 442 FunctionType *getTrampolineFunctionType(FunctionType *T); 443 TransformedFunction getCustomFunctionType(FunctionType *T); 444 InstrumentedABI getInstrumentedABI(); 445 WrapperKind getWrapperKind(Function *F); 446 void addGlobalNamePrefix(GlobalValue *GV); 447 Function *buildWrapperFunction(Function *F, StringRef NewFName, 448 GlobalValue::LinkageTypes NewFLink, 449 FunctionType *NewFT); 450 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 451 void initializeCallbackFunctions(Module &M); 452 void initializeRuntimeFunctions(Module &M); 453 454 bool init(Module &M); 455 456 /// Returns whether the pass tracks origins. Support only fast16 mode in TLS 457 /// ABI mode. 458 bool shouldTrackOrigins(); 459 460 /// Returns whether the pass tracks labels for struct fields and array 461 /// indices. Support only fast16 mode in TLS ABI mode. 462 bool shouldTrackFieldsAndIndices(); 463 464 /// Returns a zero constant with the shadow type of OrigTy. 465 /// 466 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 467 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 468 /// getZeroShadow(other type) = i16(0) 469 /// 470 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices 471 /// returns false. 472 Constant *getZeroShadow(Type *OrigTy); 473 /// Returns a zero constant with the shadow type of V's type. 474 Constant *getZeroShadow(Value *V); 475 476 /// Checks if V is a zero shadow. 477 bool isZeroShadow(Value *V); 478 479 /// Returns the shadow type of OrigTy. 480 /// 481 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 482 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 483 /// getShadowTy(other type) = i16 484 /// 485 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices 486 /// returns false. 487 Type *getShadowTy(Type *OrigTy); 488 /// Returns the shadow type of of V's type. 489 Type *getShadowTy(Value *V); 490 491 const uint64_t kNumOfElementsInArgOrgTLS = kArgTLSSize / OriginWidthBytes; 492 493 public: 494 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 495 496 bool runImpl(Module &M); 497 }; 498 499 struct DFSanFunction { 500 DataFlowSanitizer &DFS; 501 Function *F; 502 DominatorTree DT; 503 DataFlowSanitizer::InstrumentedABI IA; 504 bool IsNativeABI; 505 AllocaInst *LabelReturnAlloca = nullptr; 506 DenseMap<Value *, Value *> ValShadowMap; 507 DenseMap<Value *, Value *> ValOriginMap; 508 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 509 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 510 DenseSet<Instruction *> SkipInsts; 511 std::vector<Value *> NonZeroChecks; 512 bool AvoidNewBlocks; 513 514 struct CachedShadow { 515 BasicBlock *Block; // The block where Shadow is defined. 516 Value *Shadow; 517 }; 518 /// Maps a value to its latest shadow value in terms of domination tree. 519 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 520 /// Maps a value to its latest collapsed shadow value it was converted to in 521 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 522 /// used at a post process where CFG blocks are split. So it does not cache 523 /// BasicBlock like CachedShadows, but uses domination between values. 524 DenseMap<Value *, Value *> CachedCollapsedShadows; 525 DenseMap<Value *, std::set<Value *>> ShadowElements; 526 527 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 528 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 529 DT.recalculate(*F); 530 // FIXME: Need to track down the register allocator issue which causes poor 531 // performance in pathological cases with large numbers of basic blocks. 532 AvoidNewBlocks = F->size() > 1000; 533 } 534 535 /// Computes the shadow address for a given function argument. 536 /// 537 /// Shadow = ArgTLS+ArgOffset. 538 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 539 540 /// Computes the shadow address for a return value. 541 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 542 543 /// Computes the origin address for a given function argument. 544 /// 545 /// Origin = ArgOriginTLS[ArgNo]. 546 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 547 548 /// Computes the origin address for a return value. 549 Value *getRetvalOriginTLS(); 550 551 Value *getOrigin(Value *V); 552 void setOrigin(Instruction *I, Value *Origin); 553 /// Generates IR to compute the origin of the last operand with a taint label. 554 Value *combineOperandOrigins(Instruction *Inst); 555 /// Before the instruction Pos, generates IR to compute the last origin with a 556 /// taint label. Labels and origins are from vectors Shadows and Origins 557 /// correspondingly. The generated IR is like 558 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 559 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 560 /// zeros with other bitwidths. 561 Value *combineOrigins(const std::vector<Value *> &Shadows, 562 const std::vector<Value *> &Origins, Instruction *Pos, 563 ConstantInt *Zero = nullptr); 564 565 Value *getShadow(Value *V); 566 void setShadow(Instruction *I, Value *Shadow); 567 /// Generates IR to compute the union of the two given shadows, inserting it 568 /// before Pos. The combined value is with primitive type. 569 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 570 /// Combines the shadow values of V1 and V2, then converts the combined value 571 /// with primitive type into a shadow value with the original type T. 572 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 573 Instruction *Pos); 574 Value *combineOperandShadows(Instruction *Inst); 575 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 576 Instruction *Pos); 577 void storePrimitiveShadow(Value *Addr, uint64_t Size, Align Alignment, 578 Value *PrimitiveShadow, Instruction *Pos); 579 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 580 /// the expanded shadow value. 581 /// 582 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 583 /// EFP([n x T], PS) = [n x EFP(T,PS)] 584 /// EFP(other types, PS) = PS 585 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 586 Instruction *Pos); 587 /// Collapses Shadow into a single primitive shadow value, unioning all 588 /// primitive shadow values in the process. Returns the final primitive 589 /// shadow value. 590 /// 591 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 592 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 593 /// CTP(other types, PS) = PS 594 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 595 596 private: 597 /// Collapses the shadow with aggregate type into a single primitive shadow 598 /// value. 599 template <class AggregateType> 600 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 601 IRBuilder<> &IRB); 602 603 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 604 605 /// Returns the shadow value of an argument A. 606 Value *getShadowForTLSArgument(Argument *A); 607 608 /// The fast path of loading shadow in legacy mode. 609 Value *loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 610 Align ShadowAlign, Instruction *Pos); 611 612 /// The fast path of loading shadow in fast-16-label mode. 613 Value *loadFast16ShadowFast(Value *ShadowAddr, uint64_t Size, 614 Align ShadowAlign, Instruction *Pos); 615 }; 616 617 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 618 public: 619 DFSanFunction &DFSF; 620 621 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 622 623 const DataLayout &getDataLayout() const { 624 return DFSF.F->getParent()->getDataLayout(); 625 } 626 627 // Combines shadow values and origins for all of I's operands. 628 void visitInstOperands(Instruction &I); 629 630 void visitUnaryOperator(UnaryOperator &UO); 631 void visitBinaryOperator(BinaryOperator &BO); 632 void visitCastInst(CastInst &CI); 633 void visitCmpInst(CmpInst &CI); 634 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 635 void visitLoadInst(LoadInst &LI); 636 void visitStoreInst(StoreInst &SI); 637 void visitReturnInst(ReturnInst &RI); 638 void visitCallBase(CallBase &CB); 639 void visitPHINode(PHINode &PN); 640 void visitExtractElementInst(ExtractElementInst &I); 641 void visitInsertElementInst(InsertElementInst &I); 642 void visitShuffleVectorInst(ShuffleVectorInst &I); 643 void visitExtractValueInst(ExtractValueInst &I); 644 void visitInsertValueInst(InsertValueInst &I); 645 void visitAllocaInst(AllocaInst &I); 646 void visitSelectInst(SelectInst &I); 647 void visitMemSetInst(MemSetInst &I); 648 void visitMemTransferInst(MemTransferInst &I); 649 650 private: 651 // Returns false when this is an invoke of a custom function. 652 bool visitWrappedCallBase(Function &F, CallBase &CB); 653 654 // Combines origins for all of I's operands. 655 void visitInstOperandOrigins(Instruction &I); 656 }; 657 658 } // end anonymous namespace 659 660 DataFlowSanitizer::DataFlowSanitizer( 661 const std::vector<std::string> &ABIListFiles) { 662 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 663 llvm::append_range(AllABIListFiles, ClABIListFiles); 664 // FIXME: should we propagate vfs::FileSystem to this constructor? 665 ABIList.set( 666 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 667 } 668 669 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 670 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 671 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 672 if (T->isVarArg()) 673 ArgTypes.push_back(PrimitiveShadowPtrTy); 674 Type *RetType = T->getReturnType(); 675 if (!RetType->isVoidTy()) 676 RetType = StructType::get(RetType, PrimitiveShadowTy); 677 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 678 } 679 680 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 681 assert(!T->isVarArg()); 682 SmallVector<Type *, 4> ArgTypes; 683 ArgTypes.push_back(T->getPointerTo()); 684 ArgTypes.append(T->param_begin(), T->param_end()); 685 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 686 Type *RetType = T->getReturnType(); 687 if (!RetType->isVoidTy()) 688 ArgTypes.push_back(PrimitiveShadowPtrTy); 689 return FunctionType::get(T->getReturnType(), ArgTypes, false); 690 } 691 692 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 693 SmallVector<Type *, 4> ArgTypes; 694 695 // Some parameters of the custom function being constructed are 696 // parameters of T. Record the mapping from parameters of T to 697 // parameters of the custom function, so that parameter attributes 698 // at call sites can be updated. 699 std::vector<unsigned> ArgumentIndexMapping; 700 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 701 Type* param_type = T->getParamType(i); 702 FunctionType *FT; 703 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 704 cast<PointerType>(param_type)->getElementType()))) { 705 ArgumentIndexMapping.push_back(ArgTypes.size()); 706 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 707 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 708 } else { 709 ArgumentIndexMapping.push_back(ArgTypes.size()); 710 ArgTypes.push_back(param_type); 711 } 712 } 713 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 714 ArgTypes.push_back(PrimitiveShadowTy); 715 if (T->isVarArg()) 716 ArgTypes.push_back(PrimitiveShadowPtrTy); 717 Type *RetType = T->getReturnType(); 718 if (!RetType->isVoidTy()) 719 ArgTypes.push_back(PrimitiveShadowPtrTy); 720 return TransformedFunction( 721 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 722 ArgumentIndexMapping); 723 } 724 725 bool DataFlowSanitizer::isZeroShadow(Value *V) { 726 if (!shouldTrackFieldsAndIndices()) 727 return ZeroPrimitiveShadow == V; 728 729 Type *T = V->getType(); 730 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 731 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 732 return CI->isZero(); 733 return false; 734 } 735 736 return isa<ConstantAggregateZero>(V); 737 } 738 739 bool DataFlowSanitizer::shouldTrackOrigins() { 740 return ClTrackOrigins && getInstrumentedABI() == DataFlowSanitizer::IA_TLS && 741 ClFast16Labels; 742 } 743 744 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() { 745 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS && ClFast16Labels; 746 } 747 748 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 749 if (!shouldTrackFieldsAndIndices()) 750 return ZeroPrimitiveShadow; 751 752 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 753 return ZeroPrimitiveShadow; 754 Type *ShadowTy = getShadowTy(OrigTy); 755 return ConstantAggregateZero::get(ShadowTy); 756 } 757 758 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 759 return getZeroShadow(V->getType()); 760 } 761 762 static Value *expandFromPrimitiveShadowRecursive( 763 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 764 Value *PrimitiveShadow, IRBuilder<> &IRB) { 765 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 766 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 767 768 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 769 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 770 Indices.push_back(Idx); 771 Shadow = expandFromPrimitiveShadowRecursive( 772 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 773 Indices.pop_back(); 774 } 775 return Shadow; 776 } 777 778 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 779 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 780 Indices.push_back(Idx); 781 Shadow = expandFromPrimitiveShadowRecursive( 782 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 783 Indices.pop_back(); 784 } 785 return Shadow; 786 } 787 llvm_unreachable("Unexpected shadow type"); 788 } 789 790 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 791 Instruction *Pos) { 792 Type *ShadowTy = DFS.getShadowTy(T); 793 794 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 795 return PrimitiveShadow; 796 797 if (DFS.isZeroShadow(PrimitiveShadow)) 798 return DFS.getZeroShadow(ShadowTy); 799 800 IRBuilder<> IRB(Pos); 801 SmallVector<unsigned, 4> Indices; 802 Value *Shadow = UndefValue::get(ShadowTy); 803 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 804 PrimitiveShadow, IRB); 805 806 // Caches the primitive shadow value that built the shadow value. 807 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 808 return Shadow; 809 } 810 811 template <class AggregateType> 812 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 813 IRBuilder<> &IRB) { 814 if (!AT->getNumElements()) 815 return DFS.ZeroPrimitiveShadow; 816 817 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 818 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 819 820 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 821 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 822 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 823 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 824 } 825 return Aggregator; 826 } 827 828 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 829 IRBuilder<> &IRB) { 830 Type *ShadowTy = Shadow->getType(); 831 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 832 return Shadow; 833 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 834 return collapseAggregateShadow<>(AT, Shadow, IRB); 835 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 836 return collapseAggregateShadow<>(ST, Shadow, IRB); 837 llvm_unreachable("Unexpected shadow type"); 838 } 839 840 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 841 Instruction *Pos) { 842 Type *ShadowTy = Shadow->getType(); 843 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 844 return Shadow; 845 846 assert(DFS.shouldTrackFieldsAndIndices()); 847 848 // Checks if the cached collapsed shadow value dominates Pos. 849 Value *&CS = CachedCollapsedShadows[Shadow]; 850 if (CS && DT.dominates(CS, Pos)) 851 return CS; 852 853 IRBuilder<> IRB(Pos); 854 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 855 // Caches the converted primitive shadow value. 856 CS = PrimitiveShadow; 857 return PrimitiveShadow; 858 } 859 860 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 861 if (!shouldTrackFieldsAndIndices()) 862 return PrimitiveShadowTy; 863 864 if (!OrigTy->isSized()) 865 return PrimitiveShadowTy; 866 if (isa<IntegerType>(OrigTy)) 867 return PrimitiveShadowTy; 868 if (isa<VectorType>(OrigTy)) 869 return PrimitiveShadowTy; 870 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 871 return ArrayType::get(getShadowTy(AT->getElementType()), 872 AT->getNumElements()); 873 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 874 SmallVector<Type *, 4> Elements; 875 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 876 Elements.push_back(getShadowTy(ST->getElementType(I))); 877 return StructType::get(*Ctx, Elements); 878 } 879 return PrimitiveShadowTy; 880 } 881 882 Type *DataFlowSanitizer::getShadowTy(Value *V) { 883 return getShadowTy(V->getType()); 884 } 885 886 bool DataFlowSanitizer::init(Module &M) { 887 Triple TargetTriple(M.getTargetTriple()); 888 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 889 bool IsMIPS64 = TargetTriple.isMIPS64(); 890 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 891 TargetTriple.getArch() == Triple::aarch64_be; 892 893 const DataLayout &DL = M.getDataLayout(); 894 895 Mod = &M; 896 Ctx = &M.getContext(); 897 Int8Ptr = Type::getInt8PtrTy(*Ctx); 898 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 899 OriginPtrTy = PointerType::getUnqual(OriginTy); 900 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 901 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 902 IntptrTy = DL.getIntPtrType(*Ctx); 903 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 904 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 905 OriginBase = ConstantInt::get(IntptrTy, 0x200000000000LL); 906 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 907 if (IsX86_64) 908 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 909 else if (IsMIPS64) 910 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 911 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 912 else if (IsAArch64) 913 DFSanRuntimeShadowMask = true; 914 else 915 report_fatal_error("unsupported triple"); 916 917 Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy}; 918 DFSanUnionFnTy = 919 FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false); 920 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 921 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 922 /*isVarArg=*/false); 923 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 924 DFSanLoadLabelAndOriginFnTy = 925 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 926 /*isVarArg=*/false); 927 DFSanUnimplementedFnTy = FunctionType::get( 928 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 929 Type *DFSanSetLabelArgs[3] = {PrimitiveShadowTy, Type::getInt8PtrTy(*Ctx), 930 IntptrTy}; 931 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 932 DFSanSetLabelArgs, /*isVarArg=*/false); 933 DFSanNonzeroLabelFnTy = 934 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 935 DFSanVarargWrapperFnTy = FunctionType::get( 936 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 937 DFSanCmpCallbackFnTy = 938 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 939 /*isVarArg=*/false); 940 DFSanChainOriginFnTy = 941 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 942 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 943 Int8Ptr, IntptrTy, OriginTy}; 944 DFSanMaybeStoreOriginFnTy = FunctionType::get( 945 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 946 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 947 DFSanMemOriginTransferFnTy = FunctionType::get( 948 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 949 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 950 DFSanLoadStoreCallbackFnTy = 951 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 952 /*isVarArg=*/false); 953 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 954 DFSanMemTransferCallbackFnTy = 955 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 956 /*isVarArg=*/false); 957 958 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 959 return true; 960 } 961 962 bool DataFlowSanitizer::isInstrumented(const Function *F) { 963 return !ABIList.isIn(*F, "uninstrumented"); 964 } 965 966 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 967 return !ABIList.isIn(*GA, "uninstrumented"); 968 } 969 970 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 971 return ClArgsABI ? IA_Args : IA_TLS; 972 } 973 974 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 975 if (ABIList.isIn(*F, "functional")) 976 return WK_Functional; 977 if (ABIList.isIn(*F, "discard")) 978 return WK_Discard; 979 if (ABIList.isIn(*F, "custom")) 980 return WK_Custom; 981 982 return WK_Warning; 983 } 984 985 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 986 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 987 GV->setName(Prefix + GVName); 988 989 // Try to change the name of the function in module inline asm. We only do 990 // this for specific asm directives, currently only ".symver", to try to avoid 991 // corrupting asm which happens to contain the symbol name as a substring. 992 // Note that the substitution for .symver assumes that the versioned symbol 993 // also has an instrumented name. 994 std::string Asm = GV->getParent()->getModuleInlineAsm(); 995 std::string SearchStr = ".symver " + GVName + ","; 996 size_t Pos = Asm.find(SearchStr); 997 if (Pos != std::string::npos) { 998 Asm.replace(Pos, SearchStr.size(), 999 ".symver " + Prefix + GVName + "," + Prefix); 1000 GV->getParent()->setModuleInlineAsm(Asm); 1001 } 1002 } 1003 1004 Function * 1005 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1006 GlobalValue::LinkageTypes NewFLink, 1007 FunctionType *NewFT) { 1008 FunctionType *FT = F->getFunctionType(); 1009 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1010 NewFName, F->getParent()); 1011 NewF->copyAttributesFrom(F); 1012 NewF->removeAttributes( 1013 AttributeList::ReturnIndex, 1014 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1015 1016 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1017 if (F->isVarArg()) { 1018 NewF->removeAttributes(AttributeList::FunctionIndex, 1019 AttrBuilder().addAttribute("split-stack")); 1020 CallInst::Create(DFSanVarargWrapperFn, 1021 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1022 BB); 1023 new UnreachableInst(*Ctx, BB); 1024 } else { 1025 std::vector<Value *> Args; 1026 unsigned n = FT->getNumParams(); 1027 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 1028 Args.push_back(&*ai); 1029 CallInst *CI = CallInst::Create(F, Args, "", BB); 1030 if (FT->getReturnType()->isVoidTy()) 1031 ReturnInst::Create(*Ctx, BB); 1032 else 1033 ReturnInst::Create(*Ctx, CI, BB); 1034 } 1035 1036 return NewF; 1037 } 1038 1039 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 1040 StringRef FName) { 1041 FunctionType *FTT = getTrampolineFunctionType(FT); 1042 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 1043 Function *F = dyn_cast<Function>(C.getCallee()); 1044 if (F && F->isDeclaration()) { 1045 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 1046 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 1047 std::vector<Value *> Args; 1048 Function::arg_iterator AI = F->arg_begin(); ++AI; 1049 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 1050 Args.push_back(&*AI); 1051 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 1052 ReturnInst *RI; 1053 if (FT->getReturnType()->isVoidTy()) 1054 RI = ReturnInst::Create(*Ctx, BB); 1055 else 1056 RI = ReturnInst::Create(*Ctx, CI, BB); 1057 1058 // F is called by a wrapped custom function with primitive shadows. So 1059 // its arguments and return value need conversion. 1060 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 1061 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 1062 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 1063 Value *Shadow = 1064 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 1065 DFSF.ValShadowMap[&*ValAI] = Shadow; 1066 } 1067 DFSanVisitor(DFSF).visitCallInst(*CI); 1068 if (!FT->getReturnType()->isVoidTy()) { 1069 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 1070 DFSF.getShadow(RI->getReturnValue()), RI); 1071 new StoreInst(PrimitiveShadow, &*std::prev(F->arg_end()), RI); 1072 } 1073 } 1074 1075 return cast<Constant>(C.getCallee()); 1076 } 1077 1078 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1079 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1080 { 1081 AttributeList AL; 1082 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1083 Attribute::NoUnwind); 1084 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1085 Attribute::ReadNone); 1086 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1087 Attribute::ZExt); 1088 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1089 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1090 DFSanUnionFn = 1091 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 1092 } 1093 { 1094 AttributeList AL; 1095 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1096 Attribute::NoUnwind); 1097 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1098 Attribute::ReadNone); 1099 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1100 Attribute::ZExt); 1101 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1102 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1103 DFSanCheckedUnionFn = 1104 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 1105 } 1106 { 1107 AttributeList AL; 1108 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1109 Attribute::NoUnwind); 1110 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1111 Attribute::ReadOnly); 1112 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1113 Attribute::ZExt); 1114 DFSanUnionLoadFn = 1115 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1116 } 1117 { 1118 AttributeList AL; 1119 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1120 Attribute::NoUnwind); 1121 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1122 Attribute::ReadOnly); 1123 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1124 Attribute::ZExt); 1125 DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction( 1126 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); 1127 } 1128 { 1129 AttributeList AL; 1130 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1131 Attribute::NoUnwind); 1132 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1133 Attribute::ReadOnly); 1134 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1135 Attribute::ZExt); 1136 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1137 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1138 } 1139 DFSanUnimplementedFn = 1140 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1141 { 1142 AttributeList AL; 1143 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1144 DFSanSetLabelFn = 1145 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1146 } 1147 DFSanNonzeroLabelFn = 1148 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1149 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1150 DFSanVarargWrapperFnTy); 1151 { 1152 AttributeList AL; 1153 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1154 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1155 Attribute::ZExt); 1156 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1157 DFSanChainOriginFnTy, AL); 1158 } 1159 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1160 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1161 1162 { 1163 AttributeList AL; 1164 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1165 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1166 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1167 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1168 } 1169 1170 DFSanRuntimeFunctions.insert(DFSanUnionFn.getCallee()->stripPointerCasts()); 1171 DFSanRuntimeFunctions.insert( 1172 DFSanCheckedUnionFn.getCallee()->stripPointerCasts()); 1173 DFSanRuntimeFunctions.insert( 1174 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1175 DFSanRuntimeFunctions.insert( 1176 DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts()); 1177 DFSanRuntimeFunctions.insert( 1178 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1179 DFSanRuntimeFunctions.insert( 1180 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1181 DFSanRuntimeFunctions.insert( 1182 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1183 DFSanRuntimeFunctions.insert( 1184 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1185 DFSanRuntimeFunctions.insert( 1186 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1187 DFSanRuntimeFunctions.insert( 1188 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1189 DFSanRuntimeFunctions.insert( 1190 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1191 DFSanRuntimeFunctions.insert( 1192 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1193 DFSanRuntimeFunctions.insert( 1194 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1195 DFSanRuntimeFunctions.insert( 1196 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1197 DFSanRuntimeFunctions.insert( 1198 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1199 DFSanRuntimeFunctions.insert( 1200 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1201 } 1202 1203 // Initializes event callback functions and declare them in the module 1204 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1205 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1206 DFSanLoadStoreCallbackFnTy); 1207 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1208 DFSanLoadStoreCallbackFnTy); 1209 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1210 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1211 DFSanCmpCallbackFn = 1212 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1213 } 1214 1215 bool DataFlowSanitizer::runImpl(Module &M) { 1216 init(M); 1217 1218 if (ABIList.isIn(M, "skip")) 1219 return false; 1220 1221 const unsigned InitialGlobalSize = M.global_size(); 1222 const unsigned InitialModuleSize = M.size(); 1223 1224 bool Changed = false; 1225 1226 auto getOrInsertGlobal = [this, &Changed](StringRef Name, 1227 Type *Ty) -> Constant * { 1228 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1229 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1230 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1231 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1232 } 1233 return C; 1234 }; 1235 1236 // These globals must be kept in sync with the ones in dfsan.cpp. 1237 ArgTLS = getOrInsertGlobal( 1238 "__dfsan_arg_tls", 1239 ArrayType::get(Type::getInt64Ty(*Ctx), kArgTLSSize / 8)); 1240 RetvalTLS = getOrInsertGlobal( 1241 "__dfsan_retval_tls", 1242 ArrayType::get(Type::getInt64Ty(*Ctx), kRetvalTLSSize / 8)); 1243 ArgOriginTLSTy = ArrayType::get(OriginTy, kNumOfElementsInArgOrgTLS); 1244 ArgOriginTLS = getOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1245 RetvalOriginTLS = getOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1246 1247 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1248 Changed = true; 1249 return new GlobalVariable( 1250 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1251 ConstantInt::getSigned(OriginTy, shouldTrackOrigins()), 1252 "__dfsan_track_origins"); 1253 }); 1254 1255 ExternalShadowMask = 1256 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 1257 1258 initializeCallbackFunctions(M); 1259 initializeRuntimeFunctions(M); 1260 1261 std::vector<Function *> FnsToInstrument; 1262 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1263 for (Function &i : M) 1264 if (!i.isIntrinsic() && !DFSanRuntimeFunctions.contains(&i)) 1265 FnsToInstrument.push_back(&i); 1266 1267 // Give function aliases prefixes when necessary, and build wrappers where the 1268 // instrumentedness is inconsistent. 1269 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 1270 GlobalAlias *GA = &*i; 1271 ++i; 1272 // Don't stop on weak. We assume people aren't playing games with the 1273 // instrumentedness of overridden weak aliases. 1274 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 1275 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1276 if (GAInst && FInst) { 1277 addGlobalNamePrefix(GA); 1278 } else if (GAInst != FInst) { 1279 // Non-instrumented alias of an instrumented function, or vice versa. 1280 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1281 // below will take care of instrumenting it. 1282 Function *NewF = 1283 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1284 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1285 NewF->takeName(GA); 1286 GA->eraseFromParent(); 1287 FnsToInstrument.push_back(NewF); 1288 } 1289 } 1290 } 1291 1292 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1293 .addAttribute(Attribute::ReadNone); 1294 1295 // First, change the ABI of every function in the module. ABI-listed 1296 // functions keep their original ABI and get a wrapper function. 1297 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 1298 e = FnsToInstrument.end(); 1299 i != e; ++i) { 1300 Function &F = **i; 1301 FunctionType *FT = F.getFunctionType(); 1302 1303 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1304 FT->getReturnType()->isVoidTy()); 1305 1306 if (isInstrumented(&F)) { 1307 // Instrumented functions get a 'dfs$' prefix. This allows us to more 1308 // easily identify cases of mismatching ABIs. 1309 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 1310 FunctionType *NewFT = getArgsFunctionType(FT); 1311 Function *NewF = Function::Create(NewFT, F.getLinkage(), 1312 F.getAddressSpace(), "", &M); 1313 NewF->copyAttributesFrom(&F); 1314 NewF->removeAttributes( 1315 AttributeList::ReturnIndex, 1316 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1317 for (Function::arg_iterator FArg = F.arg_begin(), 1318 NewFArg = NewF->arg_begin(), 1319 FArgEnd = F.arg_end(); 1320 FArg != FArgEnd; ++FArg, ++NewFArg) { 1321 FArg->replaceAllUsesWith(&*NewFArg); 1322 } 1323 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 1324 1325 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 1326 UI != UE;) { 1327 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 1328 ++UI; 1329 if (BA) { 1330 BA->replaceAllUsesWith( 1331 BlockAddress::get(NewF, BA->getBasicBlock())); 1332 delete BA; 1333 } 1334 } 1335 F.replaceAllUsesWith( 1336 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 1337 NewF->takeName(&F); 1338 F.eraseFromParent(); 1339 *i = NewF; 1340 addGlobalNamePrefix(NewF); 1341 } else { 1342 addGlobalNamePrefix(&F); 1343 } 1344 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1345 // Build a wrapper function for F. The wrapper simply calls F, and is 1346 // added to FnsToInstrument so that any instrumentation according to its 1347 // WrapperKind is done in the second pass below. 1348 FunctionType *NewFT = getInstrumentedABI() == IA_Args 1349 ? getArgsFunctionType(FT) 1350 : FT; 1351 1352 // If the function being wrapped has local linkage, then preserve the 1353 // function's linkage in the wrapper function. 1354 GlobalValue::LinkageTypes wrapperLinkage = 1355 F.hasLocalLinkage() 1356 ? F.getLinkage() 1357 : GlobalValue::LinkOnceODRLinkage; 1358 1359 Function *NewF = buildWrapperFunction( 1360 &F, std::string("dfsw$") + std::string(F.getName()), 1361 wrapperLinkage, NewFT); 1362 if (getInstrumentedABI() == IA_TLS) 1363 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 1364 1365 Value *WrappedFnCst = 1366 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1367 F.replaceAllUsesWith(WrappedFnCst); 1368 1369 UnwrappedFnMap[WrappedFnCst] = &F; 1370 *i = NewF; 1371 1372 if (!F.isDeclaration()) { 1373 // This function is probably defining an interposition of an 1374 // uninstrumented function and hence needs to keep the original ABI. 1375 // But any functions it may call need to use the instrumented ABI, so 1376 // we instrument it in a mode which preserves the original ABI. 1377 FnsWithNativeABI.insert(&F); 1378 1379 // This code needs to rebuild the iterators, as they may be invalidated 1380 // by the push_back, taking care that the new range does not include 1381 // any functions added by this code. 1382 size_t N = i - FnsToInstrument.begin(), 1383 Count = e - FnsToInstrument.begin(); 1384 FnsToInstrument.push_back(&F); 1385 i = FnsToInstrument.begin() + N; 1386 e = FnsToInstrument.begin() + Count; 1387 } 1388 // Hopefully, nobody will try to indirectly call a vararg 1389 // function... yet. 1390 } else if (FT->isVarArg()) { 1391 UnwrappedFnMap[&F] = &F; 1392 *i = nullptr; 1393 } 1394 } 1395 1396 for (Function *i : FnsToInstrument) { 1397 if (!i || i->isDeclaration()) 1398 continue; 1399 1400 removeUnreachableBlocks(*i); 1401 1402 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 1403 1404 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1405 // Build a copy of the list before iterating over it. 1406 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 1407 1408 for (BasicBlock *i : BBList) { 1409 Instruction *Inst = &i->front(); 1410 while (true) { 1411 // DFSanVisitor may split the current basic block, changing the current 1412 // instruction's next pointer and moving the next instruction to the 1413 // tail block from which we should continue. 1414 Instruction *Next = Inst->getNextNode(); 1415 // DFSanVisitor may delete Inst, so keep track of whether it was a 1416 // terminator. 1417 bool IsTerminator = Inst->isTerminator(); 1418 if (!DFSF.SkipInsts.count(Inst)) 1419 DFSanVisitor(DFSF).visit(Inst); 1420 if (IsTerminator) 1421 break; 1422 Inst = Next; 1423 } 1424 } 1425 1426 // We will not necessarily be able to compute the shadow for every phi node 1427 // until we have visited every block. Therefore, the code that handles phi 1428 // nodes adds them to the PHIFixups list so that they can be properly 1429 // handled here. 1430 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 1431 i = DFSF.PHIFixups.begin(), 1432 e = DFSF.PHIFixups.end(); 1433 i != e; ++i) { 1434 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 1435 ++val) { 1436 i->second->setIncomingValue( 1437 val, DFSF.getShadow(i->first->getIncomingValue(val))); 1438 } 1439 } 1440 1441 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1442 // places (i.e. instructions in basic blocks we haven't even begun visiting 1443 // yet). To make our life easier, do this work in a pass after the main 1444 // instrumentation. 1445 if (ClDebugNonzeroLabels) { 1446 for (Value *V : DFSF.NonZeroChecks) { 1447 Instruction *Pos; 1448 if (Instruction *I = dyn_cast<Instruction>(V)) 1449 Pos = I->getNextNode(); 1450 else 1451 Pos = &DFSF.F->getEntryBlock().front(); 1452 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1453 Pos = Pos->getNextNode(); 1454 IRBuilder<> IRB(Pos); 1455 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1456 Value *Ne = 1457 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1458 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1459 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1460 IRBuilder<> ThenIRB(BI); 1461 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1462 } 1463 } 1464 } 1465 1466 return Changed || !FnsToInstrument.empty() || 1467 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1468 } 1469 1470 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1471 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1472 if (ArgOffset) 1473 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1474 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1475 "_dfsarg"); 1476 } 1477 1478 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1479 return IRB.CreatePointerCast( 1480 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1481 } 1482 1483 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1484 1485 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1486 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1487 "_dfsarg_o"); 1488 } 1489 1490 Value *DFSanFunction::getOrigin(Value *V) { 1491 assert(DFS.shouldTrackOrigins()); 1492 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1493 return DFS.ZeroOrigin; 1494 Value *&Origin = ValOriginMap[V]; 1495 if (!Origin) { 1496 if (Argument *A = dyn_cast<Argument>(V)) { 1497 if (IsNativeABI) 1498 return DFS.ZeroOrigin; 1499 switch (IA) { 1500 case DataFlowSanitizer::IA_TLS: { 1501 if (A->getArgNo() < DFS.kNumOfElementsInArgOrgTLS) { 1502 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1503 IRBuilder<> IRB(ArgOriginTLSPos); 1504 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1505 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1506 } else { 1507 // Overflow 1508 Origin = DFS.ZeroOrigin; 1509 } 1510 break; 1511 } 1512 case DataFlowSanitizer::IA_Args: { 1513 Origin = DFS.ZeroOrigin; 1514 break; 1515 } 1516 } 1517 } else { 1518 Origin = DFS.ZeroOrigin; 1519 } 1520 } 1521 return Origin; 1522 } 1523 1524 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1525 if (!DFS.shouldTrackOrigins()) 1526 return; 1527 assert(!ValOriginMap.count(I)); 1528 assert(Origin->getType() == DFS.OriginTy); 1529 ValOriginMap[I] = Origin; 1530 } 1531 1532 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1533 unsigned ArgOffset = 0; 1534 const DataLayout &DL = F->getParent()->getDataLayout(); 1535 for (auto &FArg : F->args()) { 1536 if (!FArg.getType()->isSized()) { 1537 if (A == &FArg) 1538 break; 1539 continue; 1540 } 1541 1542 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1543 if (A != &FArg) { 1544 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1545 if (ArgOffset > kArgTLSSize) 1546 break; // ArgTLS overflows, uses a zero shadow. 1547 continue; 1548 } 1549 1550 if (ArgOffset + Size > kArgTLSSize) 1551 break; // ArgTLS overflows, uses a zero shadow. 1552 1553 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1554 IRBuilder<> IRB(ArgTLSPos); 1555 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1556 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1557 kShadowTLSAlignment); 1558 } 1559 1560 return DFS.getZeroShadow(A); 1561 } 1562 1563 Value *DFSanFunction::getShadow(Value *V) { 1564 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1565 return DFS.getZeroShadow(V); 1566 Value *&Shadow = ValShadowMap[V]; 1567 if (!Shadow) { 1568 if (Argument *A = dyn_cast<Argument>(V)) { 1569 if (IsNativeABI) 1570 return DFS.getZeroShadow(V); 1571 switch (IA) { 1572 case DataFlowSanitizer::IA_TLS: { 1573 Shadow = getShadowForTLSArgument(A); 1574 break; 1575 } 1576 case DataFlowSanitizer::IA_Args: { 1577 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1578 Function::arg_iterator i = F->arg_begin(); 1579 while (ArgIdx--) 1580 ++i; 1581 Shadow = &*i; 1582 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1583 break; 1584 } 1585 } 1586 NonZeroChecks.push_back(Shadow); 1587 } else { 1588 Shadow = DFS.getZeroShadow(V); 1589 } 1590 } 1591 return Shadow; 1592 } 1593 1594 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1595 assert(!ValShadowMap.count(I)); 1596 assert(DFS.shouldTrackFieldsAndIndices() || 1597 Shadow->getType() == DFS.PrimitiveShadowTy); 1598 ValShadowMap[I] = Shadow; 1599 } 1600 1601 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1602 // Returns Addr & shadow_mask 1603 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1604 Value *ShadowPtrMaskValue; 1605 if (DFSanRuntimeShadowMask) 1606 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1607 else 1608 ShadowPtrMaskValue = ShadowPtrMask; 1609 return IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1610 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)); 1611 } 1612 /* 1613 std::pair<Value *, Value *> 1614 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1615 Instruction *Pos) { 1616 // Returns ((Addr & shadow_mask) + origin_base) & ~4UL 1617 IRBuilder<> IRB(Pos); 1618 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1619 Value *ShadowPtr = IRB.CreateIntToPtr( 1620 IRB.CreateMul(ShadowOffset, ShadowPtrMul), PrimitiveShadowPtrTy); 1621 Value *OriginPtr = nullptr; 1622 if (shouldTrackOrigins()) { 1623 Value *OriginLong = IRB.CreateAdd(ShadowOffset, OriginBase); 1624 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1625 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1626 // So Mask is unnecessary. 1627 if (Alignment < kMinOriginAlignment) { 1628 uint64_t Mask = kMinOriginAlignment.value() - 1; 1629 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1630 } 1631 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1632 } 1633 return {ShadowPtr, OriginPtr}; 1634 } 1635 */ 1636 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1637 // Returns (Addr & shadow_mask) x 2 1638 IRBuilder<> IRB(Pos); 1639 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1640 return IRB.CreateIntToPtr(IRB.CreateMul(ShadowOffset, ShadowPtrMul), 1641 PrimitiveShadowPtrTy); 1642 } 1643 1644 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1645 Instruction *Pos) { 1646 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1647 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1648 } 1649 1650 // Generates IR to compute the union of the two given shadows, inserting it 1651 // before Pos. The combined value is with primitive type. 1652 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1653 if (DFS.isZeroShadow(V1)) 1654 return collapseToPrimitiveShadow(V2, Pos); 1655 if (DFS.isZeroShadow(V2)) 1656 return collapseToPrimitiveShadow(V1, Pos); 1657 if (V1 == V2) 1658 return collapseToPrimitiveShadow(V1, Pos); 1659 1660 auto V1Elems = ShadowElements.find(V1); 1661 auto V2Elems = ShadowElements.find(V2); 1662 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1663 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1664 V2Elems->second.begin(), V2Elems->second.end())) { 1665 return collapseToPrimitiveShadow(V1, Pos); 1666 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1667 V1Elems->second.begin(), V1Elems->second.end())) { 1668 return collapseToPrimitiveShadow(V2, Pos); 1669 } 1670 } else if (V1Elems != ShadowElements.end()) { 1671 if (V1Elems->second.count(V2)) 1672 return collapseToPrimitiveShadow(V1, Pos); 1673 } else if (V2Elems != ShadowElements.end()) { 1674 if (V2Elems->second.count(V1)) 1675 return collapseToPrimitiveShadow(V2, Pos); 1676 } 1677 1678 auto Key = std::make_pair(V1, V2); 1679 if (V1 > V2) 1680 std::swap(Key.first, Key.second); 1681 CachedShadow &CCS = CachedShadows[Key]; 1682 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1683 return CCS.Shadow; 1684 1685 // Converts inputs shadows to shadows with primitive types. 1686 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1687 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1688 1689 IRBuilder<> IRB(Pos); 1690 if (ClFast16Labels) { 1691 CCS.Block = Pos->getParent(); 1692 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1693 } else if (AvoidNewBlocks) { 1694 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2}); 1695 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1696 Call->addParamAttr(0, Attribute::ZExt); 1697 Call->addParamAttr(1, Attribute::ZExt); 1698 1699 CCS.Block = Pos->getParent(); 1700 CCS.Shadow = Call; 1701 } else { 1702 BasicBlock *Head = Pos->getParent(); 1703 Value *Ne = IRB.CreateICmpNE(PV1, PV2); 1704 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1705 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1706 IRBuilder<> ThenIRB(BI); 1707 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2}); 1708 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1709 Call->addParamAttr(0, Attribute::ZExt); 1710 Call->addParamAttr(1, Attribute::ZExt); 1711 1712 BasicBlock *Tail = BI->getSuccessor(0); 1713 PHINode *Phi = 1714 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1715 Phi->addIncoming(Call, Call->getParent()); 1716 Phi->addIncoming(PV1, Head); 1717 1718 CCS.Block = Tail; 1719 CCS.Shadow = Phi; 1720 } 1721 1722 std::set<Value *> UnionElems; 1723 if (V1Elems != ShadowElements.end()) { 1724 UnionElems = V1Elems->second; 1725 } else { 1726 UnionElems.insert(V1); 1727 } 1728 if (V2Elems != ShadowElements.end()) { 1729 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1730 } else { 1731 UnionElems.insert(V2); 1732 } 1733 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1734 1735 return CCS.Shadow; 1736 } 1737 1738 // A convenience function which folds the shadows of each of the operands 1739 // of the provided instruction Inst, inserting the IR before Inst. Returns 1740 // the computed union Value. 1741 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1742 if (Inst->getNumOperands() == 0) 1743 return DFS.getZeroShadow(Inst); 1744 1745 Value *Shadow = getShadow(Inst->getOperand(0)); 1746 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1747 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1748 } 1749 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1750 } 1751 1752 void DFSanVisitor::visitInstOperands(Instruction &I) { 1753 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1754 DFSF.setShadow(&I, CombinedShadow); 1755 visitInstOperandOrigins(I); 1756 } 1757 1758 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1759 const std::vector<Value *> &Origins, 1760 Instruction *Pos, ConstantInt *Zero) { 1761 assert(Shadows.size() == Origins.size()); 1762 size_t Size = Origins.size(); 1763 if (Size == 0) 1764 return DFS.ZeroOrigin; 1765 Value *Origin = nullptr; 1766 if (!Zero) 1767 Zero = DFS.ZeroPrimitiveShadow; 1768 for (size_t I = 0; I != Size; ++I) { 1769 Value *OpOrigin = Origins[I]; 1770 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1771 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1772 continue; 1773 if (!Origin) { 1774 Origin = OpOrigin; 1775 continue; 1776 } 1777 Value *OpShadow = Shadows[I]; 1778 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1779 IRBuilder<> IRB(Pos); 1780 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1781 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1782 } 1783 return Origin ? Origin : DFS.ZeroOrigin; 1784 } 1785 1786 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1787 size_t Size = Inst->getNumOperands(); 1788 std::vector<Value *> Shadows(Size); 1789 std::vector<Value *> Origins(Size); 1790 for (unsigned I = 0; I != Size; ++I) { 1791 Shadows[I] = getShadow(Inst->getOperand(I)); 1792 Origins[I] = getOrigin(Inst->getOperand(I)); 1793 } 1794 return combineOrigins(Shadows, Origins, Inst); 1795 } 1796 1797 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 1798 if (!DFSF.DFS.shouldTrackOrigins()) 1799 return; 1800 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 1801 DFSF.setOrigin(&I, CombinedOrigin); 1802 } 1803 1804 Value *DFSanFunction::loadFast16ShadowFast(Value *ShadowAddr, uint64_t Size, 1805 Align ShadowAlign, 1806 Instruction *Pos) { 1807 // First OR all the WideShadows, then OR individual shadows within the 1808 // combined WideShadow. This is fewer instructions than ORing shadows 1809 // individually. 1810 IRBuilder<> IRB(Pos); 1811 Value *WideAddr = 1812 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1813 Value *CombinedWideShadow = 1814 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1815 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1816 Ofs += 64 / DFS.ShadowWidthBits) { 1817 WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1818 ConstantInt::get(DFS.IntptrTy, 1)); 1819 Value *NextWideShadow = 1820 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1821 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1822 } 1823 for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) { 1824 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1825 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1826 } 1827 return IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy); 1828 } 1829 1830 Value *DFSanFunction::loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 1831 Align ShadowAlign, 1832 Instruction *Pos) { 1833 // Fast path for the common case where each byte has identical shadow: load 1834 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1835 // shadow is non-equal. 1836 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1837 IRBuilder<> FallbackIRB(FallbackBB); 1838 CallInst *FallbackCall = FallbackIRB.CreateCall( 1839 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1840 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1841 1842 // Compare each of the shadows stored in the loaded 64 bits to each other, 1843 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 1844 IRBuilder<> IRB(Pos); 1845 Value *WideAddr = 1846 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1847 Value *WideShadow = 1848 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1849 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy); 1850 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 1851 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); 1852 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1853 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1854 1855 BasicBlock *Head = Pos->getParent(); 1856 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1857 1858 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1859 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1860 1861 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1862 for (auto *Child : Children) 1863 DT.changeImmediateDominator(Child, NewNode); 1864 } 1865 1866 // In the following code LastBr will refer to the previous basic block's 1867 // conditional branch instruction, whose true successor is fixed up to point 1868 // to the next block during the loop below or to the tail after the final 1869 // iteration. 1870 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1871 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1872 DT.addNewBlock(FallbackBB, Head); 1873 1874 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1875 Ofs += 64 / DFS.ShadowWidthBits) { 1876 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1877 DT.addNewBlock(NextBB, LastBr->getParent()); 1878 IRBuilder<> NextIRB(NextBB); 1879 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1880 ConstantInt::get(DFS.IntptrTy, 1)); 1881 Value *NextWideShadow = 1882 NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), WideAddr, ShadowAlign); 1883 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1884 LastBr->setSuccessor(0, NextBB); 1885 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1886 } 1887 1888 LastBr->setSuccessor(0, Tail); 1889 FallbackIRB.CreateBr(Tail); 1890 PHINode *Shadow = 1891 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1892 Shadow->addIncoming(FallbackCall, FallbackBB); 1893 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1894 return Shadow; 1895 } 1896 1897 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1898 // Addr has alignment Align, and take the union of each of those shadows. The 1899 // returned shadow always has primitive type. 1900 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1901 Instruction *Pos) { 1902 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1903 const auto i = AllocaShadowMap.find(AI); 1904 if (i != AllocaShadowMap.end()) { 1905 IRBuilder<> IRB(Pos); 1906 return IRB.CreateLoad(DFS.PrimitiveShadowTy, i->second); 1907 } 1908 } 1909 1910 const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes); 1911 SmallVector<const Value *, 2> Objs; 1912 getUnderlyingObjects(Addr, Objs); 1913 bool AllConstants = true; 1914 for (const Value *Obj : Objs) { 1915 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1916 continue; 1917 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1918 continue; 1919 1920 AllConstants = false; 1921 break; 1922 } 1923 if (AllConstants) 1924 return DFS.ZeroPrimitiveShadow; 1925 1926 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1927 switch (Size) { 1928 case 0: 1929 return DFS.ZeroPrimitiveShadow; 1930 case 1: { 1931 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 1932 LI->setAlignment(ShadowAlign); 1933 return LI; 1934 } 1935 case 2: { 1936 IRBuilder<> IRB(Pos); 1937 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 1938 ConstantInt::get(DFS.IntptrTy, 1)); 1939 return combineShadows( 1940 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign), 1941 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign), 1942 Pos); 1943 } 1944 } 1945 1946 if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) 1947 return loadFast16ShadowFast(ShadowAddr, Size, ShadowAlign, Pos); 1948 1949 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) 1950 return loadLegacyShadowFast(ShadowAddr, Size, ShadowAlign, Pos); 1951 1952 IRBuilder<> IRB(Pos); 1953 FunctionCallee &UnionLoadFn = 1954 ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn; 1955 CallInst *FallbackCall = IRB.CreateCall( 1956 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1957 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1958 return FallbackCall; 1959 } 1960 1961 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1962 auto &DL = LI.getModule()->getDataLayout(); 1963 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1964 if (Size == 0) { 1965 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 1966 return; 1967 } 1968 1969 Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1); 1970 Value *PrimitiveShadow = 1971 DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI); 1972 if (ClCombinePointerLabelsOnLoad) { 1973 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1974 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, &LI); 1975 } 1976 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 1977 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 1978 1979 Value *Shadow = 1980 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, &LI); 1981 DFSF.setShadow(&LI, Shadow); 1982 if (ClEventCallbacks) { 1983 IRBuilder<> IRB(&LI); 1984 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1985 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 1986 } 1987 } 1988 1989 void DFSanFunction::storePrimitiveShadow(Value *Addr, uint64_t Size, 1990 Align Alignment, 1991 Value *PrimitiveShadow, 1992 Instruction *Pos) { 1993 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1994 const auto i = AllocaShadowMap.find(AI); 1995 if (i != AllocaShadowMap.end()) { 1996 IRBuilder<> IRB(Pos); 1997 IRB.CreateStore(PrimitiveShadow, i->second); 1998 return; 1999 } 2000 } 2001 2002 const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes); 2003 IRBuilder<> IRB(Pos); 2004 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2005 if (DFS.isZeroShadow(PrimitiveShadow)) { 2006 IntegerType *ShadowTy = 2007 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2008 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2009 Value *ExtShadowAddr = 2010 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2011 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2012 return; 2013 } 2014 2015 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; 2016 uint64_t Offset = 0; 2017 if (Size >= ShadowVecSize) { 2018 auto *ShadowVecTy = 2019 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2020 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2021 for (unsigned i = 0; i != ShadowVecSize; ++i) { 2022 ShadowVec = IRB.CreateInsertElement( 2023 ShadowVec, PrimitiveShadow, 2024 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 2025 } 2026 Value *ShadowVecAddr = 2027 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2028 do { 2029 Value *CurShadowVecAddr = 2030 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2031 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2032 Size -= ShadowVecSize; 2033 ++Offset; 2034 } while (Size >= ShadowVecSize); 2035 Offset *= ShadowVecSize; 2036 } 2037 while (Size > 0) { 2038 Value *CurShadowAddr = 2039 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2040 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2041 --Size; 2042 ++Offset; 2043 } 2044 } 2045 2046 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2047 auto &DL = SI.getModule()->getDataLayout(); 2048 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 2049 if (Size == 0) 2050 return; 2051 2052 const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1); 2053 2054 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 2055 Value *PrimitiveShadow; 2056 if (ClCombinePointerLabelsOnStore) { 2057 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2058 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2059 } else { 2060 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2061 } 2062 DFSF.storePrimitiveShadow(SI.getPointerOperand(), Size, Alignment, 2063 PrimitiveShadow, &SI); 2064 if (ClEventCallbacks) { 2065 IRBuilder<> IRB(&SI); 2066 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2067 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2068 } 2069 } 2070 2071 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2072 visitInstOperands(UO); 2073 } 2074 2075 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2076 visitInstOperands(BO); 2077 } 2078 2079 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2080 2081 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2082 visitInstOperands(CI); 2083 if (ClEventCallbacks) { 2084 IRBuilder<> IRB(&CI); 2085 Value *CombinedShadow = DFSF.getShadow(&CI); 2086 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2087 } 2088 } 2089 2090 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2091 visitInstOperands(GEPI); 2092 } 2093 2094 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2095 visitInstOperands(I); 2096 } 2097 2098 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2099 visitInstOperands(I); 2100 } 2101 2102 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2103 visitInstOperands(I); 2104 } 2105 2106 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2107 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2108 visitInstOperands(I); 2109 return; 2110 } 2111 2112 IRBuilder<> IRB(&I); 2113 Value *Agg = I.getAggregateOperand(); 2114 Value *AggShadow = DFSF.getShadow(Agg); 2115 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2116 DFSF.setShadow(&I, ResShadow); 2117 visitInstOperandOrigins(I); 2118 } 2119 2120 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2121 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2122 visitInstOperands(I); 2123 return; 2124 } 2125 2126 IRBuilder<> IRB(&I); 2127 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2128 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2129 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2130 DFSF.setShadow(&I, Res); 2131 visitInstOperandOrigins(I); 2132 } 2133 2134 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2135 bool AllLoadsStores = true; 2136 for (User *U : I.users()) { 2137 if (isa<LoadInst>(U)) 2138 continue; 2139 2140 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2141 if (SI->getPointerOperand() == &I) 2142 continue; 2143 } 2144 2145 AllLoadsStores = false; 2146 break; 2147 } 2148 if (AllLoadsStores) { 2149 IRBuilder<> IRB(&I); 2150 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2151 } 2152 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2153 } 2154 2155 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2156 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2157 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2158 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2159 Value *ShadowSel = nullptr; 2160 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2161 std::vector<Value *> Shadows; 2162 std::vector<Value *> Origins; 2163 Value *TrueOrigin = 2164 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2165 Value *FalseOrigin = 2166 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2167 2168 if (isa<VectorType>(I.getCondition()->getType())) { 2169 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2170 FalseShadow, &I); 2171 if (ShouldTrackOrigins) { 2172 Shadows.push_back(TrueShadow); 2173 Shadows.push_back(FalseShadow); 2174 Origins.push_back(TrueOrigin); 2175 Origins.push_back(FalseOrigin); 2176 } 2177 } else { 2178 if (TrueShadow == FalseShadow) { 2179 ShadowSel = TrueShadow; 2180 if (ShouldTrackOrigins) { 2181 Shadows.push_back(TrueShadow); 2182 Origins.push_back(TrueOrigin); 2183 } 2184 } else { 2185 ShadowSel = 2186 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2187 if (ShouldTrackOrigins) { 2188 Shadows.push_back(ShadowSel); 2189 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2190 FalseOrigin, "", &I)); 2191 } 2192 } 2193 } 2194 DFSF.setShadow(&I, ClTrackSelectControlFlow 2195 ? DFSF.combineShadowsThenConvert( 2196 I.getType(), CondShadow, ShadowSel, &I) 2197 : ShadowSel); 2198 if (ShouldTrackOrigins) { 2199 if (ClTrackSelectControlFlow) { 2200 Shadows.push_back(CondShadow); 2201 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2202 } 2203 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2204 } 2205 } 2206 2207 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2208 IRBuilder<> IRB(&I); 2209 Value *ValShadow = DFSF.getShadow(I.getValue()); 2210 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 2211 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 2212 *DFSF.DFS.Ctx)), 2213 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2214 } 2215 2216 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2217 IRBuilder<> IRB(&I); 2218 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2219 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2220 Value *LenShadow = 2221 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2222 DFSF.DFS.ShadowWidthBytes)); 2223 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2224 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2225 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2226 auto *MTI = cast<MemTransferInst>( 2227 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2228 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2229 if (ClPreserveAlignment) { 2230 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2231 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2232 } else { 2233 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2234 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2235 } 2236 if (ClEventCallbacks) { 2237 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2238 {RawDestShadow, I.getLength()}); 2239 } 2240 } 2241 2242 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2243 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2244 switch (DFSF.IA) { 2245 case DataFlowSanitizer::IA_TLS: { 2246 Value *S = DFSF.getShadow(RI.getReturnValue()); 2247 IRBuilder<> IRB(&RI); 2248 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2249 unsigned Size = 2250 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2251 if (Size <= kRetvalTLSSize) { 2252 // If the size overflows, stores nothing. At callsite, oversized return 2253 // shadows are set to zero. 2254 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), 2255 kShadowTLSAlignment); 2256 } 2257 if (DFSF.DFS.shouldTrackOrigins()) { 2258 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2259 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2260 } 2261 break; 2262 } 2263 case DataFlowSanitizer::IA_Args: { 2264 IRBuilder<> IRB(&RI); 2265 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2266 Value *InsVal = 2267 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 2268 Value *InsShadow = 2269 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 2270 RI.setOperand(0, InsShadow); 2271 break; 2272 } 2273 } 2274 } 2275 } 2276 2277 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2278 IRBuilder<> IRB(&CB); 2279 switch (DFSF.DFS.getWrapperKind(&F)) { 2280 case DataFlowSanitizer::WK_Warning: 2281 CB.setCalledFunction(&F); 2282 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2283 IRB.CreateGlobalStringPtr(F.getName())); 2284 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2285 return true; 2286 case DataFlowSanitizer::WK_Discard: 2287 CB.setCalledFunction(&F); 2288 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2289 return true; 2290 case DataFlowSanitizer::WK_Functional: 2291 CB.setCalledFunction(&F); 2292 visitInstOperands(CB); 2293 return true; 2294 case DataFlowSanitizer::WK_Custom: 2295 // Don't try to handle invokes of custom functions, it's too complicated. 2296 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2297 // wrapper. 2298 CallInst *CI = dyn_cast<CallInst>(&CB); 2299 if (!CI) 2300 return false; 2301 2302 FunctionType *FT = F.getFunctionType(); 2303 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2304 std::string CustomFName = "__dfsw_"; 2305 CustomFName += F.getName(); 2306 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2307 CustomFName, CustomFn.TransformedType); 2308 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 2309 CustomFn->copyAttributesFrom(&F); 2310 2311 // Custom functions returning non-void will write to the return label. 2312 if (!FT->getReturnType()->isVoidTy()) { 2313 CustomFn->removeAttributes(AttributeList::FunctionIndex, 2314 DFSF.DFS.ReadOnlyNoneAttrs); 2315 } 2316 } 2317 2318 std::vector<Value *> Args; 2319 2320 // Adds non-variable arguments. 2321 auto *I = CB.arg_begin(); 2322 for (unsigned n = FT->getNumParams(); n != 0; ++I, --n) { 2323 Type *T = (*I)->getType(); 2324 FunctionType *ParamFT; 2325 if (isa<PointerType>(T) && 2326 (ParamFT = dyn_cast<FunctionType>( 2327 cast<PointerType>(T)->getElementType()))) { 2328 std::string TName = "dfst"; 2329 TName += utostr(FT->getNumParams() - n); 2330 TName += "$"; 2331 TName += F.getName(); 2332 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2333 Args.push_back(T); 2334 Args.push_back( 2335 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2336 } else { 2337 Args.push_back(*I); 2338 } 2339 } 2340 2341 // Adds non-variable argument shadows. 2342 I = CB.arg_begin(); 2343 const unsigned ShadowArgStart = Args.size(); 2344 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2345 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2346 2347 // Adds variable argument shadows. 2348 if (FT->isVarArg()) { 2349 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2350 CB.arg_size() - FT->getNumParams()); 2351 auto *LabelVAAlloca = 2352 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2353 "labelva", &DFSF.F->getEntryBlock().front()); 2354 2355 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2356 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2357 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2358 LabelVAPtr); 2359 } 2360 2361 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2362 } 2363 2364 // Adds the return value shadow. 2365 if (!FT->getReturnType()->isVoidTy()) { 2366 if (!DFSF.LabelReturnAlloca) { 2367 DFSF.LabelReturnAlloca = new AllocaInst( 2368 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2369 "labelreturn", &DFSF.F->getEntryBlock().front()); 2370 } 2371 Args.push_back(DFSF.LabelReturnAlloca); 2372 } 2373 2374 // Adds variable arguments. 2375 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 2376 2377 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2378 CustomCI->setCallingConv(CI->getCallingConv()); 2379 CustomCI->setAttributes(TransformFunctionAttributes( 2380 CustomFn, CI->getContext(), CI->getAttributes())); 2381 2382 // Update the parameter attributes of the custom call instruction to 2383 // zero extend the shadow parameters. This is required for targets 2384 // which consider PrimitiveShadowTy an illegal type. 2385 for (unsigned N = 0; N < FT->getNumParams(); N++) { 2386 const unsigned ArgNo = ShadowArgStart + N; 2387 if (CustomCI->getArgOperand(ArgNo)->getType() == 2388 DFSF.DFS.PrimitiveShadowTy) 2389 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2390 } 2391 2392 // Loads the return value shadow. 2393 if (!FT->getReturnType()->isVoidTy()) { 2394 LoadInst *LabelLoad = 2395 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 2396 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2397 FT->getReturnType(), LabelLoad, &CB)); 2398 } 2399 2400 CI->replaceAllUsesWith(CustomCI); 2401 CI->eraseFromParent(); 2402 return true; 2403 } 2404 return false; 2405 } 2406 2407 void DFSanVisitor::visitCallBase(CallBase &CB) { 2408 Function *F = CB.getCalledFunction(); 2409 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 2410 visitInstOperands(CB); 2411 return; 2412 } 2413 2414 // Calls to this function are synthesized in wrappers, and we shouldn't 2415 // instrument them. 2416 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 2417 return; 2418 2419 DenseMap<Value *, Function *>::iterator i = 2420 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 2421 if (i != DFSF.DFS.UnwrappedFnMap.end()) 2422 if (visitWrappedCallBase(*i->second, CB)) 2423 return; 2424 2425 IRBuilder<> IRB(&CB); 2426 2427 FunctionType *FT = CB.getFunctionType(); 2428 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2429 // Stores argument shadows. 2430 unsigned ArgOffset = 0; 2431 const DataLayout &DL = getDataLayout(); 2432 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 2433 unsigned Size = 2434 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 2435 // Stop storing if arguments' size overflows. Inside a function, arguments 2436 // after overflow have zero shadow values. 2437 if (ArgOffset + Size > kArgTLSSize) 2438 break; 2439 IRB.CreateAlignedStore( 2440 DFSF.getShadow(CB.getArgOperand(I)), 2441 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 2442 kShadowTLSAlignment); 2443 ArgOffset += alignTo(Size, kShadowTLSAlignment); 2444 } 2445 } 2446 2447 Instruction *Next = nullptr; 2448 if (!CB.getType()->isVoidTy()) { 2449 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2450 if (II->getNormalDest()->getSinglePredecessor()) { 2451 Next = &II->getNormalDest()->front(); 2452 } else { 2453 BasicBlock *NewBB = 2454 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 2455 Next = &NewBB->front(); 2456 } 2457 } else { 2458 assert(CB.getIterator() != CB.getParent()->end()); 2459 Next = CB.getNextNode(); 2460 } 2461 2462 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2463 // Loads the return value shadow. 2464 IRBuilder<> NextIRB(Next); 2465 const DataLayout &DL = getDataLayout(); 2466 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 2467 if (Size > kRetvalTLSSize) { 2468 // Set overflowed return shadow to be zero. 2469 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2470 } else { 2471 LoadInst *LI = NextIRB.CreateAlignedLoad( 2472 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 2473 kShadowTLSAlignment, "_dfsret"); 2474 DFSF.SkipInsts.insert(LI); 2475 DFSF.setShadow(&CB, LI); 2476 DFSF.NonZeroChecks.push_back(LI); 2477 } 2478 } 2479 } 2480 2481 // Do all instrumentation for IA_Args down here to defer tampering with the 2482 // CFG in a way that SplitEdge may be able to detect. 2483 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 2484 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 2485 Value *Func = 2486 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 2487 std::vector<Value *> Args; 2488 2489 auto i = CB.arg_begin(), E = CB.arg_end(); 2490 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 2491 Args.push_back(*i); 2492 2493 i = CB.arg_begin(); 2494 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 2495 Args.push_back(DFSF.getShadow(*i)); 2496 2497 if (FT->isVarArg()) { 2498 unsigned VarArgSize = CB.arg_size() - FT->getNumParams(); 2499 ArrayType *VarArgArrayTy = 2500 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 2501 AllocaInst *VarArgShadow = 2502 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 2503 "", &DFSF.F->getEntryBlock().front()); 2504 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 2505 for (unsigned n = 0; i != E; ++i, ++n) { 2506 IRB.CreateStore( 2507 DFSF.getShadow(*i), 2508 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 2509 Args.push_back(*i); 2510 } 2511 } 2512 2513 CallBase *NewCB; 2514 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2515 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 2516 II->getUnwindDest(), Args); 2517 } else { 2518 NewCB = IRB.CreateCall(NewFT, Func, Args); 2519 } 2520 NewCB->setCallingConv(CB.getCallingConv()); 2521 NewCB->setAttributes(CB.getAttributes().removeAttributes( 2522 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 2523 AttributeFuncs::typeIncompatible(NewCB->getType()))); 2524 2525 if (Next) { 2526 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 2527 DFSF.SkipInsts.insert(ExVal); 2528 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 2529 DFSF.SkipInsts.insert(ExShadow); 2530 DFSF.setShadow(ExVal, ExShadow); 2531 DFSF.NonZeroChecks.push_back(ExShadow); 2532 2533 CB.replaceAllUsesWith(ExVal); 2534 } 2535 2536 CB.eraseFromParent(); 2537 } 2538 } 2539 2540 void DFSanVisitor::visitPHINode(PHINode &PN) { 2541 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 2542 PHINode *ShadowPN = 2543 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 2544 2545 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 2546 Value *UndefShadow = UndefValue::get(ShadowTy); 2547 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 2548 ++i) { 2549 ShadowPN->addIncoming(UndefShadow, *i); 2550 } 2551 2552 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 2553 DFSF.setShadow(&PN, ShadowPN); 2554 } 2555 2556 namespace { 2557 class DataFlowSanitizerLegacyPass : public ModulePass { 2558 private: 2559 std::vector<std::string> ABIListFiles; 2560 2561 public: 2562 static char ID; 2563 2564 DataFlowSanitizerLegacyPass( 2565 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 2566 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 2567 2568 bool runOnModule(Module &M) override { 2569 return DataFlowSanitizer(ABIListFiles).runImpl(M); 2570 } 2571 }; 2572 } // namespace 2573 2574 char DataFlowSanitizerLegacyPass::ID; 2575 2576 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 2577 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 2578 2579 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 2580 const std::vector<std::string> &ABIListFiles) { 2581 return new DataFlowSanitizerLegacyPass(ABIListFiles); 2582 } 2583 2584 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 2585 ModuleAnalysisManager &AM) { 2586 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 2587 return PreservedAnalyses::none(); 2588 } 2589 return PreservedAnalyses::all(); 2590 } 2591