1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 // FIXME: This sanitizer does not yet handle scalable vectors 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/BinaryFormat/MachO.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DIBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstVisitor.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCSectionMachO.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/ScopedPrinter.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Transforms/Utils/ModuleUtils.h" 79 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iomanip> 85 #include <limits> 86 #include <memory> 87 #include <sstream> 88 #include <string> 89 #include <tuple> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "asan" 94 95 static const uint64_t kDefaultShadowScale = 3; 96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 98 static const uint64_t kDynamicShadowSentinel = 99 std::numeric_limits<uint64_t>::max(); 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kRISCV64_ShadowOffset64 = 0x20000000; 109 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 110 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 111 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 112 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 113 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 114 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 115 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 116 static const uint64_t kEmscriptenShadowOffset = 0; 117 118 static const uint64_t kMyriadShadowScale = 5; 119 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 120 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 121 static const uint64_t kMyriadTagShift = 29; 122 static const uint64_t kMyriadDDRTag = 4; 123 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 124 125 // The shadow memory space is dynamically allocated. 126 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 127 128 static const size_t kMinStackMallocSize = 1 << 6; // 64B 129 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 130 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 131 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 132 133 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 134 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 135 static const uint64_t kAsanCtorAndDtorPriority = 1; 136 // On Emscripten, the system needs more than one priorities for constructors. 137 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 138 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 139 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 140 static const char *const kAsanUnregisterGlobalsName = 141 "__asan_unregister_globals"; 142 static const char *const kAsanRegisterImageGlobalsName = 143 "__asan_register_image_globals"; 144 static const char *const kAsanUnregisterImageGlobalsName = 145 "__asan_unregister_image_globals"; 146 static const char *const kAsanRegisterElfGlobalsName = 147 "__asan_register_elf_globals"; 148 static const char *const kAsanUnregisterElfGlobalsName = 149 "__asan_unregister_elf_globals"; 150 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 151 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 152 static const char *const kAsanInitName = "__asan_init"; 153 static const char *const kAsanVersionCheckNamePrefix = 154 "__asan_version_mismatch_check_v"; 155 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 156 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 157 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 158 static const int kMaxAsanStackMallocSizeClass = 10; 159 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 160 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 161 static const char *const kAsanGenPrefix = "___asan_gen_"; 162 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 163 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 164 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 165 static const char *const kAsanPoisonStackMemoryName = 166 "__asan_poison_stack_memory"; 167 static const char *const kAsanUnpoisonStackMemoryName = 168 "__asan_unpoison_stack_memory"; 169 170 // ASan version script has __asan_* wildcard. Triple underscore prevents a 171 // linker (gold) warning about attempting to export a local symbol. 172 static const char *const kAsanGlobalsRegisteredFlagName = 173 "___asan_globals_registered"; 174 175 static const char *const kAsanOptionDetectUseAfterReturn = 176 "__asan_option_detect_stack_use_after_return"; 177 178 static const char *const kAsanShadowMemoryDynamicAddress = 179 "__asan_shadow_memory_dynamic_address"; 180 181 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 182 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 183 184 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 185 static const size_t kNumberOfAccessSizes = 5; 186 187 static const unsigned kAllocaRzSize = 32; 188 189 // Command-line flags. 190 191 static cl::opt<bool> ClEnableKasan( 192 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 193 cl::Hidden, cl::init(false)); 194 195 static cl::opt<bool> ClRecover( 196 "asan-recover", 197 cl::desc("Enable recovery mode (continue-after-error)."), 198 cl::Hidden, cl::init(false)); 199 200 static cl::opt<bool> ClInsertVersionCheck( 201 "asan-guard-against-version-mismatch", 202 cl::desc("Guard against compiler/runtime version mismatch."), 203 cl::Hidden, cl::init(true)); 204 205 // This flag may need to be replaced with -f[no-]asan-reads. 206 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 207 cl::desc("instrument read instructions"), 208 cl::Hidden, cl::init(true)); 209 210 static cl::opt<bool> ClInstrumentWrites( 211 "asan-instrument-writes", cl::desc("instrument write instructions"), 212 cl::Hidden, cl::init(true)); 213 214 static cl::opt<bool> ClInstrumentAtomics( 215 "asan-instrument-atomics", 216 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 217 cl::init(true)); 218 219 static cl::opt<bool> 220 ClInstrumentByval("asan-instrument-byval", 221 cl::desc("instrument byval call arguments"), cl::Hidden, 222 cl::init(true)); 223 224 static cl::opt<bool> ClAlwaysSlowPath( 225 "asan-always-slow-path", 226 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 227 cl::init(false)); 228 229 static cl::opt<bool> ClForceDynamicShadow( 230 "asan-force-dynamic-shadow", 231 cl::desc("Load shadow address into a local variable for each function"), 232 cl::Hidden, cl::init(false)); 233 234 static cl::opt<bool> 235 ClWithIfunc("asan-with-ifunc", 236 cl::desc("Access dynamic shadow through an ifunc global on " 237 "platforms that support this"), 238 cl::Hidden, cl::init(true)); 239 240 static cl::opt<bool> ClWithIfuncSuppressRemat( 241 "asan-with-ifunc-suppress-remat", 242 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 243 "it through inline asm in prologue."), 244 cl::Hidden, cl::init(true)); 245 246 // This flag limits the number of instructions to be instrumented 247 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 248 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 249 // set it to 10000. 250 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 251 "asan-max-ins-per-bb", cl::init(10000), 252 cl::desc("maximal number of instructions to instrument in any given BB"), 253 cl::Hidden); 254 255 // This flag may need to be replaced with -f[no]asan-stack. 256 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 257 cl::Hidden, cl::init(true)); 258 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 259 "asan-max-inline-poisoning-size", 260 cl::desc( 261 "Inline shadow poisoning for blocks up to the given size in bytes."), 262 cl::Hidden, cl::init(64)); 263 264 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 265 cl::desc("Check stack-use-after-return"), 266 cl::Hidden, cl::init(true)); 267 268 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 269 cl::desc("Create redzones for byval " 270 "arguments (extra copy " 271 "required)"), cl::Hidden, 272 cl::init(true)); 273 274 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 275 cl::desc("Check stack-use-after-scope"), 276 cl::Hidden, cl::init(false)); 277 278 // This flag may need to be replaced with -f[no]asan-globals. 279 static cl::opt<bool> ClGlobals("asan-globals", 280 cl::desc("Handle global objects"), cl::Hidden, 281 cl::init(true)); 282 283 static cl::opt<bool> ClInitializers("asan-initialization-order", 284 cl::desc("Handle C++ initializer order"), 285 cl::Hidden, cl::init(true)); 286 287 static cl::opt<bool> ClInvalidPointerPairs( 288 "asan-detect-invalid-pointer-pair", 289 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 290 cl::init(false)); 291 292 static cl::opt<bool> ClInvalidPointerCmp( 293 "asan-detect-invalid-pointer-cmp", 294 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 295 cl::init(false)); 296 297 static cl::opt<bool> ClInvalidPointerSub( 298 "asan-detect-invalid-pointer-sub", 299 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 300 cl::init(false)); 301 302 static cl::opt<unsigned> ClRealignStack( 303 "asan-realign-stack", 304 cl::desc("Realign stack to the value of this flag (power of two)"), 305 cl::Hidden, cl::init(32)); 306 307 static cl::opt<int> ClInstrumentationWithCallsThreshold( 308 "asan-instrumentation-with-call-threshold", 309 cl::desc( 310 "If the function being instrumented contains more than " 311 "this number of memory accesses, use callbacks instead of " 312 "inline checks (-1 means never use callbacks)."), 313 cl::Hidden, cl::init(7000)); 314 315 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 316 "asan-memory-access-callback-prefix", 317 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 318 cl::init("__asan_")); 319 320 static cl::opt<bool> 321 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 322 cl::desc("instrument dynamic allocas"), 323 cl::Hidden, cl::init(true)); 324 325 static cl::opt<bool> ClSkipPromotableAllocas( 326 "asan-skip-promotable-allocas", 327 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 328 cl::init(true)); 329 330 // These flags allow to change the shadow mapping. 331 // The shadow mapping looks like 332 // Shadow = (Mem >> scale) + offset 333 334 static cl::opt<int> ClMappingScale("asan-mapping-scale", 335 cl::desc("scale of asan shadow mapping"), 336 cl::Hidden, cl::init(0)); 337 338 static cl::opt<uint64_t> 339 ClMappingOffset("asan-mapping-offset", 340 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 341 cl::Hidden, cl::init(0)); 342 343 // Optimization flags. Not user visible, used mostly for testing 344 // and benchmarking the tool. 345 346 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 347 cl::Hidden, cl::init(true)); 348 349 static cl::opt<bool> ClOptSameTemp( 350 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 351 cl::Hidden, cl::init(true)); 352 353 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 354 cl::desc("Don't instrument scalar globals"), 355 cl::Hidden, cl::init(true)); 356 357 static cl::opt<bool> ClOptStack( 358 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 359 cl::Hidden, cl::init(false)); 360 361 static cl::opt<bool> ClDynamicAllocaStack( 362 "asan-stack-dynamic-alloca", 363 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 364 cl::init(true)); 365 366 static cl::opt<uint32_t> ClForceExperiment( 367 "asan-force-experiment", 368 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 369 cl::init(0)); 370 371 static cl::opt<bool> 372 ClUsePrivateAlias("asan-use-private-alias", 373 cl::desc("Use private aliases for global variables"), 374 cl::Hidden, cl::init(false)); 375 376 static cl::opt<bool> 377 ClUseOdrIndicator("asan-use-odr-indicator", 378 cl::desc("Use odr indicators to improve ODR reporting"), 379 cl::Hidden, cl::init(false)); 380 381 static cl::opt<bool> 382 ClUseGlobalsGC("asan-globals-live-support", 383 cl::desc("Use linker features to support dead " 384 "code stripping of globals"), 385 cl::Hidden, cl::init(true)); 386 387 // This is on by default even though there is a bug in gold: 388 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 389 static cl::opt<bool> 390 ClWithComdat("asan-with-comdat", 391 cl::desc("Place ASan constructors in comdat sections"), 392 cl::Hidden, cl::init(true)); 393 394 // Debug flags. 395 396 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 397 cl::init(0)); 398 399 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 400 cl::Hidden, cl::init(0)); 401 402 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 403 cl::desc("Debug func")); 404 405 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 406 cl::Hidden, cl::init(-1)); 407 408 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 409 cl::Hidden, cl::init(-1)); 410 411 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 412 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 413 STATISTIC(NumOptimizedAccessesToGlobalVar, 414 "Number of optimized accesses to global vars"); 415 STATISTIC(NumOptimizedAccessesToStackVar, 416 "Number of optimized accesses to stack vars"); 417 418 namespace { 419 420 /// This struct defines the shadow mapping using the rule: 421 /// shadow = (mem >> Scale) ADD-or-OR Offset. 422 /// If InGlobal is true, then 423 /// extern char __asan_shadow[]; 424 /// shadow = (mem >> Scale) + &__asan_shadow 425 struct ShadowMapping { 426 int Scale; 427 uint64_t Offset; 428 bool OrShadowOffset; 429 bool InGlobal; 430 }; 431 432 } // end anonymous namespace 433 434 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 435 bool IsKasan) { 436 bool IsAndroid = TargetTriple.isAndroid(); 437 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 438 bool IsMacOS = TargetTriple.isMacOSX(); 439 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 440 bool IsNetBSD = TargetTriple.isOSNetBSD(); 441 bool IsPS4CPU = TargetTriple.isPS4CPU(); 442 bool IsLinux = TargetTriple.isOSLinux(); 443 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 444 TargetTriple.getArch() == Triple::ppc64le; 445 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 446 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 447 bool IsMIPS32 = TargetTriple.isMIPS32(); 448 bool IsMIPS64 = TargetTriple.isMIPS64(); 449 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 450 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 451 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 452 bool IsWindows = TargetTriple.isOSWindows(); 453 bool IsFuchsia = TargetTriple.isOSFuchsia(); 454 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 455 bool IsEmscripten = TargetTriple.isOSEmscripten(); 456 457 ShadowMapping Mapping; 458 459 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 460 if (ClMappingScale.getNumOccurrences() > 0) { 461 Mapping.Scale = ClMappingScale; 462 } 463 464 if (LongSize == 32) { 465 if (IsAndroid) 466 Mapping.Offset = kDynamicShadowSentinel; 467 else if (IsMIPS32) 468 Mapping.Offset = kMIPS32_ShadowOffset32; 469 else if (IsFreeBSD) 470 Mapping.Offset = kFreeBSD_ShadowOffset32; 471 else if (IsNetBSD) 472 Mapping.Offset = kNetBSD_ShadowOffset32; 473 else if (IsIOS) 474 Mapping.Offset = kDynamicShadowSentinel; 475 else if (IsWindows) 476 Mapping.Offset = kWindowsShadowOffset32; 477 else if (IsEmscripten) 478 Mapping.Offset = kEmscriptenShadowOffset; 479 else if (IsMyriad) { 480 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 481 (kMyriadMemorySize32 >> Mapping.Scale)); 482 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 483 } 484 else 485 Mapping.Offset = kDefaultShadowOffset32; 486 } else { // LongSize == 64 487 // Fuchsia is always PIE, which means that the beginning of the address 488 // space is always available. 489 if (IsFuchsia) 490 Mapping.Offset = 0; 491 else if (IsPPC64) 492 Mapping.Offset = kPPC64_ShadowOffset64; 493 else if (IsSystemZ) 494 Mapping.Offset = kSystemZ_ShadowOffset64; 495 else if (IsFreeBSD && !IsMIPS64) 496 Mapping.Offset = kFreeBSD_ShadowOffset64; 497 else if (IsNetBSD) { 498 if (IsKasan) 499 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 500 else 501 Mapping.Offset = kNetBSD_ShadowOffset64; 502 } else if (IsPS4CPU) 503 Mapping.Offset = kPS4CPU_ShadowOffset64; 504 else if (IsLinux && IsX86_64) { 505 if (IsKasan) 506 Mapping.Offset = kLinuxKasan_ShadowOffset64; 507 else 508 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 509 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 510 } else if (IsWindows && IsX86_64) { 511 Mapping.Offset = kWindowsShadowOffset64; 512 } else if (IsMIPS64) 513 Mapping.Offset = kMIPS64_ShadowOffset64; 514 else if (IsIOS) 515 Mapping.Offset = kDynamicShadowSentinel; 516 else if (IsMacOS && IsAArch64) 517 Mapping.Offset = kDynamicShadowSentinel; 518 else if (IsAArch64) 519 Mapping.Offset = kAArch64_ShadowOffset64; 520 else if (IsRISCV64) 521 Mapping.Offset = kRISCV64_ShadowOffset64; 522 else 523 Mapping.Offset = kDefaultShadowOffset64; 524 } 525 526 if (ClForceDynamicShadow) { 527 Mapping.Offset = kDynamicShadowSentinel; 528 } 529 530 if (ClMappingOffset.getNumOccurrences() > 0) { 531 Mapping.Offset = ClMappingOffset; 532 } 533 534 // OR-ing shadow offset if more efficient (at least on x86) if the offset 535 // is a power of two, but on ppc64 we have to use add since the shadow 536 // offset is not necessary 1/8-th of the address space. On SystemZ, 537 // we could OR the constant in a single instruction, but it's more 538 // efficient to load it once and use indexed addressing. 539 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 540 !IsRISCV64 && 541 !(Mapping.Offset & (Mapping.Offset - 1)) && 542 Mapping.Offset != kDynamicShadowSentinel; 543 bool IsAndroidWithIfuncSupport = 544 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 545 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 546 547 return Mapping; 548 } 549 550 static uint64_t getRedzoneSizeForScale(int MappingScale) { 551 // Redzone used for stack and globals is at least 32 bytes. 552 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 553 return std::max(32U, 1U << MappingScale); 554 } 555 556 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 557 if (TargetTriple.isOSEmscripten()) { 558 return kAsanEmscriptenCtorAndDtorPriority; 559 } else { 560 return kAsanCtorAndDtorPriority; 561 } 562 } 563 564 // For a ret instruction followed by a musttail call, we cannot insert anything 565 // in between. Instead we use the musttail call instruction as the insertion 566 // point. 567 static Instruction *adjustForMusttailCall(Instruction *I) { 568 ReturnInst *RI = dyn_cast<ReturnInst>(I); 569 if (!RI) 570 return I; 571 Instruction *Prev = RI->getPrevNode(); 572 if (BitCastInst *BCI = dyn_cast_or_null<BitCastInst>(Prev)) 573 Prev = BCI->getPrevNode(); 574 if (CallInst *CI = dyn_cast_or_null<CallInst>(Prev)) 575 if (CI->isMustTailCall()) 576 return CI; 577 return RI; 578 } 579 580 namespace { 581 582 /// Module analysis for getting various metadata about the module. 583 class ASanGlobalsMetadataWrapperPass : public ModulePass { 584 public: 585 static char ID; 586 587 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 588 initializeASanGlobalsMetadataWrapperPassPass( 589 *PassRegistry::getPassRegistry()); 590 } 591 592 bool runOnModule(Module &M) override { 593 GlobalsMD = GlobalsMetadata(M); 594 return false; 595 } 596 597 StringRef getPassName() const override { 598 return "ASanGlobalsMetadataWrapperPass"; 599 } 600 601 void getAnalysisUsage(AnalysisUsage &AU) const override { 602 AU.setPreservesAll(); 603 } 604 605 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 606 607 private: 608 GlobalsMetadata GlobalsMD; 609 }; 610 611 char ASanGlobalsMetadataWrapperPass::ID = 0; 612 613 /// AddressSanitizer: instrument the code in module to find memory bugs. 614 struct AddressSanitizer { 615 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 616 bool CompileKernel = false, bool Recover = false, 617 bool UseAfterScope = false) 618 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 619 : CompileKernel), 620 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 621 UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 622 C = &(M.getContext()); 623 LongSize = M.getDataLayout().getPointerSizeInBits(); 624 IntptrTy = Type::getIntNTy(*C, LongSize); 625 TargetTriple = Triple(M.getTargetTriple()); 626 627 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 628 } 629 630 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 631 uint64_t ArraySize = 1; 632 if (AI.isArrayAllocation()) { 633 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 634 assert(CI && "non-constant array size"); 635 ArraySize = CI->getZExtValue(); 636 } 637 Type *Ty = AI.getAllocatedType(); 638 uint64_t SizeInBytes = 639 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 640 return SizeInBytes * ArraySize; 641 } 642 643 /// Check if we want (and can) handle this alloca. 644 bool isInterestingAlloca(const AllocaInst &AI); 645 646 bool ignoreAccess(Value *Ptr); 647 void getInterestingMemoryOperands( 648 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 649 650 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 651 InterestingMemoryOperand &O, bool UseCalls, 652 const DataLayout &DL); 653 void instrumentPointerComparisonOrSubtraction(Instruction *I); 654 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 655 Value *Addr, uint32_t TypeSize, bool IsWrite, 656 Value *SizeArgument, bool UseCalls, uint32_t Exp); 657 void instrumentUnusualSizeOrAlignment(Instruction *I, 658 Instruction *InsertBefore, Value *Addr, 659 uint32_t TypeSize, bool IsWrite, 660 Value *SizeArgument, bool UseCalls, 661 uint32_t Exp); 662 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 663 Value *ShadowValue, uint32_t TypeSize); 664 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 665 bool IsWrite, size_t AccessSizeIndex, 666 Value *SizeArgument, uint32_t Exp); 667 void instrumentMemIntrinsic(MemIntrinsic *MI); 668 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 669 bool suppressInstrumentationSiteForDebug(int &Instrumented); 670 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 671 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 672 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 673 void markEscapedLocalAllocas(Function &F); 674 675 private: 676 friend struct FunctionStackPoisoner; 677 678 void initializeCallbacks(Module &M); 679 680 bool LooksLikeCodeInBug11395(Instruction *I); 681 bool GlobalIsLinkerInitialized(GlobalVariable *G); 682 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 683 uint64_t TypeSize) const; 684 685 /// Helper to cleanup per-function state. 686 struct FunctionStateRAII { 687 AddressSanitizer *Pass; 688 689 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 690 assert(Pass->ProcessedAllocas.empty() && 691 "last pass forgot to clear cache"); 692 assert(!Pass->LocalDynamicShadow); 693 } 694 695 ~FunctionStateRAII() { 696 Pass->LocalDynamicShadow = nullptr; 697 Pass->ProcessedAllocas.clear(); 698 } 699 }; 700 701 LLVMContext *C; 702 Triple TargetTriple; 703 int LongSize; 704 bool CompileKernel; 705 bool Recover; 706 bool UseAfterScope; 707 Type *IntptrTy; 708 ShadowMapping Mapping; 709 FunctionCallee AsanHandleNoReturnFunc; 710 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 711 Constant *AsanShadowGlobal; 712 713 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 714 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 715 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 716 717 // These arrays is indexed by AccessIsWrite and Experiment. 718 FunctionCallee AsanErrorCallbackSized[2][2]; 719 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 720 721 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 722 Value *LocalDynamicShadow = nullptr; 723 const GlobalsMetadata &GlobalsMD; 724 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 725 }; 726 727 class AddressSanitizerLegacyPass : public FunctionPass { 728 public: 729 static char ID; 730 731 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 732 bool Recover = false, 733 bool UseAfterScope = false) 734 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 735 UseAfterScope(UseAfterScope) { 736 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 737 } 738 739 StringRef getPassName() const override { 740 return "AddressSanitizerFunctionPass"; 741 } 742 743 void getAnalysisUsage(AnalysisUsage &AU) const override { 744 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 745 AU.addRequired<TargetLibraryInfoWrapperPass>(); 746 } 747 748 bool runOnFunction(Function &F) override { 749 GlobalsMetadata &GlobalsMD = 750 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 751 const TargetLibraryInfo *TLI = 752 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 753 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 754 UseAfterScope); 755 return ASan.instrumentFunction(F, TLI); 756 } 757 758 private: 759 bool CompileKernel; 760 bool Recover; 761 bool UseAfterScope; 762 }; 763 764 class ModuleAddressSanitizer { 765 public: 766 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 767 bool CompileKernel = false, bool Recover = false, 768 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 769 : GlobalsMD(*GlobalsMD), 770 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 771 : CompileKernel), 772 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 773 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 774 // Enable aliases as they should have no downside with ODR indicators. 775 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 776 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 777 // Not a typo: ClWithComdat is almost completely pointless without 778 // ClUseGlobalsGC (because then it only works on modules without 779 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 780 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 781 // argument is designed as workaround. Therefore, disable both 782 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 783 // do globals-gc. 784 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel) { 785 C = &(M.getContext()); 786 int LongSize = M.getDataLayout().getPointerSizeInBits(); 787 IntptrTy = Type::getIntNTy(*C, LongSize); 788 TargetTriple = Triple(M.getTargetTriple()); 789 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 790 } 791 792 bool instrumentModule(Module &); 793 794 private: 795 void initializeCallbacks(Module &M); 796 797 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 798 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 799 ArrayRef<GlobalVariable *> ExtendedGlobals, 800 ArrayRef<Constant *> MetadataInitializers); 801 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 802 ArrayRef<GlobalVariable *> ExtendedGlobals, 803 ArrayRef<Constant *> MetadataInitializers, 804 const std::string &UniqueModuleId); 805 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 806 ArrayRef<GlobalVariable *> ExtendedGlobals, 807 ArrayRef<Constant *> MetadataInitializers); 808 void 809 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 810 ArrayRef<GlobalVariable *> ExtendedGlobals, 811 ArrayRef<Constant *> MetadataInitializers); 812 813 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 814 StringRef OriginalName); 815 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 816 StringRef InternalSuffix); 817 Instruction *CreateAsanModuleDtor(Module &M); 818 819 bool canInstrumentAliasedGlobal(const GlobalAlias &GA) const; 820 bool shouldInstrumentGlobal(GlobalVariable *G) const; 821 bool ShouldUseMachOGlobalsSection() const; 822 StringRef getGlobalMetadataSection() const; 823 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 824 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 825 uint64_t getMinRedzoneSizeForGlobal() const { 826 return getRedzoneSizeForScale(Mapping.Scale); 827 } 828 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 829 int GetAsanVersion(const Module &M) const; 830 831 const GlobalsMetadata &GlobalsMD; 832 bool CompileKernel; 833 bool Recover; 834 bool UseGlobalsGC; 835 bool UsePrivateAlias; 836 bool UseOdrIndicator; 837 bool UseCtorComdat; 838 Type *IntptrTy; 839 LLVMContext *C; 840 Triple TargetTriple; 841 ShadowMapping Mapping; 842 FunctionCallee AsanPoisonGlobals; 843 FunctionCallee AsanUnpoisonGlobals; 844 FunctionCallee AsanRegisterGlobals; 845 FunctionCallee AsanUnregisterGlobals; 846 FunctionCallee AsanRegisterImageGlobals; 847 FunctionCallee AsanUnregisterImageGlobals; 848 FunctionCallee AsanRegisterElfGlobals; 849 FunctionCallee AsanUnregisterElfGlobals; 850 851 Function *AsanCtorFunction = nullptr; 852 Function *AsanDtorFunction = nullptr; 853 }; 854 855 class ModuleAddressSanitizerLegacyPass : public ModulePass { 856 public: 857 static char ID; 858 859 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 860 bool Recover = false, 861 bool UseGlobalGC = true, 862 bool UseOdrIndicator = false) 863 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 864 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 865 initializeModuleAddressSanitizerLegacyPassPass( 866 *PassRegistry::getPassRegistry()); 867 } 868 869 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 870 871 void getAnalysisUsage(AnalysisUsage &AU) const override { 872 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 873 } 874 875 bool runOnModule(Module &M) override { 876 GlobalsMetadata &GlobalsMD = 877 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 878 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 879 UseGlobalGC, UseOdrIndicator); 880 return ASanModule.instrumentModule(M); 881 } 882 883 private: 884 bool CompileKernel; 885 bool Recover; 886 bool UseGlobalGC; 887 bool UseOdrIndicator; 888 }; 889 890 // Stack poisoning does not play well with exception handling. 891 // When an exception is thrown, we essentially bypass the code 892 // that unpoisones the stack. This is why the run-time library has 893 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 894 // stack in the interceptor. This however does not work inside the 895 // actual function which catches the exception. Most likely because the 896 // compiler hoists the load of the shadow value somewhere too high. 897 // This causes asan to report a non-existing bug on 453.povray. 898 // It sounds like an LLVM bug. 899 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 900 Function &F; 901 AddressSanitizer &ASan; 902 DIBuilder DIB; 903 LLVMContext *C; 904 Type *IntptrTy; 905 Type *IntptrPtrTy; 906 ShadowMapping Mapping; 907 908 SmallVector<AllocaInst *, 16> AllocaVec; 909 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 910 SmallVector<Instruction *, 8> RetVec; 911 unsigned StackAlignment; 912 913 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 914 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 915 FunctionCallee AsanSetShadowFunc[0x100] = {}; 916 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 917 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 918 919 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 920 struct AllocaPoisonCall { 921 IntrinsicInst *InsBefore; 922 AllocaInst *AI; 923 uint64_t Size; 924 bool DoPoison; 925 }; 926 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 927 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 928 bool HasUntracedLifetimeIntrinsic = false; 929 930 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 931 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 932 AllocaInst *DynamicAllocaLayout = nullptr; 933 IntrinsicInst *LocalEscapeCall = nullptr; 934 935 bool HasInlineAsm = false; 936 bool HasReturnsTwiceCall = false; 937 938 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 939 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 940 C(ASan.C), IntptrTy(ASan.IntptrTy), 941 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 942 StackAlignment(1 << Mapping.Scale) {} 943 944 bool runOnFunction() { 945 if (!ClStack) return false; 946 947 if (ClRedzoneByvalArgs) 948 copyArgsPassedByValToAllocas(); 949 950 // Collect alloca, ret, lifetime instructions etc. 951 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 952 953 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 954 955 initializeCallbacks(*F.getParent()); 956 957 if (HasUntracedLifetimeIntrinsic) { 958 // If there are lifetime intrinsics which couldn't be traced back to an 959 // alloca, we may not know exactly when a variable enters scope, and 960 // therefore should "fail safe" by not poisoning them. 961 StaticAllocaPoisonCallVec.clear(); 962 DynamicAllocaPoisonCallVec.clear(); 963 } 964 965 processDynamicAllocas(); 966 processStaticAllocas(); 967 968 if (ClDebugStack) { 969 LLVM_DEBUG(dbgs() << F); 970 } 971 return true; 972 } 973 974 // Arguments marked with the "byval" attribute are implicitly copied without 975 // using an alloca instruction. To produce redzones for those arguments, we 976 // copy them a second time into memory allocated with an alloca instruction. 977 void copyArgsPassedByValToAllocas(); 978 979 // Finds all Alloca instructions and puts 980 // poisoned red zones around all of them. 981 // Then unpoison everything back before the function returns. 982 void processStaticAllocas(); 983 void processDynamicAllocas(); 984 985 void createDynamicAllocasInitStorage(); 986 987 // ----------------------- Visitors. 988 /// Collect all Ret instructions. 989 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 990 991 /// Collect all Resume instructions. 992 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 993 994 /// Collect all CatchReturnInst instructions. 995 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 996 997 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 998 Value *SavedStack) { 999 IRBuilder<> IRB(InstBefore); 1000 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1001 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1002 // need to adjust extracted SP to compute the address of the most recent 1003 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1004 // this purpose. 1005 if (!isa<ReturnInst>(InstBefore)) { 1006 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1007 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1008 {IntptrTy}); 1009 1010 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1011 1012 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1013 DynamicAreaOffset); 1014 } 1015 1016 IRB.CreateCall( 1017 AsanAllocasUnpoisonFunc, 1018 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1019 } 1020 1021 // Unpoison dynamic allocas redzones. 1022 void unpoisonDynamicAllocas() { 1023 for (Instruction *Ret : RetVec) 1024 unpoisonDynamicAllocasBeforeInst(adjustForMusttailCall(Ret), 1025 DynamicAllocaLayout); 1026 1027 for (Instruction *StackRestoreInst : StackRestoreVec) 1028 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1029 StackRestoreInst->getOperand(0)); 1030 } 1031 1032 // Deploy and poison redzones around dynamic alloca call. To do this, we 1033 // should replace this call with another one with changed parameters and 1034 // replace all its uses with new address, so 1035 // addr = alloca type, old_size, align 1036 // is replaced by 1037 // new_size = (old_size + additional_size) * sizeof(type) 1038 // tmp = alloca i8, new_size, max(align, 32) 1039 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1040 // Additional_size is added to make new memory allocation contain not only 1041 // requested memory, but also left, partial and right redzones. 1042 void handleDynamicAllocaCall(AllocaInst *AI); 1043 1044 /// Collect Alloca instructions we want (and can) handle. 1045 void visitAllocaInst(AllocaInst &AI) { 1046 if (!ASan.isInterestingAlloca(AI)) { 1047 if (AI.isStaticAlloca()) { 1048 // Skip over allocas that are present *before* the first instrumented 1049 // alloca, we don't want to move those around. 1050 if (AllocaVec.empty()) 1051 return; 1052 1053 StaticAllocasToMoveUp.push_back(&AI); 1054 } 1055 return; 1056 } 1057 1058 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1059 if (!AI.isStaticAlloca()) 1060 DynamicAllocaVec.push_back(&AI); 1061 else 1062 AllocaVec.push_back(&AI); 1063 } 1064 1065 /// Collect lifetime intrinsic calls to check for use-after-scope 1066 /// errors. 1067 void visitIntrinsicInst(IntrinsicInst &II) { 1068 Intrinsic::ID ID = II.getIntrinsicID(); 1069 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1070 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1071 if (!ASan.UseAfterScope) 1072 return; 1073 if (!II.isLifetimeStartOrEnd()) 1074 return; 1075 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1076 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1077 // If size argument is undefined, don't do anything. 1078 if (Size->isMinusOne()) return; 1079 // Check that size doesn't saturate uint64_t and can 1080 // be stored in IntptrTy. 1081 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1082 if (SizeValue == ~0ULL || 1083 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1084 return; 1085 // Find alloca instruction that corresponds to llvm.lifetime argument. 1086 // Currently we can only handle lifetime markers pointing to the 1087 // beginning of the alloca. 1088 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1089 if (!AI) { 1090 HasUntracedLifetimeIntrinsic = true; 1091 return; 1092 } 1093 // We're interested only in allocas we can handle. 1094 if (!ASan.isInterestingAlloca(*AI)) 1095 return; 1096 bool DoPoison = (ID == Intrinsic::lifetime_end); 1097 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1098 if (AI->isStaticAlloca()) 1099 StaticAllocaPoisonCallVec.push_back(APC); 1100 else if (ClInstrumentDynamicAllocas) 1101 DynamicAllocaPoisonCallVec.push_back(APC); 1102 } 1103 1104 void visitCallBase(CallBase &CB) { 1105 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1106 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1107 HasReturnsTwiceCall |= CI->canReturnTwice(); 1108 } 1109 } 1110 1111 // ---------------------- Helpers. 1112 void initializeCallbacks(Module &M); 1113 1114 // Copies bytes from ShadowBytes into shadow memory for indexes where 1115 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1116 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1117 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1118 IRBuilder<> &IRB, Value *ShadowBase); 1119 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1120 size_t Begin, size_t End, IRBuilder<> &IRB, 1121 Value *ShadowBase); 1122 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1123 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1124 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1125 1126 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1127 1128 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1129 bool Dynamic); 1130 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1131 Instruction *ThenTerm, Value *ValueIfFalse); 1132 }; 1133 1134 } // end anonymous namespace 1135 1136 void LocationMetadata::parse(MDNode *MDN) { 1137 assert(MDN->getNumOperands() == 3); 1138 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1139 Filename = DIFilename->getString(); 1140 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1141 ColumnNo = 1142 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1143 } 1144 1145 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1146 // we want to sanitize instead and reading this metadata on each pass over a 1147 // function instead of reading module level metadata at first. 1148 GlobalsMetadata::GlobalsMetadata(Module &M) { 1149 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1150 if (!Globals) 1151 return; 1152 for (auto MDN : Globals->operands()) { 1153 // Metadata node contains the global and the fields of "Entry". 1154 assert(MDN->getNumOperands() == 5); 1155 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1156 // The optimizer may optimize away a global entirely. 1157 if (!V) 1158 continue; 1159 auto *StrippedV = V->stripPointerCasts(); 1160 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1161 if (!GV) 1162 continue; 1163 // We can already have an entry for GV if it was merged with another 1164 // global. 1165 Entry &E = Entries[GV]; 1166 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1167 E.SourceLoc.parse(Loc); 1168 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1169 E.Name = Name->getString(); 1170 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1171 E.IsDynInit |= IsDynInit->isOne(); 1172 ConstantInt *IsExcluded = 1173 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1174 E.IsExcluded |= IsExcluded->isOne(); 1175 } 1176 } 1177 1178 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1179 1180 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1181 ModuleAnalysisManager &AM) { 1182 return GlobalsMetadata(M); 1183 } 1184 1185 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1186 bool UseAfterScope) 1187 : CompileKernel(CompileKernel), Recover(Recover), 1188 UseAfterScope(UseAfterScope) {} 1189 1190 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1191 AnalysisManager<Function> &AM) { 1192 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1193 Module &M = *F.getParent(); 1194 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1195 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1196 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1197 if (Sanitizer.instrumentFunction(F, TLI)) 1198 return PreservedAnalyses::none(); 1199 return PreservedAnalyses::all(); 1200 } 1201 1202 report_fatal_error( 1203 "The ASanGlobalsMetadataAnalysis is required to run before " 1204 "AddressSanitizer can run"); 1205 return PreservedAnalyses::all(); 1206 } 1207 1208 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1209 bool Recover, 1210 bool UseGlobalGC, 1211 bool UseOdrIndicator) 1212 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1213 UseOdrIndicator(UseOdrIndicator) {} 1214 1215 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1216 AnalysisManager<Module> &AM) { 1217 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1218 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1219 UseGlobalGC, UseOdrIndicator); 1220 if (Sanitizer.instrumentModule(M)) 1221 return PreservedAnalyses::none(); 1222 return PreservedAnalyses::all(); 1223 } 1224 1225 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1226 "Read metadata to mark which globals should be instrumented " 1227 "when running ASan.", 1228 false, true) 1229 1230 char AddressSanitizerLegacyPass::ID = 0; 1231 1232 INITIALIZE_PASS_BEGIN( 1233 AddressSanitizerLegacyPass, "asan", 1234 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1235 false) 1236 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1237 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1238 INITIALIZE_PASS_END( 1239 AddressSanitizerLegacyPass, "asan", 1240 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1241 false) 1242 1243 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1244 bool Recover, 1245 bool UseAfterScope) { 1246 assert(!CompileKernel || Recover); 1247 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1248 } 1249 1250 char ModuleAddressSanitizerLegacyPass::ID = 0; 1251 1252 INITIALIZE_PASS( 1253 ModuleAddressSanitizerLegacyPass, "asan-module", 1254 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1255 "ModulePass", 1256 false, false) 1257 1258 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1259 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1260 assert(!CompileKernel || Recover); 1261 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1262 UseGlobalsGC, UseOdrIndicator); 1263 } 1264 1265 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1266 size_t Res = countTrailingZeros(TypeSize / 8); 1267 assert(Res < kNumberOfAccessSizes); 1268 return Res; 1269 } 1270 1271 /// Create a global describing a source location. 1272 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1273 LocationMetadata MD) { 1274 Constant *LocData[] = { 1275 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1276 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1277 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1278 }; 1279 auto LocStruct = ConstantStruct::getAnon(LocData); 1280 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1281 GlobalValue::PrivateLinkage, LocStruct, 1282 kAsanGenPrefix); 1283 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1284 return GV; 1285 } 1286 1287 /// Check if \p G has been created by a trusted compiler pass. 1288 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1289 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1290 if (G->getName().startswith("llvm.")) 1291 return true; 1292 1293 // Do not instrument asan globals. 1294 if (G->getName().startswith(kAsanGenPrefix) || 1295 G->getName().startswith(kSanCovGenPrefix) || 1296 G->getName().startswith(kODRGenPrefix)) 1297 return true; 1298 1299 // Do not instrument gcov counter arrays. 1300 if (G->getName() == "__llvm_gcov_ctr") 1301 return true; 1302 1303 return false; 1304 } 1305 1306 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1307 // Shadow >> scale 1308 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1309 if (Mapping.Offset == 0) return Shadow; 1310 // (Shadow >> scale) | offset 1311 Value *ShadowBase; 1312 if (LocalDynamicShadow) 1313 ShadowBase = LocalDynamicShadow; 1314 else 1315 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1316 if (Mapping.OrShadowOffset) 1317 return IRB.CreateOr(Shadow, ShadowBase); 1318 else 1319 return IRB.CreateAdd(Shadow, ShadowBase); 1320 } 1321 1322 // Instrument memset/memmove/memcpy 1323 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1324 IRBuilder<> IRB(MI); 1325 if (isa<MemTransferInst>(MI)) { 1326 IRB.CreateCall( 1327 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1328 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1329 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1330 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1331 } else if (isa<MemSetInst>(MI)) { 1332 IRB.CreateCall( 1333 AsanMemset, 1334 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1335 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1336 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1337 } 1338 MI->eraseFromParent(); 1339 } 1340 1341 /// Check if we want (and can) handle this alloca. 1342 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1343 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1344 1345 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1346 return PreviouslySeenAllocaInfo->getSecond(); 1347 1348 bool IsInteresting = 1349 (AI.getAllocatedType()->isSized() && 1350 // alloca() may be called with 0 size, ignore it. 1351 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1352 // We are only interested in allocas not promotable to registers. 1353 // Promotable allocas are common under -O0. 1354 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1355 // inalloca allocas are not treated as static, and we don't want 1356 // dynamic alloca instrumentation for them as well. 1357 !AI.isUsedWithInAlloca() && 1358 // swifterror allocas are register promoted by ISel 1359 !AI.isSwiftError()); 1360 1361 ProcessedAllocas[&AI] = IsInteresting; 1362 return IsInteresting; 1363 } 1364 1365 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1366 // Do not instrument acesses from different address spaces; we cannot deal 1367 // with them. 1368 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1369 if (PtrTy->getPointerAddressSpace() != 0) 1370 return true; 1371 1372 // Ignore swifterror addresses. 1373 // swifterror memory addresses are mem2reg promoted by instruction 1374 // selection. As such they cannot have regular uses like an instrumentation 1375 // function and it makes no sense to track them as memory. 1376 if (Ptr->isSwiftError()) 1377 return true; 1378 1379 // Treat memory accesses to promotable allocas as non-interesting since they 1380 // will not cause memory violations. This greatly speeds up the instrumented 1381 // executable at -O0. 1382 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1383 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1384 return true; 1385 1386 return false; 1387 } 1388 1389 void AddressSanitizer::getInterestingMemoryOperands( 1390 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1391 // Skip memory accesses inserted by another instrumentation. 1392 if (I->hasMetadata("nosanitize")) 1393 return; 1394 1395 // Do not instrument the load fetching the dynamic shadow address. 1396 if (LocalDynamicShadow == I) 1397 return; 1398 1399 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1400 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1401 return; 1402 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1403 LI->getType(), LI->getAlign()); 1404 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1405 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1406 return; 1407 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1408 SI->getValueOperand()->getType(), SI->getAlign()); 1409 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1410 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1411 return; 1412 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1413 RMW->getValOperand()->getType(), None); 1414 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1415 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1416 return; 1417 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1418 XCHG->getCompareOperand()->getType(), None); 1419 } else if (auto CI = dyn_cast<CallInst>(I)) { 1420 auto *F = CI->getCalledFunction(); 1421 if (F && (F->getName().startswith("llvm.masked.load.") || 1422 F->getName().startswith("llvm.masked.store."))) { 1423 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1424 // Masked store has an initial operand for the value. 1425 unsigned OpOffset = IsWrite ? 1 : 0; 1426 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1427 return; 1428 1429 auto BasePtr = CI->getOperand(OpOffset); 1430 if (ignoreAccess(BasePtr)) 1431 return; 1432 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1433 MaybeAlign Alignment = Align(1); 1434 // Otherwise no alignment guarantees. We probably got Undef. 1435 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1436 Alignment = Op->getMaybeAlignValue(); 1437 Value *Mask = CI->getOperand(2 + OpOffset); 1438 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1439 } else { 1440 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { 1441 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1442 ignoreAccess(CI->getArgOperand(ArgNo))) 1443 continue; 1444 Type *Ty = CI->getParamByValType(ArgNo); 1445 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1446 } 1447 } 1448 } 1449 } 1450 1451 static bool isPointerOperand(Value *V) { 1452 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1453 } 1454 1455 // This is a rough heuristic; it may cause both false positives and 1456 // false negatives. The proper implementation requires cooperation with 1457 // the frontend. 1458 static bool isInterestingPointerComparison(Instruction *I) { 1459 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1460 if (!Cmp->isRelational()) 1461 return false; 1462 } else { 1463 return false; 1464 } 1465 return isPointerOperand(I->getOperand(0)) && 1466 isPointerOperand(I->getOperand(1)); 1467 } 1468 1469 // This is a rough heuristic; it may cause both false positives and 1470 // false negatives. The proper implementation requires cooperation with 1471 // the frontend. 1472 static bool isInterestingPointerSubtraction(Instruction *I) { 1473 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1474 if (BO->getOpcode() != Instruction::Sub) 1475 return false; 1476 } else { 1477 return false; 1478 } 1479 return isPointerOperand(I->getOperand(0)) && 1480 isPointerOperand(I->getOperand(1)); 1481 } 1482 1483 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1484 // If a global variable does not have dynamic initialization we don't 1485 // have to instrument it. However, if a global does not have initializer 1486 // at all, we assume it has dynamic initializer (in other TU). 1487 // 1488 // FIXME: Metadata should be attched directly to the global directly instead 1489 // of being added to llvm.asan.globals. 1490 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1491 } 1492 1493 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1494 Instruction *I) { 1495 IRBuilder<> IRB(I); 1496 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1497 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1498 for (Value *&i : Param) { 1499 if (i->getType()->isPointerTy()) 1500 i = IRB.CreatePointerCast(i, IntptrTy); 1501 } 1502 IRB.CreateCall(F, Param); 1503 } 1504 1505 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1506 Instruction *InsertBefore, Value *Addr, 1507 MaybeAlign Alignment, unsigned Granularity, 1508 uint32_t TypeSize, bool IsWrite, 1509 Value *SizeArgument, bool UseCalls, 1510 uint32_t Exp) { 1511 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1512 // if the data is properly aligned. 1513 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1514 TypeSize == 128) && 1515 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1516 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1517 nullptr, UseCalls, Exp); 1518 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1519 IsWrite, nullptr, UseCalls, Exp); 1520 } 1521 1522 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1523 const DataLayout &DL, Type *IntptrTy, 1524 Value *Mask, Instruction *I, 1525 Value *Addr, MaybeAlign Alignment, 1526 unsigned Granularity, uint32_t TypeSize, 1527 bool IsWrite, Value *SizeArgument, 1528 bool UseCalls, uint32_t Exp) { 1529 auto *VTy = cast<FixedVectorType>( 1530 cast<PointerType>(Addr->getType())->getElementType()); 1531 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1532 unsigned Num = VTy->getNumElements(); 1533 auto Zero = ConstantInt::get(IntptrTy, 0); 1534 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1535 Value *InstrumentedAddress = nullptr; 1536 Instruction *InsertBefore = I; 1537 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1538 // dyn_cast as we might get UndefValue 1539 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1540 if (Masked->isZero()) 1541 // Mask is constant false, so no instrumentation needed. 1542 continue; 1543 // If we have a true or undef value, fall through to doInstrumentAddress 1544 // with InsertBefore == I 1545 } 1546 } else { 1547 IRBuilder<> IRB(I); 1548 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1549 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1550 InsertBefore = ThenTerm; 1551 } 1552 1553 IRBuilder<> IRB(InsertBefore); 1554 InstrumentedAddress = 1555 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1556 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1557 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1558 UseCalls, Exp); 1559 } 1560 } 1561 1562 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1563 InterestingMemoryOperand &O, bool UseCalls, 1564 const DataLayout &DL) { 1565 Value *Addr = O.getPtr(); 1566 1567 // Optimization experiments. 1568 // The experiments can be used to evaluate potential optimizations that remove 1569 // instrumentation (assess false negatives). Instead of completely removing 1570 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1571 // experiments that want to remove instrumentation of this instruction). 1572 // If Exp is non-zero, this pass will emit special calls into runtime 1573 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1574 // make runtime terminate the program in a special way (with a different 1575 // exit status). Then you run the new compiler on a buggy corpus, collect 1576 // the special terminations (ideally, you don't see them at all -- no false 1577 // negatives) and make the decision on the optimization. 1578 uint32_t Exp = ClForceExperiment; 1579 1580 if (ClOpt && ClOptGlobals) { 1581 // If initialization order checking is disabled, a simple access to a 1582 // dynamically initialized global is always valid. 1583 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1584 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1585 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1586 NumOptimizedAccessesToGlobalVar++; 1587 return; 1588 } 1589 } 1590 1591 if (ClOpt && ClOptStack) { 1592 // A direct inbounds access to a stack variable is always valid. 1593 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1594 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1595 NumOptimizedAccessesToStackVar++; 1596 return; 1597 } 1598 } 1599 1600 if (O.IsWrite) 1601 NumInstrumentedWrites++; 1602 else 1603 NumInstrumentedReads++; 1604 1605 unsigned Granularity = 1 << Mapping.Scale; 1606 if (O.MaybeMask) { 1607 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1608 Addr, O.Alignment, Granularity, O.TypeSize, 1609 O.IsWrite, nullptr, UseCalls, Exp); 1610 } else { 1611 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1612 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1613 Exp); 1614 } 1615 } 1616 1617 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1618 Value *Addr, bool IsWrite, 1619 size_t AccessSizeIndex, 1620 Value *SizeArgument, 1621 uint32_t Exp) { 1622 IRBuilder<> IRB(InsertBefore); 1623 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1624 CallInst *Call = nullptr; 1625 if (SizeArgument) { 1626 if (Exp == 0) 1627 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1628 {Addr, SizeArgument}); 1629 else 1630 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1631 {Addr, SizeArgument, ExpVal}); 1632 } else { 1633 if (Exp == 0) 1634 Call = 1635 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1636 else 1637 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1638 {Addr, ExpVal}); 1639 } 1640 1641 Call->setCannotMerge(); 1642 return Call; 1643 } 1644 1645 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1646 Value *ShadowValue, 1647 uint32_t TypeSize) { 1648 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1649 // Addr & (Granularity - 1) 1650 Value *LastAccessedByte = 1651 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1652 // (Addr & (Granularity - 1)) + size - 1 1653 if (TypeSize / 8 > 1) 1654 LastAccessedByte = IRB.CreateAdd( 1655 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1656 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1657 LastAccessedByte = 1658 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1659 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1660 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1661 } 1662 1663 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1664 Instruction *InsertBefore, Value *Addr, 1665 uint32_t TypeSize, bool IsWrite, 1666 Value *SizeArgument, bool UseCalls, 1667 uint32_t Exp) { 1668 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1669 1670 IRBuilder<> IRB(InsertBefore); 1671 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1672 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1673 1674 if (UseCalls) { 1675 if (Exp == 0) 1676 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1677 AddrLong); 1678 else 1679 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1680 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1681 return; 1682 } 1683 1684 if (IsMyriad) { 1685 // Strip the cache bit and do range check. 1686 // AddrLong &= ~kMyriadCacheBitMask32 1687 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1688 // Tag = AddrLong >> kMyriadTagShift 1689 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1690 // Tag == kMyriadDDRTag 1691 Value *TagCheck = 1692 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1693 1694 Instruction *TagCheckTerm = 1695 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1696 MDBuilder(*C).createBranchWeights(1, 100000)); 1697 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1698 IRB.SetInsertPoint(TagCheckTerm); 1699 InsertBefore = TagCheckTerm; 1700 } 1701 1702 Type *ShadowTy = 1703 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1704 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1705 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1706 Value *CmpVal = Constant::getNullValue(ShadowTy); 1707 Value *ShadowValue = 1708 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1709 1710 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1711 size_t Granularity = 1ULL << Mapping.Scale; 1712 Instruction *CrashTerm = nullptr; 1713 1714 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1715 // We use branch weights for the slow path check, to indicate that the slow 1716 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1717 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1718 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1719 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1720 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1721 IRB.SetInsertPoint(CheckTerm); 1722 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1723 if (Recover) { 1724 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1725 } else { 1726 BasicBlock *CrashBlock = 1727 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1728 CrashTerm = new UnreachableInst(*C, CrashBlock); 1729 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1730 ReplaceInstWithInst(CheckTerm, NewTerm); 1731 } 1732 } else { 1733 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1734 } 1735 1736 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1737 AccessSizeIndex, SizeArgument, Exp); 1738 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1739 } 1740 1741 // Instrument unusual size or unusual alignment. 1742 // We can not do it with a single check, so we do 1-byte check for the first 1743 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1744 // to report the actual access size. 1745 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1746 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1747 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1748 IRBuilder<> IRB(InsertBefore); 1749 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1750 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1751 if (UseCalls) { 1752 if (Exp == 0) 1753 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1754 {AddrLong, Size}); 1755 else 1756 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1757 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1758 } else { 1759 Value *LastByte = IRB.CreateIntToPtr( 1760 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1761 Addr->getType()); 1762 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1763 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1764 } 1765 } 1766 1767 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1768 GlobalValue *ModuleName) { 1769 // Set up the arguments to our poison/unpoison functions. 1770 IRBuilder<> IRB(&GlobalInit.front(), 1771 GlobalInit.front().getFirstInsertionPt()); 1772 1773 // Add a call to poison all external globals before the given function starts. 1774 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1775 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1776 1777 // Add calls to unpoison all globals before each return instruction. 1778 for (auto &BB : GlobalInit.getBasicBlockList()) 1779 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1780 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1781 } 1782 1783 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1784 Module &M, GlobalValue *ModuleName) { 1785 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1786 if (!GV) 1787 return; 1788 1789 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1790 if (!CA) 1791 return; 1792 1793 for (Use &OP : CA->operands()) { 1794 if (isa<ConstantAggregateZero>(OP)) continue; 1795 ConstantStruct *CS = cast<ConstantStruct>(OP); 1796 1797 // Must have a function or null ptr. 1798 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1799 if (F->getName() == kAsanModuleCtorName) continue; 1800 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1801 // Don't instrument CTORs that will run before asan.module_ctor. 1802 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1803 continue; 1804 poisonOneInitializer(*F, ModuleName); 1805 } 1806 } 1807 } 1808 1809 bool ModuleAddressSanitizer::canInstrumentAliasedGlobal( 1810 const GlobalAlias &GA) const { 1811 // In case this function should be expanded to include rules that do not just 1812 // apply when CompileKernel is true, either guard all existing rules with an 1813 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1814 // should also apply to user space. 1815 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1816 1817 // When compiling the kernel, globals that are aliased by symbols prefixed 1818 // by "__" are special and cannot be padded with a redzone. 1819 if (GA.getName().startswith("__")) 1820 return false; 1821 1822 return true; 1823 } 1824 1825 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1826 Type *Ty = G->getValueType(); 1827 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1828 1829 // FIXME: Metadata should be attched directly to the global directly instead 1830 // of being added to llvm.asan.globals. 1831 if (GlobalsMD.get(G).IsExcluded) return false; 1832 if (!Ty->isSized()) return false; 1833 if (!G->hasInitializer()) return false; 1834 // Only instrument globals of default address spaces 1835 if (G->getAddressSpace()) return false; 1836 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1837 // Two problems with thread-locals: 1838 // - The address of the main thread's copy can't be computed at link-time. 1839 // - Need to poison all copies, not just the main thread's one. 1840 if (G->isThreadLocal()) return false; 1841 // For now, just ignore this Global if the alignment is large. 1842 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1843 1844 // For non-COFF targets, only instrument globals known to be defined by this 1845 // TU. 1846 // FIXME: We can instrument comdat globals on ELF if we are using the 1847 // GC-friendly metadata scheme. 1848 if (!TargetTriple.isOSBinFormatCOFF()) { 1849 if (!G->hasExactDefinition() || G->hasComdat()) 1850 return false; 1851 } else { 1852 // On COFF, don't instrument non-ODR linkages. 1853 if (G->isInterposable()) 1854 return false; 1855 } 1856 1857 // If a comdat is present, it must have a selection kind that implies ODR 1858 // semantics: no duplicates, any, or exact match. 1859 if (Comdat *C = G->getComdat()) { 1860 switch (C->getSelectionKind()) { 1861 case Comdat::Any: 1862 case Comdat::ExactMatch: 1863 case Comdat::NoDuplicates: 1864 break; 1865 case Comdat::Largest: 1866 case Comdat::SameSize: 1867 return false; 1868 } 1869 } 1870 1871 if (G->hasSection()) { 1872 // The kernel uses explicit sections for mostly special global variables 1873 // that we should not instrument. E.g. the kernel may rely on their layout 1874 // without redzones, or remove them at link time ("discard.*"), etc. 1875 if (CompileKernel) 1876 return false; 1877 1878 StringRef Section = G->getSection(); 1879 1880 // Globals from llvm.metadata aren't emitted, do not instrument them. 1881 if (Section == "llvm.metadata") return false; 1882 // Do not instrument globals from special LLVM sections. 1883 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1884 1885 // Do not instrument function pointers to initialization and termination 1886 // routines: dynamic linker will not properly handle redzones. 1887 if (Section.startswith(".preinit_array") || 1888 Section.startswith(".init_array") || 1889 Section.startswith(".fini_array")) { 1890 return false; 1891 } 1892 1893 // Do not instrument user-defined sections (with names resembling 1894 // valid C identifiers) 1895 if (TargetTriple.isOSBinFormatELF()) { 1896 if (std::all_of(Section.begin(), Section.end(), 1897 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 1898 return false; 1899 } 1900 1901 // On COFF, if the section name contains '$', it is highly likely that the 1902 // user is using section sorting to create an array of globals similar to 1903 // the way initialization callbacks are registered in .init_array and 1904 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1905 // to such globals is counterproductive, because the intent is that they 1906 // will form an array, and out-of-bounds accesses are expected. 1907 // See https://github.com/google/sanitizers/issues/305 1908 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1909 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1910 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1911 << *G << "\n"); 1912 return false; 1913 } 1914 1915 if (TargetTriple.isOSBinFormatMachO()) { 1916 StringRef ParsedSegment, ParsedSection; 1917 unsigned TAA = 0, StubSize = 0; 1918 bool TAAParsed; 1919 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1920 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1921 assert(ErrorCode.empty() && "Invalid section specifier."); 1922 1923 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1924 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1925 // them. 1926 if (ParsedSegment == "__OBJC" || 1927 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1928 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1929 return false; 1930 } 1931 // See https://github.com/google/sanitizers/issues/32 1932 // Constant CFString instances are compiled in the following way: 1933 // -- the string buffer is emitted into 1934 // __TEXT,__cstring,cstring_literals 1935 // -- the constant NSConstantString structure referencing that buffer 1936 // is placed into __DATA,__cfstring 1937 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1938 // Moreover, it causes the linker to crash on OS X 10.7 1939 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1940 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1941 return false; 1942 } 1943 // The linker merges the contents of cstring_literals and removes the 1944 // trailing zeroes. 1945 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1946 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1947 return false; 1948 } 1949 } 1950 } 1951 1952 if (CompileKernel) { 1953 // Globals that prefixed by "__" are special and cannot be padded with a 1954 // redzone. 1955 if (G->getName().startswith("__")) 1956 return false; 1957 } 1958 1959 return true; 1960 } 1961 1962 // On Mach-O platforms, we emit global metadata in a separate section of the 1963 // binary in order to allow the linker to properly dead strip. This is only 1964 // supported on recent versions of ld64. 1965 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1966 if (!TargetTriple.isOSBinFormatMachO()) 1967 return false; 1968 1969 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1970 return true; 1971 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1972 return true; 1973 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1974 return true; 1975 1976 return false; 1977 } 1978 1979 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1980 switch (TargetTriple.getObjectFormat()) { 1981 case Triple::COFF: return ".ASAN$GL"; 1982 case Triple::ELF: return "asan_globals"; 1983 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1984 case Triple::Wasm: 1985 case Triple::GOFF: 1986 case Triple::XCOFF: 1987 report_fatal_error( 1988 "ModuleAddressSanitizer not implemented for object file format"); 1989 case Triple::UnknownObjectFormat: 1990 break; 1991 } 1992 llvm_unreachable("unsupported object format"); 1993 } 1994 1995 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1996 IRBuilder<> IRB(*C); 1997 1998 // Declare our poisoning and unpoisoning functions. 1999 AsanPoisonGlobals = 2000 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2001 AsanUnpoisonGlobals = 2002 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2003 2004 // Declare functions that register/unregister globals. 2005 AsanRegisterGlobals = M.getOrInsertFunction( 2006 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2007 AsanUnregisterGlobals = M.getOrInsertFunction( 2008 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2009 2010 // Declare the functions that find globals in a shared object and then invoke 2011 // the (un)register function on them. 2012 AsanRegisterImageGlobals = M.getOrInsertFunction( 2013 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2014 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2015 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2016 2017 AsanRegisterElfGlobals = 2018 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2019 IntptrTy, IntptrTy, IntptrTy); 2020 AsanUnregisterElfGlobals = 2021 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2022 IntptrTy, IntptrTy, IntptrTy); 2023 } 2024 2025 // Put the metadata and the instrumented global in the same group. This ensures 2026 // that the metadata is discarded if the instrumented global is discarded. 2027 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2028 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2029 Module &M = *G->getParent(); 2030 Comdat *C = G->getComdat(); 2031 if (!C) { 2032 if (!G->hasName()) { 2033 // If G is unnamed, it must be internal. Give it an artificial name 2034 // so we can put it in a comdat. 2035 assert(G->hasLocalLinkage()); 2036 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2037 } 2038 2039 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2040 std::string Name = std::string(G->getName()); 2041 Name += InternalSuffix; 2042 C = M.getOrInsertComdat(Name); 2043 } else { 2044 C = M.getOrInsertComdat(G->getName()); 2045 } 2046 2047 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2048 // linkage to internal linkage so that a symbol table entry is emitted. This 2049 // is necessary in order to create the comdat group. 2050 if (TargetTriple.isOSBinFormatCOFF()) { 2051 C->setSelectionKind(Comdat::NoDuplicates); 2052 if (G->hasPrivateLinkage()) 2053 G->setLinkage(GlobalValue::InternalLinkage); 2054 } 2055 G->setComdat(C); 2056 } 2057 2058 assert(G->hasComdat()); 2059 Metadata->setComdat(G->getComdat()); 2060 } 2061 2062 // Create a separate metadata global and put it in the appropriate ASan 2063 // global registration section. 2064 GlobalVariable * 2065 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2066 StringRef OriginalName) { 2067 auto Linkage = TargetTriple.isOSBinFormatMachO() 2068 ? GlobalVariable::InternalLinkage 2069 : GlobalVariable::PrivateLinkage; 2070 GlobalVariable *Metadata = new GlobalVariable( 2071 M, Initializer->getType(), false, Linkage, Initializer, 2072 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2073 Metadata->setSection(getGlobalMetadataSection()); 2074 return Metadata; 2075 } 2076 2077 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2078 AsanDtorFunction = 2079 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 2080 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 2081 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2082 2083 return ReturnInst::Create(*C, AsanDtorBB); 2084 } 2085 2086 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2087 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2088 ArrayRef<Constant *> MetadataInitializers) { 2089 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2090 auto &DL = M.getDataLayout(); 2091 2092 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2093 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2094 Constant *Initializer = MetadataInitializers[i]; 2095 GlobalVariable *G = ExtendedGlobals[i]; 2096 GlobalVariable *Metadata = 2097 CreateMetadataGlobal(M, Initializer, G->getName()); 2098 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2099 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2100 MetadataGlobals[i] = Metadata; 2101 2102 // The MSVC linker always inserts padding when linking incrementally. We 2103 // cope with that by aligning each struct to its size, which must be a power 2104 // of two. 2105 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2106 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2107 "global metadata will not be padded appropriately"); 2108 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2109 2110 SetComdatForGlobalMetadata(G, Metadata, ""); 2111 } 2112 2113 // Update llvm.compiler.used, adding the new metadata globals. This is 2114 // needed so that during LTO these variables stay alive. 2115 if (!MetadataGlobals.empty()) 2116 appendToCompilerUsed(M, MetadataGlobals); 2117 } 2118 2119 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2120 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2121 ArrayRef<Constant *> MetadataInitializers, 2122 const std::string &UniqueModuleId) { 2123 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2124 2125 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2126 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2127 GlobalVariable *G = ExtendedGlobals[i]; 2128 GlobalVariable *Metadata = 2129 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2130 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2131 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2132 MetadataGlobals[i] = Metadata; 2133 2134 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2135 } 2136 2137 // Update llvm.compiler.used, adding the new metadata globals. This is 2138 // needed so that during LTO these variables stay alive. 2139 if (!MetadataGlobals.empty()) 2140 appendToCompilerUsed(M, MetadataGlobals); 2141 2142 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2143 // to look up the loaded image that contains it. Second, we can store in it 2144 // whether registration has already occurred, to prevent duplicate 2145 // registration. 2146 // 2147 // Common linkage ensures that there is only one global per shared library. 2148 GlobalVariable *RegisteredFlag = new GlobalVariable( 2149 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2150 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2151 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2152 2153 // Create start and stop symbols. 2154 GlobalVariable *StartELFMetadata = new GlobalVariable( 2155 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2156 "__start_" + getGlobalMetadataSection()); 2157 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2158 GlobalVariable *StopELFMetadata = new GlobalVariable( 2159 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2160 "__stop_" + getGlobalMetadataSection()); 2161 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2162 2163 // Create a call to register the globals with the runtime. 2164 IRB.CreateCall(AsanRegisterElfGlobals, 2165 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2166 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2167 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2168 2169 // We also need to unregister globals at the end, e.g., when a shared library 2170 // gets closed. 2171 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2172 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2173 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2174 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2175 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2176 } 2177 2178 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2179 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2180 ArrayRef<Constant *> MetadataInitializers) { 2181 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2182 2183 // On recent Mach-O platforms, use a structure which binds the liveness of 2184 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2185 // created to be added to llvm.compiler.used 2186 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2187 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2188 2189 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2190 Constant *Initializer = MetadataInitializers[i]; 2191 GlobalVariable *G = ExtendedGlobals[i]; 2192 GlobalVariable *Metadata = 2193 CreateMetadataGlobal(M, Initializer, G->getName()); 2194 2195 // On recent Mach-O platforms, we emit the global metadata in a way that 2196 // allows the linker to properly strip dead globals. 2197 auto LivenessBinder = 2198 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2199 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2200 GlobalVariable *Liveness = new GlobalVariable( 2201 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2202 Twine("__asan_binder_") + G->getName()); 2203 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2204 LivenessGlobals[i] = Liveness; 2205 } 2206 2207 // Update llvm.compiler.used, adding the new liveness globals. This is 2208 // needed so that during LTO these variables stay alive. The alternative 2209 // would be to have the linker handling the LTO symbols, but libLTO 2210 // current API does not expose access to the section for each symbol. 2211 if (!LivenessGlobals.empty()) 2212 appendToCompilerUsed(M, LivenessGlobals); 2213 2214 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2215 // to look up the loaded image that contains it. Second, we can store in it 2216 // whether registration has already occurred, to prevent duplicate 2217 // registration. 2218 // 2219 // common linkage ensures that there is only one global per shared library. 2220 GlobalVariable *RegisteredFlag = new GlobalVariable( 2221 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2222 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2223 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2224 2225 IRB.CreateCall(AsanRegisterImageGlobals, 2226 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2227 2228 // We also need to unregister globals at the end, e.g., when a shared library 2229 // gets closed. 2230 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2231 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2232 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2233 } 2234 2235 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2236 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2237 ArrayRef<Constant *> MetadataInitializers) { 2238 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2239 unsigned N = ExtendedGlobals.size(); 2240 assert(N > 0); 2241 2242 // On platforms that don't have a custom metadata section, we emit an array 2243 // of global metadata structures. 2244 ArrayType *ArrayOfGlobalStructTy = 2245 ArrayType::get(MetadataInitializers[0]->getType(), N); 2246 auto AllGlobals = new GlobalVariable( 2247 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2248 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2249 if (Mapping.Scale > 3) 2250 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2251 2252 IRB.CreateCall(AsanRegisterGlobals, 2253 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2254 ConstantInt::get(IntptrTy, N)}); 2255 2256 // We also need to unregister globals at the end, e.g., when a shared library 2257 // gets closed. 2258 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2259 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2260 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2261 ConstantInt::get(IntptrTy, N)}); 2262 } 2263 2264 // This function replaces all global variables with new variables that have 2265 // trailing redzones. It also creates a function that poisons 2266 // redzones and inserts this function into llvm.global_ctors. 2267 // Sets *CtorComdat to true if the global registration code emitted into the 2268 // asan constructor is comdat-compatible. 2269 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2270 bool *CtorComdat) { 2271 *CtorComdat = false; 2272 2273 // Build set of globals that are aliased by some GA, where 2274 // canInstrumentAliasedGlobal(GA) returns false. 2275 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2276 if (CompileKernel) { 2277 for (auto &GA : M.aliases()) { 2278 if (const auto *GV = dyn_cast<GlobalVariable>(GA.getAliasee())) { 2279 if (!canInstrumentAliasedGlobal(GA)) 2280 AliasedGlobalExclusions.insert(GV); 2281 } 2282 } 2283 } 2284 2285 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2286 for (auto &G : M.globals()) { 2287 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2288 GlobalsToChange.push_back(&G); 2289 } 2290 2291 size_t n = GlobalsToChange.size(); 2292 if (n == 0) { 2293 *CtorComdat = true; 2294 return false; 2295 } 2296 2297 auto &DL = M.getDataLayout(); 2298 2299 // A global is described by a structure 2300 // size_t beg; 2301 // size_t size; 2302 // size_t size_with_redzone; 2303 // const char *name; 2304 // const char *module_name; 2305 // size_t has_dynamic_init; 2306 // void *source_location; 2307 // size_t odr_indicator; 2308 // We initialize an array of such structures and pass it to a run-time call. 2309 StructType *GlobalStructTy = 2310 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2311 IntptrTy, IntptrTy, IntptrTy); 2312 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2313 SmallVector<Constant *, 16> Initializers(n); 2314 2315 bool HasDynamicallyInitializedGlobals = false; 2316 2317 // We shouldn't merge same module names, as this string serves as unique 2318 // module ID in runtime. 2319 GlobalVariable *ModuleName = createPrivateGlobalForString( 2320 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2321 2322 for (size_t i = 0; i < n; i++) { 2323 GlobalVariable *G = GlobalsToChange[i]; 2324 2325 // FIXME: Metadata should be attched directly to the global directly instead 2326 // of being added to llvm.asan.globals. 2327 auto MD = GlobalsMD.get(G); 2328 StringRef NameForGlobal = G->getName(); 2329 // Create string holding the global name (use global name from metadata 2330 // if it's available, otherwise just write the name of global variable). 2331 GlobalVariable *Name = createPrivateGlobalForString( 2332 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2333 /*AllowMerging*/ true, kAsanGenPrefix); 2334 2335 Type *Ty = G->getValueType(); 2336 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2337 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2338 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2339 2340 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2341 Constant *NewInitializer = ConstantStruct::get( 2342 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2343 2344 // Create a new global variable with enough space for a redzone. 2345 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2346 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2347 Linkage = GlobalValue::InternalLinkage; 2348 GlobalVariable *NewGlobal = 2349 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2350 "", G, G->getThreadLocalMode()); 2351 NewGlobal->copyAttributesFrom(G); 2352 NewGlobal->setComdat(G->getComdat()); 2353 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2354 // Don't fold globals with redzones. ODR violation detector and redzone 2355 // poisoning implicitly creates a dependence on the global's address, so it 2356 // is no longer valid for it to be marked unnamed_addr. 2357 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2358 2359 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2360 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2361 G->isConstant()) { 2362 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2363 if (Seq && Seq->isCString()) 2364 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2365 } 2366 2367 // Transfer the debug info and type metadata. The payload starts at offset 2368 // zero so we can copy the metadata over as is. 2369 NewGlobal->copyMetadata(G, 0); 2370 2371 Value *Indices2[2]; 2372 Indices2[0] = IRB.getInt32(0); 2373 Indices2[1] = IRB.getInt32(0); 2374 2375 G->replaceAllUsesWith( 2376 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2377 NewGlobal->takeName(G); 2378 G->eraseFromParent(); 2379 NewGlobals[i] = NewGlobal; 2380 2381 Constant *SourceLoc; 2382 if (!MD.SourceLoc.empty()) { 2383 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2384 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2385 } else { 2386 SourceLoc = ConstantInt::get(IntptrTy, 0); 2387 } 2388 2389 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2390 GlobalValue *InstrumentedGlobal = NewGlobal; 2391 2392 bool CanUsePrivateAliases = 2393 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2394 TargetTriple.isOSBinFormatWasm(); 2395 if (CanUsePrivateAliases && UsePrivateAlias) { 2396 // Create local alias for NewGlobal to avoid crash on ODR between 2397 // instrumented and non-instrumented libraries. 2398 InstrumentedGlobal = 2399 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2400 } 2401 2402 // ODR should not happen for local linkage. 2403 if (NewGlobal->hasLocalLinkage()) { 2404 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2405 IRB.getInt8PtrTy()); 2406 } else if (UseOdrIndicator) { 2407 // With local aliases, we need to provide another externally visible 2408 // symbol __odr_asan_XXX to detect ODR violation. 2409 auto *ODRIndicatorSym = 2410 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2411 Constant::getNullValue(IRB.getInt8Ty()), 2412 kODRGenPrefix + NameForGlobal, nullptr, 2413 NewGlobal->getThreadLocalMode()); 2414 2415 // Set meaningful attributes for indicator symbol. 2416 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2417 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2418 ODRIndicatorSym->setAlignment(Align(1)); 2419 ODRIndicator = ODRIndicatorSym; 2420 } 2421 2422 Constant *Initializer = ConstantStruct::get( 2423 GlobalStructTy, 2424 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2425 ConstantInt::get(IntptrTy, SizeInBytes), 2426 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2427 ConstantExpr::getPointerCast(Name, IntptrTy), 2428 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2429 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2430 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2431 2432 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2433 2434 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2435 2436 Initializers[i] = Initializer; 2437 } 2438 2439 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2440 // ConstantMerge'ing them. 2441 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2442 for (size_t i = 0; i < n; i++) { 2443 GlobalVariable *G = NewGlobals[i]; 2444 if (G->getName().empty()) continue; 2445 GlobalsToAddToUsedList.push_back(G); 2446 } 2447 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2448 2449 std::string ELFUniqueModuleId = 2450 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2451 : ""; 2452 2453 if (!ELFUniqueModuleId.empty()) { 2454 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2455 *CtorComdat = true; 2456 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2457 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2458 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2459 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2460 } else { 2461 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2462 } 2463 2464 // Create calls for poisoning before initializers run and unpoisoning after. 2465 if (HasDynamicallyInitializedGlobals) 2466 createInitializerPoisonCalls(M, ModuleName); 2467 2468 LLVM_DEBUG(dbgs() << M); 2469 return true; 2470 } 2471 2472 uint64_t 2473 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2474 constexpr uint64_t kMaxRZ = 1 << 18; 2475 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2476 2477 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2478 uint64_t RZ = 2479 std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2480 2481 // Round up to multiple of MinRZ. 2482 if (SizeInBytes % MinRZ) 2483 RZ += MinRZ - (SizeInBytes % MinRZ); 2484 assert((RZ + SizeInBytes) % MinRZ == 0); 2485 2486 return RZ; 2487 } 2488 2489 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2490 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2491 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2492 int Version = 8; 2493 // 32-bit Android is one version ahead because of the switch to dynamic 2494 // shadow. 2495 Version += (LongSize == 32 && isAndroid); 2496 return Version; 2497 } 2498 2499 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2500 initializeCallbacks(M); 2501 2502 // Create a module constructor. A destructor is created lazily because not all 2503 // platforms, and not all modules need it. 2504 if (CompileKernel) { 2505 // The kernel always builds with its own runtime, and therefore does not 2506 // need the init and version check calls. 2507 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2508 } else { 2509 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2510 std::string VersionCheckName = 2511 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2512 std::tie(AsanCtorFunction, std::ignore) = 2513 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2514 kAsanInitName, /*InitArgTypes=*/{}, 2515 /*InitArgs=*/{}, VersionCheckName); 2516 } 2517 2518 bool CtorComdat = true; 2519 if (ClGlobals) { 2520 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2521 InstrumentGlobals(IRB, M, &CtorComdat); 2522 } 2523 2524 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2525 2526 // Put the constructor and destructor in comdat if both 2527 // (1) global instrumentation is not TU-specific 2528 // (2) target is ELF. 2529 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2530 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2531 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2532 if (AsanDtorFunction) { 2533 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2534 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2535 } 2536 } else { 2537 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2538 if (AsanDtorFunction) 2539 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2540 } 2541 2542 return true; 2543 } 2544 2545 void AddressSanitizer::initializeCallbacks(Module &M) { 2546 IRBuilder<> IRB(*C); 2547 // Create __asan_report* callbacks. 2548 // IsWrite, TypeSize and Exp are encoded in the function name. 2549 for (int Exp = 0; Exp < 2; Exp++) { 2550 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2551 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2552 const std::string ExpStr = Exp ? "exp_" : ""; 2553 const std::string EndingStr = Recover ? "_noabort" : ""; 2554 2555 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2556 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2557 if (Exp) { 2558 Type *ExpType = Type::getInt32Ty(*C); 2559 Args2.push_back(ExpType); 2560 Args1.push_back(ExpType); 2561 } 2562 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2563 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2564 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2565 2566 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2567 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2568 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2569 2570 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2571 AccessSizeIndex++) { 2572 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2573 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2574 M.getOrInsertFunction( 2575 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2576 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2577 2578 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2579 M.getOrInsertFunction( 2580 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2581 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2582 } 2583 } 2584 } 2585 2586 const std::string MemIntrinCallbackPrefix = 2587 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2588 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2589 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2590 IRB.getInt8PtrTy(), IntptrTy); 2591 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2592 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2593 IRB.getInt8PtrTy(), IntptrTy); 2594 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2595 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2596 IRB.getInt32Ty(), IntptrTy); 2597 2598 AsanHandleNoReturnFunc = 2599 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2600 2601 AsanPtrCmpFunction = 2602 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2603 AsanPtrSubFunction = 2604 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2605 if (Mapping.InGlobal) 2606 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2607 ArrayType::get(IRB.getInt8Ty(), 0)); 2608 } 2609 2610 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2611 // For each NSObject descendant having a +load method, this method is invoked 2612 // by the ObjC runtime before any of the static constructors is called. 2613 // Therefore we need to instrument such methods with a call to __asan_init 2614 // at the beginning in order to initialize our runtime before any access to 2615 // the shadow memory. 2616 // We cannot just ignore these methods, because they may call other 2617 // instrumented functions. 2618 if (F.getName().find(" load]") != std::string::npos) { 2619 FunctionCallee AsanInitFunction = 2620 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2621 IRBuilder<> IRB(&F.front(), F.front().begin()); 2622 IRB.CreateCall(AsanInitFunction, {}); 2623 return true; 2624 } 2625 return false; 2626 } 2627 2628 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2629 // Generate code only when dynamic addressing is needed. 2630 if (Mapping.Offset != kDynamicShadowSentinel) 2631 return false; 2632 2633 IRBuilder<> IRB(&F.front().front()); 2634 if (Mapping.InGlobal) { 2635 if (ClWithIfuncSuppressRemat) { 2636 // An empty inline asm with input reg == output reg. 2637 // An opaque pointer-to-int cast, basically. 2638 InlineAsm *Asm = InlineAsm::get( 2639 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2640 StringRef(""), StringRef("=r,0"), 2641 /*hasSideEffects=*/false); 2642 LocalDynamicShadow = 2643 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2644 } else { 2645 LocalDynamicShadow = 2646 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2647 } 2648 } else { 2649 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2650 kAsanShadowMemoryDynamicAddress, IntptrTy); 2651 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2652 } 2653 return true; 2654 } 2655 2656 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2657 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2658 // to it as uninteresting. This assumes we haven't started processing allocas 2659 // yet. This check is done up front because iterating the use list in 2660 // isInterestingAlloca would be algorithmically slower. 2661 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2662 2663 // Try to get the declaration of llvm.localescape. If it's not in the module, 2664 // we can exit early. 2665 if (!F.getParent()->getFunction("llvm.localescape")) return; 2666 2667 // Look for a call to llvm.localescape call in the entry block. It can't be in 2668 // any other block. 2669 for (Instruction &I : F.getEntryBlock()) { 2670 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2671 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2672 // We found a call. Mark all the allocas passed in as uninteresting. 2673 for (Value *Arg : II->arg_operands()) { 2674 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2675 assert(AI && AI->isStaticAlloca() && 2676 "non-static alloca arg to localescape"); 2677 ProcessedAllocas[AI] = false; 2678 } 2679 break; 2680 } 2681 } 2682 } 2683 2684 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2685 bool ShouldInstrument = 2686 ClDebugMin < 0 || ClDebugMax < 0 || 2687 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2688 Instrumented++; 2689 return !ShouldInstrument; 2690 } 2691 2692 bool AddressSanitizer::instrumentFunction(Function &F, 2693 const TargetLibraryInfo *TLI) { 2694 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2695 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2696 if (F.getName().startswith("__asan_")) return false; 2697 2698 bool FunctionModified = false; 2699 2700 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2701 // This function needs to be called even if the function body is not 2702 // instrumented. 2703 if (maybeInsertAsanInitAtFunctionEntry(F)) 2704 FunctionModified = true; 2705 2706 // Leave if the function doesn't need instrumentation. 2707 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2708 2709 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2710 2711 initializeCallbacks(*F.getParent()); 2712 2713 FunctionStateRAII CleanupObj(this); 2714 2715 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2716 2717 // We can't instrument allocas used with llvm.localescape. Only static allocas 2718 // can be passed to that intrinsic. 2719 markEscapedLocalAllocas(F); 2720 2721 // We want to instrument every address only once per basic block (unless there 2722 // are calls between uses). 2723 SmallPtrSet<Value *, 16> TempsToInstrument; 2724 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2725 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2726 SmallVector<Instruction *, 8> NoReturnCalls; 2727 SmallVector<BasicBlock *, 16> AllBlocks; 2728 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2729 int NumAllocas = 0; 2730 2731 // Fill the set of memory operations to instrument. 2732 for (auto &BB : F) { 2733 AllBlocks.push_back(&BB); 2734 TempsToInstrument.clear(); 2735 int NumInsnsPerBB = 0; 2736 for (auto &Inst : BB) { 2737 if (LooksLikeCodeInBug11395(&Inst)) return false; 2738 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2739 getInterestingMemoryOperands(&Inst, InterestingOperands); 2740 2741 if (!InterestingOperands.empty()) { 2742 for (auto &Operand : InterestingOperands) { 2743 if (ClOpt && ClOptSameTemp) { 2744 Value *Ptr = Operand.getPtr(); 2745 // If we have a mask, skip instrumentation if we've already 2746 // instrumented the full object. But don't add to TempsToInstrument 2747 // because we might get another load/store with a different mask. 2748 if (Operand.MaybeMask) { 2749 if (TempsToInstrument.count(Ptr)) 2750 continue; // We've seen this (whole) temp in the current BB. 2751 } else { 2752 if (!TempsToInstrument.insert(Ptr).second) 2753 continue; // We've seen this temp in the current BB. 2754 } 2755 } 2756 OperandsToInstrument.push_back(Operand); 2757 NumInsnsPerBB++; 2758 } 2759 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2760 isInterestingPointerComparison(&Inst)) || 2761 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2762 isInterestingPointerSubtraction(&Inst))) { 2763 PointerComparisonsOrSubtracts.push_back(&Inst); 2764 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2765 // ok, take it. 2766 IntrinToInstrument.push_back(MI); 2767 NumInsnsPerBB++; 2768 } else { 2769 if (isa<AllocaInst>(Inst)) NumAllocas++; 2770 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2771 // A call inside BB. 2772 TempsToInstrument.clear(); 2773 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2774 NoReturnCalls.push_back(CB); 2775 } 2776 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2777 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2778 } 2779 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2780 } 2781 } 2782 2783 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2784 OperandsToInstrument.size() + IntrinToInstrument.size() > 2785 (unsigned)ClInstrumentationWithCallsThreshold); 2786 const DataLayout &DL = F.getParent()->getDataLayout(); 2787 ObjectSizeOpts ObjSizeOpts; 2788 ObjSizeOpts.RoundToAlign = true; 2789 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2790 2791 // Instrument. 2792 int NumInstrumented = 0; 2793 for (auto &Operand : OperandsToInstrument) { 2794 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2795 instrumentMop(ObjSizeVis, Operand, UseCalls, 2796 F.getParent()->getDataLayout()); 2797 FunctionModified = true; 2798 } 2799 for (auto Inst : IntrinToInstrument) { 2800 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2801 instrumentMemIntrinsic(Inst); 2802 FunctionModified = true; 2803 } 2804 2805 FunctionStackPoisoner FSP(F, *this); 2806 bool ChangedStack = FSP.runOnFunction(); 2807 2808 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2809 // See e.g. https://github.com/google/sanitizers/issues/37 2810 for (auto CI : NoReturnCalls) { 2811 IRBuilder<> IRB(CI); 2812 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2813 } 2814 2815 for (auto Inst : PointerComparisonsOrSubtracts) { 2816 instrumentPointerComparisonOrSubtraction(Inst); 2817 FunctionModified = true; 2818 } 2819 2820 if (ChangedStack || !NoReturnCalls.empty()) 2821 FunctionModified = true; 2822 2823 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2824 << F << "\n"); 2825 2826 return FunctionModified; 2827 } 2828 2829 // Workaround for bug 11395: we don't want to instrument stack in functions 2830 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2831 // FIXME: remove once the bug 11395 is fixed. 2832 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2833 if (LongSize != 32) return false; 2834 CallInst *CI = dyn_cast<CallInst>(I); 2835 if (!CI || !CI->isInlineAsm()) return false; 2836 if (CI->getNumArgOperands() <= 5) return false; 2837 // We have inline assembly with quite a few arguments. 2838 return true; 2839 } 2840 2841 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2842 IRBuilder<> IRB(*C); 2843 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2844 std::string Suffix = itostr(i); 2845 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2846 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2847 AsanStackFreeFunc[i] = 2848 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2849 IRB.getVoidTy(), IntptrTy, IntptrTy); 2850 } 2851 if (ASan.UseAfterScope) { 2852 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2853 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2854 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2855 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2856 } 2857 2858 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2859 std::ostringstream Name; 2860 Name << kAsanSetShadowPrefix; 2861 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2862 AsanSetShadowFunc[Val] = 2863 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2864 } 2865 2866 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2867 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2868 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2869 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2870 } 2871 2872 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2873 ArrayRef<uint8_t> ShadowBytes, 2874 size_t Begin, size_t End, 2875 IRBuilder<> &IRB, 2876 Value *ShadowBase) { 2877 if (Begin >= End) 2878 return; 2879 2880 const size_t LargestStoreSizeInBytes = 2881 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2882 2883 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2884 2885 // Poison given range in shadow using larges store size with out leading and 2886 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2887 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2888 // middle of a store. 2889 for (size_t i = Begin; i < End;) { 2890 if (!ShadowMask[i]) { 2891 assert(!ShadowBytes[i]); 2892 ++i; 2893 continue; 2894 } 2895 2896 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2897 // Fit store size into the range. 2898 while (StoreSizeInBytes > End - i) 2899 StoreSizeInBytes /= 2; 2900 2901 // Minimize store size by trimming trailing zeros. 2902 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2903 while (j <= StoreSizeInBytes / 2) 2904 StoreSizeInBytes /= 2; 2905 } 2906 2907 uint64_t Val = 0; 2908 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2909 if (IsLittleEndian) 2910 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2911 else 2912 Val = (Val << 8) | ShadowBytes[i + j]; 2913 } 2914 2915 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2916 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2917 IRB.CreateAlignedStore( 2918 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2919 Align(1)); 2920 2921 i += StoreSizeInBytes; 2922 } 2923 } 2924 2925 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2926 ArrayRef<uint8_t> ShadowBytes, 2927 IRBuilder<> &IRB, Value *ShadowBase) { 2928 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2929 } 2930 2931 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2932 ArrayRef<uint8_t> ShadowBytes, 2933 size_t Begin, size_t End, 2934 IRBuilder<> &IRB, Value *ShadowBase) { 2935 assert(ShadowMask.size() == ShadowBytes.size()); 2936 size_t Done = Begin; 2937 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2938 if (!ShadowMask[i]) { 2939 assert(!ShadowBytes[i]); 2940 continue; 2941 } 2942 uint8_t Val = ShadowBytes[i]; 2943 if (!AsanSetShadowFunc[Val]) 2944 continue; 2945 2946 // Skip same values. 2947 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2948 } 2949 2950 if (j - i >= ClMaxInlinePoisoningSize) { 2951 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2952 IRB.CreateCall(AsanSetShadowFunc[Val], 2953 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2954 ConstantInt::get(IntptrTy, j - i)}); 2955 Done = j; 2956 } 2957 } 2958 2959 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2960 } 2961 2962 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2963 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2964 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2965 assert(LocalStackSize <= kMaxStackMallocSize); 2966 uint64_t MaxSize = kMinStackMallocSize; 2967 for (int i = 0;; i++, MaxSize *= 2) 2968 if (LocalStackSize <= MaxSize) return i; 2969 llvm_unreachable("impossible LocalStackSize"); 2970 } 2971 2972 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2973 Instruction *CopyInsertPoint = &F.front().front(); 2974 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2975 // Insert after the dynamic shadow location is determined 2976 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2977 assert(CopyInsertPoint); 2978 } 2979 IRBuilder<> IRB(CopyInsertPoint); 2980 const DataLayout &DL = F.getParent()->getDataLayout(); 2981 for (Argument &Arg : F.args()) { 2982 if (Arg.hasByValAttr()) { 2983 Type *Ty = Arg.getParamByValType(); 2984 const Align Alignment = 2985 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2986 2987 AllocaInst *AI = IRB.CreateAlloca( 2988 Ty, nullptr, 2989 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2990 ".byval"); 2991 AI->setAlignment(Alignment); 2992 Arg.replaceAllUsesWith(AI); 2993 2994 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2995 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2996 } 2997 } 2998 } 2999 3000 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3001 Value *ValueIfTrue, 3002 Instruction *ThenTerm, 3003 Value *ValueIfFalse) { 3004 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3005 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3006 PHI->addIncoming(ValueIfFalse, CondBlock); 3007 BasicBlock *ThenBlock = ThenTerm->getParent(); 3008 PHI->addIncoming(ValueIfTrue, ThenBlock); 3009 return PHI; 3010 } 3011 3012 Value *FunctionStackPoisoner::createAllocaForLayout( 3013 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3014 AllocaInst *Alloca; 3015 if (Dynamic) { 3016 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3017 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3018 "MyAlloca"); 3019 } else { 3020 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3021 nullptr, "MyAlloca"); 3022 assert(Alloca->isStaticAlloca()); 3023 } 3024 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3025 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 3026 Alloca->setAlignment(Align(FrameAlignment)); 3027 return IRB.CreatePointerCast(Alloca, IntptrTy); 3028 } 3029 3030 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3031 BasicBlock &FirstBB = *F.begin(); 3032 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3033 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3034 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3035 DynamicAllocaLayout->setAlignment(Align(32)); 3036 } 3037 3038 void FunctionStackPoisoner::processDynamicAllocas() { 3039 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3040 assert(DynamicAllocaPoisonCallVec.empty()); 3041 return; 3042 } 3043 3044 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3045 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3046 assert(APC.InsBefore); 3047 assert(APC.AI); 3048 assert(ASan.isInterestingAlloca(*APC.AI)); 3049 assert(!APC.AI->isStaticAlloca()); 3050 3051 IRBuilder<> IRB(APC.InsBefore); 3052 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3053 // Dynamic allocas will be unpoisoned unconditionally below in 3054 // unpoisonDynamicAllocas. 3055 // Flag that we need unpoison static allocas. 3056 } 3057 3058 // Handle dynamic allocas. 3059 createDynamicAllocasInitStorage(); 3060 for (auto &AI : DynamicAllocaVec) 3061 handleDynamicAllocaCall(AI); 3062 unpoisonDynamicAllocas(); 3063 } 3064 3065 /// Collect instructions in the entry block after \p InsBefore which initialize 3066 /// permanent storage for a function argument. These instructions must remain in 3067 /// the entry block so that uninitialized values do not appear in backtraces. An 3068 /// added benefit is that this conserves spill slots. This does not move stores 3069 /// before instrumented / "interesting" allocas. 3070 static void findStoresToUninstrumentedArgAllocas( 3071 AddressSanitizer &ASan, Instruction &InsBefore, 3072 SmallVectorImpl<Instruction *> &InitInsts) { 3073 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3074 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3075 // Argument initialization looks like: 3076 // 1) store <Argument>, <Alloca> OR 3077 // 2) <CastArgument> = cast <Argument> to ... 3078 // store <CastArgument> to <Alloca> 3079 // Do not consider any other kind of instruction. 3080 // 3081 // Note: This covers all known cases, but may not be exhaustive. An 3082 // alternative to pattern-matching stores is to DFS over all Argument uses: 3083 // this might be more general, but is probably much more complicated. 3084 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3085 continue; 3086 if (auto *Store = dyn_cast<StoreInst>(It)) { 3087 // The store destination must be an alloca that isn't interesting for 3088 // ASan to instrument. These are moved up before InsBefore, and they're 3089 // not interesting because allocas for arguments can be mem2reg'd. 3090 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3091 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3092 continue; 3093 3094 Value *Val = Store->getValueOperand(); 3095 bool IsDirectArgInit = isa<Argument>(Val); 3096 bool IsArgInitViaCast = 3097 isa<CastInst>(Val) && 3098 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3099 // Check that the cast appears directly before the store. Otherwise 3100 // moving the cast before InsBefore may break the IR. 3101 Val == It->getPrevNonDebugInstruction(); 3102 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3103 if (!IsArgInit) 3104 continue; 3105 3106 if (IsArgInitViaCast) 3107 InitInsts.push_back(cast<Instruction>(Val)); 3108 InitInsts.push_back(Store); 3109 continue; 3110 } 3111 3112 // Do not reorder past unknown instructions: argument initialization should 3113 // only involve casts and stores. 3114 return; 3115 } 3116 } 3117 3118 void FunctionStackPoisoner::processStaticAllocas() { 3119 if (AllocaVec.empty()) { 3120 assert(StaticAllocaPoisonCallVec.empty()); 3121 return; 3122 } 3123 3124 int StackMallocIdx = -1; 3125 DebugLoc EntryDebugLocation; 3126 if (auto SP = F.getSubprogram()) 3127 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 3128 3129 Instruction *InsBefore = AllocaVec[0]; 3130 IRBuilder<> IRB(InsBefore); 3131 3132 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3133 // debug info is broken, because only entry-block allocas are treated as 3134 // regular stack slots. 3135 auto InsBeforeB = InsBefore->getParent(); 3136 assert(InsBeforeB == &F.getEntryBlock()); 3137 for (auto *AI : StaticAllocasToMoveUp) 3138 if (AI->getParent() == InsBeforeB) 3139 AI->moveBefore(InsBefore); 3140 3141 // Move stores of arguments into entry-block allocas as well. This prevents 3142 // extra stack slots from being generated (to house the argument values until 3143 // they can be stored into the allocas). This also prevents uninitialized 3144 // values from being shown in backtraces. 3145 SmallVector<Instruction *, 8> ArgInitInsts; 3146 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3147 for (Instruction *ArgInitInst : ArgInitInsts) 3148 ArgInitInst->moveBefore(InsBefore); 3149 3150 // If we have a call to llvm.localescape, keep it in the entry block. 3151 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3152 3153 SmallVector<ASanStackVariableDescription, 16> SVD; 3154 SVD.reserve(AllocaVec.size()); 3155 for (AllocaInst *AI : AllocaVec) { 3156 ASanStackVariableDescription D = {AI->getName().data(), 3157 ASan.getAllocaSizeInBytes(*AI), 3158 0, 3159 AI->getAlignment(), 3160 AI, 3161 0, 3162 0}; 3163 SVD.push_back(D); 3164 } 3165 3166 // Minimal header size (left redzone) is 4 pointers, 3167 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3168 size_t Granularity = 1ULL << Mapping.Scale; 3169 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3170 const ASanStackFrameLayout &L = 3171 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3172 3173 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3174 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3175 for (auto &Desc : SVD) 3176 AllocaToSVDMap[Desc.AI] = &Desc; 3177 3178 // Update SVD with information from lifetime intrinsics. 3179 for (const auto &APC : StaticAllocaPoisonCallVec) { 3180 assert(APC.InsBefore); 3181 assert(APC.AI); 3182 assert(ASan.isInterestingAlloca(*APC.AI)); 3183 assert(APC.AI->isStaticAlloca()); 3184 3185 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3186 Desc.LifetimeSize = Desc.Size; 3187 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3188 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3189 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3190 if (unsigned Line = LifetimeLoc->getLine()) 3191 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3192 } 3193 } 3194 } 3195 3196 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3197 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3198 uint64_t LocalStackSize = L.FrameSize; 3199 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3200 LocalStackSize <= kMaxStackMallocSize; 3201 bool DoDynamicAlloca = ClDynamicAllocaStack; 3202 // Don't do dynamic alloca or stack malloc if: 3203 // 1) There is inline asm: too often it makes assumptions on which registers 3204 // are available. 3205 // 2) There is a returns_twice call (typically setjmp), which is 3206 // optimization-hostile, and doesn't play well with introduced indirect 3207 // register-relative calculation of local variable addresses. 3208 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3209 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3210 3211 Value *StaticAlloca = 3212 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3213 3214 Value *FakeStack; 3215 Value *LocalStackBase; 3216 Value *LocalStackBaseAlloca; 3217 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3218 3219 if (DoStackMalloc) { 3220 LocalStackBaseAlloca = 3221 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3222 // void *FakeStack = __asan_option_detect_stack_use_after_return 3223 // ? __asan_stack_malloc_N(LocalStackSize) 3224 // : nullptr; 3225 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3226 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3227 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3228 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3229 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3230 Constant::getNullValue(IRB.getInt32Ty())); 3231 Instruction *Term = 3232 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3233 IRBuilder<> IRBIf(Term); 3234 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3235 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3236 Value *FakeStackValue = 3237 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3238 ConstantInt::get(IntptrTy, LocalStackSize)); 3239 IRB.SetInsertPoint(InsBefore); 3240 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3241 ConstantInt::get(IntptrTy, 0)); 3242 3243 Value *NoFakeStack = 3244 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3245 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3246 IRBIf.SetInsertPoint(Term); 3247 Value *AllocaValue = 3248 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3249 3250 IRB.SetInsertPoint(InsBefore); 3251 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3252 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3253 DIExprFlags |= DIExpression::DerefBefore; 3254 } else { 3255 // void *FakeStack = nullptr; 3256 // void *LocalStackBase = alloca(LocalStackSize); 3257 FakeStack = ConstantInt::get(IntptrTy, 0); 3258 LocalStackBase = 3259 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3260 LocalStackBaseAlloca = LocalStackBase; 3261 } 3262 3263 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3264 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3265 // later passes and can result in dropped variable coverage in debug info. 3266 Value *LocalStackBaseAllocaPtr = 3267 isa<PtrToIntInst>(LocalStackBaseAlloca) 3268 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3269 : LocalStackBaseAlloca; 3270 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3271 "Variable descriptions relative to ASan stack base will be dropped"); 3272 3273 // Replace Alloca instructions with base+offset. 3274 for (const auto &Desc : SVD) { 3275 AllocaInst *AI = Desc.AI; 3276 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3277 Desc.Offset); 3278 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3279 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3280 AI->getType()); 3281 AI->replaceAllUsesWith(NewAllocaPtr); 3282 } 3283 3284 // The left-most redzone has enough space for at least 4 pointers. 3285 // Write the Magic value to redzone[0]. 3286 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3287 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3288 BasePlus0); 3289 // Write the frame description constant to redzone[1]. 3290 Value *BasePlus1 = IRB.CreateIntToPtr( 3291 IRB.CreateAdd(LocalStackBase, 3292 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3293 IntptrPtrTy); 3294 GlobalVariable *StackDescriptionGlobal = 3295 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3296 /*AllowMerging*/ true, kAsanGenPrefix); 3297 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3298 IRB.CreateStore(Description, BasePlus1); 3299 // Write the PC to redzone[2]. 3300 Value *BasePlus2 = IRB.CreateIntToPtr( 3301 IRB.CreateAdd(LocalStackBase, 3302 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3303 IntptrPtrTy); 3304 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3305 3306 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3307 3308 // Poison the stack red zones at the entry. 3309 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3310 // As mask we must use most poisoned case: red zones and after scope. 3311 // As bytes we can use either the same or just red zones only. 3312 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3313 3314 if (!StaticAllocaPoisonCallVec.empty()) { 3315 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3316 3317 // Poison static allocas near lifetime intrinsics. 3318 for (const auto &APC : StaticAllocaPoisonCallVec) { 3319 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3320 assert(Desc.Offset % L.Granularity == 0); 3321 size_t Begin = Desc.Offset / L.Granularity; 3322 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3323 3324 IRBuilder<> IRB(APC.InsBefore); 3325 copyToShadow(ShadowAfterScope, 3326 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3327 IRB, ShadowBase); 3328 } 3329 } 3330 3331 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3332 SmallVector<uint8_t, 64> ShadowAfterReturn; 3333 3334 // (Un)poison the stack before all ret instructions. 3335 for (Instruction *Ret : RetVec) { 3336 Instruction *Adjusted = adjustForMusttailCall(Ret); 3337 IRBuilder<> IRBRet(Adjusted); 3338 // Mark the current frame as retired. 3339 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3340 BasePlus0); 3341 if (DoStackMalloc) { 3342 assert(StackMallocIdx >= 0); 3343 // if FakeStack != 0 // LocalStackBase == FakeStack 3344 // // In use-after-return mode, poison the whole stack frame. 3345 // if StackMallocIdx <= 4 3346 // // For small sizes inline the whole thing: 3347 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3348 // **SavedFlagPtr(FakeStack) = 0 3349 // else 3350 // __asan_stack_free_N(FakeStack, LocalStackSize) 3351 // else 3352 // <This is not a fake stack; unpoison the redzones> 3353 Value *Cmp = 3354 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3355 Instruction *ThenTerm, *ElseTerm; 3356 SplitBlockAndInsertIfThenElse(Cmp, Adjusted, &ThenTerm, &ElseTerm); 3357 3358 IRBuilder<> IRBPoison(ThenTerm); 3359 if (StackMallocIdx <= 4) { 3360 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3361 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3362 kAsanStackUseAfterReturnMagic); 3363 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3364 ShadowBase); 3365 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3366 FakeStack, 3367 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3368 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3369 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3370 IRBPoison.CreateStore( 3371 Constant::getNullValue(IRBPoison.getInt8Ty()), 3372 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3373 } else { 3374 // For larger frames call __asan_stack_free_*. 3375 IRBPoison.CreateCall( 3376 AsanStackFreeFunc[StackMallocIdx], 3377 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3378 } 3379 3380 IRBuilder<> IRBElse(ElseTerm); 3381 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3382 } else { 3383 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3384 } 3385 } 3386 3387 // We are done. Remove the old unused alloca instructions. 3388 for (auto AI : AllocaVec) AI->eraseFromParent(); 3389 } 3390 3391 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3392 IRBuilder<> &IRB, bool DoPoison) { 3393 // For now just insert the call to ASan runtime. 3394 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3395 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3396 IRB.CreateCall( 3397 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3398 {AddrArg, SizeArg}); 3399 } 3400 3401 // Handling llvm.lifetime intrinsics for a given %alloca: 3402 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3403 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3404 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3405 // could be poisoned by previous llvm.lifetime.end instruction, as the 3406 // variable may go in and out of scope several times, e.g. in loops). 3407 // (3) if we poisoned at least one %alloca in a function, 3408 // unpoison the whole stack frame at function exit. 3409 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3410 IRBuilder<> IRB(AI); 3411 3412 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3413 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3414 3415 Value *Zero = Constant::getNullValue(IntptrTy); 3416 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3417 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3418 3419 // Since we need to extend alloca with additional memory to locate 3420 // redzones, and OldSize is number of allocated blocks with 3421 // ElementSize size, get allocated memory size in bytes by 3422 // OldSize * ElementSize. 3423 const unsigned ElementSize = 3424 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3425 Value *OldSize = 3426 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3427 ConstantInt::get(IntptrTy, ElementSize)); 3428 3429 // PartialSize = OldSize % 32 3430 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3431 3432 // Misalign = kAllocaRzSize - PartialSize; 3433 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3434 3435 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3436 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3437 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3438 3439 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3440 // Alignment is added to locate left redzone, PartialPadding for possible 3441 // partial redzone and kAllocaRzSize for right redzone respectively. 3442 Value *AdditionalChunkSize = IRB.CreateAdd( 3443 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3444 3445 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3446 3447 // Insert new alloca with new NewSize and Alignment params. 3448 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3449 NewAlloca->setAlignment(Align(Alignment)); 3450 3451 // NewAddress = Address + Alignment 3452 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3453 ConstantInt::get(IntptrTy, Alignment)); 3454 3455 // Insert __asan_alloca_poison call for new created alloca. 3456 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3457 3458 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3459 // for unpoisoning stuff. 3460 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3461 3462 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3463 3464 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3465 AI->replaceAllUsesWith(NewAddressPtr); 3466 3467 // We are done. Erase old alloca from parent. 3468 AI->eraseFromParent(); 3469 } 3470 3471 // isSafeAccess returns true if Addr is always inbounds with respect to its 3472 // base object. For example, it is a field access or an array access with 3473 // constant inbounds index. 3474 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3475 Value *Addr, uint64_t TypeSize) const { 3476 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3477 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3478 uint64_t Size = SizeOffset.first.getZExtValue(); 3479 int64_t Offset = SizeOffset.second.getSExtValue(); 3480 // Three checks are required to ensure safety: 3481 // . Offset >= 0 (since the offset is given from the base ptr) 3482 // . Size >= Offset (unsigned) 3483 // . Size - Offset >= NeededSize (unsigned) 3484 return Offset >= 0 && Size >= uint64_t(Offset) && 3485 Size - uint64_t(Offset) >= TypeSize / 8; 3486 } 3487