1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
12 //
13 // FIXME: This sanitizer does not yet handle scalable vectors
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/BinaryFormat/MachO.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DIBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstVisitor.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCSectionMachO.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/ScopedPrinter.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
75 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Transforms/Utils/ModuleUtils.h"
79 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iomanip>
85 #include <limits>
86 #include <memory>
87 #include <sstream>
88 #include <string>
89 #include <tuple>
90 
91 using namespace llvm;
92 
93 #define DEBUG_TYPE "asan"
94 
95 static const uint64_t kDefaultShadowScale = 3;
96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
98 static const uint64_t kDynamicShadowSentinel =
99     std::numeric_limits<uint64_t>::max();
100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
108 static const uint64_t kRISCV64_ShadowOffset64 = 0x20000000;
109 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
110 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
111 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
112 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
113 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
114 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
115 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
116 static const uint64_t kEmscriptenShadowOffset = 0;
117 
118 static const uint64_t kMyriadShadowScale = 5;
119 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
120 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
121 static const uint64_t kMyriadTagShift = 29;
122 static const uint64_t kMyriadDDRTag = 4;
123 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
124 
125 // The shadow memory space is dynamically allocated.
126 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
127 
128 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
129 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
130 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
131 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
132 
133 static const char *const kAsanModuleCtorName = "asan.module_ctor";
134 static const char *const kAsanModuleDtorName = "asan.module_dtor";
135 static const uint64_t kAsanCtorAndDtorPriority = 1;
136 // On Emscripten, the system needs more than one priorities for constructors.
137 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
138 static const char *const kAsanReportErrorTemplate = "__asan_report_";
139 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
140 static const char *const kAsanUnregisterGlobalsName =
141     "__asan_unregister_globals";
142 static const char *const kAsanRegisterImageGlobalsName =
143   "__asan_register_image_globals";
144 static const char *const kAsanUnregisterImageGlobalsName =
145   "__asan_unregister_image_globals";
146 static const char *const kAsanRegisterElfGlobalsName =
147   "__asan_register_elf_globals";
148 static const char *const kAsanUnregisterElfGlobalsName =
149   "__asan_unregister_elf_globals";
150 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
151 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
152 static const char *const kAsanInitName = "__asan_init";
153 static const char *const kAsanVersionCheckNamePrefix =
154     "__asan_version_mismatch_check_v";
155 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
156 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
157 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
158 static const int kMaxAsanStackMallocSizeClass = 10;
159 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
160 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
161 static const char *const kAsanGenPrefix = "___asan_gen_";
162 static const char *const kODRGenPrefix = "__odr_asan_gen_";
163 static const char *const kSanCovGenPrefix = "__sancov_gen_";
164 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
165 static const char *const kAsanPoisonStackMemoryName =
166     "__asan_poison_stack_memory";
167 static const char *const kAsanUnpoisonStackMemoryName =
168     "__asan_unpoison_stack_memory";
169 
170 // ASan version script has __asan_* wildcard. Triple underscore prevents a
171 // linker (gold) warning about attempting to export a local symbol.
172 static const char *const kAsanGlobalsRegisteredFlagName =
173     "___asan_globals_registered";
174 
175 static const char *const kAsanOptionDetectUseAfterReturn =
176     "__asan_option_detect_stack_use_after_return";
177 
178 static const char *const kAsanShadowMemoryDynamicAddress =
179     "__asan_shadow_memory_dynamic_address";
180 
181 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
182 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
183 
184 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
185 static const size_t kNumberOfAccessSizes = 5;
186 
187 static const unsigned kAllocaRzSize = 32;
188 
189 // Command-line flags.
190 
191 static cl::opt<bool> ClEnableKasan(
192     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
193     cl::Hidden, cl::init(false));
194 
195 static cl::opt<bool> ClRecover(
196     "asan-recover",
197     cl::desc("Enable recovery mode (continue-after-error)."),
198     cl::Hidden, cl::init(false));
199 
200 static cl::opt<bool> ClInsertVersionCheck(
201     "asan-guard-against-version-mismatch",
202     cl::desc("Guard against compiler/runtime version mismatch."),
203     cl::Hidden, cl::init(true));
204 
205 // This flag may need to be replaced with -f[no-]asan-reads.
206 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
207                                        cl::desc("instrument read instructions"),
208                                        cl::Hidden, cl::init(true));
209 
210 static cl::opt<bool> ClInstrumentWrites(
211     "asan-instrument-writes", cl::desc("instrument write instructions"),
212     cl::Hidden, cl::init(true));
213 
214 static cl::opt<bool> ClInstrumentAtomics(
215     "asan-instrument-atomics",
216     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
217     cl::init(true));
218 
219 static cl::opt<bool>
220     ClInstrumentByval("asan-instrument-byval",
221                       cl::desc("instrument byval call arguments"), cl::Hidden,
222                       cl::init(true));
223 
224 static cl::opt<bool> ClAlwaysSlowPath(
225     "asan-always-slow-path",
226     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
227     cl::init(false));
228 
229 static cl::opt<bool> ClForceDynamicShadow(
230     "asan-force-dynamic-shadow",
231     cl::desc("Load shadow address into a local variable for each function"),
232     cl::Hidden, cl::init(false));
233 
234 static cl::opt<bool>
235     ClWithIfunc("asan-with-ifunc",
236                 cl::desc("Access dynamic shadow through an ifunc global on "
237                          "platforms that support this"),
238                 cl::Hidden, cl::init(true));
239 
240 static cl::opt<bool> ClWithIfuncSuppressRemat(
241     "asan-with-ifunc-suppress-remat",
242     cl::desc("Suppress rematerialization of dynamic shadow address by passing "
243              "it through inline asm in prologue."),
244     cl::Hidden, cl::init(true));
245 
246 // This flag limits the number of instructions to be instrumented
247 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
248 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
249 // set it to 10000.
250 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
251     "asan-max-ins-per-bb", cl::init(10000),
252     cl::desc("maximal number of instructions to instrument in any given BB"),
253     cl::Hidden);
254 
255 // This flag may need to be replaced with -f[no]asan-stack.
256 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
257                              cl::Hidden, cl::init(true));
258 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
259     "asan-max-inline-poisoning-size",
260     cl::desc(
261         "Inline shadow poisoning for blocks up to the given size in bytes."),
262     cl::Hidden, cl::init(64));
263 
264 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
265                                       cl::desc("Check stack-use-after-return"),
266                                       cl::Hidden, cl::init(true));
267 
268 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
269                                         cl::desc("Create redzones for byval "
270                                                  "arguments (extra copy "
271                                                  "required)"), cl::Hidden,
272                                         cl::init(true));
273 
274 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
275                                      cl::desc("Check stack-use-after-scope"),
276                                      cl::Hidden, cl::init(false));
277 
278 // This flag may need to be replaced with -f[no]asan-globals.
279 static cl::opt<bool> ClGlobals("asan-globals",
280                                cl::desc("Handle global objects"), cl::Hidden,
281                                cl::init(true));
282 
283 static cl::opt<bool> ClInitializers("asan-initialization-order",
284                                     cl::desc("Handle C++ initializer order"),
285                                     cl::Hidden, cl::init(true));
286 
287 static cl::opt<bool> ClInvalidPointerPairs(
288     "asan-detect-invalid-pointer-pair",
289     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
290     cl::init(false));
291 
292 static cl::opt<bool> ClInvalidPointerCmp(
293     "asan-detect-invalid-pointer-cmp",
294     cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
295     cl::init(false));
296 
297 static cl::opt<bool> ClInvalidPointerSub(
298     "asan-detect-invalid-pointer-sub",
299     cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
300     cl::init(false));
301 
302 static cl::opt<unsigned> ClRealignStack(
303     "asan-realign-stack",
304     cl::desc("Realign stack to the value of this flag (power of two)"),
305     cl::Hidden, cl::init(32));
306 
307 static cl::opt<int> ClInstrumentationWithCallsThreshold(
308     "asan-instrumentation-with-call-threshold",
309     cl::desc(
310         "If the function being instrumented contains more than "
311         "this number of memory accesses, use callbacks instead of "
312         "inline checks (-1 means never use callbacks)."),
313     cl::Hidden, cl::init(7000));
314 
315 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
316     "asan-memory-access-callback-prefix",
317     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
318     cl::init("__asan_"));
319 
320 static cl::opt<bool>
321     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
322                                cl::desc("instrument dynamic allocas"),
323                                cl::Hidden, cl::init(true));
324 
325 static cl::opt<bool> ClSkipPromotableAllocas(
326     "asan-skip-promotable-allocas",
327     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
328     cl::init(true));
329 
330 // These flags allow to change the shadow mapping.
331 // The shadow mapping looks like
332 //    Shadow = (Mem >> scale) + offset
333 
334 static cl::opt<int> ClMappingScale("asan-mapping-scale",
335                                    cl::desc("scale of asan shadow mapping"),
336                                    cl::Hidden, cl::init(0));
337 
338 static cl::opt<uint64_t>
339     ClMappingOffset("asan-mapping-offset",
340                     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
341                     cl::Hidden, cl::init(0));
342 
343 // Optimization flags. Not user visible, used mostly for testing
344 // and benchmarking the tool.
345 
346 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
347                            cl::Hidden, cl::init(true));
348 
349 static cl::opt<bool> ClOptSameTemp(
350     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
351     cl::Hidden, cl::init(true));
352 
353 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
354                                   cl::desc("Don't instrument scalar globals"),
355                                   cl::Hidden, cl::init(true));
356 
357 static cl::opt<bool> ClOptStack(
358     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
359     cl::Hidden, cl::init(false));
360 
361 static cl::opt<bool> ClDynamicAllocaStack(
362     "asan-stack-dynamic-alloca",
363     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
364     cl::init(true));
365 
366 static cl::opt<uint32_t> ClForceExperiment(
367     "asan-force-experiment",
368     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
369     cl::init(0));
370 
371 static cl::opt<bool>
372     ClUsePrivateAlias("asan-use-private-alias",
373                       cl::desc("Use private aliases for global variables"),
374                       cl::Hidden, cl::init(false));
375 
376 static cl::opt<bool>
377     ClUseOdrIndicator("asan-use-odr-indicator",
378                       cl::desc("Use odr indicators to improve ODR reporting"),
379                       cl::Hidden, cl::init(false));
380 
381 static cl::opt<bool>
382     ClUseGlobalsGC("asan-globals-live-support",
383                    cl::desc("Use linker features to support dead "
384                             "code stripping of globals"),
385                    cl::Hidden, cl::init(true));
386 
387 // This is on by default even though there is a bug in gold:
388 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
389 static cl::opt<bool>
390     ClWithComdat("asan-with-comdat",
391                  cl::desc("Place ASan constructors in comdat sections"),
392                  cl::Hidden, cl::init(true));
393 
394 // Debug flags.
395 
396 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
397                             cl::init(0));
398 
399 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
400                                  cl::Hidden, cl::init(0));
401 
402 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
403                                         cl::desc("Debug func"));
404 
405 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
406                                cl::Hidden, cl::init(-1));
407 
408 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
409                                cl::Hidden, cl::init(-1));
410 
411 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
412 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
413 STATISTIC(NumOptimizedAccessesToGlobalVar,
414           "Number of optimized accesses to global vars");
415 STATISTIC(NumOptimizedAccessesToStackVar,
416           "Number of optimized accesses to stack vars");
417 
418 namespace {
419 
420 /// This struct defines the shadow mapping using the rule:
421 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
422 /// If InGlobal is true, then
423 ///   extern char __asan_shadow[];
424 ///   shadow = (mem >> Scale) + &__asan_shadow
425 struct ShadowMapping {
426   int Scale;
427   uint64_t Offset;
428   bool OrShadowOffset;
429   bool InGlobal;
430 };
431 
432 } // end anonymous namespace
433 
434 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
435                                       bool IsKasan) {
436   bool IsAndroid = TargetTriple.isAndroid();
437   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
438   bool IsMacOS = TargetTriple.isMacOSX();
439   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
440   bool IsNetBSD = TargetTriple.isOSNetBSD();
441   bool IsPS4CPU = TargetTriple.isPS4CPU();
442   bool IsLinux = TargetTriple.isOSLinux();
443   bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
444                  TargetTriple.getArch() == Triple::ppc64le;
445   bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
446   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
447   bool IsMIPS32 = TargetTriple.isMIPS32();
448   bool IsMIPS64 = TargetTriple.isMIPS64();
449   bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
450   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
451   bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
452   bool IsWindows = TargetTriple.isOSWindows();
453   bool IsFuchsia = TargetTriple.isOSFuchsia();
454   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
455   bool IsEmscripten = TargetTriple.isOSEmscripten();
456 
457   ShadowMapping Mapping;
458 
459   Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
460   if (ClMappingScale.getNumOccurrences() > 0) {
461     Mapping.Scale = ClMappingScale;
462   }
463 
464   if (LongSize == 32) {
465     if (IsAndroid)
466       Mapping.Offset = kDynamicShadowSentinel;
467     else if (IsMIPS32)
468       Mapping.Offset = kMIPS32_ShadowOffset32;
469     else if (IsFreeBSD)
470       Mapping.Offset = kFreeBSD_ShadowOffset32;
471     else if (IsNetBSD)
472       Mapping.Offset = kNetBSD_ShadowOffset32;
473     else if (IsIOS)
474       Mapping.Offset = kDynamicShadowSentinel;
475     else if (IsWindows)
476       Mapping.Offset = kWindowsShadowOffset32;
477     else if (IsEmscripten)
478       Mapping.Offset = kEmscriptenShadowOffset;
479     else if (IsMyriad) {
480       uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
481                                (kMyriadMemorySize32 >> Mapping.Scale));
482       Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
483     }
484     else
485       Mapping.Offset = kDefaultShadowOffset32;
486   } else {  // LongSize == 64
487     // Fuchsia is always PIE, which means that the beginning of the address
488     // space is always available.
489     if (IsFuchsia)
490       Mapping.Offset = 0;
491     else if (IsPPC64)
492       Mapping.Offset = kPPC64_ShadowOffset64;
493     else if (IsSystemZ)
494       Mapping.Offset = kSystemZ_ShadowOffset64;
495     else if (IsFreeBSD && !IsMIPS64)
496       Mapping.Offset = kFreeBSD_ShadowOffset64;
497     else if (IsNetBSD) {
498       if (IsKasan)
499         Mapping.Offset = kNetBSDKasan_ShadowOffset64;
500       else
501         Mapping.Offset = kNetBSD_ShadowOffset64;
502     } else if (IsPS4CPU)
503       Mapping.Offset = kPS4CPU_ShadowOffset64;
504     else if (IsLinux && IsX86_64) {
505       if (IsKasan)
506         Mapping.Offset = kLinuxKasan_ShadowOffset64;
507       else
508         Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
509                           (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
510     } else if (IsWindows && IsX86_64) {
511       Mapping.Offset = kWindowsShadowOffset64;
512     } else if (IsMIPS64)
513       Mapping.Offset = kMIPS64_ShadowOffset64;
514     else if (IsIOS)
515       Mapping.Offset = kDynamicShadowSentinel;
516     else if (IsMacOS && IsAArch64)
517       Mapping.Offset = kDynamicShadowSentinel;
518     else if (IsAArch64)
519       Mapping.Offset = kAArch64_ShadowOffset64;
520     else if (IsRISCV64)
521       Mapping.Offset = kRISCV64_ShadowOffset64;
522     else
523       Mapping.Offset = kDefaultShadowOffset64;
524   }
525 
526   if (ClForceDynamicShadow) {
527     Mapping.Offset = kDynamicShadowSentinel;
528   }
529 
530   if (ClMappingOffset.getNumOccurrences() > 0) {
531     Mapping.Offset = ClMappingOffset;
532   }
533 
534   // OR-ing shadow offset if more efficient (at least on x86) if the offset
535   // is a power of two, but on ppc64 we have to use add since the shadow
536   // offset is not necessary 1/8-th of the address space.  On SystemZ,
537   // we could OR the constant in a single instruction, but it's more
538   // efficient to load it once and use indexed addressing.
539   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
540                            !IsRISCV64 &&
541                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
542                            Mapping.Offset != kDynamicShadowSentinel;
543   bool IsAndroidWithIfuncSupport =
544       IsAndroid && !TargetTriple.isAndroidVersionLT(21);
545   Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
546 
547   return Mapping;
548 }
549 
550 static uint64_t getRedzoneSizeForScale(int MappingScale) {
551   // Redzone used for stack and globals is at least 32 bytes.
552   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
553   return std::max(32U, 1U << MappingScale);
554 }
555 
556 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
557   if (TargetTriple.isOSEmscripten()) {
558     return kAsanEmscriptenCtorAndDtorPriority;
559   } else {
560     return kAsanCtorAndDtorPriority;
561   }
562 }
563 
564 // For a ret instruction followed by a musttail call, we cannot insert anything
565 // in between. Instead we use the musttail call instruction as the insertion
566 // point.
567 static Instruction *adjustForMusttailCall(Instruction *I) {
568   ReturnInst *RI = dyn_cast<ReturnInst>(I);
569   if (!RI)
570     return I;
571   Instruction *Prev = RI->getPrevNode();
572   if (BitCastInst *BCI = dyn_cast_or_null<BitCastInst>(Prev))
573     Prev = BCI->getPrevNode();
574   if (CallInst *CI = dyn_cast_or_null<CallInst>(Prev))
575     if (CI->isMustTailCall())
576       return CI;
577   return RI;
578 }
579 
580 namespace {
581 
582 /// Module analysis for getting various metadata about the module.
583 class ASanGlobalsMetadataWrapperPass : public ModulePass {
584 public:
585   static char ID;
586 
587   ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
588     initializeASanGlobalsMetadataWrapperPassPass(
589         *PassRegistry::getPassRegistry());
590   }
591 
592   bool runOnModule(Module &M) override {
593     GlobalsMD = GlobalsMetadata(M);
594     return false;
595   }
596 
597   StringRef getPassName() const override {
598     return "ASanGlobalsMetadataWrapperPass";
599   }
600 
601   void getAnalysisUsage(AnalysisUsage &AU) const override {
602     AU.setPreservesAll();
603   }
604 
605   GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
606 
607 private:
608   GlobalsMetadata GlobalsMD;
609 };
610 
611 char ASanGlobalsMetadataWrapperPass::ID = 0;
612 
613 /// AddressSanitizer: instrument the code in module to find memory bugs.
614 struct AddressSanitizer {
615   AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
616                    bool CompileKernel = false, bool Recover = false,
617                    bool UseAfterScope = false)
618       : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
619                                                             : CompileKernel),
620         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
621         UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) {
622     C = &(M.getContext());
623     LongSize = M.getDataLayout().getPointerSizeInBits();
624     IntptrTy = Type::getIntNTy(*C, LongSize);
625     TargetTriple = Triple(M.getTargetTriple());
626 
627     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
628   }
629 
630   uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
631     uint64_t ArraySize = 1;
632     if (AI.isArrayAllocation()) {
633       const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
634       assert(CI && "non-constant array size");
635       ArraySize = CI->getZExtValue();
636     }
637     Type *Ty = AI.getAllocatedType();
638     uint64_t SizeInBytes =
639         AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
640     return SizeInBytes * ArraySize;
641   }
642 
643   /// Check if we want (and can) handle this alloca.
644   bool isInterestingAlloca(const AllocaInst &AI);
645 
646   bool ignoreAccess(Value *Ptr);
647   void getInterestingMemoryOperands(
648       Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
649 
650   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
651                      InterestingMemoryOperand &O, bool UseCalls,
652                      const DataLayout &DL);
653   void instrumentPointerComparisonOrSubtraction(Instruction *I);
654   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
655                          Value *Addr, uint32_t TypeSize, bool IsWrite,
656                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
657   void instrumentUnusualSizeOrAlignment(Instruction *I,
658                                         Instruction *InsertBefore, Value *Addr,
659                                         uint32_t TypeSize, bool IsWrite,
660                                         Value *SizeArgument, bool UseCalls,
661                                         uint32_t Exp);
662   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
663                            Value *ShadowValue, uint32_t TypeSize);
664   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
665                                  bool IsWrite, size_t AccessSizeIndex,
666                                  Value *SizeArgument, uint32_t Exp);
667   void instrumentMemIntrinsic(MemIntrinsic *MI);
668   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
669   bool suppressInstrumentationSiteForDebug(int &Instrumented);
670   bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
671   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
672   bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
673   void markEscapedLocalAllocas(Function &F);
674 
675 private:
676   friend struct FunctionStackPoisoner;
677 
678   void initializeCallbacks(Module &M);
679 
680   bool LooksLikeCodeInBug11395(Instruction *I);
681   bool GlobalIsLinkerInitialized(GlobalVariable *G);
682   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
683                     uint64_t TypeSize) const;
684 
685   /// Helper to cleanup per-function state.
686   struct FunctionStateRAII {
687     AddressSanitizer *Pass;
688 
689     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
690       assert(Pass->ProcessedAllocas.empty() &&
691              "last pass forgot to clear cache");
692       assert(!Pass->LocalDynamicShadow);
693     }
694 
695     ~FunctionStateRAII() {
696       Pass->LocalDynamicShadow = nullptr;
697       Pass->ProcessedAllocas.clear();
698     }
699   };
700 
701   LLVMContext *C;
702   Triple TargetTriple;
703   int LongSize;
704   bool CompileKernel;
705   bool Recover;
706   bool UseAfterScope;
707   Type *IntptrTy;
708   ShadowMapping Mapping;
709   FunctionCallee AsanHandleNoReturnFunc;
710   FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
711   Constant *AsanShadowGlobal;
712 
713   // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
714   FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
715   FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
716 
717   // These arrays is indexed by AccessIsWrite and Experiment.
718   FunctionCallee AsanErrorCallbackSized[2][2];
719   FunctionCallee AsanMemoryAccessCallbackSized[2][2];
720 
721   FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
722   Value *LocalDynamicShadow = nullptr;
723   const GlobalsMetadata &GlobalsMD;
724   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
725 };
726 
727 class AddressSanitizerLegacyPass : public FunctionPass {
728 public:
729   static char ID;
730 
731   explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
732                                       bool Recover = false,
733                                       bool UseAfterScope = false)
734       : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
735         UseAfterScope(UseAfterScope) {
736     initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
737   }
738 
739   StringRef getPassName() const override {
740     return "AddressSanitizerFunctionPass";
741   }
742 
743   void getAnalysisUsage(AnalysisUsage &AU) const override {
744     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
745     AU.addRequired<TargetLibraryInfoWrapperPass>();
746   }
747 
748   bool runOnFunction(Function &F) override {
749     GlobalsMetadata &GlobalsMD =
750         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
751     const TargetLibraryInfo *TLI =
752         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
753     AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
754                           UseAfterScope);
755     return ASan.instrumentFunction(F, TLI);
756   }
757 
758 private:
759   bool CompileKernel;
760   bool Recover;
761   bool UseAfterScope;
762 };
763 
764 class ModuleAddressSanitizer {
765 public:
766   ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
767                          bool CompileKernel = false, bool Recover = false,
768                          bool UseGlobalsGC = true, bool UseOdrIndicator = false)
769       : GlobalsMD(*GlobalsMD),
770         CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
771                                                             : CompileKernel),
772         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
773         UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
774         // Enable aliases as they should have no downside with ODR indicators.
775         UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
776         UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
777         // Not a typo: ClWithComdat is almost completely pointless without
778         // ClUseGlobalsGC (because then it only works on modules without
779         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
780         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
781         // argument is designed as workaround. Therefore, disable both
782         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
783         // do globals-gc.
784         UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel) {
785     C = &(M.getContext());
786     int LongSize = M.getDataLayout().getPointerSizeInBits();
787     IntptrTy = Type::getIntNTy(*C, LongSize);
788     TargetTriple = Triple(M.getTargetTriple());
789     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
790   }
791 
792   bool instrumentModule(Module &);
793 
794 private:
795   void initializeCallbacks(Module &M);
796 
797   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
798   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
799                              ArrayRef<GlobalVariable *> ExtendedGlobals,
800                              ArrayRef<Constant *> MetadataInitializers);
801   void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
802                             ArrayRef<GlobalVariable *> ExtendedGlobals,
803                             ArrayRef<Constant *> MetadataInitializers,
804                             const std::string &UniqueModuleId);
805   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
806                               ArrayRef<GlobalVariable *> ExtendedGlobals,
807                               ArrayRef<Constant *> MetadataInitializers);
808   void
809   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
810                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
811                                      ArrayRef<Constant *> MetadataInitializers);
812 
813   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
814                                        StringRef OriginalName);
815   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
816                                   StringRef InternalSuffix);
817   Instruction *CreateAsanModuleDtor(Module &M);
818 
819   bool canInstrumentAliasedGlobal(const GlobalAlias &GA) const;
820   bool shouldInstrumentGlobal(GlobalVariable *G) const;
821   bool ShouldUseMachOGlobalsSection() const;
822   StringRef getGlobalMetadataSection() const;
823   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
824   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
825   uint64_t getMinRedzoneSizeForGlobal() const {
826     return getRedzoneSizeForScale(Mapping.Scale);
827   }
828   uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
829   int GetAsanVersion(const Module &M) const;
830 
831   const GlobalsMetadata &GlobalsMD;
832   bool CompileKernel;
833   bool Recover;
834   bool UseGlobalsGC;
835   bool UsePrivateAlias;
836   bool UseOdrIndicator;
837   bool UseCtorComdat;
838   Type *IntptrTy;
839   LLVMContext *C;
840   Triple TargetTriple;
841   ShadowMapping Mapping;
842   FunctionCallee AsanPoisonGlobals;
843   FunctionCallee AsanUnpoisonGlobals;
844   FunctionCallee AsanRegisterGlobals;
845   FunctionCallee AsanUnregisterGlobals;
846   FunctionCallee AsanRegisterImageGlobals;
847   FunctionCallee AsanUnregisterImageGlobals;
848   FunctionCallee AsanRegisterElfGlobals;
849   FunctionCallee AsanUnregisterElfGlobals;
850 
851   Function *AsanCtorFunction = nullptr;
852   Function *AsanDtorFunction = nullptr;
853 };
854 
855 class ModuleAddressSanitizerLegacyPass : public ModulePass {
856 public:
857   static char ID;
858 
859   explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false,
860                                             bool Recover = false,
861                                             bool UseGlobalGC = true,
862                                             bool UseOdrIndicator = false)
863       : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
864         UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) {
865     initializeModuleAddressSanitizerLegacyPassPass(
866         *PassRegistry::getPassRegistry());
867   }
868 
869   StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
870 
871   void getAnalysisUsage(AnalysisUsage &AU) const override {
872     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
873   }
874 
875   bool runOnModule(Module &M) override {
876     GlobalsMetadata &GlobalsMD =
877         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
878     ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
879                                       UseGlobalGC, UseOdrIndicator);
880     return ASanModule.instrumentModule(M);
881   }
882 
883 private:
884   bool CompileKernel;
885   bool Recover;
886   bool UseGlobalGC;
887   bool UseOdrIndicator;
888 };
889 
890 // Stack poisoning does not play well with exception handling.
891 // When an exception is thrown, we essentially bypass the code
892 // that unpoisones the stack. This is why the run-time library has
893 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
894 // stack in the interceptor. This however does not work inside the
895 // actual function which catches the exception. Most likely because the
896 // compiler hoists the load of the shadow value somewhere too high.
897 // This causes asan to report a non-existing bug on 453.povray.
898 // It sounds like an LLVM bug.
899 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
900   Function &F;
901   AddressSanitizer &ASan;
902   DIBuilder DIB;
903   LLVMContext *C;
904   Type *IntptrTy;
905   Type *IntptrPtrTy;
906   ShadowMapping Mapping;
907 
908   SmallVector<AllocaInst *, 16> AllocaVec;
909   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
910   SmallVector<Instruction *, 8> RetVec;
911   unsigned StackAlignment;
912 
913   FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
914       AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
915   FunctionCallee AsanSetShadowFunc[0x100] = {};
916   FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
917   FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
918 
919   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
920   struct AllocaPoisonCall {
921     IntrinsicInst *InsBefore;
922     AllocaInst *AI;
923     uint64_t Size;
924     bool DoPoison;
925   };
926   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
927   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
928   bool HasUntracedLifetimeIntrinsic = false;
929 
930   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
931   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
932   AllocaInst *DynamicAllocaLayout = nullptr;
933   IntrinsicInst *LocalEscapeCall = nullptr;
934 
935   bool HasInlineAsm = false;
936   bool HasReturnsTwiceCall = false;
937 
938   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
939       : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
940         C(ASan.C), IntptrTy(ASan.IntptrTy),
941         IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
942         StackAlignment(1 << Mapping.Scale) {}
943 
944   bool runOnFunction() {
945     if (!ClStack) return false;
946 
947     if (ClRedzoneByvalArgs)
948       copyArgsPassedByValToAllocas();
949 
950     // Collect alloca, ret, lifetime instructions etc.
951     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
952 
953     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
954 
955     initializeCallbacks(*F.getParent());
956 
957     if (HasUntracedLifetimeIntrinsic) {
958       // If there are lifetime intrinsics which couldn't be traced back to an
959       // alloca, we may not know exactly when a variable enters scope, and
960       // therefore should "fail safe" by not poisoning them.
961       StaticAllocaPoisonCallVec.clear();
962       DynamicAllocaPoisonCallVec.clear();
963     }
964 
965     processDynamicAllocas();
966     processStaticAllocas();
967 
968     if (ClDebugStack) {
969       LLVM_DEBUG(dbgs() << F);
970     }
971     return true;
972   }
973 
974   // Arguments marked with the "byval" attribute are implicitly copied without
975   // using an alloca instruction.  To produce redzones for those arguments, we
976   // copy them a second time into memory allocated with an alloca instruction.
977   void copyArgsPassedByValToAllocas();
978 
979   // Finds all Alloca instructions and puts
980   // poisoned red zones around all of them.
981   // Then unpoison everything back before the function returns.
982   void processStaticAllocas();
983   void processDynamicAllocas();
984 
985   void createDynamicAllocasInitStorage();
986 
987   // ----------------------- Visitors.
988   /// Collect all Ret instructions.
989   void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
990 
991   /// Collect all Resume instructions.
992   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
993 
994   /// Collect all CatchReturnInst instructions.
995   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
996 
997   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
998                                         Value *SavedStack) {
999     IRBuilder<> IRB(InstBefore);
1000     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1001     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1002     // need to adjust extracted SP to compute the address of the most recent
1003     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1004     // this purpose.
1005     if (!isa<ReturnInst>(InstBefore)) {
1006       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1007           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1008           {IntptrTy});
1009 
1010       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1011 
1012       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1013                                      DynamicAreaOffset);
1014     }
1015 
1016     IRB.CreateCall(
1017         AsanAllocasUnpoisonFunc,
1018         {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1019   }
1020 
1021   // Unpoison dynamic allocas redzones.
1022   void unpoisonDynamicAllocas() {
1023     for (Instruction *Ret : RetVec)
1024       unpoisonDynamicAllocasBeforeInst(adjustForMusttailCall(Ret),
1025                                        DynamicAllocaLayout);
1026 
1027     for (Instruction *StackRestoreInst : StackRestoreVec)
1028       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1029                                        StackRestoreInst->getOperand(0));
1030   }
1031 
1032   // Deploy and poison redzones around dynamic alloca call. To do this, we
1033   // should replace this call with another one with changed parameters and
1034   // replace all its uses with new address, so
1035   //   addr = alloca type, old_size, align
1036   // is replaced by
1037   //   new_size = (old_size + additional_size) * sizeof(type)
1038   //   tmp = alloca i8, new_size, max(align, 32)
1039   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
1040   // Additional_size is added to make new memory allocation contain not only
1041   // requested memory, but also left, partial and right redzones.
1042   void handleDynamicAllocaCall(AllocaInst *AI);
1043 
1044   /// Collect Alloca instructions we want (and can) handle.
1045   void visitAllocaInst(AllocaInst &AI) {
1046     if (!ASan.isInterestingAlloca(AI)) {
1047       if (AI.isStaticAlloca()) {
1048         // Skip over allocas that are present *before* the first instrumented
1049         // alloca, we don't want to move those around.
1050         if (AllocaVec.empty())
1051           return;
1052 
1053         StaticAllocasToMoveUp.push_back(&AI);
1054       }
1055       return;
1056     }
1057 
1058     StackAlignment = std::max(StackAlignment, AI.getAlignment());
1059     if (!AI.isStaticAlloca())
1060       DynamicAllocaVec.push_back(&AI);
1061     else
1062       AllocaVec.push_back(&AI);
1063   }
1064 
1065   /// Collect lifetime intrinsic calls to check for use-after-scope
1066   /// errors.
1067   void visitIntrinsicInst(IntrinsicInst &II) {
1068     Intrinsic::ID ID = II.getIntrinsicID();
1069     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1070     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1071     if (!ASan.UseAfterScope)
1072       return;
1073     if (!II.isLifetimeStartOrEnd())
1074       return;
1075     // Found lifetime intrinsic, add ASan instrumentation if necessary.
1076     auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1077     // If size argument is undefined, don't do anything.
1078     if (Size->isMinusOne()) return;
1079     // Check that size doesn't saturate uint64_t and can
1080     // be stored in IntptrTy.
1081     const uint64_t SizeValue = Size->getValue().getLimitedValue();
1082     if (SizeValue == ~0ULL ||
1083         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1084       return;
1085     // Find alloca instruction that corresponds to llvm.lifetime argument.
1086     // Currently we can only handle lifetime markers pointing to the
1087     // beginning of the alloca.
1088     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1089     if (!AI) {
1090       HasUntracedLifetimeIntrinsic = true;
1091       return;
1092     }
1093     // We're interested only in allocas we can handle.
1094     if (!ASan.isInterestingAlloca(*AI))
1095       return;
1096     bool DoPoison = (ID == Intrinsic::lifetime_end);
1097     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1098     if (AI->isStaticAlloca())
1099       StaticAllocaPoisonCallVec.push_back(APC);
1100     else if (ClInstrumentDynamicAllocas)
1101       DynamicAllocaPoisonCallVec.push_back(APC);
1102   }
1103 
1104   void visitCallBase(CallBase &CB) {
1105     if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1106       HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1107       HasReturnsTwiceCall |= CI->canReturnTwice();
1108     }
1109   }
1110 
1111   // ---------------------- Helpers.
1112   void initializeCallbacks(Module &M);
1113 
1114   // Copies bytes from ShadowBytes into shadow memory for indexes where
1115   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1116   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1117   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1118                     IRBuilder<> &IRB, Value *ShadowBase);
1119   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1120                     size_t Begin, size_t End, IRBuilder<> &IRB,
1121                     Value *ShadowBase);
1122   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1123                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1124                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1125 
1126   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1127 
1128   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1129                                bool Dynamic);
1130   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1131                      Instruction *ThenTerm, Value *ValueIfFalse);
1132 };
1133 
1134 } // end anonymous namespace
1135 
1136 void LocationMetadata::parse(MDNode *MDN) {
1137   assert(MDN->getNumOperands() == 3);
1138   MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1139   Filename = DIFilename->getString();
1140   LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1141   ColumnNo =
1142       mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1143 }
1144 
1145 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1146 // we want to sanitize instead and reading this metadata on each pass over a
1147 // function instead of reading module level metadata at first.
1148 GlobalsMetadata::GlobalsMetadata(Module &M) {
1149   NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1150   if (!Globals)
1151     return;
1152   for (auto MDN : Globals->operands()) {
1153     // Metadata node contains the global and the fields of "Entry".
1154     assert(MDN->getNumOperands() == 5);
1155     auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1156     // The optimizer may optimize away a global entirely.
1157     if (!V)
1158       continue;
1159     auto *StrippedV = V->stripPointerCasts();
1160     auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1161     if (!GV)
1162       continue;
1163     // We can already have an entry for GV if it was merged with another
1164     // global.
1165     Entry &E = Entries[GV];
1166     if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1167       E.SourceLoc.parse(Loc);
1168     if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1169       E.Name = Name->getString();
1170     ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1171     E.IsDynInit |= IsDynInit->isOne();
1172     ConstantInt *IsExcluded =
1173         mdconst::extract<ConstantInt>(MDN->getOperand(4));
1174     E.IsExcluded |= IsExcluded->isOne();
1175   }
1176 }
1177 
1178 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1179 
1180 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1181                                                  ModuleAnalysisManager &AM) {
1182   return GlobalsMetadata(M);
1183 }
1184 
1185 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
1186                                            bool UseAfterScope)
1187     : CompileKernel(CompileKernel), Recover(Recover),
1188       UseAfterScope(UseAfterScope) {}
1189 
1190 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1191                                             AnalysisManager<Function> &AM) {
1192   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1193   Module &M = *F.getParent();
1194   if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1195     const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1196     AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope);
1197     if (Sanitizer.instrumentFunction(F, TLI))
1198       return PreservedAnalyses::none();
1199     return PreservedAnalyses::all();
1200   }
1201 
1202   report_fatal_error(
1203       "The ASanGlobalsMetadataAnalysis is required to run before "
1204       "AddressSanitizer can run");
1205   return PreservedAnalyses::all();
1206 }
1207 
1208 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel,
1209                                                        bool Recover,
1210                                                        bool UseGlobalGC,
1211                                                        bool UseOdrIndicator)
1212     : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1213       UseOdrIndicator(UseOdrIndicator) {}
1214 
1215 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1216                                                   AnalysisManager<Module> &AM) {
1217   GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1218   ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
1219                                    UseGlobalGC, UseOdrIndicator);
1220   if (Sanitizer.instrumentModule(M))
1221     return PreservedAnalyses::none();
1222   return PreservedAnalyses::all();
1223 }
1224 
1225 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1226                 "Read metadata to mark which globals should be instrumented "
1227                 "when running ASan.",
1228                 false, true)
1229 
1230 char AddressSanitizerLegacyPass::ID = 0;
1231 
1232 INITIALIZE_PASS_BEGIN(
1233     AddressSanitizerLegacyPass, "asan",
1234     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1235     false)
1236 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1237 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1238 INITIALIZE_PASS_END(
1239     AddressSanitizerLegacyPass, "asan",
1240     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1241     false)
1242 
1243 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1244                                                        bool Recover,
1245                                                        bool UseAfterScope) {
1246   assert(!CompileKernel || Recover);
1247   return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
1248 }
1249 
1250 char ModuleAddressSanitizerLegacyPass::ID = 0;
1251 
1252 INITIALIZE_PASS(
1253     ModuleAddressSanitizerLegacyPass, "asan-module",
1254     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1255     "ModulePass",
1256     false, false)
1257 
1258 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1259     bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) {
1260   assert(!CompileKernel || Recover);
1261   return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover,
1262                                               UseGlobalsGC, UseOdrIndicator);
1263 }
1264 
1265 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1266   size_t Res = countTrailingZeros(TypeSize / 8);
1267   assert(Res < kNumberOfAccessSizes);
1268   return Res;
1269 }
1270 
1271 /// Create a global describing a source location.
1272 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1273                                                        LocationMetadata MD) {
1274   Constant *LocData[] = {
1275       createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1276       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1277       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1278   };
1279   auto LocStruct = ConstantStruct::getAnon(LocData);
1280   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1281                                GlobalValue::PrivateLinkage, LocStruct,
1282                                kAsanGenPrefix);
1283   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1284   return GV;
1285 }
1286 
1287 /// Check if \p G has been created by a trusted compiler pass.
1288 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1289   // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1290   if (G->getName().startswith("llvm."))
1291     return true;
1292 
1293   // Do not instrument asan globals.
1294   if (G->getName().startswith(kAsanGenPrefix) ||
1295       G->getName().startswith(kSanCovGenPrefix) ||
1296       G->getName().startswith(kODRGenPrefix))
1297     return true;
1298 
1299   // Do not instrument gcov counter arrays.
1300   if (G->getName() == "__llvm_gcov_ctr")
1301     return true;
1302 
1303   return false;
1304 }
1305 
1306 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1307   // Shadow >> scale
1308   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1309   if (Mapping.Offset == 0) return Shadow;
1310   // (Shadow >> scale) | offset
1311   Value *ShadowBase;
1312   if (LocalDynamicShadow)
1313     ShadowBase = LocalDynamicShadow;
1314   else
1315     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1316   if (Mapping.OrShadowOffset)
1317     return IRB.CreateOr(Shadow, ShadowBase);
1318   else
1319     return IRB.CreateAdd(Shadow, ShadowBase);
1320 }
1321 
1322 // Instrument memset/memmove/memcpy
1323 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1324   IRBuilder<> IRB(MI);
1325   if (isa<MemTransferInst>(MI)) {
1326     IRB.CreateCall(
1327         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1328         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1329          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1330          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1331   } else if (isa<MemSetInst>(MI)) {
1332     IRB.CreateCall(
1333         AsanMemset,
1334         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1335          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1336          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1337   }
1338   MI->eraseFromParent();
1339 }
1340 
1341 /// Check if we want (and can) handle this alloca.
1342 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1343   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1344 
1345   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1346     return PreviouslySeenAllocaInfo->getSecond();
1347 
1348   bool IsInteresting =
1349       (AI.getAllocatedType()->isSized() &&
1350        // alloca() may be called with 0 size, ignore it.
1351        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1352        // We are only interested in allocas not promotable to registers.
1353        // Promotable allocas are common under -O0.
1354        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1355        // inalloca allocas are not treated as static, and we don't want
1356        // dynamic alloca instrumentation for them as well.
1357        !AI.isUsedWithInAlloca() &&
1358        // swifterror allocas are register promoted by ISel
1359        !AI.isSwiftError());
1360 
1361   ProcessedAllocas[&AI] = IsInteresting;
1362   return IsInteresting;
1363 }
1364 
1365 bool AddressSanitizer::ignoreAccess(Value *Ptr) {
1366   // Do not instrument acesses from different address spaces; we cannot deal
1367   // with them.
1368   Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1369   if (PtrTy->getPointerAddressSpace() != 0)
1370     return true;
1371 
1372   // Ignore swifterror addresses.
1373   // swifterror memory addresses are mem2reg promoted by instruction
1374   // selection. As such they cannot have regular uses like an instrumentation
1375   // function and it makes no sense to track them as memory.
1376   if (Ptr->isSwiftError())
1377     return true;
1378 
1379   // Treat memory accesses to promotable allocas as non-interesting since they
1380   // will not cause memory violations. This greatly speeds up the instrumented
1381   // executable at -O0.
1382   if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1383     if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1384       return true;
1385 
1386   return false;
1387 }
1388 
1389 void AddressSanitizer::getInterestingMemoryOperands(
1390     Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1391   // Skip memory accesses inserted by another instrumentation.
1392   if (I->hasMetadata("nosanitize"))
1393     return;
1394 
1395   // Do not instrument the load fetching the dynamic shadow address.
1396   if (LocalDynamicShadow == I)
1397     return;
1398 
1399   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1400     if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
1401       return;
1402     Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1403                              LI->getType(), LI->getAlign());
1404   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1405     if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
1406       return;
1407     Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1408                              SI->getValueOperand()->getType(), SI->getAlign());
1409   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1410     if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
1411       return;
1412     Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1413                              RMW->getValOperand()->getType(), None);
1414   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1415     if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
1416       return;
1417     Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1418                              XCHG->getCompareOperand()->getType(), None);
1419   } else if (auto CI = dyn_cast<CallInst>(I)) {
1420     auto *F = CI->getCalledFunction();
1421     if (F && (F->getName().startswith("llvm.masked.load.") ||
1422               F->getName().startswith("llvm.masked.store."))) {
1423       bool IsWrite = F->getName().startswith("llvm.masked.store.");
1424       // Masked store has an initial operand for the value.
1425       unsigned OpOffset = IsWrite ? 1 : 0;
1426       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1427         return;
1428 
1429       auto BasePtr = CI->getOperand(OpOffset);
1430       if (ignoreAccess(BasePtr))
1431         return;
1432       auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1433       MaybeAlign Alignment = Align(1);
1434       // Otherwise no alignment guarantees. We probably got Undef.
1435       if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1436         Alignment = Op->getMaybeAlignValue();
1437       Value *Mask = CI->getOperand(2 + OpOffset);
1438       Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1439     } else {
1440       for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
1441         if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1442             ignoreAccess(CI->getArgOperand(ArgNo)))
1443           continue;
1444         Type *Ty = CI->getParamByValType(ArgNo);
1445         Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1446       }
1447     }
1448   }
1449 }
1450 
1451 static bool isPointerOperand(Value *V) {
1452   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1453 }
1454 
1455 // This is a rough heuristic; it may cause both false positives and
1456 // false negatives. The proper implementation requires cooperation with
1457 // the frontend.
1458 static bool isInterestingPointerComparison(Instruction *I) {
1459   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1460     if (!Cmp->isRelational())
1461       return false;
1462   } else {
1463     return false;
1464   }
1465   return isPointerOperand(I->getOperand(0)) &&
1466          isPointerOperand(I->getOperand(1));
1467 }
1468 
1469 // This is a rough heuristic; it may cause both false positives and
1470 // false negatives. The proper implementation requires cooperation with
1471 // the frontend.
1472 static bool isInterestingPointerSubtraction(Instruction *I) {
1473   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1474     if (BO->getOpcode() != Instruction::Sub)
1475       return false;
1476   } else {
1477     return false;
1478   }
1479   return isPointerOperand(I->getOperand(0)) &&
1480          isPointerOperand(I->getOperand(1));
1481 }
1482 
1483 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1484   // If a global variable does not have dynamic initialization we don't
1485   // have to instrument it.  However, if a global does not have initializer
1486   // at all, we assume it has dynamic initializer (in other TU).
1487   //
1488   // FIXME: Metadata should be attched directly to the global directly instead
1489   // of being added to llvm.asan.globals.
1490   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1491 }
1492 
1493 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1494     Instruction *I) {
1495   IRBuilder<> IRB(I);
1496   FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1497   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1498   for (Value *&i : Param) {
1499     if (i->getType()->isPointerTy())
1500       i = IRB.CreatePointerCast(i, IntptrTy);
1501   }
1502   IRB.CreateCall(F, Param);
1503 }
1504 
1505 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1506                                 Instruction *InsertBefore, Value *Addr,
1507                                 MaybeAlign Alignment, unsigned Granularity,
1508                                 uint32_t TypeSize, bool IsWrite,
1509                                 Value *SizeArgument, bool UseCalls,
1510                                 uint32_t Exp) {
1511   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1512   // if the data is properly aligned.
1513   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1514        TypeSize == 128) &&
1515       (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8))
1516     return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1517                                    nullptr, UseCalls, Exp);
1518   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1519                                          IsWrite, nullptr, UseCalls, Exp);
1520 }
1521 
1522 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1523                                         const DataLayout &DL, Type *IntptrTy,
1524                                         Value *Mask, Instruction *I,
1525                                         Value *Addr, MaybeAlign Alignment,
1526                                         unsigned Granularity, uint32_t TypeSize,
1527                                         bool IsWrite, Value *SizeArgument,
1528                                         bool UseCalls, uint32_t Exp) {
1529   auto *VTy = cast<FixedVectorType>(
1530       cast<PointerType>(Addr->getType())->getElementType());
1531   uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1532   unsigned Num = VTy->getNumElements();
1533   auto Zero = ConstantInt::get(IntptrTy, 0);
1534   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1535     Value *InstrumentedAddress = nullptr;
1536     Instruction *InsertBefore = I;
1537     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1538       // dyn_cast as we might get UndefValue
1539       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1540         if (Masked->isZero())
1541           // Mask is constant false, so no instrumentation needed.
1542           continue;
1543         // If we have a true or undef value, fall through to doInstrumentAddress
1544         // with InsertBefore == I
1545       }
1546     } else {
1547       IRBuilder<> IRB(I);
1548       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1549       Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1550       InsertBefore = ThenTerm;
1551     }
1552 
1553     IRBuilder<> IRB(InsertBefore);
1554     InstrumentedAddress =
1555         IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1556     doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1557                         Granularity, ElemTypeSize, IsWrite, SizeArgument,
1558                         UseCalls, Exp);
1559   }
1560 }
1561 
1562 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1563                                      InterestingMemoryOperand &O, bool UseCalls,
1564                                      const DataLayout &DL) {
1565   Value *Addr = O.getPtr();
1566 
1567   // Optimization experiments.
1568   // The experiments can be used to evaluate potential optimizations that remove
1569   // instrumentation (assess false negatives). Instead of completely removing
1570   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1571   // experiments that want to remove instrumentation of this instruction).
1572   // If Exp is non-zero, this pass will emit special calls into runtime
1573   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1574   // make runtime terminate the program in a special way (with a different
1575   // exit status). Then you run the new compiler on a buggy corpus, collect
1576   // the special terminations (ideally, you don't see them at all -- no false
1577   // negatives) and make the decision on the optimization.
1578   uint32_t Exp = ClForceExperiment;
1579 
1580   if (ClOpt && ClOptGlobals) {
1581     // If initialization order checking is disabled, a simple access to a
1582     // dynamically initialized global is always valid.
1583     GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1584     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1585         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1586       NumOptimizedAccessesToGlobalVar++;
1587       return;
1588     }
1589   }
1590 
1591   if (ClOpt && ClOptStack) {
1592     // A direct inbounds access to a stack variable is always valid.
1593     if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1594         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1595       NumOptimizedAccessesToStackVar++;
1596       return;
1597     }
1598   }
1599 
1600   if (O.IsWrite)
1601     NumInstrumentedWrites++;
1602   else
1603     NumInstrumentedReads++;
1604 
1605   unsigned Granularity = 1 << Mapping.Scale;
1606   if (O.MaybeMask) {
1607     instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
1608                                 Addr, O.Alignment, Granularity, O.TypeSize,
1609                                 O.IsWrite, nullptr, UseCalls, Exp);
1610   } else {
1611     doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1612                         Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
1613                         Exp);
1614   }
1615 }
1616 
1617 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1618                                                  Value *Addr, bool IsWrite,
1619                                                  size_t AccessSizeIndex,
1620                                                  Value *SizeArgument,
1621                                                  uint32_t Exp) {
1622   IRBuilder<> IRB(InsertBefore);
1623   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1624   CallInst *Call = nullptr;
1625   if (SizeArgument) {
1626     if (Exp == 0)
1627       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1628                             {Addr, SizeArgument});
1629     else
1630       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1631                             {Addr, SizeArgument, ExpVal});
1632   } else {
1633     if (Exp == 0)
1634       Call =
1635           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1636     else
1637       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1638                             {Addr, ExpVal});
1639   }
1640 
1641   Call->setCannotMerge();
1642   return Call;
1643 }
1644 
1645 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1646                                            Value *ShadowValue,
1647                                            uint32_t TypeSize) {
1648   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1649   // Addr & (Granularity - 1)
1650   Value *LastAccessedByte =
1651       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1652   // (Addr & (Granularity - 1)) + size - 1
1653   if (TypeSize / 8 > 1)
1654     LastAccessedByte = IRB.CreateAdd(
1655         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1656   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1657   LastAccessedByte =
1658       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1659   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1660   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1661 }
1662 
1663 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1664                                          Instruction *InsertBefore, Value *Addr,
1665                                          uint32_t TypeSize, bool IsWrite,
1666                                          Value *SizeArgument, bool UseCalls,
1667                                          uint32_t Exp) {
1668   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1669 
1670   IRBuilder<> IRB(InsertBefore);
1671   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1672   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1673 
1674   if (UseCalls) {
1675     if (Exp == 0)
1676       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1677                      AddrLong);
1678     else
1679       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1680                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1681     return;
1682   }
1683 
1684   if (IsMyriad) {
1685     // Strip the cache bit and do range check.
1686     // AddrLong &= ~kMyriadCacheBitMask32
1687     AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1688     // Tag = AddrLong >> kMyriadTagShift
1689     Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1690     // Tag == kMyriadDDRTag
1691     Value *TagCheck =
1692         IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1693 
1694     Instruction *TagCheckTerm =
1695         SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
1696                                   MDBuilder(*C).createBranchWeights(1, 100000));
1697     assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1698     IRB.SetInsertPoint(TagCheckTerm);
1699     InsertBefore = TagCheckTerm;
1700   }
1701 
1702   Type *ShadowTy =
1703       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1704   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1705   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1706   Value *CmpVal = Constant::getNullValue(ShadowTy);
1707   Value *ShadowValue =
1708       IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1709 
1710   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1711   size_t Granularity = 1ULL << Mapping.Scale;
1712   Instruction *CrashTerm = nullptr;
1713 
1714   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1715     // We use branch weights for the slow path check, to indicate that the slow
1716     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1717     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1718         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1719     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1720     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1721     IRB.SetInsertPoint(CheckTerm);
1722     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1723     if (Recover) {
1724       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1725     } else {
1726       BasicBlock *CrashBlock =
1727         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1728       CrashTerm = new UnreachableInst(*C, CrashBlock);
1729       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1730       ReplaceInstWithInst(CheckTerm, NewTerm);
1731     }
1732   } else {
1733     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1734   }
1735 
1736   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1737                                          AccessSizeIndex, SizeArgument, Exp);
1738   Crash->setDebugLoc(OrigIns->getDebugLoc());
1739 }
1740 
1741 // Instrument unusual size or unusual alignment.
1742 // We can not do it with a single check, so we do 1-byte check for the first
1743 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1744 // to report the actual access size.
1745 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1746     Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1747     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1748   IRBuilder<> IRB(InsertBefore);
1749   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1750   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1751   if (UseCalls) {
1752     if (Exp == 0)
1753       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1754                      {AddrLong, Size});
1755     else
1756       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1757                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1758   } else {
1759     Value *LastByte = IRB.CreateIntToPtr(
1760         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1761         Addr->getType());
1762     instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1763     instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1764   }
1765 }
1766 
1767 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1768                                                   GlobalValue *ModuleName) {
1769   // Set up the arguments to our poison/unpoison functions.
1770   IRBuilder<> IRB(&GlobalInit.front(),
1771                   GlobalInit.front().getFirstInsertionPt());
1772 
1773   // Add a call to poison all external globals before the given function starts.
1774   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1775   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1776 
1777   // Add calls to unpoison all globals before each return instruction.
1778   for (auto &BB : GlobalInit.getBasicBlockList())
1779     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1780       CallInst::Create(AsanUnpoisonGlobals, "", RI);
1781 }
1782 
1783 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1784     Module &M, GlobalValue *ModuleName) {
1785   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1786   if (!GV)
1787     return;
1788 
1789   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1790   if (!CA)
1791     return;
1792 
1793   for (Use &OP : CA->operands()) {
1794     if (isa<ConstantAggregateZero>(OP)) continue;
1795     ConstantStruct *CS = cast<ConstantStruct>(OP);
1796 
1797     // Must have a function or null ptr.
1798     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1799       if (F->getName() == kAsanModuleCtorName) continue;
1800       auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1801       // Don't instrument CTORs that will run before asan.module_ctor.
1802       if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1803         continue;
1804       poisonOneInitializer(*F, ModuleName);
1805     }
1806   }
1807 }
1808 
1809 bool ModuleAddressSanitizer::canInstrumentAliasedGlobal(
1810     const GlobalAlias &GA) const {
1811   // In case this function should be expanded to include rules that do not just
1812   // apply when CompileKernel is true, either guard all existing rules with an
1813   // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1814   // should also apply to user space.
1815   assert(CompileKernel && "Only expecting to be called when compiling kernel");
1816 
1817   // When compiling the kernel, globals that are aliased by symbols prefixed
1818   // by "__" are special and cannot be padded with a redzone.
1819   if (GA.getName().startswith("__"))
1820     return false;
1821 
1822   return true;
1823 }
1824 
1825 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
1826   Type *Ty = G->getValueType();
1827   LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1828 
1829   // FIXME: Metadata should be attched directly to the global directly instead
1830   // of being added to llvm.asan.globals.
1831   if (GlobalsMD.get(G).IsExcluded) return false;
1832   if (!Ty->isSized()) return false;
1833   if (!G->hasInitializer()) return false;
1834   // Only instrument globals of default address spaces
1835   if (G->getAddressSpace()) return false;
1836   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1837   // Two problems with thread-locals:
1838   //   - The address of the main thread's copy can't be computed at link-time.
1839   //   - Need to poison all copies, not just the main thread's one.
1840   if (G->isThreadLocal()) return false;
1841   // For now, just ignore this Global if the alignment is large.
1842   if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;
1843 
1844   // For non-COFF targets, only instrument globals known to be defined by this
1845   // TU.
1846   // FIXME: We can instrument comdat globals on ELF if we are using the
1847   // GC-friendly metadata scheme.
1848   if (!TargetTriple.isOSBinFormatCOFF()) {
1849     if (!G->hasExactDefinition() || G->hasComdat())
1850       return false;
1851   } else {
1852     // On COFF, don't instrument non-ODR linkages.
1853     if (G->isInterposable())
1854       return false;
1855   }
1856 
1857   // If a comdat is present, it must have a selection kind that implies ODR
1858   // semantics: no duplicates, any, or exact match.
1859   if (Comdat *C = G->getComdat()) {
1860     switch (C->getSelectionKind()) {
1861     case Comdat::Any:
1862     case Comdat::ExactMatch:
1863     case Comdat::NoDuplicates:
1864       break;
1865     case Comdat::Largest:
1866     case Comdat::SameSize:
1867       return false;
1868     }
1869   }
1870 
1871   if (G->hasSection()) {
1872     // The kernel uses explicit sections for mostly special global variables
1873     // that we should not instrument. E.g. the kernel may rely on their layout
1874     // without redzones, or remove them at link time ("discard.*"), etc.
1875     if (CompileKernel)
1876       return false;
1877 
1878     StringRef Section = G->getSection();
1879 
1880     // Globals from llvm.metadata aren't emitted, do not instrument them.
1881     if (Section == "llvm.metadata") return false;
1882     // Do not instrument globals from special LLVM sections.
1883     if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1884 
1885     // Do not instrument function pointers to initialization and termination
1886     // routines: dynamic linker will not properly handle redzones.
1887     if (Section.startswith(".preinit_array") ||
1888         Section.startswith(".init_array") ||
1889         Section.startswith(".fini_array")) {
1890       return false;
1891     }
1892 
1893     // Do not instrument user-defined sections (with names resembling
1894     // valid C identifiers)
1895     if (TargetTriple.isOSBinFormatELF()) {
1896       if (std::all_of(Section.begin(), Section.end(),
1897                       [](char c) { return llvm::isAlnum(c) || c == '_'; }))
1898         return false;
1899     }
1900 
1901     // On COFF, if the section name contains '$', it is highly likely that the
1902     // user is using section sorting to create an array of globals similar to
1903     // the way initialization callbacks are registered in .init_array and
1904     // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1905     // to such globals is counterproductive, because the intent is that they
1906     // will form an array, and out-of-bounds accesses are expected.
1907     // See https://github.com/google/sanitizers/issues/305
1908     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1909     if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1910       LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1911                         << *G << "\n");
1912       return false;
1913     }
1914 
1915     if (TargetTriple.isOSBinFormatMachO()) {
1916       StringRef ParsedSegment, ParsedSection;
1917       unsigned TAA = 0, StubSize = 0;
1918       bool TAAParsed;
1919       std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1920           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1921       assert(ErrorCode.empty() && "Invalid section specifier.");
1922 
1923       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1924       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1925       // them.
1926       if (ParsedSegment == "__OBJC" ||
1927           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1928         LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1929         return false;
1930       }
1931       // See https://github.com/google/sanitizers/issues/32
1932       // Constant CFString instances are compiled in the following way:
1933       //  -- the string buffer is emitted into
1934       //     __TEXT,__cstring,cstring_literals
1935       //  -- the constant NSConstantString structure referencing that buffer
1936       //     is placed into __DATA,__cfstring
1937       // Therefore there's no point in placing redzones into __DATA,__cfstring.
1938       // Moreover, it causes the linker to crash on OS X 10.7
1939       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1940         LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1941         return false;
1942       }
1943       // The linker merges the contents of cstring_literals and removes the
1944       // trailing zeroes.
1945       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1946         LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1947         return false;
1948       }
1949     }
1950   }
1951 
1952   if (CompileKernel) {
1953     // Globals that prefixed by "__" are special and cannot be padded with a
1954     // redzone.
1955     if (G->getName().startswith("__"))
1956       return false;
1957   }
1958 
1959   return true;
1960 }
1961 
1962 // On Mach-O platforms, we emit global metadata in a separate section of the
1963 // binary in order to allow the linker to properly dead strip. This is only
1964 // supported on recent versions of ld64.
1965 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
1966   if (!TargetTriple.isOSBinFormatMachO())
1967     return false;
1968 
1969   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1970     return true;
1971   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1972     return true;
1973   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1974     return true;
1975 
1976   return false;
1977 }
1978 
1979 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
1980   switch (TargetTriple.getObjectFormat()) {
1981   case Triple::COFF:  return ".ASAN$GL";
1982   case Triple::ELF:   return "asan_globals";
1983   case Triple::MachO: return "__DATA,__asan_globals,regular";
1984   case Triple::Wasm:
1985   case Triple::GOFF:
1986   case Triple::XCOFF:
1987     report_fatal_error(
1988         "ModuleAddressSanitizer not implemented for object file format");
1989   case Triple::UnknownObjectFormat:
1990     break;
1991   }
1992   llvm_unreachable("unsupported object format");
1993 }
1994 
1995 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
1996   IRBuilder<> IRB(*C);
1997 
1998   // Declare our poisoning and unpoisoning functions.
1999   AsanPoisonGlobals =
2000       M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2001   AsanUnpoisonGlobals =
2002       M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2003 
2004   // Declare functions that register/unregister globals.
2005   AsanRegisterGlobals = M.getOrInsertFunction(
2006       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2007   AsanUnregisterGlobals = M.getOrInsertFunction(
2008       kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2009 
2010   // Declare the functions that find globals in a shared object and then invoke
2011   // the (un)register function on them.
2012   AsanRegisterImageGlobals = M.getOrInsertFunction(
2013       kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2014   AsanUnregisterImageGlobals = M.getOrInsertFunction(
2015       kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2016 
2017   AsanRegisterElfGlobals =
2018       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2019                             IntptrTy, IntptrTy, IntptrTy);
2020   AsanUnregisterElfGlobals =
2021       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2022                             IntptrTy, IntptrTy, IntptrTy);
2023 }
2024 
2025 // Put the metadata and the instrumented global in the same group. This ensures
2026 // that the metadata is discarded if the instrumented global is discarded.
2027 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2028     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2029   Module &M = *G->getParent();
2030   Comdat *C = G->getComdat();
2031   if (!C) {
2032     if (!G->hasName()) {
2033       // If G is unnamed, it must be internal. Give it an artificial name
2034       // so we can put it in a comdat.
2035       assert(G->hasLocalLinkage());
2036       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2037     }
2038 
2039     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2040       std::string Name = std::string(G->getName());
2041       Name += InternalSuffix;
2042       C = M.getOrInsertComdat(Name);
2043     } else {
2044       C = M.getOrInsertComdat(G->getName());
2045     }
2046 
2047     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2048     // linkage to internal linkage so that a symbol table entry is emitted. This
2049     // is necessary in order to create the comdat group.
2050     if (TargetTriple.isOSBinFormatCOFF()) {
2051       C->setSelectionKind(Comdat::NoDuplicates);
2052       if (G->hasPrivateLinkage())
2053         G->setLinkage(GlobalValue::InternalLinkage);
2054     }
2055     G->setComdat(C);
2056   }
2057 
2058   assert(G->hasComdat());
2059   Metadata->setComdat(G->getComdat());
2060 }
2061 
2062 // Create a separate metadata global and put it in the appropriate ASan
2063 // global registration section.
2064 GlobalVariable *
2065 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2066                                              StringRef OriginalName) {
2067   auto Linkage = TargetTriple.isOSBinFormatMachO()
2068                      ? GlobalVariable::InternalLinkage
2069                      : GlobalVariable::PrivateLinkage;
2070   GlobalVariable *Metadata = new GlobalVariable(
2071       M, Initializer->getType(), false, Linkage, Initializer,
2072       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2073   Metadata->setSection(getGlobalMetadataSection());
2074   return Metadata;
2075 }
2076 
2077 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2078   AsanDtorFunction =
2079       Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
2080                        GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
2081   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2082 
2083   return ReturnInst::Create(*C, AsanDtorBB);
2084 }
2085 
2086 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2087     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2088     ArrayRef<Constant *> MetadataInitializers) {
2089   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2090   auto &DL = M.getDataLayout();
2091 
2092   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2093   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2094     Constant *Initializer = MetadataInitializers[i];
2095     GlobalVariable *G = ExtendedGlobals[i];
2096     GlobalVariable *Metadata =
2097         CreateMetadataGlobal(M, Initializer, G->getName());
2098     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2099     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2100     MetadataGlobals[i] = Metadata;
2101 
2102     // The MSVC linker always inserts padding when linking incrementally. We
2103     // cope with that by aligning each struct to its size, which must be a power
2104     // of two.
2105     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2106     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2107            "global metadata will not be padded appropriately");
2108     Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2109 
2110     SetComdatForGlobalMetadata(G, Metadata, "");
2111   }
2112 
2113   // Update llvm.compiler.used, adding the new metadata globals. This is
2114   // needed so that during LTO these variables stay alive.
2115   if (!MetadataGlobals.empty())
2116     appendToCompilerUsed(M, MetadataGlobals);
2117 }
2118 
2119 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2120     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2121     ArrayRef<Constant *> MetadataInitializers,
2122     const std::string &UniqueModuleId) {
2123   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2124 
2125   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2126   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2127     GlobalVariable *G = ExtendedGlobals[i];
2128     GlobalVariable *Metadata =
2129         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2130     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2131     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2132     MetadataGlobals[i] = Metadata;
2133 
2134     SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2135   }
2136 
2137   // Update llvm.compiler.used, adding the new metadata globals. This is
2138   // needed so that during LTO these variables stay alive.
2139   if (!MetadataGlobals.empty())
2140     appendToCompilerUsed(M, MetadataGlobals);
2141 
2142   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2143   // to look up the loaded image that contains it. Second, we can store in it
2144   // whether registration has already occurred, to prevent duplicate
2145   // registration.
2146   //
2147   // Common linkage ensures that there is only one global per shared library.
2148   GlobalVariable *RegisteredFlag = new GlobalVariable(
2149       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2150       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2151   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2152 
2153   // Create start and stop symbols.
2154   GlobalVariable *StartELFMetadata = new GlobalVariable(
2155       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2156       "__start_" + getGlobalMetadataSection());
2157   StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2158   GlobalVariable *StopELFMetadata = new GlobalVariable(
2159       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2160       "__stop_" + getGlobalMetadataSection());
2161   StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2162 
2163   // Create a call to register the globals with the runtime.
2164   IRB.CreateCall(AsanRegisterElfGlobals,
2165                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2166                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2167                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2168 
2169   // We also need to unregister globals at the end, e.g., when a shared library
2170   // gets closed.
2171   IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
2172   IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
2173                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2174                        IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2175                        IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2176 }
2177 
2178 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2179     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2180     ArrayRef<Constant *> MetadataInitializers) {
2181   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2182 
2183   // On recent Mach-O platforms, use a structure which binds the liveness of
2184   // the global variable to the metadata struct. Keep the list of "Liveness" GV
2185   // created to be added to llvm.compiler.used
2186   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2187   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2188 
2189   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2190     Constant *Initializer = MetadataInitializers[i];
2191     GlobalVariable *G = ExtendedGlobals[i];
2192     GlobalVariable *Metadata =
2193         CreateMetadataGlobal(M, Initializer, G->getName());
2194 
2195     // On recent Mach-O platforms, we emit the global metadata in a way that
2196     // allows the linker to properly strip dead globals.
2197     auto LivenessBinder =
2198         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2199                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
2200     GlobalVariable *Liveness = new GlobalVariable(
2201         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2202         Twine("__asan_binder_") + G->getName());
2203     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2204     LivenessGlobals[i] = Liveness;
2205   }
2206 
2207   // Update llvm.compiler.used, adding the new liveness globals. This is
2208   // needed so that during LTO these variables stay alive. The alternative
2209   // would be to have the linker handling the LTO symbols, but libLTO
2210   // current API does not expose access to the section for each symbol.
2211   if (!LivenessGlobals.empty())
2212     appendToCompilerUsed(M, LivenessGlobals);
2213 
2214   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2215   // to look up the loaded image that contains it. Second, we can store in it
2216   // whether registration has already occurred, to prevent duplicate
2217   // registration.
2218   //
2219   // common linkage ensures that there is only one global per shared library.
2220   GlobalVariable *RegisteredFlag = new GlobalVariable(
2221       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2222       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2223   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2224 
2225   IRB.CreateCall(AsanRegisterImageGlobals,
2226                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2227 
2228   // We also need to unregister globals at the end, e.g., when a shared library
2229   // gets closed.
2230   IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
2231   IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
2232                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2233 }
2234 
2235 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2236     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2237     ArrayRef<Constant *> MetadataInitializers) {
2238   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2239   unsigned N = ExtendedGlobals.size();
2240   assert(N > 0);
2241 
2242   // On platforms that don't have a custom metadata section, we emit an array
2243   // of global metadata structures.
2244   ArrayType *ArrayOfGlobalStructTy =
2245       ArrayType::get(MetadataInitializers[0]->getType(), N);
2246   auto AllGlobals = new GlobalVariable(
2247       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2248       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2249   if (Mapping.Scale > 3)
2250     AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2251 
2252   IRB.CreateCall(AsanRegisterGlobals,
2253                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2254                   ConstantInt::get(IntptrTy, N)});
2255 
2256   // We also need to unregister globals at the end, e.g., when a shared library
2257   // gets closed.
2258   IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
2259   IRB_Dtor.CreateCall(AsanUnregisterGlobals,
2260                       {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2261                        ConstantInt::get(IntptrTy, N)});
2262 }
2263 
2264 // This function replaces all global variables with new variables that have
2265 // trailing redzones. It also creates a function that poisons
2266 // redzones and inserts this function into llvm.global_ctors.
2267 // Sets *CtorComdat to true if the global registration code emitted into the
2268 // asan constructor is comdat-compatible.
2269 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2270                                                bool *CtorComdat) {
2271   *CtorComdat = false;
2272 
2273   // Build set of globals that are aliased by some GA, where
2274   // canInstrumentAliasedGlobal(GA) returns false.
2275   SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2276   if (CompileKernel) {
2277     for (auto &GA : M.aliases()) {
2278       if (const auto *GV = dyn_cast<GlobalVariable>(GA.getAliasee())) {
2279         if (!canInstrumentAliasedGlobal(GA))
2280           AliasedGlobalExclusions.insert(GV);
2281       }
2282     }
2283   }
2284 
2285   SmallVector<GlobalVariable *, 16> GlobalsToChange;
2286   for (auto &G : M.globals()) {
2287     if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2288       GlobalsToChange.push_back(&G);
2289   }
2290 
2291   size_t n = GlobalsToChange.size();
2292   if (n == 0) {
2293     *CtorComdat = true;
2294     return false;
2295   }
2296 
2297   auto &DL = M.getDataLayout();
2298 
2299   // A global is described by a structure
2300   //   size_t beg;
2301   //   size_t size;
2302   //   size_t size_with_redzone;
2303   //   const char *name;
2304   //   const char *module_name;
2305   //   size_t has_dynamic_init;
2306   //   void *source_location;
2307   //   size_t odr_indicator;
2308   // We initialize an array of such structures and pass it to a run-time call.
2309   StructType *GlobalStructTy =
2310       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2311                       IntptrTy, IntptrTy, IntptrTy);
2312   SmallVector<GlobalVariable *, 16> NewGlobals(n);
2313   SmallVector<Constant *, 16> Initializers(n);
2314 
2315   bool HasDynamicallyInitializedGlobals = false;
2316 
2317   // We shouldn't merge same module names, as this string serves as unique
2318   // module ID in runtime.
2319   GlobalVariable *ModuleName = createPrivateGlobalForString(
2320       M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2321 
2322   for (size_t i = 0; i < n; i++) {
2323     GlobalVariable *G = GlobalsToChange[i];
2324 
2325     // FIXME: Metadata should be attched directly to the global directly instead
2326     // of being added to llvm.asan.globals.
2327     auto MD = GlobalsMD.get(G);
2328     StringRef NameForGlobal = G->getName();
2329     // Create string holding the global name (use global name from metadata
2330     // if it's available, otherwise just write the name of global variable).
2331     GlobalVariable *Name = createPrivateGlobalForString(
2332         M, MD.Name.empty() ? NameForGlobal : MD.Name,
2333         /*AllowMerging*/ true, kAsanGenPrefix);
2334 
2335     Type *Ty = G->getValueType();
2336     const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2337     const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2338     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2339 
2340     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2341     Constant *NewInitializer = ConstantStruct::get(
2342         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2343 
2344     // Create a new global variable with enough space for a redzone.
2345     GlobalValue::LinkageTypes Linkage = G->getLinkage();
2346     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2347       Linkage = GlobalValue::InternalLinkage;
2348     GlobalVariable *NewGlobal =
2349         new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
2350                            "", G, G->getThreadLocalMode());
2351     NewGlobal->copyAttributesFrom(G);
2352     NewGlobal->setComdat(G->getComdat());
2353     NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
2354     // Don't fold globals with redzones. ODR violation detector and redzone
2355     // poisoning implicitly creates a dependence on the global's address, so it
2356     // is no longer valid for it to be marked unnamed_addr.
2357     NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2358 
2359     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2360     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2361         G->isConstant()) {
2362       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2363       if (Seq && Seq->isCString())
2364         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2365     }
2366 
2367     // Transfer the debug info and type metadata.  The payload starts at offset
2368     // zero so we can copy the metadata over as is.
2369     NewGlobal->copyMetadata(G, 0);
2370 
2371     Value *Indices2[2];
2372     Indices2[0] = IRB.getInt32(0);
2373     Indices2[1] = IRB.getInt32(0);
2374 
2375     G->replaceAllUsesWith(
2376         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2377     NewGlobal->takeName(G);
2378     G->eraseFromParent();
2379     NewGlobals[i] = NewGlobal;
2380 
2381     Constant *SourceLoc;
2382     if (!MD.SourceLoc.empty()) {
2383       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2384       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2385     } else {
2386       SourceLoc = ConstantInt::get(IntptrTy, 0);
2387     }
2388 
2389     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2390     GlobalValue *InstrumentedGlobal = NewGlobal;
2391 
2392     bool CanUsePrivateAliases =
2393         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2394         TargetTriple.isOSBinFormatWasm();
2395     if (CanUsePrivateAliases && UsePrivateAlias) {
2396       // Create local alias for NewGlobal to avoid crash on ODR between
2397       // instrumented and non-instrumented libraries.
2398       InstrumentedGlobal =
2399           GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2400     }
2401 
2402     // ODR should not happen for local linkage.
2403     if (NewGlobal->hasLocalLinkage()) {
2404       ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2405                                                IRB.getInt8PtrTy());
2406     } else if (UseOdrIndicator) {
2407       // With local aliases, we need to provide another externally visible
2408       // symbol __odr_asan_XXX to detect ODR violation.
2409       auto *ODRIndicatorSym =
2410           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2411                              Constant::getNullValue(IRB.getInt8Ty()),
2412                              kODRGenPrefix + NameForGlobal, nullptr,
2413                              NewGlobal->getThreadLocalMode());
2414 
2415       // Set meaningful attributes for indicator symbol.
2416       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2417       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2418       ODRIndicatorSym->setAlignment(Align(1));
2419       ODRIndicator = ODRIndicatorSym;
2420     }
2421 
2422     Constant *Initializer = ConstantStruct::get(
2423         GlobalStructTy,
2424         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2425         ConstantInt::get(IntptrTy, SizeInBytes),
2426         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2427         ConstantExpr::getPointerCast(Name, IntptrTy),
2428         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2429         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2430         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2431 
2432     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2433 
2434     LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2435 
2436     Initializers[i] = Initializer;
2437   }
2438 
2439   // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2440   // ConstantMerge'ing them.
2441   SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2442   for (size_t i = 0; i < n; i++) {
2443     GlobalVariable *G = NewGlobals[i];
2444     if (G->getName().empty()) continue;
2445     GlobalsToAddToUsedList.push_back(G);
2446   }
2447   appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2448 
2449   std::string ELFUniqueModuleId =
2450       (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2451                                                         : "";
2452 
2453   if (!ELFUniqueModuleId.empty()) {
2454     InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2455     *CtorComdat = true;
2456   } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2457     InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2458   } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2459     InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2460   } else {
2461     InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2462   }
2463 
2464   // Create calls for poisoning before initializers run and unpoisoning after.
2465   if (HasDynamicallyInitializedGlobals)
2466     createInitializerPoisonCalls(M, ModuleName);
2467 
2468   LLVM_DEBUG(dbgs() << M);
2469   return true;
2470 }
2471 
2472 uint64_t
2473 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2474   constexpr uint64_t kMaxRZ = 1 << 18;
2475   const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2476 
2477   // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2478   uint64_t RZ =
2479       std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));
2480 
2481   // Round up to multiple of MinRZ.
2482   if (SizeInBytes % MinRZ)
2483     RZ += MinRZ - (SizeInBytes % MinRZ);
2484   assert((RZ + SizeInBytes) % MinRZ == 0);
2485 
2486   return RZ;
2487 }
2488 
2489 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2490   int LongSize = M.getDataLayout().getPointerSizeInBits();
2491   bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2492   int Version = 8;
2493   // 32-bit Android is one version ahead because of the switch to dynamic
2494   // shadow.
2495   Version += (LongSize == 32 && isAndroid);
2496   return Version;
2497 }
2498 
2499 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2500   initializeCallbacks(M);
2501 
2502   // Create a module constructor. A destructor is created lazily because not all
2503   // platforms, and not all modules need it.
2504   if (CompileKernel) {
2505     // The kernel always builds with its own runtime, and therefore does not
2506     // need the init and version check calls.
2507     AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2508   } else {
2509     std::string AsanVersion = std::to_string(GetAsanVersion(M));
2510     std::string VersionCheckName =
2511         ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2512     std::tie(AsanCtorFunction, std::ignore) =
2513         createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2514                                             kAsanInitName, /*InitArgTypes=*/{},
2515                                             /*InitArgs=*/{}, VersionCheckName);
2516   }
2517 
2518   bool CtorComdat = true;
2519   if (ClGlobals) {
2520     IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2521     InstrumentGlobals(IRB, M, &CtorComdat);
2522   }
2523 
2524   const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2525 
2526   // Put the constructor and destructor in comdat if both
2527   // (1) global instrumentation is not TU-specific
2528   // (2) target is ELF.
2529   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2530     AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2531     appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2532     if (AsanDtorFunction) {
2533       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2534       appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2535     }
2536   } else {
2537     appendToGlobalCtors(M, AsanCtorFunction, Priority);
2538     if (AsanDtorFunction)
2539       appendToGlobalDtors(M, AsanDtorFunction, Priority);
2540   }
2541 
2542   return true;
2543 }
2544 
2545 void AddressSanitizer::initializeCallbacks(Module &M) {
2546   IRBuilder<> IRB(*C);
2547   // Create __asan_report* callbacks.
2548   // IsWrite, TypeSize and Exp are encoded in the function name.
2549   for (int Exp = 0; Exp < 2; Exp++) {
2550     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2551       const std::string TypeStr = AccessIsWrite ? "store" : "load";
2552       const std::string ExpStr = Exp ? "exp_" : "";
2553       const std::string EndingStr = Recover ? "_noabort" : "";
2554 
2555       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2556       SmallVector<Type *, 2> Args1{1, IntptrTy};
2557       if (Exp) {
2558         Type *ExpType = Type::getInt32Ty(*C);
2559         Args2.push_back(ExpType);
2560         Args1.push_back(ExpType);
2561       }
2562       AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2563           kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2564           FunctionType::get(IRB.getVoidTy(), Args2, false));
2565 
2566       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2567           ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2568           FunctionType::get(IRB.getVoidTy(), Args2, false));
2569 
2570       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2571            AccessSizeIndex++) {
2572         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2573         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2574             M.getOrInsertFunction(
2575                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2576                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2577 
2578         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2579             M.getOrInsertFunction(
2580                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2581                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2582       }
2583     }
2584   }
2585 
2586   const std::string MemIntrinCallbackPrefix =
2587       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2588   AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2589                                       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2590                                       IRB.getInt8PtrTy(), IntptrTy);
2591   AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2592                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2593                                      IRB.getInt8PtrTy(), IntptrTy);
2594   AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2595                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2596                                      IRB.getInt32Ty(), IntptrTy);
2597 
2598   AsanHandleNoReturnFunc =
2599       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2600 
2601   AsanPtrCmpFunction =
2602       M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2603   AsanPtrSubFunction =
2604       M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2605   if (Mapping.InGlobal)
2606     AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2607                                            ArrayType::get(IRB.getInt8Ty(), 0));
2608 }
2609 
2610 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2611   // For each NSObject descendant having a +load method, this method is invoked
2612   // by the ObjC runtime before any of the static constructors is called.
2613   // Therefore we need to instrument such methods with a call to __asan_init
2614   // at the beginning in order to initialize our runtime before any access to
2615   // the shadow memory.
2616   // We cannot just ignore these methods, because they may call other
2617   // instrumented functions.
2618   if (F.getName().find(" load]") != std::string::npos) {
2619     FunctionCallee AsanInitFunction =
2620         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2621     IRBuilder<> IRB(&F.front(), F.front().begin());
2622     IRB.CreateCall(AsanInitFunction, {});
2623     return true;
2624   }
2625   return false;
2626 }
2627 
2628 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2629   // Generate code only when dynamic addressing is needed.
2630   if (Mapping.Offset != kDynamicShadowSentinel)
2631     return false;
2632 
2633   IRBuilder<> IRB(&F.front().front());
2634   if (Mapping.InGlobal) {
2635     if (ClWithIfuncSuppressRemat) {
2636       // An empty inline asm with input reg == output reg.
2637       // An opaque pointer-to-int cast, basically.
2638       InlineAsm *Asm = InlineAsm::get(
2639           FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2640           StringRef(""), StringRef("=r,0"),
2641           /*hasSideEffects=*/false);
2642       LocalDynamicShadow =
2643           IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2644     } else {
2645       LocalDynamicShadow =
2646           IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2647     }
2648   } else {
2649     Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2650         kAsanShadowMemoryDynamicAddress, IntptrTy);
2651     LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2652   }
2653   return true;
2654 }
2655 
2656 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2657   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2658   // to it as uninteresting. This assumes we haven't started processing allocas
2659   // yet. This check is done up front because iterating the use list in
2660   // isInterestingAlloca would be algorithmically slower.
2661   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2662 
2663   // Try to get the declaration of llvm.localescape. If it's not in the module,
2664   // we can exit early.
2665   if (!F.getParent()->getFunction("llvm.localescape")) return;
2666 
2667   // Look for a call to llvm.localescape call in the entry block. It can't be in
2668   // any other block.
2669   for (Instruction &I : F.getEntryBlock()) {
2670     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2671     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2672       // We found a call. Mark all the allocas passed in as uninteresting.
2673       for (Value *Arg : II->arg_operands()) {
2674         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2675         assert(AI && AI->isStaticAlloca() &&
2676                "non-static alloca arg to localescape");
2677         ProcessedAllocas[AI] = false;
2678       }
2679       break;
2680     }
2681   }
2682 }
2683 
2684 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2685   bool ShouldInstrument =
2686       ClDebugMin < 0 || ClDebugMax < 0 ||
2687       (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2688   Instrumented++;
2689   return !ShouldInstrument;
2690 }
2691 
2692 bool AddressSanitizer::instrumentFunction(Function &F,
2693                                           const TargetLibraryInfo *TLI) {
2694   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2695   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2696   if (F.getName().startswith("__asan_")) return false;
2697 
2698   bool FunctionModified = false;
2699 
2700   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2701   // This function needs to be called even if the function body is not
2702   // instrumented.
2703   if (maybeInsertAsanInitAtFunctionEntry(F))
2704     FunctionModified = true;
2705 
2706   // Leave if the function doesn't need instrumentation.
2707   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2708 
2709   LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2710 
2711   initializeCallbacks(*F.getParent());
2712 
2713   FunctionStateRAII CleanupObj(this);
2714 
2715   FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2716 
2717   // We can't instrument allocas used with llvm.localescape. Only static allocas
2718   // can be passed to that intrinsic.
2719   markEscapedLocalAllocas(F);
2720 
2721   // We want to instrument every address only once per basic block (unless there
2722   // are calls between uses).
2723   SmallPtrSet<Value *, 16> TempsToInstrument;
2724   SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2725   SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2726   SmallVector<Instruction *, 8> NoReturnCalls;
2727   SmallVector<BasicBlock *, 16> AllBlocks;
2728   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2729   int NumAllocas = 0;
2730 
2731   // Fill the set of memory operations to instrument.
2732   for (auto &BB : F) {
2733     AllBlocks.push_back(&BB);
2734     TempsToInstrument.clear();
2735     int NumInsnsPerBB = 0;
2736     for (auto &Inst : BB) {
2737       if (LooksLikeCodeInBug11395(&Inst)) return false;
2738       SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2739       getInterestingMemoryOperands(&Inst, InterestingOperands);
2740 
2741       if (!InterestingOperands.empty()) {
2742         for (auto &Operand : InterestingOperands) {
2743           if (ClOpt && ClOptSameTemp) {
2744             Value *Ptr = Operand.getPtr();
2745             // If we have a mask, skip instrumentation if we've already
2746             // instrumented the full object. But don't add to TempsToInstrument
2747             // because we might get another load/store with a different mask.
2748             if (Operand.MaybeMask) {
2749               if (TempsToInstrument.count(Ptr))
2750                 continue; // We've seen this (whole) temp in the current BB.
2751             } else {
2752               if (!TempsToInstrument.insert(Ptr).second)
2753                 continue; // We've seen this temp in the current BB.
2754             }
2755           }
2756           OperandsToInstrument.push_back(Operand);
2757           NumInsnsPerBB++;
2758         }
2759       } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2760                   isInterestingPointerComparison(&Inst)) ||
2761                  ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2762                   isInterestingPointerSubtraction(&Inst))) {
2763         PointerComparisonsOrSubtracts.push_back(&Inst);
2764       } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2765         // ok, take it.
2766         IntrinToInstrument.push_back(MI);
2767         NumInsnsPerBB++;
2768       } else {
2769         if (isa<AllocaInst>(Inst)) NumAllocas++;
2770         if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2771           // A call inside BB.
2772           TempsToInstrument.clear();
2773           if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
2774             NoReturnCalls.push_back(CB);
2775         }
2776         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2777           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2778       }
2779       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2780     }
2781   }
2782 
2783   bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
2784                    OperandsToInstrument.size() + IntrinToInstrument.size() >
2785                        (unsigned)ClInstrumentationWithCallsThreshold);
2786   const DataLayout &DL = F.getParent()->getDataLayout();
2787   ObjectSizeOpts ObjSizeOpts;
2788   ObjSizeOpts.RoundToAlign = true;
2789   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2790 
2791   // Instrument.
2792   int NumInstrumented = 0;
2793   for (auto &Operand : OperandsToInstrument) {
2794     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2795       instrumentMop(ObjSizeVis, Operand, UseCalls,
2796                     F.getParent()->getDataLayout());
2797     FunctionModified = true;
2798   }
2799   for (auto Inst : IntrinToInstrument) {
2800     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2801       instrumentMemIntrinsic(Inst);
2802     FunctionModified = true;
2803   }
2804 
2805   FunctionStackPoisoner FSP(F, *this);
2806   bool ChangedStack = FSP.runOnFunction();
2807 
2808   // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2809   // See e.g. https://github.com/google/sanitizers/issues/37
2810   for (auto CI : NoReturnCalls) {
2811     IRBuilder<> IRB(CI);
2812     IRB.CreateCall(AsanHandleNoReturnFunc, {});
2813   }
2814 
2815   for (auto Inst : PointerComparisonsOrSubtracts) {
2816     instrumentPointerComparisonOrSubtraction(Inst);
2817     FunctionModified = true;
2818   }
2819 
2820   if (ChangedStack || !NoReturnCalls.empty())
2821     FunctionModified = true;
2822 
2823   LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2824                     << F << "\n");
2825 
2826   return FunctionModified;
2827 }
2828 
2829 // Workaround for bug 11395: we don't want to instrument stack in functions
2830 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2831 // FIXME: remove once the bug 11395 is fixed.
2832 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2833   if (LongSize != 32) return false;
2834   CallInst *CI = dyn_cast<CallInst>(I);
2835   if (!CI || !CI->isInlineAsm()) return false;
2836   if (CI->getNumArgOperands() <= 5) return false;
2837   // We have inline assembly with quite a few arguments.
2838   return true;
2839 }
2840 
2841 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2842   IRBuilder<> IRB(*C);
2843   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2844     std::string Suffix = itostr(i);
2845     AsanStackMallocFunc[i] = M.getOrInsertFunction(
2846         kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2847     AsanStackFreeFunc[i] =
2848         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2849                               IRB.getVoidTy(), IntptrTy, IntptrTy);
2850   }
2851   if (ASan.UseAfterScope) {
2852     AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2853         kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2854     AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2855         kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2856   }
2857 
2858   for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2859     std::ostringstream Name;
2860     Name << kAsanSetShadowPrefix;
2861     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2862     AsanSetShadowFunc[Val] =
2863         M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2864   }
2865 
2866   AsanAllocaPoisonFunc = M.getOrInsertFunction(
2867       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2868   AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2869       kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2870 }
2871 
2872 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2873                                                ArrayRef<uint8_t> ShadowBytes,
2874                                                size_t Begin, size_t End,
2875                                                IRBuilder<> &IRB,
2876                                                Value *ShadowBase) {
2877   if (Begin >= End)
2878     return;
2879 
2880   const size_t LargestStoreSizeInBytes =
2881       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2882 
2883   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2884 
2885   // Poison given range in shadow using larges store size with out leading and
2886   // trailing zeros in ShadowMask. Zeros never change, so they need neither
2887   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2888   // middle of a store.
2889   for (size_t i = Begin; i < End;) {
2890     if (!ShadowMask[i]) {
2891       assert(!ShadowBytes[i]);
2892       ++i;
2893       continue;
2894     }
2895 
2896     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2897     // Fit store size into the range.
2898     while (StoreSizeInBytes > End - i)
2899       StoreSizeInBytes /= 2;
2900 
2901     // Minimize store size by trimming trailing zeros.
2902     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2903       while (j <= StoreSizeInBytes / 2)
2904         StoreSizeInBytes /= 2;
2905     }
2906 
2907     uint64_t Val = 0;
2908     for (size_t j = 0; j < StoreSizeInBytes; j++) {
2909       if (IsLittleEndian)
2910         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
2911       else
2912         Val = (Val << 8) | ShadowBytes[i + j];
2913     }
2914 
2915     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
2916     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
2917     IRB.CreateAlignedStore(
2918         Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
2919         Align(1));
2920 
2921     i += StoreSizeInBytes;
2922   }
2923 }
2924 
2925 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2926                                          ArrayRef<uint8_t> ShadowBytes,
2927                                          IRBuilder<> &IRB, Value *ShadowBase) {
2928   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
2929 }
2930 
2931 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2932                                          ArrayRef<uint8_t> ShadowBytes,
2933                                          size_t Begin, size_t End,
2934                                          IRBuilder<> &IRB, Value *ShadowBase) {
2935   assert(ShadowMask.size() == ShadowBytes.size());
2936   size_t Done = Begin;
2937   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
2938     if (!ShadowMask[i]) {
2939       assert(!ShadowBytes[i]);
2940       continue;
2941     }
2942     uint8_t Val = ShadowBytes[i];
2943     if (!AsanSetShadowFunc[Val])
2944       continue;
2945 
2946     // Skip same values.
2947     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
2948     }
2949 
2950     if (j - i >= ClMaxInlinePoisoningSize) {
2951       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
2952       IRB.CreateCall(AsanSetShadowFunc[Val],
2953                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
2954                       ConstantInt::get(IntptrTy, j - i)});
2955       Done = j;
2956     }
2957   }
2958 
2959   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
2960 }
2961 
2962 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2963 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2964 static int StackMallocSizeClass(uint64_t LocalStackSize) {
2965   assert(LocalStackSize <= kMaxStackMallocSize);
2966   uint64_t MaxSize = kMinStackMallocSize;
2967   for (int i = 0;; i++, MaxSize *= 2)
2968     if (LocalStackSize <= MaxSize) return i;
2969   llvm_unreachable("impossible LocalStackSize");
2970 }
2971 
2972 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2973   Instruction *CopyInsertPoint = &F.front().front();
2974   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
2975     // Insert after the dynamic shadow location is determined
2976     CopyInsertPoint = CopyInsertPoint->getNextNode();
2977     assert(CopyInsertPoint);
2978   }
2979   IRBuilder<> IRB(CopyInsertPoint);
2980   const DataLayout &DL = F.getParent()->getDataLayout();
2981   for (Argument &Arg : F.args()) {
2982     if (Arg.hasByValAttr()) {
2983       Type *Ty = Arg.getParamByValType();
2984       const Align Alignment =
2985           DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
2986 
2987       AllocaInst *AI = IRB.CreateAlloca(
2988           Ty, nullptr,
2989           (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
2990               ".byval");
2991       AI->setAlignment(Alignment);
2992       Arg.replaceAllUsesWith(AI);
2993 
2994       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2995       IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
2996     }
2997   }
2998 }
2999 
3000 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3001                                           Value *ValueIfTrue,
3002                                           Instruction *ThenTerm,
3003                                           Value *ValueIfFalse) {
3004   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3005   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3006   PHI->addIncoming(ValueIfFalse, CondBlock);
3007   BasicBlock *ThenBlock = ThenTerm->getParent();
3008   PHI->addIncoming(ValueIfTrue, ThenBlock);
3009   return PHI;
3010 }
3011 
3012 Value *FunctionStackPoisoner::createAllocaForLayout(
3013     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3014   AllocaInst *Alloca;
3015   if (Dynamic) {
3016     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3017                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3018                               "MyAlloca");
3019   } else {
3020     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3021                               nullptr, "MyAlloca");
3022     assert(Alloca->isStaticAlloca());
3023   }
3024   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3025   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
3026   Alloca->setAlignment(Align(FrameAlignment));
3027   return IRB.CreatePointerCast(Alloca, IntptrTy);
3028 }
3029 
3030 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3031   BasicBlock &FirstBB = *F.begin();
3032   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3033   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3034   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3035   DynamicAllocaLayout->setAlignment(Align(32));
3036 }
3037 
3038 void FunctionStackPoisoner::processDynamicAllocas() {
3039   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3040     assert(DynamicAllocaPoisonCallVec.empty());
3041     return;
3042   }
3043 
3044   // Insert poison calls for lifetime intrinsics for dynamic allocas.
3045   for (const auto &APC : DynamicAllocaPoisonCallVec) {
3046     assert(APC.InsBefore);
3047     assert(APC.AI);
3048     assert(ASan.isInterestingAlloca(*APC.AI));
3049     assert(!APC.AI->isStaticAlloca());
3050 
3051     IRBuilder<> IRB(APC.InsBefore);
3052     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3053     // Dynamic allocas will be unpoisoned unconditionally below in
3054     // unpoisonDynamicAllocas.
3055     // Flag that we need unpoison static allocas.
3056   }
3057 
3058   // Handle dynamic allocas.
3059   createDynamicAllocasInitStorage();
3060   for (auto &AI : DynamicAllocaVec)
3061     handleDynamicAllocaCall(AI);
3062   unpoisonDynamicAllocas();
3063 }
3064 
3065 /// Collect instructions in the entry block after \p InsBefore which initialize
3066 /// permanent storage for a function argument. These instructions must remain in
3067 /// the entry block so that uninitialized values do not appear in backtraces. An
3068 /// added benefit is that this conserves spill slots. This does not move stores
3069 /// before instrumented / "interesting" allocas.
3070 static void findStoresToUninstrumentedArgAllocas(
3071     AddressSanitizer &ASan, Instruction &InsBefore,
3072     SmallVectorImpl<Instruction *> &InitInsts) {
3073   Instruction *Start = InsBefore.getNextNonDebugInstruction();
3074   for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3075     // Argument initialization looks like:
3076     // 1) store <Argument>, <Alloca> OR
3077     // 2) <CastArgument> = cast <Argument> to ...
3078     //    store <CastArgument> to <Alloca>
3079     // Do not consider any other kind of instruction.
3080     //
3081     // Note: This covers all known cases, but may not be exhaustive. An
3082     // alternative to pattern-matching stores is to DFS over all Argument uses:
3083     // this might be more general, but is probably much more complicated.
3084     if (isa<AllocaInst>(It) || isa<CastInst>(It))
3085       continue;
3086     if (auto *Store = dyn_cast<StoreInst>(It)) {
3087       // The store destination must be an alloca that isn't interesting for
3088       // ASan to instrument. These are moved up before InsBefore, and they're
3089       // not interesting because allocas for arguments can be mem2reg'd.
3090       auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3091       if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3092         continue;
3093 
3094       Value *Val = Store->getValueOperand();
3095       bool IsDirectArgInit = isa<Argument>(Val);
3096       bool IsArgInitViaCast =
3097           isa<CastInst>(Val) &&
3098           isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3099           // Check that the cast appears directly before the store. Otherwise
3100           // moving the cast before InsBefore may break the IR.
3101           Val == It->getPrevNonDebugInstruction();
3102       bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3103       if (!IsArgInit)
3104         continue;
3105 
3106       if (IsArgInitViaCast)
3107         InitInsts.push_back(cast<Instruction>(Val));
3108       InitInsts.push_back(Store);
3109       continue;
3110     }
3111 
3112     // Do not reorder past unknown instructions: argument initialization should
3113     // only involve casts and stores.
3114     return;
3115   }
3116 }
3117 
3118 void FunctionStackPoisoner::processStaticAllocas() {
3119   if (AllocaVec.empty()) {
3120     assert(StaticAllocaPoisonCallVec.empty());
3121     return;
3122   }
3123 
3124   int StackMallocIdx = -1;
3125   DebugLoc EntryDebugLocation;
3126   if (auto SP = F.getSubprogram())
3127     EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
3128 
3129   Instruction *InsBefore = AllocaVec[0];
3130   IRBuilder<> IRB(InsBefore);
3131 
3132   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3133   // debug info is broken, because only entry-block allocas are treated as
3134   // regular stack slots.
3135   auto InsBeforeB = InsBefore->getParent();
3136   assert(InsBeforeB == &F.getEntryBlock());
3137   for (auto *AI : StaticAllocasToMoveUp)
3138     if (AI->getParent() == InsBeforeB)
3139       AI->moveBefore(InsBefore);
3140 
3141   // Move stores of arguments into entry-block allocas as well. This prevents
3142   // extra stack slots from being generated (to house the argument values until
3143   // they can be stored into the allocas). This also prevents uninitialized
3144   // values from being shown in backtraces.
3145   SmallVector<Instruction *, 8> ArgInitInsts;
3146   findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3147   for (Instruction *ArgInitInst : ArgInitInsts)
3148     ArgInitInst->moveBefore(InsBefore);
3149 
3150   // If we have a call to llvm.localescape, keep it in the entry block.
3151   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3152 
3153   SmallVector<ASanStackVariableDescription, 16> SVD;
3154   SVD.reserve(AllocaVec.size());
3155   for (AllocaInst *AI : AllocaVec) {
3156     ASanStackVariableDescription D = {AI->getName().data(),
3157                                       ASan.getAllocaSizeInBytes(*AI),
3158                                       0,
3159                                       AI->getAlignment(),
3160                                       AI,
3161                                       0,
3162                                       0};
3163     SVD.push_back(D);
3164   }
3165 
3166   // Minimal header size (left redzone) is 4 pointers,
3167   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3168   size_t Granularity = 1ULL << Mapping.Scale;
3169   size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3170   const ASanStackFrameLayout &L =
3171       ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3172 
3173   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3174   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3175   for (auto &Desc : SVD)
3176     AllocaToSVDMap[Desc.AI] = &Desc;
3177 
3178   // Update SVD with information from lifetime intrinsics.
3179   for (const auto &APC : StaticAllocaPoisonCallVec) {
3180     assert(APC.InsBefore);
3181     assert(APC.AI);
3182     assert(ASan.isInterestingAlloca(*APC.AI));
3183     assert(APC.AI->isStaticAlloca());
3184 
3185     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3186     Desc.LifetimeSize = Desc.Size;
3187     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3188       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3189         if (LifetimeLoc->getFile() == FnLoc->getFile())
3190           if (unsigned Line = LifetimeLoc->getLine())
3191             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3192       }
3193     }
3194   }
3195 
3196   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3197   LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3198   uint64_t LocalStackSize = L.FrameSize;
3199   bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
3200                        LocalStackSize <= kMaxStackMallocSize;
3201   bool DoDynamicAlloca = ClDynamicAllocaStack;
3202   // Don't do dynamic alloca or stack malloc if:
3203   // 1) There is inline asm: too often it makes assumptions on which registers
3204   //    are available.
3205   // 2) There is a returns_twice call (typically setjmp), which is
3206   //    optimization-hostile, and doesn't play well with introduced indirect
3207   //    register-relative calculation of local variable addresses.
3208   DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3209   DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3210 
3211   Value *StaticAlloca =
3212       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3213 
3214   Value *FakeStack;
3215   Value *LocalStackBase;
3216   Value *LocalStackBaseAlloca;
3217   uint8_t DIExprFlags = DIExpression::ApplyOffset;
3218 
3219   if (DoStackMalloc) {
3220     LocalStackBaseAlloca =
3221         IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3222     // void *FakeStack = __asan_option_detect_stack_use_after_return
3223     //     ? __asan_stack_malloc_N(LocalStackSize)
3224     //     : nullptr;
3225     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3226     Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3227         kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3228     Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3229         IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3230         Constant::getNullValue(IRB.getInt32Ty()));
3231     Instruction *Term =
3232         SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3233     IRBuilder<> IRBIf(Term);
3234     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3235     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3236     Value *FakeStackValue =
3237         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3238                          ConstantInt::get(IntptrTy, LocalStackSize));
3239     IRB.SetInsertPoint(InsBefore);
3240     FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3241                           ConstantInt::get(IntptrTy, 0));
3242 
3243     Value *NoFakeStack =
3244         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3245     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3246     IRBIf.SetInsertPoint(Term);
3247     Value *AllocaValue =
3248         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3249 
3250     IRB.SetInsertPoint(InsBefore);
3251     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3252     IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3253     DIExprFlags |= DIExpression::DerefBefore;
3254   } else {
3255     // void *FakeStack = nullptr;
3256     // void *LocalStackBase = alloca(LocalStackSize);
3257     FakeStack = ConstantInt::get(IntptrTy, 0);
3258     LocalStackBase =
3259         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3260     LocalStackBaseAlloca = LocalStackBase;
3261   }
3262 
3263   // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3264   // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3265   // later passes and can result in dropped variable coverage in debug info.
3266   Value *LocalStackBaseAllocaPtr =
3267       isa<PtrToIntInst>(LocalStackBaseAlloca)
3268           ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3269           : LocalStackBaseAlloca;
3270   assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3271          "Variable descriptions relative to ASan stack base will be dropped");
3272 
3273   // Replace Alloca instructions with base+offset.
3274   for (const auto &Desc : SVD) {
3275     AllocaInst *AI = Desc.AI;
3276     replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3277                       Desc.Offset);
3278     Value *NewAllocaPtr = IRB.CreateIntToPtr(
3279         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3280         AI->getType());
3281     AI->replaceAllUsesWith(NewAllocaPtr);
3282   }
3283 
3284   // The left-most redzone has enough space for at least 4 pointers.
3285   // Write the Magic value to redzone[0].
3286   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3287   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3288                   BasePlus0);
3289   // Write the frame description constant to redzone[1].
3290   Value *BasePlus1 = IRB.CreateIntToPtr(
3291       IRB.CreateAdd(LocalStackBase,
3292                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3293       IntptrPtrTy);
3294   GlobalVariable *StackDescriptionGlobal =
3295       createPrivateGlobalForString(*F.getParent(), DescriptionString,
3296                                    /*AllowMerging*/ true, kAsanGenPrefix);
3297   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3298   IRB.CreateStore(Description, BasePlus1);
3299   // Write the PC to redzone[2].
3300   Value *BasePlus2 = IRB.CreateIntToPtr(
3301       IRB.CreateAdd(LocalStackBase,
3302                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3303       IntptrPtrTy);
3304   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3305 
3306   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3307 
3308   // Poison the stack red zones at the entry.
3309   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3310   // As mask we must use most poisoned case: red zones and after scope.
3311   // As bytes we can use either the same or just red zones only.
3312   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3313 
3314   if (!StaticAllocaPoisonCallVec.empty()) {
3315     const auto &ShadowInScope = GetShadowBytes(SVD, L);
3316 
3317     // Poison static allocas near lifetime intrinsics.
3318     for (const auto &APC : StaticAllocaPoisonCallVec) {
3319       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3320       assert(Desc.Offset % L.Granularity == 0);
3321       size_t Begin = Desc.Offset / L.Granularity;
3322       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3323 
3324       IRBuilder<> IRB(APC.InsBefore);
3325       copyToShadow(ShadowAfterScope,
3326                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3327                    IRB, ShadowBase);
3328     }
3329   }
3330 
3331   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3332   SmallVector<uint8_t, 64> ShadowAfterReturn;
3333 
3334   // (Un)poison the stack before all ret instructions.
3335   for (Instruction *Ret : RetVec) {
3336     Instruction *Adjusted = adjustForMusttailCall(Ret);
3337     IRBuilder<> IRBRet(Adjusted);
3338     // Mark the current frame as retired.
3339     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3340                        BasePlus0);
3341     if (DoStackMalloc) {
3342       assert(StackMallocIdx >= 0);
3343       // if FakeStack != 0  // LocalStackBase == FakeStack
3344       //     // In use-after-return mode, poison the whole stack frame.
3345       //     if StackMallocIdx <= 4
3346       //         // For small sizes inline the whole thing:
3347       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3348       //         **SavedFlagPtr(FakeStack) = 0
3349       //     else
3350       //         __asan_stack_free_N(FakeStack, LocalStackSize)
3351       // else
3352       //     <This is not a fake stack; unpoison the redzones>
3353       Value *Cmp =
3354           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3355       Instruction *ThenTerm, *ElseTerm;
3356       SplitBlockAndInsertIfThenElse(Cmp, Adjusted, &ThenTerm, &ElseTerm);
3357 
3358       IRBuilder<> IRBPoison(ThenTerm);
3359       if (StackMallocIdx <= 4) {
3360         int ClassSize = kMinStackMallocSize << StackMallocIdx;
3361         ShadowAfterReturn.resize(ClassSize / L.Granularity,
3362                                  kAsanStackUseAfterReturnMagic);
3363         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3364                      ShadowBase);
3365         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3366             FakeStack,
3367             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3368         Value *SavedFlagPtr = IRBPoison.CreateLoad(
3369             IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3370         IRBPoison.CreateStore(
3371             Constant::getNullValue(IRBPoison.getInt8Ty()),
3372             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3373       } else {
3374         // For larger frames call __asan_stack_free_*.
3375         IRBPoison.CreateCall(
3376             AsanStackFreeFunc[StackMallocIdx],
3377             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3378       }
3379 
3380       IRBuilder<> IRBElse(ElseTerm);
3381       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3382     } else {
3383       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3384     }
3385   }
3386 
3387   // We are done. Remove the old unused alloca instructions.
3388   for (auto AI : AllocaVec) AI->eraseFromParent();
3389 }
3390 
3391 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3392                                          IRBuilder<> &IRB, bool DoPoison) {
3393   // For now just insert the call to ASan runtime.
3394   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3395   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3396   IRB.CreateCall(
3397       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3398       {AddrArg, SizeArg});
3399 }
3400 
3401 // Handling llvm.lifetime intrinsics for a given %alloca:
3402 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3403 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3404 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3405 //     could be poisoned by previous llvm.lifetime.end instruction, as the
3406 //     variable may go in and out of scope several times, e.g. in loops).
3407 // (3) if we poisoned at least one %alloca in a function,
3408 //     unpoison the whole stack frame at function exit.
3409 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3410   IRBuilder<> IRB(AI);
3411 
3412   const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment());
3413   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3414 
3415   Value *Zero = Constant::getNullValue(IntptrTy);
3416   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3417   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3418 
3419   // Since we need to extend alloca with additional memory to locate
3420   // redzones, and OldSize is number of allocated blocks with
3421   // ElementSize size, get allocated memory size in bytes by
3422   // OldSize * ElementSize.
3423   const unsigned ElementSize =
3424       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3425   Value *OldSize =
3426       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3427                     ConstantInt::get(IntptrTy, ElementSize));
3428 
3429   // PartialSize = OldSize % 32
3430   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3431 
3432   // Misalign = kAllocaRzSize - PartialSize;
3433   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3434 
3435   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3436   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3437   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3438 
3439   // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3440   // Alignment is added to locate left redzone, PartialPadding for possible
3441   // partial redzone and kAllocaRzSize for right redzone respectively.
3442   Value *AdditionalChunkSize = IRB.CreateAdd(
3443       ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding);
3444 
3445   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3446 
3447   // Insert new alloca with new NewSize and Alignment params.
3448   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3449   NewAlloca->setAlignment(Align(Alignment));
3450 
3451   // NewAddress = Address + Alignment
3452   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3453                                     ConstantInt::get(IntptrTy, Alignment));
3454 
3455   // Insert __asan_alloca_poison call for new created alloca.
3456   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3457 
3458   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3459   // for unpoisoning stuff.
3460   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3461 
3462   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3463 
3464   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3465   AI->replaceAllUsesWith(NewAddressPtr);
3466 
3467   // We are done. Erase old alloca from parent.
3468   AI->eraseFromParent();
3469 }
3470 
3471 // isSafeAccess returns true if Addr is always inbounds with respect to its
3472 // base object. For example, it is a field access or an array access with
3473 // constant inbounds index.
3474 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3475                                     Value *Addr, uint64_t TypeSize) const {
3476   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3477   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3478   uint64_t Size = SizeOffset.first.getZExtValue();
3479   int64_t Offset = SizeOffset.second.getSExtValue();
3480   // Three checks are required to ensure safety:
3481   // . Offset >= 0  (since the offset is given from the base ptr)
3482   // . Size >= Offset  (unsigned)
3483   // . Size - Offset >= NeededSize  (unsigned)
3484   return Offset >= 0 && Size >= uint64_t(Offset) &&
3485          Size - uint64_t(Offset) >= TypeSize / 8;
3486 }
3487