1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of AddressSanitizer, an address sanity checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/Utils/Local.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/BinaryFormat/MachO.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DIBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstVisitor.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/MC/MCSectionMachO.h" 64 #include "llvm/Pass.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/ScopedPrinter.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Instrumentation.h" 73 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/ModuleUtils.h" 76 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iomanip> 82 #include <limits> 83 #include <memory> 84 #include <sstream> 85 #include <string> 86 #include <tuple> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "asan" 91 92 static const uint64_t kDefaultShadowScale = 3; 93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 95 static const uint64_t kDynamicShadowSentinel = 96 std::numeric_limits<uint64_t>::max(); 97 static const uint64_t kIOSShadowOffset32 = 1ULL << 30; 98 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30; 99 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64; 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 109 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 111 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 112 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 113 114 // The shadow memory space is dynamically allocated. 115 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 116 117 static const size_t kMinStackMallocSize = 1 << 6; // 64B 118 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 119 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 120 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 121 122 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 123 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 124 static const uint64_t kAsanCtorAndDtorPriority = 1; 125 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 126 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 127 static const char *const kAsanUnregisterGlobalsName = 128 "__asan_unregister_globals"; 129 static const char *const kAsanRegisterImageGlobalsName = 130 "__asan_register_image_globals"; 131 static const char *const kAsanUnregisterImageGlobalsName = 132 "__asan_unregister_image_globals"; 133 static const char *const kAsanRegisterElfGlobalsName = 134 "__asan_register_elf_globals"; 135 static const char *const kAsanUnregisterElfGlobalsName = 136 "__asan_unregister_elf_globals"; 137 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 138 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 139 static const char *const kAsanInitName = "__asan_init"; 140 static const char *const kAsanVersionCheckNamePrefix = 141 "__asan_version_mismatch_check_v"; 142 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 143 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 144 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 145 static const int kMaxAsanStackMallocSizeClass = 10; 146 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 147 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 148 static const char *const kAsanGenPrefix = "__asan_gen_"; 149 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 150 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 151 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 152 static const char *const kAsanPoisonStackMemoryName = 153 "__asan_poison_stack_memory"; 154 static const char *const kAsanUnpoisonStackMemoryName = 155 "__asan_unpoison_stack_memory"; 156 157 // ASan version script has __asan_* wildcard. Triple underscore prevents a 158 // linker (gold) warning about attempting to export a local symbol. 159 static const char *const kAsanGlobalsRegisteredFlagName = 160 "___asan_globals_registered"; 161 162 static const char *const kAsanOptionDetectUseAfterReturn = 163 "__asan_option_detect_stack_use_after_return"; 164 165 static const char *const kAsanShadowMemoryDynamicAddress = 166 "__asan_shadow_memory_dynamic_address"; 167 168 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 169 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 170 171 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 172 static const size_t kNumberOfAccessSizes = 5; 173 174 static const unsigned kAllocaRzSize = 32; 175 176 // Command-line flags. 177 178 static cl::opt<bool> ClEnableKasan( 179 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 180 cl::Hidden, cl::init(false)); 181 182 static cl::opt<bool> ClRecover( 183 "asan-recover", 184 cl::desc("Enable recovery mode (continue-after-error)."), 185 cl::Hidden, cl::init(false)); 186 187 // This flag may need to be replaced with -f[no-]asan-reads. 188 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 189 cl::desc("instrument read instructions"), 190 cl::Hidden, cl::init(true)); 191 192 static cl::opt<bool> ClInstrumentWrites( 193 "asan-instrument-writes", cl::desc("instrument write instructions"), 194 cl::Hidden, cl::init(true)); 195 196 static cl::opt<bool> ClInstrumentAtomics( 197 "asan-instrument-atomics", 198 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 199 cl::init(true)); 200 201 static cl::opt<bool> ClAlwaysSlowPath( 202 "asan-always-slow-path", 203 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 204 cl::init(false)); 205 206 static cl::opt<bool> ClForceDynamicShadow( 207 "asan-force-dynamic-shadow", 208 cl::desc("Load shadow address into a local variable for each function"), 209 cl::Hidden, cl::init(false)); 210 211 static cl::opt<bool> 212 ClWithIfunc("asan-with-ifunc", 213 cl::desc("Access dynamic shadow through an ifunc global on " 214 "platforms that support this"), 215 cl::Hidden, cl::init(true)); 216 217 static cl::opt<bool> ClWithIfuncSuppressRemat( 218 "asan-with-ifunc-suppress-remat", 219 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 220 "it through inline asm in prologue."), 221 cl::Hidden, cl::init(true)); 222 223 // This flag limits the number of instructions to be instrumented 224 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 225 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 226 // set it to 10000. 227 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 228 "asan-max-ins-per-bb", cl::init(10000), 229 cl::desc("maximal number of instructions to instrument in any given BB"), 230 cl::Hidden); 231 232 // This flag may need to be replaced with -f[no]asan-stack. 233 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 234 cl::Hidden, cl::init(true)); 235 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 236 "asan-max-inline-poisoning-size", 237 cl::desc( 238 "Inline shadow poisoning for blocks up to the given size in bytes."), 239 cl::Hidden, cl::init(64)); 240 241 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 242 cl::desc("Check stack-use-after-return"), 243 cl::Hidden, cl::init(true)); 244 245 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 246 cl::desc("Create redzones for byval " 247 "arguments (extra copy " 248 "required)"), cl::Hidden, 249 cl::init(true)); 250 251 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 252 cl::desc("Check stack-use-after-scope"), 253 cl::Hidden, cl::init(false)); 254 255 // This flag may need to be replaced with -f[no]asan-globals. 256 static cl::opt<bool> ClGlobals("asan-globals", 257 cl::desc("Handle global objects"), cl::Hidden, 258 cl::init(true)); 259 260 static cl::opt<bool> ClInitializers("asan-initialization-order", 261 cl::desc("Handle C++ initializer order"), 262 cl::Hidden, cl::init(true)); 263 264 static cl::opt<bool> ClInvalidPointerPairs( 265 "asan-detect-invalid-pointer-pair", 266 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 267 cl::init(false)); 268 269 static cl::opt<unsigned> ClRealignStack( 270 "asan-realign-stack", 271 cl::desc("Realign stack to the value of this flag (power of two)"), 272 cl::Hidden, cl::init(32)); 273 274 static cl::opt<int> ClInstrumentationWithCallsThreshold( 275 "asan-instrumentation-with-call-threshold", 276 cl::desc( 277 "If the function being instrumented contains more than " 278 "this number of memory accesses, use callbacks instead of " 279 "inline checks (-1 means never use callbacks)."), 280 cl::Hidden, cl::init(7000)); 281 282 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 283 "asan-memory-access-callback-prefix", 284 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 285 cl::init("__asan_")); 286 287 static cl::opt<bool> 288 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 289 cl::desc("instrument dynamic allocas"), 290 cl::Hidden, cl::init(true)); 291 292 static cl::opt<bool> ClSkipPromotableAllocas( 293 "asan-skip-promotable-allocas", 294 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 295 cl::init(true)); 296 297 // These flags allow to change the shadow mapping. 298 // The shadow mapping looks like 299 // Shadow = (Mem >> scale) + offset 300 301 static cl::opt<int> ClMappingScale("asan-mapping-scale", 302 cl::desc("scale of asan shadow mapping"), 303 cl::Hidden, cl::init(0)); 304 305 static cl::opt<unsigned long long> ClMappingOffset( 306 "asan-mapping-offset", 307 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden, 308 cl::init(0)); 309 310 // Optimization flags. Not user visible, used mostly for testing 311 // and benchmarking the tool. 312 313 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 314 cl::Hidden, cl::init(true)); 315 316 static cl::opt<bool> ClOptSameTemp( 317 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 318 cl::Hidden, cl::init(true)); 319 320 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 321 cl::desc("Don't instrument scalar globals"), 322 cl::Hidden, cl::init(true)); 323 324 static cl::opt<bool> ClOptStack( 325 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 326 cl::Hidden, cl::init(false)); 327 328 static cl::opt<bool> ClDynamicAllocaStack( 329 "asan-stack-dynamic-alloca", 330 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 331 cl::init(true)); 332 333 static cl::opt<uint32_t> ClForceExperiment( 334 "asan-force-experiment", 335 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 336 cl::init(0)); 337 338 static cl::opt<bool> 339 ClUsePrivateAliasForGlobals("asan-use-private-alias", 340 cl::desc("Use private aliases for global" 341 " variables"), 342 cl::Hidden, cl::init(false)); 343 344 static cl::opt<bool> 345 ClUseGlobalsGC("asan-globals-live-support", 346 cl::desc("Use linker features to support dead " 347 "code stripping of globals"), 348 cl::Hidden, cl::init(true)); 349 350 // This is on by default even though there is a bug in gold: 351 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 352 static cl::opt<bool> 353 ClWithComdat("asan-with-comdat", 354 cl::desc("Place ASan constructors in comdat sections"), 355 cl::Hidden, cl::init(true)); 356 357 // Debug flags. 358 359 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 360 cl::init(0)); 361 362 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 363 cl::Hidden, cl::init(0)); 364 365 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 366 cl::desc("Debug func")); 367 368 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 369 cl::Hidden, cl::init(-1)); 370 371 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 372 cl::Hidden, cl::init(-1)); 373 374 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 375 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 376 STATISTIC(NumOptimizedAccessesToGlobalVar, 377 "Number of optimized accesses to global vars"); 378 STATISTIC(NumOptimizedAccessesToStackVar, 379 "Number of optimized accesses to stack vars"); 380 381 namespace { 382 383 /// Frontend-provided metadata for source location. 384 struct LocationMetadata { 385 StringRef Filename; 386 int LineNo = 0; 387 int ColumnNo = 0; 388 389 LocationMetadata() = default; 390 391 bool empty() const { return Filename.empty(); } 392 393 void parse(MDNode *MDN) { 394 assert(MDN->getNumOperands() == 3); 395 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 396 Filename = DIFilename->getString(); 397 LineNo = 398 mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 399 ColumnNo = 400 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 401 } 402 }; 403 404 /// Frontend-provided metadata for global variables. 405 class GlobalsMetadata { 406 public: 407 struct Entry { 408 LocationMetadata SourceLoc; 409 StringRef Name; 410 bool IsDynInit = false; 411 bool IsBlacklisted = false; 412 413 Entry() = default; 414 }; 415 416 GlobalsMetadata() = default; 417 418 void reset() { 419 inited_ = false; 420 Entries.clear(); 421 } 422 423 void init(Module &M) { 424 assert(!inited_); 425 inited_ = true; 426 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 427 if (!Globals) return; 428 for (auto MDN : Globals->operands()) { 429 // Metadata node contains the global and the fields of "Entry". 430 assert(MDN->getNumOperands() == 5); 431 auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0)); 432 // The optimizer may optimize away a global entirely. 433 if (!GV) continue; 434 // We can already have an entry for GV if it was merged with another 435 // global. 436 Entry &E = Entries[GV]; 437 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 438 E.SourceLoc.parse(Loc); 439 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 440 E.Name = Name->getString(); 441 ConstantInt *IsDynInit = 442 mdconst::extract<ConstantInt>(MDN->getOperand(3)); 443 E.IsDynInit |= IsDynInit->isOne(); 444 ConstantInt *IsBlacklisted = 445 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 446 E.IsBlacklisted |= IsBlacklisted->isOne(); 447 } 448 } 449 450 /// Returns metadata entry for a given global. 451 Entry get(GlobalVariable *G) const { 452 auto Pos = Entries.find(G); 453 return (Pos != Entries.end()) ? Pos->second : Entry(); 454 } 455 456 private: 457 bool inited_ = false; 458 DenseMap<GlobalVariable *, Entry> Entries; 459 }; 460 461 /// This struct defines the shadow mapping using the rule: 462 /// shadow = (mem >> Scale) ADD-or-OR Offset. 463 /// If InGlobal is true, then 464 /// extern char __asan_shadow[]; 465 /// shadow = (mem >> Scale) + &__asan_shadow 466 struct ShadowMapping { 467 int Scale; 468 uint64_t Offset; 469 bool OrShadowOffset; 470 bool InGlobal; 471 }; 472 473 } // end anonymous namespace 474 475 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 476 bool IsKasan) { 477 bool IsAndroid = TargetTriple.isAndroid(); 478 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 479 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 480 bool IsNetBSD = TargetTriple.isOSNetBSD(); 481 bool IsPS4CPU = TargetTriple.isPS4CPU(); 482 bool IsLinux = TargetTriple.isOSLinux(); 483 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 484 TargetTriple.getArch() == Triple::ppc64le; 485 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 486 bool IsX86 = TargetTriple.getArch() == Triple::x86; 487 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 488 bool IsMIPS32 = TargetTriple.getArch() == Triple::mips || 489 TargetTriple.getArch() == Triple::mipsel; 490 bool IsMIPS64 = TargetTriple.getArch() == Triple::mips64 || 491 TargetTriple.getArch() == Triple::mips64el; 492 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 493 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 494 bool IsWindows = TargetTriple.isOSWindows(); 495 bool IsFuchsia = TargetTriple.isOSFuchsia(); 496 497 ShadowMapping Mapping; 498 499 Mapping.Scale = kDefaultShadowScale; 500 if (ClMappingScale.getNumOccurrences() > 0) { 501 Mapping.Scale = ClMappingScale; 502 } 503 504 if (LongSize == 32) { 505 if (IsAndroid) 506 Mapping.Offset = kDynamicShadowSentinel; 507 else if (IsMIPS32) 508 Mapping.Offset = kMIPS32_ShadowOffset32; 509 else if (IsFreeBSD) 510 Mapping.Offset = kFreeBSD_ShadowOffset32; 511 else if (IsIOS) 512 // If we're targeting iOS and x86, the binary is built for iOS simulator. 513 Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32; 514 else if (IsWindows) 515 Mapping.Offset = kWindowsShadowOffset32; 516 else 517 Mapping.Offset = kDefaultShadowOffset32; 518 } else { // LongSize == 64 519 // Fuchsia is always PIE, which means that the beginning of the address 520 // space is always available. 521 if (IsFuchsia) 522 Mapping.Offset = 0; 523 else if (IsPPC64) 524 Mapping.Offset = kPPC64_ShadowOffset64; 525 else if (IsSystemZ) 526 Mapping.Offset = kSystemZ_ShadowOffset64; 527 else if (IsFreeBSD) 528 Mapping.Offset = kFreeBSD_ShadowOffset64; 529 else if (IsNetBSD) 530 Mapping.Offset = kNetBSD_ShadowOffset64; 531 else if (IsPS4CPU) 532 Mapping.Offset = kPS4CPU_ShadowOffset64; 533 else if (IsLinux && IsX86_64) { 534 if (IsKasan) 535 Mapping.Offset = kLinuxKasan_ShadowOffset64; 536 else 537 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 538 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 539 } else if (IsWindows && IsX86_64) { 540 Mapping.Offset = kWindowsShadowOffset64; 541 } else if (IsMIPS64) 542 Mapping.Offset = kMIPS64_ShadowOffset64; 543 else if (IsIOS) 544 // If we're targeting iOS and x86, the binary is built for iOS simulator. 545 // We are using dynamic shadow offset on the 64-bit devices. 546 Mapping.Offset = 547 IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel; 548 else if (IsAArch64) 549 Mapping.Offset = kAArch64_ShadowOffset64; 550 else 551 Mapping.Offset = kDefaultShadowOffset64; 552 } 553 554 if (ClForceDynamicShadow) { 555 Mapping.Offset = kDynamicShadowSentinel; 556 } 557 558 if (ClMappingOffset.getNumOccurrences() > 0) { 559 Mapping.Offset = ClMappingOffset; 560 } 561 562 // OR-ing shadow offset if more efficient (at least on x86) if the offset 563 // is a power of two, but on ppc64 we have to use add since the shadow 564 // offset is not necessary 1/8-th of the address space. On SystemZ, 565 // we could OR the constant in a single instruction, but it's more 566 // efficient to load it once and use indexed addressing. 567 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 568 !(Mapping.Offset & (Mapping.Offset - 1)) && 569 Mapping.Offset != kDynamicShadowSentinel; 570 bool IsAndroidWithIfuncSupport = 571 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 572 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 573 574 return Mapping; 575 } 576 577 static size_t RedzoneSizeForScale(int MappingScale) { 578 // Redzone used for stack and globals is at least 32 bytes. 579 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 580 return std::max(32U, 1U << MappingScale); 581 } 582 583 namespace { 584 585 /// AddressSanitizer: instrument the code in module to find memory bugs. 586 struct AddressSanitizer : public FunctionPass { 587 // Pass identification, replacement for typeid 588 static char ID; 589 590 explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false, 591 bool UseAfterScope = false) 592 : FunctionPass(ID), UseAfterScope(UseAfterScope || ClUseAfterScope) { 593 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 594 this->CompileKernel = ClEnableKasan.getNumOccurrences() > 0 ? 595 ClEnableKasan : CompileKernel; 596 initializeAddressSanitizerPass(*PassRegistry::getPassRegistry()); 597 } 598 599 StringRef getPassName() const override { 600 return "AddressSanitizerFunctionPass"; 601 } 602 603 void getAnalysisUsage(AnalysisUsage &AU) const override { 604 AU.addRequired<DominatorTreeWrapperPass>(); 605 AU.addRequired<TargetLibraryInfoWrapperPass>(); 606 } 607 608 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 609 uint64_t ArraySize = 1; 610 if (AI.isArrayAllocation()) { 611 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 612 assert(CI && "non-constant array size"); 613 ArraySize = CI->getZExtValue(); 614 } 615 Type *Ty = AI.getAllocatedType(); 616 uint64_t SizeInBytes = 617 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 618 return SizeInBytes * ArraySize; 619 } 620 621 /// Check if we want (and can) handle this alloca. 622 bool isInterestingAlloca(const AllocaInst &AI); 623 624 /// If it is an interesting memory access, return the PointerOperand 625 /// and set IsWrite/Alignment. Otherwise return nullptr. 626 /// MaybeMask is an output parameter for the mask Value, if we're looking at a 627 /// masked load/store. 628 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 629 uint64_t *TypeSize, unsigned *Alignment, 630 Value **MaybeMask = nullptr); 631 632 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 633 bool UseCalls, const DataLayout &DL); 634 void instrumentPointerComparisonOrSubtraction(Instruction *I); 635 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 636 Value *Addr, uint32_t TypeSize, bool IsWrite, 637 Value *SizeArgument, bool UseCalls, uint32_t Exp); 638 void instrumentUnusualSizeOrAlignment(Instruction *I, 639 Instruction *InsertBefore, Value *Addr, 640 uint32_t TypeSize, bool IsWrite, 641 Value *SizeArgument, bool UseCalls, 642 uint32_t Exp); 643 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 644 Value *ShadowValue, uint32_t TypeSize); 645 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 646 bool IsWrite, size_t AccessSizeIndex, 647 Value *SizeArgument, uint32_t Exp); 648 void instrumentMemIntrinsic(MemIntrinsic *MI); 649 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 650 bool runOnFunction(Function &F) override; 651 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 652 void maybeInsertDynamicShadowAtFunctionEntry(Function &F); 653 void markEscapedLocalAllocas(Function &F); 654 bool doInitialization(Module &M) override; 655 bool doFinalization(Module &M) override; 656 657 DominatorTree &getDominatorTree() const { return *DT; } 658 659 private: 660 friend struct FunctionStackPoisoner; 661 662 void initializeCallbacks(Module &M); 663 664 bool LooksLikeCodeInBug11395(Instruction *I); 665 bool GlobalIsLinkerInitialized(GlobalVariable *G); 666 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 667 uint64_t TypeSize) const; 668 669 /// Helper to cleanup per-function state. 670 struct FunctionStateRAII { 671 AddressSanitizer *Pass; 672 673 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 674 assert(Pass->ProcessedAllocas.empty() && 675 "last pass forgot to clear cache"); 676 assert(!Pass->LocalDynamicShadow); 677 } 678 679 ~FunctionStateRAII() { 680 Pass->LocalDynamicShadow = nullptr; 681 Pass->ProcessedAllocas.clear(); 682 } 683 }; 684 685 LLVMContext *C; 686 Triple TargetTriple; 687 int LongSize; 688 bool CompileKernel; 689 bool Recover; 690 bool UseAfterScope; 691 Type *IntptrTy; 692 ShadowMapping Mapping; 693 DominatorTree *DT; 694 Function *AsanHandleNoReturnFunc; 695 Function *AsanPtrCmpFunction, *AsanPtrSubFunction; 696 Constant *AsanShadowGlobal; 697 698 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 699 Function *AsanErrorCallback[2][2][kNumberOfAccessSizes]; 700 Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 701 702 // These arrays is indexed by AccessIsWrite and Experiment. 703 Function *AsanErrorCallbackSized[2][2]; 704 Function *AsanMemoryAccessCallbackSized[2][2]; 705 706 Function *AsanMemmove, *AsanMemcpy, *AsanMemset; 707 InlineAsm *EmptyAsm; 708 Value *LocalDynamicShadow = nullptr; 709 GlobalsMetadata GlobalsMD; 710 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 711 }; 712 713 class AddressSanitizerModule : public ModulePass { 714 public: 715 // Pass identification, replacement for typeid 716 static char ID; 717 718 explicit AddressSanitizerModule(bool CompileKernel = false, 719 bool Recover = false, 720 bool UseGlobalsGC = true) 721 : ModulePass(ID), 722 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC), 723 // Not a typo: ClWithComdat is almost completely pointless without 724 // ClUseGlobalsGC (because then it only works on modules without 725 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 726 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 727 // argument is designed as workaround. Therefore, disable both 728 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 729 // do globals-gc. 730 UseCtorComdat(UseGlobalsGC && ClWithComdat) { 731 this->Recover = ClRecover.getNumOccurrences() > 0 ? 732 ClRecover : Recover; 733 this->CompileKernel = ClEnableKasan.getNumOccurrences() > 0 ? 734 ClEnableKasan : CompileKernel; 735 } 736 737 bool runOnModule(Module &M) override; 738 StringRef getPassName() const override { return "AddressSanitizerModule"; } 739 740 private: 741 void initializeCallbacks(Module &M); 742 743 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 744 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 745 ArrayRef<GlobalVariable *> ExtendedGlobals, 746 ArrayRef<Constant *> MetadataInitializers); 747 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 748 ArrayRef<GlobalVariable *> ExtendedGlobals, 749 ArrayRef<Constant *> MetadataInitializers, 750 const std::string &UniqueModuleId); 751 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 752 ArrayRef<GlobalVariable *> ExtendedGlobals, 753 ArrayRef<Constant *> MetadataInitializers); 754 void 755 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 756 ArrayRef<GlobalVariable *> ExtendedGlobals, 757 ArrayRef<Constant *> MetadataInitializers); 758 759 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 760 StringRef OriginalName); 761 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 762 StringRef InternalSuffix); 763 IRBuilder<> CreateAsanModuleDtor(Module &M); 764 765 bool ShouldInstrumentGlobal(GlobalVariable *G); 766 bool ShouldUseMachOGlobalsSection() const; 767 StringRef getGlobalMetadataSection() const; 768 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 769 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 770 size_t MinRedzoneSizeForGlobal() const { 771 return RedzoneSizeForScale(Mapping.Scale); 772 } 773 int GetAsanVersion(const Module &M) const; 774 775 GlobalsMetadata GlobalsMD; 776 bool CompileKernel; 777 bool Recover; 778 bool UseGlobalsGC; 779 bool UseCtorComdat; 780 Type *IntptrTy; 781 LLVMContext *C; 782 Triple TargetTriple; 783 ShadowMapping Mapping; 784 Function *AsanPoisonGlobals; 785 Function *AsanUnpoisonGlobals; 786 Function *AsanRegisterGlobals; 787 Function *AsanUnregisterGlobals; 788 Function *AsanRegisterImageGlobals; 789 Function *AsanUnregisterImageGlobals; 790 Function *AsanRegisterElfGlobals; 791 Function *AsanUnregisterElfGlobals; 792 793 Function *AsanCtorFunction = nullptr; 794 Function *AsanDtorFunction = nullptr; 795 }; 796 797 // Stack poisoning does not play well with exception handling. 798 // When an exception is thrown, we essentially bypass the code 799 // that unpoisones the stack. This is why the run-time library has 800 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 801 // stack in the interceptor. This however does not work inside the 802 // actual function which catches the exception. Most likely because the 803 // compiler hoists the load of the shadow value somewhere too high. 804 // This causes asan to report a non-existing bug on 453.povray. 805 // It sounds like an LLVM bug. 806 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 807 Function &F; 808 AddressSanitizer &ASan; 809 DIBuilder DIB; 810 LLVMContext *C; 811 Type *IntptrTy; 812 Type *IntptrPtrTy; 813 ShadowMapping Mapping; 814 815 SmallVector<AllocaInst *, 16> AllocaVec; 816 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 817 SmallVector<Instruction *, 8> RetVec; 818 unsigned StackAlignment; 819 820 Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 821 *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 822 Function *AsanSetShadowFunc[0x100] = {}; 823 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; 824 Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc; 825 826 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 827 struct AllocaPoisonCall { 828 IntrinsicInst *InsBefore; 829 AllocaInst *AI; 830 uint64_t Size; 831 bool DoPoison; 832 }; 833 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 834 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 835 836 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 837 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 838 AllocaInst *DynamicAllocaLayout = nullptr; 839 IntrinsicInst *LocalEscapeCall = nullptr; 840 841 // Maps Value to an AllocaInst from which the Value is originated. 842 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 843 AllocaForValueMapTy AllocaForValue; 844 845 bool HasNonEmptyInlineAsm = false; 846 bool HasReturnsTwiceCall = false; 847 std::unique_ptr<CallInst> EmptyInlineAsm; 848 849 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 850 : F(F), 851 ASan(ASan), 852 DIB(*F.getParent(), /*AllowUnresolved*/ false), 853 C(ASan.C), 854 IntptrTy(ASan.IntptrTy), 855 IntptrPtrTy(PointerType::get(IntptrTy, 0)), 856 Mapping(ASan.Mapping), 857 StackAlignment(1 << Mapping.Scale), 858 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 859 860 bool runOnFunction() { 861 if (!ClStack) return false; 862 863 if (ClRedzoneByvalArgs) 864 copyArgsPassedByValToAllocas(); 865 866 // Collect alloca, ret, lifetime instructions etc. 867 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 868 869 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 870 871 initializeCallbacks(*F.getParent()); 872 873 processDynamicAllocas(); 874 processStaticAllocas(); 875 876 if (ClDebugStack) { 877 DEBUG(dbgs() << F); 878 } 879 return true; 880 } 881 882 // Arguments marked with the "byval" attribute are implicitly copied without 883 // using an alloca instruction. To produce redzones for those arguments, we 884 // copy them a second time into memory allocated with an alloca instruction. 885 void copyArgsPassedByValToAllocas(); 886 887 // Finds all Alloca instructions and puts 888 // poisoned red zones around all of them. 889 // Then unpoison everything back before the function returns. 890 void processStaticAllocas(); 891 void processDynamicAllocas(); 892 893 void createDynamicAllocasInitStorage(); 894 895 // ----------------------- Visitors. 896 /// Collect all Ret instructions. 897 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 898 899 /// Collect all Resume instructions. 900 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 901 902 /// Collect all CatchReturnInst instructions. 903 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 904 905 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 906 Value *SavedStack) { 907 IRBuilder<> IRB(InstBefore); 908 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 909 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 910 // need to adjust extracted SP to compute the address of the most recent 911 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 912 // this purpose. 913 if (!isa<ReturnInst>(InstBefore)) { 914 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 915 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 916 {IntptrTy}); 917 918 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 919 920 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 921 DynamicAreaOffset); 922 } 923 924 IRB.CreateCall(AsanAllocasUnpoisonFunc, 925 {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr}); 926 } 927 928 // Unpoison dynamic allocas redzones. 929 void unpoisonDynamicAllocas() { 930 for (auto &Ret : RetVec) 931 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 932 933 for (auto &StackRestoreInst : StackRestoreVec) 934 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 935 StackRestoreInst->getOperand(0)); 936 } 937 938 // Deploy and poison redzones around dynamic alloca call. To do this, we 939 // should replace this call with another one with changed parameters and 940 // replace all its uses with new address, so 941 // addr = alloca type, old_size, align 942 // is replaced by 943 // new_size = (old_size + additional_size) * sizeof(type) 944 // tmp = alloca i8, new_size, max(align, 32) 945 // addr = tmp + 32 (first 32 bytes are for the left redzone). 946 // Additional_size is added to make new memory allocation contain not only 947 // requested memory, but also left, partial and right redzones. 948 void handleDynamicAllocaCall(AllocaInst *AI); 949 950 /// Collect Alloca instructions we want (and can) handle. 951 void visitAllocaInst(AllocaInst &AI) { 952 if (!ASan.isInterestingAlloca(AI)) { 953 if (AI.isStaticAlloca()) { 954 // Skip over allocas that are present *before* the first instrumented 955 // alloca, we don't want to move those around. 956 if (AllocaVec.empty()) 957 return; 958 959 StaticAllocasToMoveUp.push_back(&AI); 960 } 961 return; 962 } 963 964 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 965 if (!AI.isStaticAlloca()) 966 DynamicAllocaVec.push_back(&AI); 967 else 968 AllocaVec.push_back(&AI); 969 } 970 971 /// Collect lifetime intrinsic calls to check for use-after-scope 972 /// errors. 973 void visitIntrinsicInst(IntrinsicInst &II) { 974 Intrinsic::ID ID = II.getIntrinsicID(); 975 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 976 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 977 if (!ASan.UseAfterScope) 978 return; 979 if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end) 980 return; 981 // Found lifetime intrinsic, add ASan instrumentation if necessary. 982 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 983 // If size argument is undefined, don't do anything. 984 if (Size->isMinusOne()) return; 985 // Check that size doesn't saturate uint64_t and can 986 // be stored in IntptrTy. 987 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 988 if (SizeValue == ~0ULL || 989 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 990 return; 991 // Find alloca instruction that corresponds to llvm.lifetime argument. 992 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); 993 if (!AI || !ASan.isInterestingAlloca(*AI)) 994 return; 995 bool DoPoison = (ID == Intrinsic::lifetime_end); 996 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 997 if (AI->isStaticAlloca()) 998 StaticAllocaPoisonCallVec.push_back(APC); 999 else if (ClInstrumentDynamicAllocas) 1000 DynamicAllocaPoisonCallVec.push_back(APC); 1001 } 1002 1003 void visitCallSite(CallSite CS) { 1004 Instruction *I = CS.getInstruction(); 1005 if (CallInst *CI = dyn_cast<CallInst>(I)) { 1006 HasNonEmptyInlineAsm |= CI->isInlineAsm() && 1007 !CI->isIdenticalTo(EmptyInlineAsm.get()) && 1008 I != ASan.LocalDynamicShadow; 1009 HasReturnsTwiceCall |= CI->canReturnTwice(); 1010 } 1011 } 1012 1013 // ---------------------- Helpers. 1014 void initializeCallbacks(Module &M); 1015 1016 bool doesDominateAllExits(const Instruction *I) const { 1017 for (auto Ret : RetVec) { 1018 if (!ASan.getDominatorTree().dominates(I, Ret)) return false; 1019 } 1020 return true; 1021 } 1022 1023 /// Finds alloca where the value comes from. 1024 AllocaInst *findAllocaForValue(Value *V); 1025 1026 // Copies bytes from ShadowBytes into shadow memory for indexes where 1027 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1028 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1029 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1030 IRBuilder<> &IRB, Value *ShadowBase); 1031 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1032 size_t Begin, size_t End, IRBuilder<> &IRB, 1033 Value *ShadowBase); 1034 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1035 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1036 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1037 1038 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1039 1040 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1041 bool Dynamic); 1042 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1043 Instruction *ThenTerm, Value *ValueIfFalse); 1044 }; 1045 1046 } // end anonymous namespace 1047 1048 char AddressSanitizer::ID = 0; 1049 1050 INITIALIZE_PASS_BEGIN( 1051 AddressSanitizer, "asan", 1052 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1053 false) 1054 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1055 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1056 INITIALIZE_PASS_END( 1057 AddressSanitizer, "asan", 1058 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1059 false) 1060 1061 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1062 bool Recover, 1063 bool UseAfterScope) { 1064 assert(!CompileKernel || Recover); 1065 return new AddressSanitizer(CompileKernel, Recover, UseAfterScope); 1066 } 1067 1068 char AddressSanitizerModule::ID = 0; 1069 1070 INITIALIZE_PASS( 1071 AddressSanitizerModule, "asan-module", 1072 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1073 "ModulePass", 1074 false, false) 1075 1076 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel, 1077 bool Recover, 1078 bool UseGlobalsGC) { 1079 assert(!CompileKernel || Recover); 1080 return new AddressSanitizerModule(CompileKernel, Recover, UseGlobalsGC); 1081 } 1082 1083 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1084 size_t Res = countTrailingZeros(TypeSize / 8); 1085 assert(Res < kNumberOfAccessSizes); 1086 return Res; 1087 } 1088 1089 // Create a constant for Str so that we can pass it to the run-time lib. 1090 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str, 1091 bool AllowMerging) { 1092 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 1093 // We use private linkage for module-local strings. If they can be merged 1094 // with another one, we set the unnamed_addr attribute. 1095 GlobalVariable *GV = 1096 new GlobalVariable(M, StrConst->getType(), true, 1097 GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix); 1098 if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1099 GV->setAlignment(1); // Strings may not be merged w/o setting align 1. 1100 return GV; 1101 } 1102 1103 /// Create a global describing a source location. 1104 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1105 LocationMetadata MD) { 1106 Constant *LocData[] = { 1107 createPrivateGlobalForString(M, MD.Filename, true), 1108 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1109 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1110 }; 1111 auto LocStruct = ConstantStruct::getAnon(LocData); 1112 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1113 GlobalValue::PrivateLinkage, LocStruct, 1114 kAsanGenPrefix); 1115 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1116 return GV; 1117 } 1118 1119 /// Check if \p G has been created by a trusted compiler pass. 1120 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1121 // Do not instrument asan globals. 1122 if (G->getName().startswith(kAsanGenPrefix) || 1123 G->getName().startswith(kSanCovGenPrefix) || 1124 G->getName().startswith(kODRGenPrefix)) 1125 return true; 1126 1127 // Do not instrument gcov counter arrays. 1128 if (G->getName() == "__llvm_gcov_ctr") 1129 return true; 1130 1131 return false; 1132 } 1133 1134 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1135 // Shadow >> scale 1136 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1137 if (Mapping.Offset == 0) return Shadow; 1138 // (Shadow >> scale) | offset 1139 Value *ShadowBase; 1140 if (LocalDynamicShadow) 1141 ShadowBase = LocalDynamicShadow; 1142 else 1143 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1144 if (Mapping.OrShadowOffset) 1145 return IRB.CreateOr(Shadow, ShadowBase); 1146 else 1147 return IRB.CreateAdd(Shadow, ShadowBase); 1148 } 1149 1150 // Instrument memset/memmove/memcpy 1151 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1152 IRBuilder<> IRB(MI); 1153 if (isa<MemTransferInst>(MI)) { 1154 IRB.CreateCall( 1155 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1156 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1157 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1158 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1159 } else if (isa<MemSetInst>(MI)) { 1160 IRB.CreateCall( 1161 AsanMemset, 1162 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1163 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1164 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1165 } 1166 MI->eraseFromParent(); 1167 } 1168 1169 /// Check if we want (and can) handle this alloca. 1170 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1171 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1172 1173 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1174 return PreviouslySeenAllocaInfo->getSecond(); 1175 1176 bool IsInteresting = 1177 (AI.getAllocatedType()->isSized() && 1178 // alloca() may be called with 0 size, ignore it. 1179 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1180 // We are only interested in allocas not promotable to registers. 1181 // Promotable allocas are common under -O0. 1182 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1183 // inalloca allocas are not treated as static, and we don't want 1184 // dynamic alloca instrumentation for them as well. 1185 !AI.isUsedWithInAlloca() && 1186 // swifterror allocas are register promoted by ISel 1187 !AI.isSwiftError()); 1188 1189 ProcessedAllocas[&AI] = IsInteresting; 1190 return IsInteresting; 1191 } 1192 1193 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 1194 bool *IsWrite, 1195 uint64_t *TypeSize, 1196 unsigned *Alignment, 1197 Value **MaybeMask) { 1198 // Skip memory accesses inserted by another instrumentation. 1199 if (I->getMetadata("nosanitize")) return nullptr; 1200 1201 // Do not instrument the load fetching the dynamic shadow address. 1202 if (LocalDynamicShadow == I) 1203 return nullptr; 1204 1205 Value *PtrOperand = nullptr; 1206 const DataLayout &DL = I->getModule()->getDataLayout(); 1207 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1208 if (!ClInstrumentReads) return nullptr; 1209 *IsWrite = false; 1210 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 1211 *Alignment = LI->getAlignment(); 1212 PtrOperand = LI->getPointerOperand(); 1213 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1214 if (!ClInstrumentWrites) return nullptr; 1215 *IsWrite = true; 1216 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 1217 *Alignment = SI->getAlignment(); 1218 PtrOperand = SI->getPointerOperand(); 1219 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1220 if (!ClInstrumentAtomics) return nullptr; 1221 *IsWrite = true; 1222 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 1223 *Alignment = 0; 1224 PtrOperand = RMW->getPointerOperand(); 1225 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1226 if (!ClInstrumentAtomics) return nullptr; 1227 *IsWrite = true; 1228 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 1229 *Alignment = 0; 1230 PtrOperand = XCHG->getPointerOperand(); 1231 } else if (auto CI = dyn_cast<CallInst>(I)) { 1232 auto *F = dyn_cast<Function>(CI->getCalledValue()); 1233 if (F && (F->getName().startswith("llvm.masked.load.") || 1234 F->getName().startswith("llvm.masked.store."))) { 1235 unsigned OpOffset = 0; 1236 if (F->getName().startswith("llvm.masked.store.")) { 1237 if (!ClInstrumentWrites) 1238 return nullptr; 1239 // Masked store has an initial operand for the value. 1240 OpOffset = 1; 1241 *IsWrite = true; 1242 } else { 1243 if (!ClInstrumentReads) 1244 return nullptr; 1245 *IsWrite = false; 1246 } 1247 1248 auto BasePtr = CI->getOperand(0 + OpOffset); 1249 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1250 *TypeSize = DL.getTypeStoreSizeInBits(Ty); 1251 if (auto AlignmentConstant = 1252 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1253 *Alignment = (unsigned)AlignmentConstant->getZExtValue(); 1254 else 1255 *Alignment = 1; // No alignment guarantees. We probably got Undef 1256 if (MaybeMask) 1257 *MaybeMask = CI->getOperand(2 + OpOffset); 1258 PtrOperand = BasePtr; 1259 } 1260 } 1261 1262 if (PtrOperand) { 1263 // Do not instrument acesses from different address spaces; we cannot deal 1264 // with them. 1265 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); 1266 if (PtrTy->getPointerAddressSpace() != 0) 1267 return nullptr; 1268 1269 // Ignore swifterror addresses. 1270 // swifterror memory addresses are mem2reg promoted by instruction 1271 // selection. As such they cannot have regular uses like an instrumentation 1272 // function and it makes no sense to track them as memory. 1273 if (PtrOperand->isSwiftError()) 1274 return nullptr; 1275 } 1276 1277 // Treat memory accesses to promotable allocas as non-interesting since they 1278 // will not cause memory violations. This greatly speeds up the instrumented 1279 // executable at -O0. 1280 if (ClSkipPromotableAllocas) 1281 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 1282 return isInterestingAlloca(*AI) ? AI : nullptr; 1283 1284 return PtrOperand; 1285 } 1286 1287 static bool isPointerOperand(Value *V) { 1288 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1289 } 1290 1291 // This is a rough heuristic; it may cause both false positives and 1292 // false negatives. The proper implementation requires cooperation with 1293 // the frontend. 1294 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { 1295 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1296 if (!Cmp->isRelational()) return false; 1297 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1298 if (BO->getOpcode() != Instruction::Sub) return false; 1299 } else { 1300 return false; 1301 } 1302 return isPointerOperand(I->getOperand(0)) && 1303 isPointerOperand(I->getOperand(1)); 1304 } 1305 1306 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1307 // If a global variable does not have dynamic initialization we don't 1308 // have to instrument it. However, if a global does not have initializer 1309 // at all, we assume it has dynamic initializer (in other TU). 1310 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1311 } 1312 1313 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1314 Instruction *I) { 1315 IRBuilder<> IRB(I); 1316 Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1317 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1318 for (Value *&i : Param) { 1319 if (i->getType()->isPointerTy()) 1320 i = IRB.CreatePointerCast(i, IntptrTy); 1321 } 1322 IRB.CreateCall(F, Param); 1323 } 1324 1325 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1326 Instruction *InsertBefore, Value *Addr, 1327 unsigned Alignment, unsigned Granularity, 1328 uint32_t TypeSize, bool IsWrite, 1329 Value *SizeArgument, bool UseCalls, 1330 uint32_t Exp) { 1331 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1332 // if the data is properly aligned. 1333 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1334 TypeSize == 128) && 1335 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1336 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1337 nullptr, UseCalls, Exp); 1338 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1339 IsWrite, nullptr, UseCalls, Exp); 1340 } 1341 1342 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1343 const DataLayout &DL, Type *IntptrTy, 1344 Value *Mask, Instruction *I, 1345 Value *Addr, unsigned Alignment, 1346 unsigned Granularity, uint32_t TypeSize, 1347 bool IsWrite, Value *SizeArgument, 1348 bool UseCalls, uint32_t Exp) { 1349 auto *VTy = cast<PointerType>(Addr->getType())->getElementType(); 1350 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1351 unsigned Num = VTy->getVectorNumElements(); 1352 auto Zero = ConstantInt::get(IntptrTy, 0); 1353 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1354 Value *InstrumentedAddress = nullptr; 1355 Instruction *InsertBefore = I; 1356 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1357 // dyn_cast as we might get UndefValue 1358 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1359 if (Masked->isZero()) 1360 // Mask is constant false, so no instrumentation needed. 1361 continue; 1362 // If we have a true or undef value, fall through to doInstrumentAddress 1363 // with InsertBefore == I 1364 } 1365 } else { 1366 IRBuilder<> IRB(I); 1367 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1368 TerminatorInst *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1369 InsertBefore = ThenTerm; 1370 } 1371 1372 IRBuilder<> IRB(InsertBefore); 1373 InstrumentedAddress = 1374 IRB.CreateGEP(Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1375 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1376 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1377 UseCalls, Exp); 1378 } 1379 } 1380 1381 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1382 Instruction *I, bool UseCalls, 1383 const DataLayout &DL) { 1384 bool IsWrite = false; 1385 unsigned Alignment = 0; 1386 uint64_t TypeSize = 0; 1387 Value *MaybeMask = nullptr; 1388 Value *Addr = 1389 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); 1390 assert(Addr); 1391 1392 // Optimization experiments. 1393 // The experiments can be used to evaluate potential optimizations that remove 1394 // instrumentation (assess false negatives). Instead of completely removing 1395 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1396 // experiments that want to remove instrumentation of this instruction). 1397 // If Exp is non-zero, this pass will emit special calls into runtime 1398 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1399 // make runtime terminate the program in a special way (with a different 1400 // exit status). Then you run the new compiler on a buggy corpus, collect 1401 // the special terminations (ideally, you don't see them at all -- no false 1402 // negatives) and make the decision on the optimization. 1403 uint32_t Exp = ClForceExperiment; 1404 1405 if (ClOpt && ClOptGlobals) { 1406 // If initialization order checking is disabled, a simple access to a 1407 // dynamically initialized global is always valid. 1408 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1409 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1410 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1411 NumOptimizedAccessesToGlobalVar++; 1412 return; 1413 } 1414 } 1415 1416 if (ClOpt && ClOptStack) { 1417 // A direct inbounds access to a stack variable is always valid. 1418 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1419 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1420 NumOptimizedAccessesToStackVar++; 1421 return; 1422 } 1423 } 1424 1425 if (IsWrite) 1426 NumInstrumentedWrites++; 1427 else 1428 NumInstrumentedReads++; 1429 1430 unsigned Granularity = 1 << Mapping.Scale; 1431 if (MaybeMask) { 1432 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr, 1433 Alignment, Granularity, TypeSize, IsWrite, 1434 nullptr, UseCalls, Exp); 1435 } else { 1436 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize, 1437 IsWrite, nullptr, UseCalls, Exp); 1438 } 1439 } 1440 1441 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1442 Value *Addr, bool IsWrite, 1443 size_t AccessSizeIndex, 1444 Value *SizeArgument, 1445 uint32_t Exp) { 1446 IRBuilder<> IRB(InsertBefore); 1447 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1448 CallInst *Call = nullptr; 1449 if (SizeArgument) { 1450 if (Exp == 0) 1451 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1452 {Addr, SizeArgument}); 1453 else 1454 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1455 {Addr, SizeArgument, ExpVal}); 1456 } else { 1457 if (Exp == 0) 1458 Call = 1459 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1460 else 1461 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1462 {Addr, ExpVal}); 1463 } 1464 1465 // We don't do Call->setDoesNotReturn() because the BB already has 1466 // UnreachableInst at the end. 1467 // This EmptyAsm is required to avoid callback merge. 1468 IRB.CreateCall(EmptyAsm, {}); 1469 return Call; 1470 } 1471 1472 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1473 Value *ShadowValue, 1474 uint32_t TypeSize) { 1475 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1476 // Addr & (Granularity - 1) 1477 Value *LastAccessedByte = 1478 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1479 // (Addr & (Granularity - 1)) + size - 1 1480 if (TypeSize / 8 > 1) 1481 LastAccessedByte = IRB.CreateAdd( 1482 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1483 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1484 LastAccessedByte = 1485 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1486 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1487 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1488 } 1489 1490 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1491 Instruction *InsertBefore, Value *Addr, 1492 uint32_t TypeSize, bool IsWrite, 1493 Value *SizeArgument, bool UseCalls, 1494 uint32_t Exp) { 1495 IRBuilder<> IRB(InsertBefore); 1496 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1497 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1498 1499 if (UseCalls) { 1500 if (Exp == 0) 1501 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1502 AddrLong); 1503 else 1504 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1505 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1506 return; 1507 } 1508 1509 Type *ShadowTy = 1510 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1511 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1512 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1513 Value *CmpVal = Constant::getNullValue(ShadowTy); 1514 Value *ShadowValue = 1515 IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1516 1517 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1518 size_t Granularity = 1ULL << Mapping.Scale; 1519 TerminatorInst *CrashTerm = nullptr; 1520 1521 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1522 // We use branch weights for the slow path check, to indicate that the slow 1523 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1524 TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen( 1525 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1526 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1527 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1528 IRB.SetInsertPoint(CheckTerm); 1529 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1530 if (Recover) { 1531 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1532 } else { 1533 BasicBlock *CrashBlock = 1534 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1535 CrashTerm = new UnreachableInst(*C, CrashBlock); 1536 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1537 ReplaceInstWithInst(CheckTerm, NewTerm); 1538 } 1539 } else { 1540 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1541 } 1542 1543 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1544 AccessSizeIndex, SizeArgument, Exp); 1545 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1546 } 1547 1548 // Instrument unusual size or unusual alignment. 1549 // We can not do it with a single check, so we do 1-byte check for the first 1550 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1551 // to report the actual access size. 1552 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1553 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1554 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1555 IRBuilder<> IRB(InsertBefore); 1556 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1557 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1558 if (UseCalls) { 1559 if (Exp == 0) 1560 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1561 {AddrLong, Size}); 1562 else 1563 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1564 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1565 } else { 1566 Value *LastByte = IRB.CreateIntToPtr( 1567 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1568 Addr->getType()); 1569 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1570 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1571 } 1572 } 1573 1574 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit, 1575 GlobalValue *ModuleName) { 1576 // Set up the arguments to our poison/unpoison functions. 1577 IRBuilder<> IRB(&GlobalInit.front(), 1578 GlobalInit.front().getFirstInsertionPt()); 1579 1580 // Add a call to poison all external globals before the given function starts. 1581 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1582 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1583 1584 // Add calls to unpoison all globals before each return instruction. 1585 for (auto &BB : GlobalInit.getBasicBlockList()) 1586 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1587 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1588 } 1589 1590 void AddressSanitizerModule::createInitializerPoisonCalls( 1591 Module &M, GlobalValue *ModuleName) { 1592 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1593 if (!GV) 1594 return; 1595 1596 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1597 if (!CA) 1598 return; 1599 1600 for (Use &OP : CA->operands()) { 1601 if (isa<ConstantAggregateZero>(OP)) continue; 1602 ConstantStruct *CS = cast<ConstantStruct>(OP); 1603 1604 // Must have a function or null ptr. 1605 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1606 if (F->getName() == kAsanModuleCtorName) continue; 1607 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1608 // Don't instrument CTORs that will run before asan.module_ctor. 1609 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; 1610 poisonOneInitializer(*F, ModuleName); 1611 } 1612 } 1613 } 1614 1615 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { 1616 Type *Ty = G->getValueType(); 1617 DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1618 1619 if (GlobalsMD.get(G).IsBlacklisted) return false; 1620 if (!Ty->isSized()) return false; 1621 if (!G->hasInitializer()) return false; 1622 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1623 // Touch only those globals that will not be defined in other modules. 1624 // Don't handle ODR linkage types and COMDATs since other modules may be built 1625 // without ASan. 1626 if (G->getLinkage() != GlobalVariable::ExternalLinkage && 1627 G->getLinkage() != GlobalVariable::PrivateLinkage && 1628 G->getLinkage() != GlobalVariable::InternalLinkage) 1629 return false; 1630 if (G->hasComdat()) return false; 1631 // Two problems with thread-locals: 1632 // - The address of the main thread's copy can't be computed at link-time. 1633 // - Need to poison all copies, not just the main thread's one. 1634 if (G->isThreadLocal()) return false; 1635 // For now, just ignore this Global if the alignment is large. 1636 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1637 1638 if (G->hasSection()) { 1639 StringRef Section = G->getSection(); 1640 1641 // Globals from llvm.metadata aren't emitted, do not instrument them. 1642 if (Section == "llvm.metadata") return false; 1643 // Do not instrument globals from special LLVM sections. 1644 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1645 1646 // Do not instrument function pointers to initialization and termination 1647 // routines: dynamic linker will not properly handle redzones. 1648 if (Section.startswith(".preinit_array") || 1649 Section.startswith(".init_array") || 1650 Section.startswith(".fini_array")) { 1651 return false; 1652 } 1653 1654 // Callbacks put into the CRT initializer/terminator sections 1655 // should not be instrumented. 1656 // See https://github.com/google/sanitizers/issues/305 1657 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1658 if (Section.startswith(".CRT")) { 1659 DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n"); 1660 return false; 1661 } 1662 1663 if (TargetTriple.isOSBinFormatMachO()) { 1664 StringRef ParsedSegment, ParsedSection; 1665 unsigned TAA = 0, StubSize = 0; 1666 bool TAAParsed; 1667 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1668 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1669 assert(ErrorCode.empty() && "Invalid section specifier."); 1670 1671 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1672 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1673 // them. 1674 if (ParsedSegment == "__OBJC" || 1675 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1676 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1677 return false; 1678 } 1679 // See https://github.com/google/sanitizers/issues/32 1680 // Constant CFString instances are compiled in the following way: 1681 // -- the string buffer is emitted into 1682 // __TEXT,__cstring,cstring_literals 1683 // -- the constant NSConstantString structure referencing that buffer 1684 // is placed into __DATA,__cfstring 1685 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1686 // Moreover, it causes the linker to crash on OS X 10.7 1687 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1688 DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1689 return false; 1690 } 1691 // The linker merges the contents of cstring_literals and removes the 1692 // trailing zeroes. 1693 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1694 DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1695 return false; 1696 } 1697 } 1698 } 1699 1700 return true; 1701 } 1702 1703 // On Mach-O platforms, we emit global metadata in a separate section of the 1704 // binary in order to allow the linker to properly dead strip. This is only 1705 // supported on recent versions of ld64. 1706 bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const { 1707 if (!TargetTriple.isOSBinFormatMachO()) 1708 return false; 1709 1710 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1711 return true; 1712 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1713 return true; 1714 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1715 return true; 1716 1717 return false; 1718 } 1719 1720 StringRef AddressSanitizerModule::getGlobalMetadataSection() const { 1721 switch (TargetTriple.getObjectFormat()) { 1722 case Triple::COFF: return ".ASAN$GL"; 1723 case Triple::ELF: return "asan_globals"; 1724 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1725 default: break; 1726 } 1727 llvm_unreachable("unsupported object format"); 1728 } 1729 1730 void AddressSanitizerModule::initializeCallbacks(Module &M) { 1731 IRBuilder<> IRB(*C); 1732 1733 // Declare our poisoning and unpoisoning functions. 1734 AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1735 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy)); 1736 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); 1737 AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1738 kAsanUnpoisonGlobalsName, IRB.getVoidTy())); 1739 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); 1740 1741 // Declare functions that register/unregister globals. 1742 AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1743 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy)); 1744 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); 1745 AsanUnregisterGlobals = checkSanitizerInterfaceFunction( 1746 M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(), 1747 IntptrTy, IntptrTy)); 1748 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); 1749 1750 // Declare the functions that find globals in a shared object and then invoke 1751 // the (un)register function on them. 1752 AsanRegisterImageGlobals = 1753 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1754 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy)); 1755 AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage); 1756 1757 AsanUnregisterImageGlobals = 1758 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1759 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy)); 1760 AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage); 1761 1762 AsanRegisterElfGlobals = checkSanitizerInterfaceFunction( 1763 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1764 IntptrTy, IntptrTy, IntptrTy)); 1765 AsanRegisterElfGlobals->setLinkage(Function::ExternalLinkage); 1766 1767 AsanUnregisterElfGlobals = checkSanitizerInterfaceFunction( 1768 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1769 IntptrTy, IntptrTy, IntptrTy)); 1770 AsanUnregisterElfGlobals->setLinkage(Function::ExternalLinkage); 1771 } 1772 1773 // Put the metadata and the instrumented global in the same group. This ensures 1774 // that the metadata is discarded if the instrumented global is discarded. 1775 void AddressSanitizerModule::SetComdatForGlobalMetadata( 1776 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1777 Module &M = *G->getParent(); 1778 Comdat *C = G->getComdat(); 1779 if (!C) { 1780 if (!G->hasName()) { 1781 // If G is unnamed, it must be internal. Give it an artificial name 1782 // so we can put it in a comdat. 1783 assert(G->hasLocalLinkage()); 1784 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1785 } 1786 1787 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 1788 std::string Name = G->getName(); 1789 Name += InternalSuffix; 1790 C = M.getOrInsertComdat(Name); 1791 } else { 1792 C = M.getOrInsertComdat(G->getName()); 1793 } 1794 1795 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 1796 // linkage to internal linkage so that a symbol table entry is emitted. This 1797 // is necessary in order to create the comdat group. 1798 if (TargetTriple.isOSBinFormatCOFF()) { 1799 C->setSelectionKind(Comdat::NoDuplicates); 1800 if (G->hasPrivateLinkage()) 1801 G->setLinkage(GlobalValue::InternalLinkage); 1802 } 1803 G->setComdat(C); 1804 } 1805 1806 assert(G->hasComdat()); 1807 Metadata->setComdat(G->getComdat()); 1808 } 1809 1810 // Create a separate metadata global and put it in the appropriate ASan 1811 // global registration section. 1812 GlobalVariable * 1813 AddressSanitizerModule::CreateMetadataGlobal(Module &M, Constant *Initializer, 1814 StringRef OriginalName) { 1815 auto Linkage = TargetTriple.isOSBinFormatMachO() 1816 ? GlobalVariable::InternalLinkage 1817 : GlobalVariable::PrivateLinkage; 1818 GlobalVariable *Metadata = new GlobalVariable( 1819 M, Initializer->getType(), false, Linkage, Initializer, 1820 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 1821 Metadata->setSection(getGlobalMetadataSection()); 1822 return Metadata; 1823 } 1824 1825 IRBuilder<> AddressSanitizerModule::CreateAsanModuleDtor(Module &M) { 1826 AsanDtorFunction = 1827 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 1828 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 1829 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 1830 1831 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB)); 1832 } 1833 1834 void AddressSanitizerModule::InstrumentGlobalsCOFF( 1835 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1836 ArrayRef<Constant *> MetadataInitializers) { 1837 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1838 auto &DL = M.getDataLayout(); 1839 1840 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 1841 Constant *Initializer = MetadataInitializers[i]; 1842 GlobalVariable *G = ExtendedGlobals[i]; 1843 GlobalVariable *Metadata = 1844 CreateMetadataGlobal(M, Initializer, G->getName()); 1845 1846 // The MSVC linker always inserts padding when linking incrementally. We 1847 // cope with that by aligning each struct to its size, which must be a power 1848 // of two. 1849 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 1850 assert(isPowerOf2_32(SizeOfGlobalStruct) && 1851 "global metadata will not be padded appropriately"); 1852 Metadata->setAlignment(SizeOfGlobalStruct); 1853 1854 SetComdatForGlobalMetadata(G, Metadata, ""); 1855 } 1856 } 1857 1858 void AddressSanitizerModule::InstrumentGlobalsELF( 1859 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1860 ArrayRef<Constant *> MetadataInitializers, 1861 const std::string &UniqueModuleId) { 1862 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1863 1864 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 1865 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 1866 GlobalVariable *G = ExtendedGlobals[i]; 1867 GlobalVariable *Metadata = 1868 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 1869 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 1870 Metadata->setMetadata(LLVMContext::MD_associated, MD); 1871 MetadataGlobals[i] = Metadata; 1872 1873 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 1874 } 1875 1876 // Update llvm.compiler.used, adding the new metadata globals. This is 1877 // needed so that during LTO these variables stay alive. 1878 if (!MetadataGlobals.empty()) 1879 appendToCompilerUsed(M, MetadataGlobals); 1880 1881 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 1882 // to look up the loaded image that contains it. Second, we can store in it 1883 // whether registration has already occurred, to prevent duplicate 1884 // registration. 1885 // 1886 // Common linkage ensures that there is only one global per shared library. 1887 GlobalVariable *RegisteredFlag = new GlobalVariable( 1888 M, IntptrTy, false, GlobalVariable::CommonLinkage, 1889 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 1890 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 1891 1892 // Create start and stop symbols. 1893 GlobalVariable *StartELFMetadata = new GlobalVariable( 1894 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 1895 "__start_" + getGlobalMetadataSection()); 1896 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 1897 GlobalVariable *StopELFMetadata = new GlobalVariable( 1898 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 1899 "__stop_" + getGlobalMetadataSection()); 1900 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 1901 1902 // Create a call to register the globals with the runtime. 1903 IRB.CreateCall(AsanRegisterElfGlobals, 1904 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 1905 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 1906 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 1907 1908 // We also need to unregister globals at the end, e.g., when a shared library 1909 // gets closed. 1910 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 1911 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 1912 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 1913 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 1914 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 1915 } 1916 1917 void AddressSanitizerModule::InstrumentGlobalsMachO( 1918 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1919 ArrayRef<Constant *> MetadataInitializers) { 1920 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1921 1922 // On recent Mach-O platforms, use a structure which binds the liveness of 1923 // the global variable to the metadata struct. Keep the list of "Liveness" GV 1924 // created to be added to llvm.compiler.used 1925 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 1926 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 1927 1928 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 1929 Constant *Initializer = MetadataInitializers[i]; 1930 GlobalVariable *G = ExtendedGlobals[i]; 1931 GlobalVariable *Metadata = 1932 CreateMetadataGlobal(M, Initializer, G->getName()); 1933 1934 // On recent Mach-O platforms, we emit the global metadata in a way that 1935 // allows the linker to properly strip dead globals. 1936 auto LivenessBinder = 1937 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 1938 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 1939 GlobalVariable *Liveness = new GlobalVariable( 1940 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 1941 Twine("__asan_binder_") + G->getName()); 1942 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 1943 LivenessGlobals[i] = Liveness; 1944 } 1945 1946 // Update llvm.compiler.used, adding the new liveness globals. This is 1947 // needed so that during LTO these variables stay alive. The alternative 1948 // would be to have the linker handling the LTO symbols, but libLTO 1949 // current API does not expose access to the section for each symbol. 1950 if (!LivenessGlobals.empty()) 1951 appendToCompilerUsed(M, LivenessGlobals); 1952 1953 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 1954 // to look up the loaded image that contains it. Second, we can store in it 1955 // whether registration has already occurred, to prevent duplicate 1956 // registration. 1957 // 1958 // common linkage ensures that there is only one global per shared library. 1959 GlobalVariable *RegisteredFlag = new GlobalVariable( 1960 M, IntptrTy, false, GlobalVariable::CommonLinkage, 1961 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 1962 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 1963 1964 IRB.CreateCall(AsanRegisterImageGlobals, 1965 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1966 1967 // We also need to unregister globals at the end, e.g., when a shared library 1968 // gets closed. 1969 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 1970 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 1971 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1972 } 1973 1974 void AddressSanitizerModule::InstrumentGlobalsWithMetadataArray( 1975 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1976 ArrayRef<Constant *> MetadataInitializers) { 1977 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1978 unsigned N = ExtendedGlobals.size(); 1979 assert(N > 0); 1980 1981 // On platforms that don't have a custom metadata section, we emit an array 1982 // of global metadata structures. 1983 ArrayType *ArrayOfGlobalStructTy = 1984 ArrayType::get(MetadataInitializers[0]->getType(), N); 1985 auto AllGlobals = new GlobalVariable( 1986 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 1987 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 1988 if (Mapping.Scale > 3) 1989 AllGlobals->setAlignment(1ULL << Mapping.Scale); 1990 1991 IRB.CreateCall(AsanRegisterGlobals, 1992 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1993 ConstantInt::get(IntptrTy, N)}); 1994 1995 // We also need to unregister globals at the end, e.g., when a shared library 1996 // gets closed. 1997 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 1998 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 1999 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2000 ConstantInt::get(IntptrTy, N)}); 2001 } 2002 2003 // This function replaces all global variables with new variables that have 2004 // trailing redzones. It also creates a function that poisons 2005 // redzones and inserts this function into llvm.global_ctors. 2006 // Sets *CtorComdat to true if the global registration code emitted into the 2007 // asan constructor is comdat-compatible. 2008 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat) { 2009 *CtorComdat = false; 2010 GlobalsMD.init(M); 2011 2012 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2013 2014 for (auto &G : M.globals()) { 2015 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 2016 } 2017 2018 size_t n = GlobalsToChange.size(); 2019 if (n == 0) { 2020 *CtorComdat = true; 2021 return false; 2022 } 2023 2024 auto &DL = M.getDataLayout(); 2025 2026 // A global is described by a structure 2027 // size_t beg; 2028 // size_t size; 2029 // size_t size_with_redzone; 2030 // const char *name; 2031 // const char *module_name; 2032 // size_t has_dynamic_init; 2033 // void *source_location; 2034 // size_t odr_indicator; 2035 // We initialize an array of such structures and pass it to a run-time call. 2036 StructType *GlobalStructTy = 2037 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2038 IntptrTy, IntptrTy, IntptrTy); 2039 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2040 SmallVector<Constant *, 16> Initializers(n); 2041 2042 bool HasDynamicallyInitializedGlobals = false; 2043 2044 // We shouldn't merge same module names, as this string serves as unique 2045 // module ID in runtime. 2046 GlobalVariable *ModuleName = createPrivateGlobalForString( 2047 M, M.getModuleIdentifier(), /*AllowMerging*/ false); 2048 2049 for (size_t i = 0; i < n; i++) { 2050 static const uint64_t kMaxGlobalRedzone = 1 << 18; 2051 GlobalVariable *G = GlobalsToChange[i]; 2052 2053 auto MD = GlobalsMD.get(G); 2054 StringRef NameForGlobal = G->getName(); 2055 // Create string holding the global name (use global name from metadata 2056 // if it's available, otherwise just write the name of global variable). 2057 GlobalVariable *Name = createPrivateGlobalForString( 2058 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2059 /*AllowMerging*/ true); 2060 2061 Type *Ty = G->getValueType(); 2062 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2063 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 2064 // MinRZ <= RZ <= kMaxGlobalRedzone 2065 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 2066 uint64_t RZ = std::max( 2067 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 2068 uint64_t RightRedzoneSize = RZ; 2069 // Round up to MinRZ 2070 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 2071 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 2072 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2073 2074 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2075 Constant *NewInitializer = ConstantStruct::get( 2076 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2077 2078 // Create a new global variable with enough space for a redzone. 2079 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2080 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2081 Linkage = GlobalValue::InternalLinkage; 2082 GlobalVariable *NewGlobal = 2083 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2084 "", G, G->getThreadLocalMode()); 2085 NewGlobal->copyAttributesFrom(G); 2086 NewGlobal->setAlignment(MinRZ); 2087 2088 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2089 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2090 G->isConstant()) { 2091 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2092 if (Seq && Seq->isCString()) 2093 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2094 } 2095 2096 // Transfer the debug info. The payload starts at offset zero so we can 2097 // copy the debug info over as is. 2098 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2099 G->getDebugInfo(GVs); 2100 for (auto *GV : GVs) 2101 NewGlobal->addDebugInfo(GV); 2102 2103 Value *Indices2[2]; 2104 Indices2[0] = IRB.getInt32(0); 2105 Indices2[1] = IRB.getInt32(0); 2106 2107 G->replaceAllUsesWith( 2108 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2109 NewGlobal->takeName(G); 2110 G->eraseFromParent(); 2111 NewGlobals[i] = NewGlobal; 2112 2113 Constant *SourceLoc; 2114 if (!MD.SourceLoc.empty()) { 2115 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2116 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2117 } else { 2118 SourceLoc = ConstantInt::get(IntptrTy, 0); 2119 } 2120 2121 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2122 GlobalValue *InstrumentedGlobal = NewGlobal; 2123 2124 bool CanUsePrivateAliases = 2125 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2126 TargetTriple.isOSBinFormatWasm(); 2127 if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) { 2128 // Create local alias for NewGlobal to avoid crash on ODR between 2129 // instrumented and non-instrumented libraries. 2130 auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage, 2131 NameForGlobal + M.getName(), NewGlobal); 2132 2133 // With local aliases, we need to provide another externally visible 2134 // symbol __odr_asan_XXX to detect ODR violation. 2135 auto *ODRIndicatorSym = 2136 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2137 Constant::getNullValue(IRB.getInt8Ty()), 2138 kODRGenPrefix + NameForGlobal, nullptr, 2139 NewGlobal->getThreadLocalMode()); 2140 2141 // Set meaningful attributes for indicator symbol. 2142 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2143 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2144 ODRIndicatorSym->setAlignment(1); 2145 ODRIndicator = ODRIndicatorSym; 2146 InstrumentedGlobal = GA; 2147 } 2148 2149 Constant *Initializer = ConstantStruct::get( 2150 GlobalStructTy, 2151 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2152 ConstantInt::get(IntptrTy, SizeInBytes), 2153 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2154 ConstantExpr::getPointerCast(Name, IntptrTy), 2155 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2156 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2157 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2158 2159 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2160 2161 DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2162 2163 Initializers[i] = Initializer; 2164 } 2165 2166 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2167 // ConstantMerge'ing them. 2168 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2169 for (size_t i = 0; i < n; i++) { 2170 GlobalVariable *G = NewGlobals[i]; 2171 if (G->getName().empty()) continue; 2172 GlobalsToAddToUsedList.push_back(G); 2173 } 2174 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2175 2176 std::string ELFUniqueModuleId = 2177 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2178 : ""; 2179 2180 if (!ELFUniqueModuleId.empty()) { 2181 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2182 *CtorComdat = true; 2183 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2184 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2185 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2186 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2187 } else { 2188 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2189 } 2190 2191 // Create calls for poisoning before initializers run and unpoisoning after. 2192 if (HasDynamicallyInitializedGlobals) 2193 createInitializerPoisonCalls(M, ModuleName); 2194 2195 DEBUG(dbgs() << M); 2196 return true; 2197 } 2198 2199 int AddressSanitizerModule::GetAsanVersion(const Module &M) const { 2200 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2201 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2202 int Version = 8; 2203 // 32-bit Android is one version ahead because of the switch to dynamic 2204 // shadow. 2205 Version += (LongSize == 32 && isAndroid); 2206 return Version; 2207 } 2208 2209 bool AddressSanitizerModule::runOnModule(Module &M) { 2210 C = &(M.getContext()); 2211 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2212 IntptrTy = Type::getIntNTy(*C, LongSize); 2213 TargetTriple = Triple(M.getTargetTriple()); 2214 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 2215 initializeCallbacks(M); 2216 2217 if (CompileKernel) 2218 return false; 2219 2220 // Create a module constructor. A destructor is created lazily because not all 2221 // platforms, and not all modules need it. 2222 std::string VersionCheckName = 2223 kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M)); 2224 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 2225 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, 2226 /*InitArgs=*/{}, VersionCheckName); 2227 2228 bool CtorComdat = true; 2229 bool Changed = false; 2230 // TODO(glider): temporarily disabled globals instrumentation for KASan. 2231 if (ClGlobals) { 2232 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2233 Changed |= InstrumentGlobals(IRB, M, &CtorComdat); 2234 } 2235 2236 // Put the constructor and destructor in comdat if both 2237 // (1) global instrumentation is not TU-specific 2238 // (2) target is ELF. 2239 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2240 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2241 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority, 2242 AsanCtorFunction); 2243 if (AsanDtorFunction) { 2244 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2245 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority, 2246 AsanDtorFunction); 2247 } 2248 } else { 2249 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); 2250 if (AsanDtorFunction) 2251 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); 2252 } 2253 2254 return Changed; 2255 } 2256 2257 void AddressSanitizer::initializeCallbacks(Module &M) { 2258 IRBuilder<> IRB(*C); 2259 // Create __asan_report* callbacks. 2260 // IsWrite, TypeSize and Exp are encoded in the function name. 2261 for (int Exp = 0; Exp < 2; Exp++) { 2262 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2263 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2264 const std::string ExpStr = Exp ? "exp_" : ""; 2265 const std::string EndingStr = Recover ? "_noabort" : ""; 2266 2267 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2268 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2269 if (Exp) { 2270 Type *ExpType = Type::getInt32Ty(*C); 2271 Args2.push_back(ExpType); 2272 Args1.push_back(ExpType); 2273 } 2274 AsanErrorCallbackSized[AccessIsWrite][Exp] = 2275 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2276 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2277 FunctionType::get(IRB.getVoidTy(), Args2, false))); 2278 2279 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = 2280 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2281 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2282 FunctionType::get(IRB.getVoidTy(), Args2, false))); 2283 2284 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2285 AccessSizeIndex++) { 2286 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2287 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2288 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2289 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2290 FunctionType::get(IRB.getVoidTy(), Args1, false))); 2291 2292 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2293 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2294 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2295 FunctionType::get(IRB.getVoidTy(), Args1, false))); 2296 } 2297 } 2298 } 2299 2300 const std::string MemIntrinCallbackPrefix = 2301 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2302 AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2303 MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(), 2304 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy)); 2305 AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2306 MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), 2307 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy)); 2308 AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2309 MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(), 2310 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy)); 2311 2312 AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction( 2313 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy())); 2314 2315 AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2316 kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy)); 2317 AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2318 kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy)); 2319 // We insert an empty inline asm after __asan_report* to avoid callback merge. 2320 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 2321 StringRef(""), StringRef(""), 2322 /*hasSideEffects=*/true); 2323 if (Mapping.InGlobal) 2324 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2325 ArrayType::get(IRB.getInt8Ty(), 0)); 2326 } 2327 2328 // virtual 2329 bool AddressSanitizer::doInitialization(Module &M) { 2330 // Initialize the private fields. No one has accessed them before. 2331 GlobalsMD.init(M); 2332 2333 C = &(M.getContext()); 2334 LongSize = M.getDataLayout().getPointerSizeInBits(); 2335 IntptrTy = Type::getIntNTy(*C, LongSize); 2336 TargetTriple = Triple(M.getTargetTriple()); 2337 2338 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 2339 return true; 2340 } 2341 2342 bool AddressSanitizer::doFinalization(Module &M) { 2343 GlobalsMD.reset(); 2344 return false; 2345 } 2346 2347 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2348 // For each NSObject descendant having a +load method, this method is invoked 2349 // by the ObjC runtime before any of the static constructors is called. 2350 // Therefore we need to instrument such methods with a call to __asan_init 2351 // at the beginning in order to initialize our runtime before any access to 2352 // the shadow memory. 2353 // We cannot just ignore these methods, because they may call other 2354 // instrumented functions. 2355 if (F.getName().find(" load]") != std::string::npos) { 2356 Function *AsanInitFunction = 2357 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2358 IRBuilder<> IRB(&F.front(), F.front().begin()); 2359 IRB.CreateCall(AsanInitFunction, {}); 2360 return true; 2361 } 2362 return false; 2363 } 2364 2365 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2366 // Generate code only when dynamic addressing is needed. 2367 if (Mapping.Offset != kDynamicShadowSentinel) 2368 return; 2369 2370 IRBuilder<> IRB(&F.front().front()); 2371 if (Mapping.InGlobal) { 2372 if (ClWithIfuncSuppressRemat) { 2373 // An empty inline asm with input reg == output reg. 2374 // An opaque pointer-to-int cast, basically. 2375 InlineAsm *Asm = InlineAsm::get( 2376 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2377 StringRef(""), StringRef("=r,0"), 2378 /*hasSideEffects=*/false); 2379 LocalDynamicShadow = 2380 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2381 } else { 2382 LocalDynamicShadow = 2383 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2384 } 2385 } else { 2386 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2387 kAsanShadowMemoryDynamicAddress, IntptrTy); 2388 LocalDynamicShadow = IRB.CreateLoad(GlobalDynamicAddress); 2389 } 2390 } 2391 2392 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2393 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2394 // to it as uninteresting. This assumes we haven't started processing allocas 2395 // yet. This check is done up front because iterating the use list in 2396 // isInterestingAlloca would be algorithmically slower. 2397 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2398 2399 // Try to get the declaration of llvm.localescape. If it's not in the module, 2400 // we can exit early. 2401 if (!F.getParent()->getFunction("llvm.localescape")) return; 2402 2403 // Look for a call to llvm.localescape call in the entry block. It can't be in 2404 // any other block. 2405 for (Instruction &I : F.getEntryBlock()) { 2406 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2407 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2408 // We found a call. Mark all the allocas passed in as uninteresting. 2409 for (Value *Arg : II->arg_operands()) { 2410 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2411 assert(AI && AI->isStaticAlloca() && 2412 "non-static alloca arg to localescape"); 2413 ProcessedAllocas[AI] = false; 2414 } 2415 break; 2416 } 2417 } 2418 } 2419 2420 bool AddressSanitizer::runOnFunction(Function &F) { 2421 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2422 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2423 if (F.getName().startswith("__asan_")) return false; 2424 2425 bool FunctionModified = false; 2426 2427 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2428 // This function needs to be called even if the function body is not 2429 // instrumented. 2430 if (maybeInsertAsanInitAtFunctionEntry(F)) 2431 FunctionModified = true; 2432 2433 // Leave if the function doesn't need instrumentation. 2434 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2435 2436 DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2437 2438 initializeCallbacks(*F.getParent()); 2439 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2440 2441 FunctionStateRAII CleanupObj(this); 2442 2443 maybeInsertDynamicShadowAtFunctionEntry(F); 2444 2445 // We can't instrument allocas used with llvm.localescape. Only static allocas 2446 // can be passed to that intrinsic. 2447 markEscapedLocalAllocas(F); 2448 2449 // We want to instrument every address only once per basic block (unless there 2450 // are calls between uses). 2451 SmallSet<Value *, 16> TempsToInstrument; 2452 SmallVector<Instruction *, 16> ToInstrument; 2453 SmallVector<Instruction *, 8> NoReturnCalls; 2454 SmallVector<BasicBlock *, 16> AllBlocks; 2455 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2456 int NumAllocas = 0; 2457 bool IsWrite; 2458 unsigned Alignment; 2459 uint64_t TypeSize; 2460 const TargetLibraryInfo *TLI = 2461 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2462 2463 // Fill the set of memory operations to instrument. 2464 for (auto &BB : F) { 2465 AllBlocks.push_back(&BB); 2466 TempsToInstrument.clear(); 2467 int NumInsnsPerBB = 0; 2468 for (auto &Inst : BB) { 2469 if (LooksLikeCodeInBug11395(&Inst)) return false; 2470 Value *MaybeMask = nullptr; 2471 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 2472 &Alignment, &MaybeMask)) { 2473 if (ClOpt && ClOptSameTemp) { 2474 // If we have a mask, skip instrumentation if we've already 2475 // instrumented the full object. But don't add to TempsToInstrument 2476 // because we might get another load/store with a different mask. 2477 if (MaybeMask) { 2478 if (TempsToInstrument.count(Addr)) 2479 continue; // We've seen this (whole) temp in the current BB. 2480 } else { 2481 if (!TempsToInstrument.insert(Addr).second) 2482 continue; // We've seen this temp in the current BB. 2483 } 2484 } 2485 } else if (ClInvalidPointerPairs && 2486 isInterestingPointerComparisonOrSubtraction(&Inst)) { 2487 PointerComparisonsOrSubtracts.push_back(&Inst); 2488 continue; 2489 } else if (isa<MemIntrinsic>(Inst)) { 2490 // ok, take it. 2491 } else { 2492 if (isa<AllocaInst>(Inst)) NumAllocas++; 2493 CallSite CS(&Inst); 2494 if (CS) { 2495 // A call inside BB. 2496 TempsToInstrument.clear(); 2497 if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction()); 2498 } 2499 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2500 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2501 continue; 2502 } 2503 ToInstrument.push_back(&Inst); 2504 NumInsnsPerBB++; 2505 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2506 } 2507 } 2508 2509 bool UseCalls = 2510 (ClInstrumentationWithCallsThreshold >= 0 && 2511 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 2512 const DataLayout &DL = F.getParent()->getDataLayout(); 2513 ObjectSizeOpts ObjSizeOpts; 2514 ObjSizeOpts.RoundToAlign = true; 2515 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2516 2517 // Instrument. 2518 int NumInstrumented = 0; 2519 for (auto Inst : ToInstrument) { 2520 if (ClDebugMin < 0 || ClDebugMax < 0 || 2521 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 2522 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 2523 instrumentMop(ObjSizeVis, Inst, UseCalls, 2524 F.getParent()->getDataLayout()); 2525 else 2526 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 2527 } 2528 NumInstrumented++; 2529 } 2530 2531 FunctionStackPoisoner FSP(F, *this); 2532 bool ChangedStack = FSP.runOnFunction(); 2533 2534 // We must unpoison the stack before every NoReturn call (throw, _exit, etc). 2535 // See e.g. https://github.com/google/sanitizers/issues/37 2536 for (auto CI : NoReturnCalls) { 2537 IRBuilder<> IRB(CI); 2538 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2539 } 2540 2541 for (auto Inst : PointerComparisonsOrSubtracts) { 2542 instrumentPointerComparisonOrSubtraction(Inst); 2543 NumInstrumented++; 2544 } 2545 2546 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) 2547 FunctionModified = true; 2548 2549 DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2550 << F << "\n"); 2551 2552 return FunctionModified; 2553 } 2554 2555 // Workaround for bug 11395: we don't want to instrument stack in functions 2556 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2557 // FIXME: remove once the bug 11395 is fixed. 2558 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2559 if (LongSize != 32) return false; 2560 CallInst *CI = dyn_cast<CallInst>(I); 2561 if (!CI || !CI->isInlineAsm()) return false; 2562 if (CI->getNumArgOperands() <= 5) return false; 2563 // We have inline assembly with quite a few arguments. 2564 return true; 2565 } 2566 2567 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2568 IRBuilder<> IRB(*C); 2569 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2570 std::string Suffix = itostr(i); 2571 AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction( 2572 M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy, 2573 IntptrTy)); 2574 AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction( 2575 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2576 IRB.getVoidTy(), IntptrTy, IntptrTy)); 2577 } 2578 if (ASan.UseAfterScope) { 2579 AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 2580 M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(), 2581 IntptrTy, IntptrTy)); 2582 AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 2583 M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), 2584 IntptrTy, IntptrTy)); 2585 } 2586 2587 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2588 std::ostringstream Name; 2589 Name << kAsanSetShadowPrefix; 2590 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2591 AsanSetShadowFunc[Val] = 2592 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2593 Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy)); 2594 } 2595 2596 AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2597 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy)); 2598 AsanAllocasUnpoisonFunc = 2599 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2600 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy)); 2601 } 2602 2603 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2604 ArrayRef<uint8_t> ShadowBytes, 2605 size_t Begin, size_t End, 2606 IRBuilder<> &IRB, 2607 Value *ShadowBase) { 2608 if (Begin >= End) 2609 return; 2610 2611 const size_t LargestStoreSizeInBytes = 2612 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2613 2614 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2615 2616 // Poison given range in shadow using larges store size with out leading and 2617 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2618 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2619 // middle of a store. 2620 for (size_t i = Begin; i < End;) { 2621 if (!ShadowMask[i]) { 2622 assert(!ShadowBytes[i]); 2623 ++i; 2624 continue; 2625 } 2626 2627 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2628 // Fit store size into the range. 2629 while (StoreSizeInBytes > End - i) 2630 StoreSizeInBytes /= 2; 2631 2632 // Minimize store size by trimming trailing zeros. 2633 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2634 while (j <= StoreSizeInBytes / 2) 2635 StoreSizeInBytes /= 2; 2636 } 2637 2638 uint64_t Val = 0; 2639 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2640 if (IsLittleEndian) 2641 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2642 else 2643 Val = (Val << 8) | ShadowBytes[i + j]; 2644 } 2645 2646 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2647 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2648 IRB.CreateAlignedStore( 2649 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); 2650 2651 i += StoreSizeInBytes; 2652 } 2653 } 2654 2655 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2656 ArrayRef<uint8_t> ShadowBytes, 2657 IRBuilder<> &IRB, Value *ShadowBase) { 2658 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2659 } 2660 2661 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2662 ArrayRef<uint8_t> ShadowBytes, 2663 size_t Begin, size_t End, 2664 IRBuilder<> &IRB, Value *ShadowBase) { 2665 assert(ShadowMask.size() == ShadowBytes.size()); 2666 size_t Done = Begin; 2667 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2668 if (!ShadowMask[i]) { 2669 assert(!ShadowBytes[i]); 2670 continue; 2671 } 2672 uint8_t Val = ShadowBytes[i]; 2673 if (!AsanSetShadowFunc[Val]) 2674 continue; 2675 2676 // Skip same values. 2677 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2678 } 2679 2680 if (j - i >= ClMaxInlinePoisoningSize) { 2681 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2682 IRB.CreateCall(AsanSetShadowFunc[Val], 2683 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2684 ConstantInt::get(IntptrTy, j - i)}); 2685 Done = j; 2686 } 2687 } 2688 2689 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2690 } 2691 2692 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2693 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2694 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2695 assert(LocalStackSize <= kMaxStackMallocSize); 2696 uint64_t MaxSize = kMinStackMallocSize; 2697 for (int i = 0;; i++, MaxSize *= 2) 2698 if (LocalStackSize <= MaxSize) return i; 2699 llvm_unreachable("impossible LocalStackSize"); 2700 } 2701 2702 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2703 Instruction *CopyInsertPoint = &F.front().front(); 2704 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2705 // Insert after the dynamic shadow location is determined 2706 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2707 assert(CopyInsertPoint); 2708 } 2709 IRBuilder<> IRB(CopyInsertPoint); 2710 const DataLayout &DL = F.getParent()->getDataLayout(); 2711 for (Argument &Arg : F.args()) { 2712 if (Arg.hasByValAttr()) { 2713 Type *Ty = Arg.getType()->getPointerElementType(); 2714 unsigned Align = Arg.getParamAlignment(); 2715 if (Align == 0) Align = DL.getABITypeAlignment(Ty); 2716 2717 AllocaInst *AI = IRB.CreateAlloca( 2718 Ty, nullptr, 2719 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2720 ".byval"); 2721 AI->setAlignment(Align); 2722 Arg.replaceAllUsesWith(AI); 2723 2724 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2725 IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize); 2726 } 2727 } 2728 } 2729 2730 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2731 Value *ValueIfTrue, 2732 Instruction *ThenTerm, 2733 Value *ValueIfFalse) { 2734 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2735 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2736 PHI->addIncoming(ValueIfFalse, CondBlock); 2737 BasicBlock *ThenBlock = ThenTerm->getParent(); 2738 PHI->addIncoming(ValueIfTrue, ThenBlock); 2739 return PHI; 2740 } 2741 2742 Value *FunctionStackPoisoner::createAllocaForLayout( 2743 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2744 AllocaInst *Alloca; 2745 if (Dynamic) { 2746 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2747 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2748 "MyAlloca"); 2749 } else { 2750 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2751 nullptr, "MyAlloca"); 2752 assert(Alloca->isStaticAlloca()); 2753 } 2754 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2755 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 2756 Alloca->setAlignment(FrameAlignment); 2757 return IRB.CreatePointerCast(Alloca, IntptrTy); 2758 } 2759 2760 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2761 BasicBlock &FirstBB = *F.begin(); 2762 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2763 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2764 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2765 DynamicAllocaLayout->setAlignment(32); 2766 } 2767 2768 void FunctionStackPoisoner::processDynamicAllocas() { 2769 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2770 assert(DynamicAllocaPoisonCallVec.empty()); 2771 return; 2772 } 2773 2774 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2775 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2776 assert(APC.InsBefore); 2777 assert(APC.AI); 2778 assert(ASan.isInterestingAlloca(*APC.AI)); 2779 assert(!APC.AI->isStaticAlloca()); 2780 2781 IRBuilder<> IRB(APC.InsBefore); 2782 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2783 // Dynamic allocas will be unpoisoned unconditionally below in 2784 // unpoisonDynamicAllocas. 2785 // Flag that we need unpoison static allocas. 2786 } 2787 2788 // Handle dynamic allocas. 2789 createDynamicAllocasInitStorage(); 2790 for (auto &AI : DynamicAllocaVec) 2791 handleDynamicAllocaCall(AI); 2792 unpoisonDynamicAllocas(); 2793 } 2794 2795 void FunctionStackPoisoner::processStaticAllocas() { 2796 if (AllocaVec.empty()) { 2797 assert(StaticAllocaPoisonCallVec.empty()); 2798 return; 2799 } 2800 2801 int StackMallocIdx = -1; 2802 DebugLoc EntryDebugLocation; 2803 if (auto SP = F.getSubprogram()) 2804 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 2805 2806 Instruction *InsBefore = AllocaVec[0]; 2807 IRBuilder<> IRB(InsBefore); 2808 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2809 2810 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 2811 // debug info is broken, because only entry-block allocas are treated as 2812 // regular stack slots. 2813 auto InsBeforeB = InsBefore->getParent(); 2814 assert(InsBeforeB == &F.getEntryBlock()); 2815 for (auto *AI : StaticAllocasToMoveUp) 2816 if (AI->getParent() == InsBeforeB) 2817 AI->moveBefore(InsBefore); 2818 2819 // If we have a call to llvm.localescape, keep it in the entry block. 2820 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 2821 2822 SmallVector<ASanStackVariableDescription, 16> SVD; 2823 SVD.reserve(AllocaVec.size()); 2824 for (AllocaInst *AI : AllocaVec) { 2825 ASanStackVariableDescription D = {AI->getName().data(), 2826 ASan.getAllocaSizeInBytes(*AI), 2827 0, 2828 AI->getAlignment(), 2829 AI, 2830 0, 2831 0}; 2832 SVD.push_back(D); 2833 } 2834 2835 // Minimal header size (left redzone) is 4 pointers, 2836 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 2837 size_t Granularity = 1ULL << Mapping.Scale; 2838 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 2839 const ASanStackFrameLayout &L = 2840 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 2841 2842 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 2843 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 2844 for (auto &Desc : SVD) 2845 AllocaToSVDMap[Desc.AI] = &Desc; 2846 2847 // Update SVD with information from lifetime intrinsics. 2848 for (const auto &APC : StaticAllocaPoisonCallVec) { 2849 assert(APC.InsBefore); 2850 assert(APC.AI); 2851 assert(ASan.isInterestingAlloca(*APC.AI)); 2852 assert(APC.AI->isStaticAlloca()); 2853 2854 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 2855 Desc.LifetimeSize = Desc.Size; 2856 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 2857 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 2858 if (LifetimeLoc->getFile() == FnLoc->getFile()) 2859 if (unsigned Line = LifetimeLoc->getLine()) 2860 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 2861 } 2862 } 2863 } 2864 2865 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 2866 DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 2867 uint64_t LocalStackSize = L.FrameSize; 2868 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 2869 LocalStackSize <= kMaxStackMallocSize; 2870 bool DoDynamicAlloca = ClDynamicAllocaStack; 2871 // Don't do dynamic alloca or stack malloc if: 2872 // 1) There is inline asm: too often it makes assumptions on which registers 2873 // are available. 2874 // 2) There is a returns_twice call (typically setjmp), which is 2875 // optimization-hostile, and doesn't play well with introduced indirect 2876 // register-relative calculation of local variable addresses. 2877 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2878 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2879 2880 Value *StaticAlloca = 2881 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 2882 2883 Value *FakeStack; 2884 Value *LocalStackBase; 2885 Value *LocalStackBaseAlloca; 2886 bool Deref; 2887 2888 if (DoStackMalloc) { 2889 LocalStackBaseAlloca = 2890 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 2891 // void *FakeStack = __asan_option_detect_stack_use_after_return 2892 // ? __asan_stack_malloc_N(LocalStackSize) 2893 // : nullptr; 2894 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 2895 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 2896 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 2897 Value *UseAfterReturnIsEnabled = 2898 IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn), 2899 Constant::getNullValue(IRB.getInt32Ty())); 2900 Instruction *Term = 2901 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 2902 IRBuilder<> IRBIf(Term); 2903 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2904 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 2905 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 2906 Value *FakeStackValue = 2907 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 2908 ConstantInt::get(IntptrTy, LocalStackSize)); 2909 IRB.SetInsertPoint(InsBefore); 2910 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2911 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 2912 ConstantInt::get(IntptrTy, 0)); 2913 2914 Value *NoFakeStack = 2915 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 2916 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 2917 IRBIf.SetInsertPoint(Term); 2918 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2919 Value *AllocaValue = 2920 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 2921 2922 IRB.SetInsertPoint(InsBefore); 2923 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2924 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 2925 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2926 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 2927 Deref = true; 2928 } else { 2929 // void *FakeStack = nullptr; 2930 // void *LocalStackBase = alloca(LocalStackSize); 2931 FakeStack = ConstantInt::get(IntptrTy, 0); 2932 LocalStackBase = 2933 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 2934 LocalStackBaseAlloca = LocalStackBase; 2935 Deref = false; 2936 } 2937 2938 // Replace Alloca instructions with base+offset. 2939 for (const auto &Desc : SVD) { 2940 AllocaInst *AI = Desc.AI; 2941 replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, Deref, 2942 Desc.Offset, DIExpression::NoDeref); 2943 Value *NewAllocaPtr = IRB.CreateIntToPtr( 2944 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 2945 AI->getType()); 2946 AI->replaceAllUsesWith(NewAllocaPtr); 2947 } 2948 2949 // The left-most redzone has enough space for at least 4 pointers. 2950 // Write the Magic value to redzone[0]. 2951 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 2952 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 2953 BasePlus0); 2954 // Write the frame description constant to redzone[1]. 2955 Value *BasePlus1 = IRB.CreateIntToPtr( 2956 IRB.CreateAdd(LocalStackBase, 2957 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 2958 IntptrPtrTy); 2959 GlobalVariable *StackDescriptionGlobal = 2960 createPrivateGlobalForString(*F.getParent(), DescriptionString, 2961 /*AllowMerging*/ true); 2962 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 2963 IRB.CreateStore(Description, BasePlus1); 2964 // Write the PC to redzone[2]. 2965 Value *BasePlus2 = IRB.CreateIntToPtr( 2966 IRB.CreateAdd(LocalStackBase, 2967 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 2968 IntptrPtrTy); 2969 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 2970 2971 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 2972 2973 // Poison the stack red zones at the entry. 2974 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 2975 // As mask we must use most poisoned case: red zones and after scope. 2976 // As bytes we can use either the same or just red zones only. 2977 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 2978 2979 if (!StaticAllocaPoisonCallVec.empty()) { 2980 const auto &ShadowInScope = GetShadowBytes(SVD, L); 2981 2982 // Poison static allocas near lifetime intrinsics. 2983 for (const auto &APC : StaticAllocaPoisonCallVec) { 2984 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 2985 assert(Desc.Offset % L.Granularity == 0); 2986 size_t Begin = Desc.Offset / L.Granularity; 2987 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 2988 2989 IRBuilder<> IRB(APC.InsBefore); 2990 copyToShadow(ShadowAfterScope, 2991 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 2992 IRB, ShadowBase); 2993 } 2994 } 2995 2996 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 2997 SmallVector<uint8_t, 64> ShadowAfterReturn; 2998 2999 // (Un)poison the stack before all ret instructions. 3000 for (auto Ret : RetVec) { 3001 IRBuilder<> IRBRet(Ret); 3002 // Mark the current frame as retired. 3003 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3004 BasePlus0); 3005 if (DoStackMalloc) { 3006 assert(StackMallocIdx >= 0); 3007 // if FakeStack != 0 // LocalStackBase == FakeStack 3008 // // In use-after-return mode, poison the whole stack frame. 3009 // if StackMallocIdx <= 4 3010 // // For small sizes inline the whole thing: 3011 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3012 // **SavedFlagPtr(FakeStack) = 0 3013 // else 3014 // __asan_stack_free_N(FakeStack, LocalStackSize) 3015 // else 3016 // <This is not a fake stack; unpoison the redzones> 3017 Value *Cmp = 3018 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3019 TerminatorInst *ThenTerm, *ElseTerm; 3020 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3021 3022 IRBuilder<> IRBPoison(ThenTerm); 3023 if (StackMallocIdx <= 4) { 3024 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3025 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3026 kAsanStackUseAfterReturnMagic); 3027 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3028 ShadowBase); 3029 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3030 FakeStack, 3031 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3032 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3033 IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3034 IRBPoison.CreateStore( 3035 Constant::getNullValue(IRBPoison.getInt8Ty()), 3036 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3037 } else { 3038 // For larger frames call __asan_stack_free_*. 3039 IRBPoison.CreateCall( 3040 AsanStackFreeFunc[StackMallocIdx], 3041 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3042 } 3043 3044 IRBuilder<> IRBElse(ElseTerm); 3045 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3046 } else { 3047 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3048 } 3049 } 3050 3051 // We are done. Remove the old unused alloca instructions. 3052 for (auto AI : AllocaVec) AI->eraseFromParent(); 3053 } 3054 3055 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3056 IRBuilder<> &IRB, bool DoPoison) { 3057 // For now just insert the call to ASan runtime. 3058 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3059 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3060 IRB.CreateCall( 3061 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3062 {AddrArg, SizeArg}); 3063 } 3064 3065 // Handling llvm.lifetime intrinsics for a given %alloca: 3066 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3067 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3068 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3069 // could be poisoned by previous llvm.lifetime.end instruction, as the 3070 // variable may go in and out of scope several times, e.g. in loops). 3071 // (3) if we poisoned at least one %alloca in a function, 3072 // unpoison the whole stack frame at function exit. 3073 3074 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { 3075 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 3076 // We're interested only in allocas we can handle. 3077 return ASan.isInterestingAlloca(*AI) ? AI : nullptr; 3078 // See if we've already calculated (or started to calculate) alloca for a 3079 // given value. 3080 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 3081 if (I != AllocaForValue.end()) return I->second; 3082 // Store 0 while we're calculating alloca for value V to avoid 3083 // infinite recursion if the value references itself. 3084 AllocaForValue[V] = nullptr; 3085 AllocaInst *Res = nullptr; 3086 if (CastInst *CI = dyn_cast<CastInst>(V)) 3087 Res = findAllocaForValue(CI->getOperand(0)); 3088 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 3089 for (Value *IncValue : PN->incoming_values()) { 3090 // Allow self-referencing phi-nodes. 3091 if (IncValue == PN) continue; 3092 AllocaInst *IncValueAI = findAllocaForValue(IncValue); 3093 // AI for incoming values should exist and should all be equal. 3094 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 3095 return nullptr; 3096 Res = IncValueAI; 3097 } 3098 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 3099 Res = findAllocaForValue(EP->getPointerOperand()); 3100 } else { 3101 DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V << "\n"); 3102 } 3103 if (Res) AllocaForValue[V] = Res; 3104 return Res; 3105 } 3106 3107 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3108 IRBuilder<> IRB(AI); 3109 3110 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 3111 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3112 3113 Value *Zero = Constant::getNullValue(IntptrTy); 3114 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3115 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3116 3117 // Since we need to extend alloca with additional memory to locate 3118 // redzones, and OldSize is number of allocated blocks with 3119 // ElementSize size, get allocated memory size in bytes by 3120 // OldSize * ElementSize. 3121 const unsigned ElementSize = 3122 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3123 Value *OldSize = 3124 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3125 ConstantInt::get(IntptrTy, ElementSize)); 3126 3127 // PartialSize = OldSize % 32 3128 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3129 3130 // Misalign = kAllocaRzSize - PartialSize; 3131 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3132 3133 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3134 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3135 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3136 3137 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 3138 // Align is added to locate left redzone, PartialPadding for possible 3139 // partial redzone and kAllocaRzSize for right redzone respectively. 3140 Value *AdditionalChunkSize = IRB.CreateAdd( 3141 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 3142 3143 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3144 3145 // Insert new alloca with new NewSize and Align params. 3146 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3147 NewAlloca->setAlignment(Align); 3148 3149 // NewAddress = Address + Align 3150 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3151 ConstantInt::get(IntptrTy, Align)); 3152 3153 // Insert __asan_alloca_poison call for new created alloca. 3154 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3155 3156 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3157 // for unpoisoning stuff. 3158 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3159 3160 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3161 3162 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3163 AI->replaceAllUsesWith(NewAddressPtr); 3164 3165 // We are done. Erase old alloca from parent. 3166 AI->eraseFromParent(); 3167 } 3168 3169 // isSafeAccess returns true if Addr is always inbounds with respect to its 3170 // base object. For example, it is a field access or an array access with 3171 // constant inbounds index. 3172 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3173 Value *Addr, uint64_t TypeSize) const { 3174 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3175 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3176 uint64_t Size = SizeOffset.first.getZExtValue(); 3177 int64_t Offset = SizeOffset.second.getSExtValue(); 3178 // Three checks are required to ensure safety: 3179 // . Offset >= 0 (since the offset is given from the base ptr) 3180 // . Size >= Offset (unsigned) 3181 // . Size - Offset >= NeededSize (unsigned) 3182 return Offset >= 0 && Size >= uint64_t(Offset) && 3183 Size - uint64_t(Offset) >= TypeSize / 8; 3184 } 3185