1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/MachO.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstVisitor.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/MDBuilder.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/MC/MCSectionMachO.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/ModuleUtils.h" 76 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iomanip> 82 #include <limits> 83 #include <memory> 84 #include <sstream> 85 #include <string> 86 #include <tuple> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "asan" 91 92 static const uint64_t kDefaultShadowScale = 3; 93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 95 static const uint64_t kDynamicShadowSentinel = 96 std::numeric_limits<uint64_t>::max(); 97 static const uint64_t kIOSShadowOffset32 = 1ULL << 30; 98 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30; 99 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64; 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 109 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 111 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 112 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 113 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 114 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 115 116 static const uint64_t kMyriadShadowScale = 5; 117 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 118 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 119 static const uint64_t kMyriadTagShift = 29; 120 static const uint64_t kMyriadDDRTag = 4; 121 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 122 123 // The shadow memory space is dynamically allocated. 124 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 125 126 static const size_t kMinStackMallocSize = 1 << 6; // 64B 127 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 128 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 129 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 130 131 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 132 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 133 static const uint64_t kAsanCtorAndDtorPriority = 1; 134 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 135 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 136 static const char *const kAsanUnregisterGlobalsName = 137 "__asan_unregister_globals"; 138 static const char *const kAsanRegisterImageGlobalsName = 139 "__asan_register_image_globals"; 140 static const char *const kAsanUnregisterImageGlobalsName = 141 "__asan_unregister_image_globals"; 142 static const char *const kAsanRegisterElfGlobalsName = 143 "__asan_register_elf_globals"; 144 static const char *const kAsanUnregisterElfGlobalsName = 145 "__asan_unregister_elf_globals"; 146 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 147 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 148 static const char *const kAsanInitName = "__asan_init"; 149 static const char *const kAsanVersionCheckNamePrefix = 150 "__asan_version_mismatch_check_v"; 151 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 152 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 153 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 154 static const int kMaxAsanStackMallocSizeClass = 10; 155 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 156 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 157 static const char *const kAsanGenPrefix = "___asan_gen_"; 158 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 159 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 160 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 161 static const char *const kAsanPoisonStackMemoryName = 162 "__asan_poison_stack_memory"; 163 static const char *const kAsanUnpoisonStackMemoryName = 164 "__asan_unpoison_stack_memory"; 165 166 // ASan version script has __asan_* wildcard. Triple underscore prevents a 167 // linker (gold) warning about attempting to export a local symbol. 168 static const char *const kAsanGlobalsRegisteredFlagName = 169 "___asan_globals_registered"; 170 171 static const char *const kAsanOptionDetectUseAfterReturn = 172 "__asan_option_detect_stack_use_after_return"; 173 174 static const char *const kAsanShadowMemoryDynamicAddress = 175 "__asan_shadow_memory_dynamic_address"; 176 177 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 178 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 179 180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 181 static const size_t kNumberOfAccessSizes = 5; 182 183 static const unsigned kAllocaRzSize = 32; 184 185 // Command-line flags. 186 187 static cl::opt<bool> ClEnableKasan( 188 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 189 cl::Hidden, cl::init(false)); 190 191 static cl::opt<bool> ClRecover( 192 "asan-recover", 193 cl::desc("Enable recovery mode (continue-after-error)."), 194 cl::Hidden, cl::init(false)); 195 196 // This flag may need to be replaced with -f[no-]asan-reads. 197 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 198 cl::desc("instrument read instructions"), 199 cl::Hidden, cl::init(true)); 200 201 static cl::opt<bool> ClInstrumentWrites( 202 "asan-instrument-writes", cl::desc("instrument write instructions"), 203 cl::Hidden, cl::init(true)); 204 205 static cl::opt<bool> ClInstrumentAtomics( 206 "asan-instrument-atomics", 207 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 208 cl::init(true)); 209 210 static cl::opt<bool> ClAlwaysSlowPath( 211 "asan-always-slow-path", 212 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 213 cl::init(false)); 214 215 static cl::opt<bool> ClForceDynamicShadow( 216 "asan-force-dynamic-shadow", 217 cl::desc("Load shadow address into a local variable for each function"), 218 cl::Hidden, cl::init(false)); 219 220 static cl::opt<bool> 221 ClWithIfunc("asan-with-ifunc", 222 cl::desc("Access dynamic shadow through an ifunc global on " 223 "platforms that support this"), 224 cl::Hidden, cl::init(true)); 225 226 static cl::opt<bool> ClWithIfuncSuppressRemat( 227 "asan-with-ifunc-suppress-remat", 228 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 229 "it through inline asm in prologue."), 230 cl::Hidden, cl::init(true)); 231 232 // This flag limits the number of instructions to be instrumented 233 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 234 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 235 // set it to 10000. 236 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 237 "asan-max-ins-per-bb", cl::init(10000), 238 cl::desc("maximal number of instructions to instrument in any given BB"), 239 cl::Hidden); 240 241 // This flag may need to be replaced with -f[no]asan-stack. 242 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 243 cl::Hidden, cl::init(true)); 244 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 245 "asan-max-inline-poisoning-size", 246 cl::desc( 247 "Inline shadow poisoning for blocks up to the given size in bytes."), 248 cl::Hidden, cl::init(64)); 249 250 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 251 cl::desc("Check stack-use-after-return"), 252 cl::Hidden, cl::init(true)); 253 254 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 255 cl::desc("Create redzones for byval " 256 "arguments (extra copy " 257 "required)"), cl::Hidden, 258 cl::init(true)); 259 260 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 261 cl::desc("Check stack-use-after-scope"), 262 cl::Hidden, cl::init(false)); 263 264 // This flag may need to be replaced with -f[no]asan-globals. 265 static cl::opt<bool> ClGlobals("asan-globals", 266 cl::desc("Handle global objects"), cl::Hidden, 267 cl::init(true)); 268 269 static cl::opt<bool> ClInitializers("asan-initialization-order", 270 cl::desc("Handle C++ initializer order"), 271 cl::Hidden, cl::init(true)); 272 273 static cl::opt<bool> ClInvalidPointerPairs( 274 "asan-detect-invalid-pointer-pair", 275 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 276 cl::init(false)); 277 278 static cl::opt<unsigned> ClRealignStack( 279 "asan-realign-stack", 280 cl::desc("Realign stack to the value of this flag (power of two)"), 281 cl::Hidden, cl::init(32)); 282 283 static cl::opt<int> ClInstrumentationWithCallsThreshold( 284 "asan-instrumentation-with-call-threshold", 285 cl::desc( 286 "If the function being instrumented contains more than " 287 "this number of memory accesses, use callbacks instead of " 288 "inline checks (-1 means never use callbacks)."), 289 cl::Hidden, cl::init(7000)); 290 291 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 292 "asan-memory-access-callback-prefix", 293 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 294 cl::init("__asan_")); 295 296 static cl::opt<bool> 297 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 298 cl::desc("instrument dynamic allocas"), 299 cl::Hidden, cl::init(true)); 300 301 static cl::opt<bool> ClSkipPromotableAllocas( 302 "asan-skip-promotable-allocas", 303 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 304 cl::init(true)); 305 306 // These flags allow to change the shadow mapping. 307 // The shadow mapping looks like 308 // Shadow = (Mem >> scale) + offset 309 310 static cl::opt<int> ClMappingScale("asan-mapping-scale", 311 cl::desc("scale of asan shadow mapping"), 312 cl::Hidden, cl::init(0)); 313 314 static cl::opt<unsigned long long> ClMappingOffset( 315 "asan-mapping-offset", 316 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden, 317 cl::init(0)); 318 319 // Optimization flags. Not user visible, used mostly for testing 320 // and benchmarking the tool. 321 322 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 323 cl::Hidden, cl::init(true)); 324 325 static cl::opt<bool> ClOptSameTemp( 326 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 327 cl::Hidden, cl::init(true)); 328 329 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 330 cl::desc("Don't instrument scalar globals"), 331 cl::Hidden, cl::init(true)); 332 333 static cl::opt<bool> ClOptStack( 334 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 335 cl::Hidden, cl::init(false)); 336 337 static cl::opt<bool> ClDynamicAllocaStack( 338 "asan-stack-dynamic-alloca", 339 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 340 cl::init(true)); 341 342 static cl::opt<uint32_t> ClForceExperiment( 343 "asan-force-experiment", 344 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 345 cl::init(0)); 346 347 static cl::opt<bool> 348 ClUsePrivateAlias("asan-use-private-alias", 349 cl::desc("Use private aliases for global variables"), 350 cl::Hidden, cl::init(false)); 351 352 static cl::opt<bool> 353 ClUseOdrIndicator("asan-use-odr-indicator", 354 cl::desc("Use odr indicators to improve ODR reporting"), 355 cl::Hidden, cl::init(false)); 356 357 static cl::opt<bool> 358 ClUseGlobalsGC("asan-globals-live-support", 359 cl::desc("Use linker features to support dead " 360 "code stripping of globals"), 361 cl::Hidden, cl::init(true)); 362 363 // This is on by default even though there is a bug in gold: 364 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 365 static cl::opt<bool> 366 ClWithComdat("asan-with-comdat", 367 cl::desc("Place ASan constructors in comdat sections"), 368 cl::Hidden, cl::init(true)); 369 370 // Debug flags. 371 372 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 373 cl::init(0)); 374 375 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 376 cl::Hidden, cl::init(0)); 377 378 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 379 cl::desc("Debug func")); 380 381 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 382 cl::Hidden, cl::init(-1)); 383 384 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 385 cl::Hidden, cl::init(-1)); 386 387 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 388 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 389 STATISTIC(NumOptimizedAccessesToGlobalVar, 390 "Number of optimized accesses to global vars"); 391 STATISTIC(NumOptimizedAccessesToStackVar, 392 "Number of optimized accesses to stack vars"); 393 394 namespace { 395 396 /// This struct defines the shadow mapping using the rule: 397 /// shadow = (mem >> Scale) ADD-or-OR Offset. 398 /// If InGlobal is true, then 399 /// extern char __asan_shadow[]; 400 /// shadow = (mem >> Scale) + &__asan_shadow 401 struct ShadowMapping { 402 int Scale; 403 uint64_t Offset; 404 bool OrShadowOffset; 405 bool InGlobal; 406 }; 407 408 } // end anonymous namespace 409 410 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 411 bool IsKasan) { 412 bool IsAndroid = TargetTriple.isAndroid(); 413 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 414 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 415 bool IsNetBSD = TargetTriple.isOSNetBSD(); 416 bool IsPS4CPU = TargetTriple.isPS4CPU(); 417 bool IsLinux = TargetTriple.isOSLinux(); 418 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 419 TargetTriple.getArch() == Triple::ppc64le; 420 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 421 bool IsX86 = TargetTriple.getArch() == Triple::x86; 422 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 423 bool IsMIPS32 = TargetTriple.isMIPS32(); 424 bool IsMIPS64 = TargetTriple.isMIPS64(); 425 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 426 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 427 bool IsWindows = TargetTriple.isOSWindows(); 428 bool IsFuchsia = TargetTriple.isOSFuchsia(); 429 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 430 431 ShadowMapping Mapping; 432 433 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 434 if (ClMappingScale.getNumOccurrences() > 0) { 435 Mapping.Scale = ClMappingScale; 436 } 437 438 if (LongSize == 32) { 439 if (IsAndroid) 440 Mapping.Offset = kDynamicShadowSentinel; 441 else if (IsMIPS32) 442 Mapping.Offset = kMIPS32_ShadowOffset32; 443 else if (IsFreeBSD) 444 Mapping.Offset = kFreeBSD_ShadowOffset32; 445 else if (IsNetBSD) 446 Mapping.Offset = kNetBSD_ShadowOffset32; 447 else if (IsIOS) 448 // If we're targeting iOS and x86, the binary is built for iOS simulator. 449 Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32; 450 else if (IsWindows) 451 Mapping.Offset = kWindowsShadowOffset32; 452 else if (IsMyriad) { 453 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 454 (kMyriadMemorySize32 >> Mapping.Scale)); 455 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 456 } 457 else 458 Mapping.Offset = kDefaultShadowOffset32; 459 } else { // LongSize == 64 460 // Fuchsia is always PIE, which means that the beginning of the address 461 // space is always available. 462 if (IsFuchsia) 463 Mapping.Offset = 0; 464 else if (IsPPC64) 465 Mapping.Offset = kPPC64_ShadowOffset64; 466 else if (IsSystemZ) 467 Mapping.Offset = kSystemZ_ShadowOffset64; 468 else if (IsFreeBSD && !IsMIPS64) 469 Mapping.Offset = kFreeBSD_ShadowOffset64; 470 else if (IsNetBSD) { 471 if (IsKasan) 472 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 473 else 474 Mapping.Offset = kNetBSD_ShadowOffset64; 475 } else if (IsPS4CPU) 476 Mapping.Offset = kPS4CPU_ShadowOffset64; 477 else if (IsLinux && IsX86_64) { 478 if (IsKasan) 479 Mapping.Offset = kLinuxKasan_ShadowOffset64; 480 else 481 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 482 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 483 } else if (IsWindows && IsX86_64) { 484 Mapping.Offset = kWindowsShadowOffset64; 485 } else if (IsMIPS64) 486 Mapping.Offset = kMIPS64_ShadowOffset64; 487 else if (IsIOS) 488 // If we're targeting iOS and x86, the binary is built for iOS simulator. 489 // We are using dynamic shadow offset on the 64-bit devices. 490 Mapping.Offset = 491 IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel; 492 else if (IsAArch64) 493 Mapping.Offset = kAArch64_ShadowOffset64; 494 else 495 Mapping.Offset = kDefaultShadowOffset64; 496 } 497 498 if (ClForceDynamicShadow) { 499 Mapping.Offset = kDynamicShadowSentinel; 500 } 501 502 if (ClMappingOffset.getNumOccurrences() > 0) { 503 Mapping.Offset = ClMappingOffset; 504 } 505 506 // OR-ing shadow offset if more efficient (at least on x86) if the offset 507 // is a power of two, but on ppc64 we have to use add since the shadow 508 // offset is not necessary 1/8-th of the address space. On SystemZ, 509 // we could OR the constant in a single instruction, but it's more 510 // efficient to load it once and use indexed addressing. 511 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 512 !(Mapping.Offset & (Mapping.Offset - 1)) && 513 Mapping.Offset != kDynamicShadowSentinel; 514 bool IsAndroidWithIfuncSupport = 515 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 516 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 517 518 return Mapping; 519 } 520 521 static size_t RedzoneSizeForScale(int MappingScale) { 522 // Redzone used for stack and globals is at least 32 bytes. 523 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 524 return std::max(32U, 1U << MappingScale); 525 } 526 527 namespace { 528 529 /// Module analysis for getting various metadata about the module. 530 class ASanGlobalsMetadataWrapperPass : public ModulePass { 531 public: 532 static char ID; 533 534 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 535 initializeASanGlobalsMetadataWrapperPassPass( 536 *PassRegistry::getPassRegistry()); 537 } 538 539 bool runOnModule(Module &M) override { 540 GlobalsMD = GlobalsMetadata(M); 541 return false; 542 } 543 544 StringRef getPassName() const override { 545 return "ASanGlobalsMetadataWrapperPass"; 546 } 547 548 void getAnalysisUsage(AnalysisUsage &AU) const override { 549 AU.setPreservesAll(); 550 } 551 552 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 553 554 private: 555 GlobalsMetadata GlobalsMD; 556 }; 557 558 char ASanGlobalsMetadataWrapperPass::ID = 0; 559 560 /// AddressSanitizer: instrument the code in module to find memory bugs. 561 struct AddressSanitizer { 562 AddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD, 563 bool CompileKernel = false, bool Recover = false, 564 bool UseAfterScope = false) 565 : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(GlobalsMD) { 566 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 567 this->CompileKernel = 568 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 569 570 C = &(M.getContext()); 571 LongSize = M.getDataLayout().getPointerSizeInBits(); 572 IntptrTy = Type::getIntNTy(*C, LongSize); 573 TargetTriple = Triple(M.getTargetTriple()); 574 575 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 576 } 577 578 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 579 uint64_t ArraySize = 1; 580 if (AI.isArrayAllocation()) { 581 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 582 assert(CI && "non-constant array size"); 583 ArraySize = CI->getZExtValue(); 584 } 585 Type *Ty = AI.getAllocatedType(); 586 uint64_t SizeInBytes = 587 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 588 return SizeInBytes * ArraySize; 589 } 590 591 /// Check if we want (and can) handle this alloca. 592 bool isInterestingAlloca(const AllocaInst &AI); 593 594 /// If it is an interesting memory access, return the PointerOperand 595 /// and set IsWrite/Alignment. Otherwise return nullptr. 596 /// MaybeMask is an output parameter for the mask Value, if we're looking at a 597 /// masked load/store. 598 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 599 uint64_t *TypeSize, unsigned *Alignment, 600 Value **MaybeMask = nullptr); 601 602 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 603 bool UseCalls, const DataLayout &DL); 604 void instrumentPointerComparisonOrSubtraction(Instruction *I); 605 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 606 Value *Addr, uint32_t TypeSize, bool IsWrite, 607 Value *SizeArgument, bool UseCalls, uint32_t Exp); 608 void instrumentUnusualSizeOrAlignment(Instruction *I, 609 Instruction *InsertBefore, Value *Addr, 610 uint32_t TypeSize, bool IsWrite, 611 Value *SizeArgument, bool UseCalls, 612 uint32_t Exp); 613 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 614 Value *ShadowValue, uint32_t TypeSize); 615 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 616 bool IsWrite, size_t AccessSizeIndex, 617 Value *SizeArgument, uint32_t Exp); 618 void instrumentMemIntrinsic(MemIntrinsic *MI); 619 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 620 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 621 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 622 void maybeInsertDynamicShadowAtFunctionEntry(Function &F); 623 void markEscapedLocalAllocas(Function &F); 624 625 private: 626 friend struct FunctionStackPoisoner; 627 628 void initializeCallbacks(Module &M); 629 630 bool LooksLikeCodeInBug11395(Instruction *I); 631 bool GlobalIsLinkerInitialized(GlobalVariable *G); 632 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 633 uint64_t TypeSize) const; 634 635 /// Helper to cleanup per-function state. 636 struct FunctionStateRAII { 637 AddressSanitizer *Pass; 638 639 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 640 assert(Pass->ProcessedAllocas.empty() && 641 "last pass forgot to clear cache"); 642 assert(!Pass->LocalDynamicShadow); 643 } 644 645 ~FunctionStateRAII() { 646 Pass->LocalDynamicShadow = nullptr; 647 Pass->ProcessedAllocas.clear(); 648 } 649 }; 650 651 LLVMContext *C; 652 Triple TargetTriple; 653 int LongSize; 654 bool CompileKernel; 655 bool Recover; 656 bool UseAfterScope; 657 Type *IntptrTy; 658 ShadowMapping Mapping; 659 FunctionCallee AsanHandleNoReturnFunc; 660 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 661 Constant *AsanShadowGlobal; 662 663 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 664 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 665 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 666 667 // These arrays is indexed by AccessIsWrite and Experiment. 668 FunctionCallee AsanErrorCallbackSized[2][2]; 669 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 670 671 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 672 InlineAsm *EmptyAsm; 673 Value *LocalDynamicShadow = nullptr; 674 GlobalsMetadata GlobalsMD; 675 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 676 }; 677 678 class AddressSanitizerLegacyPass : public FunctionPass { 679 public: 680 static char ID; 681 682 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 683 bool Recover = false, 684 bool UseAfterScope = false) 685 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 686 UseAfterScope(UseAfterScope) { 687 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 688 } 689 690 StringRef getPassName() const override { 691 return "AddressSanitizerFunctionPass"; 692 } 693 694 void getAnalysisUsage(AnalysisUsage &AU) const override { 695 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 696 AU.addRequired<TargetLibraryInfoWrapperPass>(); 697 } 698 699 bool runOnFunction(Function &F) override { 700 GlobalsMetadata &GlobalsMD = 701 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 702 const TargetLibraryInfo *TLI = 703 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 704 AddressSanitizer ASan(*F.getParent(), GlobalsMD, CompileKernel, Recover, 705 UseAfterScope); 706 return ASan.instrumentFunction(F, TLI); 707 } 708 709 private: 710 bool CompileKernel; 711 bool Recover; 712 bool UseAfterScope; 713 }; 714 715 class ModuleAddressSanitizer { 716 public: 717 ModuleAddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD, 718 bool CompileKernel = false, bool Recover = false, 719 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 720 : GlobalsMD(GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC), 721 // Enable aliases as they should have no downside with ODR indicators. 722 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 723 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 724 // Not a typo: ClWithComdat is almost completely pointless without 725 // ClUseGlobalsGC (because then it only works on modules without 726 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 727 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 728 // argument is designed as workaround. Therefore, disable both 729 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 730 // do globals-gc. 731 UseCtorComdat(UseGlobalsGC && ClWithComdat) { 732 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 733 this->CompileKernel = 734 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 735 736 C = &(M.getContext()); 737 int LongSize = M.getDataLayout().getPointerSizeInBits(); 738 IntptrTy = Type::getIntNTy(*C, LongSize); 739 TargetTriple = Triple(M.getTargetTriple()); 740 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 741 } 742 743 bool instrumentModule(Module &); 744 745 private: 746 void initializeCallbacks(Module &M); 747 748 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 749 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 750 ArrayRef<GlobalVariable *> ExtendedGlobals, 751 ArrayRef<Constant *> MetadataInitializers); 752 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 753 ArrayRef<GlobalVariable *> ExtendedGlobals, 754 ArrayRef<Constant *> MetadataInitializers, 755 const std::string &UniqueModuleId); 756 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 757 ArrayRef<GlobalVariable *> ExtendedGlobals, 758 ArrayRef<Constant *> MetadataInitializers); 759 void 760 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 761 ArrayRef<GlobalVariable *> ExtendedGlobals, 762 ArrayRef<Constant *> MetadataInitializers); 763 764 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 765 StringRef OriginalName); 766 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 767 StringRef InternalSuffix); 768 IRBuilder<> CreateAsanModuleDtor(Module &M); 769 770 bool ShouldInstrumentGlobal(GlobalVariable *G); 771 bool ShouldUseMachOGlobalsSection() const; 772 StringRef getGlobalMetadataSection() const; 773 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 774 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 775 size_t MinRedzoneSizeForGlobal() const { 776 return RedzoneSizeForScale(Mapping.Scale); 777 } 778 int GetAsanVersion(const Module &M) const; 779 780 GlobalsMetadata GlobalsMD; 781 bool CompileKernel; 782 bool Recover; 783 bool UseGlobalsGC; 784 bool UsePrivateAlias; 785 bool UseOdrIndicator; 786 bool UseCtorComdat; 787 Type *IntptrTy; 788 LLVMContext *C; 789 Triple TargetTriple; 790 ShadowMapping Mapping; 791 FunctionCallee AsanPoisonGlobals; 792 FunctionCallee AsanUnpoisonGlobals; 793 FunctionCallee AsanRegisterGlobals; 794 FunctionCallee AsanUnregisterGlobals; 795 FunctionCallee AsanRegisterImageGlobals; 796 FunctionCallee AsanUnregisterImageGlobals; 797 FunctionCallee AsanRegisterElfGlobals; 798 FunctionCallee AsanUnregisterElfGlobals; 799 800 Function *AsanCtorFunction = nullptr; 801 Function *AsanDtorFunction = nullptr; 802 }; 803 804 class ModuleAddressSanitizerLegacyPass : public ModulePass { 805 public: 806 static char ID; 807 808 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 809 bool Recover = false, 810 bool UseGlobalGC = true, 811 bool UseOdrIndicator = false) 812 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 813 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 814 initializeModuleAddressSanitizerLegacyPassPass( 815 *PassRegistry::getPassRegistry()); 816 } 817 818 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 819 820 void getAnalysisUsage(AnalysisUsage &AU) const override { 821 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 822 } 823 824 bool runOnModule(Module &M) override { 825 GlobalsMetadata &GlobalsMD = 826 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 827 ModuleAddressSanitizer ASanModule(M, GlobalsMD, CompileKernel, Recover, 828 UseGlobalGC, UseOdrIndicator); 829 return ASanModule.instrumentModule(M); 830 } 831 832 private: 833 bool CompileKernel; 834 bool Recover; 835 bool UseGlobalGC; 836 bool UseOdrIndicator; 837 }; 838 839 // Stack poisoning does not play well with exception handling. 840 // When an exception is thrown, we essentially bypass the code 841 // that unpoisones the stack. This is why the run-time library has 842 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 843 // stack in the interceptor. This however does not work inside the 844 // actual function which catches the exception. Most likely because the 845 // compiler hoists the load of the shadow value somewhere too high. 846 // This causes asan to report a non-existing bug on 453.povray. 847 // It sounds like an LLVM bug. 848 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 849 Function &F; 850 AddressSanitizer &ASan; 851 DIBuilder DIB; 852 LLVMContext *C; 853 Type *IntptrTy; 854 Type *IntptrPtrTy; 855 ShadowMapping Mapping; 856 857 SmallVector<AllocaInst *, 16> AllocaVec; 858 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 859 SmallVector<Instruction *, 8> RetVec; 860 unsigned StackAlignment; 861 862 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 863 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 864 FunctionCallee AsanSetShadowFunc[0x100] = {}; 865 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 866 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 867 868 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 869 struct AllocaPoisonCall { 870 IntrinsicInst *InsBefore; 871 AllocaInst *AI; 872 uint64_t Size; 873 bool DoPoison; 874 }; 875 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 876 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 877 878 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 879 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 880 AllocaInst *DynamicAllocaLayout = nullptr; 881 IntrinsicInst *LocalEscapeCall = nullptr; 882 883 // Maps Value to an AllocaInst from which the Value is originated. 884 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 885 AllocaForValueMapTy AllocaForValue; 886 887 bool HasNonEmptyInlineAsm = false; 888 bool HasReturnsTwiceCall = false; 889 std::unique_ptr<CallInst> EmptyInlineAsm; 890 891 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 892 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 893 C(ASan.C), IntptrTy(ASan.IntptrTy), 894 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 895 StackAlignment(1 << Mapping.Scale), 896 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 897 898 bool runOnFunction() { 899 if (!ClStack) return false; 900 901 if (ClRedzoneByvalArgs) 902 copyArgsPassedByValToAllocas(); 903 904 // Collect alloca, ret, lifetime instructions etc. 905 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 906 907 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 908 909 initializeCallbacks(*F.getParent()); 910 911 processDynamicAllocas(); 912 processStaticAllocas(); 913 914 if (ClDebugStack) { 915 LLVM_DEBUG(dbgs() << F); 916 } 917 return true; 918 } 919 920 // Arguments marked with the "byval" attribute are implicitly copied without 921 // using an alloca instruction. To produce redzones for those arguments, we 922 // copy them a second time into memory allocated with an alloca instruction. 923 void copyArgsPassedByValToAllocas(); 924 925 // Finds all Alloca instructions and puts 926 // poisoned red zones around all of them. 927 // Then unpoison everything back before the function returns. 928 void processStaticAllocas(); 929 void processDynamicAllocas(); 930 931 void createDynamicAllocasInitStorage(); 932 933 // ----------------------- Visitors. 934 /// Collect all Ret instructions. 935 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 936 937 /// Collect all Resume instructions. 938 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 939 940 /// Collect all CatchReturnInst instructions. 941 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 942 943 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 944 Value *SavedStack) { 945 IRBuilder<> IRB(InstBefore); 946 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 947 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 948 // need to adjust extracted SP to compute the address of the most recent 949 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 950 // this purpose. 951 if (!isa<ReturnInst>(InstBefore)) { 952 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 953 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 954 {IntptrTy}); 955 956 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 957 958 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 959 DynamicAreaOffset); 960 } 961 962 IRB.CreateCall( 963 AsanAllocasUnpoisonFunc, 964 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 965 } 966 967 // Unpoison dynamic allocas redzones. 968 void unpoisonDynamicAllocas() { 969 for (auto &Ret : RetVec) 970 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 971 972 for (auto &StackRestoreInst : StackRestoreVec) 973 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 974 StackRestoreInst->getOperand(0)); 975 } 976 977 // Deploy and poison redzones around dynamic alloca call. To do this, we 978 // should replace this call with another one with changed parameters and 979 // replace all its uses with new address, so 980 // addr = alloca type, old_size, align 981 // is replaced by 982 // new_size = (old_size + additional_size) * sizeof(type) 983 // tmp = alloca i8, new_size, max(align, 32) 984 // addr = tmp + 32 (first 32 bytes are for the left redzone). 985 // Additional_size is added to make new memory allocation contain not only 986 // requested memory, but also left, partial and right redzones. 987 void handleDynamicAllocaCall(AllocaInst *AI); 988 989 /// Collect Alloca instructions we want (and can) handle. 990 void visitAllocaInst(AllocaInst &AI) { 991 if (!ASan.isInterestingAlloca(AI)) { 992 if (AI.isStaticAlloca()) { 993 // Skip over allocas that are present *before* the first instrumented 994 // alloca, we don't want to move those around. 995 if (AllocaVec.empty()) 996 return; 997 998 StaticAllocasToMoveUp.push_back(&AI); 999 } 1000 return; 1001 } 1002 1003 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1004 if (!AI.isStaticAlloca()) 1005 DynamicAllocaVec.push_back(&AI); 1006 else 1007 AllocaVec.push_back(&AI); 1008 } 1009 1010 /// Collect lifetime intrinsic calls to check for use-after-scope 1011 /// errors. 1012 void visitIntrinsicInst(IntrinsicInst &II) { 1013 Intrinsic::ID ID = II.getIntrinsicID(); 1014 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1015 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1016 if (!ASan.UseAfterScope) 1017 return; 1018 if (!II.isLifetimeStartOrEnd()) 1019 return; 1020 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1021 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 1022 // If size argument is undefined, don't do anything. 1023 if (Size->isMinusOne()) return; 1024 // Check that size doesn't saturate uint64_t and can 1025 // be stored in IntptrTy. 1026 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1027 if (SizeValue == ~0ULL || 1028 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1029 return; 1030 // Find alloca instruction that corresponds to llvm.lifetime argument. 1031 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); 1032 if (!AI || !ASan.isInterestingAlloca(*AI)) 1033 return; 1034 bool DoPoison = (ID == Intrinsic::lifetime_end); 1035 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1036 if (AI->isStaticAlloca()) 1037 StaticAllocaPoisonCallVec.push_back(APC); 1038 else if (ClInstrumentDynamicAllocas) 1039 DynamicAllocaPoisonCallVec.push_back(APC); 1040 } 1041 1042 void visitCallSite(CallSite CS) { 1043 Instruction *I = CS.getInstruction(); 1044 if (CallInst *CI = dyn_cast<CallInst>(I)) { 1045 HasNonEmptyInlineAsm |= CI->isInlineAsm() && 1046 !CI->isIdenticalTo(EmptyInlineAsm.get()) && 1047 I != ASan.LocalDynamicShadow; 1048 HasReturnsTwiceCall |= CI->canReturnTwice(); 1049 } 1050 } 1051 1052 // ---------------------- Helpers. 1053 void initializeCallbacks(Module &M); 1054 1055 /// Finds alloca where the value comes from. 1056 AllocaInst *findAllocaForValue(Value *V); 1057 1058 // Copies bytes from ShadowBytes into shadow memory for indexes where 1059 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1060 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1061 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1062 IRBuilder<> &IRB, Value *ShadowBase); 1063 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1064 size_t Begin, size_t End, IRBuilder<> &IRB, 1065 Value *ShadowBase); 1066 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1067 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1068 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1069 1070 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1071 1072 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1073 bool Dynamic); 1074 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1075 Instruction *ThenTerm, Value *ValueIfFalse); 1076 }; 1077 1078 } // end anonymous namespace 1079 1080 void LocationMetadata::parse(MDNode *MDN) { 1081 assert(MDN->getNumOperands() == 3); 1082 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1083 Filename = DIFilename->getString(); 1084 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1085 ColumnNo = 1086 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1087 } 1088 1089 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1090 // we want to sanitize instead and reading this metadata on each pass over a 1091 // function instead of reading module level metadata at first. 1092 GlobalsMetadata::GlobalsMetadata(Module &M) { 1093 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1094 if (!Globals) 1095 return; 1096 for (auto MDN : Globals->operands()) { 1097 // Metadata node contains the global and the fields of "Entry". 1098 assert(MDN->getNumOperands() == 5); 1099 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1100 // The optimizer may optimize away a global entirely. 1101 if (!V) 1102 continue; 1103 auto *StrippedV = V->stripPointerCasts(); 1104 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1105 if (!GV) 1106 continue; 1107 // We can already have an entry for GV if it was merged with another 1108 // global. 1109 Entry &E = Entries[GV]; 1110 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1111 E.SourceLoc.parse(Loc); 1112 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1113 E.Name = Name->getString(); 1114 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1115 E.IsDynInit |= IsDynInit->isOne(); 1116 ConstantInt *IsBlacklisted = 1117 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1118 E.IsBlacklisted |= IsBlacklisted->isOne(); 1119 } 1120 } 1121 1122 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1123 1124 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1125 ModuleAnalysisManager &AM) { 1126 return GlobalsMetadata(M); 1127 } 1128 1129 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1130 bool UseAfterScope) 1131 : CompileKernel(CompileKernel), Recover(Recover), 1132 UseAfterScope(UseAfterScope) {} 1133 1134 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1135 AnalysisManager<Function> &AM) { 1136 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1137 auto &MAM = MAMProxy.getManager(); 1138 Module &M = *F.getParent(); 1139 if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1140 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1141 AddressSanitizer Sanitizer(M, *R, CompileKernel, Recover, UseAfterScope); 1142 if (Sanitizer.instrumentFunction(F, TLI)) 1143 return PreservedAnalyses::none(); 1144 return PreservedAnalyses::all(); 1145 } 1146 1147 report_fatal_error( 1148 "The ASanGlobalsMetadataAnalysis is required to run before " 1149 "AddressSanitizer can run"); 1150 return PreservedAnalyses::all(); 1151 } 1152 1153 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1154 bool Recover, 1155 bool UseGlobalGC, 1156 bool UseOdrIndicator) 1157 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1158 UseOdrIndicator(UseOdrIndicator) {} 1159 1160 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1161 AnalysisManager<Module> &AM) { 1162 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1163 ModuleAddressSanitizer Sanitizer(M, GlobalsMD, CompileKernel, Recover, 1164 UseGlobalGC, UseOdrIndicator); 1165 if (Sanitizer.instrumentModule(M)) 1166 return PreservedAnalyses::none(); 1167 return PreservedAnalyses::all(); 1168 } 1169 1170 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1171 "Read metadata to mark which globals should be instrumented " 1172 "when running ASan.", 1173 false, true) 1174 1175 char AddressSanitizerLegacyPass::ID = 0; 1176 1177 INITIALIZE_PASS_BEGIN( 1178 AddressSanitizerLegacyPass, "asan", 1179 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1180 false) 1181 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1182 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1183 INITIALIZE_PASS_END( 1184 AddressSanitizerLegacyPass, "asan", 1185 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1186 false) 1187 1188 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1189 bool Recover, 1190 bool UseAfterScope) { 1191 assert(!CompileKernel || Recover); 1192 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1193 } 1194 1195 char ModuleAddressSanitizerLegacyPass::ID = 0; 1196 1197 INITIALIZE_PASS( 1198 ModuleAddressSanitizerLegacyPass, "asan-module", 1199 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1200 "ModulePass", 1201 false, false) 1202 1203 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1204 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1205 assert(!CompileKernel || Recover); 1206 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1207 UseGlobalsGC, UseOdrIndicator); 1208 } 1209 1210 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1211 size_t Res = countTrailingZeros(TypeSize / 8); 1212 assert(Res < kNumberOfAccessSizes); 1213 return Res; 1214 } 1215 1216 /// Create a global describing a source location. 1217 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1218 LocationMetadata MD) { 1219 Constant *LocData[] = { 1220 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1221 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1222 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1223 }; 1224 auto LocStruct = ConstantStruct::getAnon(LocData); 1225 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1226 GlobalValue::PrivateLinkage, LocStruct, 1227 kAsanGenPrefix); 1228 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1229 return GV; 1230 } 1231 1232 /// Check if \p G has been created by a trusted compiler pass. 1233 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1234 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1235 if (G->getName().startswith("llvm.")) 1236 return true; 1237 1238 // Do not instrument asan globals. 1239 if (G->getName().startswith(kAsanGenPrefix) || 1240 G->getName().startswith(kSanCovGenPrefix) || 1241 G->getName().startswith(kODRGenPrefix)) 1242 return true; 1243 1244 // Do not instrument gcov counter arrays. 1245 if (G->getName() == "__llvm_gcov_ctr") 1246 return true; 1247 1248 return false; 1249 } 1250 1251 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1252 // Shadow >> scale 1253 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1254 if (Mapping.Offset == 0) return Shadow; 1255 // (Shadow >> scale) | offset 1256 Value *ShadowBase; 1257 if (LocalDynamicShadow) 1258 ShadowBase = LocalDynamicShadow; 1259 else 1260 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1261 if (Mapping.OrShadowOffset) 1262 return IRB.CreateOr(Shadow, ShadowBase); 1263 else 1264 return IRB.CreateAdd(Shadow, ShadowBase); 1265 } 1266 1267 // Instrument memset/memmove/memcpy 1268 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1269 IRBuilder<> IRB(MI); 1270 if (isa<MemTransferInst>(MI)) { 1271 IRB.CreateCall( 1272 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1273 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1274 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1275 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1276 } else if (isa<MemSetInst>(MI)) { 1277 IRB.CreateCall( 1278 AsanMemset, 1279 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1280 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1281 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1282 } 1283 MI->eraseFromParent(); 1284 } 1285 1286 /// Check if we want (and can) handle this alloca. 1287 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1288 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1289 1290 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1291 return PreviouslySeenAllocaInfo->getSecond(); 1292 1293 bool IsInteresting = 1294 (AI.getAllocatedType()->isSized() && 1295 // alloca() may be called with 0 size, ignore it. 1296 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1297 // We are only interested in allocas not promotable to registers. 1298 // Promotable allocas are common under -O0. 1299 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1300 // inalloca allocas are not treated as static, and we don't want 1301 // dynamic alloca instrumentation for them as well. 1302 !AI.isUsedWithInAlloca() && 1303 // swifterror allocas are register promoted by ISel 1304 !AI.isSwiftError()); 1305 1306 ProcessedAllocas[&AI] = IsInteresting; 1307 return IsInteresting; 1308 } 1309 1310 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 1311 bool *IsWrite, 1312 uint64_t *TypeSize, 1313 unsigned *Alignment, 1314 Value **MaybeMask) { 1315 // Skip memory accesses inserted by another instrumentation. 1316 if (I->getMetadata("nosanitize")) return nullptr; 1317 1318 // Do not instrument the load fetching the dynamic shadow address. 1319 if (LocalDynamicShadow == I) 1320 return nullptr; 1321 1322 Value *PtrOperand = nullptr; 1323 const DataLayout &DL = I->getModule()->getDataLayout(); 1324 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1325 if (!ClInstrumentReads) return nullptr; 1326 *IsWrite = false; 1327 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 1328 *Alignment = LI->getAlignment(); 1329 PtrOperand = LI->getPointerOperand(); 1330 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1331 if (!ClInstrumentWrites) return nullptr; 1332 *IsWrite = true; 1333 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 1334 *Alignment = SI->getAlignment(); 1335 PtrOperand = SI->getPointerOperand(); 1336 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1337 if (!ClInstrumentAtomics) return nullptr; 1338 *IsWrite = true; 1339 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 1340 *Alignment = 0; 1341 PtrOperand = RMW->getPointerOperand(); 1342 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1343 if (!ClInstrumentAtomics) return nullptr; 1344 *IsWrite = true; 1345 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 1346 *Alignment = 0; 1347 PtrOperand = XCHG->getPointerOperand(); 1348 } else if (auto CI = dyn_cast<CallInst>(I)) { 1349 auto *F = dyn_cast<Function>(CI->getCalledValue()); 1350 if (F && (F->getName().startswith("llvm.masked.load.") || 1351 F->getName().startswith("llvm.masked.store."))) { 1352 unsigned OpOffset = 0; 1353 if (F->getName().startswith("llvm.masked.store.")) { 1354 if (!ClInstrumentWrites) 1355 return nullptr; 1356 // Masked store has an initial operand for the value. 1357 OpOffset = 1; 1358 *IsWrite = true; 1359 } else { 1360 if (!ClInstrumentReads) 1361 return nullptr; 1362 *IsWrite = false; 1363 } 1364 1365 auto BasePtr = CI->getOperand(0 + OpOffset); 1366 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1367 *TypeSize = DL.getTypeStoreSizeInBits(Ty); 1368 if (auto AlignmentConstant = 1369 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1370 *Alignment = (unsigned)AlignmentConstant->getZExtValue(); 1371 else 1372 *Alignment = 1; // No alignment guarantees. We probably got Undef 1373 if (MaybeMask) 1374 *MaybeMask = CI->getOperand(2 + OpOffset); 1375 PtrOperand = BasePtr; 1376 } 1377 } 1378 1379 if (PtrOperand) { 1380 // Do not instrument acesses from different address spaces; we cannot deal 1381 // with them. 1382 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); 1383 if (PtrTy->getPointerAddressSpace() != 0) 1384 return nullptr; 1385 1386 // Ignore swifterror addresses. 1387 // swifterror memory addresses are mem2reg promoted by instruction 1388 // selection. As such they cannot have regular uses like an instrumentation 1389 // function and it makes no sense to track them as memory. 1390 if (PtrOperand->isSwiftError()) 1391 return nullptr; 1392 } 1393 1394 // Treat memory accesses to promotable allocas as non-interesting since they 1395 // will not cause memory violations. This greatly speeds up the instrumented 1396 // executable at -O0. 1397 if (ClSkipPromotableAllocas) 1398 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 1399 return isInterestingAlloca(*AI) ? AI : nullptr; 1400 1401 return PtrOperand; 1402 } 1403 1404 static bool isPointerOperand(Value *V) { 1405 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1406 } 1407 1408 // This is a rough heuristic; it may cause both false positives and 1409 // false negatives. The proper implementation requires cooperation with 1410 // the frontend. 1411 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { 1412 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1413 if (!Cmp->isRelational()) return false; 1414 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1415 if (BO->getOpcode() != Instruction::Sub) return false; 1416 } else { 1417 return false; 1418 } 1419 return isPointerOperand(I->getOperand(0)) && 1420 isPointerOperand(I->getOperand(1)); 1421 } 1422 1423 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1424 // If a global variable does not have dynamic initialization we don't 1425 // have to instrument it. However, if a global does not have initializer 1426 // at all, we assume it has dynamic initializer (in other TU). 1427 // 1428 // FIXME: Metadata should be attched directly to the global directly instead 1429 // of being added to llvm.asan.globals. 1430 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1431 } 1432 1433 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1434 Instruction *I) { 1435 IRBuilder<> IRB(I); 1436 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1437 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1438 for (Value *&i : Param) { 1439 if (i->getType()->isPointerTy()) 1440 i = IRB.CreatePointerCast(i, IntptrTy); 1441 } 1442 IRB.CreateCall(F, Param); 1443 } 1444 1445 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1446 Instruction *InsertBefore, Value *Addr, 1447 unsigned Alignment, unsigned Granularity, 1448 uint32_t TypeSize, bool IsWrite, 1449 Value *SizeArgument, bool UseCalls, 1450 uint32_t Exp) { 1451 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1452 // if the data is properly aligned. 1453 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1454 TypeSize == 128) && 1455 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1456 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1457 nullptr, UseCalls, Exp); 1458 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1459 IsWrite, nullptr, UseCalls, Exp); 1460 } 1461 1462 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1463 const DataLayout &DL, Type *IntptrTy, 1464 Value *Mask, Instruction *I, 1465 Value *Addr, unsigned Alignment, 1466 unsigned Granularity, uint32_t TypeSize, 1467 bool IsWrite, Value *SizeArgument, 1468 bool UseCalls, uint32_t Exp) { 1469 auto *VTy = cast<PointerType>(Addr->getType())->getElementType(); 1470 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1471 unsigned Num = VTy->getVectorNumElements(); 1472 auto Zero = ConstantInt::get(IntptrTy, 0); 1473 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1474 Value *InstrumentedAddress = nullptr; 1475 Instruction *InsertBefore = I; 1476 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1477 // dyn_cast as we might get UndefValue 1478 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1479 if (Masked->isZero()) 1480 // Mask is constant false, so no instrumentation needed. 1481 continue; 1482 // If we have a true or undef value, fall through to doInstrumentAddress 1483 // with InsertBefore == I 1484 } 1485 } else { 1486 IRBuilder<> IRB(I); 1487 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1488 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1489 InsertBefore = ThenTerm; 1490 } 1491 1492 IRBuilder<> IRB(InsertBefore); 1493 InstrumentedAddress = 1494 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1495 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1496 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1497 UseCalls, Exp); 1498 } 1499 } 1500 1501 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1502 Instruction *I, bool UseCalls, 1503 const DataLayout &DL) { 1504 bool IsWrite = false; 1505 unsigned Alignment = 0; 1506 uint64_t TypeSize = 0; 1507 Value *MaybeMask = nullptr; 1508 Value *Addr = 1509 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); 1510 assert(Addr); 1511 1512 // Optimization experiments. 1513 // The experiments can be used to evaluate potential optimizations that remove 1514 // instrumentation (assess false negatives). Instead of completely removing 1515 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1516 // experiments that want to remove instrumentation of this instruction). 1517 // If Exp is non-zero, this pass will emit special calls into runtime 1518 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1519 // make runtime terminate the program in a special way (with a different 1520 // exit status). Then you run the new compiler on a buggy corpus, collect 1521 // the special terminations (ideally, you don't see them at all -- no false 1522 // negatives) and make the decision on the optimization. 1523 uint32_t Exp = ClForceExperiment; 1524 1525 if (ClOpt && ClOptGlobals) { 1526 // If initialization order checking is disabled, a simple access to a 1527 // dynamically initialized global is always valid. 1528 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1529 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1530 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1531 NumOptimizedAccessesToGlobalVar++; 1532 return; 1533 } 1534 } 1535 1536 if (ClOpt && ClOptStack) { 1537 // A direct inbounds access to a stack variable is always valid. 1538 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1539 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1540 NumOptimizedAccessesToStackVar++; 1541 return; 1542 } 1543 } 1544 1545 if (IsWrite) 1546 NumInstrumentedWrites++; 1547 else 1548 NumInstrumentedReads++; 1549 1550 unsigned Granularity = 1 << Mapping.Scale; 1551 if (MaybeMask) { 1552 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr, 1553 Alignment, Granularity, TypeSize, IsWrite, 1554 nullptr, UseCalls, Exp); 1555 } else { 1556 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize, 1557 IsWrite, nullptr, UseCalls, Exp); 1558 } 1559 } 1560 1561 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1562 Value *Addr, bool IsWrite, 1563 size_t AccessSizeIndex, 1564 Value *SizeArgument, 1565 uint32_t Exp) { 1566 IRBuilder<> IRB(InsertBefore); 1567 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1568 CallInst *Call = nullptr; 1569 if (SizeArgument) { 1570 if (Exp == 0) 1571 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1572 {Addr, SizeArgument}); 1573 else 1574 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1575 {Addr, SizeArgument, ExpVal}); 1576 } else { 1577 if (Exp == 0) 1578 Call = 1579 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1580 else 1581 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1582 {Addr, ExpVal}); 1583 } 1584 1585 // We don't do Call->setDoesNotReturn() because the BB already has 1586 // UnreachableInst at the end. 1587 // This EmptyAsm is required to avoid callback merge. 1588 IRB.CreateCall(EmptyAsm, {}); 1589 return Call; 1590 } 1591 1592 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1593 Value *ShadowValue, 1594 uint32_t TypeSize) { 1595 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1596 // Addr & (Granularity - 1) 1597 Value *LastAccessedByte = 1598 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1599 // (Addr & (Granularity - 1)) + size - 1 1600 if (TypeSize / 8 > 1) 1601 LastAccessedByte = IRB.CreateAdd( 1602 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1603 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1604 LastAccessedByte = 1605 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1606 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1607 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1608 } 1609 1610 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1611 Instruction *InsertBefore, Value *Addr, 1612 uint32_t TypeSize, bool IsWrite, 1613 Value *SizeArgument, bool UseCalls, 1614 uint32_t Exp) { 1615 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1616 1617 IRBuilder<> IRB(InsertBefore); 1618 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1619 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1620 1621 if (UseCalls) { 1622 if (Exp == 0) 1623 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1624 AddrLong); 1625 else 1626 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1627 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1628 return; 1629 } 1630 1631 if (IsMyriad) { 1632 // Strip the cache bit and do range check. 1633 // AddrLong &= ~kMyriadCacheBitMask32 1634 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1635 // Tag = AddrLong >> kMyriadTagShift 1636 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1637 // Tag == kMyriadDDRTag 1638 Value *TagCheck = 1639 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1640 1641 Instruction *TagCheckTerm = 1642 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1643 MDBuilder(*C).createBranchWeights(1, 100000)); 1644 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1645 IRB.SetInsertPoint(TagCheckTerm); 1646 InsertBefore = TagCheckTerm; 1647 } 1648 1649 Type *ShadowTy = 1650 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1651 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1652 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1653 Value *CmpVal = Constant::getNullValue(ShadowTy); 1654 Value *ShadowValue = 1655 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1656 1657 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1658 size_t Granularity = 1ULL << Mapping.Scale; 1659 Instruction *CrashTerm = nullptr; 1660 1661 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1662 // We use branch weights for the slow path check, to indicate that the slow 1663 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1664 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1665 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1666 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1667 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1668 IRB.SetInsertPoint(CheckTerm); 1669 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1670 if (Recover) { 1671 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1672 } else { 1673 BasicBlock *CrashBlock = 1674 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1675 CrashTerm = new UnreachableInst(*C, CrashBlock); 1676 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1677 ReplaceInstWithInst(CheckTerm, NewTerm); 1678 } 1679 } else { 1680 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1681 } 1682 1683 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1684 AccessSizeIndex, SizeArgument, Exp); 1685 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1686 } 1687 1688 // Instrument unusual size or unusual alignment. 1689 // We can not do it with a single check, so we do 1-byte check for the first 1690 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1691 // to report the actual access size. 1692 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1693 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1694 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1695 IRBuilder<> IRB(InsertBefore); 1696 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1697 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1698 if (UseCalls) { 1699 if (Exp == 0) 1700 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1701 {AddrLong, Size}); 1702 else 1703 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1704 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1705 } else { 1706 Value *LastByte = IRB.CreateIntToPtr( 1707 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1708 Addr->getType()); 1709 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1710 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1711 } 1712 } 1713 1714 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1715 GlobalValue *ModuleName) { 1716 // Set up the arguments to our poison/unpoison functions. 1717 IRBuilder<> IRB(&GlobalInit.front(), 1718 GlobalInit.front().getFirstInsertionPt()); 1719 1720 // Add a call to poison all external globals before the given function starts. 1721 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1722 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1723 1724 // Add calls to unpoison all globals before each return instruction. 1725 for (auto &BB : GlobalInit.getBasicBlockList()) 1726 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1727 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1728 } 1729 1730 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1731 Module &M, GlobalValue *ModuleName) { 1732 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1733 if (!GV) 1734 return; 1735 1736 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1737 if (!CA) 1738 return; 1739 1740 for (Use &OP : CA->operands()) { 1741 if (isa<ConstantAggregateZero>(OP)) continue; 1742 ConstantStruct *CS = cast<ConstantStruct>(OP); 1743 1744 // Must have a function or null ptr. 1745 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1746 if (F->getName() == kAsanModuleCtorName) continue; 1747 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1748 // Don't instrument CTORs that will run before asan.module_ctor. 1749 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; 1750 poisonOneInitializer(*F, ModuleName); 1751 } 1752 } 1753 } 1754 1755 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) { 1756 Type *Ty = G->getValueType(); 1757 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1758 1759 // FIXME: Metadata should be attched directly to the global directly instead 1760 // of being added to llvm.asan.globals. 1761 if (GlobalsMD.get(G).IsBlacklisted) return false; 1762 if (!Ty->isSized()) return false; 1763 if (!G->hasInitializer()) return false; 1764 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1765 // Two problems with thread-locals: 1766 // - The address of the main thread's copy can't be computed at link-time. 1767 // - Need to poison all copies, not just the main thread's one. 1768 if (G->isThreadLocal()) return false; 1769 // For now, just ignore this Global if the alignment is large. 1770 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1771 1772 // For non-COFF targets, only instrument globals known to be defined by this 1773 // TU. 1774 // FIXME: We can instrument comdat globals on ELF if we are using the 1775 // GC-friendly metadata scheme. 1776 if (!TargetTriple.isOSBinFormatCOFF()) { 1777 if (!G->hasExactDefinition() || G->hasComdat()) 1778 return false; 1779 } else { 1780 // On COFF, don't instrument non-ODR linkages. 1781 if (G->isInterposable()) 1782 return false; 1783 } 1784 1785 // If a comdat is present, it must have a selection kind that implies ODR 1786 // semantics: no duplicates, any, or exact match. 1787 if (Comdat *C = G->getComdat()) { 1788 switch (C->getSelectionKind()) { 1789 case Comdat::Any: 1790 case Comdat::ExactMatch: 1791 case Comdat::NoDuplicates: 1792 break; 1793 case Comdat::Largest: 1794 case Comdat::SameSize: 1795 return false; 1796 } 1797 } 1798 1799 if (G->hasSection()) { 1800 StringRef Section = G->getSection(); 1801 1802 // Globals from llvm.metadata aren't emitted, do not instrument them. 1803 if (Section == "llvm.metadata") return false; 1804 // Do not instrument globals from special LLVM sections. 1805 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1806 1807 // Do not instrument function pointers to initialization and termination 1808 // routines: dynamic linker will not properly handle redzones. 1809 if (Section.startswith(".preinit_array") || 1810 Section.startswith(".init_array") || 1811 Section.startswith(".fini_array")) { 1812 return false; 1813 } 1814 1815 // On COFF, if the section name contains '$', it is highly likely that the 1816 // user is using section sorting to create an array of globals similar to 1817 // the way initialization callbacks are registered in .init_array and 1818 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1819 // to such globals is counterproductive, because the intent is that they 1820 // will form an array, and out-of-bounds accesses are expected. 1821 // See https://github.com/google/sanitizers/issues/305 1822 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1823 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1824 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1825 << *G << "\n"); 1826 return false; 1827 } 1828 1829 if (TargetTriple.isOSBinFormatMachO()) { 1830 StringRef ParsedSegment, ParsedSection; 1831 unsigned TAA = 0, StubSize = 0; 1832 bool TAAParsed; 1833 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1834 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1835 assert(ErrorCode.empty() && "Invalid section specifier."); 1836 1837 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1838 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1839 // them. 1840 if (ParsedSegment == "__OBJC" || 1841 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1842 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1843 return false; 1844 } 1845 // See https://github.com/google/sanitizers/issues/32 1846 // Constant CFString instances are compiled in the following way: 1847 // -- the string buffer is emitted into 1848 // __TEXT,__cstring,cstring_literals 1849 // -- the constant NSConstantString structure referencing that buffer 1850 // is placed into __DATA,__cfstring 1851 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1852 // Moreover, it causes the linker to crash on OS X 10.7 1853 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1854 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1855 return false; 1856 } 1857 // The linker merges the contents of cstring_literals and removes the 1858 // trailing zeroes. 1859 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1860 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1861 return false; 1862 } 1863 } 1864 } 1865 1866 return true; 1867 } 1868 1869 // On Mach-O platforms, we emit global metadata in a separate section of the 1870 // binary in order to allow the linker to properly dead strip. This is only 1871 // supported on recent versions of ld64. 1872 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1873 if (!TargetTriple.isOSBinFormatMachO()) 1874 return false; 1875 1876 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1877 return true; 1878 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1879 return true; 1880 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1881 return true; 1882 1883 return false; 1884 } 1885 1886 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1887 switch (TargetTriple.getObjectFormat()) { 1888 case Triple::COFF: return ".ASAN$GL"; 1889 case Triple::ELF: return "asan_globals"; 1890 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1891 default: break; 1892 } 1893 llvm_unreachable("unsupported object format"); 1894 } 1895 1896 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1897 IRBuilder<> IRB(*C); 1898 1899 // Declare our poisoning and unpoisoning functions. 1900 AsanPoisonGlobals = 1901 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1902 AsanUnpoisonGlobals = 1903 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1904 1905 // Declare functions that register/unregister globals. 1906 AsanRegisterGlobals = M.getOrInsertFunction( 1907 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1908 AsanUnregisterGlobals = M.getOrInsertFunction( 1909 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1910 1911 // Declare the functions that find globals in a shared object and then invoke 1912 // the (un)register function on them. 1913 AsanRegisterImageGlobals = M.getOrInsertFunction( 1914 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1915 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1916 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1917 1918 AsanRegisterElfGlobals = 1919 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1920 IntptrTy, IntptrTy, IntptrTy); 1921 AsanUnregisterElfGlobals = 1922 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1923 IntptrTy, IntptrTy, IntptrTy); 1924 } 1925 1926 // Put the metadata and the instrumented global in the same group. This ensures 1927 // that the metadata is discarded if the instrumented global is discarded. 1928 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 1929 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1930 Module &M = *G->getParent(); 1931 Comdat *C = G->getComdat(); 1932 if (!C) { 1933 if (!G->hasName()) { 1934 // If G is unnamed, it must be internal. Give it an artificial name 1935 // so we can put it in a comdat. 1936 assert(G->hasLocalLinkage()); 1937 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1938 } 1939 1940 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 1941 std::string Name = G->getName(); 1942 Name += InternalSuffix; 1943 C = M.getOrInsertComdat(Name); 1944 } else { 1945 C = M.getOrInsertComdat(G->getName()); 1946 } 1947 1948 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 1949 // linkage to internal linkage so that a symbol table entry is emitted. This 1950 // is necessary in order to create the comdat group. 1951 if (TargetTriple.isOSBinFormatCOFF()) { 1952 C->setSelectionKind(Comdat::NoDuplicates); 1953 if (G->hasPrivateLinkage()) 1954 G->setLinkage(GlobalValue::InternalLinkage); 1955 } 1956 G->setComdat(C); 1957 } 1958 1959 assert(G->hasComdat()); 1960 Metadata->setComdat(G->getComdat()); 1961 } 1962 1963 // Create a separate metadata global and put it in the appropriate ASan 1964 // global registration section. 1965 GlobalVariable * 1966 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 1967 StringRef OriginalName) { 1968 auto Linkage = TargetTriple.isOSBinFormatMachO() 1969 ? GlobalVariable::InternalLinkage 1970 : GlobalVariable::PrivateLinkage; 1971 GlobalVariable *Metadata = new GlobalVariable( 1972 M, Initializer->getType(), false, Linkage, Initializer, 1973 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 1974 Metadata->setSection(getGlobalMetadataSection()); 1975 return Metadata; 1976 } 1977 1978 IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 1979 AsanDtorFunction = 1980 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 1981 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 1982 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 1983 1984 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB)); 1985 } 1986 1987 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 1988 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1989 ArrayRef<Constant *> MetadataInitializers) { 1990 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1991 auto &DL = M.getDataLayout(); 1992 1993 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 1994 Constant *Initializer = MetadataInitializers[i]; 1995 GlobalVariable *G = ExtendedGlobals[i]; 1996 GlobalVariable *Metadata = 1997 CreateMetadataGlobal(M, Initializer, G->getName()); 1998 1999 // The MSVC linker always inserts padding when linking incrementally. We 2000 // cope with that by aligning each struct to its size, which must be a power 2001 // of two. 2002 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2003 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2004 "global metadata will not be padded appropriately"); 2005 Metadata->setAlignment(SizeOfGlobalStruct); 2006 2007 SetComdatForGlobalMetadata(G, Metadata, ""); 2008 } 2009 } 2010 2011 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2012 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2013 ArrayRef<Constant *> MetadataInitializers, 2014 const std::string &UniqueModuleId) { 2015 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2016 2017 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2018 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2019 GlobalVariable *G = ExtendedGlobals[i]; 2020 GlobalVariable *Metadata = 2021 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2022 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2023 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2024 MetadataGlobals[i] = Metadata; 2025 2026 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2027 } 2028 2029 // Update llvm.compiler.used, adding the new metadata globals. This is 2030 // needed so that during LTO these variables stay alive. 2031 if (!MetadataGlobals.empty()) 2032 appendToCompilerUsed(M, MetadataGlobals); 2033 2034 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2035 // to look up the loaded image that contains it. Second, we can store in it 2036 // whether registration has already occurred, to prevent duplicate 2037 // registration. 2038 // 2039 // Common linkage ensures that there is only one global per shared library. 2040 GlobalVariable *RegisteredFlag = new GlobalVariable( 2041 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2042 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2043 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2044 2045 // Create start and stop symbols. 2046 GlobalVariable *StartELFMetadata = new GlobalVariable( 2047 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2048 "__start_" + getGlobalMetadataSection()); 2049 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2050 GlobalVariable *StopELFMetadata = new GlobalVariable( 2051 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2052 "__stop_" + getGlobalMetadataSection()); 2053 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2054 2055 // Create a call to register the globals with the runtime. 2056 IRB.CreateCall(AsanRegisterElfGlobals, 2057 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2058 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2059 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2060 2061 // We also need to unregister globals at the end, e.g., when a shared library 2062 // gets closed. 2063 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2064 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2065 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2066 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2067 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2068 } 2069 2070 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2071 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2072 ArrayRef<Constant *> MetadataInitializers) { 2073 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2074 2075 // On recent Mach-O platforms, use a structure which binds the liveness of 2076 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2077 // created to be added to llvm.compiler.used 2078 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2079 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2080 2081 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2082 Constant *Initializer = MetadataInitializers[i]; 2083 GlobalVariable *G = ExtendedGlobals[i]; 2084 GlobalVariable *Metadata = 2085 CreateMetadataGlobal(M, Initializer, G->getName()); 2086 2087 // On recent Mach-O platforms, we emit the global metadata in a way that 2088 // allows the linker to properly strip dead globals. 2089 auto LivenessBinder = 2090 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2091 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2092 GlobalVariable *Liveness = new GlobalVariable( 2093 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2094 Twine("__asan_binder_") + G->getName()); 2095 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2096 LivenessGlobals[i] = Liveness; 2097 } 2098 2099 // Update llvm.compiler.used, adding the new liveness globals. This is 2100 // needed so that during LTO these variables stay alive. The alternative 2101 // would be to have the linker handling the LTO symbols, but libLTO 2102 // current API does not expose access to the section for each symbol. 2103 if (!LivenessGlobals.empty()) 2104 appendToCompilerUsed(M, LivenessGlobals); 2105 2106 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2107 // to look up the loaded image that contains it. Second, we can store in it 2108 // whether registration has already occurred, to prevent duplicate 2109 // registration. 2110 // 2111 // common linkage ensures that there is only one global per shared library. 2112 GlobalVariable *RegisteredFlag = new GlobalVariable( 2113 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2114 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2115 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2116 2117 IRB.CreateCall(AsanRegisterImageGlobals, 2118 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2119 2120 // We also need to unregister globals at the end, e.g., when a shared library 2121 // gets closed. 2122 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2123 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2124 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2125 } 2126 2127 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2128 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2129 ArrayRef<Constant *> MetadataInitializers) { 2130 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2131 unsigned N = ExtendedGlobals.size(); 2132 assert(N > 0); 2133 2134 // On platforms that don't have a custom metadata section, we emit an array 2135 // of global metadata structures. 2136 ArrayType *ArrayOfGlobalStructTy = 2137 ArrayType::get(MetadataInitializers[0]->getType(), N); 2138 auto AllGlobals = new GlobalVariable( 2139 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2140 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2141 if (Mapping.Scale > 3) 2142 AllGlobals->setAlignment(1ULL << Mapping.Scale); 2143 2144 IRB.CreateCall(AsanRegisterGlobals, 2145 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2146 ConstantInt::get(IntptrTy, N)}); 2147 2148 // We also need to unregister globals at the end, e.g., when a shared library 2149 // gets closed. 2150 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2151 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2152 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2153 ConstantInt::get(IntptrTy, N)}); 2154 } 2155 2156 // This function replaces all global variables with new variables that have 2157 // trailing redzones. It also creates a function that poisons 2158 // redzones and inserts this function into llvm.global_ctors. 2159 // Sets *CtorComdat to true if the global registration code emitted into the 2160 // asan constructor is comdat-compatible. 2161 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2162 bool *CtorComdat) { 2163 *CtorComdat = false; 2164 2165 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2166 2167 for (auto &G : M.globals()) { 2168 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 2169 } 2170 2171 size_t n = GlobalsToChange.size(); 2172 if (n == 0) { 2173 *CtorComdat = true; 2174 return false; 2175 } 2176 2177 auto &DL = M.getDataLayout(); 2178 2179 // A global is described by a structure 2180 // size_t beg; 2181 // size_t size; 2182 // size_t size_with_redzone; 2183 // const char *name; 2184 // const char *module_name; 2185 // size_t has_dynamic_init; 2186 // void *source_location; 2187 // size_t odr_indicator; 2188 // We initialize an array of such structures and pass it to a run-time call. 2189 StructType *GlobalStructTy = 2190 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2191 IntptrTy, IntptrTy, IntptrTy); 2192 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2193 SmallVector<Constant *, 16> Initializers(n); 2194 2195 bool HasDynamicallyInitializedGlobals = false; 2196 2197 // We shouldn't merge same module names, as this string serves as unique 2198 // module ID in runtime. 2199 GlobalVariable *ModuleName = createPrivateGlobalForString( 2200 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2201 2202 for (size_t i = 0; i < n; i++) { 2203 static const uint64_t kMaxGlobalRedzone = 1 << 18; 2204 GlobalVariable *G = GlobalsToChange[i]; 2205 2206 // FIXME: Metadata should be attched directly to the global directly instead 2207 // of being added to llvm.asan.globals. 2208 auto MD = GlobalsMD.get(G); 2209 StringRef NameForGlobal = G->getName(); 2210 // Create string holding the global name (use global name from metadata 2211 // if it's available, otherwise just write the name of global variable). 2212 GlobalVariable *Name = createPrivateGlobalForString( 2213 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2214 /*AllowMerging*/ true, kAsanGenPrefix); 2215 2216 Type *Ty = G->getValueType(); 2217 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2218 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 2219 // MinRZ <= RZ <= kMaxGlobalRedzone 2220 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 2221 uint64_t RZ = std::max( 2222 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 2223 uint64_t RightRedzoneSize = RZ; 2224 // Round up to MinRZ 2225 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 2226 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 2227 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2228 2229 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2230 Constant *NewInitializer = ConstantStruct::get( 2231 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2232 2233 // Create a new global variable with enough space for a redzone. 2234 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2235 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2236 Linkage = GlobalValue::InternalLinkage; 2237 GlobalVariable *NewGlobal = 2238 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2239 "", G, G->getThreadLocalMode()); 2240 NewGlobal->copyAttributesFrom(G); 2241 NewGlobal->setComdat(G->getComdat()); 2242 NewGlobal->setAlignment(MinRZ); 2243 // Don't fold globals with redzones. ODR violation detector and redzone 2244 // poisoning implicitly creates a dependence on the global's address, so it 2245 // is no longer valid for it to be marked unnamed_addr. 2246 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2247 2248 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2249 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2250 G->isConstant()) { 2251 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2252 if (Seq && Seq->isCString()) 2253 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2254 } 2255 2256 // Transfer the debug info. The payload starts at offset zero so we can 2257 // copy the debug info over as is. 2258 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2259 G->getDebugInfo(GVs); 2260 for (auto *GV : GVs) 2261 NewGlobal->addDebugInfo(GV); 2262 2263 Value *Indices2[2]; 2264 Indices2[0] = IRB.getInt32(0); 2265 Indices2[1] = IRB.getInt32(0); 2266 2267 G->replaceAllUsesWith( 2268 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2269 NewGlobal->takeName(G); 2270 G->eraseFromParent(); 2271 NewGlobals[i] = NewGlobal; 2272 2273 Constant *SourceLoc; 2274 if (!MD.SourceLoc.empty()) { 2275 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2276 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2277 } else { 2278 SourceLoc = ConstantInt::get(IntptrTy, 0); 2279 } 2280 2281 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2282 GlobalValue *InstrumentedGlobal = NewGlobal; 2283 2284 bool CanUsePrivateAliases = 2285 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2286 TargetTriple.isOSBinFormatWasm(); 2287 if (CanUsePrivateAliases && UsePrivateAlias) { 2288 // Create local alias for NewGlobal to avoid crash on ODR between 2289 // instrumented and non-instrumented libraries. 2290 InstrumentedGlobal = 2291 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2292 } 2293 2294 // ODR should not happen for local linkage. 2295 if (NewGlobal->hasLocalLinkage()) { 2296 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2297 IRB.getInt8PtrTy()); 2298 } else if (UseOdrIndicator) { 2299 // With local aliases, we need to provide another externally visible 2300 // symbol __odr_asan_XXX to detect ODR violation. 2301 auto *ODRIndicatorSym = 2302 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2303 Constant::getNullValue(IRB.getInt8Ty()), 2304 kODRGenPrefix + NameForGlobal, nullptr, 2305 NewGlobal->getThreadLocalMode()); 2306 2307 // Set meaningful attributes for indicator symbol. 2308 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2309 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2310 ODRIndicatorSym->setAlignment(1); 2311 ODRIndicator = ODRIndicatorSym; 2312 } 2313 2314 Constant *Initializer = ConstantStruct::get( 2315 GlobalStructTy, 2316 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2317 ConstantInt::get(IntptrTy, SizeInBytes), 2318 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2319 ConstantExpr::getPointerCast(Name, IntptrTy), 2320 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2321 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2322 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2323 2324 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2325 2326 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2327 2328 Initializers[i] = Initializer; 2329 } 2330 2331 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2332 // ConstantMerge'ing them. 2333 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2334 for (size_t i = 0; i < n; i++) { 2335 GlobalVariable *G = NewGlobals[i]; 2336 if (G->getName().empty()) continue; 2337 GlobalsToAddToUsedList.push_back(G); 2338 } 2339 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2340 2341 std::string ELFUniqueModuleId = 2342 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2343 : ""; 2344 2345 if (!ELFUniqueModuleId.empty()) { 2346 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2347 *CtorComdat = true; 2348 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2349 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2350 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2351 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2352 } else { 2353 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2354 } 2355 2356 // Create calls for poisoning before initializers run and unpoisoning after. 2357 if (HasDynamicallyInitializedGlobals) 2358 createInitializerPoisonCalls(M, ModuleName); 2359 2360 LLVM_DEBUG(dbgs() << M); 2361 return true; 2362 } 2363 2364 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2365 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2366 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2367 int Version = 8; 2368 // 32-bit Android is one version ahead because of the switch to dynamic 2369 // shadow. 2370 Version += (LongSize == 32 && isAndroid); 2371 return Version; 2372 } 2373 2374 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2375 initializeCallbacks(M); 2376 2377 if (CompileKernel) 2378 return false; 2379 2380 // Create a module constructor. A destructor is created lazily because not all 2381 // platforms, and not all modules need it. 2382 std::string VersionCheckName = 2383 kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M)); 2384 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 2385 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, 2386 /*InitArgs=*/{}, VersionCheckName); 2387 2388 bool CtorComdat = true; 2389 bool Changed = false; 2390 // TODO(glider): temporarily disabled globals instrumentation for KASan. 2391 if (ClGlobals) { 2392 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2393 Changed |= InstrumentGlobals(IRB, M, &CtorComdat); 2394 } 2395 2396 // Put the constructor and destructor in comdat if both 2397 // (1) global instrumentation is not TU-specific 2398 // (2) target is ELF. 2399 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2400 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2401 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority, 2402 AsanCtorFunction); 2403 if (AsanDtorFunction) { 2404 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2405 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority, 2406 AsanDtorFunction); 2407 } 2408 } else { 2409 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); 2410 if (AsanDtorFunction) 2411 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); 2412 } 2413 2414 return Changed; 2415 } 2416 2417 void AddressSanitizer::initializeCallbacks(Module &M) { 2418 IRBuilder<> IRB(*C); 2419 // Create __asan_report* callbacks. 2420 // IsWrite, TypeSize and Exp are encoded in the function name. 2421 for (int Exp = 0; Exp < 2; Exp++) { 2422 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2423 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2424 const std::string ExpStr = Exp ? "exp_" : ""; 2425 const std::string EndingStr = Recover ? "_noabort" : ""; 2426 2427 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2428 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2429 if (Exp) { 2430 Type *ExpType = Type::getInt32Ty(*C); 2431 Args2.push_back(ExpType); 2432 Args1.push_back(ExpType); 2433 } 2434 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2435 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2436 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2437 2438 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2439 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2440 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2441 2442 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2443 AccessSizeIndex++) { 2444 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2445 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2446 M.getOrInsertFunction( 2447 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2448 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2449 2450 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2451 M.getOrInsertFunction( 2452 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2453 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2454 } 2455 } 2456 } 2457 2458 const std::string MemIntrinCallbackPrefix = 2459 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2460 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2461 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2462 IRB.getInt8PtrTy(), IntptrTy); 2463 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2464 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2465 IRB.getInt8PtrTy(), IntptrTy); 2466 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2467 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2468 IRB.getInt32Ty(), IntptrTy); 2469 2470 AsanHandleNoReturnFunc = 2471 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2472 2473 AsanPtrCmpFunction = 2474 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2475 AsanPtrSubFunction = 2476 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2477 // We insert an empty inline asm after __asan_report* to avoid callback merge. 2478 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 2479 StringRef(""), StringRef(""), 2480 /*hasSideEffects=*/true); 2481 if (Mapping.InGlobal) 2482 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2483 ArrayType::get(IRB.getInt8Ty(), 0)); 2484 } 2485 2486 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2487 // For each NSObject descendant having a +load method, this method is invoked 2488 // by the ObjC runtime before any of the static constructors is called. 2489 // Therefore we need to instrument such methods with a call to __asan_init 2490 // at the beginning in order to initialize our runtime before any access to 2491 // the shadow memory. 2492 // We cannot just ignore these methods, because they may call other 2493 // instrumented functions. 2494 if (F.getName().find(" load]") != std::string::npos) { 2495 FunctionCallee AsanInitFunction = 2496 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2497 IRBuilder<> IRB(&F.front(), F.front().begin()); 2498 IRB.CreateCall(AsanInitFunction, {}); 2499 return true; 2500 } 2501 return false; 2502 } 2503 2504 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2505 // Generate code only when dynamic addressing is needed. 2506 if (Mapping.Offset != kDynamicShadowSentinel) 2507 return; 2508 2509 IRBuilder<> IRB(&F.front().front()); 2510 if (Mapping.InGlobal) { 2511 if (ClWithIfuncSuppressRemat) { 2512 // An empty inline asm with input reg == output reg. 2513 // An opaque pointer-to-int cast, basically. 2514 InlineAsm *Asm = InlineAsm::get( 2515 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2516 StringRef(""), StringRef("=r,0"), 2517 /*hasSideEffects=*/false); 2518 LocalDynamicShadow = 2519 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2520 } else { 2521 LocalDynamicShadow = 2522 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2523 } 2524 } else { 2525 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2526 kAsanShadowMemoryDynamicAddress, IntptrTy); 2527 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2528 } 2529 } 2530 2531 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2532 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2533 // to it as uninteresting. This assumes we haven't started processing allocas 2534 // yet. This check is done up front because iterating the use list in 2535 // isInterestingAlloca would be algorithmically slower. 2536 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2537 2538 // Try to get the declaration of llvm.localescape. If it's not in the module, 2539 // we can exit early. 2540 if (!F.getParent()->getFunction("llvm.localescape")) return; 2541 2542 // Look for a call to llvm.localescape call in the entry block. It can't be in 2543 // any other block. 2544 for (Instruction &I : F.getEntryBlock()) { 2545 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2546 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2547 // We found a call. Mark all the allocas passed in as uninteresting. 2548 for (Value *Arg : II->arg_operands()) { 2549 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2550 assert(AI && AI->isStaticAlloca() && 2551 "non-static alloca arg to localescape"); 2552 ProcessedAllocas[AI] = false; 2553 } 2554 break; 2555 } 2556 } 2557 } 2558 2559 bool AddressSanitizer::instrumentFunction(Function &F, 2560 const TargetLibraryInfo *TLI) { 2561 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2562 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2563 if (F.getName().startswith("__asan_")) return false; 2564 2565 bool FunctionModified = false; 2566 2567 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2568 // This function needs to be called even if the function body is not 2569 // instrumented. 2570 if (maybeInsertAsanInitAtFunctionEntry(F)) 2571 FunctionModified = true; 2572 2573 // Leave if the function doesn't need instrumentation. 2574 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2575 2576 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2577 2578 initializeCallbacks(*F.getParent()); 2579 2580 FunctionStateRAII CleanupObj(this); 2581 2582 maybeInsertDynamicShadowAtFunctionEntry(F); 2583 2584 // We can't instrument allocas used with llvm.localescape. Only static allocas 2585 // can be passed to that intrinsic. 2586 markEscapedLocalAllocas(F); 2587 2588 // We want to instrument every address only once per basic block (unless there 2589 // are calls between uses). 2590 SmallPtrSet<Value *, 16> TempsToInstrument; 2591 SmallVector<Instruction *, 16> ToInstrument; 2592 SmallVector<Instruction *, 8> NoReturnCalls; 2593 SmallVector<BasicBlock *, 16> AllBlocks; 2594 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2595 int NumAllocas = 0; 2596 bool IsWrite; 2597 unsigned Alignment; 2598 uint64_t TypeSize; 2599 2600 // Fill the set of memory operations to instrument. 2601 for (auto &BB : F) { 2602 AllBlocks.push_back(&BB); 2603 TempsToInstrument.clear(); 2604 int NumInsnsPerBB = 0; 2605 for (auto &Inst : BB) { 2606 if (LooksLikeCodeInBug11395(&Inst)) return false; 2607 Value *MaybeMask = nullptr; 2608 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 2609 &Alignment, &MaybeMask)) { 2610 if (ClOpt && ClOptSameTemp) { 2611 // If we have a mask, skip instrumentation if we've already 2612 // instrumented the full object. But don't add to TempsToInstrument 2613 // because we might get another load/store with a different mask. 2614 if (MaybeMask) { 2615 if (TempsToInstrument.count(Addr)) 2616 continue; // We've seen this (whole) temp in the current BB. 2617 } else { 2618 if (!TempsToInstrument.insert(Addr).second) 2619 continue; // We've seen this temp in the current BB. 2620 } 2621 } 2622 } else if (ClInvalidPointerPairs && 2623 isInterestingPointerComparisonOrSubtraction(&Inst)) { 2624 PointerComparisonsOrSubtracts.push_back(&Inst); 2625 continue; 2626 } else if (isa<MemIntrinsic>(Inst)) { 2627 // ok, take it. 2628 } else { 2629 if (isa<AllocaInst>(Inst)) NumAllocas++; 2630 CallSite CS(&Inst); 2631 if (CS) { 2632 // A call inside BB. 2633 TempsToInstrument.clear(); 2634 if (CS.doesNotReturn() && !CS->getMetadata("nosanitize")) 2635 NoReturnCalls.push_back(CS.getInstruction()); 2636 } 2637 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2638 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2639 continue; 2640 } 2641 ToInstrument.push_back(&Inst); 2642 NumInsnsPerBB++; 2643 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2644 } 2645 } 2646 2647 bool UseCalls = 2648 (ClInstrumentationWithCallsThreshold >= 0 && 2649 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 2650 const DataLayout &DL = F.getParent()->getDataLayout(); 2651 ObjectSizeOpts ObjSizeOpts; 2652 ObjSizeOpts.RoundToAlign = true; 2653 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2654 2655 // Instrument. 2656 int NumInstrumented = 0; 2657 for (auto Inst : ToInstrument) { 2658 if (ClDebugMin < 0 || ClDebugMax < 0 || 2659 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 2660 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 2661 instrumentMop(ObjSizeVis, Inst, UseCalls, 2662 F.getParent()->getDataLayout()); 2663 else 2664 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 2665 } 2666 NumInstrumented++; 2667 } 2668 2669 FunctionStackPoisoner FSP(F, *this); 2670 bool ChangedStack = FSP.runOnFunction(); 2671 2672 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2673 // See e.g. https://github.com/google/sanitizers/issues/37 2674 for (auto CI : NoReturnCalls) { 2675 IRBuilder<> IRB(CI); 2676 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2677 } 2678 2679 for (auto Inst : PointerComparisonsOrSubtracts) { 2680 instrumentPointerComparisonOrSubtraction(Inst); 2681 NumInstrumented++; 2682 } 2683 2684 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) 2685 FunctionModified = true; 2686 2687 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2688 << F << "\n"); 2689 2690 return FunctionModified; 2691 } 2692 2693 // Workaround for bug 11395: we don't want to instrument stack in functions 2694 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2695 // FIXME: remove once the bug 11395 is fixed. 2696 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2697 if (LongSize != 32) return false; 2698 CallInst *CI = dyn_cast<CallInst>(I); 2699 if (!CI || !CI->isInlineAsm()) return false; 2700 if (CI->getNumArgOperands() <= 5) return false; 2701 // We have inline assembly with quite a few arguments. 2702 return true; 2703 } 2704 2705 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2706 IRBuilder<> IRB(*C); 2707 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2708 std::string Suffix = itostr(i); 2709 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2710 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2711 AsanStackFreeFunc[i] = 2712 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2713 IRB.getVoidTy(), IntptrTy, IntptrTy); 2714 } 2715 if (ASan.UseAfterScope) { 2716 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2717 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2718 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2719 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2720 } 2721 2722 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2723 std::ostringstream Name; 2724 Name << kAsanSetShadowPrefix; 2725 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2726 AsanSetShadowFunc[Val] = 2727 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2728 } 2729 2730 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2731 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2732 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2733 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2734 } 2735 2736 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2737 ArrayRef<uint8_t> ShadowBytes, 2738 size_t Begin, size_t End, 2739 IRBuilder<> &IRB, 2740 Value *ShadowBase) { 2741 if (Begin >= End) 2742 return; 2743 2744 const size_t LargestStoreSizeInBytes = 2745 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2746 2747 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2748 2749 // Poison given range in shadow using larges store size with out leading and 2750 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2751 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2752 // middle of a store. 2753 for (size_t i = Begin; i < End;) { 2754 if (!ShadowMask[i]) { 2755 assert(!ShadowBytes[i]); 2756 ++i; 2757 continue; 2758 } 2759 2760 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2761 // Fit store size into the range. 2762 while (StoreSizeInBytes > End - i) 2763 StoreSizeInBytes /= 2; 2764 2765 // Minimize store size by trimming trailing zeros. 2766 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2767 while (j <= StoreSizeInBytes / 2) 2768 StoreSizeInBytes /= 2; 2769 } 2770 2771 uint64_t Val = 0; 2772 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2773 if (IsLittleEndian) 2774 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2775 else 2776 Val = (Val << 8) | ShadowBytes[i + j]; 2777 } 2778 2779 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2780 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2781 IRB.CreateAlignedStore( 2782 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); 2783 2784 i += StoreSizeInBytes; 2785 } 2786 } 2787 2788 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2789 ArrayRef<uint8_t> ShadowBytes, 2790 IRBuilder<> &IRB, Value *ShadowBase) { 2791 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2792 } 2793 2794 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2795 ArrayRef<uint8_t> ShadowBytes, 2796 size_t Begin, size_t End, 2797 IRBuilder<> &IRB, Value *ShadowBase) { 2798 assert(ShadowMask.size() == ShadowBytes.size()); 2799 size_t Done = Begin; 2800 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2801 if (!ShadowMask[i]) { 2802 assert(!ShadowBytes[i]); 2803 continue; 2804 } 2805 uint8_t Val = ShadowBytes[i]; 2806 if (!AsanSetShadowFunc[Val]) 2807 continue; 2808 2809 // Skip same values. 2810 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2811 } 2812 2813 if (j - i >= ClMaxInlinePoisoningSize) { 2814 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2815 IRB.CreateCall(AsanSetShadowFunc[Val], 2816 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2817 ConstantInt::get(IntptrTy, j - i)}); 2818 Done = j; 2819 } 2820 } 2821 2822 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2823 } 2824 2825 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2826 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2827 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2828 assert(LocalStackSize <= kMaxStackMallocSize); 2829 uint64_t MaxSize = kMinStackMallocSize; 2830 for (int i = 0;; i++, MaxSize *= 2) 2831 if (LocalStackSize <= MaxSize) return i; 2832 llvm_unreachable("impossible LocalStackSize"); 2833 } 2834 2835 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2836 Instruction *CopyInsertPoint = &F.front().front(); 2837 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2838 // Insert after the dynamic shadow location is determined 2839 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2840 assert(CopyInsertPoint); 2841 } 2842 IRBuilder<> IRB(CopyInsertPoint); 2843 const DataLayout &DL = F.getParent()->getDataLayout(); 2844 for (Argument &Arg : F.args()) { 2845 if (Arg.hasByValAttr()) { 2846 Type *Ty = Arg.getType()->getPointerElementType(); 2847 unsigned Align = Arg.getParamAlignment(); 2848 if (Align == 0) Align = DL.getABITypeAlignment(Ty); 2849 2850 AllocaInst *AI = IRB.CreateAlloca( 2851 Ty, nullptr, 2852 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2853 ".byval"); 2854 AI->setAlignment(Align); 2855 Arg.replaceAllUsesWith(AI); 2856 2857 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2858 IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize); 2859 } 2860 } 2861 } 2862 2863 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2864 Value *ValueIfTrue, 2865 Instruction *ThenTerm, 2866 Value *ValueIfFalse) { 2867 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2868 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2869 PHI->addIncoming(ValueIfFalse, CondBlock); 2870 BasicBlock *ThenBlock = ThenTerm->getParent(); 2871 PHI->addIncoming(ValueIfTrue, ThenBlock); 2872 return PHI; 2873 } 2874 2875 Value *FunctionStackPoisoner::createAllocaForLayout( 2876 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2877 AllocaInst *Alloca; 2878 if (Dynamic) { 2879 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2880 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2881 "MyAlloca"); 2882 } else { 2883 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2884 nullptr, "MyAlloca"); 2885 assert(Alloca->isStaticAlloca()); 2886 } 2887 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2888 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 2889 Alloca->setAlignment(FrameAlignment); 2890 return IRB.CreatePointerCast(Alloca, IntptrTy); 2891 } 2892 2893 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2894 BasicBlock &FirstBB = *F.begin(); 2895 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2896 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2897 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2898 DynamicAllocaLayout->setAlignment(32); 2899 } 2900 2901 void FunctionStackPoisoner::processDynamicAllocas() { 2902 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2903 assert(DynamicAllocaPoisonCallVec.empty()); 2904 return; 2905 } 2906 2907 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2908 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2909 assert(APC.InsBefore); 2910 assert(APC.AI); 2911 assert(ASan.isInterestingAlloca(*APC.AI)); 2912 assert(!APC.AI->isStaticAlloca()); 2913 2914 IRBuilder<> IRB(APC.InsBefore); 2915 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2916 // Dynamic allocas will be unpoisoned unconditionally below in 2917 // unpoisonDynamicAllocas. 2918 // Flag that we need unpoison static allocas. 2919 } 2920 2921 // Handle dynamic allocas. 2922 createDynamicAllocasInitStorage(); 2923 for (auto &AI : DynamicAllocaVec) 2924 handleDynamicAllocaCall(AI); 2925 unpoisonDynamicAllocas(); 2926 } 2927 2928 void FunctionStackPoisoner::processStaticAllocas() { 2929 if (AllocaVec.empty()) { 2930 assert(StaticAllocaPoisonCallVec.empty()); 2931 return; 2932 } 2933 2934 int StackMallocIdx = -1; 2935 DebugLoc EntryDebugLocation; 2936 if (auto SP = F.getSubprogram()) 2937 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 2938 2939 Instruction *InsBefore = AllocaVec[0]; 2940 IRBuilder<> IRB(InsBefore); 2941 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2942 2943 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 2944 // debug info is broken, because only entry-block allocas are treated as 2945 // regular stack slots. 2946 auto InsBeforeB = InsBefore->getParent(); 2947 assert(InsBeforeB == &F.getEntryBlock()); 2948 for (auto *AI : StaticAllocasToMoveUp) 2949 if (AI->getParent() == InsBeforeB) 2950 AI->moveBefore(InsBefore); 2951 2952 // If we have a call to llvm.localescape, keep it in the entry block. 2953 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 2954 2955 SmallVector<ASanStackVariableDescription, 16> SVD; 2956 SVD.reserve(AllocaVec.size()); 2957 for (AllocaInst *AI : AllocaVec) { 2958 ASanStackVariableDescription D = {AI->getName().data(), 2959 ASan.getAllocaSizeInBytes(*AI), 2960 0, 2961 AI->getAlignment(), 2962 AI, 2963 0, 2964 0}; 2965 SVD.push_back(D); 2966 } 2967 2968 // Minimal header size (left redzone) is 4 pointers, 2969 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 2970 size_t Granularity = 1ULL << Mapping.Scale; 2971 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 2972 const ASanStackFrameLayout &L = 2973 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 2974 2975 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 2976 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 2977 for (auto &Desc : SVD) 2978 AllocaToSVDMap[Desc.AI] = &Desc; 2979 2980 // Update SVD with information from lifetime intrinsics. 2981 for (const auto &APC : StaticAllocaPoisonCallVec) { 2982 assert(APC.InsBefore); 2983 assert(APC.AI); 2984 assert(ASan.isInterestingAlloca(*APC.AI)); 2985 assert(APC.AI->isStaticAlloca()); 2986 2987 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 2988 Desc.LifetimeSize = Desc.Size; 2989 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 2990 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 2991 if (LifetimeLoc->getFile() == FnLoc->getFile()) 2992 if (unsigned Line = LifetimeLoc->getLine()) 2993 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 2994 } 2995 } 2996 } 2997 2998 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 2999 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3000 uint64_t LocalStackSize = L.FrameSize; 3001 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3002 LocalStackSize <= kMaxStackMallocSize; 3003 bool DoDynamicAlloca = ClDynamicAllocaStack; 3004 // Don't do dynamic alloca or stack malloc if: 3005 // 1) There is inline asm: too often it makes assumptions on which registers 3006 // are available. 3007 // 2) There is a returns_twice call (typically setjmp), which is 3008 // optimization-hostile, and doesn't play well with introduced indirect 3009 // register-relative calculation of local variable addresses. 3010 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3011 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3012 3013 Value *StaticAlloca = 3014 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3015 3016 Value *FakeStack; 3017 Value *LocalStackBase; 3018 Value *LocalStackBaseAlloca; 3019 bool Deref; 3020 3021 if (DoStackMalloc) { 3022 LocalStackBaseAlloca = 3023 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3024 // void *FakeStack = __asan_option_detect_stack_use_after_return 3025 // ? __asan_stack_malloc_N(LocalStackSize) 3026 // : nullptr; 3027 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3028 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3029 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3030 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3031 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3032 Constant::getNullValue(IRB.getInt32Ty())); 3033 Instruction *Term = 3034 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3035 IRBuilder<> IRBIf(Term); 3036 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 3037 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3038 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3039 Value *FakeStackValue = 3040 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3041 ConstantInt::get(IntptrTy, LocalStackSize)); 3042 IRB.SetInsertPoint(InsBefore); 3043 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3044 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3045 ConstantInt::get(IntptrTy, 0)); 3046 3047 Value *NoFakeStack = 3048 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3049 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3050 IRBIf.SetInsertPoint(Term); 3051 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 3052 Value *AllocaValue = 3053 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3054 3055 IRB.SetInsertPoint(InsBefore); 3056 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3057 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3058 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3059 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3060 Deref = true; 3061 } else { 3062 // void *FakeStack = nullptr; 3063 // void *LocalStackBase = alloca(LocalStackSize); 3064 FakeStack = ConstantInt::get(IntptrTy, 0); 3065 LocalStackBase = 3066 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3067 LocalStackBaseAlloca = LocalStackBase; 3068 Deref = false; 3069 } 3070 3071 // Replace Alloca instructions with base+offset. 3072 for (const auto &Desc : SVD) { 3073 AllocaInst *AI = Desc.AI; 3074 replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, Deref, 3075 Desc.Offset, DIExpression::NoDeref); 3076 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3077 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3078 AI->getType()); 3079 AI->replaceAllUsesWith(NewAllocaPtr); 3080 } 3081 3082 // The left-most redzone has enough space for at least 4 pointers. 3083 // Write the Magic value to redzone[0]. 3084 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3085 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3086 BasePlus0); 3087 // Write the frame description constant to redzone[1]. 3088 Value *BasePlus1 = IRB.CreateIntToPtr( 3089 IRB.CreateAdd(LocalStackBase, 3090 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3091 IntptrPtrTy); 3092 GlobalVariable *StackDescriptionGlobal = 3093 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3094 /*AllowMerging*/ true, kAsanGenPrefix); 3095 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3096 IRB.CreateStore(Description, BasePlus1); 3097 // Write the PC to redzone[2]. 3098 Value *BasePlus2 = IRB.CreateIntToPtr( 3099 IRB.CreateAdd(LocalStackBase, 3100 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3101 IntptrPtrTy); 3102 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3103 3104 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3105 3106 // Poison the stack red zones at the entry. 3107 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3108 // As mask we must use most poisoned case: red zones and after scope. 3109 // As bytes we can use either the same or just red zones only. 3110 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3111 3112 if (!StaticAllocaPoisonCallVec.empty()) { 3113 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3114 3115 // Poison static allocas near lifetime intrinsics. 3116 for (const auto &APC : StaticAllocaPoisonCallVec) { 3117 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3118 assert(Desc.Offset % L.Granularity == 0); 3119 size_t Begin = Desc.Offset / L.Granularity; 3120 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3121 3122 IRBuilder<> IRB(APC.InsBefore); 3123 copyToShadow(ShadowAfterScope, 3124 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3125 IRB, ShadowBase); 3126 } 3127 } 3128 3129 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3130 SmallVector<uint8_t, 64> ShadowAfterReturn; 3131 3132 // (Un)poison the stack before all ret instructions. 3133 for (auto Ret : RetVec) { 3134 IRBuilder<> IRBRet(Ret); 3135 // Mark the current frame as retired. 3136 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3137 BasePlus0); 3138 if (DoStackMalloc) { 3139 assert(StackMallocIdx >= 0); 3140 // if FakeStack != 0 // LocalStackBase == FakeStack 3141 // // In use-after-return mode, poison the whole stack frame. 3142 // if StackMallocIdx <= 4 3143 // // For small sizes inline the whole thing: 3144 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3145 // **SavedFlagPtr(FakeStack) = 0 3146 // else 3147 // __asan_stack_free_N(FakeStack, LocalStackSize) 3148 // else 3149 // <This is not a fake stack; unpoison the redzones> 3150 Value *Cmp = 3151 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3152 Instruction *ThenTerm, *ElseTerm; 3153 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3154 3155 IRBuilder<> IRBPoison(ThenTerm); 3156 if (StackMallocIdx <= 4) { 3157 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3158 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3159 kAsanStackUseAfterReturnMagic); 3160 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3161 ShadowBase); 3162 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3163 FakeStack, 3164 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3165 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3166 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3167 IRBPoison.CreateStore( 3168 Constant::getNullValue(IRBPoison.getInt8Ty()), 3169 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3170 } else { 3171 // For larger frames call __asan_stack_free_*. 3172 IRBPoison.CreateCall( 3173 AsanStackFreeFunc[StackMallocIdx], 3174 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3175 } 3176 3177 IRBuilder<> IRBElse(ElseTerm); 3178 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3179 } else { 3180 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3181 } 3182 } 3183 3184 // We are done. Remove the old unused alloca instructions. 3185 for (auto AI : AllocaVec) AI->eraseFromParent(); 3186 } 3187 3188 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3189 IRBuilder<> &IRB, bool DoPoison) { 3190 // For now just insert the call to ASan runtime. 3191 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3192 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3193 IRB.CreateCall( 3194 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3195 {AddrArg, SizeArg}); 3196 } 3197 3198 // Handling llvm.lifetime intrinsics for a given %alloca: 3199 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3200 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3201 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3202 // could be poisoned by previous llvm.lifetime.end instruction, as the 3203 // variable may go in and out of scope several times, e.g. in loops). 3204 // (3) if we poisoned at least one %alloca in a function, 3205 // unpoison the whole stack frame at function exit. 3206 3207 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { 3208 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 3209 // We're interested only in allocas we can handle. 3210 return ASan.isInterestingAlloca(*AI) ? AI : nullptr; 3211 // See if we've already calculated (or started to calculate) alloca for a 3212 // given value. 3213 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 3214 if (I != AllocaForValue.end()) return I->second; 3215 // Store 0 while we're calculating alloca for value V to avoid 3216 // infinite recursion if the value references itself. 3217 AllocaForValue[V] = nullptr; 3218 AllocaInst *Res = nullptr; 3219 if (CastInst *CI = dyn_cast<CastInst>(V)) 3220 Res = findAllocaForValue(CI->getOperand(0)); 3221 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 3222 for (Value *IncValue : PN->incoming_values()) { 3223 // Allow self-referencing phi-nodes. 3224 if (IncValue == PN) continue; 3225 AllocaInst *IncValueAI = findAllocaForValue(IncValue); 3226 // AI for incoming values should exist and should all be equal. 3227 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 3228 return nullptr; 3229 Res = IncValueAI; 3230 } 3231 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 3232 Res = findAllocaForValue(EP->getPointerOperand()); 3233 } else { 3234 LLVM_DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V 3235 << "\n"); 3236 } 3237 if (Res) AllocaForValue[V] = Res; 3238 return Res; 3239 } 3240 3241 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3242 IRBuilder<> IRB(AI); 3243 3244 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 3245 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3246 3247 Value *Zero = Constant::getNullValue(IntptrTy); 3248 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3249 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3250 3251 // Since we need to extend alloca with additional memory to locate 3252 // redzones, and OldSize is number of allocated blocks with 3253 // ElementSize size, get allocated memory size in bytes by 3254 // OldSize * ElementSize. 3255 const unsigned ElementSize = 3256 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3257 Value *OldSize = 3258 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3259 ConstantInt::get(IntptrTy, ElementSize)); 3260 3261 // PartialSize = OldSize % 32 3262 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3263 3264 // Misalign = kAllocaRzSize - PartialSize; 3265 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3266 3267 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3268 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3269 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3270 3271 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 3272 // Align is added to locate left redzone, PartialPadding for possible 3273 // partial redzone and kAllocaRzSize for right redzone respectively. 3274 Value *AdditionalChunkSize = IRB.CreateAdd( 3275 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 3276 3277 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3278 3279 // Insert new alloca with new NewSize and Align params. 3280 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3281 NewAlloca->setAlignment(Align); 3282 3283 // NewAddress = Address + Align 3284 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3285 ConstantInt::get(IntptrTy, Align)); 3286 3287 // Insert __asan_alloca_poison call for new created alloca. 3288 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3289 3290 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3291 // for unpoisoning stuff. 3292 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3293 3294 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3295 3296 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3297 AI->replaceAllUsesWith(NewAddressPtr); 3298 3299 // We are done. Erase old alloca from parent. 3300 AI->eraseFromParent(); 3301 } 3302 3303 // isSafeAccess returns true if Addr is always inbounds with respect to its 3304 // base object. For example, it is a field access or an array access with 3305 // constant inbounds index. 3306 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3307 Value *Addr, uint64_t TypeSize) const { 3308 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3309 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3310 uint64_t Size = SizeOffset.first.getZExtValue(); 3311 int64_t Offset = SizeOffset.second.getSExtValue(); 3312 // Three checks are required to ensure safety: 3313 // . Offset >= 0 (since the offset is given from the base ptr) 3314 // . Size >= Offset (unsigned) 3315 // . Size - Offset >= NeededSize (unsigned) 3316 return Offset >= 0 && Size >= uint64_t(Offset) && 3317 Size - uint64_t(Offset) >= TypeSize / 8; 3318 } 3319