1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/MachO.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstVisitor.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/MC/MCSectionMachO.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iomanip>
82 #include <limits>
83 #include <memory>
84 #include <sstream>
85 #include <string>
86 #include <tuple>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "asan"
91 
92 static const uint64_t kDefaultShadowScale = 3;
93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
95 static const uint64_t kDynamicShadowSentinel =
96     std::numeric_limits<uint64_t>::max();
97 static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
98 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30;
99 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64;
100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
108 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
109 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
110 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
111 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
112 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
113 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
114 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
115 
116 static const uint64_t kMyriadShadowScale = 5;
117 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
118 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
119 static const uint64_t kMyriadTagShift = 29;
120 static const uint64_t kMyriadDDRTag = 4;
121 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
122 
123 // The shadow memory space is dynamically allocated.
124 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
125 
126 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
127 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
128 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
129 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
130 
131 static const char *const kAsanModuleCtorName = "asan.module_ctor";
132 static const char *const kAsanModuleDtorName = "asan.module_dtor";
133 static const uint64_t kAsanCtorAndDtorPriority = 1;
134 static const char *const kAsanReportErrorTemplate = "__asan_report_";
135 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
136 static const char *const kAsanUnregisterGlobalsName =
137     "__asan_unregister_globals";
138 static const char *const kAsanRegisterImageGlobalsName =
139   "__asan_register_image_globals";
140 static const char *const kAsanUnregisterImageGlobalsName =
141   "__asan_unregister_image_globals";
142 static const char *const kAsanRegisterElfGlobalsName =
143   "__asan_register_elf_globals";
144 static const char *const kAsanUnregisterElfGlobalsName =
145   "__asan_unregister_elf_globals";
146 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
147 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
148 static const char *const kAsanInitName = "__asan_init";
149 static const char *const kAsanVersionCheckNamePrefix =
150     "__asan_version_mismatch_check_v";
151 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
152 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
153 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
154 static const int kMaxAsanStackMallocSizeClass = 10;
155 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
156 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
157 static const char *const kAsanGenPrefix = "___asan_gen_";
158 static const char *const kODRGenPrefix = "__odr_asan_gen_";
159 static const char *const kSanCovGenPrefix = "__sancov_gen_";
160 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
161 static const char *const kAsanPoisonStackMemoryName =
162     "__asan_poison_stack_memory";
163 static const char *const kAsanUnpoisonStackMemoryName =
164     "__asan_unpoison_stack_memory";
165 
166 // ASan version script has __asan_* wildcard. Triple underscore prevents a
167 // linker (gold) warning about attempting to export a local symbol.
168 static const char *const kAsanGlobalsRegisteredFlagName =
169     "___asan_globals_registered";
170 
171 static const char *const kAsanOptionDetectUseAfterReturn =
172     "__asan_option_detect_stack_use_after_return";
173 
174 static const char *const kAsanShadowMemoryDynamicAddress =
175     "__asan_shadow_memory_dynamic_address";
176 
177 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
178 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
179 
180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181 static const size_t kNumberOfAccessSizes = 5;
182 
183 static const unsigned kAllocaRzSize = 32;
184 
185 // Command-line flags.
186 
187 static cl::opt<bool> ClEnableKasan(
188     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
189     cl::Hidden, cl::init(false));
190 
191 static cl::opt<bool> ClRecover(
192     "asan-recover",
193     cl::desc("Enable recovery mode (continue-after-error)."),
194     cl::Hidden, cl::init(false));
195 
196 // This flag may need to be replaced with -f[no-]asan-reads.
197 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
198                                        cl::desc("instrument read instructions"),
199                                        cl::Hidden, cl::init(true));
200 
201 static cl::opt<bool> ClInstrumentWrites(
202     "asan-instrument-writes", cl::desc("instrument write instructions"),
203     cl::Hidden, cl::init(true));
204 
205 static cl::opt<bool> ClInstrumentAtomics(
206     "asan-instrument-atomics",
207     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
208     cl::init(true));
209 
210 static cl::opt<bool> ClAlwaysSlowPath(
211     "asan-always-slow-path",
212     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
213     cl::init(false));
214 
215 static cl::opt<bool> ClForceDynamicShadow(
216     "asan-force-dynamic-shadow",
217     cl::desc("Load shadow address into a local variable for each function"),
218     cl::Hidden, cl::init(false));
219 
220 static cl::opt<bool>
221     ClWithIfunc("asan-with-ifunc",
222                 cl::desc("Access dynamic shadow through an ifunc global on "
223                          "platforms that support this"),
224                 cl::Hidden, cl::init(true));
225 
226 static cl::opt<bool> ClWithIfuncSuppressRemat(
227     "asan-with-ifunc-suppress-remat",
228     cl::desc("Suppress rematerialization of dynamic shadow address by passing "
229              "it through inline asm in prologue."),
230     cl::Hidden, cl::init(true));
231 
232 // This flag limits the number of instructions to be instrumented
233 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
234 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
235 // set it to 10000.
236 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
237     "asan-max-ins-per-bb", cl::init(10000),
238     cl::desc("maximal number of instructions to instrument in any given BB"),
239     cl::Hidden);
240 
241 // This flag may need to be replaced with -f[no]asan-stack.
242 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
243                              cl::Hidden, cl::init(true));
244 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
245     "asan-max-inline-poisoning-size",
246     cl::desc(
247         "Inline shadow poisoning for blocks up to the given size in bytes."),
248     cl::Hidden, cl::init(64));
249 
250 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
251                                       cl::desc("Check stack-use-after-return"),
252                                       cl::Hidden, cl::init(true));
253 
254 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
255                                         cl::desc("Create redzones for byval "
256                                                  "arguments (extra copy "
257                                                  "required)"), cl::Hidden,
258                                         cl::init(true));
259 
260 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
261                                      cl::desc("Check stack-use-after-scope"),
262                                      cl::Hidden, cl::init(false));
263 
264 // This flag may need to be replaced with -f[no]asan-globals.
265 static cl::opt<bool> ClGlobals("asan-globals",
266                                cl::desc("Handle global objects"), cl::Hidden,
267                                cl::init(true));
268 
269 static cl::opt<bool> ClInitializers("asan-initialization-order",
270                                     cl::desc("Handle C++ initializer order"),
271                                     cl::Hidden, cl::init(true));
272 
273 static cl::opt<bool> ClInvalidPointerPairs(
274     "asan-detect-invalid-pointer-pair",
275     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
276     cl::init(false));
277 
278 static cl::opt<unsigned> ClRealignStack(
279     "asan-realign-stack",
280     cl::desc("Realign stack to the value of this flag (power of two)"),
281     cl::Hidden, cl::init(32));
282 
283 static cl::opt<int> ClInstrumentationWithCallsThreshold(
284     "asan-instrumentation-with-call-threshold",
285     cl::desc(
286         "If the function being instrumented contains more than "
287         "this number of memory accesses, use callbacks instead of "
288         "inline checks (-1 means never use callbacks)."),
289     cl::Hidden, cl::init(7000));
290 
291 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
292     "asan-memory-access-callback-prefix",
293     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
294     cl::init("__asan_"));
295 
296 static cl::opt<bool>
297     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
298                                cl::desc("instrument dynamic allocas"),
299                                cl::Hidden, cl::init(true));
300 
301 static cl::opt<bool> ClSkipPromotableAllocas(
302     "asan-skip-promotable-allocas",
303     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
304     cl::init(true));
305 
306 // These flags allow to change the shadow mapping.
307 // The shadow mapping looks like
308 //    Shadow = (Mem >> scale) + offset
309 
310 static cl::opt<int> ClMappingScale("asan-mapping-scale",
311                                    cl::desc("scale of asan shadow mapping"),
312                                    cl::Hidden, cl::init(0));
313 
314 static cl::opt<unsigned long long> ClMappingOffset(
315     "asan-mapping-offset",
316     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden,
317     cl::init(0));
318 
319 // Optimization flags. Not user visible, used mostly for testing
320 // and benchmarking the tool.
321 
322 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
323                            cl::Hidden, cl::init(true));
324 
325 static cl::opt<bool> ClOptSameTemp(
326     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
327     cl::Hidden, cl::init(true));
328 
329 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
330                                   cl::desc("Don't instrument scalar globals"),
331                                   cl::Hidden, cl::init(true));
332 
333 static cl::opt<bool> ClOptStack(
334     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
335     cl::Hidden, cl::init(false));
336 
337 static cl::opt<bool> ClDynamicAllocaStack(
338     "asan-stack-dynamic-alloca",
339     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
340     cl::init(true));
341 
342 static cl::opt<uint32_t> ClForceExperiment(
343     "asan-force-experiment",
344     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
345     cl::init(0));
346 
347 static cl::opt<bool>
348     ClUsePrivateAlias("asan-use-private-alias",
349                       cl::desc("Use private aliases for global variables"),
350                       cl::Hidden, cl::init(false));
351 
352 static cl::opt<bool>
353     ClUseOdrIndicator("asan-use-odr-indicator",
354                       cl::desc("Use odr indicators to improve ODR reporting"),
355                       cl::Hidden, cl::init(false));
356 
357 static cl::opt<bool>
358     ClUseGlobalsGC("asan-globals-live-support",
359                    cl::desc("Use linker features to support dead "
360                             "code stripping of globals"),
361                    cl::Hidden, cl::init(true));
362 
363 // This is on by default even though there is a bug in gold:
364 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
365 static cl::opt<bool>
366     ClWithComdat("asan-with-comdat",
367                  cl::desc("Place ASan constructors in comdat sections"),
368                  cl::Hidden, cl::init(true));
369 
370 // Debug flags.
371 
372 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
373                             cl::init(0));
374 
375 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
376                                  cl::Hidden, cl::init(0));
377 
378 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
379                                         cl::desc("Debug func"));
380 
381 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
382                                cl::Hidden, cl::init(-1));
383 
384 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
385                                cl::Hidden, cl::init(-1));
386 
387 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
388 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
389 STATISTIC(NumOptimizedAccessesToGlobalVar,
390           "Number of optimized accesses to global vars");
391 STATISTIC(NumOptimizedAccessesToStackVar,
392           "Number of optimized accesses to stack vars");
393 
394 namespace {
395 
396 /// This struct defines the shadow mapping using the rule:
397 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
398 /// If InGlobal is true, then
399 ///   extern char __asan_shadow[];
400 ///   shadow = (mem >> Scale) + &__asan_shadow
401 struct ShadowMapping {
402   int Scale;
403   uint64_t Offset;
404   bool OrShadowOffset;
405   bool InGlobal;
406 };
407 
408 } // end anonymous namespace
409 
410 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
411                                       bool IsKasan) {
412   bool IsAndroid = TargetTriple.isAndroid();
413   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
414   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
415   bool IsNetBSD = TargetTriple.isOSNetBSD();
416   bool IsPS4CPU = TargetTriple.isPS4CPU();
417   bool IsLinux = TargetTriple.isOSLinux();
418   bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
419                  TargetTriple.getArch() == Triple::ppc64le;
420   bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
421   bool IsX86 = TargetTriple.getArch() == Triple::x86;
422   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
423   bool IsMIPS32 = TargetTriple.isMIPS32();
424   bool IsMIPS64 = TargetTriple.isMIPS64();
425   bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
426   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
427   bool IsWindows = TargetTriple.isOSWindows();
428   bool IsFuchsia = TargetTriple.isOSFuchsia();
429   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
430 
431   ShadowMapping Mapping;
432 
433   Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
434   if (ClMappingScale.getNumOccurrences() > 0) {
435     Mapping.Scale = ClMappingScale;
436   }
437 
438   if (LongSize == 32) {
439     if (IsAndroid)
440       Mapping.Offset = kDynamicShadowSentinel;
441     else if (IsMIPS32)
442       Mapping.Offset = kMIPS32_ShadowOffset32;
443     else if (IsFreeBSD)
444       Mapping.Offset = kFreeBSD_ShadowOffset32;
445     else if (IsNetBSD)
446       Mapping.Offset = kNetBSD_ShadowOffset32;
447     else if (IsIOS)
448       // If we're targeting iOS and x86, the binary is built for iOS simulator.
449       Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32;
450     else if (IsWindows)
451       Mapping.Offset = kWindowsShadowOffset32;
452     else if (IsMyriad) {
453       uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
454                                (kMyriadMemorySize32 >> Mapping.Scale));
455       Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
456     }
457     else
458       Mapping.Offset = kDefaultShadowOffset32;
459   } else {  // LongSize == 64
460     // Fuchsia is always PIE, which means that the beginning of the address
461     // space is always available.
462     if (IsFuchsia)
463       Mapping.Offset = 0;
464     else if (IsPPC64)
465       Mapping.Offset = kPPC64_ShadowOffset64;
466     else if (IsSystemZ)
467       Mapping.Offset = kSystemZ_ShadowOffset64;
468     else if (IsFreeBSD && !IsMIPS64)
469       Mapping.Offset = kFreeBSD_ShadowOffset64;
470     else if (IsNetBSD) {
471       if (IsKasan)
472         Mapping.Offset = kNetBSDKasan_ShadowOffset64;
473       else
474         Mapping.Offset = kNetBSD_ShadowOffset64;
475     } else if (IsPS4CPU)
476       Mapping.Offset = kPS4CPU_ShadowOffset64;
477     else if (IsLinux && IsX86_64) {
478       if (IsKasan)
479         Mapping.Offset = kLinuxKasan_ShadowOffset64;
480       else
481         Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
482                           (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
483     } else if (IsWindows && IsX86_64) {
484       Mapping.Offset = kWindowsShadowOffset64;
485     } else if (IsMIPS64)
486       Mapping.Offset = kMIPS64_ShadowOffset64;
487     else if (IsIOS)
488       // If we're targeting iOS and x86, the binary is built for iOS simulator.
489       // We are using dynamic shadow offset on the 64-bit devices.
490       Mapping.Offset =
491         IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel;
492     else if (IsAArch64)
493       Mapping.Offset = kAArch64_ShadowOffset64;
494     else
495       Mapping.Offset = kDefaultShadowOffset64;
496   }
497 
498   if (ClForceDynamicShadow) {
499     Mapping.Offset = kDynamicShadowSentinel;
500   }
501 
502   if (ClMappingOffset.getNumOccurrences() > 0) {
503     Mapping.Offset = ClMappingOffset;
504   }
505 
506   // OR-ing shadow offset if more efficient (at least on x86) if the offset
507   // is a power of two, but on ppc64 we have to use add since the shadow
508   // offset is not necessary 1/8-th of the address space.  On SystemZ,
509   // we could OR the constant in a single instruction, but it's more
510   // efficient to load it once and use indexed addressing.
511   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
512                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
513                            Mapping.Offset != kDynamicShadowSentinel;
514   bool IsAndroidWithIfuncSupport =
515       IsAndroid && !TargetTriple.isAndroidVersionLT(21);
516   Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
517 
518   return Mapping;
519 }
520 
521 static size_t RedzoneSizeForScale(int MappingScale) {
522   // Redzone used for stack and globals is at least 32 bytes.
523   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
524   return std::max(32U, 1U << MappingScale);
525 }
526 
527 namespace {
528 
529 /// Module analysis for getting various metadata about the module.
530 class ASanGlobalsMetadataWrapperPass : public ModulePass {
531 public:
532   static char ID;
533 
534   ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
535     initializeASanGlobalsMetadataWrapperPassPass(
536         *PassRegistry::getPassRegistry());
537   }
538 
539   bool runOnModule(Module &M) override {
540     GlobalsMD = GlobalsMetadata(M);
541     return false;
542   }
543 
544   StringRef getPassName() const override {
545     return "ASanGlobalsMetadataWrapperPass";
546   }
547 
548   void getAnalysisUsage(AnalysisUsage &AU) const override {
549     AU.setPreservesAll();
550   }
551 
552   GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
553 
554 private:
555   GlobalsMetadata GlobalsMD;
556 };
557 
558 char ASanGlobalsMetadataWrapperPass::ID = 0;
559 
560 /// AddressSanitizer: instrument the code in module to find memory bugs.
561 struct AddressSanitizer {
562   AddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD,
563                    bool CompileKernel = false, bool Recover = false,
564                    bool UseAfterScope = false)
565       : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(GlobalsMD) {
566     this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
567     this->CompileKernel =
568         ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
569 
570     C = &(M.getContext());
571     LongSize = M.getDataLayout().getPointerSizeInBits();
572     IntptrTy = Type::getIntNTy(*C, LongSize);
573     TargetTriple = Triple(M.getTargetTriple());
574 
575     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
576   }
577 
578   uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
579     uint64_t ArraySize = 1;
580     if (AI.isArrayAllocation()) {
581       const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
582       assert(CI && "non-constant array size");
583       ArraySize = CI->getZExtValue();
584     }
585     Type *Ty = AI.getAllocatedType();
586     uint64_t SizeInBytes =
587         AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
588     return SizeInBytes * ArraySize;
589   }
590 
591   /// Check if we want (and can) handle this alloca.
592   bool isInterestingAlloca(const AllocaInst &AI);
593 
594   /// If it is an interesting memory access, return the PointerOperand
595   /// and set IsWrite/Alignment. Otherwise return nullptr.
596   /// MaybeMask is an output parameter for the mask Value, if we're looking at a
597   /// masked load/store.
598   Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
599                                    uint64_t *TypeSize, unsigned *Alignment,
600                                    Value **MaybeMask = nullptr);
601 
602   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
603                      bool UseCalls, const DataLayout &DL);
604   void instrumentPointerComparisonOrSubtraction(Instruction *I);
605   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
606                          Value *Addr, uint32_t TypeSize, bool IsWrite,
607                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
608   void instrumentUnusualSizeOrAlignment(Instruction *I,
609                                         Instruction *InsertBefore, Value *Addr,
610                                         uint32_t TypeSize, bool IsWrite,
611                                         Value *SizeArgument, bool UseCalls,
612                                         uint32_t Exp);
613   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
614                            Value *ShadowValue, uint32_t TypeSize);
615   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
616                                  bool IsWrite, size_t AccessSizeIndex,
617                                  Value *SizeArgument, uint32_t Exp);
618   void instrumentMemIntrinsic(MemIntrinsic *MI);
619   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
620   bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
621   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
622   void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
623   void markEscapedLocalAllocas(Function &F);
624 
625 private:
626   friend struct FunctionStackPoisoner;
627 
628   void initializeCallbacks(Module &M);
629 
630   bool LooksLikeCodeInBug11395(Instruction *I);
631   bool GlobalIsLinkerInitialized(GlobalVariable *G);
632   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
633                     uint64_t TypeSize) const;
634 
635   /// Helper to cleanup per-function state.
636   struct FunctionStateRAII {
637     AddressSanitizer *Pass;
638 
639     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
640       assert(Pass->ProcessedAllocas.empty() &&
641              "last pass forgot to clear cache");
642       assert(!Pass->LocalDynamicShadow);
643     }
644 
645     ~FunctionStateRAII() {
646       Pass->LocalDynamicShadow = nullptr;
647       Pass->ProcessedAllocas.clear();
648     }
649   };
650 
651   LLVMContext *C;
652   Triple TargetTriple;
653   int LongSize;
654   bool CompileKernel;
655   bool Recover;
656   bool UseAfterScope;
657   Type *IntptrTy;
658   ShadowMapping Mapping;
659   FunctionCallee AsanHandleNoReturnFunc;
660   FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
661   Constant *AsanShadowGlobal;
662 
663   // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
664   FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
665   FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
666 
667   // These arrays is indexed by AccessIsWrite and Experiment.
668   FunctionCallee AsanErrorCallbackSized[2][2];
669   FunctionCallee AsanMemoryAccessCallbackSized[2][2];
670 
671   FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
672   InlineAsm *EmptyAsm;
673   Value *LocalDynamicShadow = nullptr;
674   GlobalsMetadata GlobalsMD;
675   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
676 };
677 
678 class AddressSanitizerLegacyPass : public FunctionPass {
679 public:
680   static char ID;
681 
682   explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
683                                       bool Recover = false,
684                                       bool UseAfterScope = false)
685       : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
686         UseAfterScope(UseAfterScope) {
687     initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
688   }
689 
690   StringRef getPassName() const override {
691     return "AddressSanitizerFunctionPass";
692   }
693 
694   void getAnalysisUsage(AnalysisUsage &AU) const override {
695     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
696     AU.addRequired<TargetLibraryInfoWrapperPass>();
697   }
698 
699   bool runOnFunction(Function &F) override {
700     GlobalsMetadata &GlobalsMD =
701         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
702     const TargetLibraryInfo *TLI =
703         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
704     AddressSanitizer ASan(*F.getParent(), GlobalsMD, CompileKernel, Recover,
705                           UseAfterScope);
706     return ASan.instrumentFunction(F, TLI);
707   }
708 
709 private:
710   bool CompileKernel;
711   bool Recover;
712   bool UseAfterScope;
713 };
714 
715 class ModuleAddressSanitizer {
716 public:
717   ModuleAddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD,
718                          bool CompileKernel = false, bool Recover = false,
719                          bool UseGlobalsGC = true, bool UseOdrIndicator = false)
720       : GlobalsMD(GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC),
721         // Enable aliases as they should have no downside with ODR indicators.
722         UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
723         UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
724         // Not a typo: ClWithComdat is almost completely pointless without
725         // ClUseGlobalsGC (because then it only works on modules without
726         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
727         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
728         // argument is designed as workaround. Therefore, disable both
729         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
730         // do globals-gc.
731         UseCtorComdat(UseGlobalsGC && ClWithComdat) {
732     this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
733     this->CompileKernel =
734         ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
735 
736     C = &(M.getContext());
737     int LongSize = M.getDataLayout().getPointerSizeInBits();
738     IntptrTy = Type::getIntNTy(*C, LongSize);
739     TargetTriple = Triple(M.getTargetTriple());
740     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
741   }
742 
743   bool instrumentModule(Module &);
744 
745 private:
746   void initializeCallbacks(Module &M);
747 
748   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
749   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
750                              ArrayRef<GlobalVariable *> ExtendedGlobals,
751                              ArrayRef<Constant *> MetadataInitializers);
752   void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
753                             ArrayRef<GlobalVariable *> ExtendedGlobals,
754                             ArrayRef<Constant *> MetadataInitializers,
755                             const std::string &UniqueModuleId);
756   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
757                               ArrayRef<GlobalVariable *> ExtendedGlobals,
758                               ArrayRef<Constant *> MetadataInitializers);
759   void
760   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
761                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
762                                      ArrayRef<Constant *> MetadataInitializers);
763 
764   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
765                                        StringRef OriginalName);
766   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
767                                   StringRef InternalSuffix);
768   IRBuilder<> CreateAsanModuleDtor(Module &M);
769 
770   bool ShouldInstrumentGlobal(GlobalVariable *G);
771   bool ShouldUseMachOGlobalsSection() const;
772   StringRef getGlobalMetadataSection() const;
773   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
774   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
775   size_t MinRedzoneSizeForGlobal() const {
776     return RedzoneSizeForScale(Mapping.Scale);
777   }
778   int GetAsanVersion(const Module &M) const;
779 
780   GlobalsMetadata GlobalsMD;
781   bool CompileKernel;
782   bool Recover;
783   bool UseGlobalsGC;
784   bool UsePrivateAlias;
785   bool UseOdrIndicator;
786   bool UseCtorComdat;
787   Type *IntptrTy;
788   LLVMContext *C;
789   Triple TargetTriple;
790   ShadowMapping Mapping;
791   FunctionCallee AsanPoisonGlobals;
792   FunctionCallee AsanUnpoisonGlobals;
793   FunctionCallee AsanRegisterGlobals;
794   FunctionCallee AsanUnregisterGlobals;
795   FunctionCallee AsanRegisterImageGlobals;
796   FunctionCallee AsanUnregisterImageGlobals;
797   FunctionCallee AsanRegisterElfGlobals;
798   FunctionCallee AsanUnregisterElfGlobals;
799 
800   Function *AsanCtorFunction = nullptr;
801   Function *AsanDtorFunction = nullptr;
802 };
803 
804 class ModuleAddressSanitizerLegacyPass : public ModulePass {
805 public:
806   static char ID;
807 
808   explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false,
809                                             bool Recover = false,
810                                             bool UseGlobalGC = true,
811                                             bool UseOdrIndicator = false)
812       : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
813         UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) {
814     initializeModuleAddressSanitizerLegacyPassPass(
815         *PassRegistry::getPassRegistry());
816   }
817 
818   StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
819 
820   void getAnalysisUsage(AnalysisUsage &AU) const override {
821     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
822   }
823 
824   bool runOnModule(Module &M) override {
825     GlobalsMetadata &GlobalsMD =
826         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
827     ModuleAddressSanitizer ASanModule(M, GlobalsMD, CompileKernel, Recover,
828                                       UseGlobalGC, UseOdrIndicator);
829     return ASanModule.instrumentModule(M);
830   }
831 
832 private:
833   bool CompileKernel;
834   bool Recover;
835   bool UseGlobalGC;
836   bool UseOdrIndicator;
837 };
838 
839 // Stack poisoning does not play well with exception handling.
840 // When an exception is thrown, we essentially bypass the code
841 // that unpoisones the stack. This is why the run-time library has
842 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
843 // stack in the interceptor. This however does not work inside the
844 // actual function which catches the exception. Most likely because the
845 // compiler hoists the load of the shadow value somewhere too high.
846 // This causes asan to report a non-existing bug on 453.povray.
847 // It sounds like an LLVM bug.
848 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
849   Function &F;
850   AddressSanitizer &ASan;
851   DIBuilder DIB;
852   LLVMContext *C;
853   Type *IntptrTy;
854   Type *IntptrPtrTy;
855   ShadowMapping Mapping;
856 
857   SmallVector<AllocaInst *, 16> AllocaVec;
858   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
859   SmallVector<Instruction *, 8> RetVec;
860   unsigned StackAlignment;
861 
862   FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
863       AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
864   FunctionCallee AsanSetShadowFunc[0x100] = {};
865   FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
866   FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
867 
868   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
869   struct AllocaPoisonCall {
870     IntrinsicInst *InsBefore;
871     AllocaInst *AI;
872     uint64_t Size;
873     bool DoPoison;
874   };
875   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
876   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
877 
878   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
879   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
880   AllocaInst *DynamicAllocaLayout = nullptr;
881   IntrinsicInst *LocalEscapeCall = nullptr;
882 
883   // Maps Value to an AllocaInst from which the Value is originated.
884   using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
885   AllocaForValueMapTy AllocaForValue;
886 
887   bool HasNonEmptyInlineAsm = false;
888   bool HasReturnsTwiceCall = false;
889   std::unique_ptr<CallInst> EmptyInlineAsm;
890 
891   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
892       : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
893         C(ASan.C), IntptrTy(ASan.IntptrTy),
894         IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
895         StackAlignment(1 << Mapping.Scale),
896         EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
897 
898   bool runOnFunction() {
899     if (!ClStack) return false;
900 
901     if (ClRedzoneByvalArgs)
902       copyArgsPassedByValToAllocas();
903 
904     // Collect alloca, ret, lifetime instructions etc.
905     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
906 
907     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
908 
909     initializeCallbacks(*F.getParent());
910 
911     processDynamicAllocas();
912     processStaticAllocas();
913 
914     if (ClDebugStack) {
915       LLVM_DEBUG(dbgs() << F);
916     }
917     return true;
918   }
919 
920   // Arguments marked with the "byval" attribute are implicitly copied without
921   // using an alloca instruction.  To produce redzones for those arguments, we
922   // copy them a second time into memory allocated with an alloca instruction.
923   void copyArgsPassedByValToAllocas();
924 
925   // Finds all Alloca instructions and puts
926   // poisoned red zones around all of them.
927   // Then unpoison everything back before the function returns.
928   void processStaticAllocas();
929   void processDynamicAllocas();
930 
931   void createDynamicAllocasInitStorage();
932 
933   // ----------------------- Visitors.
934   /// Collect all Ret instructions.
935   void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
936 
937   /// Collect all Resume instructions.
938   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
939 
940   /// Collect all CatchReturnInst instructions.
941   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
942 
943   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
944                                         Value *SavedStack) {
945     IRBuilder<> IRB(InstBefore);
946     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
947     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
948     // need to adjust extracted SP to compute the address of the most recent
949     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
950     // this purpose.
951     if (!isa<ReturnInst>(InstBefore)) {
952       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
953           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
954           {IntptrTy});
955 
956       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
957 
958       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
959                                      DynamicAreaOffset);
960     }
961 
962     IRB.CreateCall(
963         AsanAllocasUnpoisonFunc,
964         {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
965   }
966 
967   // Unpoison dynamic allocas redzones.
968   void unpoisonDynamicAllocas() {
969     for (auto &Ret : RetVec)
970       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
971 
972     for (auto &StackRestoreInst : StackRestoreVec)
973       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
974                                        StackRestoreInst->getOperand(0));
975   }
976 
977   // Deploy and poison redzones around dynamic alloca call. To do this, we
978   // should replace this call with another one with changed parameters and
979   // replace all its uses with new address, so
980   //   addr = alloca type, old_size, align
981   // is replaced by
982   //   new_size = (old_size + additional_size) * sizeof(type)
983   //   tmp = alloca i8, new_size, max(align, 32)
984   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
985   // Additional_size is added to make new memory allocation contain not only
986   // requested memory, but also left, partial and right redzones.
987   void handleDynamicAllocaCall(AllocaInst *AI);
988 
989   /// Collect Alloca instructions we want (and can) handle.
990   void visitAllocaInst(AllocaInst &AI) {
991     if (!ASan.isInterestingAlloca(AI)) {
992       if (AI.isStaticAlloca()) {
993         // Skip over allocas that are present *before* the first instrumented
994         // alloca, we don't want to move those around.
995         if (AllocaVec.empty())
996           return;
997 
998         StaticAllocasToMoveUp.push_back(&AI);
999       }
1000       return;
1001     }
1002 
1003     StackAlignment = std::max(StackAlignment, AI.getAlignment());
1004     if (!AI.isStaticAlloca())
1005       DynamicAllocaVec.push_back(&AI);
1006     else
1007       AllocaVec.push_back(&AI);
1008   }
1009 
1010   /// Collect lifetime intrinsic calls to check for use-after-scope
1011   /// errors.
1012   void visitIntrinsicInst(IntrinsicInst &II) {
1013     Intrinsic::ID ID = II.getIntrinsicID();
1014     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1015     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1016     if (!ASan.UseAfterScope)
1017       return;
1018     if (!II.isLifetimeStartOrEnd())
1019       return;
1020     // Found lifetime intrinsic, add ASan instrumentation if necessary.
1021     ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
1022     // If size argument is undefined, don't do anything.
1023     if (Size->isMinusOne()) return;
1024     // Check that size doesn't saturate uint64_t and can
1025     // be stored in IntptrTy.
1026     const uint64_t SizeValue = Size->getValue().getLimitedValue();
1027     if (SizeValue == ~0ULL ||
1028         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1029       return;
1030     // Find alloca instruction that corresponds to llvm.lifetime argument.
1031     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
1032     if (!AI || !ASan.isInterestingAlloca(*AI))
1033       return;
1034     bool DoPoison = (ID == Intrinsic::lifetime_end);
1035     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1036     if (AI->isStaticAlloca())
1037       StaticAllocaPoisonCallVec.push_back(APC);
1038     else if (ClInstrumentDynamicAllocas)
1039       DynamicAllocaPoisonCallVec.push_back(APC);
1040   }
1041 
1042   void visitCallSite(CallSite CS) {
1043     Instruction *I = CS.getInstruction();
1044     if (CallInst *CI = dyn_cast<CallInst>(I)) {
1045       HasNonEmptyInlineAsm |= CI->isInlineAsm() &&
1046                               !CI->isIdenticalTo(EmptyInlineAsm.get()) &&
1047                               I != ASan.LocalDynamicShadow;
1048       HasReturnsTwiceCall |= CI->canReturnTwice();
1049     }
1050   }
1051 
1052   // ---------------------- Helpers.
1053   void initializeCallbacks(Module &M);
1054 
1055   /// Finds alloca where the value comes from.
1056   AllocaInst *findAllocaForValue(Value *V);
1057 
1058   // Copies bytes from ShadowBytes into shadow memory for indexes where
1059   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1060   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1061   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1062                     IRBuilder<> &IRB, Value *ShadowBase);
1063   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1064                     size_t Begin, size_t End, IRBuilder<> &IRB,
1065                     Value *ShadowBase);
1066   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1067                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1068                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1069 
1070   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1071 
1072   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1073                                bool Dynamic);
1074   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1075                      Instruction *ThenTerm, Value *ValueIfFalse);
1076 };
1077 
1078 } // end anonymous namespace
1079 
1080 void LocationMetadata::parse(MDNode *MDN) {
1081   assert(MDN->getNumOperands() == 3);
1082   MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1083   Filename = DIFilename->getString();
1084   LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1085   ColumnNo =
1086       mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1087 }
1088 
1089 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1090 // we want to sanitize instead and reading this metadata on each pass over a
1091 // function instead of reading module level metadata at first.
1092 GlobalsMetadata::GlobalsMetadata(Module &M) {
1093   NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1094   if (!Globals)
1095     return;
1096   for (auto MDN : Globals->operands()) {
1097     // Metadata node contains the global and the fields of "Entry".
1098     assert(MDN->getNumOperands() == 5);
1099     auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1100     // The optimizer may optimize away a global entirely.
1101     if (!V)
1102       continue;
1103     auto *StrippedV = V->stripPointerCasts();
1104     auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1105     if (!GV)
1106       continue;
1107     // We can already have an entry for GV if it was merged with another
1108     // global.
1109     Entry &E = Entries[GV];
1110     if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1111       E.SourceLoc.parse(Loc);
1112     if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1113       E.Name = Name->getString();
1114     ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1115     E.IsDynInit |= IsDynInit->isOne();
1116     ConstantInt *IsBlacklisted =
1117         mdconst::extract<ConstantInt>(MDN->getOperand(4));
1118     E.IsBlacklisted |= IsBlacklisted->isOne();
1119   }
1120 }
1121 
1122 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1123 
1124 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1125                                                  ModuleAnalysisManager &AM) {
1126   return GlobalsMetadata(M);
1127 }
1128 
1129 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
1130                                            bool UseAfterScope)
1131     : CompileKernel(CompileKernel), Recover(Recover),
1132       UseAfterScope(UseAfterScope) {}
1133 
1134 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1135                                             AnalysisManager<Function> &AM) {
1136   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1137   auto &MAM = MAMProxy.getManager();
1138   Module &M = *F.getParent();
1139   if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1140     const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1141     AddressSanitizer Sanitizer(M, *R, CompileKernel, Recover, UseAfterScope);
1142     if (Sanitizer.instrumentFunction(F, TLI))
1143       return PreservedAnalyses::none();
1144     return PreservedAnalyses::all();
1145   }
1146 
1147   report_fatal_error(
1148       "The ASanGlobalsMetadataAnalysis is required to run before "
1149       "AddressSanitizer can run");
1150   return PreservedAnalyses::all();
1151 }
1152 
1153 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel,
1154                                                        bool Recover,
1155                                                        bool UseGlobalGC,
1156                                                        bool UseOdrIndicator)
1157     : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1158       UseOdrIndicator(UseOdrIndicator) {}
1159 
1160 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1161                                                   AnalysisManager<Module> &AM) {
1162   GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1163   ModuleAddressSanitizer Sanitizer(M, GlobalsMD, CompileKernel, Recover,
1164                                    UseGlobalGC, UseOdrIndicator);
1165   if (Sanitizer.instrumentModule(M))
1166     return PreservedAnalyses::none();
1167   return PreservedAnalyses::all();
1168 }
1169 
1170 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1171                 "Read metadata to mark which globals should be instrumented "
1172                 "when running ASan.",
1173                 false, true)
1174 
1175 char AddressSanitizerLegacyPass::ID = 0;
1176 
1177 INITIALIZE_PASS_BEGIN(
1178     AddressSanitizerLegacyPass, "asan",
1179     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1180     false)
1181 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1182 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1183 INITIALIZE_PASS_END(
1184     AddressSanitizerLegacyPass, "asan",
1185     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1186     false)
1187 
1188 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1189                                                        bool Recover,
1190                                                        bool UseAfterScope) {
1191   assert(!CompileKernel || Recover);
1192   return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
1193 }
1194 
1195 char ModuleAddressSanitizerLegacyPass::ID = 0;
1196 
1197 INITIALIZE_PASS(
1198     ModuleAddressSanitizerLegacyPass, "asan-module",
1199     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1200     "ModulePass",
1201     false, false)
1202 
1203 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1204     bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) {
1205   assert(!CompileKernel || Recover);
1206   return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover,
1207                                               UseGlobalsGC, UseOdrIndicator);
1208 }
1209 
1210 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1211   size_t Res = countTrailingZeros(TypeSize / 8);
1212   assert(Res < kNumberOfAccessSizes);
1213   return Res;
1214 }
1215 
1216 /// Create a global describing a source location.
1217 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1218                                                        LocationMetadata MD) {
1219   Constant *LocData[] = {
1220       createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1221       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1222       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1223   };
1224   auto LocStruct = ConstantStruct::getAnon(LocData);
1225   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1226                                GlobalValue::PrivateLinkage, LocStruct,
1227                                kAsanGenPrefix);
1228   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1229   return GV;
1230 }
1231 
1232 /// Check if \p G has been created by a trusted compiler pass.
1233 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1234   // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1235   if (G->getName().startswith("llvm."))
1236     return true;
1237 
1238   // Do not instrument asan globals.
1239   if (G->getName().startswith(kAsanGenPrefix) ||
1240       G->getName().startswith(kSanCovGenPrefix) ||
1241       G->getName().startswith(kODRGenPrefix))
1242     return true;
1243 
1244   // Do not instrument gcov counter arrays.
1245   if (G->getName() == "__llvm_gcov_ctr")
1246     return true;
1247 
1248   return false;
1249 }
1250 
1251 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1252   // Shadow >> scale
1253   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1254   if (Mapping.Offset == 0) return Shadow;
1255   // (Shadow >> scale) | offset
1256   Value *ShadowBase;
1257   if (LocalDynamicShadow)
1258     ShadowBase = LocalDynamicShadow;
1259   else
1260     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1261   if (Mapping.OrShadowOffset)
1262     return IRB.CreateOr(Shadow, ShadowBase);
1263   else
1264     return IRB.CreateAdd(Shadow, ShadowBase);
1265 }
1266 
1267 // Instrument memset/memmove/memcpy
1268 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1269   IRBuilder<> IRB(MI);
1270   if (isa<MemTransferInst>(MI)) {
1271     IRB.CreateCall(
1272         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1273         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1274          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1275          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1276   } else if (isa<MemSetInst>(MI)) {
1277     IRB.CreateCall(
1278         AsanMemset,
1279         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1280          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1281          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1282   }
1283   MI->eraseFromParent();
1284 }
1285 
1286 /// Check if we want (and can) handle this alloca.
1287 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1288   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1289 
1290   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1291     return PreviouslySeenAllocaInfo->getSecond();
1292 
1293   bool IsInteresting =
1294       (AI.getAllocatedType()->isSized() &&
1295        // alloca() may be called with 0 size, ignore it.
1296        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1297        // We are only interested in allocas not promotable to registers.
1298        // Promotable allocas are common under -O0.
1299        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1300        // inalloca allocas are not treated as static, and we don't want
1301        // dynamic alloca instrumentation for them as well.
1302        !AI.isUsedWithInAlloca() &&
1303        // swifterror allocas are register promoted by ISel
1304        !AI.isSwiftError());
1305 
1306   ProcessedAllocas[&AI] = IsInteresting;
1307   return IsInteresting;
1308 }
1309 
1310 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
1311                                                    bool *IsWrite,
1312                                                    uint64_t *TypeSize,
1313                                                    unsigned *Alignment,
1314                                                    Value **MaybeMask) {
1315   // Skip memory accesses inserted by another instrumentation.
1316   if (I->getMetadata("nosanitize")) return nullptr;
1317 
1318   // Do not instrument the load fetching the dynamic shadow address.
1319   if (LocalDynamicShadow == I)
1320     return nullptr;
1321 
1322   Value *PtrOperand = nullptr;
1323   const DataLayout &DL = I->getModule()->getDataLayout();
1324   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1325     if (!ClInstrumentReads) return nullptr;
1326     *IsWrite = false;
1327     *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
1328     *Alignment = LI->getAlignment();
1329     PtrOperand = LI->getPointerOperand();
1330   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1331     if (!ClInstrumentWrites) return nullptr;
1332     *IsWrite = true;
1333     *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
1334     *Alignment = SI->getAlignment();
1335     PtrOperand = SI->getPointerOperand();
1336   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1337     if (!ClInstrumentAtomics) return nullptr;
1338     *IsWrite = true;
1339     *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
1340     *Alignment = 0;
1341     PtrOperand = RMW->getPointerOperand();
1342   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1343     if (!ClInstrumentAtomics) return nullptr;
1344     *IsWrite = true;
1345     *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
1346     *Alignment = 0;
1347     PtrOperand = XCHG->getPointerOperand();
1348   } else if (auto CI = dyn_cast<CallInst>(I)) {
1349     auto *F = dyn_cast<Function>(CI->getCalledValue());
1350     if (F && (F->getName().startswith("llvm.masked.load.") ||
1351               F->getName().startswith("llvm.masked.store."))) {
1352       unsigned OpOffset = 0;
1353       if (F->getName().startswith("llvm.masked.store.")) {
1354         if (!ClInstrumentWrites)
1355           return nullptr;
1356         // Masked store has an initial operand for the value.
1357         OpOffset = 1;
1358         *IsWrite = true;
1359       } else {
1360         if (!ClInstrumentReads)
1361           return nullptr;
1362         *IsWrite = false;
1363       }
1364 
1365       auto BasePtr = CI->getOperand(0 + OpOffset);
1366       auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1367       *TypeSize = DL.getTypeStoreSizeInBits(Ty);
1368       if (auto AlignmentConstant =
1369               dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1370         *Alignment = (unsigned)AlignmentConstant->getZExtValue();
1371       else
1372         *Alignment = 1; // No alignment guarantees. We probably got Undef
1373       if (MaybeMask)
1374         *MaybeMask = CI->getOperand(2 + OpOffset);
1375       PtrOperand = BasePtr;
1376     }
1377   }
1378 
1379   if (PtrOperand) {
1380     // Do not instrument acesses from different address spaces; we cannot deal
1381     // with them.
1382     Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
1383     if (PtrTy->getPointerAddressSpace() != 0)
1384       return nullptr;
1385 
1386     // Ignore swifterror addresses.
1387     // swifterror memory addresses are mem2reg promoted by instruction
1388     // selection. As such they cannot have regular uses like an instrumentation
1389     // function and it makes no sense to track them as memory.
1390     if (PtrOperand->isSwiftError())
1391       return nullptr;
1392   }
1393 
1394   // Treat memory accesses to promotable allocas as non-interesting since they
1395   // will not cause memory violations. This greatly speeds up the instrumented
1396   // executable at -O0.
1397   if (ClSkipPromotableAllocas)
1398     if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
1399       return isInterestingAlloca(*AI) ? AI : nullptr;
1400 
1401   return PtrOperand;
1402 }
1403 
1404 static bool isPointerOperand(Value *V) {
1405   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1406 }
1407 
1408 // This is a rough heuristic; it may cause both false positives and
1409 // false negatives. The proper implementation requires cooperation with
1410 // the frontend.
1411 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
1412   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1413     if (!Cmp->isRelational()) return false;
1414   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1415     if (BO->getOpcode() != Instruction::Sub) return false;
1416   } else {
1417     return false;
1418   }
1419   return isPointerOperand(I->getOperand(0)) &&
1420          isPointerOperand(I->getOperand(1));
1421 }
1422 
1423 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1424   // If a global variable does not have dynamic initialization we don't
1425   // have to instrument it.  However, if a global does not have initializer
1426   // at all, we assume it has dynamic initializer (in other TU).
1427   //
1428   // FIXME: Metadata should be attched directly to the global directly instead
1429   // of being added to llvm.asan.globals.
1430   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1431 }
1432 
1433 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1434     Instruction *I) {
1435   IRBuilder<> IRB(I);
1436   FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1437   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1438   for (Value *&i : Param) {
1439     if (i->getType()->isPointerTy())
1440       i = IRB.CreatePointerCast(i, IntptrTy);
1441   }
1442   IRB.CreateCall(F, Param);
1443 }
1444 
1445 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1446                                 Instruction *InsertBefore, Value *Addr,
1447                                 unsigned Alignment, unsigned Granularity,
1448                                 uint32_t TypeSize, bool IsWrite,
1449                                 Value *SizeArgument, bool UseCalls,
1450                                 uint32_t Exp) {
1451   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1452   // if the data is properly aligned.
1453   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1454        TypeSize == 128) &&
1455       (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1456     return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1457                                    nullptr, UseCalls, Exp);
1458   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1459                                          IsWrite, nullptr, UseCalls, Exp);
1460 }
1461 
1462 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1463                                         const DataLayout &DL, Type *IntptrTy,
1464                                         Value *Mask, Instruction *I,
1465                                         Value *Addr, unsigned Alignment,
1466                                         unsigned Granularity, uint32_t TypeSize,
1467                                         bool IsWrite, Value *SizeArgument,
1468                                         bool UseCalls, uint32_t Exp) {
1469   auto *VTy = cast<PointerType>(Addr->getType())->getElementType();
1470   uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1471   unsigned Num = VTy->getVectorNumElements();
1472   auto Zero = ConstantInt::get(IntptrTy, 0);
1473   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1474     Value *InstrumentedAddress = nullptr;
1475     Instruction *InsertBefore = I;
1476     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1477       // dyn_cast as we might get UndefValue
1478       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1479         if (Masked->isZero())
1480           // Mask is constant false, so no instrumentation needed.
1481           continue;
1482         // If we have a true or undef value, fall through to doInstrumentAddress
1483         // with InsertBefore == I
1484       }
1485     } else {
1486       IRBuilder<> IRB(I);
1487       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1488       Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1489       InsertBefore = ThenTerm;
1490     }
1491 
1492     IRBuilder<> IRB(InsertBefore);
1493     InstrumentedAddress =
1494         IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1495     doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1496                         Granularity, ElemTypeSize, IsWrite, SizeArgument,
1497                         UseCalls, Exp);
1498   }
1499 }
1500 
1501 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1502                                      Instruction *I, bool UseCalls,
1503                                      const DataLayout &DL) {
1504   bool IsWrite = false;
1505   unsigned Alignment = 0;
1506   uint64_t TypeSize = 0;
1507   Value *MaybeMask = nullptr;
1508   Value *Addr =
1509       isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
1510   assert(Addr);
1511 
1512   // Optimization experiments.
1513   // The experiments can be used to evaluate potential optimizations that remove
1514   // instrumentation (assess false negatives). Instead of completely removing
1515   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1516   // experiments that want to remove instrumentation of this instruction).
1517   // If Exp is non-zero, this pass will emit special calls into runtime
1518   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1519   // make runtime terminate the program in a special way (with a different
1520   // exit status). Then you run the new compiler on a buggy corpus, collect
1521   // the special terminations (ideally, you don't see them at all -- no false
1522   // negatives) and make the decision on the optimization.
1523   uint32_t Exp = ClForceExperiment;
1524 
1525   if (ClOpt && ClOptGlobals) {
1526     // If initialization order checking is disabled, a simple access to a
1527     // dynamically initialized global is always valid.
1528     GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1529     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1530         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1531       NumOptimizedAccessesToGlobalVar++;
1532       return;
1533     }
1534   }
1535 
1536   if (ClOpt && ClOptStack) {
1537     // A direct inbounds access to a stack variable is always valid.
1538     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1539         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1540       NumOptimizedAccessesToStackVar++;
1541       return;
1542     }
1543   }
1544 
1545   if (IsWrite)
1546     NumInstrumentedWrites++;
1547   else
1548     NumInstrumentedReads++;
1549 
1550   unsigned Granularity = 1 << Mapping.Scale;
1551   if (MaybeMask) {
1552     instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr,
1553                                 Alignment, Granularity, TypeSize, IsWrite,
1554                                 nullptr, UseCalls, Exp);
1555   } else {
1556     doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize,
1557                         IsWrite, nullptr, UseCalls, Exp);
1558   }
1559 }
1560 
1561 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1562                                                  Value *Addr, bool IsWrite,
1563                                                  size_t AccessSizeIndex,
1564                                                  Value *SizeArgument,
1565                                                  uint32_t Exp) {
1566   IRBuilder<> IRB(InsertBefore);
1567   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1568   CallInst *Call = nullptr;
1569   if (SizeArgument) {
1570     if (Exp == 0)
1571       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1572                             {Addr, SizeArgument});
1573     else
1574       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1575                             {Addr, SizeArgument, ExpVal});
1576   } else {
1577     if (Exp == 0)
1578       Call =
1579           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1580     else
1581       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1582                             {Addr, ExpVal});
1583   }
1584 
1585   // We don't do Call->setDoesNotReturn() because the BB already has
1586   // UnreachableInst at the end.
1587   // This EmptyAsm is required to avoid callback merge.
1588   IRB.CreateCall(EmptyAsm, {});
1589   return Call;
1590 }
1591 
1592 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1593                                            Value *ShadowValue,
1594                                            uint32_t TypeSize) {
1595   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1596   // Addr & (Granularity - 1)
1597   Value *LastAccessedByte =
1598       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1599   // (Addr & (Granularity - 1)) + size - 1
1600   if (TypeSize / 8 > 1)
1601     LastAccessedByte = IRB.CreateAdd(
1602         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1603   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1604   LastAccessedByte =
1605       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1606   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1607   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1608 }
1609 
1610 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1611                                          Instruction *InsertBefore, Value *Addr,
1612                                          uint32_t TypeSize, bool IsWrite,
1613                                          Value *SizeArgument, bool UseCalls,
1614                                          uint32_t Exp) {
1615   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1616 
1617   IRBuilder<> IRB(InsertBefore);
1618   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1619   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1620 
1621   if (UseCalls) {
1622     if (Exp == 0)
1623       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1624                      AddrLong);
1625     else
1626       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1627                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1628     return;
1629   }
1630 
1631   if (IsMyriad) {
1632     // Strip the cache bit and do range check.
1633     // AddrLong &= ~kMyriadCacheBitMask32
1634     AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1635     // Tag = AddrLong >> kMyriadTagShift
1636     Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1637     // Tag == kMyriadDDRTag
1638     Value *TagCheck =
1639         IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1640 
1641     Instruction *TagCheckTerm =
1642         SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
1643                                   MDBuilder(*C).createBranchWeights(1, 100000));
1644     assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1645     IRB.SetInsertPoint(TagCheckTerm);
1646     InsertBefore = TagCheckTerm;
1647   }
1648 
1649   Type *ShadowTy =
1650       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1651   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1652   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1653   Value *CmpVal = Constant::getNullValue(ShadowTy);
1654   Value *ShadowValue =
1655       IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1656 
1657   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1658   size_t Granularity = 1ULL << Mapping.Scale;
1659   Instruction *CrashTerm = nullptr;
1660 
1661   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1662     // We use branch weights for the slow path check, to indicate that the slow
1663     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1664     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1665         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1666     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1667     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1668     IRB.SetInsertPoint(CheckTerm);
1669     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1670     if (Recover) {
1671       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1672     } else {
1673       BasicBlock *CrashBlock =
1674         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1675       CrashTerm = new UnreachableInst(*C, CrashBlock);
1676       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1677       ReplaceInstWithInst(CheckTerm, NewTerm);
1678     }
1679   } else {
1680     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1681   }
1682 
1683   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1684                                          AccessSizeIndex, SizeArgument, Exp);
1685   Crash->setDebugLoc(OrigIns->getDebugLoc());
1686 }
1687 
1688 // Instrument unusual size or unusual alignment.
1689 // We can not do it with a single check, so we do 1-byte check for the first
1690 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1691 // to report the actual access size.
1692 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1693     Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1694     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1695   IRBuilder<> IRB(InsertBefore);
1696   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1697   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1698   if (UseCalls) {
1699     if (Exp == 0)
1700       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1701                      {AddrLong, Size});
1702     else
1703       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1704                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1705   } else {
1706     Value *LastByte = IRB.CreateIntToPtr(
1707         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1708         Addr->getType());
1709     instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1710     instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1711   }
1712 }
1713 
1714 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1715                                                   GlobalValue *ModuleName) {
1716   // Set up the arguments to our poison/unpoison functions.
1717   IRBuilder<> IRB(&GlobalInit.front(),
1718                   GlobalInit.front().getFirstInsertionPt());
1719 
1720   // Add a call to poison all external globals before the given function starts.
1721   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1722   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1723 
1724   // Add calls to unpoison all globals before each return instruction.
1725   for (auto &BB : GlobalInit.getBasicBlockList())
1726     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1727       CallInst::Create(AsanUnpoisonGlobals, "", RI);
1728 }
1729 
1730 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1731     Module &M, GlobalValue *ModuleName) {
1732   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1733   if (!GV)
1734     return;
1735 
1736   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1737   if (!CA)
1738     return;
1739 
1740   for (Use &OP : CA->operands()) {
1741     if (isa<ConstantAggregateZero>(OP)) continue;
1742     ConstantStruct *CS = cast<ConstantStruct>(OP);
1743 
1744     // Must have a function or null ptr.
1745     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1746       if (F->getName() == kAsanModuleCtorName) continue;
1747       ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1748       // Don't instrument CTORs that will run before asan.module_ctor.
1749       if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
1750       poisonOneInitializer(*F, ModuleName);
1751     }
1752   }
1753 }
1754 
1755 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
1756   Type *Ty = G->getValueType();
1757   LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1758 
1759   // FIXME: Metadata should be attched directly to the global directly instead
1760   // of being added to llvm.asan.globals.
1761   if (GlobalsMD.get(G).IsBlacklisted) return false;
1762   if (!Ty->isSized()) return false;
1763   if (!G->hasInitializer()) return false;
1764   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1765   // Two problems with thread-locals:
1766   //   - The address of the main thread's copy can't be computed at link-time.
1767   //   - Need to poison all copies, not just the main thread's one.
1768   if (G->isThreadLocal()) return false;
1769   // For now, just ignore this Global if the alignment is large.
1770   if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1771 
1772   // For non-COFF targets, only instrument globals known to be defined by this
1773   // TU.
1774   // FIXME: We can instrument comdat globals on ELF if we are using the
1775   // GC-friendly metadata scheme.
1776   if (!TargetTriple.isOSBinFormatCOFF()) {
1777     if (!G->hasExactDefinition() || G->hasComdat())
1778       return false;
1779   } else {
1780     // On COFF, don't instrument non-ODR linkages.
1781     if (G->isInterposable())
1782       return false;
1783   }
1784 
1785   // If a comdat is present, it must have a selection kind that implies ODR
1786   // semantics: no duplicates, any, or exact match.
1787   if (Comdat *C = G->getComdat()) {
1788     switch (C->getSelectionKind()) {
1789     case Comdat::Any:
1790     case Comdat::ExactMatch:
1791     case Comdat::NoDuplicates:
1792       break;
1793     case Comdat::Largest:
1794     case Comdat::SameSize:
1795       return false;
1796     }
1797   }
1798 
1799   if (G->hasSection()) {
1800     StringRef Section = G->getSection();
1801 
1802     // Globals from llvm.metadata aren't emitted, do not instrument them.
1803     if (Section == "llvm.metadata") return false;
1804     // Do not instrument globals from special LLVM sections.
1805     if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1806 
1807     // Do not instrument function pointers to initialization and termination
1808     // routines: dynamic linker will not properly handle redzones.
1809     if (Section.startswith(".preinit_array") ||
1810         Section.startswith(".init_array") ||
1811         Section.startswith(".fini_array")) {
1812       return false;
1813     }
1814 
1815     // On COFF, if the section name contains '$', it is highly likely that the
1816     // user is using section sorting to create an array of globals similar to
1817     // the way initialization callbacks are registered in .init_array and
1818     // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1819     // to such globals is counterproductive, because the intent is that they
1820     // will form an array, and out-of-bounds accesses are expected.
1821     // See https://github.com/google/sanitizers/issues/305
1822     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1823     if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1824       LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1825                         << *G << "\n");
1826       return false;
1827     }
1828 
1829     if (TargetTriple.isOSBinFormatMachO()) {
1830       StringRef ParsedSegment, ParsedSection;
1831       unsigned TAA = 0, StubSize = 0;
1832       bool TAAParsed;
1833       std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1834           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1835       assert(ErrorCode.empty() && "Invalid section specifier.");
1836 
1837       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1838       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1839       // them.
1840       if (ParsedSegment == "__OBJC" ||
1841           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1842         LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1843         return false;
1844       }
1845       // See https://github.com/google/sanitizers/issues/32
1846       // Constant CFString instances are compiled in the following way:
1847       //  -- the string buffer is emitted into
1848       //     __TEXT,__cstring,cstring_literals
1849       //  -- the constant NSConstantString structure referencing that buffer
1850       //     is placed into __DATA,__cfstring
1851       // Therefore there's no point in placing redzones into __DATA,__cfstring.
1852       // Moreover, it causes the linker to crash on OS X 10.7
1853       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1854         LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1855         return false;
1856       }
1857       // The linker merges the contents of cstring_literals and removes the
1858       // trailing zeroes.
1859       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1860         LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1861         return false;
1862       }
1863     }
1864   }
1865 
1866   return true;
1867 }
1868 
1869 // On Mach-O platforms, we emit global metadata in a separate section of the
1870 // binary in order to allow the linker to properly dead strip. This is only
1871 // supported on recent versions of ld64.
1872 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
1873   if (!TargetTriple.isOSBinFormatMachO())
1874     return false;
1875 
1876   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1877     return true;
1878   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1879     return true;
1880   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1881     return true;
1882 
1883   return false;
1884 }
1885 
1886 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
1887   switch (TargetTriple.getObjectFormat()) {
1888   case Triple::COFF:  return ".ASAN$GL";
1889   case Triple::ELF:   return "asan_globals";
1890   case Triple::MachO: return "__DATA,__asan_globals,regular";
1891   default: break;
1892   }
1893   llvm_unreachable("unsupported object format");
1894 }
1895 
1896 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
1897   IRBuilder<> IRB(*C);
1898 
1899   // Declare our poisoning and unpoisoning functions.
1900   AsanPoisonGlobals =
1901       M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
1902   AsanUnpoisonGlobals =
1903       M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
1904 
1905   // Declare functions that register/unregister globals.
1906   AsanRegisterGlobals = M.getOrInsertFunction(
1907       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1908   AsanUnregisterGlobals = M.getOrInsertFunction(
1909       kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1910 
1911   // Declare the functions that find globals in a shared object and then invoke
1912   // the (un)register function on them.
1913   AsanRegisterImageGlobals = M.getOrInsertFunction(
1914       kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1915   AsanUnregisterImageGlobals = M.getOrInsertFunction(
1916       kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1917 
1918   AsanRegisterElfGlobals =
1919       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
1920                             IntptrTy, IntptrTy, IntptrTy);
1921   AsanUnregisterElfGlobals =
1922       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
1923                             IntptrTy, IntptrTy, IntptrTy);
1924 }
1925 
1926 // Put the metadata and the instrumented global in the same group. This ensures
1927 // that the metadata is discarded if the instrumented global is discarded.
1928 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
1929     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
1930   Module &M = *G->getParent();
1931   Comdat *C = G->getComdat();
1932   if (!C) {
1933     if (!G->hasName()) {
1934       // If G is unnamed, it must be internal. Give it an artificial name
1935       // so we can put it in a comdat.
1936       assert(G->hasLocalLinkage());
1937       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
1938     }
1939 
1940     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
1941       std::string Name = G->getName();
1942       Name += InternalSuffix;
1943       C = M.getOrInsertComdat(Name);
1944     } else {
1945       C = M.getOrInsertComdat(G->getName());
1946     }
1947 
1948     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
1949     // linkage to internal linkage so that a symbol table entry is emitted. This
1950     // is necessary in order to create the comdat group.
1951     if (TargetTriple.isOSBinFormatCOFF()) {
1952       C->setSelectionKind(Comdat::NoDuplicates);
1953       if (G->hasPrivateLinkage())
1954         G->setLinkage(GlobalValue::InternalLinkage);
1955     }
1956     G->setComdat(C);
1957   }
1958 
1959   assert(G->hasComdat());
1960   Metadata->setComdat(G->getComdat());
1961 }
1962 
1963 // Create a separate metadata global and put it in the appropriate ASan
1964 // global registration section.
1965 GlobalVariable *
1966 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
1967                                              StringRef OriginalName) {
1968   auto Linkage = TargetTriple.isOSBinFormatMachO()
1969                      ? GlobalVariable::InternalLinkage
1970                      : GlobalVariable::PrivateLinkage;
1971   GlobalVariable *Metadata = new GlobalVariable(
1972       M, Initializer->getType(), false, Linkage, Initializer,
1973       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
1974   Metadata->setSection(getGlobalMetadataSection());
1975   return Metadata;
1976 }
1977 
1978 IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
1979   AsanDtorFunction =
1980       Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
1981                        GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
1982   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
1983 
1984   return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB));
1985 }
1986 
1987 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
1988     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
1989     ArrayRef<Constant *> MetadataInitializers) {
1990   assert(ExtendedGlobals.size() == MetadataInitializers.size());
1991   auto &DL = M.getDataLayout();
1992 
1993   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
1994     Constant *Initializer = MetadataInitializers[i];
1995     GlobalVariable *G = ExtendedGlobals[i];
1996     GlobalVariable *Metadata =
1997         CreateMetadataGlobal(M, Initializer, G->getName());
1998 
1999     // The MSVC linker always inserts padding when linking incrementally. We
2000     // cope with that by aligning each struct to its size, which must be a power
2001     // of two.
2002     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2003     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2004            "global metadata will not be padded appropriately");
2005     Metadata->setAlignment(SizeOfGlobalStruct);
2006 
2007     SetComdatForGlobalMetadata(G, Metadata, "");
2008   }
2009 }
2010 
2011 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2012     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2013     ArrayRef<Constant *> MetadataInitializers,
2014     const std::string &UniqueModuleId) {
2015   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2016 
2017   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2018   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2019     GlobalVariable *G = ExtendedGlobals[i];
2020     GlobalVariable *Metadata =
2021         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2022     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2023     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2024     MetadataGlobals[i] = Metadata;
2025 
2026     SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2027   }
2028 
2029   // Update llvm.compiler.used, adding the new metadata globals. This is
2030   // needed so that during LTO these variables stay alive.
2031   if (!MetadataGlobals.empty())
2032     appendToCompilerUsed(M, MetadataGlobals);
2033 
2034   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2035   // to look up the loaded image that contains it. Second, we can store in it
2036   // whether registration has already occurred, to prevent duplicate
2037   // registration.
2038   //
2039   // Common linkage ensures that there is only one global per shared library.
2040   GlobalVariable *RegisteredFlag = new GlobalVariable(
2041       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2042       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2043   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2044 
2045   // Create start and stop symbols.
2046   GlobalVariable *StartELFMetadata = new GlobalVariable(
2047       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2048       "__start_" + getGlobalMetadataSection());
2049   StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2050   GlobalVariable *StopELFMetadata = new GlobalVariable(
2051       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2052       "__stop_" + getGlobalMetadataSection());
2053   StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2054 
2055   // Create a call to register the globals with the runtime.
2056   IRB.CreateCall(AsanRegisterElfGlobals,
2057                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2058                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2059                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2060 
2061   // We also need to unregister globals at the end, e.g., when a shared library
2062   // gets closed.
2063   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2064   IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
2065                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2066                        IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2067                        IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2068 }
2069 
2070 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2071     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2072     ArrayRef<Constant *> MetadataInitializers) {
2073   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2074 
2075   // On recent Mach-O platforms, use a structure which binds the liveness of
2076   // the global variable to the metadata struct. Keep the list of "Liveness" GV
2077   // created to be added to llvm.compiler.used
2078   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2079   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2080 
2081   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2082     Constant *Initializer = MetadataInitializers[i];
2083     GlobalVariable *G = ExtendedGlobals[i];
2084     GlobalVariable *Metadata =
2085         CreateMetadataGlobal(M, Initializer, G->getName());
2086 
2087     // On recent Mach-O platforms, we emit the global metadata in a way that
2088     // allows the linker to properly strip dead globals.
2089     auto LivenessBinder =
2090         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2091                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
2092     GlobalVariable *Liveness = new GlobalVariable(
2093         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2094         Twine("__asan_binder_") + G->getName());
2095     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2096     LivenessGlobals[i] = Liveness;
2097   }
2098 
2099   // Update llvm.compiler.used, adding the new liveness globals. This is
2100   // needed so that during LTO these variables stay alive. The alternative
2101   // would be to have the linker handling the LTO symbols, but libLTO
2102   // current API does not expose access to the section for each symbol.
2103   if (!LivenessGlobals.empty())
2104     appendToCompilerUsed(M, LivenessGlobals);
2105 
2106   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2107   // to look up the loaded image that contains it. Second, we can store in it
2108   // whether registration has already occurred, to prevent duplicate
2109   // registration.
2110   //
2111   // common linkage ensures that there is only one global per shared library.
2112   GlobalVariable *RegisteredFlag = new GlobalVariable(
2113       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2114       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2115   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2116 
2117   IRB.CreateCall(AsanRegisterImageGlobals,
2118                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2119 
2120   // We also need to unregister globals at the end, e.g., when a shared library
2121   // gets closed.
2122   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2123   IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
2124                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2125 }
2126 
2127 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2128     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2129     ArrayRef<Constant *> MetadataInitializers) {
2130   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2131   unsigned N = ExtendedGlobals.size();
2132   assert(N > 0);
2133 
2134   // On platforms that don't have a custom metadata section, we emit an array
2135   // of global metadata structures.
2136   ArrayType *ArrayOfGlobalStructTy =
2137       ArrayType::get(MetadataInitializers[0]->getType(), N);
2138   auto AllGlobals = new GlobalVariable(
2139       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2140       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2141   if (Mapping.Scale > 3)
2142     AllGlobals->setAlignment(1ULL << Mapping.Scale);
2143 
2144   IRB.CreateCall(AsanRegisterGlobals,
2145                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2146                   ConstantInt::get(IntptrTy, N)});
2147 
2148   // We also need to unregister globals at the end, e.g., when a shared library
2149   // gets closed.
2150   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2151   IRB_Dtor.CreateCall(AsanUnregisterGlobals,
2152                       {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2153                        ConstantInt::get(IntptrTy, N)});
2154 }
2155 
2156 // This function replaces all global variables with new variables that have
2157 // trailing redzones. It also creates a function that poisons
2158 // redzones and inserts this function into llvm.global_ctors.
2159 // Sets *CtorComdat to true if the global registration code emitted into the
2160 // asan constructor is comdat-compatible.
2161 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2162                                                bool *CtorComdat) {
2163   *CtorComdat = false;
2164 
2165   SmallVector<GlobalVariable *, 16> GlobalsToChange;
2166 
2167   for (auto &G : M.globals()) {
2168     if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
2169   }
2170 
2171   size_t n = GlobalsToChange.size();
2172   if (n == 0) {
2173     *CtorComdat = true;
2174     return false;
2175   }
2176 
2177   auto &DL = M.getDataLayout();
2178 
2179   // A global is described by a structure
2180   //   size_t beg;
2181   //   size_t size;
2182   //   size_t size_with_redzone;
2183   //   const char *name;
2184   //   const char *module_name;
2185   //   size_t has_dynamic_init;
2186   //   void *source_location;
2187   //   size_t odr_indicator;
2188   // We initialize an array of such structures and pass it to a run-time call.
2189   StructType *GlobalStructTy =
2190       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2191                       IntptrTy, IntptrTy, IntptrTy);
2192   SmallVector<GlobalVariable *, 16> NewGlobals(n);
2193   SmallVector<Constant *, 16> Initializers(n);
2194 
2195   bool HasDynamicallyInitializedGlobals = false;
2196 
2197   // We shouldn't merge same module names, as this string serves as unique
2198   // module ID in runtime.
2199   GlobalVariable *ModuleName = createPrivateGlobalForString(
2200       M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2201 
2202   for (size_t i = 0; i < n; i++) {
2203     static const uint64_t kMaxGlobalRedzone = 1 << 18;
2204     GlobalVariable *G = GlobalsToChange[i];
2205 
2206     // FIXME: Metadata should be attched directly to the global directly instead
2207     // of being added to llvm.asan.globals.
2208     auto MD = GlobalsMD.get(G);
2209     StringRef NameForGlobal = G->getName();
2210     // Create string holding the global name (use global name from metadata
2211     // if it's available, otherwise just write the name of global variable).
2212     GlobalVariable *Name = createPrivateGlobalForString(
2213         M, MD.Name.empty() ? NameForGlobal : MD.Name,
2214         /*AllowMerging*/ true, kAsanGenPrefix);
2215 
2216     Type *Ty = G->getValueType();
2217     uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2218     uint64_t MinRZ = MinRedzoneSizeForGlobal();
2219     // MinRZ <= RZ <= kMaxGlobalRedzone
2220     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
2221     uint64_t RZ = std::max(
2222         MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
2223     uint64_t RightRedzoneSize = RZ;
2224     // Round up to MinRZ
2225     if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
2226     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
2227     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2228 
2229     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2230     Constant *NewInitializer = ConstantStruct::get(
2231         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2232 
2233     // Create a new global variable with enough space for a redzone.
2234     GlobalValue::LinkageTypes Linkage = G->getLinkage();
2235     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2236       Linkage = GlobalValue::InternalLinkage;
2237     GlobalVariable *NewGlobal =
2238         new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
2239                            "", G, G->getThreadLocalMode());
2240     NewGlobal->copyAttributesFrom(G);
2241     NewGlobal->setComdat(G->getComdat());
2242     NewGlobal->setAlignment(MinRZ);
2243     // Don't fold globals with redzones. ODR violation detector and redzone
2244     // poisoning implicitly creates a dependence on the global's address, so it
2245     // is no longer valid for it to be marked unnamed_addr.
2246     NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2247 
2248     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2249     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2250         G->isConstant()) {
2251       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2252       if (Seq && Seq->isCString())
2253         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2254     }
2255 
2256     // Transfer the debug info.  The payload starts at offset zero so we can
2257     // copy the debug info over as is.
2258     SmallVector<DIGlobalVariableExpression *, 1> GVs;
2259     G->getDebugInfo(GVs);
2260     for (auto *GV : GVs)
2261       NewGlobal->addDebugInfo(GV);
2262 
2263     Value *Indices2[2];
2264     Indices2[0] = IRB.getInt32(0);
2265     Indices2[1] = IRB.getInt32(0);
2266 
2267     G->replaceAllUsesWith(
2268         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2269     NewGlobal->takeName(G);
2270     G->eraseFromParent();
2271     NewGlobals[i] = NewGlobal;
2272 
2273     Constant *SourceLoc;
2274     if (!MD.SourceLoc.empty()) {
2275       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2276       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2277     } else {
2278       SourceLoc = ConstantInt::get(IntptrTy, 0);
2279     }
2280 
2281     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2282     GlobalValue *InstrumentedGlobal = NewGlobal;
2283 
2284     bool CanUsePrivateAliases =
2285         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2286         TargetTriple.isOSBinFormatWasm();
2287     if (CanUsePrivateAliases && UsePrivateAlias) {
2288       // Create local alias for NewGlobal to avoid crash on ODR between
2289       // instrumented and non-instrumented libraries.
2290       InstrumentedGlobal =
2291           GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2292     }
2293 
2294     // ODR should not happen for local linkage.
2295     if (NewGlobal->hasLocalLinkage()) {
2296       ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2297                                                IRB.getInt8PtrTy());
2298     } else if (UseOdrIndicator) {
2299       // With local aliases, we need to provide another externally visible
2300       // symbol __odr_asan_XXX to detect ODR violation.
2301       auto *ODRIndicatorSym =
2302           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2303                              Constant::getNullValue(IRB.getInt8Ty()),
2304                              kODRGenPrefix + NameForGlobal, nullptr,
2305                              NewGlobal->getThreadLocalMode());
2306 
2307       // Set meaningful attributes for indicator symbol.
2308       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2309       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2310       ODRIndicatorSym->setAlignment(1);
2311       ODRIndicator = ODRIndicatorSym;
2312     }
2313 
2314     Constant *Initializer = ConstantStruct::get(
2315         GlobalStructTy,
2316         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2317         ConstantInt::get(IntptrTy, SizeInBytes),
2318         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2319         ConstantExpr::getPointerCast(Name, IntptrTy),
2320         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2321         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2322         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2323 
2324     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2325 
2326     LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2327 
2328     Initializers[i] = Initializer;
2329   }
2330 
2331   // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2332   // ConstantMerge'ing them.
2333   SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2334   for (size_t i = 0; i < n; i++) {
2335     GlobalVariable *G = NewGlobals[i];
2336     if (G->getName().empty()) continue;
2337     GlobalsToAddToUsedList.push_back(G);
2338   }
2339   appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2340 
2341   std::string ELFUniqueModuleId =
2342       (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2343                                                         : "";
2344 
2345   if (!ELFUniqueModuleId.empty()) {
2346     InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2347     *CtorComdat = true;
2348   } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2349     InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2350   } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2351     InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2352   } else {
2353     InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2354   }
2355 
2356   // Create calls for poisoning before initializers run and unpoisoning after.
2357   if (HasDynamicallyInitializedGlobals)
2358     createInitializerPoisonCalls(M, ModuleName);
2359 
2360   LLVM_DEBUG(dbgs() << M);
2361   return true;
2362 }
2363 
2364 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2365   int LongSize = M.getDataLayout().getPointerSizeInBits();
2366   bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2367   int Version = 8;
2368   // 32-bit Android is one version ahead because of the switch to dynamic
2369   // shadow.
2370   Version += (LongSize == 32 && isAndroid);
2371   return Version;
2372 }
2373 
2374 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2375   initializeCallbacks(M);
2376 
2377   if (CompileKernel)
2378     return false;
2379 
2380   // Create a module constructor. A destructor is created lazily because not all
2381   // platforms, and not all modules need it.
2382   std::string VersionCheckName =
2383       kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M));
2384   std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
2385       M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
2386       /*InitArgs=*/{}, VersionCheckName);
2387 
2388   bool CtorComdat = true;
2389   bool Changed = false;
2390   // TODO(glider): temporarily disabled globals instrumentation for KASan.
2391   if (ClGlobals) {
2392     IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2393     Changed |= InstrumentGlobals(IRB, M, &CtorComdat);
2394   }
2395 
2396   // Put the constructor and destructor in comdat if both
2397   // (1) global instrumentation is not TU-specific
2398   // (2) target is ELF.
2399   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2400     AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2401     appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority,
2402                         AsanCtorFunction);
2403     if (AsanDtorFunction) {
2404       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2405       appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority,
2406                           AsanDtorFunction);
2407     }
2408   } else {
2409     appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
2410     if (AsanDtorFunction)
2411       appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
2412   }
2413 
2414   return Changed;
2415 }
2416 
2417 void AddressSanitizer::initializeCallbacks(Module &M) {
2418   IRBuilder<> IRB(*C);
2419   // Create __asan_report* callbacks.
2420   // IsWrite, TypeSize and Exp are encoded in the function name.
2421   for (int Exp = 0; Exp < 2; Exp++) {
2422     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2423       const std::string TypeStr = AccessIsWrite ? "store" : "load";
2424       const std::string ExpStr = Exp ? "exp_" : "";
2425       const std::string EndingStr = Recover ? "_noabort" : "";
2426 
2427       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2428       SmallVector<Type *, 2> Args1{1, IntptrTy};
2429       if (Exp) {
2430         Type *ExpType = Type::getInt32Ty(*C);
2431         Args2.push_back(ExpType);
2432         Args1.push_back(ExpType);
2433       }
2434       AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2435           kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2436           FunctionType::get(IRB.getVoidTy(), Args2, false));
2437 
2438       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2439           ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2440           FunctionType::get(IRB.getVoidTy(), Args2, false));
2441 
2442       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2443            AccessSizeIndex++) {
2444         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2445         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2446             M.getOrInsertFunction(
2447                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2448                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2449 
2450         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2451             M.getOrInsertFunction(
2452                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2453                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2454       }
2455     }
2456   }
2457 
2458   const std::string MemIntrinCallbackPrefix =
2459       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2460   AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2461                                       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2462                                       IRB.getInt8PtrTy(), IntptrTy);
2463   AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2464                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2465                                      IRB.getInt8PtrTy(), IntptrTy);
2466   AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2467                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2468                                      IRB.getInt32Ty(), IntptrTy);
2469 
2470   AsanHandleNoReturnFunc =
2471       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2472 
2473   AsanPtrCmpFunction =
2474       M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2475   AsanPtrSubFunction =
2476       M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2477   // We insert an empty inline asm after __asan_report* to avoid callback merge.
2478   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
2479                             StringRef(""), StringRef(""),
2480                             /*hasSideEffects=*/true);
2481   if (Mapping.InGlobal)
2482     AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2483                                            ArrayType::get(IRB.getInt8Ty(), 0));
2484 }
2485 
2486 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2487   // For each NSObject descendant having a +load method, this method is invoked
2488   // by the ObjC runtime before any of the static constructors is called.
2489   // Therefore we need to instrument such methods with a call to __asan_init
2490   // at the beginning in order to initialize our runtime before any access to
2491   // the shadow memory.
2492   // We cannot just ignore these methods, because they may call other
2493   // instrumented functions.
2494   if (F.getName().find(" load]") != std::string::npos) {
2495     FunctionCallee AsanInitFunction =
2496         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2497     IRBuilder<> IRB(&F.front(), F.front().begin());
2498     IRB.CreateCall(AsanInitFunction, {});
2499     return true;
2500   }
2501   return false;
2502 }
2503 
2504 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2505   // Generate code only when dynamic addressing is needed.
2506   if (Mapping.Offset != kDynamicShadowSentinel)
2507     return;
2508 
2509   IRBuilder<> IRB(&F.front().front());
2510   if (Mapping.InGlobal) {
2511     if (ClWithIfuncSuppressRemat) {
2512       // An empty inline asm with input reg == output reg.
2513       // An opaque pointer-to-int cast, basically.
2514       InlineAsm *Asm = InlineAsm::get(
2515           FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2516           StringRef(""), StringRef("=r,0"),
2517           /*hasSideEffects=*/false);
2518       LocalDynamicShadow =
2519           IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2520     } else {
2521       LocalDynamicShadow =
2522           IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2523     }
2524   } else {
2525     Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2526         kAsanShadowMemoryDynamicAddress, IntptrTy);
2527     LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2528   }
2529 }
2530 
2531 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2532   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2533   // to it as uninteresting. This assumes we haven't started processing allocas
2534   // yet. This check is done up front because iterating the use list in
2535   // isInterestingAlloca would be algorithmically slower.
2536   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2537 
2538   // Try to get the declaration of llvm.localescape. If it's not in the module,
2539   // we can exit early.
2540   if (!F.getParent()->getFunction("llvm.localescape")) return;
2541 
2542   // Look for a call to llvm.localescape call in the entry block. It can't be in
2543   // any other block.
2544   for (Instruction &I : F.getEntryBlock()) {
2545     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2546     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2547       // We found a call. Mark all the allocas passed in as uninteresting.
2548       for (Value *Arg : II->arg_operands()) {
2549         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2550         assert(AI && AI->isStaticAlloca() &&
2551                "non-static alloca arg to localescape");
2552         ProcessedAllocas[AI] = false;
2553       }
2554       break;
2555     }
2556   }
2557 }
2558 
2559 bool AddressSanitizer::instrumentFunction(Function &F,
2560                                           const TargetLibraryInfo *TLI) {
2561   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2562   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2563   if (F.getName().startswith("__asan_")) return false;
2564 
2565   bool FunctionModified = false;
2566 
2567   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2568   // This function needs to be called even if the function body is not
2569   // instrumented.
2570   if (maybeInsertAsanInitAtFunctionEntry(F))
2571     FunctionModified = true;
2572 
2573   // Leave if the function doesn't need instrumentation.
2574   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2575 
2576   LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2577 
2578   initializeCallbacks(*F.getParent());
2579 
2580   FunctionStateRAII CleanupObj(this);
2581 
2582   maybeInsertDynamicShadowAtFunctionEntry(F);
2583 
2584   // We can't instrument allocas used with llvm.localescape. Only static allocas
2585   // can be passed to that intrinsic.
2586   markEscapedLocalAllocas(F);
2587 
2588   // We want to instrument every address only once per basic block (unless there
2589   // are calls between uses).
2590   SmallPtrSet<Value *, 16> TempsToInstrument;
2591   SmallVector<Instruction *, 16> ToInstrument;
2592   SmallVector<Instruction *, 8> NoReturnCalls;
2593   SmallVector<BasicBlock *, 16> AllBlocks;
2594   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2595   int NumAllocas = 0;
2596   bool IsWrite;
2597   unsigned Alignment;
2598   uint64_t TypeSize;
2599 
2600   // Fill the set of memory operations to instrument.
2601   for (auto &BB : F) {
2602     AllBlocks.push_back(&BB);
2603     TempsToInstrument.clear();
2604     int NumInsnsPerBB = 0;
2605     for (auto &Inst : BB) {
2606       if (LooksLikeCodeInBug11395(&Inst)) return false;
2607       Value *MaybeMask = nullptr;
2608       if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
2609                                                   &Alignment, &MaybeMask)) {
2610         if (ClOpt && ClOptSameTemp) {
2611           // If we have a mask, skip instrumentation if we've already
2612           // instrumented the full object. But don't add to TempsToInstrument
2613           // because we might get another load/store with a different mask.
2614           if (MaybeMask) {
2615             if (TempsToInstrument.count(Addr))
2616               continue; // We've seen this (whole) temp in the current BB.
2617           } else {
2618             if (!TempsToInstrument.insert(Addr).second)
2619               continue; // We've seen this temp in the current BB.
2620           }
2621         }
2622       } else if (ClInvalidPointerPairs &&
2623                  isInterestingPointerComparisonOrSubtraction(&Inst)) {
2624         PointerComparisonsOrSubtracts.push_back(&Inst);
2625         continue;
2626       } else if (isa<MemIntrinsic>(Inst)) {
2627         // ok, take it.
2628       } else {
2629         if (isa<AllocaInst>(Inst)) NumAllocas++;
2630         CallSite CS(&Inst);
2631         if (CS) {
2632           // A call inside BB.
2633           TempsToInstrument.clear();
2634           if (CS.doesNotReturn() && !CS->getMetadata("nosanitize"))
2635             NoReturnCalls.push_back(CS.getInstruction());
2636         }
2637         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2638           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2639         continue;
2640       }
2641       ToInstrument.push_back(&Inst);
2642       NumInsnsPerBB++;
2643       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2644     }
2645   }
2646 
2647   bool UseCalls =
2648       (ClInstrumentationWithCallsThreshold >= 0 &&
2649        ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
2650   const DataLayout &DL = F.getParent()->getDataLayout();
2651   ObjectSizeOpts ObjSizeOpts;
2652   ObjSizeOpts.RoundToAlign = true;
2653   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2654 
2655   // Instrument.
2656   int NumInstrumented = 0;
2657   for (auto Inst : ToInstrument) {
2658     if (ClDebugMin < 0 || ClDebugMax < 0 ||
2659         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
2660       if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
2661         instrumentMop(ObjSizeVis, Inst, UseCalls,
2662                       F.getParent()->getDataLayout());
2663       else
2664         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
2665     }
2666     NumInstrumented++;
2667   }
2668 
2669   FunctionStackPoisoner FSP(F, *this);
2670   bool ChangedStack = FSP.runOnFunction();
2671 
2672   // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2673   // See e.g. https://github.com/google/sanitizers/issues/37
2674   for (auto CI : NoReturnCalls) {
2675     IRBuilder<> IRB(CI);
2676     IRB.CreateCall(AsanHandleNoReturnFunc, {});
2677   }
2678 
2679   for (auto Inst : PointerComparisonsOrSubtracts) {
2680     instrumentPointerComparisonOrSubtraction(Inst);
2681     NumInstrumented++;
2682   }
2683 
2684   if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty())
2685     FunctionModified = true;
2686 
2687   LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2688                     << F << "\n");
2689 
2690   return FunctionModified;
2691 }
2692 
2693 // Workaround for bug 11395: we don't want to instrument stack in functions
2694 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2695 // FIXME: remove once the bug 11395 is fixed.
2696 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2697   if (LongSize != 32) return false;
2698   CallInst *CI = dyn_cast<CallInst>(I);
2699   if (!CI || !CI->isInlineAsm()) return false;
2700   if (CI->getNumArgOperands() <= 5) return false;
2701   // We have inline assembly with quite a few arguments.
2702   return true;
2703 }
2704 
2705 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2706   IRBuilder<> IRB(*C);
2707   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2708     std::string Suffix = itostr(i);
2709     AsanStackMallocFunc[i] = M.getOrInsertFunction(
2710         kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2711     AsanStackFreeFunc[i] =
2712         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2713                               IRB.getVoidTy(), IntptrTy, IntptrTy);
2714   }
2715   if (ASan.UseAfterScope) {
2716     AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2717         kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2718     AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2719         kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2720   }
2721 
2722   for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2723     std::ostringstream Name;
2724     Name << kAsanSetShadowPrefix;
2725     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2726     AsanSetShadowFunc[Val] =
2727         M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2728   }
2729 
2730   AsanAllocaPoisonFunc = M.getOrInsertFunction(
2731       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2732   AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2733       kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2734 }
2735 
2736 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2737                                                ArrayRef<uint8_t> ShadowBytes,
2738                                                size_t Begin, size_t End,
2739                                                IRBuilder<> &IRB,
2740                                                Value *ShadowBase) {
2741   if (Begin >= End)
2742     return;
2743 
2744   const size_t LargestStoreSizeInBytes =
2745       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2746 
2747   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2748 
2749   // Poison given range in shadow using larges store size with out leading and
2750   // trailing zeros in ShadowMask. Zeros never change, so they need neither
2751   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2752   // middle of a store.
2753   for (size_t i = Begin; i < End;) {
2754     if (!ShadowMask[i]) {
2755       assert(!ShadowBytes[i]);
2756       ++i;
2757       continue;
2758     }
2759 
2760     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2761     // Fit store size into the range.
2762     while (StoreSizeInBytes > End - i)
2763       StoreSizeInBytes /= 2;
2764 
2765     // Minimize store size by trimming trailing zeros.
2766     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2767       while (j <= StoreSizeInBytes / 2)
2768         StoreSizeInBytes /= 2;
2769     }
2770 
2771     uint64_t Val = 0;
2772     for (size_t j = 0; j < StoreSizeInBytes; j++) {
2773       if (IsLittleEndian)
2774         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
2775       else
2776         Val = (Val << 8) | ShadowBytes[i + j];
2777     }
2778 
2779     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
2780     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
2781     IRB.CreateAlignedStore(
2782         Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1);
2783 
2784     i += StoreSizeInBytes;
2785   }
2786 }
2787 
2788 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2789                                          ArrayRef<uint8_t> ShadowBytes,
2790                                          IRBuilder<> &IRB, Value *ShadowBase) {
2791   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
2792 }
2793 
2794 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2795                                          ArrayRef<uint8_t> ShadowBytes,
2796                                          size_t Begin, size_t End,
2797                                          IRBuilder<> &IRB, Value *ShadowBase) {
2798   assert(ShadowMask.size() == ShadowBytes.size());
2799   size_t Done = Begin;
2800   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
2801     if (!ShadowMask[i]) {
2802       assert(!ShadowBytes[i]);
2803       continue;
2804     }
2805     uint8_t Val = ShadowBytes[i];
2806     if (!AsanSetShadowFunc[Val])
2807       continue;
2808 
2809     // Skip same values.
2810     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
2811     }
2812 
2813     if (j - i >= ClMaxInlinePoisoningSize) {
2814       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
2815       IRB.CreateCall(AsanSetShadowFunc[Val],
2816                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
2817                       ConstantInt::get(IntptrTy, j - i)});
2818       Done = j;
2819     }
2820   }
2821 
2822   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
2823 }
2824 
2825 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2826 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2827 static int StackMallocSizeClass(uint64_t LocalStackSize) {
2828   assert(LocalStackSize <= kMaxStackMallocSize);
2829   uint64_t MaxSize = kMinStackMallocSize;
2830   for (int i = 0;; i++, MaxSize *= 2)
2831     if (LocalStackSize <= MaxSize) return i;
2832   llvm_unreachable("impossible LocalStackSize");
2833 }
2834 
2835 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2836   Instruction *CopyInsertPoint = &F.front().front();
2837   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
2838     // Insert after the dynamic shadow location is determined
2839     CopyInsertPoint = CopyInsertPoint->getNextNode();
2840     assert(CopyInsertPoint);
2841   }
2842   IRBuilder<> IRB(CopyInsertPoint);
2843   const DataLayout &DL = F.getParent()->getDataLayout();
2844   for (Argument &Arg : F.args()) {
2845     if (Arg.hasByValAttr()) {
2846       Type *Ty = Arg.getType()->getPointerElementType();
2847       unsigned Align = Arg.getParamAlignment();
2848       if (Align == 0) Align = DL.getABITypeAlignment(Ty);
2849 
2850       AllocaInst *AI = IRB.CreateAlloca(
2851           Ty, nullptr,
2852           (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
2853               ".byval");
2854       AI->setAlignment(Align);
2855       Arg.replaceAllUsesWith(AI);
2856 
2857       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2858       IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize);
2859     }
2860   }
2861 }
2862 
2863 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
2864                                           Value *ValueIfTrue,
2865                                           Instruction *ThenTerm,
2866                                           Value *ValueIfFalse) {
2867   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
2868   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
2869   PHI->addIncoming(ValueIfFalse, CondBlock);
2870   BasicBlock *ThenBlock = ThenTerm->getParent();
2871   PHI->addIncoming(ValueIfTrue, ThenBlock);
2872   return PHI;
2873 }
2874 
2875 Value *FunctionStackPoisoner::createAllocaForLayout(
2876     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
2877   AllocaInst *Alloca;
2878   if (Dynamic) {
2879     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
2880                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
2881                               "MyAlloca");
2882   } else {
2883     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
2884                               nullptr, "MyAlloca");
2885     assert(Alloca->isStaticAlloca());
2886   }
2887   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
2888   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
2889   Alloca->setAlignment(FrameAlignment);
2890   return IRB.CreatePointerCast(Alloca, IntptrTy);
2891 }
2892 
2893 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2894   BasicBlock &FirstBB = *F.begin();
2895   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
2896   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
2897   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
2898   DynamicAllocaLayout->setAlignment(32);
2899 }
2900 
2901 void FunctionStackPoisoner::processDynamicAllocas() {
2902   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
2903     assert(DynamicAllocaPoisonCallVec.empty());
2904     return;
2905   }
2906 
2907   // Insert poison calls for lifetime intrinsics for dynamic allocas.
2908   for (const auto &APC : DynamicAllocaPoisonCallVec) {
2909     assert(APC.InsBefore);
2910     assert(APC.AI);
2911     assert(ASan.isInterestingAlloca(*APC.AI));
2912     assert(!APC.AI->isStaticAlloca());
2913 
2914     IRBuilder<> IRB(APC.InsBefore);
2915     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
2916     // Dynamic allocas will be unpoisoned unconditionally below in
2917     // unpoisonDynamicAllocas.
2918     // Flag that we need unpoison static allocas.
2919   }
2920 
2921   // Handle dynamic allocas.
2922   createDynamicAllocasInitStorage();
2923   for (auto &AI : DynamicAllocaVec)
2924     handleDynamicAllocaCall(AI);
2925   unpoisonDynamicAllocas();
2926 }
2927 
2928 void FunctionStackPoisoner::processStaticAllocas() {
2929   if (AllocaVec.empty()) {
2930     assert(StaticAllocaPoisonCallVec.empty());
2931     return;
2932   }
2933 
2934   int StackMallocIdx = -1;
2935   DebugLoc EntryDebugLocation;
2936   if (auto SP = F.getSubprogram())
2937     EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
2938 
2939   Instruction *InsBefore = AllocaVec[0];
2940   IRBuilder<> IRB(InsBefore);
2941   IRB.SetCurrentDebugLocation(EntryDebugLocation);
2942 
2943   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2944   // debug info is broken, because only entry-block allocas are treated as
2945   // regular stack slots.
2946   auto InsBeforeB = InsBefore->getParent();
2947   assert(InsBeforeB == &F.getEntryBlock());
2948   for (auto *AI : StaticAllocasToMoveUp)
2949     if (AI->getParent() == InsBeforeB)
2950       AI->moveBefore(InsBefore);
2951 
2952   // If we have a call to llvm.localescape, keep it in the entry block.
2953   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
2954 
2955   SmallVector<ASanStackVariableDescription, 16> SVD;
2956   SVD.reserve(AllocaVec.size());
2957   for (AllocaInst *AI : AllocaVec) {
2958     ASanStackVariableDescription D = {AI->getName().data(),
2959                                       ASan.getAllocaSizeInBytes(*AI),
2960                                       0,
2961                                       AI->getAlignment(),
2962                                       AI,
2963                                       0,
2964                                       0};
2965     SVD.push_back(D);
2966   }
2967 
2968   // Minimal header size (left redzone) is 4 pointers,
2969   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
2970   size_t Granularity = 1ULL << Mapping.Scale;
2971   size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
2972   const ASanStackFrameLayout &L =
2973       ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
2974 
2975   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
2976   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
2977   for (auto &Desc : SVD)
2978     AllocaToSVDMap[Desc.AI] = &Desc;
2979 
2980   // Update SVD with information from lifetime intrinsics.
2981   for (const auto &APC : StaticAllocaPoisonCallVec) {
2982     assert(APC.InsBefore);
2983     assert(APC.AI);
2984     assert(ASan.isInterestingAlloca(*APC.AI));
2985     assert(APC.AI->isStaticAlloca());
2986 
2987     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
2988     Desc.LifetimeSize = Desc.Size;
2989     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
2990       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
2991         if (LifetimeLoc->getFile() == FnLoc->getFile())
2992           if (unsigned Line = LifetimeLoc->getLine())
2993             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
2994       }
2995     }
2996   }
2997 
2998   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
2999   LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3000   uint64_t LocalStackSize = L.FrameSize;
3001   bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
3002                        LocalStackSize <= kMaxStackMallocSize;
3003   bool DoDynamicAlloca = ClDynamicAllocaStack;
3004   // Don't do dynamic alloca or stack malloc if:
3005   // 1) There is inline asm: too often it makes assumptions on which registers
3006   //    are available.
3007   // 2) There is a returns_twice call (typically setjmp), which is
3008   //    optimization-hostile, and doesn't play well with introduced indirect
3009   //    register-relative calculation of local variable addresses.
3010   DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3011   DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3012 
3013   Value *StaticAlloca =
3014       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3015 
3016   Value *FakeStack;
3017   Value *LocalStackBase;
3018   Value *LocalStackBaseAlloca;
3019   bool Deref;
3020 
3021   if (DoStackMalloc) {
3022     LocalStackBaseAlloca =
3023         IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3024     // void *FakeStack = __asan_option_detect_stack_use_after_return
3025     //     ? __asan_stack_malloc_N(LocalStackSize)
3026     //     : nullptr;
3027     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3028     Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3029         kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3030     Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3031         IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3032         Constant::getNullValue(IRB.getInt32Ty()));
3033     Instruction *Term =
3034         SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3035     IRBuilder<> IRBIf(Term);
3036     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
3037     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3038     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3039     Value *FakeStackValue =
3040         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3041                          ConstantInt::get(IntptrTy, LocalStackSize));
3042     IRB.SetInsertPoint(InsBefore);
3043     IRB.SetCurrentDebugLocation(EntryDebugLocation);
3044     FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3045                           ConstantInt::get(IntptrTy, 0));
3046 
3047     Value *NoFakeStack =
3048         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3049     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3050     IRBIf.SetInsertPoint(Term);
3051     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
3052     Value *AllocaValue =
3053         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3054 
3055     IRB.SetInsertPoint(InsBefore);
3056     IRB.SetCurrentDebugLocation(EntryDebugLocation);
3057     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3058     IRB.SetCurrentDebugLocation(EntryDebugLocation);
3059     IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3060     Deref = true;
3061   } else {
3062     // void *FakeStack = nullptr;
3063     // void *LocalStackBase = alloca(LocalStackSize);
3064     FakeStack = ConstantInt::get(IntptrTy, 0);
3065     LocalStackBase =
3066         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3067     LocalStackBaseAlloca = LocalStackBase;
3068     Deref = false;
3069   }
3070 
3071   // Replace Alloca instructions with base+offset.
3072   for (const auto &Desc : SVD) {
3073     AllocaInst *AI = Desc.AI;
3074     replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, Deref,
3075                                Desc.Offset, DIExpression::NoDeref);
3076     Value *NewAllocaPtr = IRB.CreateIntToPtr(
3077         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3078         AI->getType());
3079     AI->replaceAllUsesWith(NewAllocaPtr);
3080   }
3081 
3082   // The left-most redzone has enough space for at least 4 pointers.
3083   // Write the Magic value to redzone[0].
3084   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3085   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3086                   BasePlus0);
3087   // Write the frame description constant to redzone[1].
3088   Value *BasePlus1 = IRB.CreateIntToPtr(
3089       IRB.CreateAdd(LocalStackBase,
3090                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3091       IntptrPtrTy);
3092   GlobalVariable *StackDescriptionGlobal =
3093       createPrivateGlobalForString(*F.getParent(), DescriptionString,
3094                                    /*AllowMerging*/ true, kAsanGenPrefix);
3095   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3096   IRB.CreateStore(Description, BasePlus1);
3097   // Write the PC to redzone[2].
3098   Value *BasePlus2 = IRB.CreateIntToPtr(
3099       IRB.CreateAdd(LocalStackBase,
3100                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3101       IntptrPtrTy);
3102   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3103 
3104   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3105 
3106   // Poison the stack red zones at the entry.
3107   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3108   // As mask we must use most poisoned case: red zones and after scope.
3109   // As bytes we can use either the same or just red zones only.
3110   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3111 
3112   if (!StaticAllocaPoisonCallVec.empty()) {
3113     const auto &ShadowInScope = GetShadowBytes(SVD, L);
3114 
3115     // Poison static allocas near lifetime intrinsics.
3116     for (const auto &APC : StaticAllocaPoisonCallVec) {
3117       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3118       assert(Desc.Offset % L.Granularity == 0);
3119       size_t Begin = Desc.Offset / L.Granularity;
3120       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3121 
3122       IRBuilder<> IRB(APC.InsBefore);
3123       copyToShadow(ShadowAfterScope,
3124                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3125                    IRB, ShadowBase);
3126     }
3127   }
3128 
3129   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3130   SmallVector<uint8_t, 64> ShadowAfterReturn;
3131 
3132   // (Un)poison the stack before all ret instructions.
3133   for (auto Ret : RetVec) {
3134     IRBuilder<> IRBRet(Ret);
3135     // Mark the current frame as retired.
3136     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3137                        BasePlus0);
3138     if (DoStackMalloc) {
3139       assert(StackMallocIdx >= 0);
3140       // if FakeStack != 0  // LocalStackBase == FakeStack
3141       //     // In use-after-return mode, poison the whole stack frame.
3142       //     if StackMallocIdx <= 4
3143       //         // For small sizes inline the whole thing:
3144       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3145       //         **SavedFlagPtr(FakeStack) = 0
3146       //     else
3147       //         __asan_stack_free_N(FakeStack, LocalStackSize)
3148       // else
3149       //     <This is not a fake stack; unpoison the redzones>
3150       Value *Cmp =
3151           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3152       Instruction *ThenTerm, *ElseTerm;
3153       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3154 
3155       IRBuilder<> IRBPoison(ThenTerm);
3156       if (StackMallocIdx <= 4) {
3157         int ClassSize = kMinStackMallocSize << StackMallocIdx;
3158         ShadowAfterReturn.resize(ClassSize / L.Granularity,
3159                                  kAsanStackUseAfterReturnMagic);
3160         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3161                      ShadowBase);
3162         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3163             FakeStack,
3164             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3165         Value *SavedFlagPtr = IRBPoison.CreateLoad(
3166             IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3167         IRBPoison.CreateStore(
3168             Constant::getNullValue(IRBPoison.getInt8Ty()),
3169             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3170       } else {
3171         // For larger frames call __asan_stack_free_*.
3172         IRBPoison.CreateCall(
3173             AsanStackFreeFunc[StackMallocIdx],
3174             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3175       }
3176 
3177       IRBuilder<> IRBElse(ElseTerm);
3178       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3179     } else {
3180       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3181     }
3182   }
3183 
3184   // We are done. Remove the old unused alloca instructions.
3185   for (auto AI : AllocaVec) AI->eraseFromParent();
3186 }
3187 
3188 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3189                                          IRBuilder<> &IRB, bool DoPoison) {
3190   // For now just insert the call to ASan runtime.
3191   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3192   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3193   IRB.CreateCall(
3194       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3195       {AddrArg, SizeArg});
3196 }
3197 
3198 // Handling llvm.lifetime intrinsics for a given %alloca:
3199 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3200 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3201 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3202 //     could be poisoned by previous llvm.lifetime.end instruction, as the
3203 //     variable may go in and out of scope several times, e.g. in loops).
3204 // (3) if we poisoned at least one %alloca in a function,
3205 //     unpoison the whole stack frame at function exit.
3206 
3207 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
3208   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
3209     // We're interested only in allocas we can handle.
3210     return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
3211   // See if we've already calculated (or started to calculate) alloca for a
3212   // given value.
3213   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
3214   if (I != AllocaForValue.end()) return I->second;
3215   // Store 0 while we're calculating alloca for value V to avoid
3216   // infinite recursion if the value references itself.
3217   AllocaForValue[V] = nullptr;
3218   AllocaInst *Res = nullptr;
3219   if (CastInst *CI = dyn_cast<CastInst>(V))
3220     Res = findAllocaForValue(CI->getOperand(0));
3221   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
3222     for (Value *IncValue : PN->incoming_values()) {
3223       // Allow self-referencing phi-nodes.
3224       if (IncValue == PN) continue;
3225       AllocaInst *IncValueAI = findAllocaForValue(IncValue);
3226       // AI for incoming values should exist and should all be equal.
3227       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
3228         return nullptr;
3229       Res = IncValueAI;
3230     }
3231   } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3232     Res = findAllocaForValue(EP->getPointerOperand());
3233   } else {
3234     LLVM_DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V
3235                       << "\n");
3236   }
3237   if (Res) AllocaForValue[V] = Res;
3238   return Res;
3239 }
3240 
3241 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3242   IRBuilder<> IRB(AI);
3243 
3244   const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
3245   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3246 
3247   Value *Zero = Constant::getNullValue(IntptrTy);
3248   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3249   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3250 
3251   // Since we need to extend alloca with additional memory to locate
3252   // redzones, and OldSize is number of allocated blocks with
3253   // ElementSize size, get allocated memory size in bytes by
3254   // OldSize * ElementSize.
3255   const unsigned ElementSize =
3256       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3257   Value *OldSize =
3258       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3259                     ConstantInt::get(IntptrTy, ElementSize));
3260 
3261   // PartialSize = OldSize % 32
3262   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3263 
3264   // Misalign = kAllocaRzSize - PartialSize;
3265   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3266 
3267   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3268   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3269   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3270 
3271   // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
3272   // Align is added to locate left redzone, PartialPadding for possible
3273   // partial redzone and kAllocaRzSize for right redzone respectively.
3274   Value *AdditionalChunkSize = IRB.CreateAdd(
3275       ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
3276 
3277   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3278 
3279   // Insert new alloca with new NewSize and Align params.
3280   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3281   NewAlloca->setAlignment(Align);
3282 
3283   // NewAddress = Address + Align
3284   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3285                                     ConstantInt::get(IntptrTy, Align));
3286 
3287   // Insert __asan_alloca_poison call for new created alloca.
3288   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3289 
3290   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3291   // for unpoisoning stuff.
3292   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3293 
3294   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3295 
3296   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3297   AI->replaceAllUsesWith(NewAddressPtr);
3298 
3299   // We are done. Erase old alloca from parent.
3300   AI->eraseFromParent();
3301 }
3302 
3303 // isSafeAccess returns true if Addr is always inbounds with respect to its
3304 // base object. For example, it is a field access or an array access with
3305 // constant inbounds index.
3306 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3307                                     Value *Addr, uint64_t TypeSize) const {
3308   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3309   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3310   uint64_t Size = SizeOffset.first.getZExtValue();
3311   int64_t Offset = SizeOffset.second.getSExtValue();
3312   // Three checks are required to ensure safety:
3313   // . Offset >= 0  (since the offset is given from the base ptr)
3314   // . Size >= Offset  (unsigned)
3315   // . Size - Offset >= NeededSize  (unsigned)
3316   return Offset >= 0 && Size >= uint64_t(Offset) &&
3317          Size - uint64_t(Offset) >= TypeSize / 8;
3318 }
3319