1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of AddressSanitizer, an address sanity checker. 11 // Details of the algorithm: 12 // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/InstVisitor.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/MC/MCSectionMachO.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/DataTypes.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/Endian.h" 46 #include "llvm/Support/SwapByteOrder.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/Instrumentation.h" 49 #include "llvm/Transforms/Scalar.h" 50 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Cloning.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include "llvm/Transforms/Utils/ModuleUtils.h" 55 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 56 #include <algorithm> 57 #include <iomanip> 58 #include <limits> 59 #include <sstream> 60 #include <string> 61 #include <system_error> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "asan" 66 67 static const uint64_t kDefaultShadowScale = 3; 68 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 69 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 70 static const uint64_t kDynamicShadowSentinel = ~(uint64_t)0; 71 static const uint64_t kIOSShadowOffset32 = 1ULL << 30; 72 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30; 73 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64; 74 static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000; // < 2G. 75 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 76 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41; 77 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 78 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 79 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 80 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 81 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 82 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 83 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 84 // The shadow memory space is dynamically allocated. 85 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 86 87 static const size_t kMinStackMallocSize = 1 << 6; // 64B 88 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 89 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 90 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 91 92 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 93 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 94 static const uint64_t kAsanCtorAndDtorPriority = 1; 95 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 96 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 97 static const char *const kAsanUnregisterGlobalsName = 98 "__asan_unregister_globals"; 99 static const char *const kAsanRegisterImageGlobalsName = 100 "__asan_register_image_globals"; 101 static const char *const kAsanUnregisterImageGlobalsName = 102 "__asan_unregister_image_globals"; 103 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 104 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 105 static const char *const kAsanInitName = "__asan_init"; 106 static const char *const kAsanVersionCheckName = 107 "__asan_version_mismatch_check_v8"; 108 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 109 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 110 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 111 static const int kMaxAsanStackMallocSizeClass = 10; 112 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 113 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 114 static const char *const kAsanGenPrefix = "__asan_gen_"; 115 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 116 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 117 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 118 static const char *const kAsanPoisonStackMemoryName = 119 "__asan_poison_stack_memory"; 120 static const char *const kAsanUnpoisonStackMemoryName = 121 "__asan_unpoison_stack_memory"; 122 static const char *const kAsanGlobalsRegisteredFlagName = 123 "__asan_globals_registered"; 124 125 static const char *const kAsanOptionDetectUseAfterReturn = 126 "__asan_option_detect_stack_use_after_return"; 127 128 static const char *const kAsanShadowMemoryDynamicAddress = 129 "__asan_shadow_memory_dynamic_address"; 130 131 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 132 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 133 134 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 135 static const size_t kNumberOfAccessSizes = 5; 136 137 static const unsigned kAllocaRzSize = 32; 138 139 // Command-line flags. 140 static cl::opt<bool> ClEnableKasan( 141 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 142 cl::Hidden, cl::init(false)); 143 static cl::opt<bool> ClRecover( 144 "asan-recover", 145 cl::desc("Enable recovery mode (continue-after-error)."), 146 cl::Hidden, cl::init(false)); 147 148 // This flag may need to be replaced with -f[no-]asan-reads. 149 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 150 cl::desc("instrument read instructions"), 151 cl::Hidden, cl::init(true)); 152 static cl::opt<bool> ClInstrumentWrites( 153 "asan-instrument-writes", cl::desc("instrument write instructions"), 154 cl::Hidden, cl::init(true)); 155 static cl::opt<bool> ClInstrumentAtomics( 156 "asan-instrument-atomics", 157 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 158 cl::init(true)); 159 static cl::opt<bool> ClAlwaysSlowPath( 160 "asan-always-slow-path", 161 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 162 cl::init(false)); 163 static cl::opt<bool> ClForceDynamicShadow( 164 "asan-force-dynamic-shadow", 165 cl::desc("Load shadow address into a local variable for each function"), 166 cl::Hidden, cl::init(false)); 167 168 // This flag limits the number of instructions to be instrumented 169 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 170 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 171 // set it to 10000. 172 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 173 "asan-max-ins-per-bb", cl::init(10000), 174 cl::desc("maximal number of instructions to instrument in any given BB"), 175 cl::Hidden); 176 // This flag may need to be replaced with -f[no]asan-stack. 177 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 178 cl::Hidden, cl::init(true)); 179 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 180 "asan-max-inline-poisoning-size", 181 cl::desc( 182 "Inline shadow poisoning for blocks up to the given size in bytes."), 183 cl::Hidden, cl::init(64)); 184 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 185 cl::desc("Check stack-use-after-return"), 186 cl::Hidden, cl::init(true)); 187 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 188 cl::desc("Check stack-use-after-scope"), 189 cl::Hidden, cl::init(false)); 190 // This flag may need to be replaced with -f[no]asan-globals. 191 static cl::opt<bool> ClGlobals("asan-globals", 192 cl::desc("Handle global objects"), cl::Hidden, 193 cl::init(true)); 194 static cl::opt<bool> ClInitializers("asan-initialization-order", 195 cl::desc("Handle C++ initializer order"), 196 cl::Hidden, cl::init(true)); 197 static cl::opt<bool> ClInvalidPointerPairs( 198 "asan-detect-invalid-pointer-pair", 199 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 200 cl::init(false)); 201 static cl::opt<unsigned> ClRealignStack( 202 "asan-realign-stack", 203 cl::desc("Realign stack to the value of this flag (power of two)"), 204 cl::Hidden, cl::init(32)); 205 static cl::opt<int> ClInstrumentationWithCallsThreshold( 206 "asan-instrumentation-with-call-threshold", 207 cl::desc( 208 "If the function being instrumented contains more than " 209 "this number of memory accesses, use callbacks instead of " 210 "inline checks (-1 means never use callbacks)."), 211 cl::Hidden, cl::init(7000)); 212 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 213 "asan-memory-access-callback-prefix", 214 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 215 cl::init("__asan_")); 216 static cl::opt<bool> 217 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 218 cl::desc("instrument dynamic allocas"), 219 cl::Hidden, cl::init(true)); 220 static cl::opt<bool> ClSkipPromotableAllocas( 221 "asan-skip-promotable-allocas", 222 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 223 cl::init(true)); 224 225 // These flags allow to change the shadow mapping. 226 // The shadow mapping looks like 227 // Shadow = (Mem >> scale) + offset 228 static cl::opt<int> ClMappingScale("asan-mapping-scale", 229 cl::desc("scale of asan shadow mapping"), 230 cl::Hidden, cl::init(0)); 231 static cl::opt<unsigned long long> ClMappingOffset( 232 "asan-mapping-offset", 233 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden, 234 cl::init(0)); 235 236 // Optimization flags. Not user visible, used mostly for testing 237 // and benchmarking the tool. 238 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 239 cl::Hidden, cl::init(true)); 240 static cl::opt<bool> ClOptSameTemp( 241 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 242 cl::Hidden, cl::init(true)); 243 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 244 cl::desc("Don't instrument scalar globals"), 245 cl::Hidden, cl::init(true)); 246 static cl::opt<bool> ClOptStack( 247 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 248 cl::Hidden, cl::init(false)); 249 250 static cl::opt<bool> ClDynamicAllocaStack( 251 "asan-stack-dynamic-alloca", 252 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 253 cl::init(true)); 254 255 static cl::opt<uint32_t> ClForceExperiment( 256 "asan-force-experiment", 257 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 258 cl::init(0)); 259 260 static cl::opt<bool> 261 ClUsePrivateAliasForGlobals("asan-use-private-alias", 262 cl::desc("Use private aliases for global" 263 " variables"), 264 cl::Hidden, cl::init(false)); 265 266 static cl::opt<bool> 267 ClUseMachOGlobalsSection("asan-globals-live-support", 268 cl::desc("Use linker features to support dead " 269 "code stripping of globals " 270 "(Mach-O only)"), 271 cl::Hidden, cl::init(false)); 272 273 // Debug flags. 274 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 275 cl::init(0)); 276 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 277 cl::Hidden, cl::init(0)); 278 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 279 cl::desc("Debug func")); 280 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 281 cl::Hidden, cl::init(-1)); 282 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 283 cl::Hidden, cl::init(-1)); 284 285 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 286 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 287 STATISTIC(NumOptimizedAccessesToGlobalVar, 288 "Number of optimized accesses to global vars"); 289 STATISTIC(NumOptimizedAccessesToStackVar, 290 "Number of optimized accesses to stack vars"); 291 292 namespace { 293 /// Frontend-provided metadata for source location. 294 struct LocationMetadata { 295 StringRef Filename; 296 int LineNo; 297 int ColumnNo; 298 299 LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {} 300 301 bool empty() const { return Filename.empty(); } 302 303 void parse(MDNode *MDN) { 304 assert(MDN->getNumOperands() == 3); 305 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 306 Filename = DIFilename->getString(); 307 LineNo = 308 mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 309 ColumnNo = 310 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 311 } 312 }; 313 314 /// Frontend-provided metadata for global variables. 315 class GlobalsMetadata { 316 public: 317 struct Entry { 318 Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {} 319 LocationMetadata SourceLoc; 320 StringRef Name; 321 bool IsDynInit; 322 bool IsBlacklisted; 323 }; 324 325 GlobalsMetadata() : inited_(false) {} 326 327 void reset() { 328 inited_ = false; 329 Entries.clear(); 330 } 331 332 void init(Module &M) { 333 assert(!inited_); 334 inited_ = true; 335 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 336 if (!Globals) return; 337 for (auto MDN : Globals->operands()) { 338 // Metadata node contains the global and the fields of "Entry". 339 assert(MDN->getNumOperands() == 5); 340 auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0)); 341 // The optimizer may optimize away a global entirely. 342 if (!GV) continue; 343 // We can already have an entry for GV if it was merged with another 344 // global. 345 Entry &E = Entries[GV]; 346 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 347 E.SourceLoc.parse(Loc); 348 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 349 E.Name = Name->getString(); 350 ConstantInt *IsDynInit = 351 mdconst::extract<ConstantInt>(MDN->getOperand(3)); 352 E.IsDynInit |= IsDynInit->isOne(); 353 ConstantInt *IsBlacklisted = 354 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 355 E.IsBlacklisted |= IsBlacklisted->isOne(); 356 } 357 } 358 359 /// Returns metadata entry for a given global. 360 Entry get(GlobalVariable *G) const { 361 auto Pos = Entries.find(G); 362 return (Pos != Entries.end()) ? Pos->second : Entry(); 363 } 364 365 private: 366 bool inited_; 367 DenseMap<GlobalVariable *, Entry> Entries; 368 }; 369 370 /// This struct defines the shadow mapping using the rule: 371 /// shadow = (mem >> Scale) ADD-or-OR Offset. 372 struct ShadowMapping { 373 int Scale; 374 uint64_t Offset; 375 bool OrShadowOffset; 376 }; 377 378 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 379 bool IsKasan) { 380 bool IsAndroid = TargetTriple.isAndroid(); 381 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 382 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 383 bool IsLinux = TargetTriple.isOSLinux(); 384 bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 || 385 TargetTriple.getArch() == llvm::Triple::ppc64le; 386 bool IsSystemZ = TargetTriple.getArch() == llvm::Triple::systemz; 387 bool IsX86 = TargetTriple.getArch() == llvm::Triple::x86; 388 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; 389 bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips || 390 TargetTriple.getArch() == llvm::Triple::mipsel; 391 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 || 392 TargetTriple.getArch() == llvm::Triple::mips64el; 393 bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64; 394 bool IsWindows = TargetTriple.isOSWindows(); 395 396 ShadowMapping Mapping; 397 398 if (LongSize == 32) { 399 // Android is always PIE, which means that the beginning of the address 400 // space is always available. 401 if (IsAndroid) 402 Mapping.Offset = 0; 403 else if (IsMIPS32) 404 Mapping.Offset = kMIPS32_ShadowOffset32; 405 else if (IsFreeBSD) 406 Mapping.Offset = kFreeBSD_ShadowOffset32; 407 else if (IsIOS) 408 // If we're targeting iOS and x86, the binary is built for iOS simulator. 409 Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32; 410 else if (IsWindows) 411 Mapping.Offset = kWindowsShadowOffset32; 412 else 413 Mapping.Offset = kDefaultShadowOffset32; 414 } else { // LongSize == 64 415 if (IsPPC64) 416 Mapping.Offset = kPPC64_ShadowOffset64; 417 else if (IsSystemZ) 418 Mapping.Offset = kSystemZ_ShadowOffset64; 419 else if (IsFreeBSD) 420 Mapping.Offset = kFreeBSD_ShadowOffset64; 421 else if (IsLinux && IsX86_64) { 422 if (IsKasan) 423 Mapping.Offset = kLinuxKasan_ShadowOffset64; 424 else 425 Mapping.Offset = kSmallX86_64ShadowOffset; 426 } else if (IsWindows && IsX86_64) { 427 Mapping.Offset = kWindowsShadowOffset64; 428 } else if (IsMIPS64) 429 Mapping.Offset = kMIPS64_ShadowOffset64; 430 else if (IsIOS) 431 // If we're targeting iOS and x86, the binary is built for iOS simulator. 432 // We are using dynamic shadow offset on the 64-bit devices. 433 Mapping.Offset = 434 IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel; 435 else if (IsAArch64) 436 Mapping.Offset = kAArch64_ShadowOffset64; 437 else 438 Mapping.Offset = kDefaultShadowOffset64; 439 } 440 441 if (ClForceDynamicShadow) { 442 Mapping.Offset = kDynamicShadowSentinel; 443 } 444 445 Mapping.Scale = kDefaultShadowScale; 446 if (ClMappingScale.getNumOccurrences() > 0) { 447 Mapping.Scale = ClMappingScale; 448 } 449 450 if (ClMappingOffset.getNumOccurrences() > 0) { 451 Mapping.Offset = ClMappingOffset; 452 } 453 454 // OR-ing shadow offset if more efficient (at least on x86) if the offset 455 // is a power of two, but on ppc64 we have to use add since the shadow 456 // offset is not necessary 1/8-th of the address space. On SystemZ, 457 // we could OR the constant in a single instruction, but it's more 458 // efficient to load it once and use indexed addressing. 459 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ 460 && !(Mapping.Offset & (Mapping.Offset - 1)) 461 && Mapping.Offset != kDynamicShadowSentinel; 462 463 return Mapping; 464 } 465 466 static size_t RedzoneSizeForScale(int MappingScale) { 467 // Redzone used for stack and globals is at least 32 bytes. 468 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 469 return std::max(32U, 1U << MappingScale); 470 } 471 472 /// AddressSanitizer: instrument the code in module to find memory bugs. 473 struct AddressSanitizer : public FunctionPass { 474 explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false, 475 bool UseAfterScope = false) 476 : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan), 477 Recover(Recover || ClRecover), 478 UseAfterScope(UseAfterScope || ClUseAfterScope), 479 LocalDynamicShadow(nullptr) { 480 initializeAddressSanitizerPass(*PassRegistry::getPassRegistry()); 481 } 482 StringRef getPassName() const override { 483 return "AddressSanitizerFunctionPass"; 484 } 485 void getAnalysisUsage(AnalysisUsage &AU) const override { 486 AU.addRequired<DominatorTreeWrapperPass>(); 487 AU.addRequired<TargetLibraryInfoWrapperPass>(); 488 } 489 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 490 uint64_t ArraySize = 1; 491 if (AI.isArrayAllocation()) { 492 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 493 assert(CI && "non-constant array size"); 494 ArraySize = CI->getZExtValue(); 495 } 496 Type *Ty = AI.getAllocatedType(); 497 uint64_t SizeInBytes = 498 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 499 return SizeInBytes * ArraySize; 500 } 501 /// Check if we want (and can) handle this alloca. 502 bool isInterestingAlloca(const AllocaInst &AI); 503 504 /// If it is an interesting memory access, return the PointerOperand 505 /// and set IsWrite/Alignment. Otherwise return nullptr. 506 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 507 uint64_t *TypeSize, unsigned *Alignment); 508 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 509 bool UseCalls, const DataLayout &DL); 510 void instrumentPointerComparisonOrSubtraction(Instruction *I); 511 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 512 Value *Addr, uint32_t TypeSize, bool IsWrite, 513 Value *SizeArgument, bool UseCalls, uint32_t Exp); 514 void instrumentUnusualSizeOrAlignment(Instruction *I, Value *Addr, 515 uint32_t TypeSize, bool IsWrite, 516 Value *SizeArgument, bool UseCalls, 517 uint32_t Exp); 518 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 519 Value *ShadowValue, uint32_t TypeSize); 520 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 521 bool IsWrite, size_t AccessSizeIndex, 522 Value *SizeArgument, uint32_t Exp); 523 void instrumentMemIntrinsic(MemIntrinsic *MI); 524 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 525 bool runOnFunction(Function &F) override; 526 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 527 void maybeInsertDynamicShadowAtFunctionEntry(Function &F); 528 void markEscapedLocalAllocas(Function &F); 529 bool doInitialization(Module &M) override; 530 bool doFinalization(Module &M) override; 531 static char ID; // Pass identification, replacement for typeid 532 533 DominatorTree &getDominatorTree() const { return *DT; } 534 535 private: 536 void initializeCallbacks(Module &M); 537 538 bool LooksLikeCodeInBug11395(Instruction *I); 539 bool GlobalIsLinkerInitialized(GlobalVariable *G); 540 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 541 uint64_t TypeSize) const; 542 543 /// Helper to cleanup per-function state. 544 struct FunctionStateRAII { 545 AddressSanitizer *Pass; 546 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 547 assert(Pass->ProcessedAllocas.empty() && 548 "last pass forgot to clear cache"); 549 assert(!Pass->LocalDynamicShadow); 550 } 551 ~FunctionStateRAII() { 552 Pass->LocalDynamicShadow = nullptr; 553 Pass->ProcessedAllocas.clear(); 554 } 555 }; 556 557 LLVMContext *C; 558 Triple TargetTriple; 559 int LongSize; 560 bool CompileKernel; 561 bool Recover; 562 bool UseAfterScope; 563 Type *IntptrTy; 564 ShadowMapping Mapping; 565 DominatorTree *DT; 566 Function *AsanCtorFunction = nullptr; 567 Function *AsanInitFunction = nullptr; 568 Function *AsanHandleNoReturnFunc; 569 Function *AsanPtrCmpFunction, *AsanPtrSubFunction; 570 // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize). 571 Function *AsanErrorCallback[2][2][kNumberOfAccessSizes]; 572 Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 573 // This array is indexed by AccessIsWrite and Experiment. 574 Function *AsanErrorCallbackSized[2][2]; 575 Function *AsanMemoryAccessCallbackSized[2][2]; 576 Function *AsanMemmove, *AsanMemcpy, *AsanMemset; 577 InlineAsm *EmptyAsm; 578 Value *LocalDynamicShadow; 579 GlobalsMetadata GlobalsMD; 580 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 581 582 friend struct FunctionStackPoisoner; 583 }; 584 585 class AddressSanitizerModule : public ModulePass { 586 public: 587 explicit AddressSanitizerModule(bool CompileKernel = false, 588 bool Recover = false) 589 : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan), 590 Recover(Recover || ClRecover) {} 591 bool runOnModule(Module &M) override; 592 static char ID; // Pass identification, replacement for typeid 593 StringRef getPassName() const override { return "AddressSanitizerModule"; } 594 595 private: 596 void initializeCallbacks(Module &M); 597 598 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M); 599 bool ShouldInstrumentGlobal(GlobalVariable *G); 600 bool ShouldUseMachOGlobalsSection() const; 601 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 602 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 603 size_t MinRedzoneSizeForGlobal() const { 604 return RedzoneSizeForScale(Mapping.Scale); 605 } 606 607 GlobalsMetadata GlobalsMD; 608 bool CompileKernel; 609 bool Recover; 610 Type *IntptrTy; 611 LLVMContext *C; 612 Triple TargetTriple; 613 ShadowMapping Mapping; 614 Function *AsanPoisonGlobals; 615 Function *AsanUnpoisonGlobals; 616 Function *AsanRegisterGlobals; 617 Function *AsanUnregisterGlobals; 618 Function *AsanRegisterImageGlobals; 619 Function *AsanUnregisterImageGlobals; 620 }; 621 622 // Stack poisoning does not play well with exception handling. 623 // When an exception is thrown, we essentially bypass the code 624 // that unpoisones the stack. This is why the run-time library has 625 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 626 // stack in the interceptor. This however does not work inside the 627 // actual function which catches the exception. Most likely because the 628 // compiler hoists the load of the shadow value somewhere too high. 629 // This causes asan to report a non-existing bug on 453.povray. 630 // It sounds like an LLVM bug. 631 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 632 Function &F; 633 AddressSanitizer &ASan; 634 DIBuilder DIB; 635 LLVMContext *C; 636 Type *IntptrTy; 637 Type *IntptrPtrTy; 638 ShadowMapping Mapping; 639 640 SmallVector<AllocaInst *, 16> AllocaVec; 641 SmallSetVector<AllocaInst *, 16> NonInstrumentedStaticAllocaVec; 642 SmallVector<Instruction *, 8> RetVec; 643 unsigned StackAlignment; 644 645 Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 646 *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 647 Function *AsanSetShadowFunc[0x100] = {}; 648 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; 649 Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc; 650 651 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 652 struct AllocaPoisonCall { 653 IntrinsicInst *InsBefore; 654 AllocaInst *AI; 655 uint64_t Size; 656 bool DoPoison; 657 }; 658 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 659 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 660 661 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 662 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 663 AllocaInst *DynamicAllocaLayout = nullptr; 664 IntrinsicInst *LocalEscapeCall = nullptr; 665 666 // Maps Value to an AllocaInst from which the Value is originated. 667 typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy; 668 AllocaForValueMapTy AllocaForValue; 669 670 bool HasNonEmptyInlineAsm = false; 671 bool HasReturnsTwiceCall = false; 672 std::unique_ptr<CallInst> EmptyInlineAsm; 673 674 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 675 : F(F), 676 ASan(ASan), 677 DIB(*F.getParent(), /*AllowUnresolved*/ false), 678 C(ASan.C), 679 IntptrTy(ASan.IntptrTy), 680 IntptrPtrTy(PointerType::get(IntptrTy, 0)), 681 Mapping(ASan.Mapping), 682 StackAlignment(1 << Mapping.Scale), 683 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 684 685 bool runOnFunction() { 686 if (!ClStack) return false; 687 // Collect alloca, ret, lifetime instructions etc. 688 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 689 690 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 691 692 initializeCallbacks(*F.getParent()); 693 694 processDynamicAllocas(); 695 processStaticAllocas(); 696 697 if (ClDebugStack) { 698 DEBUG(dbgs() << F); 699 } 700 return true; 701 } 702 703 // Finds all Alloca instructions and puts 704 // poisoned red zones around all of them. 705 // Then unpoison everything back before the function returns. 706 void processStaticAllocas(); 707 void processDynamicAllocas(); 708 709 void createDynamicAllocasInitStorage(); 710 711 // ----------------------- Visitors. 712 /// \brief Collect all Ret instructions. 713 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 714 715 /// \brief Collect all Resume instructions. 716 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 717 718 /// \brief Collect all CatchReturnInst instructions. 719 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 720 721 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 722 Value *SavedStack) { 723 IRBuilder<> IRB(InstBefore); 724 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 725 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 726 // need to adjust extracted SP to compute the address of the most recent 727 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 728 // this purpose. 729 if (!isa<ReturnInst>(InstBefore)) { 730 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 731 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 732 {IntptrTy}); 733 734 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 735 736 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 737 DynamicAreaOffset); 738 } 739 740 IRB.CreateCall(AsanAllocasUnpoisonFunc, 741 {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr}); 742 } 743 744 // Unpoison dynamic allocas redzones. 745 void unpoisonDynamicAllocas() { 746 for (auto &Ret : RetVec) 747 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 748 749 for (auto &StackRestoreInst : StackRestoreVec) 750 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 751 StackRestoreInst->getOperand(0)); 752 } 753 754 // Deploy and poison redzones around dynamic alloca call. To do this, we 755 // should replace this call with another one with changed parameters and 756 // replace all its uses with new address, so 757 // addr = alloca type, old_size, align 758 // is replaced by 759 // new_size = (old_size + additional_size) * sizeof(type) 760 // tmp = alloca i8, new_size, max(align, 32) 761 // addr = tmp + 32 (first 32 bytes are for the left redzone). 762 // Additional_size is added to make new memory allocation contain not only 763 // requested memory, but also left, partial and right redzones. 764 void handleDynamicAllocaCall(AllocaInst *AI); 765 766 /// \brief Collect Alloca instructions we want (and can) handle. 767 void visitAllocaInst(AllocaInst &AI) { 768 if (!ASan.isInterestingAlloca(AI)) { 769 if (AI.isStaticAlloca()) NonInstrumentedStaticAllocaVec.insert(&AI); 770 return; 771 } 772 773 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 774 if (!AI.isStaticAlloca()) 775 DynamicAllocaVec.push_back(&AI); 776 else 777 AllocaVec.push_back(&AI); 778 } 779 780 /// \brief Collect lifetime intrinsic calls to check for use-after-scope 781 /// errors. 782 void visitIntrinsicInst(IntrinsicInst &II) { 783 Intrinsic::ID ID = II.getIntrinsicID(); 784 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 785 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 786 if (!ASan.UseAfterScope) 787 return; 788 if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end) 789 return; 790 // Found lifetime intrinsic, add ASan instrumentation if necessary. 791 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 792 // If size argument is undefined, don't do anything. 793 if (Size->isMinusOne()) return; 794 // Check that size doesn't saturate uint64_t and can 795 // be stored in IntptrTy. 796 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 797 if (SizeValue == ~0ULL || 798 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 799 return; 800 // Find alloca instruction that corresponds to llvm.lifetime argument. 801 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); 802 if (!AI || !ASan.isInterestingAlloca(*AI)) 803 return; 804 bool DoPoison = (ID == Intrinsic::lifetime_end); 805 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 806 if (AI->isStaticAlloca()) 807 StaticAllocaPoisonCallVec.push_back(APC); 808 else if (ClInstrumentDynamicAllocas) 809 DynamicAllocaPoisonCallVec.push_back(APC); 810 } 811 812 void visitCallSite(CallSite CS) { 813 Instruction *I = CS.getInstruction(); 814 if (CallInst *CI = dyn_cast<CallInst>(I)) { 815 HasNonEmptyInlineAsm |= 816 CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get()); 817 HasReturnsTwiceCall |= CI->canReturnTwice(); 818 } 819 } 820 821 // ---------------------- Helpers. 822 void initializeCallbacks(Module &M); 823 824 bool doesDominateAllExits(const Instruction *I) const { 825 for (auto Ret : RetVec) { 826 if (!ASan.getDominatorTree().dominates(I, Ret)) return false; 827 } 828 return true; 829 } 830 831 /// Finds alloca where the value comes from. 832 AllocaInst *findAllocaForValue(Value *V); 833 834 // Copies bytes from ShadowBytes into shadow memory for indexes where 835 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 836 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 837 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 838 IRBuilder<> &IRB, Value *ShadowBase); 839 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 840 size_t Begin, size_t End, IRBuilder<> &IRB, 841 Value *ShadowBase); 842 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 843 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 844 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 845 846 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 847 848 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 849 bool Dynamic); 850 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 851 Instruction *ThenTerm, Value *ValueIfFalse); 852 }; 853 854 } // anonymous namespace 855 856 char AddressSanitizer::ID = 0; 857 INITIALIZE_PASS_BEGIN( 858 AddressSanitizer, "asan", 859 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 860 false) 861 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 862 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 863 INITIALIZE_PASS_END( 864 AddressSanitizer, "asan", 865 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 866 false) 867 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 868 bool Recover, 869 bool UseAfterScope) { 870 assert(!CompileKernel || Recover); 871 return new AddressSanitizer(CompileKernel, Recover, UseAfterScope); 872 } 873 874 char AddressSanitizerModule::ID = 0; 875 INITIALIZE_PASS( 876 AddressSanitizerModule, "asan-module", 877 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 878 "ModulePass", 879 false, false) 880 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel, 881 bool Recover) { 882 assert(!CompileKernel || Recover); 883 return new AddressSanitizerModule(CompileKernel, Recover); 884 } 885 886 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 887 size_t Res = countTrailingZeros(TypeSize / 8); 888 assert(Res < kNumberOfAccessSizes); 889 return Res; 890 } 891 892 // \brief Create a constant for Str so that we can pass it to the run-time lib. 893 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str, 894 bool AllowMerging) { 895 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 896 // We use private linkage for module-local strings. If they can be merged 897 // with another one, we set the unnamed_addr attribute. 898 GlobalVariable *GV = 899 new GlobalVariable(M, StrConst->getType(), true, 900 GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix); 901 if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 902 GV->setAlignment(1); // Strings may not be merged w/o setting align 1. 903 return GV; 904 } 905 906 /// \brief Create a global describing a source location. 907 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 908 LocationMetadata MD) { 909 Constant *LocData[] = { 910 createPrivateGlobalForString(M, MD.Filename, true), 911 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 912 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 913 }; 914 auto LocStruct = ConstantStruct::getAnon(LocData); 915 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 916 GlobalValue::PrivateLinkage, LocStruct, 917 kAsanGenPrefix); 918 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 919 return GV; 920 } 921 922 /// \brief Check if \p G has been created by a trusted compiler pass. 923 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 924 // Do not instrument asan globals. 925 if (G->getName().startswith(kAsanGenPrefix) || 926 G->getName().startswith(kSanCovGenPrefix) || 927 G->getName().startswith(kODRGenPrefix)) 928 return true; 929 930 // Do not instrument gcov counter arrays. 931 if (G->getName() == "__llvm_gcov_ctr") 932 return true; 933 934 return false; 935 } 936 937 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 938 // Shadow >> scale 939 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 940 if (Mapping.Offset == 0) return Shadow; 941 // (Shadow >> scale) | offset 942 Value *ShadowBase; 943 if (LocalDynamicShadow) 944 ShadowBase = LocalDynamicShadow; 945 else 946 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 947 if (Mapping.OrShadowOffset) 948 return IRB.CreateOr(Shadow, ShadowBase); 949 else 950 return IRB.CreateAdd(Shadow, ShadowBase); 951 } 952 953 // Instrument memset/memmove/memcpy 954 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 955 IRBuilder<> IRB(MI); 956 if (isa<MemTransferInst>(MI)) { 957 IRB.CreateCall( 958 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 959 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 960 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 961 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 962 } else if (isa<MemSetInst>(MI)) { 963 IRB.CreateCall( 964 AsanMemset, 965 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 966 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 967 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 968 } 969 MI->eraseFromParent(); 970 } 971 972 /// Check if we want (and can) handle this alloca. 973 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 974 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 975 976 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 977 return PreviouslySeenAllocaInfo->getSecond(); 978 979 bool IsInteresting = 980 (AI.getAllocatedType()->isSized() && 981 // alloca() may be called with 0 size, ignore it. 982 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 983 // We are only interested in allocas not promotable to registers. 984 // Promotable allocas are common under -O0. 985 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 986 // inalloca allocas are not treated as static, and we don't want 987 // dynamic alloca instrumentation for them as well. 988 !AI.isUsedWithInAlloca()); 989 990 ProcessedAllocas[&AI] = IsInteresting; 991 return IsInteresting; 992 } 993 994 /// If I is an interesting memory access, return the PointerOperand 995 /// and set IsWrite/Alignment. Otherwise return nullptr. 996 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 997 bool *IsWrite, 998 uint64_t *TypeSize, 999 unsigned *Alignment) { 1000 // Skip memory accesses inserted by another instrumentation. 1001 if (I->getMetadata("nosanitize")) return nullptr; 1002 1003 // Do not instrument the load fetching the dynamic shadow address. 1004 if (LocalDynamicShadow == I) 1005 return nullptr; 1006 1007 Value *PtrOperand = nullptr; 1008 const DataLayout &DL = I->getModule()->getDataLayout(); 1009 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1010 if (!ClInstrumentReads) return nullptr; 1011 *IsWrite = false; 1012 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 1013 *Alignment = LI->getAlignment(); 1014 PtrOperand = LI->getPointerOperand(); 1015 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1016 if (!ClInstrumentWrites) return nullptr; 1017 *IsWrite = true; 1018 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 1019 *Alignment = SI->getAlignment(); 1020 PtrOperand = SI->getPointerOperand(); 1021 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1022 if (!ClInstrumentAtomics) return nullptr; 1023 *IsWrite = true; 1024 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 1025 *Alignment = 0; 1026 PtrOperand = RMW->getPointerOperand(); 1027 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1028 if (!ClInstrumentAtomics) return nullptr; 1029 *IsWrite = true; 1030 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 1031 *Alignment = 0; 1032 PtrOperand = XCHG->getPointerOperand(); 1033 } 1034 1035 // Do not instrument acesses from different address spaces; we cannot deal 1036 // with them. 1037 if (PtrOperand) { 1038 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); 1039 if (PtrTy->getPointerAddressSpace() != 0) 1040 return nullptr; 1041 } 1042 1043 // Treat memory accesses to promotable allocas as non-interesting since they 1044 // will not cause memory violations. This greatly speeds up the instrumented 1045 // executable at -O0. 1046 if (ClSkipPromotableAllocas) 1047 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 1048 return isInterestingAlloca(*AI) ? AI : nullptr; 1049 1050 return PtrOperand; 1051 } 1052 1053 static bool isPointerOperand(Value *V) { 1054 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1055 } 1056 1057 // This is a rough heuristic; it may cause both false positives and 1058 // false negatives. The proper implementation requires cooperation with 1059 // the frontend. 1060 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { 1061 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1062 if (!Cmp->isRelational()) return false; 1063 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1064 if (BO->getOpcode() != Instruction::Sub) return false; 1065 } else { 1066 return false; 1067 } 1068 return isPointerOperand(I->getOperand(0)) && 1069 isPointerOperand(I->getOperand(1)); 1070 } 1071 1072 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1073 // If a global variable does not have dynamic initialization we don't 1074 // have to instrument it. However, if a global does not have initializer 1075 // at all, we assume it has dynamic initializer (in other TU). 1076 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1077 } 1078 1079 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1080 Instruction *I) { 1081 IRBuilder<> IRB(I); 1082 Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1083 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1084 for (Value *&i : Param) { 1085 if (i->getType()->isPointerTy()) 1086 i = IRB.CreatePointerCast(i, IntptrTy); 1087 } 1088 IRB.CreateCall(F, Param); 1089 } 1090 1091 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1092 Instruction *I, bool UseCalls, 1093 const DataLayout &DL) { 1094 bool IsWrite = false; 1095 unsigned Alignment = 0; 1096 uint64_t TypeSize = 0; 1097 Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment); 1098 assert(Addr); 1099 1100 // Optimization experiments. 1101 // The experiments can be used to evaluate potential optimizations that remove 1102 // instrumentation (assess false negatives). Instead of completely removing 1103 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1104 // experiments that want to remove instrumentation of this instruction). 1105 // If Exp is non-zero, this pass will emit special calls into runtime 1106 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1107 // make runtime terminate the program in a special way (with a different 1108 // exit status). Then you run the new compiler on a buggy corpus, collect 1109 // the special terminations (ideally, you don't see them at all -- no false 1110 // negatives) and make the decision on the optimization. 1111 uint32_t Exp = ClForceExperiment; 1112 1113 if (ClOpt && ClOptGlobals) { 1114 // If initialization order checking is disabled, a simple access to a 1115 // dynamically initialized global is always valid. 1116 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1117 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1118 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1119 NumOptimizedAccessesToGlobalVar++; 1120 return; 1121 } 1122 } 1123 1124 if (ClOpt && ClOptStack) { 1125 // A direct inbounds access to a stack variable is always valid. 1126 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1127 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1128 NumOptimizedAccessesToStackVar++; 1129 return; 1130 } 1131 } 1132 1133 if (IsWrite) 1134 NumInstrumentedWrites++; 1135 else 1136 NumInstrumentedReads++; 1137 1138 unsigned Granularity = 1 << Mapping.Scale; 1139 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1140 // if the data is properly aligned. 1141 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1142 TypeSize == 128) && 1143 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1144 return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls, 1145 Exp); 1146 instrumentUnusualSizeOrAlignment(I, Addr, TypeSize, IsWrite, nullptr, 1147 UseCalls, Exp); 1148 } 1149 1150 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1151 Value *Addr, bool IsWrite, 1152 size_t AccessSizeIndex, 1153 Value *SizeArgument, 1154 uint32_t Exp) { 1155 IRBuilder<> IRB(InsertBefore); 1156 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1157 CallInst *Call = nullptr; 1158 if (SizeArgument) { 1159 if (Exp == 0) 1160 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1161 {Addr, SizeArgument}); 1162 else 1163 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1164 {Addr, SizeArgument, ExpVal}); 1165 } else { 1166 if (Exp == 0) 1167 Call = 1168 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1169 else 1170 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1171 {Addr, ExpVal}); 1172 } 1173 1174 // We don't do Call->setDoesNotReturn() because the BB already has 1175 // UnreachableInst at the end. 1176 // This EmptyAsm is required to avoid callback merge. 1177 IRB.CreateCall(EmptyAsm, {}); 1178 return Call; 1179 } 1180 1181 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1182 Value *ShadowValue, 1183 uint32_t TypeSize) { 1184 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1185 // Addr & (Granularity - 1) 1186 Value *LastAccessedByte = 1187 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1188 // (Addr & (Granularity - 1)) + size - 1 1189 if (TypeSize / 8 > 1) 1190 LastAccessedByte = IRB.CreateAdd( 1191 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1192 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1193 LastAccessedByte = 1194 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1195 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1196 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1197 } 1198 1199 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1200 Instruction *InsertBefore, Value *Addr, 1201 uint32_t TypeSize, bool IsWrite, 1202 Value *SizeArgument, bool UseCalls, 1203 uint32_t Exp) { 1204 IRBuilder<> IRB(InsertBefore); 1205 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1206 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1207 1208 if (UseCalls) { 1209 if (Exp == 0) 1210 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1211 AddrLong); 1212 else 1213 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1214 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1215 return; 1216 } 1217 1218 Type *ShadowTy = 1219 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1220 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1221 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1222 Value *CmpVal = Constant::getNullValue(ShadowTy); 1223 Value *ShadowValue = 1224 IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1225 1226 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1227 size_t Granularity = 1ULL << Mapping.Scale; 1228 TerminatorInst *CrashTerm = nullptr; 1229 1230 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1231 // We use branch weights for the slow path check, to indicate that the slow 1232 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1233 TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen( 1234 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1235 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1236 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1237 IRB.SetInsertPoint(CheckTerm); 1238 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1239 if (Recover) { 1240 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1241 } else { 1242 BasicBlock *CrashBlock = 1243 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1244 CrashTerm = new UnreachableInst(*C, CrashBlock); 1245 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1246 ReplaceInstWithInst(CheckTerm, NewTerm); 1247 } 1248 } else { 1249 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1250 } 1251 1252 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1253 AccessSizeIndex, SizeArgument, Exp); 1254 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1255 } 1256 1257 // Instrument unusual size or unusual alignment. 1258 // We can not do it with a single check, so we do 1-byte check for the first 1259 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1260 // to report the actual access size. 1261 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1262 Instruction *I, Value *Addr, uint32_t TypeSize, bool IsWrite, 1263 Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1264 IRBuilder<> IRB(I); 1265 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1266 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1267 if (UseCalls) { 1268 if (Exp == 0) 1269 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1270 {AddrLong, Size}); 1271 else 1272 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1273 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1274 } else { 1275 Value *LastByte = IRB.CreateIntToPtr( 1276 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1277 Addr->getType()); 1278 instrumentAddress(I, I, Addr, 8, IsWrite, Size, false, Exp); 1279 instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false, Exp); 1280 } 1281 } 1282 1283 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit, 1284 GlobalValue *ModuleName) { 1285 // Set up the arguments to our poison/unpoison functions. 1286 IRBuilder<> IRB(&GlobalInit.front(), 1287 GlobalInit.front().getFirstInsertionPt()); 1288 1289 // Add a call to poison all external globals before the given function starts. 1290 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1291 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1292 1293 // Add calls to unpoison all globals before each return instruction. 1294 for (auto &BB : GlobalInit.getBasicBlockList()) 1295 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1296 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1297 } 1298 1299 void AddressSanitizerModule::createInitializerPoisonCalls( 1300 Module &M, GlobalValue *ModuleName) { 1301 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1302 1303 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1304 for (Use &OP : CA->operands()) { 1305 if (isa<ConstantAggregateZero>(OP)) continue; 1306 ConstantStruct *CS = cast<ConstantStruct>(OP); 1307 1308 // Must have a function or null ptr. 1309 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1310 if (F->getName() == kAsanModuleCtorName) continue; 1311 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1312 // Don't instrument CTORs that will run before asan.module_ctor. 1313 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; 1314 poisonOneInitializer(*F, ModuleName); 1315 } 1316 } 1317 } 1318 1319 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { 1320 Type *Ty = G->getValueType(); 1321 DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1322 1323 if (GlobalsMD.get(G).IsBlacklisted) return false; 1324 if (!Ty->isSized()) return false; 1325 if (!G->hasInitializer()) return false; 1326 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1327 // Touch only those globals that will not be defined in other modules. 1328 // Don't handle ODR linkage types and COMDATs since other modules may be built 1329 // without ASan. 1330 if (G->getLinkage() != GlobalVariable::ExternalLinkage && 1331 G->getLinkage() != GlobalVariable::PrivateLinkage && 1332 G->getLinkage() != GlobalVariable::InternalLinkage) 1333 return false; 1334 if (G->hasComdat()) return false; 1335 // Two problems with thread-locals: 1336 // - The address of the main thread's copy can't be computed at link-time. 1337 // - Need to poison all copies, not just the main thread's one. 1338 if (G->isThreadLocal()) return false; 1339 // For now, just ignore this Global if the alignment is large. 1340 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1341 1342 if (G->hasSection()) { 1343 StringRef Section = G->getSection(); 1344 1345 // Globals from llvm.metadata aren't emitted, do not instrument them. 1346 if (Section == "llvm.metadata") return false; 1347 // Do not instrument globals from special LLVM sections. 1348 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1349 1350 // Do not instrument function pointers to initialization and termination 1351 // routines: dynamic linker will not properly handle redzones. 1352 if (Section.startswith(".preinit_array") || 1353 Section.startswith(".init_array") || 1354 Section.startswith(".fini_array")) { 1355 return false; 1356 } 1357 1358 // Callbacks put into the CRT initializer/terminator sections 1359 // should not be instrumented. 1360 // See https://code.google.com/p/address-sanitizer/issues/detail?id=305 1361 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1362 if (Section.startswith(".CRT")) { 1363 DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n"); 1364 return false; 1365 } 1366 1367 if (TargetTriple.isOSBinFormatMachO()) { 1368 StringRef ParsedSegment, ParsedSection; 1369 unsigned TAA = 0, StubSize = 0; 1370 bool TAAParsed; 1371 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1372 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1373 assert(ErrorCode.empty() && "Invalid section specifier."); 1374 1375 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1376 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1377 // them. 1378 if (ParsedSegment == "__OBJC" || 1379 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1380 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1381 return false; 1382 } 1383 // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 1384 // Constant CFString instances are compiled in the following way: 1385 // -- the string buffer is emitted into 1386 // __TEXT,__cstring,cstring_literals 1387 // -- the constant NSConstantString structure referencing that buffer 1388 // is placed into __DATA,__cfstring 1389 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1390 // Moreover, it causes the linker to crash on OS X 10.7 1391 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1392 DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1393 return false; 1394 } 1395 // The linker merges the contents of cstring_literals and removes the 1396 // trailing zeroes. 1397 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1398 DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1399 return false; 1400 } 1401 } 1402 } 1403 1404 return true; 1405 } 1406 1407 // On Mach-O platforms, we emit global metadata in a separate section of the 1408 // binary in order to allow the linker to properly dead strip. This is only 1409 // supported on recent versions of ld64. 1410 bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const { 1411 if (!ClUseMachOGlobalsSection) 1412 return false; 1413 1414 if (!TargetTriple.isOSBinFormatMachO()) 1415 return false; 1416 1417 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1418 return true; 1419 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1420 return true; 1421 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1422 return true; 1423 1424 return false; 1425 } 1426 1427 void AddressSanitizerModule::initializeCallbacks(Module &M) { 1428 IRBuilder<> IRB(*C); 1429 1430 // Declare our poisoning and unpoisoning functions. 1431 AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1432 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr)); 1433 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); 1434 AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1435 kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr)); 1436 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); 1437 1438 // Declare functions that register/unregister globals. 1439 AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1440 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1441 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); 1442 AsanUnregisterGlobals = checkSanitizerInterfaceFunction( 1443 M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(), 1444 IntptrTy, IntptrTy, nullptr)); 1445 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); 1446 1447 // Declare the functions that find globals in a shared object and then invoke 1448 // the (un)register function on them. 1449 AsanRegisterImageGlobals = checkSanitizerInterfaceFunction( 1450 M.getOrInsertFunction(kAsanRegisterImageGlobalsName, 1451 IRB.getVoidTy(), IntptrTy, nullptr)); 1452 AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage); 1453 1454 AsanUnregisterImageGlobals = checkSanitizerInterfaceFunction( 1455 M.getOrInsertFunction(kAsanUnregisterImageGlobalsName, 1456 IRB.getVoidTy(), IntptrTy, nullptr)); 1457 AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage); 1458 } 1459 1460 // This function replaces all global variables with new variables that have 1461 // trailing redzones. It also creates a function that poisons 1462 // redzones and inserts this function into llvm.global_ctors. 1463 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) { 1464 GlobalsMD.init(M); 1465 1466 SmallVector<GlobalVariable *, 16> GlobalsToChange; 1467 1468 for (auto &G : M.globals()) { 1469 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 1470 } 1471 1472 size_t n = GlobalsToChange.size(); 1473 if (n == 0) return false; 1474 1475 // A global is described by a structure 1476 // size_t beg; 1477 // size_t size; 1478 // size_t size_with_redzone; 1479 // const char *name; 1480 // const char *module_name; 1481 // size_t has_dynamic_init; 1482 // void *source_location; 1483 // size_t odr_indicator; 1484 // We initialize an array of such structures and pass it to a run-time call. 1485 StructType *GlobalStructTy = 1486 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 1487 IntptrTy, IntptrTy, IntptrTy, nullptr); 1488 SmallVector<Constant *, 16> Initializers(n); 1489 1490 bool HasDynamicallyInitializedGlobals = false; 1491 1492 // We shouldn't merge same module names, as this string serves as unique 1493 // module ID in runtime. 1494 GlobalVariable *ModuleName = createPrivateGlobalForString( 1495 M, M.getModuleIdentifier(), /*AllowMerging*/ false); 1496 1497 auto &DL = M.getDataLayout(); 1498 for (size_t i = 0; i < n; i++) { 1499 static const uint64_t kMaxGlobalRedzone = 1 << 18; 1500 GlobalVariable *G = GlobalsToChange[i]; 1501 1502 auto MD = GlobalsMD.get(G); 1503 StringRef NameForGlobal = G->getName(); 1504 // Create string holding the global name (use global name from metadata 1505 // if it's available, otherwise just write the name of global variable). 1506 GlobalVariable *Name = createPrivateGlobalForString( 1507 M, MD.Name.empty() ? NameForGlobal : MD.Name, 1508 /*AllowMerging*/ true); 1509 1510 Type *Ty = G->getValueType(); 1511 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 1512 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 1513 // MinRZ <= RZ <= kMaxGlobalRedzone 1514 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 1515 uint64_t RZ = std::max( 1516 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 1517 uint64_t RightRedzoneSize = RZ; 1518 // Round up to MinRZ 1519 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 1520 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 1521 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 1522 1523 StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr); 1524 Constant *NewInitializer = 1525 ConstantStruct::get(NewTy, G->getInitializer(), 1526 Constant::getNullValue(RightRedZoneTy), nullptr); 1527 1528 // Create a new global variable with enough space for a redzone. 1529 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 1530 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 1531 Linkage = GlobalValue::InternalLinkage; 1532 GlobalVariable *NewGlobal = 1533 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 1534 "", G, G->getThreadLocalMode()); 1535 NewGlobal->copyAttributesFrom(G); 1536 NewGlobal->setAlignment(MinRZ); 1537 1538 // Transfer the debug info. The payload starts at offset zero so we can 1539 // copy the debug info over as is. 1540 SmallVector<DIGlobalVariable *, 1> GVs; 1541 G->getDebugInfo(GVs); 1542 for (auto *GV : GVs) 1543 NewGlobal->addDebugInfo(GV); 1544 1545 Value *Indices2[2]; 1546 Indices2[0] = IRB.getInt32(0); 1547 Indices2[1] = IRB.getInt32(0); 1548 1549 G->replaceAllUsesWith( 1550 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 1551 NewGlobal->takeName(G); 1552 G->eraseFromParent(); 1553 1554 Constant *SourceLoc; 1555 if (!MD.SourceLoc.empty()) { 1556 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 1557 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 1558 } else { 1559 SourceLoc = ConstantInt::get(IntptrTy, 0); 1560 } 1561 1562 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 1563 GlobalValue *InstrumentedGlobal = NewGlobal; 1564 1565 bool CanUsePrivateAliases = 1566 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO(); 1567 if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) { 1568 // Create local alias for NewGlobal to avoid crash on ODR between 1569 // instrumented and non-instrumented libraries. 1570 auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage, 1571 NameForGlobal + M.getName(), NewGlobal); 1572 1573 // With local aliases, we need to provide another externally visible 1574 // symbol __odr_asan_XXX to detect ODR violation. 1575 auto *ODRIndicatorSym = 1576 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 1577 Constant::getNullValue(IRB.getInt8Ty()), 1578 kODRGenPrefix + NameForGlobal, nullptr, 1579 NewGlobal->getThreadLocalMode()); 1580 1581 // Set meaningful attributes for indicator symbol. 1582 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 1583 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 1584 ODRIndicatorSym->setAlignment(1); 1585 ODRIndicator = ODRIndicatorSym; 1586 InstrumentedGlobal = GA; 1587 } 1588 1589 Initializers[i] = ConstantStruct::get( 1590 GlobalStructTy, 1591 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 1592 ConstantInt::get(IntptrTy, SizeInBytes), 1593 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 1594 ConstantExpr::getPointerCast(Name, IntptrTy), 1595 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 1596 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 1597 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy), nullptr); 1598 1599 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 1600 1601 DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 1602 } 1603 1604 1605 GlobalVariable *AllGlobals = nullptr; 1606 GlobalVariable *RegisteredFlag = nullptr; 1607 1608 // On recent Mach-O platforms, we emit the global metadata in a way that 1609 // allows the linker to properly strip dead globals. 1610 if (ShouldUseMachOGlobalsSection()) { 1611 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 1612 // to look up the loaded image that contains it. Second, we can store in it 1613 // whether registration has already occurred, to prevent duplicate 1614 // registration. 1615 // 1616 // Common linkage allows us to coalesce needles defined in each object 1617 // file so that there's only one per shared library. 1618 RegisteredFlag = new GlobalVariable( 1619 M, IntptrTy, false, GlobalVariable::CommonLinkage, 1620 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 1621 1622 // We also emit a structure which binds the liveness of the global 1623 // variable to the metadata struct. 1624 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy, nullptr); 1625 1626 // Keep the list of "Liveness" GV created to be added to llvm.compiler.used 1627 SmallVector<Constant *, 16> LivenessGlobals; 1628 LivenessGlobals.reserve(n); 1629 1630 for (size_t i = 0; i < n; i++) { 1631 GlobalVariable *Metadata = new GlobalVariable( 1632 M, GlobalStructTy, false, GlobalVariable::InternalLinkage, 1633 Initializers[i], ""); 1634 Metadata->setSection("__DATA,__asan_globals,regular"); 1635 Metadata->setAlignment(1); // don't leave padding in between 1636 1637 auto LivenessBinder = ConstantStruct::get(LivenessTy, 1638 Initializers[i]->getAggregateElement(0u), 1639 ConstantExpr::getPointerCast(Metadata, IntptrTy), 1640 nullptr); 1641 1642 // Recover the name of the variable this global is pointing to 1643 StringRef GVName = 1644 Initializers[i]->getAggregateElement(0u)->getOperand(0)->getName(); 1645 1646 GlobalVariable *Liveness = new GlobalVariable( 1647 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 1648 Twine("__asan_binder_") + GVName); 1649 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 1650 LivenessGlobals.push_back( 1651 ConstantExpr::getBitCast(Liveness, IRB.getInt8PtrTy())); 1652 } 1653 1654 if (!LivenessGlobals.empty()) { 1655 // Update llvm.compiler.used, adding the new liveness globals. This is 1656 // needed so that during LTO these variables stay alive. The alternative 1657 // would be to have the linker handling the LTO symbols, but libLTO 1658 // current 1659 // API does not expose access to the section for each symbol. 1660 if (GlobalVariable *LLVMUsed = 1661 M.getGlobalVariable("llvm.compiler.used")) { 1662 ConstantArray *Inits = cast<ConstantArray>(LLVMUsed->getInitializer()); 1663 for (auto &V : Inits->operands()) 1664 LivenessGlobals.push_back(cast<Constant>(&V)); 1665 LLVMUsed->eraseFromParent(); 1666 } 1667 llvm::ArrayType *ATy = 1668 llvm::ArrayType::get(IRB.getInt8PtrTy(), LivenessGlobals.size()); 1669 auto *LLVMUsed = new llvm::GlobalVariable( 1670 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1671 llvm::ConstantArray::get(ATy, LivenessGlobals), "llvm.compiler.used"); 1672 LLVMUsed->setSection("llvm.metadata"); 1673 } 1674 } else { 1675 // On all other platfoms, we just emit an array of global metadata 1676 // structures. 1677 ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); 1678 AllGlobals = new GlobalVariable( 1679 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 1680 ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); 1681 } 1682 1683 // Create calls for poisoning before initializers run and unpoisoning after. 1684 if (HasDynamicallyInitializedGlobals) 1685 createInitializerPoisonCalls(M, ModuleName); 1686 1687 // Create a call to register the globals with the runtime. 1688 if (ShouldUseMachOGlobalsSection()) { 1689 IRB.CreateCall(AsanRegisterImageGlobals, 1690 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1691 } else { 1692 IRB.CreateCall(AsanRegisterGlobals, 1693 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1694 ConstantInt::get(IntptrTy, n)}); 1695 } 1696 1697 // We also need to unregister globals at the end, e.g., when a shared library 1698 // gets closed. 1699 Function *AsanDtorFunction = 1700 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 1701 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 1702 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 1703 IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); 1704 1705 if (ShouldUseMachOGlobalsSection()) { 1706 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 1707 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1708 } else { 1709 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 1710 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1711 ConstantInt::get(IntptrTy, n)}); 1712 } 1713 1714 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); 1715 1716 DEBUG(dbgs() << M); 1717 return true; 1718 } 1719 1720 bool AddressSanitizerModule::runOnModule(Module &M) { 1721 C = &(M.getContext()); 1722 int LongSize = M.getDataLayout().getPointerSizeInBits(); 1723 IntptrTy = Type::getIntNTy(*C, LongSize); 1724 TargetTriple = Triple(M.getTargetTriple()); 1725 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 1726 initializeCallbacks(M); 1727 1728 bool Changed = false; 1729 1730 // TODO(glider): temporarily disabled globals instrumentation for KASan. 1731 if (ClGlobals && !CompileKernel) { 1732 Function *CtorFunc = M.getFunction(kAsanModuleCtorName); 1733 assert(CtorFunc); 1734 IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator()); 1735 Changed |= InstrumentGlobals(IRB, M); 1736 } 1737 1738 return Changed; 1739 } 1740 1741 void AddressSanitizer::initializeCallbacks(Module &M) { 1742 IRBuilder<> IRB(*C); 1743 // Create __asan_report* callbacks. 1744 // IsWrite, TypeSize and Exp are encoded in the function name. 1745 for (int Exp = 0; Exp < 2; Exp++) { 1746 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 1747 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 1748 const std::string ExpStr = Exp ? "exp_" : ""; 1749 const std::string SuffixStr = CompileKernel ? "N" : "_n"; 1750 const std::string EndingStr = Recover ? "_noabort" : ""; 1751 Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr; 1752 AsanErrorCallbackSized[AccessIsWrite][Exp] = 1753 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1754 kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr, 1755 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr)); 1756 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = 1757 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1758 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 1759 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr)); 1760 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 1761 AccessSizeIndex++) { 1762 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 1763 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 1764 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1765 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 1766 IRB.getVoidTy(), IntptrTy, ExpType, nullptr)); 1767 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 1768 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1769 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 1770 IRB.getVoidTy(), IntptrTy, ExpType, nullptr)); 1771 } 1772 } 1773 } 1774 1775 const std::string MemIntrinCallbackPrefix = 1776 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 1777 AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1778 MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(), 1779 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); 1780 AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1781 MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), 1782 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); 1783 AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1784 MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(), 1785 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr)); 1786 1787 AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction( 1788 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr)); 1789 1790 AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1791 kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1792 AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1793 kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1794 // We insert an empty inline asm after __asan_report* to avoid callback merge. 1795 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 1796 StringRef(""), StringRef(""), 1797 /*hasSideEffects=*/true); 1798 } 1799 1800 // virtual 1801 bool AddressSanitizer::doInitialization(Module &M) { 1802 // Initialize the private fields. No one has accessed them before. 1803 1804 GlobalsMD.init(M); 1805 1806 C = &(M.getContext()); 1807 LongSize = M.getDataLayout().getPointerSizeInBits(); 1808 IntptrTy = Type::getIntNTy(*C, LongSize); 1809 TargetTriple = Triple(M.getTargetTriple()); 1810 1811 if (!CompileKernel) { 1812 std::tie(AsanCtorFunction, AsanInitFunction) = 1813 createSanitizerCtorAndInitFunctions( 1814 M, kAsanModuleCtorName, kAsanInitName, 1815 /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName); 1816 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); 1817 } 1818 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 1819 return true; 1820 } 1821 1822 bool AddressSanitizer::doFinalization(Module &M) { 1823 GlobalsMD.reset(); 1824 return false; 1825 } 1826 1827 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 1828 // For each NSObject descendant having a +load method, this method is invoked 1829 // by the ObjC runtime before any of the static constructors is called. 1830 // Therefore we need to instrument such methods with a call to __asan_init 1831 // at the beginning in order to initialize our runtime before any access to 1832 // the shadow memory. 1833 // We cannot just ignore these methods, because they may call other 1834 // instrumented functions. 1835 if (F.getName().find(" load]") != std::string::npos) { 1836 IRBuilder<> IRB(&F.front(), F.front().begin()); 1837 IRB.CreateCall(AsanInitFunction, {}); 1838 return true; 1839 } 1840 return false; 1841 } 1842 1843 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 1844 // Generate code only when dynamic addressing is needed. 1845 if (Mapping.Offset != kDynamicShadowSentinel) 1846 return; 1847 1848 IRBuilder<> IRB(&F.front().front()); 1849 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 1850 kAsanShadowMemoryDynamicAddress, IntptrTy); 1851 LocalDynamicShadow = IRB.CreateLoad(GlobalDynamicAddress); 1852 } 1853 1854 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 1855 // Find the one possible call to llvm.localescape and pre-mark allocas passed 1856 // to it as uninteresting. This assumes we haven't started processing allocas 1857 // yet. This check is done up front because iterating the use list in 1858 // isInterestingAlloca would be algorithmically slower. 1859 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 1860 1861 // Try to get the declaration of llvm.localescape. If it's not in the module, 1862 // we can exit early. 1863 if (!F.getParent()->getFunction("llvm.localescape")) return; 1864 1865 // Look for a call to llvm.localescape call in the entry block. It can't be in 1866 // any other block. 1867 for (Instruction &I : F.getEntryBlock()) { 1868 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 1869 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 1870 // We found a call. Mark all the allocas passed in as uninteresting. 1871 for (Value *Arg : II->arg_operands()) { 1872 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 1873 assert(AI && AI->isStaticAlloca() && 1874 "non-static alloca arg to localescape"); 1875 ProcessedAllocas[AI] = false; 1876 } 1877 break; 1878 } 1879 } 1880 } 1881 1882 bool AddressSanitizer::runOnFunction(Function &F) { 1883 if (&F == AsanCtorFunction) return false; 1884 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 1885 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 1886 if (F.getName().startswith("__asan_")) return false; 1887 1888 bool FunctionModified = false; 1889 1890 // If needed, insert __asan_init before checking for SanitizeAddress attr. 1891 // This function needs to be called even if the function body is not 1892 // instrumented. 1893 if (maybeInsertAsanInitAtFunctionEntry(F)) 1894 FunctionModified = true; 1895 1896 // Leave if the function doesn't need instrumentation. 1897 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 1898 1899 DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 1900 1901 initializeCallbacks(*F.getParent()); 1902 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1903 1904 FunctionStateRAII CleanupObj(this); 1905 1906 maybeInsertDynamicShadowAtFunctionEntry(F); 1907 1908 // We can't instrument allocas used with llvm.localescape. Only static allocas 1909 // can be passed to that intrinsic. 1910 markEscapedLocalAllocas(F); 1911 1912 // We want to instrument every address only once per basic block (unless there 1913 // are calls between uses). 1914 SmallSet<Value *, 16> TempsToInstrument; 1915 SmallVector<Instruction *, 16> ToInstrument; 1916 SmallVector<Instruction *, 8> NoReturnCalls; 1917 SmallVector<BasicBlock *, 16> AllBlocks; 1918 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 1919 int NumAllocas = 0; 1920 bool IsWrite; 1921 unsigned Alignment; 1922 uint64_t TypeSize; 1923 const TargetLibraryInfo *TLI = 1924 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1925 1926 // Fill the set of memory operations to instrument. 1927 for (auto &BB : F) { 1928 AllBlocks.push_back(&BB); 1929 TempsToInstrument.clear(); 1930 int NumInsnsPerBB = 0; 1931 for (auto &Inst : BB) { 1932 if (LooksLikeCodeInBug11395(&Inst)) return false; 1933 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 1934 &Alignment)) { 1935 if (ClOpt && ClOptSameTemp) { 1936 if (!TempsToInstrument.insert(Addr).second) 1937 continue; // We've seen this temp in the current BB. 1938 } 1939 } else if (ClInvalidPointerPairs && 1940 isInterestingPointerComparisonOrSubtraction(&Inst)) { 1941 PointerComparisonsOrSubtracts.push_back(&Inst); 1942 continue; 1943 } else if (isa<MemIntrinsic>(Inst)) { 1944 // ok, take it. 1945 } else { 1946 if (isa<AllocaInst>(Inst)) NumAllocas++; 1947 CallSite CS(&Inst); 1948 if (CS) { 1949 // A call inside BB. 1950 TempsToInstrument.clear(); 1951 if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction()); 1952 } 1953 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 1954 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 1955 continue; 1956 } 1957 ToInstrument.push_back(&Inst); 1958 NumInsnsPerBB++; 1959 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 1960 } 1961 } 1962 1963 bool UseCalls = 1964 CompileKernel || 1965 (ClInstrumentationWithCallsThreshold >= 0 && 1966 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 1967 const DataLayout &DL = F.getParent()->getDataLayout(); 1968 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), 1969 /*RoundToAlign=*/true); 1970 1971 // Instrument. 1972 int NumInstrumented = 0; 1973 for (auto Inst : ToInstrument) { 1974 if (ClDebugMin < 0 || ClDebugMax < 0 || 1975 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 1976 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 1977 instrumentMop(ObjSizeVis, Inst, UseCalls, 1978 F.getParent()->getDataLayout()); 1979 else 1980 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 1981 } 1982 NumInstrumented++; 1983 } 1984 1985 FunctionStackPoisoner FSP(F, *this); 1986 bool ChangedStack = FSP.runOnFunction(); 1987 1988 // We must unpoison the stack before every NoReturn call (throw, _exit, etc). 1989 // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 1990 for (auto CI : NoReturnCalls) { 1991 IRBuilder<> IRB(CI); 1992 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 1993 } 1994 1995 for (auto Inst : PointerComparisonsOrSubtracts) { 1996 instrumentPointerComparisonOrSubtraction(Inst); 1997 NumInstrumented++; 1998 } 1999 2000 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) 2001 FunctionModified = true; 2002 2003 DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2004 << F << "\n"); 2005 2006 return FunctionModified; 2007 } 2008 2009 // Workaround for bug 11395: we don't want to instrument stack in functions 2010 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2011 // FIXME: remove once the bug 11395 is fixed. 2012 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2013 if (LongSize != 32) return false; 2014 CallInst *CI = dyn_cast<CallInst>(I); 2015 if (!CI || !CI->isInlineAsm()) return false; 2016 if (CI->getNumArgOperands() <= 5) return false; 2017 // We have inline assembly with quite a few arguments. 2018 return true; 2019 } 2020 2021 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2022 IRBuilder<> IRB(*C); 2023 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2024 std::string Suffix = itostr(i); 2025 AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction( 2026 M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy, 2027 IntptrTy, nullptr)); 2028 AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction( 2029 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2030 IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 2031 } 2032 if (ASan.UseAfterScope) { 2033 AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 2034 M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(), 2035 IntptrTy, IntptrTy, nullptr)); 2036 AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 2037 M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), 2038 IntptrTy, IntptrTy, nullptr)); 2039 } 2040 2041 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2042 std::ostringstream Name; 2043 Name << kAsanSetShadowPrefix; 2044 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2045 AsanSetShadowFunc[Val] = 2046 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2047 Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 2048 } 2049 2050 AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2051 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 2052 AsanAllocasUnpoisonFunc = 2053 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2054 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 2055 } 2056 2057 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2058 ArrayRef<uint8_t> ShadowBytes, 2059 size_t Begin, size_t End, 2060 IRBuilder<> &IRB, 2061 Value *ShadowBase) { 2062 if (Begin >= End) 2063 return; 2064 2065 const size_t LargestStoreSizeInBytes = 2066 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2067 2068 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2069 2070 // Poison given range in shadow using larges store size with out leading and 2071 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2072 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2073 // middle of a store. 2074 for (size_t i = Begin; i < End;) { 2075 if (!ShadowMask[i]) { 2076 assert(!ShadowBytes[i]); 2077 ++i; 2078 continue; 2079 } 2080 2081 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2082 // Fit store size into the range. 2083 while (StoreSizeInBytes > End - i) 2084 StoreSizeInBytes /= 2; 2085 2086 // Minimize store size by trimming trailing zeros. 2087 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2088 while (j <= StoreSizeInBytes / 2) 2089 StoreSizeInBytes /= 2; 2090 } 2091 2092 uint64_t Val = 0; 2093 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2094 if (IsLittleEndian) 2095 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2096 else 2097 Val = (Val << 8) | ShadowBytes[i + j]; 2098 } 2099 2100 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2101 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2102 IRB.CreateAlignedStore( 2103 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); 2104 2105 i += StoreSizeInBytes; 2106 } 2107 } 2108 2109 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2110 ArrayRef<uint8_t> ShadowBytes, 2111 IRBuilder<> &IRB, Value *ShadowBase) { 2112 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2113 } 2114 2115 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2116 ArrayRef<uint8_t> ShadowBytes, 2117 size_t Begin, size_t End, 2118 IRBuilder<> &IRB, Value *ShadowBase) { 2119 assert(ShadowMask.size() == ShadowBytes.size()); 2120 size_t Done = Begin; 2121 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2122 if (!ShadowMask[i]) { 2123 assert(!ShadowBytes[i]); 2124 continue; 2125 } 2126 uint8_t Val = ShadowBytes[i]; 2127 if (!AsanSetShadowFunc[Val]) 2128 continue; 2129 2130 // Skip same values. 2131 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2132 } 2133 2134 if (j - i >= ClMaxInlinePoisoningSize) { 2135 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2136 IRB.CreateCall(AsanSetShadowFunc[Val], 2137 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2138 ConstantInt::get(IntptrTy, j - i)}); 2139 Done = j; 2140 } 2141 } 2142 2143 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2144 } 2145 2146 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2147 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2148 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2149 assert(LocalStackSize <= kMaxStackMallocSize); 2150 uint64_t MaxSize = kMinStackMallocSize; 2151 for (int i = 0;; i++, MaxSize *= 2) 2152 if (LocalStackSize <= MaxSize) return i; 2153 llvm_unreachable("impossible LocalStackSize"); 2154 } 2155 2156 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2157 Value *ValueIfTrue, 2158 Instruction *ThenTerm, 2159 Value *ValueIfFalse) { 2160 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2161 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2162 PHI->addIncoming(ValueIfFalse, CondBlock); 2163 BasicBlock *ThenBlock = ThenTerm->getParent(); 2164 PHI->addIncoming(ValueIfTrue, ThenBlock); 2165 return PHI; 2166 } 2167 2168 Value *FunctionStackPoisoner::createAllocaForLayout( 2169 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2170 AllocaInst *Alloca; 2171 if (Dynamic) { 2172 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2173 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2174 "MyAlloca"); 2175 } else { 2176 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2177 nullptr, "MyAlloca"); 2178 assert(Alloca->isStaticAlloca()); 2179 } 2180 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2181 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 2182 Alloca->setAlignment(FrameAlignment); 2183 return IRB.CreatePointerCast(Alloca, IntptrTy); 2184 } 2185 2186 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2187 BasicBlock &FirstBB = *F.begin(); 2188 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2189 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2190 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2191 DynamicAllocaLayout->setAlignment(32); 2192 } 2193 2194 void FunctionStackPoisoner::processDynamicAllocas() { 2195 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2196 assert(DynamicAllocaPoisonCallVec.empty()); 2197 return; 2198 } 2199 2200 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2201 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2202 assert(APC.InsBefore); 2203 assert(APC.AI); 2204 assert(ASan.isInterestingAlloca(*APC.AI)); 2205 assert(!APC.AI->isStaticAlloca()); 2206 2207 IRBuilder<> IRB(APC.InsBefore); 2208 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2209 // Dynamic allocas will be unpoisoned unconditionally below in 2210 // unpoisonDynamicAllocas. 2211 // Flag that we need unpoison static allocas. 2212 } 2213 2214 // Handle dynamic allocas. 2215 createDynamicAllocasInitStorage(); 2216 for (auto &AI : DynamicAllocaVec) 2217 handleDynamicAllocaCall(AI); 2218 unpoisonDynamicAllocas(); 2219 } 2220 2221 void FunctionStackPoisoner::processStaticAllocas() { 2222 if (AllocaVec.empty()) { 2223 assert(StaticAllocaPoisonCallVec.empty()); 2224 return; 2225 } 2226 2227 int StackMallocIdx = -1; 2228 DebugLoc EntryDebugLocation; 2229 if (auto SP = F.getSubprogram()) 2230 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 2231 2232 Instruction *InsBefore = AllocaVec[0]; 2233 IRBuilder<> IRB(InsBefore); 2234 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2235 2236 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 2237 // debug info is broken, because only entry-block allocas are treated as 2238 // regular stack slots. 2239 auto InsBeforeB = InsBefore->getParent(); 2240 assert(InsBeforeB == &F.getEntryBlock()); 2241 for (BasicBlock::iterator I(InsBefore); I != InsBeforeB->end(); ++I) 2242 if (auto *AI = dyn_cast<AllocaInst>(I)) 2243 if (NonInstrumentedStaticAllocaVec.count(AI) > 0) 2244 AI->moveBefore(InsBefore); 2245 2246 // If we have a call to llvm.localescape, keep it in the entry block. 2247 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 2248 2249 SmallVector<ASanStackVariableDescription, 16> SVD; 2250 SVD.reserve(AllocaVec.size()); 2251 for (AllocaInst *AI : AllocaVec) { 2252 ASanStackVariableDescription D = {AI->getName().data(), 2253 ASan.getAllocaSizeInBytes(*AI), 2254 0, 2255 AI->getAlignment(), 2256 AI, 2257 0, 2258 0}; 2259 SVD.push_back(D); 2260 } 2261 2262 // Minimal header size (left redzone) is 4 pointers, 2263 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 2264 size_t MinHeaderSize = ASan.LongSize / 2; 2265 const ASanStackFrameLayout &L = 2266 ComputeASanStackFrameLayout(SVD, 1ULL << Mapping.Scale, MinHeaderSize); 2267 2268 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 2269 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 2270 for (auto &Desc : SVD) 2271 AllocaToSVDMap[Desc.AI] = &Desc; 2272 2273 // Update SVD with information from lifetime intrinsics. 2274 for (const auto &APC : StaticAllocaPoisonCallVec) { 2275 assert(APC.InsBefore); 2276 assert(APC.AI); 2277 assert(ASan.isInterestingAlloca(*APC.AI)); 2278 assert(APC.AI->isStaticAlloca()); 2279 2280 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 2281 Desc.LifetimeSize = Desc.Size; 2282 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 2283 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 2284 if (LifetimeLoc->getFile() == FnLoc->getFile()) 2285 if (unsigned Line = LifetimeLoc->getLine()) 2286 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 2287 } 2288 } 2289 } 2290 2291 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 2292 DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 2293 uint64_t LocalStackSize = L.FrameSize; 2294 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 2295 LocalStackSize <= kMaxStackMallocSize; 2296 bool DoDynamicAlloca = ClDynamicAllocaStack; 2297 // Don't do dynamic alloca or stack malloc if: 2298 // 1) There is inline asm: too often it makes assumptions on which registers 2299 // are available. 2300 // 2) There is a returns_twice call (typically setjmp), which is 2301 // optimization-hostile, and doesn't play well with introduced indirect 2302 // register-relative calculation of local variable addresses. 2303 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2304 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2305 2306 Value *StaticAlloca = 2307 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 2308 2309 Value *FakeStack; 2310 Value *LocalStackBase; 2311 2312 if (DoStackMalloc) { 2313 // void *FakeStack = __asan_option_detect_stack_use_after_return 2314 // ? __asan_stack_malloc_N(LocalStackSize) 2315 // : nullptr; 2316 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 2317 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 2318 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 2319 Value *UseAfterReturnIsEnabled = 2320 IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn), 2321 Constant::getNullValue(IRB.getInt32Ty())); 2322 Instruction *Term = 2323 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 2324 IRBuilder<> IRBIf(Term); 2325 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2326 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 2327 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 2328 Value *FakeStackValue = 2329 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 2330 ConstantInt::get(IntptrTy, LocalStackSize)); 2331 IRB.SetInsertPoint(InsBefore); 2332 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2333 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 2334 ConstantInt::get(IntptrTy, 0)); 2335 2336 Value *NoFakeStack = 2337 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 2338 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 2339 IRBIf.SetInsertPoint(Term); 2340 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2341 Value *AllocaValue = 2342 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 2343 IRB.SetInsertPoint(InsBefore); 2344 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2345 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 2346 } else { 2347 // void *FakeStack = nullptr; 2348 // void *LocalStackBase = alloca(LocalStackSize); 2349 FakeStack = ConstantInt::get(IntptrTy, 0); 2350 LocalStackBase = 2351 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 2352 } 2353 2354 // Replace Alloca instructions with base+offset. 2355 for (const auto &Desc : SVD) { 2356 AllocaInst *AI = Desc.AI; 2357 Value *NewAllocaPtr = IRB.CreateIntToPtr( 2358 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 2359 AI->getType()); 2360 replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true); 2361 AI->replaceAllUsesWith(NewAllocaPtr); 2362 } 2363 2364 // The left-most redzone has enough space for at least 4 pointers. 2365 // Write the Magic value to redzone[0]. 2366 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 2367 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 2368 BasePlus0); 2369 // Write the frame description constant to redzone[1]. 2370 Value *BasePlus1 = IRB.CreateIntToPtr( 2371 IRB.CreateAdd(LocalStackBase, 2372 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 2373 IntptrPtrTy); 2374 GlobalVariable *StackDescriptionGlobal = 2375 createPrivateGlobalForString(*F.getParent(), DescriptionString, 2376 /*AllowMerging*/ true); 2377 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 2378 IRB.CreateStore(Description, BasePlus1); 2379 // Write the PC to redzone[2]. 2380 Value *BasePlus2 = IRB.CreateIntToPtr( 2381 IRB.CreateAdd(LocalStackBase, 2382 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 2383 IntptrPtrTy); 2384 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 2385 2386 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 2387 2388 // Poison the stack red zones at the entry. 2389 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 2390 // As mask we must use most poisoned case: red zones and after scope. 2391 // As bytes we can use either the same or just red zones only. 2392 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 2393 2394 if (!StaticAllocaPoisonCallVec.empty()) { 2395 const auto &ShadowInScope = GetShadowBytes(SVD, L); 2396 2397 // Poison static allocas near lifetime intrinsics. 2398 for (const auto &APC : StaticAllocaPoisonCallVec) { 2399 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 2400 assert(Desc.Offset % L.Granularity == 0); 2401 size_t Begin = Desc.Offset / L.Granularity; 2402 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 2403 2404 IRBuilder<> IRB(APC.InsBefore); 2405 copyToShadow(ShadowAfterScope, 2406 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 2407 IRB, ShadowBase); 2408 } 2409 } 2410 2411 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 2412 SmallVector<uint8_t, 64> ShadowAfterReturn; 2413 2414 // (Un)poison the stack before all ret instructions. 2415 for (auto Ret : RetVec) { 2416 IRBuilder<> IRBRet(Ret); 2417 // Mark the current frame as retired. 2418 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 2419 BasePlus0); 2420 if (DoStackMalloc) { 2421 assert(StackMallocIdx >= 0); 2422 // if FakeStack != 0 // LocalStackBase == FakeStack 2423 // // In use-after-return mode, poison the whole stack frame. 2424 // if StackMallocIdx <= 4 2425 // // For small sizes inline the whole thing: 2426 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 2427 // **SavedFlagPtr(FakeStack) = 0 2428 // else 2429 // __asan_stack_free_N(FakeStack, LocalStackSize) 2430 // else 2431 // <This is not a fake stack; unpoison the redzones> 2432 Value *Cmp = 2433 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 2434 TerminatorInst *ThenTerm, *ElseTerm; 2435 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 2436 2437 IRBuilder<> IRBPoison(ThenTerm); 2438 if (StackMallocIdx <= 4) { 2439 int ClassSize = kMinStackMallocSize << StackMallocIdx; 2440 ShadowAfterReturn.resize(ClassSize / L.Granularity, 2441 kAsanStackUseAfterReturnMagic); 2442 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 2443 ShadowBase); 2444 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 2445 FakeStack, 2446 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 2447 Value *SavedFlagPtr = IRBPoison.CreateLoad( 2448 IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 2449 IRBPoison.CreateStore( 2450 Constant::getNullValue(IRBPoison.getInt8Ty()), 2451 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 2452 } else { 2453 // For larger frames call __asan_stack_free_*. 2454 IRBPoison.CreateCall( 2455 AsanStackFreeFunc[StackMallocIdx], 2456 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 2457 } 2458 2459 IRBuilder<> IRBElse(ElseTerm); 2460 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 2461 } else { 2462 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 2463 } 2464 } 2465 2466 // We are done. Remove the old unused alloca instructions. 2467 for (auto AI : AllocaVec) AI->eraseFromParent(); 2468 } 2469 2470 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 2471 IRBuilder<> &IRB, bool DoPoison) { 2472 // For now just insert the call to ASan runtime. 2473 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 2474 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 2475 IRB.CreateCall( 2476 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 2477 {AddrArg, SizeArg}); 2478 } 2479 2480 // Handling llvm.lifetime intrinsics for a given %alloca: 2481 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 2482 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 2483 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 2484 // could be poisoned by previous llvm.lifetime.end instruction, as the 2485 // variable may go in and out of scope several times, e.g. in loops). 2486 // (3) if we poisoned at least one %alloca in a function, 2487 // unpoison the whole stack frame at function exit. 2488 2489 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { 2490 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2491 // We're interested only in allocas we can handle. 2492 return ASan.isInterestingAlloca(*AI) ? AI : nullptr; 2493 // See if we've already calculated (or started to calculate) alloca for a 2494 // given value. 2495 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 2496 if (I != AllocaForValue.end()) return I->second; 2497 // Store 0 while we're calculating alloca for value V to avoid 2498 // infinite recursion if the value references itself. 2499 AllocaForValue[V] = nullptr; 2500 AllocaInst *Res = nullptr; 2501 if (CastInst *CI = dyn_cast<CastInst>(V)) 2502 Res = findAllocaForValue(CI->getOperand(0)); 2503 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2504 for (Value *IncValue : PN->incoming_values()) { 2505 // Allow self-referencing phi-nodes. 2506 if (IncValue == PN) continue; 2507 AllocaInst *IncValueAI = findAllocaForValue(IncValue); 2508 // AI for incoming values should exist and should all be equal. 2509 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 2510 return nullptr; 2511 Res = IncValueAI; 2512 } 2513 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 2514 Res = findAllocaForValue(EP->getPointerOperand()); 2515 } else { 2516 DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V << "\n"); 2517 } 2518 if (Res) AllocaForValue[V] = Res; 2519 return Res; 2520 } 2521 2522 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 2523 IRBuilder<> IRB(AI); 2524 2525 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 2526 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 2527 2528 Value *Zero = Constant::getNullValue(IntptrTy); 2529 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 2530 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 2531 2532 // Since we need to extend alloca with additional memory to locate 2533 // redzones, and OldSize is number of allocated blocks with 2534 // ElementSize size, get allocated memory size in bytes by 2535 // OldSize * ElementSize. 2536 const unsigned ElementSize = 2537 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 2538 Value *OldSize = 2539 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 2540 ConstantInt::get(IntptrTy, ElementSize)); 2541 2542 // PartialSize = OldSize % 32 2543 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 2544 2545 // Misalign = kAllocaRzSize - PartialSize; 2546 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 2547 2548 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 2549 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 2550 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 2551 2552 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 2553 // Align is added to locate left redzone, PartialPadding for possible 2554 // partial redzone and kAllocaRzSize for right redzone respectively. 2555 Value *AdditionalChunkSize = IRB.CreateAdd( 2556 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 2557 2558 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 2559 2560 // Insert new alloca with new NewSize and Align params. 2561 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 2562 NewAlloca->setAlignment(Align); 2563 2564 // NewAddress = Address + Align 2565 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 2566 ConstantInt::get(IntptrTy, Align)); 2567 2568 // Insert __asan_alloca_poison call for new created alloca. 2569 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 2570 2571 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 2572 // for unpoisoning stuff. 2573 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 2574 2575 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 2576 2577 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 2578 AI->replaceAllUsesWith(NewAddressPtr); 2579 2580 // We are done. Erase old alloca from parent. 2581 AI->eraseFromParent(); 2582 } 2583 2584 // isSafeAccess returns true if Addr is always inbounds with respect to its 2585 // base object. For example, it is a field access or an array access with 2586 // constant inbounds index. 2587 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 2588 Value *Addr, uint64_t TypeSize) const { 2589 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 2590 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 2591 uint64_t Size = SizeOffset.first.getZExtValue(); 2592 int64_t Offset = SizeOffset.second.getSExtValue(); 2593 // Three checks are required to ensure safety: 2594 // . Offset >= 0 (since the offset is given from the base ptr) 2595 // . Size >= Offset (unsigned) 2596 // . Size - Offset >= NeededSize (unsigned) 2597 return Offset >= 0 && Size >= uint64_t(Offset) && 2598 Size - uint64_t(Offset) >= TypeSize / 8; 2599 } 2600