1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/MachO.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Comdat.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DIBuilder.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstVisitor.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/MCSectionMachO.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
73 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/ModuleUtils.h"
77 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iomanip>
83 #include <limits>
84 #include <memory>
85 #include <sstream>
86 #include <string>
87 #include <tuple>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "asan"
92 
93 static const uint64_t kDefaultShadowScale = 3;
94 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
95 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
96 static const uint64_t kDynamicShadowSentinel =
97     std::numeric_limits<uint64_t>::max();
98 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
99 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
100 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
101 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
102 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
103 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
104 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
105 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
106 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
107 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
108 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
109 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
110 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
111 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
112 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
113 static const uint64_t kEmscriptenShadowOffset = 0;
114 
115 static const uint64_t kMyriadShadowScale = 5;
116 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
117 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
118 static const uint64_t kMyriadTagShift = 29;
119 static const uint64_t kMyriadDDRTag = 4;
120 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
121 
122 // The shadow memory space is dynamically allocated.
123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
124 
125 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
126 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
129 
130 static const char *const kAsanModuleCtorName = "asan.module_ctor";
131 static const char *const kAsanModuleDtorName = "asan.module_dtor";
132 static const uint64_t kAsanCtorAndDtorPriority = 1;
133 // On Emscripten, the system needs more than one priorities for constructors.
134 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
135 static const char *const kAsanReportErrorTemplate = "__asan_report_";
136 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
137 static const char *const kAsanUnregisterGlobalsName =
138     "__asan_unregister_globals";
139 static const char *const kAsanRegisterImageGlobalsName =
140   "__asan_register_image_globals";
141 static const char *const kAsanUnregisterImageGlobalsName =
142   "__asan_unregister_image_globals";
143 static const char *const kAsanRegisterElfGlobalsName =
144   "__asan_register_elf_globals";
145 static const char *const kAsanUnregisterElfGlobalsName =
146   "__asan_unregister_elf_globals";
147 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
148 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
149 static const char *const kAsanInitName = "__asan_init";
150 static const char *const kAsanVersionCheckNamePrefix =
151     "__asan_version_mismatch_check_v";
152 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
153 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
154 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
155 static const int kMaxAsanStackMallocSizeClass = 10;
156 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
157 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
158 static const char *const kAsanGenPrefix = "___asan_gen_";
159 static const char *const kODRGenPrefix = "__odr_asan_gen_";
160 static const char *const kSanCovGenPrefix = "__sancov_gen_";
161 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
162 static const char *const kAsanPoisonStackMemoryName =
163     "__asan_poison_stack_memory";
164 static const char *const kAsanUnpoisonStackMemoryName =
165     "__asan_unpoison_stack_memory";
166 
167 // ASan version script has __asan_* wildcard. Triple underscore prevents a
168 // linker (gold) warning about attempting to export a local symbol.
169 static const char *const kAsanGlobalsRegisteredFlagName =
170     "___asan_globals_registered";
171 
172 static const char *const kAsanOptionDetectUseAfterReturn =
173     "__asan_option_detect_stack_use_after_return";
174 
175 static const char *const kAsanShadowMemoryDynamicAddress =
176     "__asan_shadow_memory_dynamic_address";
177 
178 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
179 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
180 
181 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
182 static const size_t kNumberOfAccessSizes = 5;
183 
184 static const unsigned kAllocaRzSize = 32;
185 
186 // Command-line flags.
187 
188 static cl::opt<bool> ClEnableKasan(
189     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
190     cl::Hidden, cl::init(false));
191 
192 static cl::opt<bool> ClRecover(
193     "asan-recover",
194     cl::desc("Enable recovery mode (continue-after-error)."),
195     cl::Hidden, cl::init(false));
196 
197 static cl::opt<bool> ClInsertVersionCheck(
198     "asan-guard-against-version-mismatch",
199     cl::desc("Guard against compiler/runtime version mismatch."),
200     cl::Hidden, cl::init(true));
201 
202 // This flag may need to be replaced with -f[no-]asan-reads.
203 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
204                                        cl::desc("instrument read instructions"),
205                                        cl::Hidden, cl::init(true));
206 
207 static cl::opt<bool> ClInstrumentWrites(
208     "asan-instrument-writes", cl::desc("instrument write instructions"),
209     cl::Hidden, cl::init(true));
210 
211 static cl::opt<bool> ClInstrumentAtomics(
212     "asan-instrument-atomics",
213     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
214     cl::init(true));
215 
216 static cl::opt<bool>
217     ClInstrumentByval("asan-instrument-byval",
218                       cl::desc("instrument byval call arguments"), cl::Hidden,
219                       cl::init(true));
220 
221 static cl::opt<bool> ClAlwaysSlowPath(
222     "asan-always-slow-path",
223     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
224     cl::init(false));
225 
226 static cl::opt<bool> ClForceDynamicShadow(
227     "asan-force-dynamic-shadow",
228     cl::desc("Load shadow address into a local variable for each function"),
229     cl::Hidden, cl::init(false));
230 
231 static cl::opt<bool>
232     ClWithIfunc("asan-with-ifunc",
233                 cl::desc("Access dynamic shadow through an ifunc global on "
234                          "platforms that support this"),
235                 cl::Hidden, cl::init(true));
236 
237 static cl::opt<bool> ClWithIfuncSuppressRemat(
238     "asan-with-ifunc-suppress-remat",
239     cl::desc("Suppress rematerialization of dynamic shadow address by passing "
240              "it through inline asm in prologue."),
241     cl::Hidden, cl::init(true));
242 
243 // This flag limits the number of instructions to be instrumented
244 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
245 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
246 // set it to 10000.
247 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
248     "asan-max-ins-per-bb", cl::init(10000),
249     cl::desc("maximal number of instructions to instrument in any given BB"),
250     cl::Hidden);
251 
252 // This flag may need to be replaced with -f[no]asan-stack.
253 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
254                              cl::Hidden, cl::init(true));
255 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
256     "asan-max-inline-poisoning-size",
257     cl::desc(
258         "Inline shadow poisoning for blocks up to the given size in bytes."),
259     cl::Hidden, cl::init(64));
260 
261 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
262                                       cl::desc("Check stack-use-after-return"),
263                                       cl::Hidden, cl::init(true));
264 
265 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
266                                         cl::desc("Create redzones for byval "
267                                                  "arguments (extra copy "
268                                                  "required)"), cl::Hidden,
269                                         cl::init(true));
270 
271 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
272                                      cl::desc("Check stack-use-after-scope"),
273                                      cl::Hidden, cl::init(false));
274 
275 // This flag may need to be replaced with -f[no]asan-globals.
276 static cl::opt<bool> ClGlobals("asan-globals",
277                                cl::desc("Handle global objects"), cl::Hidden,
278                                cl::init(true));
279 
280 static cl::opt<bool> ClInitializers("asan-initialization-order",
281                                     cl::desc("Handle C++ initializer order"),
282                                     cl::Hidden, cl::init(true));
283 
284 static cl::opt<bool> ClInvalidPointerPairs(
285     "asan-detect-invalid-pointer-pair",
286     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
287     cl::init(false));
288 
289 static cl::opt<bool> ClInvalidPointerCmp(
290     "asan-detect-invalid-pointer-cmp",
291     cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
292     cl::init(false));
293 
294 static cl::opt<bool> ClInvalidPointerSub(
295     "asan-detect-invalid-pointer-sub",
296     cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
297     cl::init(false));
298 
299 static cl::opt<unsigned> ClRealignStack(
300     "asan-realign-stack",
301     cl::desc("Realign stack to the value of this flag (power of two)"),
302     cl::Hidden, cl::init(32));
303 
304 static cl::opt<int> ClInstrumentationWithCallsThreshold(
305     "asan-instrumentation-with-call-threshold",
306     cl::desc(
307         "If the function being instrumented contains more than "
308         "this number of memory accesses, use callbacks instead of "
309         "inline checks (-1 means never use callbacks)."),
310     cl::Hidden, cl::init(7000));
311 
312 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
313     "asan-memory-access-callback-prefix",
314     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
315     cl::init("__asan_"));
316 
317 static cl::opt<bool>
318     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
319                                cl::desc("instrument dynamic allocas"),
320                                cl::Hidden, cl::init(true));
321 
322 static cl::opt<bool> ClSkipPromotableAllocas(
323     "asan-skip-promotable-allocas",
324     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
325     cl::init(true));
326 
327 // These flags allow to change the shadow mapping.
328 // The shadow mapping looks like
329 //    Shadow = (Mem >> scale) + offset
330 
331 static cl::opt<int> ClMappingScale("asan-mapping-scale",
332                                    cl::desc("scale of asan shadow mapping"),
333                                    cl::Hidden, cl::init(0));
334 
335 static cl::opt<uint64_t>
336     ClMappingOffset("asan-mapping-offset",
337                     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
338                     cl::Hidden, cl::init(0));
339 
340 // Optimization flags. Not user visible, used mostly for testing
341 // and benchmarking the tool.
342 
343 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
344                            cl::Hidden, cl::init(true));
345 
346 static cl::opt<bool> ClOptSameTemp(
347     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
348     cl::Hidden, cl::init(true));
349 
350 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
351                                   cl::desc("Don't instrument scalar globals"),
352                                   cl::Hidden, cl::init(true));
353 
354 static cl::opt<bool> ClOptStack(
355     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
356     cl::Hidden, cl::init(false));
357 
358 static cl::opt<bool> ClDynamicAllocaStack(
359     "asan-stack-dynamic-alloca",
360     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
361     cl::init(true));
362 
363 static cl::opt<uint32_t> ClForceExperiment(
364     "asan-force-experiment",
365     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
366     cl::init(0));
367 
368 static cl::opt<bool>
369     ClUsePrivateAlias("asan-use-private-alias",
370                       cl::desc("Use private aliases for global variables"),
371                       cl::Hidden, cl::init(false));
372 
373 static cl::opt<bool>
374     ClUseOdrIndicator("asan-use-odr-indicator",
375                       cl::desc("Use odr indicators to improve ODR reporting"),
376                       cl::Hidden, cl::init(false));
377 
378 static cl::opt<bool>
379     ClUseGlobalsGC("asan-globals-live-support",
380                    cl::desc("Use linker features to support dead "
381                             "code stripping of globals"),
382                    cl::Hidden, cl::init(true));
383 
384 // This is on by default even though there is a bug in gold:
385 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
386 static cl::opt<bool>
387     ClWithComdat("asan-with-comdat",
388                  cl::desc("Place ASan constructors in comdat sections"),
389                  cl::Hidden, cl::init(true));
390 
391 // Debug flags.
392 
393 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
394                             cl::init(0));
395 
396 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
397                                  cl::Hidden, cl::init(0));
398 
399 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
400                                         cl::desc("Debug func"));
401 
402 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
403                                cl::Hidden, cl::init(-1));
404 
405 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
406                                cl::Hidden, cl::init(-1));
407 
408 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
409 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
410 STATISTIC(NumOptimizedAccessesToGlobalVar,
411           "Number of optimized accesses to global vars");
412 STATISTIC(NumOptimizedAccessesToStackVar,
413           "Number of optimized accesses to stack vars");
414 
415 namespace {
416 
417 /// This struct defines the shadow mapping using the rule:
418 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
419 /// If InGlobal is true, then
420 ///   extern char __asan_shadow[];
421 ///   shadow = (mem >> Scale) + &__asan_shadow
422 struct ShadowMapping {
423   int Scale;
424   uint64_t Offset;
425   bool OrShadowOffset;
426   bool InGlobal;
427 };
428 
429 } // end anonymous namespace
430 
431 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
432                                       bool IsKasan) {
433   bool IsAndroid = TargetTriple.isAndroid();
434   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
435   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
436   bool IsNetBSD = TargetTriple.isOSNetBSD();
437   bool IsPS4CPU = TargetTriple.isPS4CPU();
438   bool IsLinux = TargetTriple.isOSLinux();
439   bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
440                  TargetTriple.getArch() == Triple::ppc64le;
441   bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
442   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
443   bool IsMIPS32 = TargetTriple.isMIPS32();
444   bool IsMIPS64 = TargetTriple.isMIPS64();
445   bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
446   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
447   bool IsWindows = TargetTriple.isOSWindows();
448   bool IsFuchsia = TargetTriple.isOSFuchsia();
449   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
450   bool IsEmscripten = TargetTriple.isOSEmscripten();
451 
452   ShadowMapping Mapping;
453 
454   Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
455   if (ClMappingScale.getNumOccurrences() > 0) {
456     Mapping.Scale = ClMappingScale;
457   }
458 
459   if (LongSize == 32) {
460     if (IsAndroid)
461       Mapping.Offset = kDynamicShadowSentinel;
462     else if (IsMIPS32)
463       Mapping.Offset = kMIPS32_ShadowOffset32;
464     else if (IsFreeBSD)
465       Mapping.Offset = kFreeBSD_ShadowOffset32;
466     else if (IsNetBSD)
467       Mapping.Offset = kNetBSD_ShadowOffset32;
468     else if (IsIOS)
469       Mapping.Offset = kDynamicShadowSentinel;
470     else if (IsWindows)
471       Mapping.Offset = kWindowsShadowOffset32;
472     else if (IsEmscripten)
473       Mapping.Offset = kEmscriptenShadowOffset;
474     else if (IsMyriad) {
475       uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
476                                (kMyriadMemorySize32 >> Mapping.Scale));
477       Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
478     }
479     else
480       Mapping.Offset = kDefaultShadowOffset32;
481   } else {  // LongSize == 64
482     // Fuchsia is always PIE, which means that the beginning of the address
483     // space is always available.
484     if (IsFuchsia)
485       Mapping.Offset = 0;
486     else if (IsPPC64)
487       Mapping.Offset = kPPC64_ShadowOffset64;
488     else if (IsSystemZ)
489       Mapping.Offset = kSystemZ_ShadowOffset64;
490     else if (IsFreeBSD && !IsMIPS64)
491       Mapping.Offset = kFreeBSD_ShadowOffset64;
492     else if (IsNetBSD) {
493       if (IsKasan)
494         Mapping.Offset = kNetBSDKasan_ShadowOffset64;
495       else
496         Mapping.Offset = kNetBSD_ShadowOffset64;
497     } else if (IsPS4CPU)
498       Mapping.Offset = kPS4CPU_ShadowOffset64;
499     else if (IsLinux && IsX86_64) {
500       if (IsKasan)
501         Mapping.Offset = kLinuxKasan_ShadowOffset64;
502       else
503         Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
504                           (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
505     } else if (IsWindows && IsX86_64) {
506       Mapping.Offset = kWindowsShadowOffset64;
507     } else if (IsMIPS64)
508       Mapping.Offset = kMIPS64_ShadowOffset64;
509     else if (IsIOS)
510       Mapping.Offset = kDynamicShadowSentinel;
511     else if (IsAArch64)
512       Mapping.Offset = kAArch64_ShadowOffset64;
513     else
514       Mapping.Offset = kDefaultShadowOffset64;
515   }
516 
517   if (ClForceDynamicShadow) {
518     Mapping.Offset = kDynamicShadowSentinel;
519   }
520 
521   if (ClMappingOffset.getNumOccurrences() > 0) {
522     Mapping.Offset = ClMappingOffset;
523   }
524 
525   // OR-ing shadow offset if more efficient (at least on x86) if the offset
526   // is a power of two, but on ppc64 we have to use add since the shadow
527   // offset is not necessary 1/8-th of the address space.  On SystemZ,
528   // we could OR the constant in a single instruction, but it's more
529   // efficient to load it once and use indexed addressing.
530   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
531                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
532                            Mapping.Offset != kDynamicShadowSentinel;
533   bool IsAndroidWithIfuncSupport =
534       IsAndroid && !TargetTriple.isAndroidVersionLT(21);
535   Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
536 
537   return Mapping;
538 }
539 
540 static uint64_t getRedzoneSizeForScale(int MappingScale) {
541   // Redzone used for stack and globals is at least 32 bytes.
542   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
543   return std::max(32U, 1U << MappingScale);
544 }
545 
546 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
547   if (TargetTriple.isOSEmscripten()) {
548     return kAsanEmscriptenCtorAndDtorPriority;
549   } else {
550     return kAsanCtorAndDtorPriority;
551   }
552 }
553 
554 namespace {
555 
556 /// Module analysis for getting various metadata about the module.
557 class ASanGlobalsMetadataWrapperPass : public ModulePass {
558 public:
559   static char ID;
560 
561   ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
562     initializeASanGlobalsMetadataWrapperPassPass(
563         *PassRegistry::getPassRegistry());
564   }
565 
566   bool runOnModule(Module &M) override {
567     GlobalsMD = GlobalsMetadata(M);
568     return false;
569   }
570 
571   StringRef getPassName() const override {
572     return "ASanGlobalsMetadataWrapperPass";
573   }
574 
575   void getAnalysisUsage(AnalysisUsage &AU) const override {
576     AU.setPreservesAll();
577   }
578 
579   GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
580 
581 private:
582   GlobalsMetadata GlobalsMD;
583 };
584 
585 char ASanGlobalsMetadataWrapperPass::ID = 0;
586 
587 /// AddressSanitizer: instrument the code in module to find memory bugs.
588 struct AddressSanitizer {
589   AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
590                    bool CompileKernel = false, bool Recover = false,
591                    bool UseAfterScope = false)
592       : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
593                                                             : CompileKernel),
594         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
595         UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) {
596     C = &(M.getContext());
597     LongSize = M.getDataLayout().getPointerSizeInBits();
598     IntptrTy = Type::getIntNTy(*C, LongSize);
599     TargetTriple = Triple(M.getTargetTriple());
600 
601     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
602   }
603 
604   uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
605     uint64_t ArraySize = 1;
606     if (AI.isArrayAllocation()) {
607       const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
608       assert(CI && "non-constant array size");
609       ArraySize = CI->getZExtValue();
610     }
611     Type *Ty = AI.getAllocatedType();
612     uint64_t SizeInBytes =
613         AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
614     return SizeInBytes * ArraySize;
615   }
616 
617   /// Check if we want (and can) handle this alloca.
618   bool isInterestingAlloca(const AllocaInst &AI);
619 
620   bool ignoreAccess(Value *Ptr);
621   void getInterestingMemoryOperands(
622       Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
623 
624   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
625                      InterestingMemoryOperand &O, bool UseCalls,
626                      const DataLayout &DL);
627   void instrumentPointerComparisonOrSubtraction(Instruction *I);
628   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
629                          Value *Addr, uint32_t TypeSize, bool IsWrite,
630                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
631   void instrumentUnusualSizeOrAlignment(Instruction *I,
632                                         Instruction *InsertBefore, Value *Addr,
633                                         uint32_t TypeSize, bool IsWrite,
634                                         Value *SizeArgument, bool UseCalls,
635                                         uint32_t Exp);
636   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
637                            Value *ShadowValue, uint32_t TypeSize);
638   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
639                                  bool IsWrite, size_t AccessSizeIndex,
640                                  Value *SizeArgument, uint32_t Exp);
641   void instrumentMemIntrinsic(MemIntrinsic *MI);
642   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
643   bool suppressInstrumentationSiteForDebug(int &Instrumented);
644   bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
645   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
646   bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
647   void markEscapedLocalAllocas(Function &F);
648 
649 private:
650   friend struct FunctionStackPoisoner;
651 
652   void initializeCallbacks(Module &M);
653 
654   bool LooksLikeCodeInBug11395(Instruction *I);
655   bool GlobalIsLinkerInitialized(GlobalVariable *G);
656   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
657                     uint64_t TypeSize) const;
658 
659   /// Helper to cleanup per-function state.
660   struct FunctionStateRAII {
661     AddressSanitizer *Pass;
662 
663     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
664       assert(Pass->ProcessedAllocas.empty() &&
665              "last pass forgot to clear cache");
666       assert(!Pass->LocalDynamicShadow);
667     }
668 
669     ~FunctionStateRAII() {
670       Pass->LocalDynamicShadow = nullptr;
671       Pass->ProcessedAllocas.clear();
672     }
673   };
674 
675   LLVMContext *C;
676   Triple TargetTriple;
677   int LongSize;
678   bool CompileKernel;
679   bool Recover;
680   bool UseAfterScope;
681   Type *IntptrTy;
682   ShadowMapping Mapping;
683   FunctionCallee AsanHandleNoReturnFunc;
684   FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
685   Constant *AsanShadowGlobal;
686 
687   // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
688   FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
689   FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
690 
691   // These arrays is indexed by AccessIsWrite and Experiment.
692   FunctionCallee AsanErrorCallbackSized[2][2];
693   FunctionCallee AsanMemoryAccessCallbackSized[2][2];
694 
695   FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
696   InlineAsm *EmptyAsm;
697   Value *LocalDynamicShadow = nullptr;
698   const GlobalsMetadata &GlobalsMD;
699   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
700 };
701 
702 class AddressSanitizerLegacyPass : public FunctionPass {
703 public:
704   static char ID;
705 
706   explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
707                                       bool Recover = false,
708                                       bool UseAfterScope = false)
709       : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
710         UseAfterScope(UseAfterScope) {
711     initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
712   }
713 
714   StringRef getPassName() const override {
715     return "AddressSanitizerFunctionPass";
716   }
717 
718   void getAnalysisUsage(AnalysisUsage &AU) const override {
719     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
720     AU.addRequired<TargetLibraryInfoWrapperPass>();
721   }
722 
723   bool runOnFunction(Function &F) override {
724     GlobalsMetadata &GlobalsMD =
725         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
726     const TargetLibraryInfo *TLI =
727         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
728     AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
729                           UseAfterScope);
730     return ASan.instrumentFunction(F, TLI);
731   }
732 
733 private:
734   bool CompileKernel;
735   bool Recover;
736   bool UseAfterScope;
737 };
738 
739 class ModuleAddressSanitizer {
740 public:
741   ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
742                          bool CompileKernel = false, bool Recover = false,
743                          bool UseGlobalsGC = true, bool UseOdrIndicator = false)
744       : GlobalsMD(*GlobalsMD),
745         CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
746                                                             : CompileKernel),
747         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
748         UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
749         // Enable aliases as they should have no downside with ODR indicators.
750         UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
751         UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
752         // Not a typo: ClWithComdat is almost completely pointless without
753         // ClUseGlobalsGC (because then it only works on modules without
754         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
755         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
756         // argument is designed as workaround. Therefore, disable both
757         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
758         // do globals-gc.
759         UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel) {
760     C = &(M.getContext());
761     int LongSize = M.getDataLayout().getPointerSizeInBits();
762     IntptrTy = Type::getIntNTy(*C, LongSize);
763     TargetTriple = Triple(M.getTargetTriple());
764     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
765   }
766 
767   bool instrumentModule(Module &);
768 
769 private:
770   void initializeCallbacks(Module &M);
771 
772   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
773   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
774                              ArrayRef<GlobalVariable *> ExtendedGlobals,
775                              ArrayRef<Constant *> MetadataInitializers);
776   void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
777                             ArrayRef<GlobalVariable *> ExtendedGlobals,
778                             ArrayRef<Constant *> MetadataInitializers,
779                             const std::string &UniqueModuleId);
780   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
781                               ArrayRef<GlobalVariable *> ExtendedGlobals,
782                               ArrayRef<Constant *> MetadataInitializers);
783   void
784   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
785                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
786                                      ArrayRef<Constant *> MetadataInitializers);
787 
788   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
789                                        StringRef OriginalName);
790   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
791                                   StringRef InternalSuffix);
792   Instruction *CreateAsanModuleDtor(Module &M);
793 
794   bool canInstrumentAliasedGlobal(const GlobalAlias &GA) const;
795   bool shouldInstrumentGlobal(GlobalVariable *G) const;
796   bool ShouldUseMachOGlobalsSection() const;
797   StringRef getGlobalMetadataSection() const;
798   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
799   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
800   uint64_t getMinRedzoneSizeForGlobal() const {
801     return getRedzoneSizeForScale(Mapping.Scale);
802   }
803   uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
804   int GetAsanVersion(const Module &M) const;
805 
806   const GlobalsMetadata &GlobalsMD;
807   bool CompileKernel;
808   bool Recover;
809   bool UseGlobalsGC;
810   bool UsePrivateAlias;
811   bool UseOdrIndicator;
812   bool UseCtorComdat;
813   Type *IntptrTy;
814   LLVMContext *C;
815   Triple TargetTriple;
816   ShadowMapping Mapping;
817   FunctionCallee AsanPoisonGlobals;
818   FunctionCallee AsanUnpoisonGlobals;
819   FunctionCallee AsanRegisterGlobals;
820   FunctionCallee AsanUnregisterGlobals;
821   FunctionCallee AsanRegisterImageGlobals;
822   FunctionCallee AsanUnregisterImageGlobals;
823   FunctionCallee AsanRegisterElfGlobals;
824   FunctionCallee AsanUnregisterElfGlobals;
825 
826   Function *AsanCtorFunction = nullptr;
827   Function *AsanDtorFunction = nullptr;
828 };
829 
830 class ModuleAddressSanitizerLegacyPass : public ModulePass {
831 public:
832   static char ID;
833 
834   explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false,
835                                             bool Recover = false,
836                                             bool UseGlobalGC = true,
837                                             bool UseOdrIndicator = false)
838       : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
839         UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) {
840     initializeModuleAddressSanitizerLegacyPassPass(
841         *PassRegistry::getPassRegistry());
842   }
843 
844   StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
845 
846   void getAnalysisUsage(AnalysisUsage &AU) const override {
847     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
848   }
849 
850   bool runOnModule(Module &M) override {
851     GlobalsMetadata &GlobalsMD =
852         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
853     ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
854                                       UseGlobalGC, UseOdrIndicator);
855     return ASanModule.instrumentModule(M);
856   }
857 
858 private:
859   bool CompileKernel;
860   bool Recover;
861   bool UseGlobalGC;
862   bool UseOdrIndicator;
863 };
864 
865 // Stack poisoning does not play well with exception handling.
866 // When an exception is thrown, we essentially bypass the code
867 // that unpoisones the stack. This is why the run-time library has
868 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
869 // stack in the interceptor. This however does not work inside the
870 // actual function which catches the exception. Most likely because the
871 // compiler hoists the load of the shadow value somewhere too high.
872 // This causes asan to report a non-existing bug on 453.povray.
873 // It sounds like an LLVM bug.
874 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
875   Function &F;
876   AddressSanitizer &ASan;
877   DIBuilder DIB;
878   LLVMContext *C;
879   Type *IntptrTy;
880   Type *IntptrPtrTy;
881   ShadowMapping Mapping;
882 
883   SmallVector<AllocaInst *, 16> AllocaVec;
884   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
885   SmallVector<Instruction *, 8> RetVec;
886   unsigned StackAlignment;
887 
888   FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
889       AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
890   FunctionCallee AsanSetShadowFunc[0x100] = {};
891   FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
892   FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
893 
894   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
895   struct AllocaPoisonCall {
896     IntrinsicInst *InsBefore;
897     AllocaInst *AI;
898     uint64_t Size;
899     bool DoPoison;
900   };
901   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
902   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
903   bool HasUntracedLifetimeIntrinsic = false;
904 
905   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
906   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
907   AllocaInst *DynamicAllocaLayout = nullptr;
908   IntrinsicInst *LocalEscapeCall = nullptr;
909 
910   // Maps Value to an AllocaInst from which the Value is originated.
911   using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
912   AllocaForValueMapTy AllocaForValue;
913 
914   bool HasNonEmptyInlineAsm = false;
915   bool HasReturnsTwiceCall = false;
916   std::unique_ptr<CallInst> EmptyInlineAsm;
917 
918   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
919       : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
920         C(ASan.C), IntptrTy(ASan.IntptrTy),
921         IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
922         StackAlignment(1 << Mapping.Scale),
923         EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
924 
925   bool runOnFunction() {
926     if (!ClStack) return false;
927 
928     if (ClRedzoneByvalArgs)
929       copyArgsPassedByValToAllocas();
930 
931     // Collect alloca, ret, lifetime instructions etc.
932     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
933 
934     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
935 
936     initializeCallbacks(*F.getParent());
937 
938     if (HasUntracedLifetimeIntrinsic) {
939       // If there are lifetime intrinsics which couldn't be traced back to an
940       // alloca, we may not know exactly when a variable enters scope, and
941       // therefore should "fail safe" by not poisoning them.
942       StaticAllocaPoisonCallVec.clear();
943       DynamicAllocaPoisonCallVec.clear();
944     }
945 
946     processDynamicAllocas();
947     processStaticAllocas();
948 
949     if (ClDebugStack) {
950       LLVM_DEBUG(dbgs() << F);
951     }
952     return true;
953   }
954 
955   // Arguments marked with the "byval" attribute are implicitly copied without
956   // using an alloca instruction.  To produce redzones for those arguments, we
957   // copy them a second time into memory allocated with an alloca instruction.
958   void copyArgsPassedByValToAllocas();
959 
960   // Finds all Alloca instructions and puts
961   // poisoned red zones around all of them.
962   // Then unpoison everything back before the function returns.
963   void processStaticAllocas();
964   void processDynamicAllocas();
965 
966   void createDynamicAllocasInitStorage();
967 
968   // ----------------------- Visitors.
969   /// Collect all Ret instructions.
970   void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
971 
972   /// Collect all Resume instructions.
973   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
974 
975   /// Collect all CatchReturnInst instructions.
976   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
977 
978   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
979                                         Value *SavedStack) {
980     IRBuilder<> IRB(InstBefore);
981     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
982     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
983     // need to adjust extracted SP to compute the address of the most recent
984     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
985     // this purpose.
986     if (!isa<ReturnInst>(InstBefore)) {
987       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
988           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
989           {IntptrTy});
990 
991       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
992 
993       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
994                                      DynamicAreaOffset);
995     }
996 
997     IRB.CreateCall(
998         AsanAllocasUnpoisonFunc,
999         {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1000   }
1001 
1002   // Unpoison dynamic allocas redzones.
1003   void unpoisonDynamicAllocas() {
1004     for (auto &Ret : RetVec)
1005       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1006 
1007     for (auto &StackRestoreInst : StackRestoreVec)
1008       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1009                                        StackRestoreInst->getOperand(0));
1010   }
1011 
1012   // Deploy and poison redzones around dynamic alloca call. To do this, we
1013   // should replace this call with another one with changed parameters and
1014   // replace all its uses with new address, so
1015   //   addr = alloca type, old_size, align
1016   // is replaced by
1017   //   new_size = (old_size + additional_size) * sizeof(type)
1018   //   tmp = alloca i8, new_size, max(align, 32)
1019   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
1020   // Additional_size is added to make new memory allocation contain not only
1021   // requested memory, but also left, partial and right redzones.
1022   void handleDynamicAllocaCall(AllocaInst *AI);
1023 
1024   /// Collect Alloca instructions we want (and can) handle.
1025   void visitAllocaInst(AllocaInst &AI) {
1026     if (!ASan.isInterestingAlloca(AI)) {
1027       if (AI.isStaticAlloca()) {
1028         // Skip over allocas that are present *before* the first instrumented
1029         // alloca, we don't want to move those around.
1030         if (AllocaVec.empty())
1031           return;
1032 
1033         StaticAllocasToMoveUp.push_back(&AI);
1034       }
1035       return;
1036     }
1037 
1038     StackAlignment = std::max(StackAlignment, AI.getAlignment());
1039     if (!AI.isStaticAlloca())
1040       DynamicAllocaVec.push_back(&AI);
1041     else
1042       AllocaVec.push_back(&AI);
1043   }
1044 
1045   /// Collect lifetime intrinsic calls to check for use-after-scope
1046   /// errors.
1047   void visitIntrinsicInst(IntrinsicInst &II) {
1048     Intrinsic::ID ID = II.getIntrinsicID();
1049     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1050     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1051     if (!ASan.UseAfterScope)
1052       return;
1053     if (!II.isLifetimeStartOrEnd())
1054       return;
1055     // Found lifetime intrinsic, add ASan instrumentation if necessary.
1056     auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1057     // If size argument is undefined, don't do anything.
1058     if (Size->isMinusOne()) return;
1059     // Check that size doesn't saturate uint64_t and can
1060     // be stored in IntptrTy.
1061     const uint64_t SizeValue = Size->getValue().getLimitedValue();
1062     if (SizeValue == ~0ULL ||
1063         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1064       return;
1065     // Find alloca instruction that corresponds to llvm.lifetime argument.
1066     AllocaInst *AI =
1067         llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue);
1068     if (!AI) {
1069       HasUntracedLifetimeIntrinsic = true;
1070       return;
1071     }
1072     // We're interested only in allocas we can handle.
1073     if (!ASan.isInterestingAlloca(*AI))
1074       return;
1075     bool DoPoison = (ID == Intrinsic::lifetime_end);
1076     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1077     if (AI->isStaticAlloca())
1078       StaticAllocaPoisonCallVec.push_back(APC);
1079     else if (ClInstrumentDynamicAllocas)
1080       DynamicAllocaPoisonCallVec.push_back(APC);
1081   }
1082 
1083   void visitCallBase(CallBase &CB) {
1084     if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1085       HasNonEmptyInlineAsm |= CI->isInlineAsm() &&
1086                               !CI->isIdenticalTo(EmptyInlineAsm.get()) &&
1087                               &CB != ASan.LocalDynamicShadow;
1088       HasReturnsTwiceCall |= CI->canReturnTwice();
1089     }
1090   }
1091 
1092   // ---------------------- Helpers.
1093   void initializeCallbacks(Module &M);
1094 
1095   // Copies bytes from ShadowBytes into shadow memory for indexes where
1096   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1097   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1098   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1099                     IRBuilder<> &IRB, Value *ShadowBase);
1100   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1101                     size_t Begin, size_t End, IRBuilder<> &IRB,
1102                     Value *ShadowBase);
1103   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1104                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1105                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1106 
1107   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1108 
1109   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1110                                bool Dynamic);
1111   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1112                      Instruction *ThenTerm, Value *ValueIfFalse);
1113 };
1114 
1115 } // end anonymous namespace
1116 
1117 void LocationMetadata::parse(MDNode *MDN) {
1118   assert(MDN->getNumOperands() == 3);
1119   MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1120   Filename = DIFilename->getString();
1121   LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1122   ColumnNo =
1123       mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1124 }
1125 
1126 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1127 // we want to sanitize instead and reading this metadata on each pass over a
1128 // function instead of reading module level metadata at first.
1129 GlobalsMetadata::GlobalsMetadata(Module &M) {
1130   NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1131   if (!Globals)
1132     return;
1133   for (auto MDN : Globals->operands()) {
1134     // Metadata node contains the global and the fields of "Entry".
1135     assert(MDN->getNumOperands() == 5);
1136     auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1137     // The optimizer may optimize away a global entirely.
1138     if (!V)
1139       continue;
1140     auto *StrippedV = V->stripPointerCasts();
1141     auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1142     if (!GV)
1143       continue;
1144     // We can already have an entry for GV if it was merged with another
1145     // global.
1146     Entry &E = Entries[GV];
1147     if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1148       E.SourceLoc.parse(Loc);
1149     if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1150       E.Name = Name->getString();
1151     ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1152     E.IsDynInit |= IsDynInit->isOne();
1153     ConstantInt *IsBlacklisted =
1154         mdconst::extract<ConstantInt>(MDN->getOperand(4));
1155     E.IsBlacklisted |= IsBlacklisted->isOne();
1156   }
1157 }
1158 
1159 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1160 
1161 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1162                                                  ModuleAnalysisManager &AM) {
1163   return GlobalsMetadata(M);
1164 }
1165 
1166 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
1167                                            bool UseAfterScope)
1168     : CompileKernel(CompileKernel), Recover(Recover),
1169       UseAfterScope(UseAfterScope) {}
1170 
1171 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1172                                             AnalysisManager<Function> &AM) {
1173   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1174   Module &M = *F.getParent();
1175   if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1176     const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1177     AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope);
1178     if (Sanitizer.instrumentFunction(F, TLI))
1179       return PreservedAnalyses::none();
1180     return PreservedAnalyses::all();
1181   }
1182 
1183   report_fatal_error(
1184       "The ASanGlobalsMetadataAnalysis is required to run before "
1185       "AddressSanitizer can run");
1186   return PreservedAnalyses::all();
1187 }
1188 
1189 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel,
1190                                                        bool Recover,
1191                                                        bool UseGlobalGC,
1192                                                        bool UseOdrIndicator)
1193     : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1194       UseOdrIndicator(UseOdrIndicator) {}
1195 
1196 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1197                                                   AnalysisManager<Module> &AM) {
1198   GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1199   ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
1200                                    UseGlobalGC, UseOdrIndicator);
1201   if (Sanitizer.instrumentModule(M))
1202     return PreservedAnalyses::none();
1203   return PreservedAnalyses::all();
1204 }
1205 
1206 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1207                 "Read metadata to mark which globals should be instrumented "
1208                 "when running ASan.",
1209                 false, true)
1210 
1211 char AddressSanitizerLegacyPass::ID = 0;
1212 
1213 INITIALIZE_PASS_BEGIN(
1214     AddressSanitizerLegacyPass, "asan",
1215     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1216     false)
1217 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1218 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1219 INITIALIZE_PASS_END(
1220     AddressSanitizerLegacyPass, "asan",
1221     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1222     false)
1223 
1224 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1225                                                        bool Recover,
1226                                                        bool UseAfterScope) {
1227   assert(!CompileKernel || Recover);
1228   return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
1229 }
1230 
1231 char ModuleAddressSanitizerLegacyPass::ID = 0;
1232 
1233 INITIALIZE_PASS(
1234     ModuleAddressSanitizerLegacyPass, "asan-module",
1235     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1236     "ModulePass",
1237     false, false)
1238 
1239 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1240     bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) {
1241   assert(!CompileKernel || Recover);
1242   return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover,
1243                                               UseGlobalsGC, UseOdrIndicator);
1244 }
1245 
1246 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1247   size_t Res = countTrailingZeros(TypeSize / 8);
1248   assert(Res < kNumberOfAccessSizes);
1249   return Res;
1250 }
1251 
1252 /// Create a global describing a source location.
1253 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1254                                                        LocationMetadata MD) {
1255   Constant *LocData[] = {
1256       createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1257       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1258       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1259   };
1260   auto LocStruct = ConstantStruct::getAnon(LocData);
1261   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1262                                GlobalValue::PrivateLinkage, LocStruct,
1263                                kAsanGenPrefix);
1264   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1265   return GV;
1266 }
1267 
1268 /// Check if \p G has been created by a trusted compiler pass.
1269 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1270   // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1271   if (G->getName().startswith("llvm."))
1272     return true;
1273 
1274   // Do not instrument asan globals.
1275   if (G->getName().startswith(kAsanGenPrefix) ||
1276       G->getName().startswith(kSanCovGenPrefix) ||
1277       G->getName().startswith(kODRGenPrefix))
1278     return true;
1279 
1280   // Do not instrument gcov counter arrays.
1281   if (G->getName() == "__llvm_gcov_ctr")
1282     return true;
1283 
1284   return false;
1285 }
1286 
1287 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1288   // Shadow >> scale
1289   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1290   if (Mapping.Offset == 0) return Shadow;
1291   // (Shadow >> scale) | offset
1292   Value *ShadowBase;
1293   if (LocalDynamicShadow)
1294     ShadowBase = LocalDynamicShadow;
1295   else
1296     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1297   if (Mapping.OrShadowOffset)
1298     return IRB.CreateOr(Shadow, ShadowBase);
1299   else
1300     return IRB.CreateAdd(Shadow, ShadowBase);
1301 }
1302 
1303 // Instrument memset/memmove/memcpy
1304 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1305   IRBuilder<> IRB(MI);
1306   if (isa<MemTransferInst>(MI)) {
1307     IRB.CreateCall(
1308         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1309         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1310          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1311          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1312   } else if (isa<MemSetInst>(MI)) {
1313     IRB.CreateCall(
1314         AsanMemset,
1315         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1316          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1317          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1318   }
1319   MI->eraseFromParent();
1320 }
1321 
1322 /// Check if we want (and can) handle this alloca.
1323 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1324   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1325 
1326   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1327     return PreviouslySeenAllocaInfo->getSecond();
1328 
1329   bool IsInteresting =
1330       (AI.getAllocatedType()->isSized() &&
1331        // alloca() may be called with 0 size, ignore it.
1332        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1333        // We are only interested in allocas not promotable to registers.
1334        // Promotable allocas are common under -O0.
1335        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1336        // inalloca allocas are not treated as static, and we don't want
1337        // dynamic alloca instrumentation for them as well.
1338        !AI.isUsedWithInAlloca() &&
1339        // swifterror allocas are register promoted by ISel
1340        !AI.isSwiftError());
1341 
1342   ProcessedAllocas[&AI] = IsInteresting;
1343   return IsInteresting;
1344 }
1345 
1346 bool AddressSanitizer::ignoreAccess(Value *Ptr) {
1347   // Do not instrument acesses from different address spaces; we cannot deal
1348   // with them.
1349   Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1350   if (PtrTy->getPointerAddressSpace() != 0)
1351     return true;
1352 
1353   // Ignore swifterror addresses.
1354   // swifterror memory addresses are mem2reg promoted by instruction
1355   // selection. As such they cannot have regular uses like an instrumentation
1356   // function and it makes no sense to track them as memory.
1357   if (Ptr->isSwiftError())
1358     return true;
1359 
1360   // Treat memory accesses to promotable allocas as non-interesting since they
1361   // will not cause memory violations. This greatly speeds up the instrumented
1362   // executable at -O0.
1363   if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1364     if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1365       return true;
1366 
1367   return false;
1368 }
1369 
1370 void AddressSanitizer::getInterestingMemoryOperands(
1371     Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1372   // Skip memory accesses inserted by another instrumentation.
1373   if (I->hasMetadata("nosanitize"))
1374     return;
1375 
1376   // Do not instrument the load fetching the dynamic shadow address.
1377   if (LocalDynamicShadow == I)
1378     return;
1379 
1380   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1381     if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
1382       return;
1383     Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1384                              LI->getType(), LI->getAlignment());
1385   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1386     if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
1387       return;
1388     Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1389                              SI->getValueOperand()->getType(),
1390                              SI->getAlignment());
1391   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1392     if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
1393       return;
1394     Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1395                              RMW->getValOperand()->getType(), 0);
1396   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1397     if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
1398       return;
1399     Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1400                              XCHG->getCompareOperand()->getType(), 0);
1401   } else if (auto CI = dyn_cast<CallInst>(I)) {
1402     auto *F = CI->getCalledFunction();
1403     if (F && (F->getName().startswith("llvm.masked.load.") ||
1404               F->getName().startswith("llvm.masked.store."))) {
1405       bool IsWrite = F->getName().startswith("llvm.masked.store.");
1406       // Masked store has an initial operand for the value.
1407       unsigned OpOffset = IsWrite ? 1 : 0;
1408       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1409         return;
1410 
1411       auto BasePtr = CI->getOperand(OpOffset);
1412       if (ignoreAccess(BasePtr))
1413         return;
1414       auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1415       unsigned Alignment = 1;
1416       // Otherwise no alignment guarantees. We probably got Undef.
1417       if (auto AlignmentConstant =
1418               dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1419         Alignment = (unsigned)AlignmentConstant->getZExtValue();
1420       Value *Mask = CI->getOperand(2 + OpOffset);
1421       Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1422     } else {
1423       for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
1424         if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1425             ignoreAccess(CI->getArgOperand(ArgNo)))
1426           continue;
1427         Type *Ty = CI->getParamByValType(ArgNo);
1428         Interesting.emplace_back(I, ArgNo, false, Ty, 1);
1429       }
1430     }
1431   }
1432 }
1433 
1434 static bool isPointerOperand(Value *V) {
1435   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1436 }
1437 
1438 // This is a rough heuristic; it may cause both false positives and
1439 // false negatives. The proper implementation requires cooperation with
1440 // the frontend.
1441 static bool isInterestingPointerComparison(Instruction *I) {
1442   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1443     if (!Cmp->isRelational())
1444       return false;
1445   } else {
1446     return false;
1447   }
1448   return isPointerOperand(I->getOperand(0)) &&
1449          isPointerOperand(I->getOperand(1));
1450 }
1451 
1452 // This is a rough heuristic; it may cause both false positives and
1453 // false negatives. The proper implementation requires cooperation with
1454 // the frontend.
1455 static bool isInterestingPointerSubtraction(Instruction *I) {
1456   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1457     if (BO->getOpcode() != Instruction::Sub)
1458       return false;
1459   } else {
1460     return false;
1461   }
1462   return isPointerOperand(I->getOperand(0)) &&
1463          isPointerOperand(I->getOperand(1));
1464 }
1465 
1466 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1467   // If a global variable does not have dynamic initialization we don't
1468   // have to instrument it.  However, if a global does not have initializer
1469   // at all, we assume it has dynamic initializer (in other TU).
1470   //
1471   // FIXME: Metadata should be attched directly to the global directly instead
1472   // of being added to llvm.asan.globals.
1473   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1474 }
1475 
1476 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1477     Instruction *I) {
1478   IRBuilder<> IRB(I);
1479   FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1480   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1481   for (Value *&i : Param) {
1482     if (i->getType()->isPointerTy())
1483       i = IRB.CreatePointerCast(i, IntptrTy);
1484   }
1485   IRB.CreateCall(F, Param);
1486 }
1487 
1488 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1489                                 Instruction *InsertBefore, Value *Addr,
1490                                 unsigned Alignment, unsigned Granularity,
1491                                 uint32_t TypeSize, bool IsWrite,
1492                                 Value *SizeArgument, bool UseCalls,
1493                                 uint32_t Exp) {
1494   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1495   // if the data is properly aligned.
1496   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1497        TypeSize == 128) &&
1498       (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1499     return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1500                                    nullptr, UseCalls, Exp);
1501   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1502                                          IsWrite, nullptr, UseCalls, Exp);
1503 }
1504 
1505 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1506                                         const DataLayout &DL, Type *IntptrTy,
1507                                         Value *Mask, Instruction *I,
1508                                         Value *Addr, unsigned Alignment,
1509                                         unsigned Granularity, uint32_t TypeSize,
1510                                         bool IsWrite, Value *SizeArgument,
1511                                         bool UseCalls, uint32_t Exp) {
1512   auto *VTy =
1513       cast<VectorType>(cast<PointerType>(Addr->getType())->getElementType());
1514   uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1515   unsigned Num = VTy->getNumElements();
1516   auto Zero = ConstantInt::get(IntptrTy, 0);
1517   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1518     Value *InstrumentedAddress = nullptr;
1519     Instruction *InsertBefore = I;
1520     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1521       // dyn_cast as we might get UndefValue
1522       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1523         if (Masked->isZero())
1524           // Mask is constant false, so no instrumentation needed.
1525           continue;
1526         // If we have a true or undef value, fall through to doInstrumentAddress
1527         // with InsertBefore == I
1528       }
1529     } else {
1530       IRBuilder<> IRB(I);
1531       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1532       Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1533       InsertBefore = ThenTerm;
1534     }
1535 
1536     IRBuilder<> IRB(InsertBefore);
1537     InstrumentedAddress =
1538         IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1539     doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1540                         Granularity, ElemTypeSize, IsWrite, SizeArgument,
1541                         UseCalls, Exp);
1542   }
1543 }
1544 
1545 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1546                                      InterestingMemoryOperand &O, bool UseCalls,
1547                                      const DataLayout &DL) {
1548   Value *Addr = O.getPtr();
1549 
1550   // Optimization experiments.
1551   // The experiments can be used to evaluate potential optimizations that remove
1552   // instrumentation (assess false negatives). Instead of completely removing
1553   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1554   // experiments that want to remove instrumentation of this instruction).
1555   // If Exp is non-zero, this pass will emit special calls into runtime
1556   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1557   // make runtime terminate the program in a special way (with a different
1558   // exit status). Then you run the new compiler on a buggy corpus, collect
1559   // the special terminations (ideally, you don't see them at all -- no false
1560   // negatives) and make the decision on the optimization.
1561   uint32_t Exp = ClForceExperiment;
1562 
1563   if (ClOpt && ClOptGlobals) {
1564     // If initialization order checking is disabled, a simple access to a
1565     // dynamically initialized global is always valid.
1566     GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1567     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1568         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1569       NumOptimizedAccessesToGlobalVar++;
1570       return;
1571     }
1572   }
1573 
1574   if (ClOpt && ClOptStack) {
1575     // A direct inbounds access to a stack variable is always valid.
1576     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1577         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1578       NumOptimizedAccessesToStackVar++;
1579       return;
1580     }
1581   }
1582 
1583   if (O.IsWrite)
1584     NumInstrumentedWrites++;
1585   else
1586     NumInstrumentedReads++;
1587 
1588   unsigned Granularity = 1 << Mapping.Scale;
1589   if (O.MaybeMask) {
1590     instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
1591                                 Addr, O.Alignment, Granularity, O.TypeSize,
1592                                 O.IsWrite, nullptr, UseCalls, Exp);
1593   } else {
1594     doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1595                         Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
1596                         Exp);
1597   }
1598 }
1599 
1600 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1601                                                  Value *Addr, bool IsWrite,
1602                                                  size_t AccessSizeIndex,
1603                                                  Value *SizeArgument,
1604                                                  uint32_t Exp) {
1605   IRBuilder<> IRB(InsertBefore);
1606   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1607   CallInst *Call = nullptr;
1608   if (SizeArgument) {
1609     if (Exp == 0)
1610       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1611                             {Addr, SizeArgument});
1612     else
1613       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1614                             {Addr, SizeArgument, ExpVal});
1615   } else {
1616     if (Exp == 0)
1617       Call =
1618           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1619     else
1620       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1621                             {Addr, ExpVal});
1622   }
1623 
1624   // We don't do Call->setDoesNotReturn() because the BB already has
1625   // UnreachableInst at the end.
1626   // This EmptyAsm is required to avoid callback merge.
1627   IRB.CreateCall(EmptyAsm, {});
1628   return Call;
1629 }
1630 
1631 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1632                                            Value *ShadowValue,
1633                                            uint32_t TypeSize) {
1634   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1635   // Addr & (Granularity - 1)
1636   Value *LastAccessedByte =
1637       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1638   // (Addr & (Granularity - 1)) + size - 1
1639   if (TypeSize / 8 > 1)
1640     LastAccessedByte = IRB.CreateAdd(
1641         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1642   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1643   LastAccessedByte =
1644       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1645   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1646   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1647 }
1648 
1649 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1650                                          Instruction *InsertBefore, Value *Addr,
1651                                          uint32_t TypeSize, bool IsWrite,
1652                                          Value *SizeArgument, bool UseCalls,
1653                                          uint32_t Exp) {
1654   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1655 
1656   IRBuilder<> IRB(InsertBefore);
1657   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1658   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1659 
1660   if (UseCalls) {
1661     if (Exp == 0)
1662       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1663                      AddrLong);
1664     else
1665       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1666                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1667     return;
1668   }
1669 
1670   if (IsMyriad) {
1671     // Strip the cache bit and do range check.
1672     // AddrLong &= ~kMyriadCacheBitMask32
1673     AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1674     // Tag = AddrLong >> kMyriadTagShift
1675     Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1676     // Tag == kMyriadDDRTag
1677     Value *TagCheck =
1678         IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1679 
1680     Instruction *TagCheckTerm =
1681         SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
1682                                   MDBuilder(*C).createBranchWeights(1, 100000));
1683     assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1684     IRB.SetInsertPoint(TagCheckTerm);
1685     InsertBefore = TagCheckTerm;
1686   }
1687 
1688   Type *ShadowTy =
1689       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1690   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1691   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1692   Value *CmpVal = Constant::getNullValue(ShadowTy);
1693   Value *ShadowValue =
1694       IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1695 
1696   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1697   size_t Granularity = 1ULL << Mapping.Scale;
1698   Instruction *CrashTerm = nullptr;
1699 
1700   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1701     // We use branch weights for the slow path check, to indicate that the slow
1702     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1703     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1704         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1705     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1706     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1707     IRB.SetInsertPoint(CheckTerm);
1708     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1709     if (Recover) {
1710       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1711     } else {
1712       BasicBlock *CrashBlock =
1713         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1714       CrashTerm = new UnreachableInst(*C, CrashBlock);
1715       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1716       ReplaceInstWithInst(CheckTerm, NewTerm);
1717     }
1718   } else {
1719     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1720   }
1721 
1722   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1723                                          AccessSizeIndex, SizeArgument, Exp);
1724   Crash->setDebugLoc(OrigIns->getDebugLoc());
1725 }
1726 
1727 // Instrument unusual size or unusual alignment.
1728 // We can not do it with a single check, so we do 1-byte check for the first
1729 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1730 // to report the actual access size.
1731 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1732     Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1733     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1734   IRBuilder<> IRB(InsertBefore);
1735   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1736   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1737   if (UseCalls) {
1738     if (Exp == 0)
1739       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1740                      {AddrLong, Size});
1741     else
1742       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1743                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1744   } else {
1745     Value *LastByte = IRB.CreateIntToPtr(
1746         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1747         Addr->getType());
1748     instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1749     instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1750   }
1751 }
1752 
1753 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1754                                                   GlobalValue *ModuleName) {
1755   // Set up the arguments to our poison/unpoison functions.
1756   IRBuilder<> IRB(&GlobalInit.front(),
1757                   GlobalInit.front().getFirstInsertionPt());
1758 
1759   // Add a call to poison all external globals before the given function starts.
1760   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1761   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1762 
1763   // Add calls to unpoison all globals before each return instruction.
1764   for (auto &BB : GlobalInit.getBasicBlockList())
1765     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1766       CallInst::Create(AsanUnpoisonGlobals, "", RI);
1767 }
1768 
1769 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1770     Module &M, GlobalValue *ModuleName) {
1771   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1772   if (!GV)
1773     return;
1774 
1775   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1776   if (!CA)
1777     return;
1778 
1779   for (Use &OP : CA->operands()) {
1780     if (isa<ConstantAggregateZero>(OP)) continue;
1781     ConstantStruct *CS = cast<ConstantStruct>(OP);
1782 
1783     // Must have a function or null ptr.
1784     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1785       if (F->getName() == kAsanModuleCtorName) continue;
1786       auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1787       // Don't instrument CTORs that will run before asan.module_ctor.
1788       if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1789         continue;
1790       poisonOneInitializer(*F, ModuleName);
1791     }
1792   }
1793 }
1794 
1795 bool ModuleAddressSanitizer::canInstrumentAliasedGlobal(
1796     const GlobalAlias &GA) const {
1797   // In case this function should be expanded to include rules that do not just
1798   // apply when CompileKernel is true, either guard all existing rules with an
1799   // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1800   // should also apply to user space.
1801   assert(CompileKernel && "Only expecting to be called when compiling kernel");
1802 
1803   // When compiling the kernel, globals that are aliased by symbols prefixed
1804   // by "__" are special and cannot be padded with a redzone.
1805   if (GA.getName().startswith("__"))
1806     return false;
1807 
1808   return true;
1809 }
1810 
1811 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
1812   Type *Ty = G->getValueType();
1813   LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1814 
1815   // FIXME: Metadata should be attched directly to the global directly instead
1816   // of being added to llvm.asan.globals.
1817   if (GlobalsMD.get(G).IsBlacklisted) return false;
1818   if (!Ty->isSized()) return false;
1819   if (!G->hasInitializer()) return false;
1820   // Only instrument globals of default address spaces
1821   if (G->getAddressSpace()) return false;
1822   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1823   // Two problems with thread-locals:
1824   //   - The address of the main thread's copy can't be computed at link-time.
1825   //   - Need to poison all copies, not just the main thread's one.
1826   if (G->isThreadLocal()) return false;
1827   // For now, just ignore this Global if the alignment is large.
1828   if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;
1829 
1830   // For non-COFF targets, only instrument globals known to be defined by this
1831   // TU.
1832   // FIXME: We can instrument comdat globals on ELF if we are using the
1833   // GC-friendly metadata scheme.
1834   if (!TargetTriple.isOSBinFormatCOFF()) {
1835     if (!G->hasExactDefinition() || G->hasComdat())
1836       return false;
1837   } else {
1838     // On COFF, don't instrument non-ODR linkages.
1839     if (G->isInterposable())
1840       return false;
1841   }
1842 
1843   // If a comdat is present, it must have a selection kind that implies ODR
1844   // semantics: no duplicates, any, or exact match.
1845   if (Comdat *C = G->getComdat()) {
1846     switch (C->getSelectionKind()) {
1847     case Comdat::Any:
1848     case Comdat::ExactMatch:
1849     case Comdat::NoDuplicates:
1850       break;
1851     case Comdat::Largest:
1852     case Comdat::SameSize:
1853       return false;
1854     }
1855   }
1856 
1857   if (G->hasSection()) {
1858     // The kernel uses explicit sections for mostly special global variables
1859     // that we should not instrument. E.g. the kernel may rely on their layout
1860     // without redzones, or remove them at link time ("discard.*"), etc.
1861     if (CompileKernel)
1862       return false;
1863 
1864     StringRef Section = G->getSection();
1865 
1866     // Globals from llvm.metadata aren't emitted, do not instrument them.
1867     if (Section == "llvm.metadata") return false;
1868     // Do not instrument globals from special LLVM sections.
1869     if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1870 
1871     // Do not instrument function pointers to initialization and termination
1872     // routines: dynamic linker will not properly handle redzones.
1873     if (Section.startswith(".preinit_array") ||
1874         Section.startswith(".init_array") ||
1875         Section.startswith(".fini_array")) {
1876       return false;
1877     }
1878 
1879     // On COFF, if the section name contains '$', it is highly likely that the
1880     // user is using section sorting to create an array of globals similar to
1881     // the way initialization callbacks are registered in .init_array and
1882     // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1883     // to such globals is counterproductive, because the intent is that they
1884     // will form an array, and out-of-bounds accesses are expected.
1885     // See https://github.com/google/sanitizers/issues/305
1886     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1887     if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1888       LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1889                         << *G << "\n");
1890       return false;
1891     }
1892 
1893     if (TargetTriple.isOSBinFormatMachO()) {
1894       StringRef ParsedSegment, ParsedSection;
1895       unsigned TAA = 0, StubSize = 0;
1896       bool TAAParsed;
1897       std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1898           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1899       assert(ErrorCode.empty() && "Invalid section specifier.");
1900 
1901       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1902       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1903       // them.
1904       if (ParsedSegment == "__OBJC" ||
1905           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1906         LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1907         return false;
1908       }
1909       // See https://github.com/google/sanitizers/issues/32
1910       // Constant CFString instances are compiled in the following way:
1911       //  -- the string buffer is emitted into
1912       //     __TEXT,__cstring,cstring_literals
1913       //  -- the constant NSConstantString structure referencing that buffer
1914       //     is placed into __DATA,__cfstring
1915       // Therefore there's no point in placing redzones into __DATA,__cfstring.
1916       // Moreover, it causes the linker to crash on OS X 10.7
1917       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1918         LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1919         return false;
1920       }
1921       // The linker merges the contents of cstring_literals and removes the
1922       // trailing zeroes.
1923       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1924         LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1925         return false;
1926       }
1927     }
1928   }
1929 
1930   if (CompileKernel) {
1931     // Globals that prefixed by "__" are special and cannot be padded with a
1932     // redzone.
1933     if (G->getName().startswith("__"))
1934       return false;
1935   }
1936 
1937   return true;
1938 }
1939 
1940 // On Mach-O platforms, we emit global metadata in a separate section of the
1941 // binary in order to allow the linker to properly dead strip. This is only
1942 // supported on recent versions of ld64.
1943 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
1944   if (!TargetTriple.isOSBinFormatMachO())
1945     return false;
1946 
1947   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1948     return true;
1949   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1950     return true;
1951   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1952     return true;
1953 
1954   return false;
1955 }
1956 
1957 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
1958   switch (TargetTriple.getObjectFormat()) {
1959   case Triple::COFF:  return ".ASAN$GL";
1960   case Triple::ELF:   return "asan_globals";
1961   case Triple::MachO: return "__DATA,__asan_globals,regular";
1962   case Triple::Wasm:
1963   case Triple::XCOFF:
1964     report_fatal_error(
1965         "ModuleAddressSanitizer not implemented for object file format.");
1966   case Triple::UnknownObjectFormat:
1967     break;
1968   }
1969   llvm_unreachable("unsupported object format");
1970 }
1971 
1972 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
1973   IRBuilder<> IRB(*C);
1974 
1975   // Declare our poisoning and unpoisoning functions.
1976   AsanPoisonGlobals =
1977       M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
1978   AsanUnpoisonGlobals =
1979       M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
1980 
1981   // Declare functions that register/unregister globals.
1982   AsanRegisterGlobals = M.getOrInsertFunction(
1983       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1984   AsanUnregisterGlobals = M.getOrInsertFunction(
1985       kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1986 
1987   // Declare the functions that find globals in a shared object and then invoke
1988   // the (un)register function on them.
1989   AsanRegisterImageGlobals = M.getOrInsertFunction(
1990       kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1991   AsanUnregisterImageGlobals = M.getOrInsertFunction(
1992       kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1993 
1994   AsanRegisterElfGlobals =
1995       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
1996                             IntptrTy, IntptrTy, IntptrTy);
1997   AsanUnregisterElfGlobals =
1998       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
1999                             IntptrTy, IntptrTy, IntptrTy);
2000 }
2001 
2002 // Put the metadata and the instrumented global in the same group. This ensures
2003 // that the metadata is discarded if the instrumented global is discarded.
2004 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2005     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2006   Module &M = *G->getParent();
2007   Comdat *C = G->getComdat();
2008   if (!C) {
2009     if (!G->hasName()) {
2010       // If G is unnamed, it must be internal. Give it an artificial name
2011       // so we can put it in a comdat.
2012       assert(G->hasLocalLinkage());
2013       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2014     }
2015 
2016     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2017       std::string Name = std::string(G->getName());
2018       Name += InternalSuffix;
2019       C = M.getOrInsertComdat(Name);
2020     } else {
2021       C = M.getOrInsertComdat(G->getName());
2022     }
2023 
2024     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2025     // linkage to internal linkage so that a symbol table entry is emitted. This
2026     // is necessary in order to create the comdat group.
2027     if (TargetTriple.isOSBinFormatCOFF()) {
2028       C->setSelectionKind(Comdat::NoDuplicates);
2029       if (G->hasPrivateLinkage())
2030         G->setLinkage(GlobalValue::InternalLinkage);
2031     }
2032     G->setComdat(C);
2033   }
2034 
2035   assert(G->hasComdat());
2036   Metadata->setComdat(G->getComdat());
2037 }
2038 
2039 // Create a separate metadata global and put it in the appropriate ASan
2040 // global registration section.
2041 GlobalVariable *
2042 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2043                                              StringRef OriginalName) {
2044   auto Linkage = TargetTriple.isOSBinFormatMachO()
2045                      ? GlobalVariable::InternalLinkage
2046                      : GlobalVariable::PrivateLinkage;
2047   GlobalVariable *Metadata = new GlobalVariable(
2048       M, Initializer->getType(), false, Linkage, Initializer,
2049       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2050   Metadata->setSection(getGlobalMetadataSection());
2051   return Metadata;
2052 }
2053 
2054 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2055   AsanDtorFunction =
2056       Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
2057                        GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
2058   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2059 
2060   return ReturnInst::Create(*C, AsanDtorBB);
2061 }
2062 
2063 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2064     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2065     ArrayRef<Constant *> MetadataInitializers) {
2066   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2067   auto &DL = M.getDataLayout();
2068 
2069   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2070   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2071     Constant *Initializer = MetadataInitializers[i];
2072     GlobalVariable *G = ExtendedGlobals[i];
2073     GlobalVariable *Metadata =
2074         CreateMetadataGlobal(M, Initializer, G->getName());
2075     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2076     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2077     MetadataGlobals[i] = Metadata;
2078 
2079     // The MSVC linker always inserts padding when linking incrementally. We
2080     // cope with that by aligning each struct to its size, which must be a power
2081     // of two.
2082     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2083     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2084            "global metadata will not be padded appropriately");
2085     Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2086 
2087     SetComdatForGlobalMetadata(G, Metadata, "");
2088   }
2089 
2090   // Update llvm.compiler.used, adding the new metadata globals. This is
2091   // needed so that during LTO these variables stay alive.
2092   if (!MetadataGlobals.empty())
2093     appendToCompilerUsed(M, MetadataGlobals);
2094 }
2095 
2096 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2097     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2098     ArrayRef<Constant *> MetadataInitializers,
2099     const std::string &UniqueModuleId) {
2100   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2101 
2102   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2103   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2104     GlobalVariable *G = ExtendedGlobals[i];
2105     GlobalVariable *Metadata =
2106         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2107     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2108     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2109     MetadataGlobals[i] = Metadata;
2110 
2111     SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2112   }
2113 
2114   // This should never be called when there are no globals, by the logic that
2115   // computes the UniqueModuleId string, which is "" when there are no globals.
2116   // It's important that this path is only used when there are actually some
2117   // globals, because that means that there will certainly be a live
2118   // `asan_globals` input section at link time and thus `__start_asan_globals`
2119   // and `__stop_asan_globals` symbols will definitely be defined at link time.
2120   // This means there's no need for the references to them to be weak, which
2121   // enables better code generation because ExternalWeakLinkage implies
2122   // isInterposable() and thus requires GOT indirection for PIC.  Since these
2123   // are known-defined hidden/dso_local symbols, direct PIC accesses without
2124   // dynamic relocation are always sufficient.
2125   assert(!MetadataGlobals.empty());
2126   assert(!UniqueModuleId.empty());
2127 
2128   // Update llvm.compiler.used, adding the new metadata globals. This is
2129   // needed so that during LTO these variables stay alive.
2130   appendToCompilerUsed(M, MetadataGlobals);
2131 
2132   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2133   // to look up the loaded image that contains it. Second, we can store in it
2134   // whether registration has already occurred, to prevent duplicate
2135   // registration.
2136   //
2137   // Common linkage ensures that there is only one global per shared library.
2138   GlobalVariable *RegisteredFlag = new GlobalVariable(
2139       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2140       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2141   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2142 
2143   // Create start and stop symbols.  These are known to be defined by
2144   // the linker, see comment above.
2145   auto MakeStartStopGV = [&](const char *Prefix) {
2146     GlobalVariable *StartStop =
2147         new GlobalVariable(M, IntptrTy, false, GlobalVariable::ExternalLinkage,
2148                            nullptr, Prefix + getGlobalMetadataSection());
2149     StartStop->setVisibility(GlobalVariable::HiddenVisibility);
2150     assert(StartStop->isImplicitDSOLocal());
2151     return StartStop;
2152   };
2153   GlobalVariable *StartELFMetadata = MakeStartStopGV("__start_");
2154   GlobalVariable *StopELFMetadata = MakeStartStopGV("__stop_");
2155 
2156   // Create a call to register the globals with the runtime.
2157   IRB.CreateCall(AsanRegisterElfGlobals,
2158                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2159                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2160                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2161 
2162   // We also need to unregister globals at the end, e.g., when a shared library
2163   // gets closed.
2164   IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
2165   IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
2166                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2167                        IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2168                        IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2169 }
2170 
2171 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2172     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2173     ArrayRef<Constant *> MetadataInitializers) {
2174   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2175 
2176   // On recent Mach-O platforms, use a structure which binds the liveness of
2177   // the global variable to the metadata struct. Keep the list of "Liveness" GV
2178   // created to be added to llvm.compiler.used
2179   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2180   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2181 
2182   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2183     Constant *Initializer = MetadataInitializers[i];
2184     GlobalVariable *G = ExtendedGlobals[i];
2185     GlobalVariable *Metadata =
2186         CreateMetadataGlobal(M, Initializer, G->getName());
2187 
2188     // On recent Mach-O platforms, we emit the global metadata in a way that
2189     // allows the linker to properly strip dead globals.
2190     auto LivenessBinder =
2191         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2192                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
2193     GlobalVariable *Liveness = new GlobalVariable(
2194         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2195         Twine("__asan_binder_") + G->getName());
2196     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2197     LivenessGlobals[i] = Liveness;
2198   }
2199 
2200   // Update llvm.compiler.used, adding the new liveness globals. This is
2201   // needed so that during LTO these variables stay alive. The alternative
2202   // would be to have the linker handling the LTO symbols, but libLTO
2203   // current API does not expose access to the section for each symbol.
2204   if (!LivenessGlobals.empty())
2205     appendToCompilerUsed(M, LivenessGlobals);
2206 
2207   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2208   // to look up the loaded image that contains it. Second, we can store in it
2209   // whether registration has already occurred, to prevent duplicate
2210   // registration.
2211   //
2212   // common linkage ensures that there is only one global per shared library.
2213   GlobalVariable *RegisteredFlag = new GlobalVariable(
2214       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2215       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2216   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2217 
2218   IRB.CreateCall(AsanRegisterImageGlobals,
2219                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2220 
2221   // We also need to unregister globals at the end, e.g., when a shared library
2222   // gets closed.
2223   IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
2224   IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
2225                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2226 }
2227 
2228 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2229     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2230     ArrayRef<Constant *> MetadataInitializers) {
2231   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2232   unsigned N = ExtendedGlobals.size();
2233   assert(N > 0);
2234 
2235   // On platforms that don't have a custom metadata section, we emit an array
2236   // of global metadata structures.
2237   ArrayType *ArrayOfGlobalStructTy =
2238       ArrayType::get(MetadataInitializers[0]->getType(), N);
2239   auto AllGlobals = new GlobalVariable(
2240       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2241       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2242   if (Mapping.Scale > 3)
2243     AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2244 
2245   IRB.CreateCall(AsanRegisterGlobals,
2246                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2247                   ConstantInt::get(IntptrTy, N)});
2248 
2249   // We also need to unregister globals at the end, e.g., when a shared library
2250   // gets closed.
2251   IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
2252   IRB_Dtor.CreateCall(AsanUnregisterGlobals,
2253                       {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2254                        ConstantInt::get(IntptrTy, N)});
2255 }
2256 
2257 // This function replaces all global variables with new variables that have
2258 // trailing redzones. It also creates a function that poisons
2259 // redzones and inserts this function into llvm.global_ctors.
2260 // Sets *CtorComdat to true if the global registration code emitted into the
2261 // asan constructor is comdat-compatible.
2262 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2263                                                bool *CtorComdat) {
2264   *CtorComdat = false;
2265 
2266   // Build set of globals that are aliased by some GA, where
2267   // canInstrumentAliasedGlobal(GA) returns false.
2268   SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalBlacklist;
2269   if (CompileKernel) {
2270     for (auto &GA : M.aliases()) {
2271       if (const auto *GV = dyn_cast<GlobalVariable>(GA.getAliasee())) {
2272         if (!canInstrumentAliasedGlobal(GA))
2273           AliasedGlobalBlacklist.insert(GV);
2274       }
2275     }
2276   }
2277 
2278   SmallVector<GlobalVariable *, 16> GlobalsToChange;
2279   for (auto &G : M.globals()) {
2280     if (!AliasedGlobalBlacklist.count(&G) && shouldInstrumentGlobal(&G))
2281       GlobalsToChange.push_back(&G);
2282   }
2283 
2284   size_t n = GlobalsToChange.size();
2285   if (n == 0) {
2286     *CtorComdat = true;
2287     return false;
2288   }
2289 
2290   auto &DL = M.getDataLayout();
2291 
2292   // A global is described by a structure
2293   //   size_t beg;
2294   //   size_t size;
2295   //   size_t size_with_redzone;
2296   //   const char *name;
2297   //   const char *module_name;
2298   //   size_t has_dynamic_init;
2299   //   void *source_location;
2300   //   size_t odr_indicator;
2301   // We initialize an array of such structures and pass it to a run-time call.
2302   StructType *GlobalStructTy =
2303       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2304                       IntptrTy, IntptrTy, IntptrTy);
2305   SmallVector<GlobalVariable *, 16> NewGlobals(n);
2306   SmallVector<Constant *, 16> Initializers(n);
2307 
2308   bool HasDynamicallyInitializedGlobals = false;
2309 
2310   // We shouldn't merge same module names, as this string serves as unique
2311   // module ID in runtime.
2312   GlobalVariable *ModuleName = createPrivateGlobalForString(
2313       M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2314 
2315   for (size_t i = 0; i < n; i++) {
2316     GlobalVariable *G = GlobalsToChange[i];
2317 
2318     // FIXME: Metadata should be attched directly to the global directly instead
2319     // of being added to llvm.asan.globals.
2320     auto MD = GlobalsMD.get(G);
2321     StringRef NameForGlobal = G->getName();
2322     // Create string holding the global name (use global name from metadata
2323     // if it's available, otherwise just write the name of global variable).
2324     GlobalVariable *Name = createPrivateGlobalForString(
2325         M, MD.Name.empty() ? NameForGlobal : MD.Name,
2326         /*AllowMerging*/ true, kAsanGenPrefix);
2327 
2328     Type *Ty = G->getValueType();
2329     const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2330     const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2331     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2332 
2333     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2334     Constant *NewInitializer = ConstantStruct::get(
2335         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2336 
2337     // Create a new global variable with enough space for a redzone.
2338     GlobalValue::LinkageTypes Linkage = G->getLinkage();
2339     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2340       Linkage = GlobalValue::InternalLinkage;
2341     GlobalVariable *NewGlobal =
2342         new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
2343                            "", G, G->getThreadLocalMode());
2344     NewGlobal->copyAttributesFrom(G);
2345     NewGlobal->setComdat(G->getComdat());
2346     NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
2347     // Don't fold globals with redzones. ODR violation detector and redzone
2348     // poisoning implicitly creates a dependence on the global's address, so it
2349     // is no longer valid for it to be marked unnamed_addr.
2350     NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2351 
2352     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2353     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2354         G->isConstant()) {
2355       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2356       if (Seq && Seq->isCString())
2357         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2358     }
2359 
2360     // Transfer the debug info.  The payload starts at offset zero so we can
2361     // copy the debug info over as is.
2362     SmallVector<DIGlobalVariableExpression *, 1> GVs;
2363     G->getDebugInfo(GVs);
2364     for (auto *GV : GVs)
2365       NewGlobal->addDebugInfo(GV);
2366 
2367     Value *Indices2[2];
2368     Indices2[0] = IRB.getInt32(0);
2369     Indices2[1] = IRB.getInt32(0);
2370 
2371     G->replaceAllUsesWith(
2372         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2373     NewGlobal->takeName(G);
2374     G->eraseFromParent();
2375     NewGlobals[i] = NewGlobal;
2376 
2377     Constant *SourceLoc;
2378     if (!MD.SourceLoc.empty()) {
2379       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2380       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2381     } else {
2382       SourceLoc = ConstantInt::get(IntptrTy, 0);
2383     }
2384 
2385     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2386     GlobalValue *InstrumentedGlobal = NewGlobal;
2387 
2388     bool CanUsePrivateAliases =
2389         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2390         TargetTriple.isOSBinFormatWasm();
2391     if (CanUsePrivateAliases && UsePrivateAlias) {
2392       // Create local alias for NewGlobal to avoid crash on ODR between
2393       // instrumented and non-instrumented libraries.
2394       InstrumentedGlobal =
2395           GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2396     }
2397 
2398     // ODR should not happen for local linkage.
2399     if (NewGlobal->hasLocalLinkage()) {
2400       ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2401                                                IRB.getInt8PtrTy());
2402     } else if (UseOdrIndicator) {
2403       // With local aliases, we need to provide another externally visible
2404       // symbol __odr_asan_XXX to detect ODR violation.
2405       auto *ODRIndicatorSym =
2406           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2407                              Constant::getNullValue(IRB.getInt8Ty()),
2408                              kODRGenPrefix + NameForGlobal, nullptr,
2409                              NewGlobal->getThreadLocalMode());
2410 
2411       // Set meaningful attributes for indicator symbol.
2412       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2413       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2414       ODRIndicatorSym->setAlignment(Align(1));
2415       ODRIndicator = ODRIndicatorSym;
2416     }
2417 
2418     Constant *Initializer = ConstantStruct::get(
2419         GlobalStructTy,
2420         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2421         ConstantInt::get(IntptrTy, SizeInBytes),
2422         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2423         ConstantExpr::getPointerCast(Name, IntptrTy),
2424         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2425         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2426         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2427 
2428     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2429 
2430     LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2431 
2432     Initializers[i] = Initializer;
2433   }
2434 
2435   // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2436   // ConstantMerge'ing them.
2437   SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2438   for (size_t i = 0; i < n; i++) {
2439     GlobalVariable *G = NewGlobals[i];
2440     if (G->getName().empty()) continue;
2441     GlobalsToAddToUsedList.push_back(G);
2442   }
2443   appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2444 
2445   std::string ELFUniqueModuleId =
2446       (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2447                                                         : "";
2448 
2449   if (!ELFUniqueModuleId.empty()) {
2450     InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2451     *CtorComdat = true;
2452   } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2453     InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2454   } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2455     InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2456   } else {
2457     InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2458   }
2459 
2460   // Create calls for poisoning before initializers run and unpoisoning after.
2461   if (HasDynamicallyInitializedGlobals)
2462     createInitializerPoisonCalls(M, ModuleName);
2463 
2464   LLVM_DEBUG(dbgs() << M);
2465   return true;
2466 }
2467 
2468 uint64_t
2469 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2470   constexpr uint64_t kMaxRZ = 1 << 18;
2471   const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2472 
2473   // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2474   uint64_t RZ =
2475       std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));
2476 
2477   // Round up to multiple of MinRZ.
2478   if (SizeInBytes % MinRZ)
2479     RZ += MinRZ - (SizeInBytes % MinRZ);
2480   assert((RZ + SizeInBytes) % MinRZ == 0);
2481 
2482   return RZ;
2483 }
2484 
2485 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2486   int LongSize = M.getDataLayout().getPointerSizeInBits();
2487   bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2488   int Version = 8;
2489   // 32-bit Android is one version ahead because of the switch to dynamic
2490   // shadow.
2491   Version += (LongSize == 32 && isAndroid);
2492   return Version;
2493 }
2494 
2495 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2496   initializeCallbacks(M);
2497 
2498   // Create a module constructor. A destructor is created lazily because not all
2499   // platforms, and not all modules need it.
2500   if (CompileKernel) {
2501     // The kernel always builds with its own runtime, and therefore does not
2502     // need the init and version check calls.
2503     AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2504   } else {
2505     std::string AsanVersion = std::to_string(GetAsanVersion(M));
2506     std::string VersionCheckName =
2507         ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2508     std::tie(AsanCtorFunction, std::ignore) =
2509         createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2510                                             kAsanInitName, /*InitArgTypes=*/{},
2511                                             /*InitArgs=*/{}, VersionCheckName);
2512   }
2513 
2514   bool CtorComdat = true;
2515   if (ClGlobals) {
2516     IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2517     InstrumentGlobals(IRB, M, &CtorComdat);
2518   }
2519 
2520   const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2521 
2522   // Put the constructor and destructor in comdat if both
2523   // (1) global instrumentation is not TU-specific
2524   // (2) target is ELF.
2525   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2526     AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2527     appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2528     if (AsanDtorFunction) {
2529       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2530       appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2531     }
2532   } else {
2533     appendToGlobalCtors(M, AsanCtorFunction, Priority);
2534     if (AsanDtorFunction)
2535       appendToGlobalDtors(M, AsanDtorFunction, Priority);
2536   }
2537 
2538   return true;
2539 }
2540 
2541 void AddressSanitizer::initializeCallbacks(Module &M) {
2542   IRBuilder<> IRB(*C);
2543   // Create __asan_report* callbacks.
2544   // IsWrite, TypeSize and Exp are encoded in the function name.
2545   for (int Exp = 0; Exp < 2; Exp++) {
2546     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2547       const std::string TypeStr = AccessIsWrite ? "store" : "load";
2548       const std::string ExpStr = Exp ? "exp_" : "";
2549       const std::string EndingStr = Recover ? "_noabort" : "";
2550 
2551       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2552       SmallVector<Type *, 2> Args1{1, IntptrTy};
2553       if (Exp) {
2554         Type *ExpType = Type::getInt32Ty(*C);
2555         Args2.push_back(ExpType);
2556         Args1.push_back(ExpType);
2557       }
2558       AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2559           kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2560           FunctionType::get(IRB.getVoidTy(), Args2, false));
2561 
2562       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2563           ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2564           FunctionType::get(IRB.getVoidTy(), Args2, false));
2565 
2566       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2567            AccessSizeIndex++) {
2568         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2569         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2570             M.getOrInsertFunction(
2571                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2572                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2573 
2574         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2575             M.getOrInsertFunction(
2576                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2577                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2578       }
2579     }
2580   }
2581 
2582   const std::string MemIntrinCallbackPrefix =
2583       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2584   AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2585                                       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2586                                       IRB.getInt8PtrTy(), IntptrTy);
2587   AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2588                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2589                                      IRB.getInt8PtrTy(), IntptrTy);
2590   AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2591                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2592                                      IRB.getInt32Ty(), IntptrTy);
2593 
2594   AsanHandleNoReturnFunc =
2595       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2596 
2597   AsanPtrCmpFunction =
2598       M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2599   AsanPtrSubFunction =
2600       M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2601   // We insert an empty inline asm after __asan_report* to avoid callback merge.
2602   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
2603                             StringRef(""), StringRef(""),
2604                             /*hasSideEffects=*/true);
2605   if (Mapping.InGlobal)
2606     AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2607                                            ArrayType::get(IRB.getInt8Ty(), 0));
2608 }
2609 
2610 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2611   // For each NSObject descendant having a +load method, this method is invoked
2612   // by the ObjC runtime before any of the static constructors is called.
2613   // Therefore we need to instrument such methods with a call to __asan_init
2614   // at the beginning in order to initialize our runtime before any access to
2615   // the shadow memory.
2616   // We cannot just ignore these methods, because they may call other
2617   // instrumented functions.
2618   if (F.getName().find(" load]") != std::string::npos) {
2619     FunctionCallee AsanInitFunction =
2620         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2621     IRBuilder<> IRB(&F.front(), F.front().begin());
2622     IRB.CreateCall(AsanInitFunction, {});
2623     return true;
2624   }
2625   return false;
2626 }
2627 
2628 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2629   // Generate code only when dynamic addressing is needed.
2630   if (Mapping.Offset != kDynamicShadowSentinel)
2631     return false;
2632 
2633   IRBuilder<> IRB(&F.front().front());
2634   if (Mapping.InGlobal) {
2635     if (ClWithIfuncSuppressRemat) {
2636       // An empty inline asm with input reg == output reg.
2637       // An opaque pointer-to-int cast, basically.
2638       InlineAsm *Asm = InlineAsm::get(
2639           FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2640           StringRef(""), StringRef("=r,0"),
2641           /*hasSideEffects=*/false);
2642       LocalDynamicShadow =
2643           IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2644     } else {
2645       LocalDynamicShadow =
2646           IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2647     }
2648   } else {
2649     Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2650         kAsanShadowMemoryDynamicAddress, IntptrTy);
2651     LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2652   }
2653   return true;
2654 }
2655 
2656 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2657   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2658   // to it as uninteresting. This assumes we haven't started processing allocas
2659   // yet. This check is done up front because iterating the use list in
2660   // isInterestingAlloca would be algorithmically slower.
2661   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2662 
2663   // Try to get the declaration of llvm.localescape. If it's not in the module,
2664   // we can exit early.
2665   if (!F.getParent()->getFunction("llvm.localescape")) return;
2666 
2667   // Look for a call to llvm.localescape call in the entry block. It can't be in
2668   // any other block.
2669   for (Instruction &I : F.getEntryBlock()) {
2670     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2671     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2672       // We found a call. Mark all the allocas passed in as uninteresting.
2673       for (Value *Arg : II->arg_operands()) {
2674         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2675         assert(AI && AI->isStaticAlloca() &&
2676                "non-static alloca arg to localescape");
2677         ProcessedAllocas[AI] = false;
2678       }
2679       break;
2680     }
2681   }
2682 }
2683 
2684 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2685   bool ShouldInstrument =
2686       ClDebugMin < 0 || ClDebugMax < 0 ||
2687       (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2688   Instrumented++;
2689   return !ShouldInstrument;
2690 }
2691 
2692 bool AddressSanitizer::instrumentFunction(Function &F,
2693                                           const TargetLibraryInfo *TLI) {
2694   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2695   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2696   if (F.getName().startswith("__asan_")) return false;
2697 
2698   bool FunctionModified = false;
2699 
2700   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2701   // This function needs to be called even if the function body is not
2702   // instrumented.
2703   if (maybeInsertAsanInitAtFunctionEntry(F))
2704     FunctionModified = true;
2705 
2706   // Leave if the function doesn't need instrumentation.
2707   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2708 
2709   LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2710 
2711   initializeCallbacks(*F.getParent());
2712 
2713   FunctionStateRAII CleanupObj(this);
2714 
2715   FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2716 
2717   // We can't instrument allocas used with llvm.localescape. Only static allocas
2718   // can be passed to that intrinsic.
2719   markEscapedLocalAllocas(F);
2720 
2721   // We want to instrument every address only once per basic block (unless there
2722   // are calls between uses).
2723   SmallPtrSet<Value *, 16> TempsToInstrument;
2724   SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2725   SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2726   SmallVector<Instruction *, 8> NoReturnCalls;
2727   SmallVector<BasicBlock *, 16> AllBlocks;
2728   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2729   int NumAllocas = 0;
2730 
2731   // Fill the set of memory operations to instrument.
2732   for (auto &BB : F) {
2733     AllBlocks.push_back(&BB);
2734     TempsToInstrument.clear();
2735     int NumInsnsPerBB = 0;
2736     for (auto &Inst : BB) {
2737       if (LooksLikeCodeInBug11395(&Inst)) return false;
2738       SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2739       getInterestingMemoryOperands(&Inst, InterestingOperands);
2740 
2741       if (!InterestingOperands.empty()) {
2742         for (auto &Operand : InterestingOperands) {
2743           if (ClOpt && ClOptSameTemp) {
2744             Value *Ptr = Operand.getPtr();
2745             // If we have a mask, skip instrumentation if we've already
2746             // instrumented the full object. But don't add to TempsToInstrument
2747             // because we might get another load/store with a different mask.
2748             if (Operand.MaybeMask) {
2749               if (TempsToInstrument.count(Ptr))
2750                 continue; // We've seen this (whole) temp in the current BB.
2751             } else {
2752               if (!TempsToInstrument.insert(Ptr).second)
2753                 continue; // We've seen this temp in the current BB.
2754             }
2755           }
2756           OperandsToInstrument.push_back(Operand);
2757           NumInsnsPerBB++;
2758         }
2759       } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2760                   isInterestingPointerComparison(&Inst)) ||
2761                  ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2762                   isInterestingPointerSubtraction(&Inst))) {
2763         PointerComparisonsOrSubtracts.push_back(&Inst);
2764       } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2765         // ok, take it.
2766         IntrinToInstrument.push_back(MI);
2767         NumInsnsPerBB++;
2768       } else {
2769         if (isa<AllocaInst>(Inst)) NumAllocas++;
2770         if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2771           // A call inside BB.
2772           TempsToInstrument.clear();
2773           if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
2774             NoReturnCalls.push_back(CB);
2775         }
2776         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2777           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2778       }
2779       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2780     }
2781   }
2782 
2783   bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
2784                    OperandsToInstrument.size() + IntrinToInstrument.size() >
2785                        (unsigned)ClInstrumentationWithCallsThreshold);
2786   const DataLayout &DL = F.getParent()->getDataLayout();
2787   ObjectSizeOpts ObjSizeOpts;
2788   ObjSizeOpts.RoundToAlign = true;
2789   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2790 
2791   // Instrument.
2792   int NumInstrumented = 0;
2793   for (auto &Operand : OperandsToInstrument) {
2794     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2795       instrumentMop(ObjSizeVis, Operand, UseCalls,
2796                     F.getParent()->getDataLayout());
2797     FunctionModified = true;
2798   }
2799   for (auto Inst : IntrinToInstrument) {
2800     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2801       instrumentMemIntrinsic(Inst);
2802     FunctionModified = true;
2803   }
2804 
2805   FunctionStackPoisoner FSP(F, *this);
2806   bool ChangedStack = FSP.runOnFunction();
2807 
2808   // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2809   // See e.g. https://github.com/google/sanitizers/issues/37
2810   for (auto CI : NoReturnCalls) {
2811     IRBuilder<> IRB(CI);
2812     IRB.CreateCall(AsanHandleNoReturnFunc, {});
2813   }
2814 
2815   for (auto Inst : PointerComparisonsOrSubtracts) {
2816     instrumentPointerComparisonOrSubtraction(Inst);
2817     FunctionModified = true;
2818   }
2819 
2820   if (ChangedStack || !NoReturnCalls.empty())
2821     FunctionModified = true;
2822 
2823   LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2824                     << F << "\n");
2825 
2826   return FunctionModified;
2827 }
2828 
2829 // Workaround for bug 11395: we don't want to instrument stack in functions
2830 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2831 // FIXME: remove once the bug 11395 is fixed.
2832 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2833   if (LongSize != 32) return false;
2834   CallInst *CI = dyn_cast<CallInst>(I);
2835   if (!CI || !CI->isInlineAsm()) return false;
2836   if (CI->getNumArgOperands() <= 5) return false;
2837   // We have inline assembly with quite a few arguments.
2838   return true;
2839 }
2840 
2841 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2842   IRBuilder<> IRB(*C);
2843   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2844     std::string Suffix = itostr(i);
2845     AsanStackMallocFunc[i] = M.getOrInsertFunction(
2846         kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2847     AsanStackFreeFunc[i] =
2848         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2849                               IRB.getVoidTy(), IntptrTy, IntptrTy);
2850   }
2851   if (ASan.UseAfterScope) {
2852     AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2853         kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2854     AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2855         kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2856   }
2857 
2858   for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2859     std::ostringstream Name;
2860     Name << kAsanSetShadowPrefix;
2861     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2862     AsanSetShadowFunc[Val] =
2863         M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2864   }
2865 
2866   AsanAllocaPoisonFunc = M.getOrInsertFunction(
2867       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2868   AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2869       kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2870 }
2871 
2872 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2873                                                ArrayRef<uint8_t> ShadowBytes,
2874                                                size_t Begin, size_t End,
2875                                                IRBuilder<> &IRB,
2876                                                Value *ShadowBase) {
2877   if (Begin >= End)
2878     return;
2879 
2880   const size_t LargestStoreSizeInBytes =
2881       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2882 
2883   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2884 
2885   // Poison given range in shadow using larges store size with out leading and
2886   // trailing zeros in ShadowMask. Zeros never change, so they need neither
2887   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2888   // middle of a store.
2889   for (size_t i = Begin; i < End;) {
2890     if (!ShadowMask[i]) {
2891       assert(!ShadowBytes[i]);
2892       ++i;
2893       continue;
2894     }
2895 
2896     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2897     // Fit store size into the range.
2898     while (StoreSizeInBytes > End - i)
2899       StoreSizeInBytes /= 2;
2900 
2901     // Minimize store size by trimming trailing zeros.
2902     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2903       while (j <= StoreSizeInBytes / 2)
2904         StoreSizeInBytes /= 2;
2905     }
2906 
2907     uint64_t Val = 0;
2908     for (size_t j = 0; j < StoreSizeInBytes; j++) {
2909       if (IsLittleEndian)
2910         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
2911       else
2912         Val = (Val << 8) | ShadowBytes[i + j];
2913     }
2914 
2915     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
2916     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
2917     IRB.CreateAlignedStore(
2918         Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
2919         Align(1));
2920 
2921     i += StoreSizeInBytes;
2922   }
2923 }
2924 
2925 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2926                                          ArrayRef<uint8_t> ShadowBytes,
2927                                          IRBuilder<> &IRB, Value *ShadowBase) {
2928   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
2929 }
2930 
2931 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2932                                          ArrayRef<uint8_t> ShadowBytes,
2933                                          size_t Begin, size_t End,
2934                                          IRBuilder<> &IRB, Value *ShadowBase) {
2935   assert(ShadowMask.size() == ShadowBytes.size());
2936   size_t Done = Begin;
2937   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
2938     if (!ShadowMask[i]) {
2939       assert(!ShadowBytes[i]);
2940       continue;
2941     }
2942     uint8_t Val = ShadowBytes[i];
2943     if (!AsanSetShadowFunc[Val])
2944       continue;
2945 
2946     // Skip same values.
2947     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
2948     }
2949 
2950     if (j - i >= ClMaxInlinePoisoningSize) {
2951       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
2952       IRB.CreateCall(AsanSetShadowFunc[Val],
2953                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
2954                       ConstantInt::get(IntptrTy, j - i)});
2955       Done = j;
2956     }
2957   }
2958 
2959   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
2960 }
2961 
2962 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2963 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2964 static int StackMallocSizeClass(uint64_t LocalStackSize) {
2965   assert(LocalStackSize <= kMaxStackMallocSize);
2966   uint64_t MaxSize = kMinStackMallocSize;
2967   for (int i = 0;; i++, MaxSize *= 2)
2968     if (LocalStackSize <= MaxSize) return i;
2969   llvm_unreachable("impossible LocalStackSize");
2970 }
2971 
2972 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2973   Instruction *CopyInsertPoint = &F.front().front();
2974   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
2975     // Insert after the dynamic shadow location is determined
2976     CopyInsertPoint = CopyInsertPoint->getNextNode();
2977     assert(CopyInsertPoint);
2978   }
2979   IRBuilder<> IRB(CopyInsertPoint);
2980   const DataLayout &DL = F.getParent()->getDataLayout();
2981   for (Argument &Arg : F.args()) {
2982     if (Arg.hasByValAttr()) {
2983       Type *Ty = Arg.getParamByValType();
2984       const Align Alignment =
2985           DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
2986 
2987       AllocaInst *AI = IRB.CreateAlloca(
2988           Ty, nullptr,
2989           (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
2990               ".byval");
2991       AI->setAlignment(Alignment);
2992       Arg.replaceAllUsesWith(AI);
2993 
2994       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2995       IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
2996     }
2997   }
2998 }
2999 
3000 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3001                                           Value *ValueIfTrue,
3002                                           Instruction *ThenTerm,
3003                                           Value *ValueIfFalse) {
3004   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3005   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3006   PHI->addIncoming(ValueIfFalse, CondBlock);
3007   BasicBlock *ThenBlock = ThenTerm->getParent();
3008   PHI->addIncoming(ValueIfTrue, ThenBlock);
3009   return PHI;
3010 }
3011 
3012 Value *FunctionStackPoisoner::createAllocaForLayout(
3013     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3014   AllocaInst *Alloca;
3015   if (Dynamic) {
3016     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3017                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3018                               "MyAlloca");
3019   } else {
3020     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3021                               nullptr, "MyAlloca");
3022     assert(Alloca->isStaticAlloca());
3023   }
3024   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3025   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
3026   Alloca->setAlignment(Align(FrameAlignment));
3027   return IRB.CreatePointerCast(Alloca, IntptrTy);
3028 }
3029 
3030 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3031   BasicBlock &FirstBB = *F.begin();
3032   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3033   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3034   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3035   DynamicAllocaLayout->setAlignment(Align(32));
3036 }
3037 
3038 void FunctionStackPoisoner::processDynamicAllocas() {
3039   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3040     assert(DynamicAllocaPoisonCallVec.empty());
3041     return;
3042   }
3043 
3044   // Insert poison calls for lifetime intrinsics for dynamic allocas.
3045   for (const auto &APC : DynamicAllocaPoisonCallVec) {
3046     assert(APC.InsBefore);
3047     assert(APC.AI);
3048     assert(ASan.isInterestingAlloca(*APC.AI));
3049     assert(!APC.AI->isStaticAlloca());
3050 
3051     IRBuilder<> IRB(APC.InsBefore);
3052     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3053     // Dynamic allocas will be unpoisoned unconditionally below in
3054     // unpoisonDynamicAllocas.
3055     // Flag that we need unpoison static allocas.
3056   }
3057 
3058   // Handle dynamic allocas.
3059   createDynamicAllocasInitStorage();
3060   for (auto &AI : DynamicAllocaVec)
3061     handleDynamicAllocaCall(AI);
3062   unpoisonDynamicAllocas();
3063 }
3064 
3065 /// Collect instructions in the entry block after \p InsBefore which initialize
3066 /// permanent storage for a function argument. These instructions must remain in
3067 /// the entry block so that uninitialized values do not appear in backtraces. An
3068 /// added benefit is that this conserves spill slots. This does not move stores
3069 /// before instrumented / "interesting" allocas.
3070 static void findStoresToUninstrumentedArgAllocas(
3071     AddressSanitizer &ASan, Instruction &InsBefore,
3072     SmallVectorImpl<Instruction *> &InitInsts) {
3073   Instruction *Start = InsBefore.getNextNonDebugInstruction();
3074   for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3075     // Argument initialization looks like:
3076     // 1) store <Argument>, <Alloca> OR
3077     // 2) <CastArgument> = cast <Argument> to ...
3078     //    store <CastArgument> to <Alloca>
3079     // Do not consider any other kind of instruction.
3080     //
3081     // Note: This covers all known cases, but may not be exhaustive. An
3082     // alternative to pattern-matching stores is to DFS over all Argument uses:
3083     // this might be more general, but is probably much more complicated.
3084     if (isa<AllocaInst>(It) || isa<CastInst>(It))
3085       continue;
3086     if (auto *Store = dyn_cast<StoreInst>(It)) {
3087       // The store destination must be an alloca that isn't interesting for
3088       // ASan to instrument. These are moved up before InsBefore, and they're
3089       // not interesting because allocas for arguments can be mem2reg'd.
3090       auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3091       if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3092         continue;
3093 
3094       Value *Val = Store->getValueOperand();
3095       bool IsDirectArgInit = isa<Argument>(Val);
3096       bool IsArgInitViaCast =
3097           isa<CastInst>(Val) &&
3098           isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3099           // Check that the cast appears directly before the store. Otherwise
3100           // moving the cast before InsBefore may break the IR.
3101           Val == It->getPrevNonDebugInstruction();
3102       bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3103       if (!IsArgInit)
3104         continue;
3105 
3106       if (IsArgInitViaCast)
3107         InitInsts.push_back(cast<Instruction>(Val));
3108       InitInsts.push_back(Store);
3109       continue;
3110     }
3111 
3112     // Do not reorder past unknown instructions: argument initialization should
3113     // only involve casts and stores.
3114     return;
3115   }
3116 }
3117 
3118 void FunctionStackPoisoner::processStaticAllocas() {
3119   if (AllocaVec.empty()) {
3120     assert(StaticAllocaPoisonCallVec.empty());
3121     return;
3122   }
3123 
3124   int StackMallocIdx = -1;
3125   DebugLoc EntryDebugLocation;
3126   if (auto SP = F.getSubprogram())
3127     EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
3128 
3129   Instruction *InsBefore = AllocaVec[0];
3130   IRBuilder<> IRB(InsBefore);
3131 
3132   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3133   // debug info is broken, because only entry-block allocas are treated as
3134   // regular stack slots.
3135   auto InsBeforeB = InsBefore->getParent();
3136   assert(InsBeforeB == &F.getEntryBlock());
3137   for (auto *AI : StaticAllocasToMoveUp)
3138     if (AI->getParent() == InsBeforeB)
3139       AI->moveBefore(InsBefore);
3140 
3141   // Move stores of arguments into entry-block allocas as well. This prevents
3142   // extra stack slots from being generated (to house the argument values until
3143   // they can be stored into the allocas). This also prevents uninitialized
3144   // values from being shown in backtraces.
3145   SmallVector<Instruction *, 8> ArgInitInsts;
3146   findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3147   for (Instruction *ArgInitInst : ArgInitInsts)
3148     ArgInitInst->moveBefore(InsBefore);
3149 
3150   // If we have a call to llvm.localescape, keep it in the entry block.
3151   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3152 
3153   SmallVector<ASanStackVariableDescription, 16> SVD;
3154   SVD.reserve(AllocaVec.size());
3155   for (AllocaInst *AI : AllocaVec) {
3156     ASanStackVariableDescription D = {AI->getName().data(),
3157                                       ASan.getAllocaSizeInBytes(*AI),
3158                                       0,
3159                                       AI->getAlignment(),
3160                                       AI,
3161                                       0,
3162                                       0};
3163     SVD.push_back(D);
3164   }
3165 
3166   // Minimal header size (left redzone) is 4 pointers,
3167   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3168   size_t Granularity = 1ULL << Mapping.Scale;
3169   size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3170   const ASanStackFrameLayout &L =
3171       ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3172 
3173   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3174   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3175   for (auto &Desc : SVD)
3176     AllocaToSVDMap[Desc.AI] = &Desc;
3177 
3178   // Update SVD with information from lifetime intrinsics.
3179   for (const auto &APC : StaticAllocaPoisonCallVec) {
3180     assert(APC.InsBefore);
3181     assert(APC.AI);
3182     assert(ASan.isInterestingAlloca(*APC.AI));
3183     assert(APC.AI->isStaticAlloca());
3184 
3185     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3186     Desc.LifetimeSize = Desc.Size;
3187     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3188       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3189         if (LifetimeLoc->getFile() == FnLoc->getFile())
3190           if (unsigned Line = LifetimeLoc->getLine())
3191             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3192       }
3193     }
3194   }
3195 
3196   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3197   LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3198   uint64_t LocalStackSize = L.FrameSize;
3199   bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
3200                        LocalStackSize <= kMaxStackMallocSize;
3201   bool DoDynamicAlloca = ClDynamicAllocaStack;
3202   // Don't do dynamic alloca or stack malloc if:
3203   // 1) There is inline asm: too often it makes assumptions on which registers
3204   //    are available.
3205   // 2) There is a returns_twice call (typically setjmp), which is
3206   //    optimization-hostile, and doesn't play well with introduced indirect
3207   //    register-relative calculation of local variable addresses.
3208   DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3209   DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3210 
3211   Value *StaticAlloca =
3212       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3213 
3214   Value *FakeStack;
3215   Value *LocalStackBase;
3216   Value *LocalStackBaseAlloca;
3217   uint8_t DIExprFlags = DIExpression::ApplyOffset;
3218 
3219   if (DoStackMalloc) {
3220     LocalStackBaseAlloca =
3221         IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3222     // void *FakeStack = __asan_option_detect_stack_use_after_return
3223     //     ? __asan_stack_malloc_N(LocalStackSize)
3224     //     : nullptr;
3225     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3226     Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3227         kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3228     Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3229         IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3230         Constant::getNullValue(IRB.getInt32Ty()));
3231     Instruction *Term =
3232         SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3233     IRBuilder<> IRBIf(Term);
3234     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3235     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3236     Value *FakeStackValue =
3237         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3238                          ConstantInt::get(IntptrTy, LocalStackSize));
3239     IRB.SetInsertPoint(InsBefore);
3240     FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3241                           ConstantInt::get(IntptrTy, 0));
3242 
3243     Value *NoFakeStack =
3244         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3245     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3246     IRBIf.SetInsertPoint(Term);
3247     Value *AllocaValue =
3248         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3249 
3250     IRB.SetInsertPoint(InsBefore);
3251     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3252     IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3253     DIExprFlags |= DIExpression::DerefBefore;
3254   } else {
3255     // void *FakeStack = nullptr;
3256     // void *LocalStackBase = alloca(LocalStackSize);
3257     FakeStack = ConstantInt::get(IntptrTy, 0);
3258     LocalStackBase =
3259         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3260     LocalStackBaseAlloca = LocalStackBase;
3261   }
3262 
3263   // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3264   // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3265   // later passes and can result in dropped variable coverage in debug info.
3266   Value *LocalStackBaseAllocaPtr =
3267       isa<PtrToIntInst>(LocalStackBaseAlloca)
3268           ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3269           : LocalStackBaseAlloca;
3270   assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3271          "Variable descriptions relative to ASan stack base will be dropped");
3272 
3273   // Replace Alloca instructions with base+offset.
3274   for (const auto &Desc : SVD) {
3275     AllocaInst *AI = Desc.AI;
3276     replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3277                       Desc.Offset);
3278     Value *NewAllocaPtr = IRB.CreateIntToPtr(
3279         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3280         AI->getType());
3281     AI->replaceAllUsesWith(NewAllocaPtr);
3282   }
3283 
3284   // The left-most redzone has enough space for at least 4 pointers.
3285   // Write the Magic value to redzone[0].
3286   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3287   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3288                   BasePlus0);
3289   // Write the frame description constant to redzone[1].
3290   Value *BasePlus1 = IRB.CreateIntToPtr(
3291       IRB.CreateAdd(LocalStackBase,
3292                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3293       IntptrPtrTy);
3294   GlobalVariable *StackDescriptionGlobal =
3295       createPrivateGlobalForString(*F.getParent(), DescriptionString,
3296                                    /*AllowMerging*/ true, kAsanGenPrefix);
3297   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3298   IRB.CreateStore(Description, BasePlus1);
3299   // Write the PC to redzone[2].
3300   Value *BasePlus2 = IRB.CreateIntToPtr(
3301       IRB.CreateAdd(LocalStackBase,
3302                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3303       IntptrPtrTy);
3304   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3305 
3306   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3307 
3308   // Poison the stack red zones at the entry.
3309   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3310   // As mask we must use most poisoned case: red zones and after scope.
3311   // As bytes we can use either the same or just red zones only.
3312   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3313 
3314   if (!StaticAllocaPoisonCallVec.empty()) {
3315     const auto &ShadowInScope = GetShadowBytes(SVD, L);
3316 
3317     // Poison static allocas near lifetime intrinsics.
3318     for (const auto &APC : StaticAllocaPoisonCallVec) {
3319       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3320       assert(Desc.Offset % L.Granularity == 0);
3321       size_t Begin = Desc.Offset / L.Granularity;
3322       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3323 
3324       IRBuilder<> IRB(APC.InsBefore);
3325       copyToShadow(ShadowAfterScope,
3326                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3327                    IRB, ShadowBase);
3328     }
3329   }
3330 
3331   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3332   SmallVector<uint8_t, 64> ShadowAfterReturn;
3333 
3334   // (Un)poison the stack before all ret instructions.
3335   for (auto Ret : RetVec) {
3336     IRBuilder<> IRBRet(Ret);
3337     // Mark the current frame as retired.
3338     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3339                        BasePlus0);
3340     if (DoStackMalloc) {
3341       assert(StackMallocIdx >= 0);
3342       // if FakeStack != 0  // LocalStackBase == FakeStack
3343       //     // In use-after-return mode, poison the whole stack frame.
3344       //     if StackMallocIdx <= 4
3345       //         // For small sizes inline the whole thing:
3346       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3347       //         **SavedFlagPtr(FakeStack) = 0
3348       //     else
3349       //         __asan_stack_free_N(FakeStack, LocalStackSize)
3350       // else
3351       //     <This is not a fake stack; unpoison the redzones>
3352       Value *Cmp =
3353           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3354       Instruction *ThenTerm, *ElseTerm;
3355       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3356 
3357       IRBuilder<> IRBPoison(ThenTerm);
3358       if (StackMallocIdx <= 4) {
3359         int ClassSize = kMinStackMallocSize << StackMallocIdx;
3360         ShadowAfterReturn.resize(ClassSize / L.Granularity,
3361                                  kAsanStackUseAfterReturnMagic);
3362         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3363                      ShadowBase);
3364         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3365             FakeStack,
3366             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3367         Value *SavedFlagPtr = IRBPoison.CreateLoad(
3368             IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3369         IRBPoison.CreateStore(
3370             Constant::getNullValue(IRBPoison.getInt8Ty()),
3371             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3372       } else {
3373         // For larger frames call __asan_stack_free_*.
3374         IRBPoison.CreateCall(
3375             AsanStackFreeFunc[StackMallocIdx],
3376             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3377       }
3378 
3379       IRBuilder<> IRBElse(ElseTerm);
3380       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3381     } else {
3382       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3383     }
3384   }
3385 
3386   // We are done. Remove the old unused alloca instructions.
3387   for (auto AI : AllocaVec) AI->eraseFromParent();
3388 }
3389 
3390 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3391                                          IRBuilder<> &IRB, bool DoPoison) {
3392   // For now just insert the call to ASan runtime.
3393   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3394   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3395   IRB.CreateCall(
3396       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3397       {AddrArg, SizeArg});
3398 }
3399 
3400 // Handling llvm.lifetime intrinsics for a given %alloca:
3401 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3402 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3403 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3404 //     could be poisoned by previous llvm.lifetime.end instruction, as the
3405 //     variable may go in and out of scope several times, e.g. in loops).
3406 // (3) if we poisoned at least one %alloca in a function,
3407 //     unpoison the whole stack frame at function exit.
3408 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3409   IRBuilder<> IRB(AI);
3410 
3411   const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment());
3412   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3413 
3414   Value *Zero = Constant::getNullValue(IntptrTy);
3415   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3416   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3417 
3418   // Since we need to extend alloca with additional memory to locate
3419   // redzones, and OldSize is number of allocated blocks with
3420   // ElementSize size, get allocated memory size in bytes by
3421   // OldSize * ElementSize.
3422   const unsigned ElementSize =
3423       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3424   Value *OldSize =
3425       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3426                     ConstantInt::get(IntptrTy, ElementSize));
3427 
3428   // PartialSize = OldSize % 32
3429   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3430 
3431   // Misalign = kAllocaRzSize - PartialSize;
3432   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3433 
3434   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3435   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3436   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3437 
3438   // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3439   // Alignment is added to locate left redzone, PartialPadding for possible
3440   // partial redzone and kAllocaRzSize for right redzone respectively.
3441   Value *AdditionalChunkSize = IRB.CreateAdd(
3442       ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding);
3443 
3444   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3445 
3446   // Insert new alloca with new NewSize and Alignment params.
3447   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3448   NewAlloca->setAlignment(Align(Alignment));
3449 
3450   // NewAddress = Address + Alignment
3451   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3452                                     ConstantInt::get(IntptrTy, Alignment));
3453 
3454   // Insert __asan_alloca_poison call for new created alloca.
3455   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3456 
3457   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3458   // for unpoisoning stuff.
3459   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3460 
3461   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3462 
3463   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3464   AI->replaceAllUsesWith(NewAddressPtr);
3465 
3466   // We are done. Erase old alloca from parent.
3467   AI->eraseFromParent();
3468 }
3469 
3470 // isSafeAccess returns true if Addr is always inbounds with respect to its
3471 // base object. For example, it is a field access or an array access with
3472 // constant inbounds index.
3473 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3474                                     Value *Addr, uint64_t TypeSize) const {
3475   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3476   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3477   uint64_t Size = SizeOffset.first.getZExtValue();
3478   int64_t Offset = SizeOffset.second.getSExtValue();
3479   // Three checks are required to ensure safety:
3480   // . Offset >= 0  (since the offset is given from the base ptr)
3481   // . Size >= Offset  (unsigned)
3482   // . Size - Offset >= NeededSize  (unsigned)
3483   return Offset >= 0 && Size >= uint64_t(Offset) &&
3484          Size - uint64_t(Offset) >= TypeSize / 8;
3485 }
3486