1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/MachO.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DIBuilder.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/IRBuilder.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstVisitor.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/MCSectionMachO.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 73 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/ModuleUtils.h" 77 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iomanip> 83 #include <limits> 84 #include <memory> 85 #include <sstream> 86 #include <string> 87 #include <tuple> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "asan" 92 93 static const uint64_t kDefaultShadowScale = 3; 94 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 95 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 96 static const uint64_t kDynamicShadowSentinel = 97 std::numeric_limits<uint64_t>::max(); 98 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 99 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 100 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 101 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 102 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 103 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 104 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 105 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 106 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 107 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 108 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 109 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 111 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 112 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 113 static const uint64_t kEmscriptenShadowOffset = 0; 114 115 static const uint64_t kMyriadShadowScale = 5; 116 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 117 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 118 static const uint64_t kMyriadTagShift = 29; 119 static const uint64_t kMyriadDDRTag = 4; 120 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 121 122 // The shadow memory space is dynamically allocated. 123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 124 125 static const size_t kMinStackMallocSize = 1 << 6; // 64B 126 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 129 130 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 131 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 132 static const uint64_t kAsanCtorAndDtorPriority = 1; 133 // On Emscripten, the system needs more than one priorities for constructors. 134 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 135 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 136 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 137 static const char *const kAsanUnregisterGlobalsName = 138 "__asan_unregister_globals"; 139 static const char *const kAsanRegisterImageGlobalsName = 140 "__asan_register_image_globals"; 141 static const char *const kAsanUnregisterImageGlobalsName = 142 "__asan_unregister_image_globals"; 143 static const char *const kAsanRegisterElfGlobalsName = 144 "__asan_register_elf_globals"; 145 static const char *const kAsanUnregisterElfGlobalsName = 146 "__asan_unregister_elf_globals"; 147 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 148 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 149 static const char *const kAsanInitName = "__asan_init"; 150 static const char *const kAsanVersionCheckNamePrefix = 151 "__asan_version_mismatch_check_v"; 152 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 153 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 154 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 155 static const int kMaxAsanStackMallocSizeClass = 10; 156 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 157 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 158 static const char *const kAsanGenPrefix = "___asan_gen_"; 159 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 160 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 161 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 162 static const char *const kAsanPoisonStackMemoryName = 163 "__asan_poison_stack_memory"; 164 static const char *const kAsanUnpoisonStackMemoryName = 165 "__asan_unpoison_stack_memory"; 166 167 // ASan version script has __asan_* wildcard. Triple underscore prevents a 168 // linker (gold) warning about attempting to export a local symbol. 169 static const char *const kAsanGlobalsRegisteredFlagName = 170 "___asan_globals_registered"; 171 172 static const char *const kAsanOptionDetectUseAfterReturn = 173 "__asan_option_detect_stack_use_after_return"; 174 175 static const char *const kAsanShadowMemoryDynamicAddress = 176 "__asan_shadow_memory_dynamic_address"; 177 178 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 179 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 180 181 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 182 static const size_t kNumberOfAccessSizes = 5; 183 184 static const unsigned kAllocaRzSize = 32; 185 186 // Command-line flags. 187 188 static cl::opt<bool> ClEnableKasan( 189 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 190 cl::Hidden, cl::init(false)); 191 192 static cl::opt<bool> ClRecover( 193 "asan-recover", 194 cl::desc("Enable recovery mode (continue-after-error)."), 195 cl::Hidden, cl::init(false)); 196 197 static cl::opt<bool> ClInsertVersionCheck( 198 "asan-guard-against-version-mismatch", 199 cl::desc("Guard against compiler/runtime version mismatch."), 200 cl::Hidden, cl::init(true)); 201 202 // This flag may need to be replaced with -f[no-]asan-reads. 203 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 204 cl::desc("instrument read instructions"), 205 cl::Hidden, cl::init(true)); 206 207 static cl::opt<bool> ClInstrumentWrites( 208 "asan-instrument-writes", cl::desc("instrument write instructions"), 209 cl::Hidden, cl::init(true)); 210 211 static cl::opt<bool> ClInstrumentAtomics( 212 "asan-instrument-atomics", 213 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 214 cl::init(true)); 215 216 static cl::opt<bool> 217 ClInstrumentByval("asan-instrument-byval", 218 cl::desc("instrument byval call arguments"), cl::Hidden, 219 cl::init(true)); 220 221 static cl::opt<bool> ClAlwaysSlowPath( 222 "asan-always-slow-path", 223 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 224 cl::init(false)); 225 226 static cl::opt<bool> ClForceDynamicShadow( 227 "asan-force-dynamic-shadow", 228 cl::desc("Load shadow address into a local variable for each function"), 229 cl::Hidden, cl::init(false)); 230 231 static cl::opt<bool> 232 ClWithIfunc("asan-with-ifunc", 233 cl::desc("Access dynamic shadow through an ifunc global on " 234 "platforms that support this"), 235 cl::Hidden, cl::init(true)); 236 237 static cl::opt<bool> ClWithIfuncSuppressRemat( 238 "asan-with-ifunc-suppress-remat", 239 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 240 "it through inline asm in prologue."), 241 cl::Hidden, cl::init(true)); 242 243 // This flag limits the number of instructions to be instrumented 244 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 245 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 246 // set it to 10000. 247 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 248 "asan-max-ins-per-bb", cl::init(10000), 249 cl::desc("maximal number of instructions to instrument in any given BB"), 250 cl::Hidden); 251 252 // This flag may need to be replaced with -f[no]asan-stack. 253 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 254 cl::Hidden, cl::init(true)); 255 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 256 "asan-max-inline-poisoning-size", 257 cl::desc( 258 "Inline shadow poisoning for blocks up to the given size in bytes."), 259 cl::Hidden, cl::init(64)); 260 261 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 262 cl::desc("Check stack-use-after-return"), 263 cl::Hidden, cl::init(true)); 264 265 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 266 cl::desc("Create redzones for byval " 267 "arguments (extra copy " 268 "required)"), cl::Hidden, 269 cl::init(true)); 270 271 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 272 cl::desc("Check stack-use-after-scope"), 273 cl::Hidden, cl::init(false)); 274 275 // This flag may need to be replaced with -f[no]asan-globals. 276 static cl::opt<bool> ClGlobals("asan-globals", 277 cl::desc("Handle global objects"), cl::Hidden, 278 cl::init(true)); 279 280 static cl::opt<bool> ClInitializers("asan-initialization-order", 281 cl::desc("Handle C++ initializer order"), 282 cl::Hidden, cl::init(true)); 283 284 static cl::opt<bool> ClInvalidPointerPairs( 285 "asan-detect-invalid-pointer-pair", 286 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 287 cl::init(false)); 288 289 static cl::opt<bool> ClInvalidPointerCmp( 290 "asan-detect-invalid-pointer-cmp", 291 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 292 cl::init(false)); 293 294 static cl::opt<bool> ClInvalidPointerSub( 295 "asan-detect-invalid-pointer-sub", 296 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 297 cl::init(false)); 298 299 static cl::opt<unsigned> ClRealignStack( 300 "asan-realign-stack", 301 cl::desc("Realign stack to the value of this flag (power of two)"), 302 cl::Hidden, cl::init(32)); 303 304 static cl::opt<int> ClInstrumentationWithCallsThreshold( 305 "asan-instrumentation-with-call-threshold", 306 cl::desc( 307 "If the function being instrumented contains more than " 308 "this number of memory accesses, use callbacks instead of " 309 "inline checks (-1 means never use callbacks)."), 310 cl::Hidden, cl::init(7000)); 311 312 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 313 "asan-memory-access-callback-prefix", 314 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 315 cl::init("__asan_")); 316 317 static cl::opt<bool> 318 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 319 cl::desc("instrument dynamic allocas"), 320 cl::Hidden, cl::init(true)); 321 322 static cl::opt<bool> ClSkipPromotableAllocas( 323 "asan-skip-promotable-allocas", 324 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 325 cl::init(true)); 326 327 // These flags allow to change the shadow mapping. 328 // The shadow mapping looks like 329 // Shadow = (Mem >> scale) + offset 330 331 static cl::opt<int> ClMappingScale("asan-mapping-scale", 332 cl::desc("scale of asan shadow mapping"), 333 cl::Hidden, cl::init(0)); 334 335 static cl::opt<uint64_t> 336 ClMappingOffset("asan-mapping-offset", 337 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 338 cl::Hidden, cl::init(0)); 339 340 // Optimization flags. Not user visible, used mostly for testing 341 // and benchmarking the tool. 342 343 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 344 cl::Hidden, cl::init(true)); 345 346 static cl::opt<bool> ClOptSameTemp( 347 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 348 cl::Hidden, cl::init(true)); 349 350 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 351 cl::desc("Don't instrument scalar globals"), 352 cl::Hidden, cl::init(true)); 353 354 static cl::opt<bool> ClOptStack( 355 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 356 cl::Hidden, cl::init(false)); 357 358 static cl::opt<bool> ClDynamicAllocaStack( 359 "asan-stack-dynamic-alloca", 360 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 361 cl::init(true)); 362 363 static cl::opt<uint32_t> ClForceExperiment( 364 "asan-force-experiment", 365 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 366 cl::init(0)); 367 368 static cl::opt<bool> 369 ClUsePrivateAlias("asan-use-private-alias", 370 cl::desc("Use private aliases for global variables"), 371 cl::Hidden, cl::init(false)); 372 373 static cl::opt<bool> 374 ClUseOdrIndicator("asan-use-odr-indicator", 375 cl::desc("Use odr indicators to improve ODR reporting"), 376 cl::Hidden, cl::init(false)); 377 378 static cl::opt<bool> 379 ClUseGlobalsGC("asan-globals-live-support", 380 cl::desc("Use linker features to support dead " 381 "code stripping of globals"), 382 cl::Hidden, cl::init(true)); 383 384 // This is on by default even though there is a bug in gold: 385 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 386 static cl::opt<bool> 387 ClWithComdat("asan-with-comdat", 388 cl::desc("Place ASan constructors in comdat sections"), 389 cl::Hidden, cl::init(true)); 390 391 // Debug flags. 392 393 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 394 cl::init(0)); 395 396 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 397 cl::Hidden, cl::init(0)); 398 399 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 400 cl::desc("Debug func")); 401 402 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 403 cl::Hidden, cl::init(-1)); 404 405 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 406 cl::Hidden, cl::init(-1)); 407 408 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 409 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 410 STATISTIC(NumOptimizedAccessesToGlobalVar, 411 "Number of optimized accesses to global vars"); 412 STATISTIC(NumOptimizedAccessesToStackVar, 413 "Number of optimized accesses to stack vars"); 414 415 namespace { 416 417 /// This struct defines the shadow mapping using the rule: 418 /// shadow = (mem >> Scale) ADD-or-OR Offset. 419 /// If InGlobal is true, then 420 /// extern char __asan_shadow[]; 421 /// shadow = (mem >> Scale) + &__asan_shadow 422 struct ShadowMapping { 423 int Scale; 424 uint64_t Offset; 425 bool OrShadowOffset; 426 bool InGlobal; 427 }; 428 429 } // end anonymous namespace 430 431 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 432 bool IsKasan) { 433 bool IsAndroid = TargetTriple.isAndroid(); 434 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 435 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 436 bool IsNetBSD = TargetTriple.isOSNetBSD(); 437 bool IsPS4CPU = TargetTriple.isPS4CPU(); 438 bool IsLinux = TargetTriple.isOSLinux(); 439 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 440 TargetTriple.getArch() == Triple::ppc64le; 441 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 442 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 443 bool IsMIPS32 = TargetTriple.isMIPS32(); 444 bool IsMIPS64 = TargetTriple.isMIPS64(); 445 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 446 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 447 bool IsWindows = TargetTriple.isOSWindows(); 448 bool IsFuchsia = TargetTriple.isOSFuchsia(); 449 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 450 bool IsEmscripten = TargetTriple.isOSEmscripten(); 451 452 ShadowMapping Mapping; 453 454 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 455 if (ClMappingScale.getNumOccurrences() > 0) { 456 Mapping.Scale = ClMappingScale; 457 } 458 459 if (LongSize == 32) { 460 if (IsAndroid) 461 Mapping.Offset = kDynamicShadowSentinel; 462 else if (IsMIPS32) 463 Mapping.Offset = kMIPS32_ShadowOffset32; 464 else if (IsFreeBSD) 465 Mapping.Offset = kFreeBSD_ShadowOffset32; 466 else if (IsNetBSD) 467 Mapping.Offset = kNetBSD_ShadowOffset32; 468 else if (IsIOS) 469 Mapping.Offset = kDynamicShadowSentinel; 470 else if (IsWindows) 471 Mapping.Offset = kWindowsShadowOffset32; 472 else if (IsEmscripten) 473 Mapping.Offset = kEmscriptenShadowOffset; 474 else if (IsMyriad) { 475 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 476 (kMyriadMemorySize32 >> Mapping.Scale)); 477 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 478 } 479 else 480 Mapping.Offset = kDefaultShadowOffset32; 481 } else { // LongSize == 64 482 // Fuchsia is always PIE, which means that the beginning of the address 483 // space is always available. 484 if (IsFuchsia) 485 Mapping.Offset = 0; 486 else if (IsPPC64) 487 Mapping.Offset = kPPC64_ShadowOffset64; 488 else if (IsSystemZ) 489 Mapping.Offset = kSystemZ_ShadowOffset64; 490 else if (IsFreeBSD && !IsMIPS64) 491 Mapping.Offset = kFreeBSD_ShadowOffset64; 492 else if (IsNetBSD) { 493 if (IsKasan) 494 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 495 else 496 Mapping.Offset = kNetBSD_ShadowOffset64; 497 } else if (IsPS4CPU) 498 Mapping.Offset = kPS4CPU_ShadowOffset64; 499 else if (IsLinux && IsX86_64) { 500 if (IsKasan) 501 Mapping.Offset = kLinuxKasan_ShadowOffset64; 502 else 503 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 504 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 505 } else if (IsWindows && IsX86_64) { 506 Mapping.Offset = kWindowsShadowOffset64; 507 } else if (IsMIPS64) 508 Mapping.Offset = kMIPS64_ShadowOffset64; 509 else if (IsIOS) 510 Mapping.Offset = kDynamicShadowSentinel; 511 else if (IsAArch64) 512 Mapping.Offset = kAArch64_ShadowOffset64; 513 else 514 Mapping.Offset = kDefaultShadowOffset64; 515 } 516 517 if (ClForceDynamicShadow) { 518 Mapping.Offset = kDynamicShadowSentinel; 519 } 520 521 if (ClMappingOffset.getNumOccurrences() > 0) { 522 Mapping.Offset = ClMappingOffset; 523 } 524 525 // OR-ing shadow offset if more efficient (at least on x86) if the offset 526 // is a power of two, but on ppc64 we have to use add since the shadow 527 // offset is not necessary 1/8-th of the address space. On SystemZ, 528 // we could OR the constant in a single instruction, but it's more 529 // efficient to load it once and use indexed addressing. 530 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 531 !(Mapping.Offset & (Mapping.Offset - 1)) && 532 Mapping.Offset != kDynamicShadowSentinel; 533 bool IsAndroidWithIfuncSupport = 534 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 535 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 536 537 return Mapping; 538 } 539 540 static uint64_t getRedzoneSizeForScale(int MappingScale) { 541 // Redzone used for stack and globals is at least 32 bytes. 542 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 543 return std::max(32U, 1U << MappingScale); 544 } 545 546 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 547 if (TargetTriple.isOSEmscripten()) { 548 return kAsanEmscriptenCtorAndDtorPriority; 549 } else { 550 return kAsanCtorAndDtorPriority; 551 } 552 } 553 554 namespace { 555 556 /// Module analysis for getting various metadata about the module. 557 class ASanGlobalsMetadataWrapperPass : public ModulePass { 558 public: 559 static char ID; 560 561 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 562 initializeASanGlobalsMetadataWrapperPassPass( 563 *PassRegistry::getPassRegistry()); 564 } 565 566 bool runOnModule(Module &M) override { 567 GlobalsMD = GlobalsMetadata(M); 568 return false; 569 } 570 571 StringRef getPassName() const override { 572 return "ASanGlobalsMetadataWrapperPass"; 573 } 574 575 void getAnalysisUsage(AnalysisUsage &AU) const override { 576 AU.setPreservesAll(); 577 } 578 579 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 580 581 private: 582 GlobalsMetadata GlobalsMD; 583 }; 584 585 char ASanGlobalsMetadataWrapperPass::ID = 0; 586 587 /// AddressSanitizer: instrument the code in module to find memory bugs. 588 struct AddressSanitizer { 589 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 590 bool CompileKernel = false, bool Recover = false, 591 bool UseAfterScope = false) 592 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 593 : CompileKernel), 594 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 595 UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 596 C = &(M.getContext()); 597 LongSize = M.getDataLayout().getPointerSizeInBits(); 598 IntptrTy = Type::getIntNTy(*C, LongSize); 599 TargetTriple = Triple(M.getTargetTriple()); 600 601 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 602 } 603 604 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 605 uint64_t ArraySize = 1; 606 if (AI.isArrayAllocation()) { 607 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 608 assert(CI && "non-constant array size"); 609 ArraySize = CI->getZExtValue(); 610 } 611 Type *Ty = AI.getAllocatedType(); 612 uint64_t SizeInBytes = 613 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 614 return SizeInBytes * ArraySize; 615 } 616 617 /// Check if we want (and can) handle this alloca. 618 bool isInterestingAlloca(const AllocaInst &AI); 619 620 bool ignoreAccess(Value *Ptr); 621 void getInterestingMemoryOperands( 622 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 623 624 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 625 InterestingMemoryOperand &O, bool UseCalls, 626 const DataLayout &DL); 627 void instrumentPointerComparisonOrSubtraction(Instruction *I); 628 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 629 Value *Addr, uint32_t TypeSize, bool IsWrite, 630 Value *SizeArgument, bool UseCalls, uint32_t Exp); 631 void instrumentUnusualSizeOrAlignment(Instruction *I, 632 Instruction *InsertBefore, Value *Addr, 633 uint32_t TypeSize, bool IsWrite, 634 Value *SizeArgument, bool UseCalls, 635 uint32_t Exp); 636 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 637 Value *ShadowValue, uint32_t TypeSize); 638 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 639 bool IsWrite, size_t AccessSizeIndex, 640 Value *SizeArgument, uint32_t Exp); 641 void instrumentMemIntrinsic(MemIntrinsic *MI); 642 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 643 bool suppressInstrumentationSiteForDebug(int &Instrumented); 644 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 645 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 646 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 647 void markEscapedLocalAllocas(Function &F); 648 649 private: 650 friend struct FunctionStackPoisoner; 651 652 void initializeCallbacks(Module &M); 653 654 bool LooksLikeCodeInBug11395(Instruction *I); 655 bool GlobalIsLinkerInitialized(GlobalVariable *G); 656 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 657 uint64_t TypeSize) const; 658 659 /// Helper to cleanup per-function state. 660 struct FunctionStateRAII { 661 AddressSanitizer *Pass; 662 663 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 664 assert(Pass->ProcessedAllocas.empty() && 665 "last pass forgot to clear cache"); 666 assert(!Pass->LocalDynamicShadow); 667 } 668 669 ~FunctionStateRAII() { 670 Pass->LocalDynamicShadow = nullptr; 671 Pass->ProcessedAllocas.clear(); 672 } 673 }; 674 675 LLVMContext *C; 676 Triple TargetTriple; 677 int LongSize; 678 bool CompileKernel; 679 bool Recover; 680 bool UseAfterScope; 681 Type *IntptrTy; 682 ShadowMapping Mapping; 683 FunctionCallee AsanHandleNoReturnFunc; 684 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 685 Constant *AsanShadowGlobal; 686 687 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 688 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 689 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 690 691 // These arrays is indexed by AccessIsWrite and Experiment. 692 FunctionCallee AsanErrorCallbackSized[2][2]; 693 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 694 695 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 696 InlineAsm *EmptyAsm; 697 Value *LocalDynamicShadow = nullptr; 698 const GlobalsMetadata &GlobalsMD; 699 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 700 }; 701 702 class AddressSanitizerLegacyPass : public FunctionPass { 703 public: 704 static char ID; 705 706 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 707 bool Recover = false, 708 bool UseAfterScope = false) 709 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 710 UseAfterScope(UseAfterScope) { 711 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 712 } 713 714 StringRef getPassName() const override { 715 return "AddressSanitizerFunctionPass"; 716 } 717 718 void getAnalysisUsage(AnalysisUsage &AU) const override { 719 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 720 AU.addRequired<TargetLibraryInfoWrapperPass>(); 721 } 722 723 bool runOnFunction(Function &F) override { 724 GlobalsMetadata &GlobalsMD = 725 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 726 const TargetLibraryInfo *TLI = 727 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 728 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 729 UseAfterScope); 730 return ASan.instrumentFunction(F, TLI); 731 } 732 733 private: 734 bool CompileKernel; 735 bool Recover; 736 bool UseAfterScope; 737 }; 738 739 class ModuleAddressSanitizer { 740 public: 741 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 742 bool CompileKernel = false, bool Recover = false, 743 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 744 : GlobalsMD(*GlobalsMD), 745 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 746 : CompileKernel), 747 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 748 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 749 // Enable aliases as they should have no downside with ODR indicators. 750 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 751 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 752 // Not a typo: ClWithComdat is almost completely pointless without 753 // ClUseGlobalsGC (because then it only works on modules without 754 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 755 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 756 // argument is designed as workaround. Therefore, disable both 757 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 758 // do globals-gc. 759 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel) { 760 C = &(M.getContext()); 761 int LongSize = M.getDataLayout().getPointerSizeInBits(); 762 IntptrTy = Type::getIntNTy(*C, LongSize); 763 TargetTriple = Triple(M.getTargetTriple()); 764 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 765 } 766 767 bool instrumentModule(Module &); 768 769 private: 770 void initializeCallbacks(Module &M); 771 772 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 773 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 774 ArrayRef<GlobalVariable *> ExtendedGlobals, 775 ArrayRef<Constant *> MetadataInitializers); 776 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 777 ArrayRef<GlobalVariable *> ExtendedGlobals, 778 ArrayRef<Constant *> MetadataInitializers, 779 const std::string &UniqueModuleId); 780 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 781 ArrayRef<GlobalVariable *> ExtendedGlobals, 782 ArrayRef<Constant *> MetadataInitializers); 783 void 784 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 785 ArrayRef<GlobalVariable *> ExtendedGlobals, 786 ArrayRef<Constant *> MetadataInitializers); 787 788 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 789 StringRef OriginalName); 790 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 791 StringRef InternalSuffix); 792 Instruction *CreateAsanModuleDtor(Module &M); 793 794 bool canInstrumentAliasedGlobal(const GlobalAlias &GA) const; 795 bool shouldInstrumentGlobal(GlobalVariable *G) const; 796 bool ShouldUseMachOGlobalsSection() const; 797 StringRef getGlobalMetadataSection() const; 798 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 799 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 800 uint64_t getMinRedzoneSizeForGlobal() const { 801 return getRedzoneSizeForScale(Mapping.Scale); 802 } 803 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 804 int GetAsanVersion(const Module &M) const; 805 806 const GlobalsMetadata &GlobalsMD; 807 bool CompileKernel; 808 bool Recover; 809 bool UseGlobalsGC; 810 bool UsePrivateAlias; 811 bool UseOdrIndicator; 812 bool UseCtorComdat; 813 Type *IntptrTy; 814 LLVMContext *C; 815 Triple TargetTriple; 816 ShadowMapping Mapping; 817 FunctionCallee AsanPoisonGlobals; 818 FunctionCallee AsanUnpoisonGlobals; 819 FunctionCallee AsanRegisterGlobals; 820 FunctionCallee AsanUnregisterGlobals; 821 FunctionCallee AsanRegisterImageGlobals; 822 FunctionCallee AsanUnregisterImageGlobals; 823 FunctionCallee AsanRegisterElfGlobals; 824 FunctionCallee AsanUnregisterElfGlobals; 825 826 Function *AsanCtorFunction = nullptr; 827 Function *AsanDtorFunction = nullptr; 828 }; 829 830 class ModuleAddressSanitizerLegacyPass : public ModulePass { 831 public: 832 static char ID; 833 834 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 835 bool Recover = false, 836 bool UseGlobalGC = true, 837 bool UseOdrIndicator = false) 838 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 839 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 840 initializeModuleAddressSanitizerLegacyPassPass( 841 *PassRegistry::getPassRegistry()); 842 } 843 844 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 845 846 void getAnalysisUsage(AnalysisUsage &AU) const override { 847 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 848 } 849 850 bool runOnModule(Module &M) override { 851 GlobalsMetadata &GlobalsMD = 852 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 853 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 854 UseGlobalGC, UseOdrIndicator); 855 return ASanModule.instrumentModule(M); 856 } 857 858 private: 859 bool CompileKernel; 860 bool Recover; 861 bool UseGlobalGC; 862 bool UseOdrIndicator; 863 }; 864 865 // Stack poisoning does not play well with exception handling. 866 // When an exception is thrown, we essentially bypass the code 867 // that unpoisones the stack. This is why the run-time library has 868 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 869 // stack in the interceptor. This however does not work inside the 870 // actual function which catches the exception. Most likely because the 871 // compiler hoists the load of the shadow value somewhere too high. 872 // This causes asan to report a non-existing bug on 453.povray. 873 // It sounds like an LLVM bug. 874 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 875 Function &F; 876 AddressSanitizer &ASan; 877 DIBuilder DIB; 878 LLVMContext *C; 879 Type *IntptrTy; 880 Type *IntptrPtrTy; 881 ShadowMapping Mapping; 882 883 SmallVector<AllocaInst *, 16> AllocaVec; 884 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 885 SmallVector<Instruction *, 8> RetVec; 886 unsigned StackAlignment; 887 888 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 889 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 890 FunctionCallee AsanSetShadowFunc[0x100] = {}; 891 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 892 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 893 894 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 895 struct AllocaPoisonCall { 896 IntrinsicInst *InsBefore; 897 AllocaInst *AI; 898 uint64_t Size; 899 bool DoPoison; 900 }; 901 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 902 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 903 bool HasUntracedLifetimeIntrinsic = false; 904 905 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 906 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 907 AllocaInst *DynamicAllocaLayout = nullptr; 908 IntrinsicInst *LocalEscapeCall = nullptr; 909 910 // Maps Value to an AllocaInst from which the Value is originated. 911 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 912 AllocaForValueMapTy AllocaForValue; 913 914 bool HasNonEmptyInlineAsm = false; 915 bool HasReturnsTwiceCall = false; 916 std::unique_ptr<CallInst> EmptyInlineAsm; 917 918 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 919 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 920 C(ASan.C), IntptrTy(ASan.IntptrTy), 921 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 922 StackAlignment(1 << Mapping.Scale), 923 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 924 925 bool runOnFunction() { 926 if (!ClStack) return false; 927 928 if (ClRedzoneByvalArgs) 929 copyArgsPassedByValToAllocas(); 930 931 // Collect alloca, ret, lifetime instructions etc. 932 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 933 934 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 935 936 initializeCallbacks(*F.getParent()); 937 938 if (HasUntracedLifetimeIntrinsic) { 939 // If there are lifetime intrinsics which couldn't be traced back to an 940 // alloca, we may not know exactly when a variable enters scope, and 941 // therefore should "fail safe" by not poisoning them. 942 StaticAllocaPoisonCallVec.clear(); 943 DynamicAllocaPoisonCallVec.clear(); 944 } 945 946 processDynamicAllocas(); 947 processStaticAllocas(); 948 949 if (ClDebugStack) { 950 LLVM_DEBUG(dbgs() << F); 951 } 952 return true; 953 } 954 955 // Arguments marked with the "byval" attribute are implicitly copied without 956 // using an alloca instruction. To produce redzones for those arguments, we 957 // copy them a second time into memory allocated with an alloca instruction. 958 void copyArgsPassedByValToAllocas(); 959 960 // Finds all Alloca instructions and puts 961 // poisoned red zones around all of them. 962 // Then unpoison everything back before the function returns. 963 void processStaticAllocas(); 964 void processDynamicAllocas(); 965 966 void createDynamicAllocasInitStorage(); 967 968 // ----------------------- Visitors. 969 /// Collect all Ret instructions. 970 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 971 972 /// Collect all Resume instructions. 973 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 974 975 /// Collect all CatchReturnInst instructions. 976 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 977 978 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 979 Value *SavedStack) { 980 IRBuilder<> IRB(InstBefore); 981 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 982 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 983 // need to adjust extracted SP to compute the address of the most recent 984 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 985 // this purpose. 986 if (!isa<ReturnInst>(InstBefore)) { 987 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 988 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 989 {IntptrTy}); 990 991 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 992 993 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 994 DynamicAreaOffset); 995 } 996 997 IRB.CreateCall( 998 AsanAllocasUnpoisonFunc, 999 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1000 } 1001 1002 // Unpoison dynamic allocas redzones. 1003 void unpoisonDynamicAllocas() { 1004 for (auto &Ret : RetVec) 1005 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1006 1007 for (auto &StackRestoreInst : StackRestoreVec) 1008 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1009 StackRestoreInst->getOperand(0)); 1010 } 1011 1012 // Deploy and poison redzones around dynamic alloca call. To do this, we 1013 // should replace this call with another one with changed parameters and 1014 // replace all its uses with new address, so 1015 // addr = alloca type, old_size, align 1016 // is replaced by 1017 // new_size = (old_size + additional_size) * sizeof(type) 1018 // tmp = alloca i8, new_size, max(align, 32) 1019 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1020 // Additional_size is added to make new memory allocation contain not only 1021 // requested memory, but also left, partial and right redzones. 1022 void handleDynamicAllocaCall(AllocaInst *AI); 1023 1024 /// Collect Alloca instructions we want (and can) handle. 1025 void visitAllocaInst(AllocaInst &AI) { 1026 if (!ASan.isInterestingAlloca(AI)) { 1027 if (AI.isStaticAlloca()) { 1028 // Skip over allocas that are present *before* the first instrumented 1029 // alloca, we don't want to move those around. 1030 if (AllocaVec.empty()) 1031 return; 1032 1033 StaticAllocasToMoveUp.push_back(&AI); 1034 } 1035 return; 1036 } 1037 1038 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1039 if (!AI.isStaticAlloca()) 1040 DynamicAllocaVec.push_back(&AI); 1041 else 1042 AllocaVec.push_back(&AI); 1043 } 1044 1045 /// Collect lifetime intrinsic calls to check for use-after-scope 1046 /// errors. 1047 void visitIntrinsicInst(IntrinsicInst &II) { 1048 Intrinsic::ID ID = II.getIntrinsicID(); 1049 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1050 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1051 if (!ASan.UseAfterScope) 1052 return; 1053 if (!II.isLifetimeStartOrEnd()) 1054 return; 1055 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1056 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1057 // If size argument is undefined, don't do anything. 1058 if (Size->isMinusOne()) return; 1059 // Check that size doesn't saturate uint64_t and can 1060 // be stored in IntptrTy. 1061 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1062 if (SizeValue == ~0ULL || 1063 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1064 return; 1065 // Find alloca instruction that corresponds to llvm.lifetime argument. 1066 AllocaInst *AI = 1067 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue); 1068 if (!AI) { 1069 HasUntracedLifetimeIntrinsic = true; 1070 return; 1071 } 1072 // We're interested only in allocas we can handle. 1073 if (!ASan.isInterestingAlloca(*AI)) 1074 return; 1075 bool DoPoison = (ID == Intrinsic::lifetime_end); 1076 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1077 if (AI->isStaticAlloca()) 1078 StaticAllocaPoisonCallVec.push_back(APC); 1079 else if (ClInstrumentDynamicAllocas) 1080 DynamicAllocaPoisonCallVec.push_back(APC); 1081 } 1082 1083 void visitCallBase(CallBase &CB) { 1084 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1085 HasNonEmptyInlineAsm |= CI->isInlineAsm() && 1086 !CI->isIdenticalTo(EmptyInlineAsm.get()) && 1087 &CB != ASan.LocalDynamicShadow; 1088 HasReturnsTwiceCall |= CI->canReturnTwice(); 1089 } 1090 } 1091 1092 // ---------------------- Helpers. 1093 void initializeCallbacks(Module &M); 1094 1095 // Copies bytes from ShadowBytes into shadow memory for indexes where 1096 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1097 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1098 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1099 IRBuilder<> &IRB, Value *ShadowBase); 1100 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1101 size_t Begin, size_t End, IRBuilder<> &IRB, 1102 Value *ShadowBase); 1103 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1104 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1105 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1106 1107 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1108 1109 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1110 bool Dynamic); 1111 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1112 Instruction *ThenTerm, Value *ValueIfFalse); 1113 }; 1114 1115 } // end anonymous namespace 1116 1117 void LocationMetadata::parse(MDNode *MDN) { 1118 assert(MDN->getNumOperands() == 3); 1119 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1120 Filename = DIFilename->getString(); 1121 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1122 ColumnNo = 1123 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1124 } 1125 1126 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1127 // we want to sanitize instead and reading this metadata on each pass over a 1128 // function instead of reading module level metadata at first. 1129 GlobalsMetadata::GlobalsMetadata(Module &M) { 1130 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1131 if (!Globals) 1132 return; 1133 for (auto MDN : Globals->operands()) { 1134 // Metadata node contains the global and the fields of "Entry". 1135 assert(MDN->getNumOperands() == 5); 1136 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1137 // The optimizer may optimize away a global entirely. 1138 if (!V) 1139 continue; 1140 auto *StrippedV = V->stripPointerCasts(); 1141 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1142 if (!GV) 1143 continue; 1144 // We can already have an entry for GV if it was merged with another 1145 // global. 1146 Entry &E = Entries[GV]; 1147 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1148 E.SourceLoc.parse(Loc); 1149 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1150 E.Name = Name->getString(); 1151 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1152 E.IsDynInit |= IsDynInit->isOne(); 1153 ConstantInt *IsBlacklisted = 1154 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1155 E.IsBlacklisted |= IsBlacklisted->isOne(); 1156 } 1157 } 1158 1159 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1160 1161 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1162 ModuleAnalysisManager &AM) { 1163 return GlobalsMetadata(M); 1164 } 1165 1166 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1167 bool UseAfterScope) 1168 : CompileKernel(CompileKernel), Recover(Recover), 1169 UseAfterScope(UseAfterScope) {} 1170 1171 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1172 AnalysisManager<Function> &AM) { 1173 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1174 Module &M = *F.getParent(); 1175 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1176 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1177 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1178 if (Sanitizer.instrumentFunction(F, TLI)) 1179 return PreservedAnalyses::none(); 1180 return PreservedAnalyses::all(); 1181 } 1182 1183 report_fatal_error( 1184 "The ASanGlobalsMetadataAnalysis is required to run before " 1185 "AddressSanitizer can run"); 1186 return PreservedAnalyses::all(); 1187 } 1188 1189 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1190 bool Recover, 1191 bool UseGlobalGC, 1192 bool UseOdrIndicator) 1193 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1194 UseOdrIndicator(UseOdrIndicator) {} 1195 1196 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1197 AnalysisManager<Module> &AM) { 1198 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1199 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1200 UseGlobalGC, UseOdrIndicator); 1201 if (Sanitizer.instrumentModule(M)) 1202 return PreservedAnalyses::none(); 1203 return PreservedAnalyses::all(); 1204 } 1205 1206 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1207 "Read metadata to mark which globals should be instrumented " 1208 "when running ASan.", 1209 false, true) 1210 1211 char AddressSanitizerLegacyPass::ID = 0; 1212 1213 INITIALIZE_PASS_BEGIN( 1214 AddressSanitizerLegacyPass, "asan", 1215 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1216 false) 1217 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1218 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1219 INITIALIZE_PASS_END( 1220 AddressSanitizerLegacyPass, "asan", 1221 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1222 false) 1223 1224 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1225 bool Recover, 1226 bool UseAfterScope) { 1227 assert(!CompileKernel || Recover); 1228 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1229 } 1230 1231 char ModuleAddressSanitizerLegacyPass::ID = 0; 1232 1233 INITIALIZE_PASS( 1234 ModuleAddressSanitizerLegacyPass, "asan-module", 1235 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1236 "ModulePass", 1237 false, false) 1238 1239 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1240 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1241 assert(!CompileKernel || Recover); 1242 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1243 UseGlobalsGC, UseOdrIndicator); 1244 } 1245 1246 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1247 size_t Res = countTrailingZeros(TypeSize / 8); 1248 assert(Res < kNumberOfAccessSizes); 1249 return Res; 1250 } 1251 1252 /// Create a global describing a source location. 1253 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1254 LocationMetadata MD) { 1255 Constant *LocData[] = { 1256 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1257 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1258 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1259 }; 1260 auto LocStruct = ConstantStruct::getAnon(LocData); 1261 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1262 GlobalValue::PrivateLinkage, LocStruct, 1263 kAsanGenPrefix); 1264 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1265 return GV; 1266 } 1267 1268 /// Check if \p G has been created by a trusted compiler pass. 1269 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1270 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1271 if (G->getName().startswith("llvm.")) 1272 return true; 1273 1274 // Do not instrument asan globals. 1275 if (G->getName().startswith(kAsanGenPrefix) || 1276 G->getName().startswith(kSanCovGenPrefix) || 1277 G->getName().startswith(kODRGenPrefix)) 1278 return true; 1279 1280 // Do not instrument gcov counter arrays. 1281 if (G->getName() == "__llvm_gcov_ctr") 1282 return true; 1283 1284 return false; 1285 } 1286 1287 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1288 // Shadow >> scale 1289 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1290 if (Mapping.Offset == 0) return Shadow; 1291 // (Shadow >> scale) | offset 1292 Value *ShadowBase; 1293 if (LocalDynamicShadow) 1294 ShadowBase = LocalDynamicShadow; 1295 else 1296 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1297 if (Mapping.OrShadowOffset) 1298 return IRB.CreateOr(Shadow, ShadowBase); 1299 else 1300 return IRB.CreateAdd(Shadow, ShadowBase); 1301 } 1302 1303 // Instrument memset/memmove/memcpy 1304 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1305 IRBuilder<> IRB(MI); 1306 if (isa<MemTransferInst>(MI)) { 1307 IRB.CreateCall( 1308 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1309 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1310 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1311 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1312 } else if (isa<MemSetInst>(MI)) { 1313 IRB.CreateCall( 1314 AsanMemset, 1315 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1316 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1317 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1318 } 1319 MI->eraseFromParent(); 1320 } 1321 1322 /// Check if we want (and can) handle this alloca. 1323 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1324 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1325 1326 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1327 return PreviouslySeenAllocaInfo->getSecond(); 1328 1329 bool IsInteresting = 1330 (AI.getAllocatedType()->isSized() && 1331 // alloca() may be called with 0 size, ignore it. 1332 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1333 // We are only interested in allocas not promotable to registers. 1334 // Promotable allocas are common under -O0. 1335 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1336 // inalloca allocas are not treated as static, and we don't want 1337 // dynamic alloca instrumentation for them as well. 1338 !AI.isUsedWithInAlloca() && 1339 // swifterror allocas are register promoted by ISel 1340 !AI.isSwiftError()); 1341 1342 ProcessedAllocas[&AI] = IsInteresting; 1343 return IsInteresting; 1344 } 1345 1346 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1347 // Do not instrument acesses from different address spaces; we cannot deal 1348 // with them. 1349 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1350 if (PtrTy->getPointerAddressSpace() != 0) 1351 return true; 1352 1353 // Ignore swifterror addresses. 1354 // swifterror memory addresses are mem2reg promoted by instruction 1355 // selection. As such they cannot have regular uses like an instrumentation 1356 // function and it makes no sense to track them as memory. 1357 if (Ptr->isSwiftError()) 1358 return true; 1359 1360 // Treat memory accesses to promotable allocas as non-interesting since they 1361 // will not cause memory violations. This greatly speeds up the instrumented 1362 // executable at -O0. 1363 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1364 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1365 return true; 1366 1367 return false; 1368 } 1369 1370 void AddressSanitizer::getInterestingMemoryOperands( 1371 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1372 // Skip memory accesses inserted by another instrumentation. 1373 if (I->hasMetadata("nosanitize")) 1374 return; 1375 1376 // Do not instrument the load fetching the dynamic shadow address. 1377 if (LocalDynamicShadow == I) 1378 return; 1379 1380 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1381 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1382 return; 1383 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1384 LI->getType(), LI->getAlignment()); 1385 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1386 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1387 return; 1388 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1389 SI->getValueOperand()->getType(), 1390 SI->getAlignment()); 1391 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1392 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1393 return; 1394 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1395 RMW->getValOperand()->getType(), 0); 1396 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1397 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1398 return; 1399 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1400 XCHG->getCompareOperand()->getType(), 0); 1401 } else if (auto CI = dyn_cast<CallInst>(I)) { 1402 auto *F = CI->getCalledFunction(); 1403 if (F && (F->getName().startswith("llvm.masked.load.") || 1404 F->getName().startswith("llvm.masked.store."))) { 1405 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1406 // Masked store has an initial operand for the value. 1407 unsigned OpOffset = IsWrite ? 1 : 0; 1408 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1409 return; 1410 1411 auto BasePtr = CI->getOperand(OpOffset); 1412 if (ignoreAccess(BasePtr)) 1413 return; 1414 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1415 unsigned Alignment = 1; 1416 // Otherwise no alignment guarantees. We probably got Undef. 1417 if (auto AlignmentConstant = 1418 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1419 Alignment = (unsigned)AlignmentConstant->getZExtValue(); 1420 Value *Mask = CI->getOperand(2 + OpOffset); 1421 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1422 } else { 1423 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { 1424 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1425 ignoreAccess(CI->getArgOperand(ArgNo))) 1426 continue; 1427 Type *Ty = CI->getParamByValType(ArgNo); 1428 Interesting.emplace_back(I, ArgNo, false, Ty, 1); 1429 } 1430 } 1431 } 1432 } 1433 1434 static bool isPointerOperand(Value *V) { 1435 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1436 } 1437 1438 // This is a rough heuristic; it may cause both false positives and 1439 // false negatives. The proper implementation requires cooperation with 1440 // the frontend. 1441 static bool isInterestingPointerComparison(Instruction *I) { 1442 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1443 if (!Cmp->isRelational()) 1444 return false; 1445 } else { 1446 return false; 1447 } 1448 return isPointerOperand(I->getOperand(0)) && 1449 isPointerOperand(I->getOperand(1)); 1450 } 1451 1452 // This is a rough heuristic; it may cause both false positives and 1453 // false negatives. The proper implementation requires cooperation with 1454 // the frontend. 1455 static bool isInterestingPointerSubtraction(Instruction *I) { 1456 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1457 if (BO->getOpcode() != Instruction::Sub) 1458 return false; 1459 } else { 1460 return false; 1461 } 1462 return isPointerOperand(I->getOperand(0)) && 1463 isPointerOperand(I->getOperand(1)); 1464 } 1465 1466 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1467 // If a global variable does not have dynamic initialization we don't 1468 // have to instrument it. However, if a global does not have initializer 1469 // at all, we assume it has dynamic initializer (in other TU). 1470 // 1471 // FIXME: Metadata should be attched directly to the global directly instead 1472 // of being added to llvm.asan.globals. 1473 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1474 } 1475 1476 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1477 Instruction *I) { 1478 IRBuilder<> IRB(I); 1479 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1480 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1481 for (Value *&i : Param) { 1482 if (i->getType()->isPointerTy()) 1483 i = IRB.CreatePointerCast(i, IntptrTy); 1484 } 1485 IRB.CreateCall(F, Param); 1486 } 1487 1488 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1489 Instruction *InsertBefore, Value *Addr, 1490 unsigned Alignment, unsigned Granularity, 1491 uint32_t TypeSize, bool IsWrite, 1492 Value *SizeArgument, bool UseCalls, 1493 uint32_t Exp) { 1494 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1495 // if the data is properly aligned. 1496 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1497 TypeSize == 128) && 1498 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1499 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1500 nullptr, UseCalls, Exp); 1501 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1502 IsWrite, nullptr, UseCalls, Exp); 1503 } 1504 1505 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1506 const DataLayout &DL, Type *IntptrTy, 1507 Value *Mask, Instruction *I, 1508 Value *Addr, unsigned Alignment, 1509 unsigned Granularity, uint32_t TypeSize, 1510 bool IsWrite, Value *SizeArgument, 1511 bool UseCalls, uint32_t Exp) { 1512 auto *VTy = 1513 cast<VectorType>(cast<PointerType>(Addr->getType())->getElementType()); 1514 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1515 unsigned Num = VTy->getNumElements(); 1516 auto Zero = ConstantInt::get(IntptrTy, 0); 1517 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1518 Value *InstrumentedAddress = nullptr; 1519 Instruction *InsertBefore = I; 1520 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1521 // dyn_cast as we might get UndefValue 1522 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1523 if (Masked->isZero()) 1524 // Mask is constant false, so no instrumentation needed. 1525 continue; 1526 // If we have a true or undef value, fall through to doInstrumentAddress 1527 // with InsertBefore == I 1528 } 1529 } else { 1530 IRBuilder<> IRB(I); 1531 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1532 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1533 InsertBefore = ThenTerm; 1534 } 1535 1536 IRBuilder<> IRB(InsertBefore); 1537 InstrumentedAddress = 1538 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1539 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1540 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1541 UseCalls, Exp); 1542 } 1543 } 1544 1545 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1546 InterestingMemoryOperand &O, bool UseCalls, 1547 const DataLayout &DL) { 1548 Value *Addr = O.getPtr(); 1549 1550 // Optimization experiments. 1551 // The experiments can be used to evaluate potential optimizations that remove 1552 // instrumentation (assess false negatives). Instead of completely removing 1553 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1554 // experiments that want to remove instrumentation of this instruction). 1555 // If Exp is non-zero, this pass will emit special calls into runtime 1556 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1557 // make runtime terminate the program in a special way (with a different 1558 // exit status). Then you run the new compiler on a buggy corpus, collect 1559 // the special terminations (ideally, you don't see them at all -- no false 1560 // negatives) and make the decision on the optimization. 1561 uint32_t Exp = ClForceExperiment; 1562 1563 if (ClOpt && ClOptGlobals) { 1564 // If initialization order checking is disabled, a simple access to a 1565 // dynamically initialized global is always valid. 1566 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1567 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1568 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1569 NumOptimizedAccessesToGlobalVar++; 1570 return; 1571 } 1572 } 1573 1574 if (ClOpt && ClOptStack) { 1575 // A direct inbounds access to a stack variable is always valid. 1576 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1577 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1578 NumOptimizedAccessesToStackVar++; 1579 return; 1580 } 1581 } 1582 1583 if (O.IsWrite) 1584 NumInstrumentedWrites++; 1585 else 1586 NumInstrumentedReads++; 1587 1588 unsigned Granularity = 1 << Mapping.Scale; 1589 if (O.MaybeMask) { 1590 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1591 Addr, O.Alignment, Granularity, O.TypeSize, 1592 O.IsWrite, nullptr, UseCalls, Exp); 1593 } else { 1594 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1595 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1596 Exp); 1597 } 1598 } 1599 1600 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1601 Value *Addr, bool IsWrite, 1602 size_t AccessSizeIndex, 1603 Value *SizeArgument, 1604 uint32_t Exp) { 1605 IRBuilder<> IRB(InsertBefore); 1606 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1607 CallInst *Call = nullptr; 1608 if (SizeArgument) { 1609 if (Exp == 0) 1610 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1611 {Addr, SizeArgument}); 1612 else 1613 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1614 {Addr, SizeArgument, ExpVal}); 1615 } else { 1616 if (Exp == 0) 1617 Call = 1618 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1619 else 1620 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1621 {Addr, ExpVal}); 1622 } 1623 1624 // We don't do Call->setDoesNotReturn() because the BB already has 1625 // UnreachableInst at the end. 1626 // This EmptyAsm is required to avoid callback merge. 1627 IRB.CreateCall(EmptyAsm, {}); 1628 return Call; 1629 } 1630 1631 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1632 Value *ShadowValue, 1633 uint32_t TypeSize) { 1634 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1635 // Addr & (Granularity - 1) 1636 Value *LastAccessedByte = 1637 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1638 // (Addr & (Granularity - 1)) + size - 1 1639 if (TypeSize / 8 > 1) 1640 LastAccessedByte = IRB.CreateAdd( 1641 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1642 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1643 LastAccessedByte = 1644 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1645 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1646 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1647 } 1648 1649 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1650 Instruction *InsertBefore, Value *Addr, 1651 uint32_t TypeSize, bool IsWrite, 1652 Value *SizeArgument, bool UseCalls, 1653 uint32_t Exp) { 1654 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1655 1656 IRBuilder<> IRB(InsertBefore); 1657 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1658 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1659 1660 if (UseCalls) { 1661 if (Exp == 0) 1662 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1663 AddrLong); 1664 else 1665 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1666 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1667 return; 1668 } 1669 1670 if (IsMyriad) { 1671 // Strip the cache bit and do range check. 1672 // AddrLong &= ~kMyriadCacheBitMask32 1673 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1674 // Tag = AddrLong >> kMyriadTagShift 1675 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1676 // Tag == kMyriadDDRTag 1677 Value *TagCheck = 1678 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1679 1680 Instruction *TagCheckTerm = 1681 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1682 MDBuilder(*C).createBranchWeights(1, 100000)); 1683 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1684 IRB.SetInsertPoint(TagCheckTerm); 1685 InsertBefore = TagCheckTerm; 1686 } 1687 1688 Type *ShadowTy = 1689 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1690 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1691 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1692 Value *CmpVal = Constant::getNullValue(ShadowTy); 1693 Value *ShadowValue = 1694 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1695 1696 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1697 size_t Granularity = 1ULL << Mapping.Scale; 1698 Instruction *CrashTerm = nullptr; 1699 1700 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1701 // We use branch weights for the slow path check, to indicate that the slow 1702 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1703 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1704 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1705 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1706 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1707 IRB.SetInsertPoint(CheckTerm); 1708 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1709 if (Recover) { 1710 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1711 } else { 1712 BasicBlock *CrashBlock = 1713 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1714 CrashTerm = new UnreachableInst(*C, CrashBlock); 1715 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1716 ReplaceInstWithInst(CheckTerm, NewTerm); 1717 } 1718 } else { 1719 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1720 } 1721 1722 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1723 AccessSizeIndex, SizeArgument, Exp); 1724 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1725 } 1726 1727 // Instrument unusual size or unusual alignment. 1728 // We can not do it with a single check, so we do 1-byte check for the first 1729 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1730 // to report the actual access size. 1731 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1732 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1733 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1734 IRBuilder<> IRB(InsertBefore); 1735 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1736 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1737 if (UseCalls) { 1738 if (Exp == 0) 1739 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1740 {AddrLong, Size}); 1741 else 1742 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1743 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1744 } else { 1745 Value *LastByte = IRB.CreateIntToPtr( 1746 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1747 Addr->getType()); 1748 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1749 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1750 } 1751 } 1752 1753 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1754 GlobalValue *ModuleName) { 1755 // Set up the arguments to our poison/unpoison functions. 1756 IRBuilder<> IRB(&GlobalInit.front(), 1757 GlobalInit.front().getFirstInsertionPt()); 1758 1759 // Add a call to poison all external globals before the given function starts. 1760 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1761 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1762 1763 // Add calls to unpoison all globals before each return instruction. 1764 for (auto &BB : GlobalInit.getBasicBlockList()) 1765 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1766 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1767 } 1768 1769 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1770 Module &M, GlobalValue *ModuleName) { 1771 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1772 if (!GV) 1773 return; 1774 1775 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1776 if (!CA) 1777 return; 1778 1779 for (Use &OP : CA->operands()) { 1780 if (isa<ConstantAggregateZero>(OP)) continue; 1781 ConstantStruct *CS = cast<ConstantStruct>(OP); 1782 1783 // Must have a function or null ptr. 1784 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1785 if (F->getName() == kAsanModuleCtorName) continue; 1786 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1787 // Don't instrument CTORs that will run before asan.module_ctor. 1788 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1789 continue; 1790 poisonOneInitializer(*F, ModuleName); 1791 } 1792 } 1793 } 1794 1795 bool ModuleAddressSanitizer::canInstrumentAliasedGlobal( 1796 const GlobalAlias &GA) const { 1797 // In case this function should be expanded to include rules that do not just 1798 // apply when CompileKernel is true, either guard all existing rules with an 1799 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1800 // should also apply to user space. 1801 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1802 1803 // When compiling the kernel, globals that are aliased by symbols prefixed 1804 // by "__" are special and cannot be padded with a redzone. 1805 if (GA.getName().startswith("__")) 1806 return false; 1807 1808 return true; 1809 } 1810 1811 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1812 Type *Ty = G->getValueType(); 1813 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1814 1815 // FIXME: Metadata should be attched directly to the global directly instead 1816 // of being added to llvm.asan.globals. 1817 if (GlobalsMD.get(G).IsBlacklisted) return false; 1818 if (!Ty->isSized()) return false; 1819 if (!G->hasInitializer()) return false; 1820 // Only instrument globals of default address spaces 1821 if (G->getAddressSpace()) return false; 1822 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1823 // Two problems with thread-locals: 1824 // - The address of the main thread's copy can't be computed at link-time. 1825 // - Need to poison all copies, not just the main thread's one. 1826 if (G->isThreadLocal()) return false; 1827 // For now, just ignore this Global if the alignment is large. 1828 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1829 1830 // For non-COFF targets, only instrument globals known to be defined by this 1831 // TU. 1832 // FIXME: We can instrument comdat globals on ELF if we are using the 1833 // GC-friendly metadata scheme. 1834 if (!TargetTriple.isOSBinFormatCOFF()) { 1835 if (!G->hasExactDefinition() || G->hasComdat()) 1836 return false; 1837 } else { 1838 // On COFF, don't instrument non-ODR linkages. 1839 if (G->isInterposable()) 1840 return false; 1841 } 1842 1843 // If a comdat is present, it must have a selection kind that implies ODR 1844 // semantics: no duplicates, any, or exact match. 1845 if (Comdat *C = G->getComdat()) { 1846 switch (C->getSelectionKind()) { 1847 case Comdat::Any: 1848 case Comdat::ExactMatch: 1849 case Comdat::NoDuplicates: 1850 break; 1851 case Comdat::Largest: 1852 case Comdat::SameSize: 1853 return false; 1854 } 1855 } 1856 1857 if (G->hasSection()) { 1858 // The kernel uses explicit sections for mostly special global variables 1859 // that we should not instrument. E.g. the kernel may rely on their layout 1860 // without redzones, or remove them at link time ("discard.*"), etc. 1861 if (CompileKernel) 1862 return false; 1863 1864 StringRef Section = G->getSection(); 1865 1866 // Globals from llvm.metadata aren't emitted, do not instrument them. 1867 if (Section == "llvm.metadata") return false; 1868 // Do not instrument globals from special LLVM sections. 1869 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1870 1871 // Do not instrument function pointers to initialization and termination 1872 // routines: dynamic linker will not properly handle redzones. 1873 if (Section.startswith(".preinit_array") || 1874 Section.startswith(".init_array") || 1875 Section.startswith(".fini_array")) { 1876 return false; 1877 } 1878 1879 // On COFF, if the section name contains '$', it is highly likely that the 1880 // user is using section sorting to create an array of globals similar to 1881 // the way initialization callbacks are registered in .init_array and 1882 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1883 // to such globals is counterproductive, because the intent is that they 1884 // will form an array, and out-of-bounds accesses are expected. 1885 // See https://github.com/google/sanitizers/issues/305 1886 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1887 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1888 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1889 << *G << "\n"); 1890 return false; 1891 } 1892 1893 if (TargetTriple.isOSBinFormatMachO()) { 1894 StringRef ParsedSegment, ParsedSection; 1895 unsigned TAA = 0, StubSize = 0; 1896 bool TAAParsed; 1897 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1898 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1899 assert(ErrorCode.empty() && "Invalid section specifier."); 1900 1901 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1902 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1903 // them. 1904 if (ParsedSegment == "__OBJC" || 1905 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1906 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1907 return false; 1908 } 1909 // See https://github.com/google/sanitizers/issues/32 1910 // Constant CFString instances are compiled in the following way: 1911 // -- the string buffer is emitted into 1912 // __TEXT,__cstring,cstring_literals 1913 // -- the constant NSConstantString structure referencing that buffer 1914 // is placed into __DATA,__cfstring 1915 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1916 // Moreover, it causes the linker to crash on OS X 10.7 1917 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1918 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1919 return false; 1920 } 1921 // The linker merges the contents of cstring_literals and removes the 1922 // trailing zeroes. 1923 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1924 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1925 return false; 1926 } 1927 } 1928 } 1929 1930 if (CompileKernel) { 1931 // Globals that prefixed by "__" are special and cannot be padded with a 1932 // redzone. 1933 if (G->getName().startswith("__")) 1934 return false; 1935 } 1936 1937 return true; 1938 } 1939 1940 // On Mach-O platforms, we emit global metadata in a separate section of the 1941 // binary in order to allow the linker to properly dead strip. This is only 1942 // supported on recent versions of ld64. 1943 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1944 if (!TargetTriple.isOSBinFormatMachO()) 1945 return false; 1946 1947 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1948 return true; 1949 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1950 return true; 1951 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1952 return true; 1953 1954 return false; 1955 } 1956 1957 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1958 switch (TargetTriple.getObjectFormat()) { 1959 case Triple::COFF: return ".ASAN$GL"; 1960 case Triple::ELF: return "asan_globals"; 1961 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1962 case Triple::Wasm: 1963 case Triple::XCOFF: 1964 report_fatal_error( 1965 "ModuleAddressSanitizer not implemented for object file format."); 1966 case Triple::UnknownObjectFormat: 1967 break; 1968 } 1969 llvm_unreachable("unsupported object format"); 1970 } 1971 1972 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1973 IRBuilder<> IRB(*C); 1974 1975 // Declare our poisoning and unpoisoning functions. 1976 AsanPoisonGlobals = 1977 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1978 AsanUnpoisonGlobals = 1979 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1980 1981 // Declare functions that register/unregister globals. 1982 AsanRegisterGlobals = M.getOrInsertFunction( 1983 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1984 AsanUnregisterGlobals = M.getOrInsertFunction( 1985 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1986 1987 // Declare the functions that find globals in a shared object and then invoke 1988 // the (un)register function on them. 1989 AsanRegisterImageGlobals = M.getOrInsertFunction( 1990 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1991 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1992 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1993 1994 AsanRegisterElfGlobals = 1995 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1996 IntptrTy, IntptrTy, IntptrTy); 1997 AsanUnregisterElfGlobals = 1998 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1999 IntptrTy, IntptrTy, IntptrTy); 2000 } 2001 2002 // Put the metadata and the instrumented global in the same group. This ensures 2003 // that the metadata is discarded if the instrumented global is discarded. 2004 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2005 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2006 Module &M = *G->getParent(); 2007 Comdat *C = G->getComdat(); 2008 if (!C) { 2009 if (!G->hasName()) { 2010 // If G is unnamed, it must be internal. Give it an artificial name 2011 // so we can put it in a comdat. 2012 assert(G->hasLocalLinkage()); 2013 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2014 } 2015 2016 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2017 std::string Name = std::string(G->getName()); 2018 Name += InternalSuffix; 2019 C = M.getOrInsertComdat(Name); 2020 } else { 2021 C = M.getOrInsertComdat(G->getName()); 2022 } 2023 2024 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2025 // linkage to internal linkage so that a symbol table entry is emitted. This 2026 // is necessary in order to create the comdat group. 2027 if (TargetTriple.isOSBinFormatCOFF()) { 2028 C->setSelectionKind(Comdat::NoDuplicates); 2029 if (G->hasPrivateLinkage()) 2030 G->setLinkage(GlobalValue::InternalLinkage); 2031 } 2032 G->setComdat(C); 2033 } 2034 2035 assert(G->hasComdat()); 2036 Metadata->setComdat(G->getComdat()); 2037 } 2038 2039 // Create a separate metadata global and put it in the appropriate ASan 2040 // global registration section. 2041 GlobalVariable * 2042 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2043 StringRef OriginalName) { 2044 auto Linkage = TargetTriple.isOSBinFormatMachO() 2045 ? GlobalVariable::InternalLinkage 2046 : GlobalVariable::PrivateLinkage; 2047 GlobalVariable *Metadata = new GlobalVariable( 2048 M, Initializer->getType(), false, Linkage, Initializer, 2049 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2050 Metadata->setSection(getGlobalMetadataSection()); 2051 return Metadata; 2052 } 2053 2054 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2055 AsanDtorFunction = 2056 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 2057 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 2058 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2059 2060 return ReturnInst::Create(*C, AsanDtorBB); 2061 } 2062 2063 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2064 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2065 ArrayRef<Constant *> MetadataInitializers) { 2066 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2067 auto &DL = M.getDataLayout(); 2068 2069 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2070 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2071 Constant *Initializer = MetadataInitializers[i]; 2072 GlobalVariable *G = ExtendedGlobals[i]; 2073 GlobalVariable *Metadata = 2074 CreateMetadataGlobal(M, Initializer, G->getName()); 2075 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2076 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2077 MetadataGlobals[i] = Metadata; 2078 2079 // The MSVC linker always inserts padding when linking incrementally. We 2080 // cope with that by aligning each struct to its size, which must be a power 2081 // of two. 2082 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2083 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2084 "global metadata will not be padded appropriately"); 2085 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2086 2087 SetComdatForGlobalMetadata(G, Metadata, ""); 2088 } 2089 2090 // Update llvm.compiler.used, adding the new metadata globals. This is 2091 // needed so that during LTO these variables stay alive. 2092 if (!MetadataGlobals.empty()) 2093 appendToCompilerUsed(M, MetadataGlobals); 2094 } 2095 2096 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2097 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2098 ArrayRef<Constant *> MetadataInitializers, 2099 const std::string &UniqueModuleId) { 2100 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2101 2102 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2103 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2104 GlobalVariable *G = ExtendedGlobals[i]; 2105 GlobalVariable *Metadata = 2106 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2107 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2108 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2109 MetadataGlobals[i] = Metadata; 2110 2111 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2112 } 2113 2114 // This should never be called when there are no globals, by the logic that 2115 // computes the UniqueModuleId string, which is "" when there are no globals. 2116 // It's important that this path is only used when there are actually some 2117 // globals, because that means that there will certainly be a live 2118 // `asan_globals` input section at link time and thus `__start_asan_globals` 2119 // and `__stop_asan_globals` symbols will definitely be defined at link time. 2120 // This means there's no need for the references to them to be weak, which 2121 // enables better code generation because ExternalWeakLinkage implies 2122 // isInterposable() and thus requires GOT indirection for PIC. Since these 2123 // are known-defined hidden/dso_local symbols, direct PIC accesses without 2124 // dynamic relocation are always sufficient. 2125 assert(!MetadataGlobals.empty()); 2126 assert(!UniqueModuleId.empty()); 2127 2128 // Update llvm.compiler.used, adding the new metadata globals. This is 2129 // needed so that during LTO these variables stay alive. 2130 appendToCompilerUsed(M, MetadataGlobals); 2131 2132 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2133 // to look up the loaded image that contains it. Second, we can store in it 2134 // whether registration has already occurred, to prevent duplicate 2135 // registration. 2136 // 2137 // Common linkage ensures that there is only one global per shared library. 2138 GlobalVariable *RegisteredFlag = new GlobalVariable( 2139 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2140 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2141 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2142 2143 // Create start and stop symbols. These are known to be defined by 2144 // the linker, see comment above. 2145 auto MakeStartStopGV = [&](const char *Prefix) { 2146 GlobalVariable *StartStop = 2147 new GlobalVariable(M, IntptrTy, false, GlobalVariable::ExternalLinkage, 2148 nullptr, Prefix + getGlobalMetadataSection()); 2149 StartStop->setVisibility(GlobalVariable::HiddenVisibility); 2150 assert(StartStop->isImplicitDSOLocal()); 2151 return StartStop; 2152 }; 2153 GlobalVariable *StartELFMetadata = MakeStartStopGV("__start_"); 2154 GlobalVariable *StopELFMetadata = MakeStartStopGV("__stop_"); 2155 2156 // Create a call to register the globals with the runtime. 2157 IRB.CreateCall(AsanRegisterElfGlobals, 2158 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2159 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2160 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2161 2162 // We also need to unregister globals at the end, e.g., when a shared library 2163 // gets closed. 2164 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2165 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2166 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2167 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2168 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2169 } 2170 2171 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2172 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2173 ArrayRef<Constant *> MetadataInitializers) { 2174 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2175 2176 // On recent Mach-O platforms, use a structure which binds the liveness of 2177 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2178 // created to be added to llvm.compiler.used 2179 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2180 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2181 2182 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2183 Constant *Initializer = MetadataInitializers[i]; 2184 GlobalVariable *G = ExtendedGlobals[i]; 2185 GlobalVariable *Metadata = 2186 CreateMetadataGlobal(M, Initializer, G->getName()); 2187 2188 // On recent Mach-O platforms, we emit the global metadata in a way that 2189 // allows the linker to properly strip dead globals. 2190 auto LivenessBinder = 2191 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2192 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2193 GlobalVariable *Liveness = new GlobalVariable( 2194 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2195 Twine("__asan_binder_") + G->getName()); 2196 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2197 LivenessGlobals[i] = Liveness; 2198 } 2199 2200 // Update llvm.compiler.used, adding the new liveness globals. This is 2201 // needed so that during LTO these variables stay alive. The alternative 2202 // would be to have the linker handling the LTO symbols, but libLTO 2203 // current API does not expose access to the section for each symbol. 2204 if (!LivenessGlobals.empty()) 2205 appendToCompilerUsed(M, LivenessGlobals); 2206 2207 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2208 // to look up the loaded image that contains it. Second, we can store in it 2209 // whether registration has already occurred, to prevent duplicate 2210 // registration. 2211 // 2212 // common linkage ensures that there is only one global per shared library. 2213 GlobalVariable *RegisteredFlag = new GlobalVariable( 2214 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2215 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2216 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2217 2218 IRB.CreateCall(AsanRegisterImageGlobals, 2219 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2220 2221 // We also need to unregister globals at the end, e.g., when a shared library 2222 // gets closed. 2223 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2224 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2225 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2226 } 2227 2228 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2229 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2230 ArrayRef<Constant *> MetadataInitializers) { 2231 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2232 unsigned N = ExtendedGlobals.size(); 2233 assert(N > 0); 2234 2235 // On platforms that don't have a custom metadata section, we emit an array 2236 // of global metadata structures. 2237 ArrayType *ArrayOfGlobalStructTy = 2238 ArrayType::get(MetadataInitializers[0]->getType(), N); 2239 auto AllGlobals = new GlobalVariable( 2240 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2241 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2242 if (Mapping.Scale > 3) 2243 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2244 2245 IRB.CreateCall(AsanRegisterGlobals, 2246 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2247 ConstantInt::get(IntptrTy, N)}); 2248 2249 // We also need to unregister globals at the end, e.g., when a shared library 2250 // gets closed. 2251 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2252 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2253 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2254 ConstantInt::get(IntptrTy, N)}); 2255 } 2256 2257 // This function replaces all global variables with new variables that have 2258 // trailing redzones. It also creates a function that poisons 2259 // redzones and inserts this function into llvm.global_ctors. 2260 // Sets *CtorComdat to true if the global registration code emitted into the 2261 // asan constructor is comdat-compatible. 2262 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2263 bool *CtorComdat) { 2264 *CtorComdat = false; 2265 2266 // Build set of globals that are aliased by some GA, where 2267 // canInstrumentAliasedGlobal(GA) returns false. 2268 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalBlacklist; 2269 if (CompileKernel) { 2270 for (auto &GA : M.aliases()) { 2271 if (const auto *GV = dyn_cast<GlobalVariable>(GA.getAliasee())) { 2272 if (!canInstrumentAliasedGlobal(GA)) 2273 AliasedGlobalBlacklist.insert(GV); 2274 } 2275 } 2276 } 2277 2278 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2279 for (auto &G : M.globals()) { 2280 if (!AliasedGlobalBlacklist.count(&G) && shouldInstrumentGlobal(&G)) 2281 GlobalsToChange.push_back(&G); 2282 } 2283 2284 size_t n = GlobalsToChange.size(); 2285 if (n == 0) { 2286 *CtorComdat = true; 2287 return false; 2288 } 2289 2290 auto &DL = M.getDataLayout(); 2291 2292 // A global is described by a structure 2293 // size_t beg; 2294 // size_t size; 2295 // size_t size_with_redzone; 2296 // const char *name; 2297 // const char *module_name; 2298 // size_t has_dynamic_init; 2299 // void *source_location; 2300 // size_t odr_indicator; 2301 // We initialize an array of such structures and pass it to a run-time call. 2302 StructType *GlobalStructTy = 2303 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2304 IntptrTy, IntptrTy, IntptrTy); 2305 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2306 SmallVector<Constant *, 16> Initializers(n); 2307 2308 bool HasDynamicallyInitializedGlobals = false; 2309 2310 // We shouldn't merge same module names, as this string serves as unique 2311 // module ID in runtime. 2312 GlobalVariable *ModuleName = createPrivateGlobalForString( 2313 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2314 2315 for (size_t i = 0; i < n; i++) { 2316 GlobalVariable *G = GlobalsToChange[i]; 2317 2318 // FIXME: Metadata should be attched directly to the global directly instead 2319 // of being added to llvm.asan.globals. 2320 auto MD = GlobalsMD.get(G); 2321 StringRef NameForGlobal = G->getName(); 2322 // Create string holding the global name (use global name from metadata 2323 // if it's available, otherwise just write the name of global variable). 2324 GlobalVariable *Name = createPrivateGlobalForString( 2325 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2326 /*AllowMerging*/ true, kAsanGenPrefix); 2327 2328 Type *Ty = G->getValueType(); 2329 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2330 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2331 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2332 2333 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2334 Constant *NewInitializer = ConstantStruct::get( 2335 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2336 2337 // Create a new global variable with enough space for a redzone. 2338 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2339 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2340 Linkage = GlobalValue::InternalLinkage; 2341 GlobalVariable *NewGlobal = 2342 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2343 "", G, G->getThreadLocalMode()); 2344 NewGlobal->copyAttributesFrom(G); 2345 NewGlobal->setComdat(G->getComdat()); 2346 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2347 // Don't fold globals with redzones. ODR violation detector and redzone 2348 // poisoning implicitly creates a dependence on the global's address, so it 2349 // is no longer valid for it to be marked unnamed_addr. 2350 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2351 2352 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2353 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2354 G->isConstant()) { 2355 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2356 if (Seq && Seq->isCString()) 2357 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2358 } 2359 2360 // Transfer the debug info. The payload starts at offset zero so we can 2361 // copy the debug info over as is. 2362 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2363 G->getDebugInfo(GVs); 2364 for (auto *GV : GVs) 2365 NewGlobal->addDebugInfo(GV); 2366 2367 Value *Indices2[2]; 2368 Indices2[0] = IRB.getInt32(0); 2369 Indices2[1] = IRB.getInt32(0); 2370 2371 G->replaceAllUsesWith( 2372 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2373 NewGlobal->takeName(G); 2374 G->eraseFromParent(); 2375 NewGlobals[i] = NewGlobal; 2376 2377 Constant *SourceLoc; 2378 if (!MD.SourceLoc.empty()) { 2379 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2380 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2381 } else { 2382 SourceLoc = ConstantInt::get(IntptrTy, 0); 2383 } 2384 2385 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2386 GlobalValue *InstrumentedGlobal = NewGlobal; 2387 2388 bool CanUsePrivateAliases = 2389 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2390 TargetTriple.isOSBinFormatWasm(); 2391 if (CanUsePrivateAliases && UsePrivateAlias) { 2392 // Create local alias for NewGlobal to avoid crash on ODR between 2393 // instrumented and non-instrumented libraries. 2394 InstrumentedGlobal = 2395 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2396 } 2397 2398 // ODR should not happen for local linkage. 2399 if (NewGlobal->hasLocalLinkage()) { 2400 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2401 IRB.getInt8PtrTy()); 2402 } else if (UseOdrIndicator) { 2403 // With local aliases, we need to provide another externally visible 2404 // symbol __odr_asan_XXX to detect ODR violation. 2405 auto *ODRIndicatorSym = 2406 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2407 Constant::getNullValue(IRB.getInt8Ty()), 2408 kODRGenPrefix + NameForGlobal, nullptr, 2409 NewGlobal->getThreadLocalMode()); 2410 2411 // Set meaningful attributes for indicator symbol. 2412 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2413 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2414 ODRIndicatorSym->setAlignment(Align(1)); 2415 ODRIndicator = ODRIndicatorSym; 2416 } 2417 2418 Constant *Initializer = ConstantStruct::get( 2419 GlobalStructTy, 2420 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2421 ConstantInt::get(IntptrTy, SizeInBytes), 2422 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2423 ConstantExpr::getPointerCast(Name, IntptrTy), 2424 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2425 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2426 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2427 2428 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2429 2430 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2431 2432 Initializers[i] = Initializer; 2433 } 2434 2435 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2436 // ConstantMerge'ing them. 2437 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2438 for (size_t i = 0; i < n; i++) { 2439 GlobalVariable *G = NewGlobals[i]; 2440 if (G->getName().empty()) continue; 2441 GlobalsToAddToUsedList.push_back(G); 2442 } 2443 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2444 2445 std::string ELFUniqueModuleId = 2446 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2447 : ""; 2448 2449 if (!ELFUniqueModuleId.empty()) { 2450 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2451 *CtorComdat = true; 2452 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2453 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2454 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2455 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2456 } else { 2457 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2458 } 2459 2460 // Create calls for poisoning before initializers run and unpoisoning after. 2461 if (HasDynamicallyInitializedGlobals) 2462 createInitializerPoisonCalls(M, ModuleName); 2463 2464 LLVM_DEBUG(dbgs() << M); 2465 return true; 2466 } 2467 2468 uint64_t 2469 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2470 constexpr uint64_t kMaxRZ = 1 << 18; 2471 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2472 2473 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2474 uint64_t RZ = 2475 std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2476 2477 // Round up to multiple of MinRZ. 2478 if (SizeInBytes % MinRZ) 2479 RZ += MinRZ - (SizeInBytes % MinRZ); 2480 assert((RZ + SizeInBytes) % MinRZ == 0); 2481 2482 return RZ; 2483 } 2484 2485 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2486 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2487 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2488 int Version = 8; 2489 // 32-bit Android is one version ahead because of the switch to dynamic 2490 // shadow. 2491 Version += (LongSize == 32 && isAndroid); 2492 return Version; 2493 } 2494 2495 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2496 initializeCallbacks(M); 2497 2498 // Create a module constructor. A destructor is created lazily because not all 2499 // platforms, and not all modules need it. 2500 if (CompileKernel) { 2501 // The kernel always builds with its own runtime, and therefore does not 2502 // need the init and version check calls. 2503 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2504 } else { 2505 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2506 std::string VersionCheckName = 2507 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2508 std::tie(AsanCtorFunction, std::ignore) = 2509 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2510 kAsanInitName, /*InitArgTypes=*/{}, 2511 /*InitArgs=*/{}, VersionCheckName); 2512 } 2513 2514 bool CtorComdat = true; 2515 if (ClGlobals) { 2516 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2517 InstrumentGlobals(IRB, M, &CtorComdat); 2518 } 2519 2520 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2521 2522 // Put the constructor and destructor in comdat if both 2523 // (1) global instrumentation is not TU-specific 2524 // (2) target is ELF. 2525 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2526 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2527 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2528 if (AsanDtorFunction) { 2529 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2530 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2531 } 2532 } else { 2533 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2534 if (AsanDtorFunction) 2535 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2536 } 2537 2538 return true; 2539 } 2540 2541 void AddressSanitizer::initializeCallbacks(Module &M) { 2542 IRBuilder<> IRB(*C); 2543 // Create __asan_report* callbacks. 2544 // IsWrite, TypeSize and Exp are encoded in the function name. 2545 for (int Exp = 0; Exp < 2; Exp++) { 2546 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2547 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2548 const std::string ExpStr = Exp ? "exp_" : ""; 2549 const std::string EndingStr = Recover ? "_noabort" : ""; 2550 2551 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2552 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2553 if (Exp) { 2554 Type *ExpType = Type::getInt32Ty(*C); 2555 Args2.push_back(ExpType); 2556 Args1.push_back(ExpType); 2557 } 2558 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2559 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2560 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2561 2562 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2563 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2564 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2565 2566 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2567 AccessSizeIndex++) { 2568 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2569 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2570 M.getOrInsertFunction( 2571 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2572 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2573 2574 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2575 M.getOrInsertFunction( 2576 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2577 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2578 } 2579 } 2580 } 2581 2582 const std::string MemIntrinCallbackPrefix = 2583 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2584 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2585 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2586 IRB.getInt8PtrTy(), IntptrTy); 2587 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2588 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2589 IRB.getInt8PtrTy(), IntptrTy); 2590 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2591 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2592 IRB.getInt32Ty(), IntptrTy); 2593 2594 AsanHandleNoReturnFunc = 2595 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2596 2597 AsanPtrCmpFunction = 2598 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2599 AsanPtrSubFunction = 2600 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2601 // We insert an empty inline asm after __asan_report* to avoid callback merge. 2602 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 2603 StringRef(""), StringRef(""), 2604 /*hasSideEffects=*/true); 2605 if (Mapping.InGlobal) 2606 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2607 ArrayType::get(IRB.getInt8Ty(), 0)); 2608 } 2609 2610 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2611 // For each NSObject descendant having a +load method, this method is invoked 2612 // by the ObjC runtime before any of the static constructors is called. 2613 // Therefore we need to instrument such methods with a call to __asan_init 2614 // at the beginning in order to initialize our runtime before any access to 2615 // the shadow memory. 2616 // We cannot just ignore these methods, because they may call other 2617 // instrumented functions. 2618 if (F.getName().find(" load]") != std::string::npos) { 2619 FunctionCallee AsanInitFunction = 2620 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2621 IRBuilder<> IRB(&F.front(), F.front().begin()); 2622 IRB.CreateCall(AsanInitFunction, {}); 2623 return true; 2624 } 2625 return false; 2626 } 2627 2628 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2629 // Generate code only when dynamic addressing is needed. 2630 if (Mapping.Offset != kDynamicShadowSentinel) 2631 return false; 2632 2633 IRBuilder<> IRB(&F.front().front()); 2634 if (Mapping.InGlobal) { 2635 if (ClWithIfuncSuppressRemat) { 2636 // An empty inline asm with input reg == output reg. 2637 // An opaque pointer-to-int cast, basically. 2638 InlineAsm *Asm = InlineAsm::get( 2639 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2640 StringRef(""), StringRef("=r,0"), 2641 /*hasSideEffects=*/false); 2642 LocalDynamicShadow = 2643 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2644 } else { 2645 LocalDynamicShadow = 2646 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2647 } 2648 } else { 2649 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2650 kAsanShadowMemoryDynamicAddress, IntptrTy); 2651 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2652 } 2653 return true; 2654 } 2655 2656 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2657 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2658 // to it as uninteresting. This assumes we haven't started processing allocas 2659 // yet. This check is done up front because iterating the use list in 2660 // isInterestingAlloca would be algorithmically slower. 2661 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2662 2663 // Try to get the declaration of llvm.localescape. If it's not in the module, 2664 // we can exit early. 2665 if (!F.getParent()->getFunction("llvm.localescape")) return; 2666 2667 // Look for a call to llvm.localescape call in the entry block. It can't be in 2668 // any other block. 2669 for (Instruction &I : F.getEntryBlock()) { 2670 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2671 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2672 // We found a call. Mark all the allocas passed in as uninteresting. 2673 for (Value *Arg : II->arg_operands()) { 2674 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2675 assert(AI && AI->isStaticAlloca() && 2676 "non-static alloca arg to localescape"); 2677 ProcessedAllocas[AI] = false; 2678 } 2679 break; 2680 } 2681 } 2682 } 2683 2684 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2685 bool ShouldInstrument = 2686 ClDebugMin < 0 || ClDebugMax < 0 || 2687 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2688 Instrumented++; 2689 return !ShouldInstrument; 2690 } 2691 2692 bool AddressSanitizer::instrumentFunction(Function &F, 2693 const TargetLibraryInfo *TLI) { 2694 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2695 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2696 if (F.getName().startswith("__asan_")) return false; 2697 2698 bool FunctionModified = false; 2699 2700 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2701 // This function needs to be called even if the function body is not 2702 // instrumented. 2703 if (maybeInsertAsanInitAtFunctionEntry(F)) 2704 FunctionModified = true; 2705 2706 // Leave if the function doesn't need instrumentation. 2707 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2708 2709 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2710 2711 initializeCallbacks(*F.getParent()); 2712 2713 FunctionStateRAII CleanupObj(this); 2714 2715 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2716 2717 // We can't instrument allocas used with llvm.localescape. Only static allocas 2718 // can be passed to that intrinsic. 2719 markEscapedLocalAllocas(F); 2720 2721 // We want to instrument every address only once per basic block (unless there 2722 // are calls between uses). 2723 SmallPtrSet<Value *, 16> TempsToInstrument; 2724 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2725 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2726 SmallVector<Instruction *, 8> NoReturnCalls; 2727 SmallVector<BasicBlock *, 16> AllBlocks; 2728 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2729 int NumAllocas = 0; 2730 2731 // Fill the set of memory operations to instrument. 2732 for (auto &BB : F) { 2733 AllBlocks.push_back(&BB); 2734 TempsToInstrument.clear(); 2735 int NumInsnsPerBB = 0; 2736 for (auto &Inst : BB) { 2737 if (LooksLikeCodeInBug11395(&Inst)) return false; 2738 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2739 getInterestingMemoryOperands(&Inst, InterestingOperands); 2740 2741 if (!InterestingOperands.empty()) { 2742 for (auto &Operand : InterestingOperands) { 2743 if (ClOpt && ClOptSameTemp) { 2744 Value *Ptr = Operand.getPtr(); 2745 // If we have a mask, skip instrumentation if we've already 2746 // instrumented the full object. But don't add to TempsToInstrument 2747 // because we might get another load/store with a different mask. 2748 if (Operand.MaybeMask) { 2749 if (TempsToInstrument.count(Ptr)) 2750 continue; // We've seen this (whole) temp in the current BB. 2751 } else { 2752 if (!TempsToInstrument.insert(Ptr).second) 2753 continue; // We've seen this temp in the current BB. 2754 } 2755 } 2756 OperandsToInstrument.push_back(Operand); 2757 NumInsnsPerBB++; 2758 } 2759 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2760 isInterestingPointerComparison(&Inst)) || 2761 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2762 isInterestingPointerSubtraction(&Inst))) { 2763 PointerComparisonsOrSubtracts.push_back(&Inst); 2764 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2765 // ok, take it. 2766 IntrinToInstrument.push_back(MI); 2767 NumInsnsPerBB++; 2768 } else { 2769 if (isa<AllocaInst>(Inst)) NumAllocas++; 2770 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2771 // A call inside BB. 2772 TempsToInstrument.clear(); 2773 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2774 NoReturnCalls.push_back(CB); 2775 } 2776 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2777 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2778 } 2779 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2780 } 2781 } 2782 2783 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2784 OperandsToInstrument.size() + IntrinToInstrument.size() > 2785 (unsigned)ClInstrumentationWithCallsThreshold); 2786 const DataLayout &DL = F.getParent()->getDataLayout(); 2787 ObjectSizeOpts ObjSizeOpts; 2788 ObjSizeOpts.RoundToAlign = true; 2789 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2790 2791 // Instrument. 2792 int NumInstrumented = 0; 2793 for (auto &Operand : OperandsToInstrument) { 2794 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2795 instrumentMop(ObjSizeVis, Operand, UseCalls, 2796 F.getParent()->getDataLayout()); 2797 FunctionModified = true; 2798 } 2799 for (auto Inst : IntrinToInstrument) { 2800 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2801 instrumentMemIntrinsic(Inst); 2802 FunctionModified = true; 2803 } 2804 2805 FunctionStackPoisoner FSP(F, *this); 2806 bool ChangedStack = FSP.runOnFunction(); 2807 2808 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2809 // See e.g. https://github.com/google/sanitizers/issues/37 2810 for (auto CI : NoReturnCalls) { 2811 IRBuilder<> IRB(CI); 2812 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2813 } 2814 2815 for (auto Inst : PointerComparisonsOrSubtracts) { 2816 instrumentPointerComparisonOrSubtraction(Inst); 2817 FunctionModified = true; 2818 } 2819 2820 if (ChangedStack || !NoReturnCalls.empty()) 2821 FunctionModified = true; 2822 2823 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2824 << F << "\n"); 2825 2826 return FunctionModified; 2827 } 2828 2829 // Workaround for bug 11395: we don't want to instrument stack in functions 2830 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2831 // FIXME: remove once the bug 11395 is fixed. 2832 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2833 if (LongSize != 32) return false; 2834 CallInst *CI = dyn_cast<CallInst>(I); 2835 if (!CI || !CI->isInlineAsm()) return false; 2836 if (CI->getNumArgOperands() <= 5) return false; 2837 // We have inline assembly with quite a few arguments. 2838 return true; 2839 } 2840 2841 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2842 IRBuilder<> IRB(*C); 2843 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2844 std::string Suffix = itostr(i); 2845 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2846 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2847 AsanStackFreeFunc[i] = 2848 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2849 IRB.getVoidTy(), IntptrTy, IntptrTy); 2850 } 2851 if (ASan.UseAfterScope) { 2852 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2853 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2854 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2855 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2856 } 2857 2858 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2859 std::ostringstream Name; 2860 Name << kAsanSetShadowPrefix; 2861 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2862 AsanSetShadowFunc[Val] = 2863 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2864 } 2865 2866 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2867 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2868 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2869 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2870 } 2871 2872 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2873 ArrayRef<uint8_t> ShadowBytes, 2874 size_t Begin, size_t End, 2875 IRBuilder<> &IRB, 2876 Value *ShadowBase) { 2877 if (Begin >= End) 2878 return; 2879 2880 const size_t LargestStoreSizeInBytes = 2881 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2882 2883 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2884 2885 // Poison given range in shadow using larges store size with out leading and 2886 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2887 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2888 // middle of a store. 2889 for (size_t i = Begin; i < End;) { 2890 if (!ShadowMask[i]) { 2891 assert(!ShadowBytes[i]); 2892 ++i; 2893 continue; 2894 } 2895 2896 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2897 // Fit store size into the range. 2898 while (StoreSizeInBytes > End - i) 2899 StoreSizeInBytes /= 2; 2900 2901 // Minimize store size by trimming trailing zeros. 2902 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2903 while (j <= StoreSizeInBytes / 2) 2904 StoreSizeInBytes /= 2; 2905 } 2906 2907 uint64_t Val = 0; 2908 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2909 if (IsLittleEndian) 2910 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2911 else 2912 Val = (Val << 8) | ShadowBytes[i + j]; 2913 } 2914 2915 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2916 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2917 IRB.CreateAlignedStore( 2918 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2919 Align(1)); 2920 2921 i += StoreSizeInBytes; 2922 } 2923 } 2924 2925 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2926 ArrayRef<uint8_t> ShadowBytes, 2927 IRBuilder<> &IRB, Value *ShadowBase) { 2928 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2929 } 2930 2931 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2932 ArrayRef<uint8_t> ShadowBytes, 2933 size_t Begin, size_t End, 2934 IRBuilder<> &IRB, Value *ShadowBase) { 2935 assert(ShadowMask.size() == ShadowBytes.size()); 2936 size_t Done = Begin; 2937 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2938 if (!ShadowMask[i]) { 2939 assert(!ShadowBytes[i]); 2940 continue; 2941 } 2942 uint8_t Val = ShadowBytes[i]; 2943 if (!AsanSetShadowFunc[Val]) 2944 continue; 2945 2946 // Skip same values. 2947 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2948 } 2949 2950 if (j - i >= ClMaxInlinePoisoningSize) { 2951 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2952 IRB.CreateCall(AsanSetShadowFunc[Val], 2953 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2954 ConstantInt::get(IntptrTy, j - i)}); 2955 Done = j; 2956 } 2957 } 2958 2959 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2960 } 2961 2962 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2963 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2964 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2965 assert(LocalStackSize <= kMaxStackMallocSize); 2966 uint64_t MaxSize = kMinStackMallocSize; 2967 for (int i = 0;; i++, MaxSize *= 2) 2968 if (LocalStackSize <= MaxSize) return i; 2969 llvm_unreachable("impossible LocalStackSize"); 2970 } 2971 2972 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2973 Instruction *CopyInsertPoint = &F.front().front(); 2974 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2975 // Insert after the dynamic shadow location is determined 2976 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2977 assert(CopyInsertPoint); 2978 } 2979 IRBuilder<> IRB(CopyInsertPoint); 2980 const DataLayout &DL = F.getParent()->getDataLayout(); 2981 for (Argument &Arg : F.args()) { 2982 if (Arg.hasByValAttr()) { 2983 Type *Ty = Arg.getParamByValType(); 2984 const Align Alignment = 2985 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2986 2987 AllocaInst *AI = IRB.CreateAlloca( 2988 Ty, nullptr, 2989 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2990 ".byval"); 2991 AI->setAlignment(Alignment); 2992 Arg.replaceAllUsesWith(AI); 2993 2994 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2995 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2996 } 2997 } 2998 } 2999 3000 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3001 Value *ValueIfTrue, 3002 Instruction *ThenTerm, 3003 Value *ValueIfFalse) { 3004 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3005 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3006 PHI->addIncoming(ValueIfFalse, CondBlock); 3007 BasicBlock *ThenBlock = ThenTerm->getParent(); 3008 PHI->addIncoming(ValueIfTrue, ThenBlock); 3009 return PHI; 3010 } 3011 3012 Value *FunctionStackPoisoner::createAllocaForLayout( 3013 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3014 AllocaInst *Alloca; 3015 if (Dynamic) { 3016 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3017 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3018 "MyAlloca"); 3019 } else { 3020 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3021 nullptr, "MyAlloca"); 3022 assert(Alloca->isStaticAlloca()); 3023 } 3024 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3025 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 3026 Alloca->setAlignment(Align(FrameAlignment)); 3027 return IRB.CreatePointerCast(Alloca, IntptrTy); 3028 } 3029 3030 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3031 BasicBlock &FirstBB = *F.begin(); 3032 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3033 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3034 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3035 DynamicAllocaLayout->setAlignment(Align(32)); 3036 } 3037 3038 void FunctionStackPoisoner::processDynamicAllocas() { 3039 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3040 assert(DynamicAllocaPoisonCallVec.empty()); 3041 return; 3042 } 3043 3044 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3045 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3046 assert(APC.InsBefore); 3047 assert(APC.AI); 3048 assert(ASan.isInterestingAlloca(*APC.AI)); 3049 assert(!APC.AI->isStaticAlloca()); 3050 3051 IRBuilder<> IRB(APC.InsBefore); 3052 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3053 // Dynamic allocas will be unpoisoned unconditionally below in 3054 // unpoisonDynamicAllocas. 3055 // Flag that we need unpoison static allocas. 3056 } 3057 3058 // Handle dynamic allocas. 3059 createDynamicAllocasInitStorage(); 3060 for (auto &AI : DynamicAllocaVec) 3061 handleDynamicAllocaCall(AI); 3062 unpoisonDynamicAllocas(); 3063 } 3064 3065 /// Collect instructions in the entry block after \p InsBefore which initialize 3066 /// permanent storage for a function argument. These instructions must remain in 3067 /// the entry block so that uninitialized values do not appear in backtraces. An 3068 /// added benefit is that this conserves spill slots. This does not move stores 3069 /// before instrumented / "interesting" allocas. 3070 static void findStoresToUninstrumentedArgAllocas( 3071 AddressSanitizer &ASan, Instruction &InsBefore, 3072 SmallVectorImpl<Instruction *> &InitInsts) { 3073 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3074 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3075 // Argument initialization looks like: 3076 // 1) store <Argument>, <Alloca> OR 3077 // 2) <CastArgument> = cast <Argument> to ... 3078 // store <CastArgument> to <Alloca> 3079 // Do not consider any other kind of instruction. 3080 // 3081 // Note: This covers all known cases, but may not be exhaustive. An 3082 // alternative to pattern-matching stores is to DFS over all Argument uses: 3083 // this might be more general, but is probably much more complicated. 3084 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3085 continue; 3086 if (auto *Store = dyn_cast<StoreInst>(It)) { 3087 // The store destination must be an alloca that isn't interesting for 3088 // ASan to instrument. These are moved up before InsBefore, and they're 3089 // not interesting because allocas for arguments can be mem2reg'd. 3090 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3091 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3092 continue; 3093 3094 Value *Val = Store->getValueOperand(); 3095 bool IsDirectArgInit = isa<Argument>(Val); 3096 bool IsArgInitViaCast = 3097 isa<CastInst>(Val) && 3098 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3099 // Check that the cast appears directly before the store. Otherwise 3100 // moving the cast before InsBefore may break the IR. 3101 Val == It->getPrevNonDebugInstruction(); 3102 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3103 if (!IsArgInit) 3104 continue; 3105 3106 if (IsArgInitViaCast) 3107 InitInsts.push_back(cast<Instruction>(Val)); 3108 InitInsts.push_back(Store); 3109 continue; 3110 } 3111 3112 // Do not reorder past unknown instructions: argument initialization should 3113 // only involve casts and stores. 3114 return; 3115 } 3116 } 3117 3118 void FunctionStackPoisoner::processStaticAllocas() { 3119 if (AllocaVec.empty()) { 3120 assert(StaticAllocaPoisonCallVec.empty()); 3121 return; 3122 } 3123 3124 int StackMallocIdx = -1; 3125 DebugLoc EntryDebugLocation; 3126 if (auto SP = F.getSubprogram()) 3127 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 3128 3129 Instruction *InsBefore = AllocaVec[0]; 3130 IRBuilder<> IRB(InsBefore); 3131 3132 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3133 // debug info is broken, because only entry-block allocas are treated as 3134 // regular stack slots. 3135 auto InsBeforeB = InsBefore->getParent(); 3136 assert(InsBeforeB == &F.getEntryBlock()); 3137 for (auto *AI : StaticAllocasToMoveUp) 3138 if (AI->getParent() == InsBeforeB) 3139 AI->moveBefore(InsBefore); 3140 3141 // Move stores of arguments into entry-block allocas as well. This prevents 3142 // extra stack slots from being generated (to house the argument values until 3143 // they can be stored into the allocas). This also prevents uninitialized 3144 // values from being shown in backtraces. 3145 SmallVector<Instruction *, 8> ArgInitInsts; 3146 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3147 for (Instruction *ArgInitInst : ArgInitInsts) 3148 ArgInitInst->moveBefore(InsBefore); 3149 3150 // If we have a call to llvm.localescape, keep it in the entry block. 3151 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3152 3153 SmallVector<ASanStackVariableDescription, 16> SVD; 3154 SVD.reserve(AllocaVec.size()); 3155 for (AllocaInst *AI : AllocaVec) { 3156 ASanStackVariableDescription D = {AI->getName().data(), 3157 ASan.getAllocaSizeInBytes(*AI), 3158 0, 3159 AI->getAlignment(), 3160 AI, 3161 0, 3162 0}; 3163 SVD.push_back(D); 3164 } 3165 3166 // Minimal header size (left redzone) is 4 pointers, 3167 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3168 size_t Granularity = 1ULL << Mapping.Scale; 3169 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3170 const ASanStackFrameLayout &L = 3171 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3172 3173 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3174 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3175 for (auto &Desc : SVD) 3176 AllocaToSVDMap[Desc.AI] = &Desc; 3177 3178 // Update SVD with information from lifetime intrinsics. 3179 for (const auto &APC : StaticAllocaPoisonCallVec) { 3180 assert(APC.InsBefore); 3181 assert(APC.AI); 3182 assert(ASan.isInterestingAlloca(*APC.AI)); 3183 assert(APC.AI->isStaticAlloca()); 3184 3185 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3186 Desc.LifetimeSize = Desc.Size; 3187 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3188 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3189 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3190 if (unsigned Line = LifetimeLoc->getLine()) 3191 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3192 } 3193 } 3194 } 3195 3196 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3197 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3198 uint64_t LocalStackSize = L.FrameSize; 3199 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3200 LocalStackSize <= kMaxStackMallocSize; 3201 bool DoDynamicAlloca = ClDynamicAllocaStack; 3202 // Don't do dynamic alloca or stack malloc if: 3203 // 1) There is inline asm: too often it makes assumptions on which registers 3204 // are available. 3205 // 2) There is a returns_twice call (typically setjmp), which is 3206 // optimization-hostile, and doesn't play well with introduced indirect 3207 // register-relative calculation of local variable addresses. 3208 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3209 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3210 3211 Value *StaticAlloca = 3212 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3213 3214 Value *FakeStack; 3215 Value *LocalStackBase; 3216 Value *LocalStackBaseAlloca; 3217 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3218 3219 if (DoStackMalloc) { 3220 LocalStackBaseAlloca = 3221 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3222 // void *FakeStack = __asan_option_detect_stack_use_after_return 3223 // ? __asan_stack_malloc_N(LocalStackSize) 3224 // : nullptr; 3225 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3226 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3227 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3228 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3229 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3230 Constant::getNullValue(IRB.getInt32Ty())); 3231 Instruction *Term = 3232 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3233 IRBuilder<> IRBIf(Term); 3234 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3235 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3236 Value *FakeStackValue = 3237 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3238 ConstantInt::get(IntptrTy, LocalStackSize)); 3239 IRB.SetInsertPoint(InsBefore); 3240 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3241 ConstantInt::get(IntptrTy, 0)); 3242 3243 Value *NoFakeStack = 3244 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3245 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3246 IRBIf.SetInsertPoint(Term); 3247 Value *AllocaValue = 3248 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3249 3250 IRB.SetInsertPoint(InsBefore); 3251 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3252 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3253 DIExprFlags |= DIExpression::DerefBefore; 3254 } else { 3255 // void *FakeStack = nullptr; 3256 // void *LocalStackBase = alloca(LocalStackSize); 3257 FakeStack = ConstantInt::get(IntptrTy, 0); 3258 LocalStackBase = 3259 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3260 LocalStackBaseAlloca = LocalStackBase; 3261 } 3262 3263 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3264 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3265 // later passes and can result in dropped variable coverage in debug info. 3266 Value *LocalStackBaseAllocaPtr = 3267 isa<PtrToIntInst>(LocalStackBaseAlloca) 3268 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3269 : LocalStackBaseAlloca; 3270 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3271 "Variable descriptions relative to ASan stack base will be dropped"); 3272 3273 // Replace Alloca instructions with base+offset. 3274 for (const auto &Desc : SVD) { 3275 AllocaInst *AI = Desc.AI; 3276 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3277 Desc.Offset); 3278 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3279 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3280 AI->getType()); 3281 AI->replaceAllUsesWith(NewAllocaPtr); 3282 } 3283 3284 // The left-most redzone has enough space for at least 4 pointers. 3285 // Write the Magic value to redzone[0]. 3286 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3287 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3288 BasePlus0); 3289 // Write the frame description constant to redzone[1]. 3290 Value *BasePlus1 = IRB.CreateIntToPtr( 3291 IRB.CreateAdd(LocalStackBase, 3292 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3293 IntptrPtrTy); 3294 GlobalVariable *StackDescriptionGlobal = 3295 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3296 /*AllowMerging*/ true, kAsanGenPrefix); 3297 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3298 IRB.CreateStore(Description, BasePlus1); 3299 // Write the PC to redzone[2]. 3300 Value *BasePlus2 = IRB.CreateIntToPtr( 3301 IRB.CreateAdd(LocalStackBase, 3302 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3303 IntptrPtrTy); 3304 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3305 3306 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3307 3308 // Poison the stack red zones at the entry. 3309 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3310 // As mask we must use most poisoned case: red zones and after scope. 3311 // As bytes we can use either the same or just red zones only. 3312 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3313 3314 if (!StaticAllocaPoisonCallVec.empty()) { 3315 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3316 3317 // Poison static allocas near lifetime intrinsics. 3318 for (const auto &APC : StaticAllocaPoisonCallVec) { 3319 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3320 assert(Desc.Offset % L.Granularity == 0); 3321 size_t Begin = Desc.Offset / L.Granularity; 3322 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3323 3324 IRBuilder<> IRB(APC.InsBefore); 3325 copyToShadow(ShadowAfterScope, 3326 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3327 IRB, ShadowBase); 3328 } 3329 } 3330 3331 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3332 SmallVector<uint8_t, 64> ShadowAfterReturn; 3333 3334 // (Un)poison the stack before all ret instructions. 3335 for (auto Ret : RetVec) { 3336 IRBuilder<> IRBRet(Ret); 3337 // Mark the current frame as retired. 3338 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3339 BasePlus0); 3340 if (DoStackMalloc) { 3341 assert(StackMallocIdx >= 0); 3342 // if FakeStack != 0 // LocalStackBase == FakeStack 3343 // // In use-after-return mode, poison the whole stack frame. 3344 // if StackMallocIdx <= 4 3345 // // For small sizes inline the whole thing: 3346 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3347 // **SavedFlagPtr(FakeStack) = 0 3348 // else 3349 // __asan_stack_free_N(FakeStack, LocalStackSize) 3350 // else 3351 // <This is not a fake stack; unpoison the redzones> 3352 Value *Cmp = 3353 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3354 Instruction *ThenTerm, *ElseTerm; 3355 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3356 3357 IRBuilder<> IRBPoison(ThenTerm); 3358 if (StackMallocIdx <= 4) { 3359 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3360 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3361 kAsanStackUseAfterReturnMagic); 3362 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3363 ShadowBase); 3364 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3365 FakeStack, 3366 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3367 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3368 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3369 IRBPoison.CreateStore( 3370 Constant::getNullValue(IRBPoison.getInt8Ty()), 3371 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3372 } else { 3373 // For larger frames call __asan_stack_free_*. 3374 IRBPoison.CreateCall( 3375 AsanStackFreeFunc[StackMallocIdx], 3376 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3377 } 3378 3379 IRBuilder<> IRBElse(ElseTerm); 3380 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3381 } else { 3382 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3383 } 3384 } 3385 3386 // We are done. Remove the old unused alloca instructions. 3387 for (auto AI : AllocaVec) AI->eraseFromParent(); 3388 } 3389 3390 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3391 IRBuilder<> &IRB, bool DoPoison) { 3392 // For now just insert the call to ASan runtime. 3393 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3394 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3395 IRB.CreateCall( 3396 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3397 {AddrArg, SizeArg}); 3398 } 3399 3400 // Handling llvm.lifetime intrinsics for a given %alloca: 3401 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3402 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3403 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3404 // could be poisoned by previous llvm.lifetime.end instruction, as the 3405 // variable may go in and out of scope several times, e.g. in loops). 3406 // (3) if we poisoned at least one %alloca in a function, 3407 // unpoison the whole stack frame at function exit. 3408 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3409 IRBuilder<> IRB(AI); 3410 3411 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3412 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3413 3414 Value *Zero = Constant::getNullValue(IntptrTy); 3415 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3416 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3417 3418 // Since we need to extend alloca with additional memory to locate 3419 // redzones, and OldSize is number of allocated blocks with 3420 // ElementSize size, get allocated memory size in bytes by 3421 // OldSize * ElementSize. 3422 const unsigned ElementSize = 3423 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3424 Value *OldSize = 3425 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3426 ConstantInt::get(IntptrTy, ElementSize)); 3427 3428 // PartialSize = OldSize % 32 3429 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3430 3431 // Misalign = kAllocaRzSize - PartialSize; 3432 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3433 3434 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3435 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3436 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3437 3438 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3439 // Alignment is added to locate left redzone, PartialPadding for possible 3440 // partial redzone and kAllocaRzSize for right redzone respectively. 3441 Value *AdditionalChunkSize = IRB.CreateAdd( 3442 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3443 3444 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3445 3446 // Insert new alloca with new NewSize and Alignment params. 3447 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3448 NewAlloca->setAlignment(Align(Alignment)); 3449 3450 // NewAddress = Address + Alignment 3451 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3452 ConstantInt::get(IntptrTy, Alignment)); 3453 3454 // Insert __asan_alloca_poison call for new created alloca. 3455 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3456 3457 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3458 // for unpoisoning stuff. 3459 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3460 3461 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3462 3463 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3464 AI->replaceAllUsesWith(NewAddressPtr); 3465 3466 // We are done. Erase old alloca from parent. 3467 AI->eraseFromParent(); 3468 } 3469 3470 // isSafeAccess returns true if Addr is always inbounds with respect to its 3471 // base object. For example, it is a field access or an array access with 3472 // constant inbounds index. 3473 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3474 Value *Addr, uint64_t TypeSize) const { 3475 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3476 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3477 uint64_t Size = SizeOffset.first.getZExtValue(); 3478 int64_t Offset = SizeOffset.second.getSExtValue(); 3479 // Three checks are required to ensure safety: 3480 // . Offset >= 0 (since the offset is given from the base ptr) 3481 // . Size >= Offset (unsigned) 3482 // . Size - Offset >= NeededSize (unsigned) 3483 return Offset >= 0 && Size >= uint64_t(Offset) && 3484 Size - uint64_t(Offset) >= TypeSize / 8; 3485 } 3486