1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 // FIXME: This sanitizer does not yet handle scalable vectors 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/BinaryFormat/MachO.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DIBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstVisitor.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCSectionMachO.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/ScopedPrinter.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Transforms/Utils/ModuleUtils.h" 79 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iomanip> 85 #include <limits> 86 #include <memory> 87 #include <sstream> 88 #include <string> 89 #include <tuple> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "asan" 94 95 static const uint64_t kDefaultShadowScale = 3; 96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 98 static const uint64_t kDynamicShadowSentinel = 99 std::numeric_limits<uint64_t>::max(); 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 109 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 111 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 112 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 113 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 114 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 115 static const uint64_t kEmscriptenShadowOffset = 0; 116 117 static const uint64_t kMyriadShadowScale = 5; 118 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 119 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 120 static const uint64_t kMyriadTagShift = 29; 121 static const uint64_t kMyriadDDRTag = 4; 122 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 123 124 // The shadow memory space is dynamically allocated. 125 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 126 127 static const size_t kMinStackMallocSize = 1 << 6; // 64B 128 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 129 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 130 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 131 132 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 133 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 134 static const uint64_t kAsanCtorAndDtorPriority = 1; 135 // On Emscripten, the system needs more than one priorities for constructors. 136 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 137 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 138 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 139 static const char *const kAsanUnregisterGlobalsName = 140 "__asan_unregister_globals"; 141 static const char *const kAsanRegisterImageGlobalsName = 142 "__asan_register_image_globals"; 143 static const char *const kAsanUnregisterImageGlobalsName = 144 "__asan_unregister_image_globals"; 145 static const char *const kAsanRegisterElfGlobalsName = 146 "__asan_register_elf_globals"; 147 static const char *const kAsanUnregisterElfGlobalsName = 148 "__asan_unregister_elf_globals"; 149 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 150 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 151 static const char *const kAsanInitName = "__asan_init"; 152 static const char *const kAsanVersionCheckNamePrefix = 153 "__asan_version_mismatch_check_v"; 154 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 155 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 156 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 157 static const int kMaxAsanStackMallocSizeClass = 10; 158 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 159 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 160 static const char *const kAsanGenPrefix = "___asan_gen_"; 161 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 162 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 163 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 164 static const char *const kAsanPoisonStackMemoryName = 165 "__asan_poison_stack_memory"; 166 static const char *const kAsanUnpoisonStackMemoryName = 167 "__asan_unpoison_stack_memory"; 168 169 // ASan version script has __asan_* wildcard. Triple underscore prevents a 170 // linker (gold) warning about attempting to export a local symbol. 171 static const char *const kAsanGlobalsRegisteredFlagName = 172 "___asan_globals_registered"; 173 174 static const char *const kAsanOptionDetectUseAfterReturn = 175 "__asan_option_detect_stack_use_after_return"; 176 177 static const char *const kAsanShadowMemoryDynamicAddress = 178 "__asan_shadow_memory_dynamic_address"; 179 180 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 181 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 182 183 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 184 static const size_t kNumberOfAccessSizes = 5; 185 186 static const unsigned kAllocaRzSize = 32; 187 188 // Command-line flags. 189 190 static cl::opt<bool> ClEnableKasan( 191 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 192 cl::Hidden, cl::init(false)); 193 194 static cl::opt<bool> ClRecover( 195 "asan-recover", 196 cl::desc("Enable recovery mode (continue-after-error)."), 197 cl::Hidden, cl::init(false)); 198 199 static cl::opt<bool> ClInsertVersionCheck( 200 "asan-guard-against-version-mismatch", 201 cl::desc("Guard against compiler/runtime version mismatch."), 202 cl::Hidden, cl::init(true)); 203 204 // This flag may need to be replaced with -f[no-]asan-reads. 205 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 206 cl::desc("instrument read instructions"), 207 cl::Hidden, cl::init(true)); 208 209 static cl::opt<bool> ClInstrumentWrites( 210 "asan-instrument-writes", cl::desc("instrument write instructions"), 211 cl::Hidden, cl::init(true)); 212 213 static cl::opt<bool> ClInstrumentAtomics( 214 "asan-instrument-atomics", 215 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 216 cl::init(true)); 217 218 static cl::opt<bool> 219 ClInstrumentByval("asan-instrument-byval", 220 cl::desc("instrument byval call arguments"), cl::Hidden, 221 cl::init(true)); 222 223 static cl::opt<bool> ClAlwaysSlowPath( 224 "asan-always-slow-path", 225 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 226 cl::init(false)); 227 228 static cl::opt<bool> ClForceDynamicShadow( 229 "asan-force-dynamic-shadow", 230 cl::desc("Load shadow address into a local variable for each function"), 231 cl::Hidden, cl::init(false)); 232 233 static cl::opt<bool> 234 ClWithIfunc("asan-with-ifunc", 235 cl::desc("Access dynamic shadow through an ifunc global on " 236 "platforms that support this"), 237 cl::Hidden, cl::init(true)); 238 239 static cl::opt<bool> ClWithIfuncSuppressRemat( 240 "asan-with-ifunc-suppress-remat", 241 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 242 "it through inline asm in prologue."), 243 cl::Hidden, cl::init(true)); 244 245 // This flag limits the number of instructions to be instrumented 246 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 247 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 248 // set it to 10000. 249 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 250 "asan-max-ins-per-bb", cl::init(10000), 251 cl::desc("maximal number of instructions to instrument in any given BB"), 252 cl::Hidden); 253 254 // This flag may need to be replaced with -f[no]asan-stack. 255 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 256 cl::Hidden, cl::init(true)); 257 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 258 "asan-max-inline-poisoning-size", 259 cl::desc( 260 "Inline shadow poisoning for blocks up to the given size in bytes."), 261 cl::Hidden, cl::init(64)); 262 263 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 264 cl::desc("Check stack-use-after-return"), 265 cl::Hidden, cl::init(true)); 266 267 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 268 cl::desc("Create redzones for byval " 269 "arguments (extra copy " 270 "required)"), cl::Hidden, 271 cl::init(true)); 272 273 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 274 cl::desc("Check stack-use-after-scope"), 275 cl::Hidden, cl::init(false)); 276 277 // This flag may need to be replaced with -f[no]asan-globals. 278 static cl::opt<bool> ClGlobals("asan-globals", 279 cl::desc("Handle global objects"), cl::Hidden, 280 cl::init(true)); 281 282 static cl::opt<bool> ClInitializers("asan-initialization-order", 283 cl::desc("Handle C++ initializer order"), 284 cl::Hidden, cl::init(true)); 285 286 static cl::opt<bool> ClInvalidPointerPairs( 287 "asan-detect-invalid-pointer-pair", 288 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 289 cl::init(false)); 290 291 static cl::opt<bool> ClInvalidPointerCmp( 292 "asan-detect-invalid-pointer-cmp", 293 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 294 cl::init(false)); 295 296 static cl::opt<bool> ClInvalidPointerSub( 297 "asan-detect-invalid-pointer-sub", 298 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 299 cl::init(false)); 300 301 static cl::opt<unsigned> ClRealignStack( 302 "asan-realign-stack", 303 cl::desc("Realign stack to the value of this flag (power of two)"), 304 cl::Hidden, cl::init(32)); 305 306 static cl::opt<int> ClInstrumentationWithCallsThreshold( 307 "asan-instrumentation-with-call-threshold", 308 cl::desc( 309 "If the function being instrumented contains more than " 310 "this number of memory accesses, use callbacks instead of " 311 "inline checks (-1 means never use callbacks)."), 312 cl::Hidden, cl::init(7000)); 313 314 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 315 "asan-memory-access-callback-prefix", 316 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 317 cl::init("__asan_")); 318 319 static cl::opt<bool> 320 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 321 cl::desc("instrument dynamic allocas"), 322 cl::Hidden, cl::init(true)); 323 324 static cl::opt<bool> ClSkipPromotableAllocas( 325 "asan-skip-promotable-allocas", 326 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 327 cl::init(true)); 328 329 // These flags allow to change the shadow mapping. 330 // The shadow mapping looks like 331 // Shadow = (Mem >> scale) + offset 332 333 static cl::opt<int> ClMappingScale("asan-mapping-scale", 334 cl::desc("scale of asan shadow mapping"), 335 cl::Hidden, cl::init(0)); 336 337 static cl::opt<uint64_t> 338 ClMappingOffset("asan-mapping-offset", 339 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 340 cl::Hidden, cl::init(0)); 341 342 // Optimization flags. Not user visible, used mostly for testing 343 // and benchmarking the tool. 344 345 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 346 cl::Hidden, cl::init(true)); 347 348 static cl::opt<bool> ClOptSameTemp( 349 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 350 cl::Hidden, cl::init(true)); 351 352 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 353 cl::desc("Don't instrument scalar globals"), 354 cl::Hidden, cl::init(true)); 355 356 static cl::opt<bool> ClOptStack( 357 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 358 cl::Hidden, cl::init(false)); 359 360 static cl::opt<bool> ClDynamicAllocaStack( 361 "asan-stack-dynamic-alloca", 362 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 363 cl::init(true)); 364 365 static cl::opt<uint32_t> ClForceExperiment( 366 "asan-force-experiment", 367 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 368 cl::init(0)); 369 370 static cl::opt<bool> 371 ClUsePrivateAlias("asan-use-private-alias", 372 cl::desc("Use private aliases for global variables"), 373 cl::Hidden, cl::init(false)); 374 375 static cl::opt<bool> 376 ClUseOdrIndicator("asan-use-odr-indicator", 377 cl::desc("Use odr indicators to improve ODR reporting"), 378 cl::Hidden, cl::init(false)); 379 380 static cl::opt<bool> 381 ClUseGlobalsGC("asan-globals-live-support", 382 cl::desc("Use linker features to support dead " 383 "code stripping of globals"), 384 cl::Hidden, cl::init(true)); 385 386 // This is on by default even though there is a bug in gold: 387 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 388 static cl::opt<bool> 389 ClWithComdat("asan-with-comdat", 390 cl::desc("Place ASan constructors in comdat sections"), 391 cl::Hidden, cl::init(true)); 392 393 // Debug flags. 394 395 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 396 cl::init(0)); 397 398 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 399 cl::Hidden, cl::init(0)); 400 401 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 402 cl::desc("Debug func")); 403 404 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 405 cl::Hidden, cl::init(-1)); 406 407 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 408 cl::Hidden, cl::init(-1)); 409 410 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 411 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 412 STATISTIC(NumOptimizedAccessesToGlobalVar, 413 "Number of optimized accesses to global vars"); 414 STATISTIC(NumOptimizedAccessesToStackVar, 415 "Number of optimized accesses to stack vars"); 416 417 namespace { 418 419 /// This struct defines the shadow mapping using the rule: 420 /// shadow = (mem >> Scale) ADD-or-OR Offset. 421 /// If InGlobal is true, then 422 /// extern char __asan_shadow[]; 423 /// shadow = (mem >> Scale) + &__asan_shadow 424 struct ShadowMapping { 425 int Scale; 426 uint64_t Offset; 427 bool OrShadowOffset; 428 bool InGlobal; 429 }; 430 431 } // end anonymous namespace 432 433 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 434 bool IsKasan) { 435 bool IsAndroid = TargetTriple.isAndroid(); 436 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 437 bool IsMacOS = TargetTriple.isMacOSX(); 438 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 439 bool IsNetBSD = TargetTriple.isOSNetBSD(); 440 bool IsPS4CPU = TargetTriple.isPS4CPU(); 441 bool IsLinux = TargetTriple.isOSLinux(); 442 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 443 TargetTriple.getArch() == Triple::ppc64le; 444 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 445 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 446 bool IsMIPS32 = TargetTriple.isMIPS32(); 447 bool IsMIPS64 = TargetTriple.isMIPS64(); 448 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 449 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 450 bool IsWindows = TargetTriple.isOSWindows(); 451 bool IsFuchsia = TargetTriple.isOSFuchsia(); 452 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 453 bool IsEmscripten = TargetTriple.isOSEmscripten(); 454 455 ShadowMapping Mapping; 456 457 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 458 if (ClMappingScale.getNumOccurrences() > 0) { 459 Mapping.Scale = ClMappingScale; 460 } 461 462 if (LongSize == 32) { 463 if (IsAndroid) 464 Mapping.Offset = kDynamicShadowSentinel; 465 else if (IsMIPS32) 466 Mapping.Offset = kMIPS32_ShadowOffset32; 467 else if (IsFreeBSD) 468 Mapping.Offset = kFreeBSD_ShadowOffset32; 469 else if (IsNetBSD) 470 Mapping.Offset = kNetBSD_ShadowOffset32; 471 else if (IsIOS) 472 Mapping.Offset = kDynamicShadowSentinel; 473 else if (IsWindows) 474 Mapping.Offset = kWindowsShadowOffset32; 475 else if (IsEmscripten) 476 Mapping.Offset = kEmscriptenShadowOffset; 477 else if (IsMyriad) { 478 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 479 (kMyriadMemorySize32 >> Mapping.Scale)); 480 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 481 } 482 else 483 Mapping.Offset = kDefaultShadowOffset32; 484 } else { // LongSize == 64 485 // Fuchsia is always PIE, which means that the beginning of the address 486 // space is always available. 487 if (IsFuchsia) 488 Mapping.Offset = 0; 489 else if (IsPPC64) 490 Mapping.Offset = kPPC64_ShadowOffset64; 491 else if (IsSystemZ) 492 Mapping.Offset = kSystemZ_ShadowOffset64; 493 else if (IsFreeBSD && !IsMIPS64) 494 Mapping.Offset = kFreeBSD_ShadowOffset64; 495 else if (IsNetBSD) { 496 if (IsKasan) 497 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 498 else 499 Mapping.Offset = kNetBSD_ShadowOffset64; 500 } else if (IsPS4CPU) 501 Mapping.Offset = kPS4CPU_ShadowOffset64; 502 else if (IsLinux && IsX86_64) { 503 if (IsKasan) 504 Mapping.Offset = kLinuxKasan_ShadowOffset64; 505 else 506 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 507 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 508 } else if (IsWindows && IsX86_64) { 509 Mapping.Offset = kWindowsShadowOffset64; 510 } else if (IsMIPS64) 511 Mapping.Offset = kMIPS64_ShadowOffset64; 512 else if (IsIOS) 513 Mapping.Offset = kDynamicShadowSentinel; 514 else if (IsMacOS && IsAArch64) 515 Mapping.Offset = kDynamicShadowSentinel; 516 else if (IsAArch64) 517 Mapping.Offset = kAArch64_ShadowOffset64; 518 else 519 Mapping.Offset = kDefaultShadowOffset64; 520 } 521 522 if (ClForceDynamicShadow) { 523 Mapping.Offset = kDynamicShadowSentinel; 524 } 525 526 if (ClMappingOffset.getNumOccurrences() > 0) { 527 Mapping.Offset = ClMappingOffset; 528 } 529 530 // OR-ing shadow offset if more efficient (at least on x86) if the offset 531 // is a power of two, but on ppc64 we have to use add since the shadow 532 // offset is not necessary 1/8-th of the address space. On SystemZ, 533 // we could OR the constant in a single instruction, but it's more 534 // efficient to load it once and use indexed addressing. 535 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 536 !(Mapping.Offset & (Mapping.Offset - 1)) && 537 Mapping.Offset != kDynamicShadowSentinel; 538 bool IsAndroidWithIfuncSupport = 539 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 540 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 541 542 return Mapping; 543 } 544 545 static uint64_t getRedzoneSizeForScale(int MappingScale) { 546 // Redzone used for stack and globals is at least 32 bytes. 547 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 548 return std::max(32U, 1U << MappingScale); 549 } 550 551 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 552 if (TargetTriple.isOSEmscripten()) { 553 return kAsanEmscriptenCtorAndDtorPriority; 554 } else { 555 return kAsanCtorAndDtorPriority; 556 } 557 } 558 559 namespace { 560 561 /// Module analysis for getting various metadata about the module. 562 class ASanGlobalsMetadataWrapperPass : public ModulePass { 563 public: 564 static char ID; 565 566 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 567 initializeASanGlobalsMetadataWrapperPassPass( 568 *PassRegistry::getPassRegistry()); 569 } 570 571 bool runOnModule(Module &M) override { 572 GlobalsMD = GlobalsMetadata(M); 573 return false; 574 } 575 576 StringRef getPassName() const override { 577 return "ASanGlobalsMetadataWrapperPass"; 578 } 579 580 void getAnalysisUsage(AnalysisUsage &AU) const override { 581 AU.setPreservesAll(); 582 } 583 584 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 585 586 private: 587 GlobalsMetadata GlobalsMD; 588 }; 589 590 char ASanGlobalsMetadataWrapperPass::ID = 0; 591 592 /// AddressSanitizer: instrument the code in module to find memory bugs. 593 struct AddressSanitizer { 594 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 595 bool CompileKernel = false, bool Recover = false, 596 bool UseAfterScope = false) 597 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 598 : CompileKernel), 599 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 600 UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 601 C = &(M.getContext()); 602 LongSize = M.getDataLayout().getPointerSizeInBits(); 603 IntptrTy = Type::getIntNTy(*C, LongSize); 604 TargetTriple = Triple(M.getTargetTriple()); 605 606 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 607 } 608 609 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 610 uint64_t ArraySize = 1; 611 if (AI.isArrayAllocation()) { 612 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 613 assert(CI && "non-constant array size"); 614 ArraySize = CI->getZExtValue(); 615 } 616 Type *Ty = AI.getAllocatedType(); 617 uint64_t SizeInBytes = 618 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 619 return SizeInBytes * ArraySize; 620 } 621 622 /// Check if we want (and can) handle this alloca. 623 bool isInterestingAlloca(const AllocaInst &AI); 624 625 bool ignoreAccess(Value *Ptr); 626 void getInterestingMemoryOperands( 627 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 628 629 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 630 InterestingMemoryOperand &O, bool UseCalls, 631 const DataLayout &DL); 632 void instrumentPointerComparisonOrSubtraction(Instruction *I); 633 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 634 Value *Addr, uint32_t TypeSize, bool IsWrite, 635 Value *SizeArgument, bool UseCalls, uint32_t Exp); 636 void instrumentUnusualSizeOrAlignment(Instruction *I, 637 Instruction *InsertBefore, Value *Addr, 638 uint32_t TypeSize, bool IsWrite, 639 Value *SizeArgument, bool UseCalls, 640 uint32_t Exp); 641 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 642 Value *ShadowValue, uint32_t TypeSize); 643 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 644 bool IsWrite, size_t AccessSizeIndex, 645 Value *SizeArgument, uint32_t Exp); 646 void instrumentMemIntrinsic(MemIntrinsic *MI); 647 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 648 bool suppressInstrumentationSiteForDebug(int &Instrumented); 649 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 650 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 651 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 652 void markEscapedLocalAllocas(Function &F); 653 654 private: 655 friend struct FunctionStackPoisoner; 656 657 void initializeCallbacks(Module &M); 658 659 bool LooksLikeCodeInBug11395(Instruction *I); 660 bool GlobalIsLinkerInitialized(GlobalVariable *G); 661 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 662 uint64_t TypeSize) const; 663 664 /// Helper to cleanup per-function state. 665 struct FunctionStateRAII { 666 AddressSanitizer *Pass; 667 668 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 669 assert(Pass->ProcessedAllocas.empty() && 670 "last pass forgot to clear cache"); 671 assert(!Pass->LocalDynamicShadow); 672 } 673 674 ~FunctionStateRAII() { 675 Pass->LocalDynamicShadow = nullptr; 676 Pass->ProcessedAllocas.clear(); 677 } 678 }; 679 680 LLVMContext *C; 681 Triple TargetTriple; 682 int LongSize; 683 bool CompileKernel; 684 bool Recover; 685 bool UseAfterScope; 686 Type *IntptrTy; 687 ShadowMapping Mapping; 688 FunctionCallee AsanHandleNoReturnFunc; 689 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 690 Constant *AsanShadowGlobal; 691 692 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 693 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 694 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 695 696 // These arrays is indexed by AccessIsWrite and Experiment. 697 FunctionCallee AsanErrorCallbackSized[2][2]; 698 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 699 700 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 701 Value *LocalDynamicShadow = nullptr; 702 const GlobalsMetadata &GlobalsMD; 703 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 704 }; 705 706 class AddressSanitizerLegacyPass : public FunctionPass { 707 public: 708 static char ID; 709 710 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 711 bool Recover = false, 712 bool UseAfterScope = false) 713 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 714 UseAfterScope(UseAfterScope) { 715 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 716 } 717 718 StringRef getPassName() const override { 719 return "AddressSanitizerFunctionPass"; 720 } 721 722 void getAnalysisUsage(AnalysisUsage &AU) const override { 723 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 724 AU.addRequired<TargetLibraryInfoWrapperPass>(); 725 } 726 727 bool runOnFunction(Function &F) override { 728 GlobalsMetadata &GlobalsMD = 729 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 730 const TargetLibraryInfo *TLI = 731 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 732 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 733 UseAfterScope); 734 return ASan.instrumentFunction(F, TLI); 735 } 736 737 private: 738 bool CompileKernel; 739 bool Recover; 740 bool UseAfterScope; 741 }; 742 743 class ModuleAddressSanitizer { 744 public: 745 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 746 bool CompileKernel = false, bool Recover = false, 747 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 748 : GlobalsMD(*GlobalsMD), 749 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 750 : CompileKernel), 751 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 752 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 753 // Enable aliases as they should have no downside with ODR indicators. 754 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 755 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 756 // Not a typo: ClWithComdat is almost completely pointless without 757 // ClUseGlobalsGC (because then it only works on modules without 758 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 759 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 760 // argument is designed as workaround. Therefore, disable both 761 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 762 // do globals-gc. 763 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel) { 764 C = &(M.getContext()); 765 int LongSize = M.getDataLayout().getPointerSizeInBits(); 766 IntptrTy = Type::getIntNTy(*C, LongSize); 767 TargetTriple = Triple(M.getTargetTriple()); 768 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 769 } 770 771 bool instrumentModule(Module &); 772 773 private: 774 void initializeCallbacks(Module &M); 775 776 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 777 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 778 ArrayRef<GlobalVariable *> ExtendedGlobals, 779 ArrayRef<Constant *> MetadataInitializers); 780 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 781 ArrayRef<GlobalVariable *> ExtendedGlobals, 782 ArrayRef<Constant *> MetadataInitializers, 783 const std::string &UniqueModuleId); 784 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 785 ArrayRef<GlobalVariable *> ExtendedGlobals, 786 ArrayRef<Constant *> MetadataInitializers); 787 void 788 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 789 ArrayRef<GlobalVariable *> ExtendedGlobals, 790 ArrayRef<Constant *> MetadataInitializers); 791 792 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 793 StringRef OriginalName); 794 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 795 StringRef InternalSuffix); 796 Instruction *CreateAsanModuleDtor(Module &M); 797 798 bool canInstrumentAliasedGlobal(const GlobalAlias &GA) const; 799 bool shouldInstrumentGlobal(GlobalVariable *G) const; 800 bool ShouldUseMachOGlobalsSection() const; 801 StringRef getGlobalMetadataSection() const; 802 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 803 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 804 uint64_t getMinRedzoneSizeForGlobal() const { 805 return getRedzoneSizeForScale(Mapping.Scale); 806 } 807 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 808 int GetAsanVersion(const Module &M) const; 809 810 const GlobalsMetadata &GlobalsMD; 811 bool CompileKernel; 812 bool Recover; 813 bool UseGlobalsGC; 814 bool UsePrivateAlias; 815 bool UseOdrIndicator; 816 bool UseCtorComdat; 817 Type *IntptrTy; 818 LLVMContext *C; 819 Triple TargetTriple; 820 ShadowMapping Mapping; 821 FunctionCallee AsanPoisonGlobals; 822 FunctionCallee AsanUnpoisonGlobals; 823 FunctionCallee AsanRegisterGlobals; 824 FunctionCallee AsanUnregisterGlobals; 825 FunctionCallee AsanRegisterImageGlobals; 826 FunctionCallee AsanUnregisterImageGlobals; 827 FunctionCallee AsanRegisterElfGlobals; 828 FunctionCallee AsanUnregisterElfGlobals; 829 830 Function *AsanCtorFunction = nullptr; 831 Function *AsanDtorFunction = nullptr; 832 }; 833 834 class ModuleAddressSanitizerLegacyPass : public ModulePass { 835 public: 836 static char ID; 837 838 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 839 bool Recover = false, 840 bool UseGlobalGC = true, 841 bool UseOdrIndicator = false) 842 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 843 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 844 initializeModuleAddressSanitizerLegacyPassPass( 845 *PassRegistry::getPassRegistry()); 846 } 847 848 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 849 850 void getAnalysisUsage(AnalysisUsage &AU) const override { 851 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 852 } 853 854 bool runOnModule(Module &M) override { 855 GlobalsMetadata &GlobalsMD = 856 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 857 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 858 UseGlobalGC, UseOdrIndicator); 859 return ASanModule.instrumentModule(M); 860 } 861 862 private: 863 bool CompileKernel; 864 bool Recover; 865 bool UseGlobalGC; 866 bool UseOdrIndicator; 867 }; 868 869 // Stack poisoning does not play well with exception handling. 870 // When an exception is thrown, we essentially bypass the code 871 // that unpoisones the stack. This is why the run-time library has 872 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 873 // stack in the interceptor. This however does not work inside the 874 // actual function which catches the exception. Most likely because the 875 // compiler hoists the load of the shadow value somewhere too high. 876 // This causes asan to report a non-existing bug on 453.povray. 877 // It sounds like an LLVM bug. 878 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 879 Function &F; 880 AddressSanitizer &ASan; 881 DIBuilder DIB; 882 LLVMContext *C; 883 Type *IntptrTy; 884 Type *IntptrPtrTy; 885 ShadowMapping Mapping; 886 887 SmallVector<AllocaInst *, 16> AllocaVec; 888 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 889 SmallVector<Instruction *, 8> RetVec; 890 unsigned StackAlignment; 891 892 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 893 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 894 FunctionCallee AsanSetShadowFunc[0x100] = {}; 895 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 896 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 897 898 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 899 struct AllocaPoisonCall { 900 IntrinsicInst *InsBefore; 901 AllocaInst *AI; 902 uint64_t Size; 903 bool DoPoison; 904 }; 905 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 906 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 907 bool HasUntracedLifetimeIntrinsic = false; 908 909 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 910 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 911 AllocaInst *DynamicAllocaLayout = nullptr; 912 IntrinsicInst *LocalEscapeCall = nullptr; 913 914 // Maps Value to an AllocaInst from which the Value is originated. 915 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 916 AllocaForValueMapTy AllocaForValue; 917 918 bool HasInlineAsm = false; 919 bool HasReturnsTwiceCall = false; 920 921 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 922 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 923 C(ASan.C), IntptrTy(ASan.IntptrTy), 924 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 925 StackAlignment(1 << Mapping.Scale) {} 926 927 bool runOnFunction() { 928 if (!ClStack) return false; 929 930 if (ClRedzoneByvalArgs) 931 copyArgsPassedByValToAllocas(); 932 933 // Collect alloca, ret, lifetime instructions etc. 934 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 935 936 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 937 938 initializeCallbacks(*F.getParent()); 939 940 if (HasUntracedLifetimeIntrinsic) { 941 // If there are lifetime intrinsics which couldn't be traced back to an 942 // alloca, we may not know exactly when a variable enters scope, and 943 // therefore should "fail safe" by not poisoning them. 944 StaticAllocaPoisonCallVec.clear(); 945 DynamicAllocaPoisonCallVec.clear(); 946 } 947 948 processDynamicAllocas(); 949 processStaticAllocas(); 950 951 if (ClDebugStack) { 952 LLVM_DEBUG(dbgs() << F); 953 } 954 return true; 955 } 956 957 // Arguments marked with the "byval" attribute are implicitly copied without 958 // using an alloca instruction. To produce redzones for those arguments, we 959 // copy them a second time into memory allocated with an alloca instruction. 960 void copyArgsPassedByValToAllocas(); 961 962 // Finds all Alloca instructions and puts 963 // poisoned red zones around all of them. 964 // Then unpoison everything back before the function returns. 965 void processStaticAllocas(); 966 void processDynamicAllocas(); 967 968 void createDynamicAllocasInitStorage(); 969 970 // ----------------------- Visitors. 971 /// Collect all Ret instructions. 972 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 973 974 /// Collect all Resume instructions. 975 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 976 977 /// Collect all CatchReturnInst instructions. 978 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 979 980 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 981 Value *SavedStack) { 982 IRBuilder<> IRB(InstBefore); 983 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 984 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 985 // need to adjust extracted SP to compute the address of the most recent 986 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 987 // this purpose. 988 if (!isa<ReturnInst>(InstBefore)) { 989 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 990 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 991 {IntptrTy}); 992 993 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 994 995 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 996 DynamicAreaOffset); 997 } 998 999 IRB.CreateCall( 1000 AsanAllocasUnpoisonFunc, 1001 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1002 } 1003 1004 // Unpoison dynamic allocas redzones. 1005 void unpoisonDynamicAllocas() { 1006 for (auto &Ret : RetVec) 1007 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1008 1009 for (auto &StackRestoreInst : StackRestoreVec) 1010 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1011 StackRestoreInst->getOperand(0)); 1012 } 1013 1014 // Deploy and poison redzones around dynamic alloca call. To do this, we 1015 // should replace this call with another one with changed parameters and 1016 // replace all its uses with new address, so 1017 // addr = alloca type, old_size, align 1018 // is replaced by 1019 // new_size = (old_size + additional_size) * sizeof(type) 1020 // tmp = alloca i8, new_size, max(align, 32) 1021 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1022 // Additional_size is added to make new memory allocation contain not only 1023 // requested memory, but also left, partial and right redzones. 1024 void handleDynamicAllocaCall(AllocaInst *AI); 1025 1026 /// Collect Alloca instructions we want (and can) handle. 1027 void visitAllocaInst(AllocaInst &AI) { 1028 if (!ASan.isInterestingAlloca(AI)) { 1029 if (AI.isStaticAlloca()) { 1030 // Skip over allocas that are present *before* the first instrumented 1031 // alloca, we don't want to move those around. 1032 if (AllocaVec.empty()) 1033 return; 1034 1035 StaticAllocasToMoveUp.push_back(&AI); 1036 } 1037 return; 1038 } 1039 1040 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1041 if (!AI.isStaticAlloca()) 1042 DynamicAllocaVec.push_back(&AI); 1043 else 1044 AllocaVec.push_back(&AI); 1045 } 1046 1047 /// Collect lifetime intrinsic calls to check for use-after-scope 1048 /// errors. 1049 void visitIntrinsicInst(IntrinsicInst &II) { 1050 Intrinsic::ID ID = II.getIntrinsicID(); 1051 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1052 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1053 if (!ASan.UseAfterScope) 1054 return; 1055 if (!II.isLifetimeStartOrEnd()) 1056 return; 1057 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1058 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1059 // If size argument is undefined, don't do anything. 1060 if (Size->isMinusOne()) return; 1061 // Check that size doesn't saturate uint64_t and can 1062 // be stored in IntptrTy. 1063 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1064 if (SizeValue == ~0ULL || 1065 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1066 return; 1067 // Find alloca instruction that corresponds to llvm.lifetime argument. 1068 AllocaInst *AI = 1069 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue); 1070 if (!AI) { 1071 HasUntracedLifetimeIntrinsic = true; 1072 return; 1073 } 1074 // We're interested only in allocas we can handle. 1075 if (!ASan.isInterestingAlloca(*AI)) 1076 return; 1077 bool DoPoison = (ID == Intrinsic::lifetime_end); 1078 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1079 if (AI->isStaticAlloca()) 1080 StaticAllocaPoisonCallVec.push_back(APC); 1081 else if (ClInstrumentDynamicAllocas) 1082 DynamicAllocaPoisonCallVec.push_back(APC); 1083 } 1084 1085 void visitCallBase(CallBase &CB) { 1086 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1087 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1088 HasReturnsTwiceCall |= CI->canReturnTwice(); 1089 } 1090 } 1091 1092 // ---------------------- Helpers. 1093 void initializeCallbacks(Module &M); 1094 1095 // Copies bytes from ShadowBytes into shadow memory for indexes where 1096 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1097 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1098 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1099 IRBuilder<> &IRB, Value *ShadowBase); 1100 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1101 size_t Begin, size_t End, IRBuilder<> &IRB, 1102 Value *ShadowBase); 1103 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1104 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1105 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1106 1107 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1108 1109 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1110 bool Dynamic); 1111 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1112 Instruction *ThenTerm, Value *ValueIfFalse); 1113 }; 1114 1115 } // end anonymous namespace 1116 1117 void LocationMetadata::parse(MDNode *MDN) { 1118 assert(MDN->getNumOperands() == 3); 1119 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1120 Filename = DIFilename->getString(); 1121 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1122 ColumnNo = 1123 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1124 } 1125 1126 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1127 // we want to sanitize instead and reading this metadata on each pass over a 1128 // function instead of reading module level metadata at first. 1129 GlobalsMetadata::GlobalsMetadata(Module &M) { 1130 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1131 if (!Globals) 1132 return; 1133 for (auto MDN : Globals->operands()) { 1134 // Metadata node contains the global and the fields of "Entry". 1135 assert(MDN->getNumOperands() == 5); 1136 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1137 // The optimizer may optimize away a global entirely. 1138 if (!V) 1139 continue; 1140 auto *StrippedV = V->stripPointerCasts(); 1141 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1142 if (!GV) 1143 continue; 1144 // We can already have an entry for GV if it was merged with another 1145 // global. 1146 Entry &E = Entries[GV]; 1147 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1148 E.SourceLoc.parse(Loc); 1149 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1150 E.Name = Name->getString(); 1151 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1152 E.IsDynInit |= IsDynInit->isOne(); 1153 ConstantInt *IsExcluded = 1154 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1155 E.IsExcluded |= IsExcluded->isOne(); 1156 } 1157 } 1158 1159 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1160 1161 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1162 ModuleAnalysisManager &AM) { 1163 return GlobalsMetadata(M); 1164 } 1165 1166 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1167 bool UseAfterScope) 1168 : CompileKernel(CompileKernel), Recover(Recover), 1169 UseAfterScope(UseAfterScope) {} 1170 1171 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1172 AnalysisManager<Function> &AM) { 1173 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1174 Module &M = *F.getParent(); 1175 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1176 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1177 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1178 if (Sanitizer.instrumentFunction(F, TLI)) 1179 return PreservedAnalyses::none(); 1180 return PreservedAnalyses::all(); 1181 } 1182 1183 report_fatal_error( 1184 "The ASanGlobalsMetadataAnalysis is required to run before " 1185 "AddressSanitizer can run"); 1186 return PreservedAnalyses::all(); 1187 } 1188 1189 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1190 bool Recover, 1191 bool UseGlobalGC, 1192 bool UseOdrIndicator) 1193 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1194 UseOdrIndicator(UseOdrIndicator) {} 1195 1196 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1197 AnalysisManager<Module> &AM) { 1198 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1199 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1200 UseGlobalGC, UseOdrIndicator); 1201 if (Sanitizer.instrumentModule(M)) 1202 return PreservedAnalyses::none(); 1203 return PreservedAnalyses::all(); 1204 } 1205 1206 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1207 "Read metadata to mark which globals should be instrumented " 1208 "when running ASan.", 1209 false, true) 1210 1211 char AddressSanitizerLegacyPass::ID = 0; 1212 1213 INITIALIZE_PASS_BEGIN( 1214 AddressSanitizerLegacyPass, "asan", 1215 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1216 false) 1217 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1218 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1219 INITIALIZE_PASS_END( 1220 AddressSanitizerLegacyPass, "asan", 1221 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1222 false) 1223 1224 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1225 bool Recover, 1226 bool UseAfterScope) { 1227 assert(!CompileKernel || Recover); 1228 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1229 } 1230 1231 char ModuleAddressSanitizerLegacyPass::ID = 0; 1232 1233 INITIALIZE_PASS( 1234 ModuleAddressSanitizerLegacyPass, "asan-module", 1235 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1236 "ModulePass", 1237 false, false) 1238 1239 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1240 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1241 assert(!CompileKernel || Recover); 1242 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1243 UseGlobalsGC, UseOdrIndicator); 1244 } 1245 1246 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1247 size_t Res = countTrailingZeros(TypeSize / 8); 1248 assert(Res < kNumberOfAccessSizes); 1249 return Res; 1250 } 1251 1252 /// Create a global describing a source location. 1253 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1254 LocationMetadata MD) { 1255 Constant *LocData[] = { 1256 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1257 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1258 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1259 }; 1260 auto LocStruct = ConstantStruct::getAnon(LocData); 1261 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1262 GlobalValue::PrivateLinkage, LocStruct, 1263 kAsanGenPrefix); 1264 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1265 return GV; 1266 } 1267 1268 /// Check if \p G has been created by a trusted compiler pass. 1269 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1270 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1271 if (G->getName().startswith("llvm.")) 1272 return true; 1273 1274 // Do not instrument asan globals. 1275 if (G->getName().startswith(kAsanGenPrefix) || 1276 G->getName().startswith(kSanCovGenPrefix) || 1277 G->getName().startswith(kODRGenPrefix)) 1278 return true; 1279 1280 // Do not instrument gcov counter arrays. 1281 if (G->getName() == "__llvm_gcov_ctr") 1282 return true; 1283 1284 return false; 1285 } 1286 1287 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1288 // Shadow >> scale 1289 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1290 if (Mapping.Offset == 0) return Shadow; 1291 // (Shadow >> scale) | offset 1292 Value *ShadowBase; 1293 if (LocalDynamicShadow) 1294 ShadowBase = LocalDynamicShadow; 1295 else 1296 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1297 if (Mapping.OrShadowOffset) 1298 return IRB.CreateOr(Shadow, ShadowBase); 1299 else 1300 return IRB.CreateAdd(Shadow, ShadowBase); 1301 } 1302 1303 // Instrument memset/memmove/memcpy 1304 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1305 IRBuilder<> IRB(MI); 1306 if (isa<MemTransferInst>(MI)) { 1307 IRB.CreateCall( 1308 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1309 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1310 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1311 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1312 } else if (isa<MemSetInst>(MI)) { 1313 IRB.CreateCall( 1314 AsanMemset, 1315 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1316 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1317 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1318 } 1319 MI->eraseFromParent(); 1320 } 1321 1322 /// Check if we want (and can) handle this alloca. 1323 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1324 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1325 1326 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1327 return PreviouslySeenAllocaInfo->getSecond(); 1328 1329 bool IsInteresting = 1330 (AI.getAllocatedType()->isSized() && 1331 // alloca() may be called with 0 size, ignore it. 1332 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1333 // We are only interested in allocas not promotable to registers. 1334 // Promotable allocas are common under -O0. 1335 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1336 // inalloca allocas are not treated as static, and we don't want 1337 // dynamic alloca instrumentation for them as well. 1338 !AI.isUsedWithInAlloca() && 1339 // swifterror allocas are register promoted by ISel 1340 !AI.isSwiftError()); 1341 1342 ProcessedAllocas[&AI] = IsInteresting; 1343 return IsInteresting; 1344 } 1345 1346 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1347 // Do not instrument acesses from different address spaces; we cannot deal 1348 // with them. 1349 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1350 if (PtrTy->getPointerAddressSpace() != 0) 1351 return true; 1352 1353 // Ignore swifterror addresses. 1354 // swifterror memory addresses are mem2reg promoted by instruction 1355 // selection. As such they cannot have regular uses like an instrumentation 1356 // function and it makes no sense to track them as memory. 1357 if (Ptr->isSwiftError()) 1358 return true; 1359 1360 // Treat memory accesses to promotable allocas as non-interesting since they 1361 // will not cause memory violations. This greatly speeds up the instrumented 1362 // executable at -O0. 1363 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1364 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1365 return true; 1366 1367 return false; 1368 } 1369 1370 void AddressSanitizer::getInterestingMemoryOperands( 1371 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1372 // Skip memory accesses inserted by another instrumentation. 1373 if (I->hasMetadata("nosanitize")) 1374 return; 1375 1376 // Do not instrument the load fetching the dynamic shadow address. 1377 if (LocalDynamicShadow == I) 1378 return; 1379 1380 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1381 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1382 return; 1383 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1384 LI->getType(), LI->getAlign()); 1385 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1386 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1387 return; 1388 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1389 SI->getValueOperand()->getType(), SI->getAlign()); 1390 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1391 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1392 return; 1393 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1394 RMW->getValOperand()->getType(), None); 1395 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1396 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1397 return; 1398 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1399 XCHG->getCompareOperand()->getType(), None); 1400 } else if (auto CI = dyn_cast<CallInst>(I)) { 1401 auto *F = CI->getCalledFunction(); 1402 if (F && (F->getName().startswith("llvm.masked.load.") || 1403 F->getName().startswith("llvm.masked.store."))) { 1404 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1405 // Masked store has an initial operand for the value. 1406 unsigned OpOffset = IsWrite ? 1 : 0; 1407 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1408 return; 1409 1410 auto BasePtr = CI->getOperand(OpOffset); 1411 if (ignoreAccess(BasePtr)) 1412 return; 1413 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1414 MaybeAlign Alignment = Align(1); 1415 // Otherwise no alignment guarantees. We probably got Undef. 1416 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1417 Alignment = Op->getMaybeAlignValue(); 1418 Value *Mask = CI->getOperand(2 + OpOffset); 1419 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1420 } else { 1421 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { 1422 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1423 ignoreAccess(CI->getArgOperand(ArgNo))) 1424 continue; 1425 Type *Ty = CI->getParamByValType(ArgNo); 1426 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1427 } 1428 } 1429 } 1430 } 1431 1432 static bool isPointerOperand(Value *V) { 1433 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1434 } 1435 1436 // This is a rough heuristic; it may cause both false positives and 1437 // false negatives. The proper implementation requires cooperation with 1438 // the frontend. 1439 static bool isInterestingPointerComparison(Instruction *I) { 1440 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1441 if (!Cmp->isRelational()) 1442 return false; 1443 } else { 1444 return false; 1445 } 1446 return isPointerOperand(I->getOperand(0)) && 1447 isPointerOperand(I->getOperand(1)); 1448 } 1449 1450 // This is a rough heuristic; it may cause both false positives and 1451 // false negatives. The proper implementation requires cooperation with 1452 // the frontend. 1453 static bool isInterestingPointerSubtraction(Instruction *I) { 1454 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1455 if (BO->getOpcode() != Instruction::Sub) 1456 return false; 1457 } else { 1458 return false; 1459 } 1460 return isPointerOperand(I->getOperand(0)) && 1461 isPointerOperand(I->getOperand(1)); 1462 } 1463 1464 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1465 // If a global variable does not have dynamic initialization we don't 1466 // have to instrument it. However, if a global does not have initializer 1467 // at all, we assume it has dynamic initializer (in other TU). 1468 // 1469 // FIXME: Metadata should be attched directly to the global directly instead 1470 // of being added to llvm.asan.globals. 1471 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1472 } 1473 1474 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1475 Instruction *I) { 1476 IRBuilder<> IRB(I); 1477 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1478 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1479 for (Value *&i : Param) { 1480 if (i->getType()->isPointerTy()) 1481 i = IRB.CreatePointerCast(i, IntptrTy); 1482 } 1483 IRB.CreateCall(F, Param); 1484 } 1485 1486 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1487 Instruction *InsertBefore, Value *Addr, 1488 MaybeAlign Alignment, unsigned Granularity, 1489 uint32_t TypeSize, bool IsWrite, 1490 Value *SizeArgument, bool UseCalls, 1491 uint32_t Exp) { 1492 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1493 // if the data is properly aligned. 1494 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1495 TypeSize == 128) && 1496 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1497 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1498 nullptr, UseCalls, Exp); 1499 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1500 IsWrite, nullptr, UseCalls, Exp); 1501 } 1502 1503 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1504 const DataLayout &DL, Type *IntptrTy, 1505 Value *Mask, Instruction *I, 1506 Value *Addr, MaybeAlign Alignment, 1507 unsigned Granularity, uint32_t TypeSize, 1508 bool IsWrite, Value *SizeArgument, 1509 bool UseCalls, uint32_t Exp) { 1510 auto *VTy = cast<FixedVectorType>( 1511 cast<PointerType>(Addr->getType())->getElementType()); 1512 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1513 unsigned Num = VTy->getNumElements(); 1514 auto Zero = ConstantInt::get(IntptrTy, 0); 1515 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1516 Value *InstrumentedAddress = nullptr; 1517 Instruction *InsertBefore = I; 1518 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1519 // dyn_cast as we might get UndefValue 1520 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1521 if (Masked->isZero()) 1522 // Mask is constant false, so no instrumentation needed. 1523 continue; 1524 // If we have a true or undef value, fall through to doInstrumentAddress 1525 // with InsertBefore == I 1526 } 1527 } else { 1528 IRBuilder<> IRB(I); 1529 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1530 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1531 InsertBefore = ThenTerm; 1532 } 1533 1534 IRBuilder<> IRB(InsertBefore); 1535 InstrumentedAddress = 1536 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1537 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1538 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1539 UseCalls, Exp); 1540 } 1541 } 1542 1543 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1544 InterestingMemoryOperand &O, bool UseCalls, 1545 const DataLayout &DL) { 1546 Value *Addr = O.getPtr(); 1547 1548 // Optimization experiments. 1549 // The experiments can be used to evaluate potential optimizations that remove 1550 // instrumentation (assess false negatives). Instead of completely removing 1551 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1552 // experiments that want to remove instrumentation of this instruction). 1553 // If Exp is non-zero, this pass will emit special calls into runtime 1554 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1555 // make runtime terminate the program in a special way (with a different 1556 // exit status). Then you run the new compiler on a buggy corpus, collect 1557 // the special terminations (ideally, you don't see them at all -- no false 1558 // negatives) and make the decision on the optimization. 1559 uint32_t Exp = ClForceExperiment; 1560 1561 if (ClOpt && ClOptGlobals) { 1562 // If initialization order checking is disabled, a simple access to a 1563 // dynamically initialized global is always valid. 1564 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1565 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1566 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1567 NumOptimizedAccessesToGlobalVar++; 1568 return; 1569 } 1570 } 1571 1572 if (ClOpt && ClOptStack) { 1573 // A direct inbounds access to a stack variable is always valid. 1574 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1575 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1576 NumOptimizedAccessesToStackVar++; 1577 return; 1578 } 1579 } 1580 1581 if (O.IsWrite) 1582 NumInstrumentedWrites++; 1583 else 1584 NumInstrumentedReads++; 1585 1586 unsigned Granularity = 1 << Mapping.Scale; 1587 if (O.MaybeMask) { 1588 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1589 Addr, O.Alignment, Granularity, O.TypeSize, 1590 O.IsWrite, nullptr, UseCalls, Exp); 1591 } else { 1592 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1593 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1594 Exp); 1595 } 1596 } 1597 1598 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1599 Value *Addr, bool IsWrite, 1600 size_t AccessSizeIndex, 1601 Value *SizeArgument, 1602 uint32_t Exp) { 1603 IRBuilder<> IRB(InsertBefore); 1604 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1605 CallInst *Call = nullptr; 1606 if (SizeArgument) { 1607 if (Exp == 0) 1608 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1609 {Addr, SizeArgument}); 1610 else 1611 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1612 {Addr, SizeArgument, ExpVal}); 1613 } else { 1614 if (Exp == 0) 1615 Call = 1616 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1617 else 1618 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1619 {Addr, ExpVal}); 1620 } 1621 1622 Call->setCannotMerge(); 1623 return Call; 1624 } 1625 1626 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1627 Value *ShadowValue, 1628 uint32_t TypeSize) { 1629 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1630 // Addr & (Granularity - 1) 1631 Value *LastAccessedByte = 1632 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1633 // (Addr & (Granularity - 1)) + size - 1 1634 if (TypeSize / 8 > 1) 1635 LastAccessedByte = IRB.CreateAdd( 1636 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1637 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1638 LastAccessedByte = 1639 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1640 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1641 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1642 } 1643 1644 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1645 Instruction *InsertBefore, Value *Addr, 1646 uint32_t TypeSize, bool IsWrite, 1647 Value *SizeArgument, bool UseCalls, 1648 uint32_t Exp) { 1649 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1650 1651 IRBuilder<> IRB(InsertBefore); 1652 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1653 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1654 1655 if (UseCalls) { 1656 if (Exp == 0) 1657 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1658 AddrLong); 1659 else 1660 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1661 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1662 return; 1663 } 1664 1665 if (IsMyriad) { 1666 // Strip the cache bit and do range check. 1667 // AddrLong &= ~kMyriadCacheBitMask32 1668 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1669 // Tag = AddrLong >> kMyriadTagShift 1670 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1671 // Tag == kMyriadDDRTag 1672 Value *TagCheck = 1673 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1674 1675 Instruction *TagCheckTerm = 1676 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1677 MDBuilder(*C).createBranchWeights(1, 100000)); 1678 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1679 IRB.SetInsertPoint(TagCheckTerm); 1680 InsertBefore = TagCheckTerm; 1681 } 1682 1683 Type *ShadowTy = 1684 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1685 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1686 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1687 Value *CmpVal = Constant::getNullValue(ShadowTy); 1688 Value *ShadowValue = 1689 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1690 1691 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1692 size_t Granularity = 1ULL << Mapping.Scale; 1693 Instruction *CrashTerm = nullptr; 1694 1695 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1696 // We use branch weights for the slow path check, to indicate that the slow 1697 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1698 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1699 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1700 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1701 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1702 IRB.SetInsertPoint(CheckTerm); 1703 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1704 if (Recover) { 1705 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1706 } else { 1707 BasicBlock *CrashBlock = 1708 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1709 CrashTerm = new UnreachableInst(*C, CrashBlock); 1710 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1711 ReplaceInstWithInst(CheckTerm, NewTerm); 1712 } 1713 } else { 1714 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1715 } 1716 1717 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1718 AccessSizeIndex, SizeArgument, Exp); 1719 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1720 } 1721 1722 // Instrument unusual size or unusual alignment. 1723 // We can not do it with a single check, so we do 1-byte check for the first 1724 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1725 // to report the actual access size. 1726 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1727 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1728 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1729 IRBuilder<> IRB(InsertBefore); 1730 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1731 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1732 if (UseCalls) { 1733 if (Exp == 0) 1734 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1735 {AddrLong, Size}); 1736 else 1737 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1738 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1739 } else { 1740 Value *LastByte = IRB.CreateIntToPtr( 1741 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1742 Addr->getType()); 1743 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1744 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1745 } 1746 } 1747 1748 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1749 GlobalValue *ModuleName) { 1750 // Set up the arguments to our poison/unpoison functions. 1751 IRBuilder<> IRB(&GlobalInit.front(), 1752 GlobalInit.front().getFirstInsertionPt()); 1753 1754 // Add a call to poison all external globals before the given function starts. 1755 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1756 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1757 1758 // Add calls to unpoison all globals before each return instruction. 1759 for (auto &BB : GlobalInit.getBasicBlockList()) 1760 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1761 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1762 } 1763 1764 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1765 Module &M, GlobalValue *ModuleName) { 1766 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1767 if (!GV) 1768 return; 1769 1770 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1771 if (!CA) 1772 return; 1773 1774 for (Use &OP : CA->operands()) { 1775 if (isa<ConstantAggregateZero>(OP)) continue; 1776 ConstantStruct *CS = cast<ConstantStruct>(OP); 1777 1778 // Must have a function or null ptr. 1779 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1780 if (F->getName() == kAsanModuleCtorName) continue; 1781 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1782 // Don't instrument CTORs that will run before asan.module_ctor. 1783 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1784 continue; 1785 poisonOneInitializer(*F, ModuleName); 1786 } 1787 } 1788 } 1789 1790 bool ModuleAddressSanitizer::canInstrumentAliasedGlobal( 1791 const GlobalAlias &GA) const { 1792 // In case this function should be expanded to include rules that do not just 1793 // apply when CompileKernel is true, either guard all existing rules with an 1794 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1795 // should also apply to user space. 1796 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1797 1798 // When compiling the kernel, globals that are aliased by symbols prefixed 1799 // by "__" are special and cannot be padded with a redzone. 1800 if (GA.getName().startswith("__")) 1801 return false; 1802 1803 return true; 1804 } 1805 1806 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1807 Type *Ty = G->getValueType(); 1808 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1809 1810 // FIXME: Metadata should be attched directly to the global directly instead 1811 // of being added to llvm.asan.globals. 1812 if (GlobalsMD.get(G).IsExcluded) return false; 1813 if (!Ty->isSized()) return false; 1814 if (!G->hasInitializer()) return false; 1815 // Only instrument globals of default address spaces 1816 if (G->getAddressSpace()) return false; 1817 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1818 // Two problems with thread-locals: 1819 // - The address of the main thread's copy can't be computed at link-time. 1820 // - Need to poison all copies, not just the main thread's one. 1821 if (G->isThreadLocal()) return false; 1822 // For now, just ignore this Global if the alignment is large. 1823 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1824 1825 // For non-COFF targets, only instrument globals known to be defined by this 1826 // TU. 1827 // FIXME: We can instrument comdat globals on ELF if we are using the 1828 // GC-friendly metadata scheme. 1829 if (!TargetTriple.isOSBinFormatCOFF()) { 1830 if (!G->hasExactDefinition() || G->hasComdat()) 1831 return false; 1832 } else { 1833 // On COFF, don't instrument non-ODR linkages. 1834 if (G->isInterposable()) 1835 return false; 1836 } 1837 1838 // If a comdat is present, it must have a selection kind that implies ODR 1839 // semantics: no duplicates, any, or exact match. 1840 if (Comdat *C = G->getComdat()) { 1841 switch (C->getSelectionKind()) { 1842 case Comdat::Any: 1843 case Comdat::ExactMatch: 1844 case Comdat::NoDuplicates: 1845 break; 1846 case Comdat::Largest: 1847 case Comdat::SameSize: 1848 return false; 1849 } 1850 } 1851 1852 if (G->hasSection()) { 1853 // The kernel uses explicit sections for mostly special global variables 1854 // that we should not instrument. E.g. the kernel may rely on their layout 1855 // without redzones, or remove them at link time ("discard.*"), etc. 1856 if (CompileKernel) 1857 return false; 1858 1859 StringRef Section = G->getSection(); 1860 1861 // Globals from llvm.metadata aren't emitted, do not instrument them. 1862 if (Section == "llvm.metadata") return false; 1863 // Do not instrument globals from special LLVM sections. 1864 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1865 1866 // Do not instrument function pointers to initialization and termination 1867 // routines: dynamic linker will not properly handle redzones. 1868 if (Section.startswith(".preinit_array") || 1869 Section.startswith(".init_array") || 1870 Section.startswith(".fini_array")) { 1871 return false; 1872 } 1873 1874 // On COFF, if the section name contains '$', it is highly likely that the 1875 // user is using section sorting to create an array of globals similar to 1876 // the way initialization callbacks are registered in .init_array and 1877 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1878 // to such globals is counterproductive, because the intent is that they 1879 // will form an array, and out-of-bounds accesses are expected. 1880 // See https://github.com/google/sanitizers/issues/305 1881 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1882 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1883 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1884 << *G << "\n"); 1885 return false; 1886 } 1887 1888 if (TargetTriple.isOSBinFormatMachO()) { 1889 StringRef ParsedSegment, ParsedSection; 1890 unsigned TAA = 0, StubSize = 0; 1891 bool TAAParsed; 1892 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1893 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1894 assert(ErrorCode.empty() && "Invalid section specifier."); 1895 1896 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1897 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1898 // them. 1899 if (ParsedSegment == "__OBJC" || 1900 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1901 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1902 return false; 1903 } 1904 // See https://github.com/google/sanitizers/issues/32 1905 // Constant CFString instances are compiled in the following way: 1906 // -- the string buffer is emitted into 1907 // __TEXT,__cstring,cstring_literals 1908 // -- the constant NSConstantString structure referencing that buffer 1909 // is placed into __DATA,__cfstring 1910 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1911 // Moreover, it causes the linker to crash on OS X 10.7 1912 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1913 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1914 return false; 1915 } 1916 // The linker merges the contents of cstring_literals and removes the 1917 // trailing zeroes. 1918 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1919 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1920 return false; 1921 } 1922 } 1923 } 1924 1925 if (CompileKernel) { 1926 // Globals that prefixed by "__" are special and cannot be padded with a 1927 // redzone. 1928 if (G->getName().startswith("__")) 1929 return false; 1930 } 1931 1932 return true; 1933 } 1934 1935 // On Mach-O platforms, we emit global metadata in a separate section of the 1936 // binary in order to allow the linker to properly dead strip. This is only 1937 // supported on recent versions of ld64. 1938 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1939 if (!TargetTriple.isOSBinFormatMachO()) 1940 return false; 1941 1942 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1943 return true; 1944 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1945 return true; 1946 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1947 return true; 1948 1949 return false; 1950 } 1951 1952 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1953 switch (TargetTriple.getObjectFormat()) { 1954 case Triple::COFF: return ".ASAN$GL"; 1955 case Triple::ELF: return "asan_globals"; 1956 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1957 case Triple::Wasm: 1958 case Triple::XCOFF: 1959 report_fatal_error( 1960 "ModuleAddressSanitizer not implemented for object file format."); 1961 case Triple::UnknownObjectFormat: 1962 break; 1963 } 1964 llvm_unreachable("unsupported object format"); 1965 } 1966 1967 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1968 IRBuilder<> IRB(*C); 1969 1970 // Declare our poisoning and unpoisoning functions. 1971 AsanPoisonGlobals = 1972 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1973 AsanUnpoisonGlobals = 1974 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1975 1976 // Declare functions that register/unregister globals. 1977 AsanRegisterGlobals = M.getOrInsertFunction( 1978 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1979 AsanUnregisterGlobals = M.getOrInsertFunction( 1980 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1981 1982 // Declare the functions that find globals in a shared object and then invoke 1983 // the (un)register function on them. 1984 AsanRegisterImageGlobals = M.getOrInsertFunction( 1985 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1986 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1987 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1988 1989 AsanRegisterElfGlobals = 1990 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1991 IntptrTy, IntptrTy, IntptrTy); 1992 AsanUnregisterElfGlobals = 1993 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1994 IntptrTy, IntptrTy, IntptrTy); 1995 } 1996 1997 // Put the metadata and the instrumented global in the same group. This ensures 1998 // that the metadata is discarded if the instrumented global is discarded. 1999 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2000 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2001 Module &M = *G->getParent(); 2002 Comdat *C = G->getComdat(); 2003 if (!C) { 2004 if (!G->hasName()) { 2005 // If G is unnamed, it must be internal. Give it an artificial name 2006 // so we can put it in a comdat. 2007 assert(G->hasLocalLinkage()); 2008 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2009 } 2010 2011 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2012 std::string Name = std::string(G->getName()); 2013 Name += InternalSuffix; 2014 C = M.getOrInsertComdat(Name); 2015 } else { 2016 C = M.getOrInsertComdat(G->getName()); 2017 } 2018 2019 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2020 // linkage to internal linkage so that a symbol table entry is emitted. This 2021 // is necessary in order to create the comdat group. 2022 if (TargetTriple.isOSBinFormatCOFF()) { 2023 C->setSelectionKind(Comdat::NoDuplicates); 2024 if (G->hasPrivateLinkage()) 2025 G->setLinkage(GlobalValue::InternalLinkage); 2026 } 2027 G->setComdat(C); 2028 } 2029 2030 assert(G->hasComdat()); 2031 Metadata->setComdat(G->getComdat()); 2032 } 2033 2034 // Create a separate metadata global and put it in the appropriate ASan 2035 // global registration section. 2036 GlobalVariable * 2037 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2038 StringRef OriginalName) { 2039 auto Linkage = TargetTriple.isOSBinFormatMachO() 2040 ? GlobalVariable::InternalLinkage 2041 : GlobalVariable::PrivateLinkage; 2042 GlobalVariable *Metadata = new GlobalVariable( 2043 M, Initializer->getType(), false, Linkage, Initializer, 2044 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2045 Metadata->setSection(getGlobalMetadataSection()); 2046 return Metadata; 2047 } 2048 2049 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2050 AsanDtorFunction = 2051 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 2052 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 2053 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2054 2055 return ReturnInst::Create(*C, AsanDtorBB); 2056 } 2057 2058 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2059 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2060 ArrayRef<Constant *> MetadataInitializers) { 2061 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2062 auto &DL = M.getDataLayout(); 2063 2064 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2065 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2066 Constant *Initializer = MetadataInitializers[i]; 2067 GlobalVariable *G = ExtendedGlobals[i]; 2068 GlobalVariable *Metadata = 2069 CreateMetadataGlobal(M, Initializer, G->getName()); 2070 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2071 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2072 MetadataGlobals[i] = Metadata; 2073 2074 // The MSVC linker always inserts padding when linking incrementally. We 2075 // cope with that by aligning each struct to its size, which must be a power 2076 // of two. 2077 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2078 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2079 "global metadata will not be padded appropriately"); 2080 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2081 2082 SetComdatForGlobalMetadata(G, Metadata, ""); 2083 } 2084 2085 // Update llvm.compiler.used, adding the new metadata globals. This is 2086 // needed so that during LTO these variables stay alive. 2087 if (!MetadataGlobals.empty()) 2088 appendToCompilerUsed(M, MetadataGlobals); 2089 } 2090 2091 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2092 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2093 ArrayRef<Constant *> MetadataInitializers, 2094 const std::string &UniqueModuleId) { 2095 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2096 2097 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2098 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2099 GlobalVariable *G = ExtendedGlobals[i]; 2100 GlobalVariable *Metadata = 2101 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2102 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2103 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2104 MetadataGlobals[i] = Metadata; 2105 2106 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2107 } 2108 2109 // Update llvm.compiler.used, adding the new metadata globals. This is 2110 // needed so that during LTO these variables stay alive. 2111 if (!MetadataGlobals.empty()) 2112 appendToCompilerUsed(M, MetadataGlobals); 2113 2114 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2115 // to look up the loaded image that contains it. Second, we can store in it 2116 // whether registration has already occurred, to prevent duplicate 2117 // registration. 2118 // 2119 // Common linkage ensures that there is only one global per shared library. 2120 GlobalVariable *RegisteredFlag = new GlobalVariable( 2121 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2122 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2123 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2124 2125 // Create start and stop symbols. 2126 GlobalVariable *StartELFMetadata = new GlobalVariable( 2127 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2128 "__start_" + getGlobalMetadataSection()); 2129 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2130 GlobalVariable *StopELFMetadata = new GlobalVariable( 2131 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2132 "__stop_" + getGlobalMetadataSection()); 2133 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2134 2135 // Create a call to register the globals with the runtime. 2136 IRB.CreateCall(AsanRegisterElfGlobals, 2137 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2138 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2139 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2140 2141 // We also need to unregister globals at the end, e.g., when a shared library 2142 // gets closed. 2143 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2144 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2145 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2146 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2147 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2148 } 2149 2150 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2151 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2152 ArrayRef<Constant *> MetadataInitializers) { 2153 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2154 2155 // On recent Mach-O platforms, use a structure which binds the liveness of 2156 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2157 // created to be added to llvm.compiler.used 2158 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2159 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2160 2161 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2162 Constant *Initializer = MetadataInitializers[i]; 2163 GlobalVariable *G = ExtendedGlobals[i]; 2164 GlobalVariable *Metadata = 2165 CreateMetadataGlobal(M, Initializer, G->getName()); 2166 2167 // On recent Mach-O platforms, we emit the global metadata in a way that 2168 // allows the linker to properly strip dead globals. 2169 auto LivenessBinder = 2170 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2171 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2172 GlobalVariable *Liveness = new GlobalVariable( 2173 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2174 Twine("__asan_binder_") + G->getName()); 2175 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2176 LivenessGlobals[i] = Liveness; 2177 } 2178 2179 // Update llvm.compiler.used, adding the new liveness globals. This is 2180 // needed so that during LTO these variables stay alive. The alternative 2181 // would be to have the linker handling the LTO symbols, but libLTO 2182 // current API does not expose access to the section for each symbol. 2183 if (!LivenessGlobals.empty()) 2184 appendToCompilerUsed(M, LivenessGlobals); 2185 2186 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2187 // to look up the loaded image that contains it. Second, we can store in it 2188 // whether registration has already occurred, to prevent duplicate 2189 // registration. 2190 // 2191 // common linkage ensures that there is only one global per shared library. 2192 GlobalVariable *RegisteredFlag = new GlobalVariable( 2193 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2194 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2195 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2196 2197 IRB.CreateCall(AsanRegisterImageGlobals, 2198 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2199 2200 // We also need to unregister globals at the end, e.g., when a shared library 2201 // gets closed. 2202 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2203 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2204 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2205 } 2206 2207 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2208 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2209 ArrayRef<Constant *> MetadataInitializers) { 2210 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2211 unsigned N = ExtendedGlobals.size(); 2212 assert(N > 0); 2213 2214 // On platforms that don't have a custom metadata section, we emit an array 2215 // of global metadata structures. 2216 ArrayType *ArrayOfGlobalStructTy = 2217 ArrayType::get(MetadataInitializers[0]->getType(), N); 2218 auto AllGlobals = new GlobalVariable( 2219 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2220 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2221 if (Mapping.Scale > 3) 2222 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2223 2224 IRB.CreateCall(AsanRegisterGlobals, 2225 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2226 ConstantInt::get(IntptrTy, N)}); 2227 2228 // We also need to unregister globals at the end, e.g., when a shared library 2229 // gets closed. 2230 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2231 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2232 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2233 ConstantInt::get(IntptrTy, N)}); 2234 } 2235 2236 // This function replaces all global variables with new variables that have 2237 // trailing redzones. It also creates a function that poisons 2238 // redzones and inserts this function into llvm.global_ctors. 2239 // Sets *CtorComdat to true if the global registration code emitted into the 2240 // asan constructor is comdat-compatible. 2241 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2242 bool *CtorComdat) { 2243 *CtorComdat = false; 2244 2245 // Build set of globals that are aliased by some GA, where 2246 // canInstrumentAliasedGlobal(GA) returns false. 2247 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2248 if (CompileKernel) { 2249 for (auto &GA : M.aliases()) { 2250 if (const auto *GV = dyn_cast<GlobalVariable>(GA.getAliasee())) { 2251 if (!canInstrumentAliasedGlobal(GA)) 2252 AliasedGlobalExclusions.insert(GV); 2253 } 2254 } 2255 } 2256 2257 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2258 for (auto &G : M.globals()) { 2259 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2260 GlobalsToChange.push_back(&G); 2261 } 2262 2263 size_t n = GlobalsToChange.size(); 2264 if (n == 0) { 2265 *CtorComdat = true; 2266 return false; 2267 } 2268 2269 auto &DL = M.getDataLayout(); 2270 2271 // A global is described by a structure 2272 // size_t beg; 2273 // size_t size; 2274 // size_t size_with_redzone; 2275 // const char *name; 2276 // const char *module_name; 2277 // size_t has_dynamic_init; 2278 // void *source_location; 2279 // size_t odr_indicator; 2280 // We initialize an array of such structures and pass it to a run-time call. 2281 StructType *GlobalStructTy = 2282 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2283 IntptrTy, IntptrTy, IntptrTy); 2284 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2285 SmallVector<Constant *, 16> Initializers(n); 2286 2287 bool HasDynamicallyInitializedGlobals = false; 2288 2289 // We shouldn't merge same module names, as this string serves as unique 2290 // module ID in runtime. 2291 GlobalVariable *ModuleName = createPrivateGlobalForString( 2292 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2293 2294 for (size_t i = 0; i < n; i++) { 2295 GlobalVariable *G = GlobalsToChange[i]; 2296 2297 // FIXME: Metadata should be attched directly to the global directly instead 2298 // of being added to llvm.asan.globals. 2299 auto MD = GlobalsMD.get(G); 2300 StringRef NameForGlobal = G->getName(); 2301 // Create string holding the global name (use global name from metadata 2302 // if it's available, otherwise just write the name of global variable). 2303 GlobalVariable *Name = createPrivateGlobalForString( 2304 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2305 /*AllowMerging*/ true, kAsanGenPrefix); 2306 2307 Type *Ty = G->getValueType(); 2308 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2309 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2310 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2311 2312 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2313 Constant *NewInitializer = ConstantStruct::get( 2314 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2315 2316 // Create a new global variable with enough space for a redzone. 2317 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2318 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2319 Linkage = GlobalValue::InternalLinkage; 2320 GlobalVariable *NewGlobal = 2321 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2322 "", G, G->getThreadLocalMode()); 2323 NewGlobal->copyAttributesFrom(G); 2324 NewGlobal->setComdat(G->getComdat()); 2325 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2326 // Don't fold globals with redzones. ODR violation detector and redzone 2327 // poisoning implicitly creates a dependence on the global's address, so it 2328 // is no longer valid for it to be marked unnamed_addr. 2329 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2330 2331 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2332 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2333 G->isConstant()) { 2334 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2335 if (Seq && Seq->isCString()) 2336 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2337 } 2338 2339 // Transfer the debug info. The payload starts at offset zero so we can 2340 // copy the debug info over as is. 2341 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2342 G->getDebugInfo(GVs); 2343 for (auto *GV : GVs) 2344 NewGlobal->addDebugInfo(GV); 2345 2346 Value *Indices2[2]; 2347 Indices2[0] = IRB.getInt32(0); 2348 Indices2[1] = IRB.getInt32(0); 2349 2350 G->replaceAllUsesWith( 2351 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2352 NewGlobal->takeName(G); 2353 G->eraseFromParent(); 2354 NewGlobals[i] = NewGlobal; 2355 2356 Constant *SourceLoc; 2357 if (!MD.SourceLoc.empty()) { 2358 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2359 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2360 } else { 2361 SourceLoc = ConstantInt::get(IntptrTy, 0); 2362 } 2363 2364 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2365 GlobalValue *InstrumentedGlobal = NewGlobal; 2366 2367 bool CanUsePrivateAliases = 2368 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2369 TargetTriple.isOSBinFormatWasm(); 2370 if (CanUsePrivateAliases && UsePrivateAlias) { 2371 // Create local alias for NewGlobal to avoid crash on ODR between 2372 // instrumented and non-instrumented libraries. 2373 InstrumentedGlobal = 2374 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2375 } 2376 2377 // ODR should not happen for local linkage. 2378 if (NewGlobal->hasLocalLinkage()) { 2379 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2380 IRB.getInt8PtrTy()); 2381 } else if (UseOdrIndicator) { 2382 // With local aliases, we need to provide another externally visible 2383 // symbol __odr_asan_XXX to detect ODR violation. 2384 auto *ODRIndicatorSym = 2385 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2386 Constant::getNullValue(IRB.getInt8Ty()), 2387 kODRGenPrefix + NameForGlobal, nullptr, 2388 NewGlobal->getThreadLocalMode()); 2389 2390 // Set meaningful attributes for indicator symbol. 2391 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2392 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2393 ODRIndicatorSym->setAlignment(Align(1)); 2394 ODRIndicator = ODRIndicatorSym; 2395 } 2396 2397 Constant *Initializer = ConstantStruct::get( 2398 GlobalStructTy, 2399 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2400 ConstantInt::get(IntptrTy, SizeInBytes), 2401 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2402 ConstantExpr::getPointerCast(Name, IntptrTy), 2403 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2404 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2405 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2406 2407 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2408 2409 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2410 2411 Initializers[i] = Initializer; 2412 } 2413 2414 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2415 // ConstantMerge'ing them. 2416 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2417 for (size_t i = 0; i < n; i++) { 2418 GlobalVariable *G = NewGlobals[i]; 2419 if (G->getName().empty()) continue; 2420 GlobalsToAddToUsedList.push_back(G); 2421 } 2422 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2423 2424 std::string ELFUniqueModuleId = 2425 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2426 : ""; 2427 2428 if (!ELFUniqueModuleId.empty()) { 2429 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2430 *CtorComdat = true; 2431 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2432 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2433 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2434 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2435 } else { 2436 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2437 } 2438 2439 // Create calls for poisoning before initializers run and unpoisoning after. 2440 if (HasDynamicallyInitializedGlobals) 2441 createInitializerPoisonCalls(M, ModuleName); 2442 2443 LLVM_DEBUG(dbgs() << M); 2444 return true; 2445 } 2446 2447 uint64_t 2448 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2449 constexpr uint64_t kMaxRZ = 1 << 18; 2450 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2451 2452 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2453 uint64_t RZ = 2454 std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2455 2456 // Round up to multiple of MinRZ. 2457 if (SizeInBytes % MinRZ) 2458 RZ += MinRZ - (SizeInBytes % MinRZ); 2459 assert((RZ + SizeInBytes) % MinRZ == 0); 2460 2461 return RZ; 2462 } 2463 2464 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2465 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2466 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2467 int Version = 8; 2468 // 32-bit Android is one version ahead because of the switch to dynamic 2469 // shadow. 2470 Version += (LongSize == 32 && isAndroid); 2471 return Version; 2472 } 2473 2474 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2475 initializeCallbacks(M); 2476 2477 // Create a module constructor. A destructor is created lazily because not all 2478 // platforms, and not all modules need it. 2479 if (CompileKernel) { 2480 // The kernel always builds with its own runtime, and therefore does not 2481 // need the init and version check calls. 2482 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2483 } else { 2484 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2485 std::string VersionCheckName = 2486 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2487 std::tie(AsanCtorFunction, std::ignore) = 2488 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2489 kAsanInitName, /*InitArgTypes=*/{}, 2490 /*InitArgs=*/{}, VersionCheckName); 2491 } 2492 2493 bool CtorComdat = true; 2494 if (ClGlobals) { 2495 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2496 InstrumentGlobals(IRB, M, &CtorComdat); 2497 } 2498 2499 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2500 2501 // Put the constructor and destructor in comdat if both 2502 // (1) global instrumentation is not TU-specific 2503 // (2) target is ELF. 2504 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2505 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2506 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2507 if (AsanDtorFunction) { 2508 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2509 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2510 } 2511 } else { 2512 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2513 if (AsanDtorFunction) 2514 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2515 } 2516 2517 return true; 2518 } 2519 2520 void AddressSanitizer::initializeCallbacks(Module &M) { 2521 IRBuilder<> IRB(*C); 2522 // Create __asan_report* callbacks. 2523 // IsWrite, TypeSize and Exp are encoded in the function name. 2524 for (int Exp = 0; Exp < 2; Exp++) { 2525 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2526 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2527 const std::string ExpStr = Exp ? "exp_" : ""; 2528 const std::string EndingStr = Recover ? "_noabort" : ""; 2529 2530 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2531 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2532 if (Exp) { 2533 Type *ExpType = Type::getInt32Ty(*C); 2534 Args2.push_back(ExpType); 2535 Args1.push_back(ExpType); 2536 } 2537 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2538 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2539 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2540 2541 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2542 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2543 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2544 2545 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2546 AccessSizeIndex++) { 2547 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2548 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2549 M.getOrInsertFunction( 2550 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2551 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2552 2553 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2554 M.getOrInsertFunction( 2555 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2556 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2557 } 2558 } 2559 } 2560 2561 const std::string MemIntrinCallbackPrefix = 2562 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2563 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2564 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2565 IRB.getInt8PtrTy(), IntptrTy); 2566 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2567 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2568 IRB.getInt8PtrTy(), IntptrTy); 2569 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2570 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2571 IRB.getInt32Ty(), IntptrTy); 2572 2573 AsanHandleNoReturnFunc = 2574 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2575 2576 AsanPtrCmpFunction = 2577 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2578 AsanPtrSubFunction = 2579 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2580 if (Mapping.InGlobal) 2581 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2582 ArrayType::get(IRB.getInt8Ty(), 0)); 2583 } 2584 2585 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2586 // For each NSObject descendant having a +load method, this method is invoked 2587 // by the ObjC runtime before any of the static constructors is called. 2588 // Therefore we need to instrument such methods with a call to __asan_init 2589 // at the beginning in order to initialize our runtime before any access to 2590 // the shadow memory. 2591 // We cannot just ignore these methods, because they may call other 2592 // instrumented functions. 2593 if (F.getName().find(" load]") != std::string::npos) { 2594 FunctionCallee AsanInitFunction = 2595 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2596 IRBuilder<> IRB(&F.front(), F.front().begin()); 2597 IRB.CreateCall(AsanInitFunction, {}); 2598 return true; 2599 } 2600 return false; 2601 } 2602 2603 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2604 // Generate code only when dynamic addressing is needed. 2605 if (Mapping.Offset != kDynamicShadowSentinel) 2606 return false; 2607 2608 IRBuilder<> IRB(&F.front().front()); 2609 if (Mapping.InGlobal) { 2610 if (ClWithIfuncSuppressRemat) { 2611 // An empty inline asm with input reg == output reg. 2612 // An opaque pointer-to-int cast, basically. 2613 InlineAsm *Asm = InlineAsm::get( 2614 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2615 StringRef(""), StringRef("=r,0"), 2616 /*hasSideEffects=*/false); 2617 LocalDynamicShadow = 2618 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2619 } else { 2620 LocalDynamicShadow = 2621 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2622 } 2623 } else { 2624 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2625 kAsanShadowMemoryDynamicAddress, IntptrTy); 2626 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2627 } 2628 return true; 2629 } 2630 2631 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2632 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2633 // to it as uninteresting. This assumes we haven't started processing allocas 2634 // yet. This check is done up front because iterating the use list in 2635 // isInterestingAlloca would be algorithmically slower. 2636 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2637 2638 // Try to get the declaration of llvm.localescape. If it's not in the module, 2639 // we can exit early. 2640 if (!F.getParent()->getFunction("llvm.localescape")) return; 2641 2642 // Look for a call to llvm.localescape call in the entry block. It can't be in 2643 // any other block. 2644 for (Instruction &I : F.getEntryBlock()) { 2645 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2646 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2647 // We found a call. Mark all the allocas passed in as uninteresting. 2648 for (Value *Arg : II->arg_operands()) { 2649 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2650 assert(AI && AI->isStaticAlloca() && 2651 "non-static alloca arg to localescape"); 2652 ProcessedAllocas[AI] = false; 2653 } 2654 break; 2655 } 2656 } 2657 } 2658 2659 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2660 bool ShouldInstrument = 2661 ClDebugMin < 0 || ClDebugMax < 0 || 2662 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2663 Instrumented++; 2664 return !ShouldInstrument; 2665 } 2666 2667 bool AddressSanitizer::instrumentFunction(Function &F, 2668 const TargetLibraryInfo *TLI) { 2669 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2670 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2671 if (F.getName().startswith("__asan_")) return false; 2672 2673 bool FunctionModified = false; 2674 2675 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2676 // This function needs to be called even if the function body is not 2677 // instrumented. 2678 if (maybeInsertAsanInitAtFunctionEntry(F)) 2679 FunctionModified = true; 2680 2681 // Leave if the function doesn't need instrumentation. 2682 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2683 2684 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2685 2686 initializeCallbacks(*F.getParent()); 2687 2688 FunctionStateRAII CleanupObj(this); 2689 2690 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2691 2692 // We can't instrument allocas used with llvm.localescape. Only static allocas 2693 // can be passed to that intrinsic. 2694 markEscapedLocalAllocas(F); 2695 2696 // We want to instrument every address only once per basic block (unless there 2697 // are calls between uses). 2698 SmallPtrSet<Value *, 16> TempsToInstrument; 2699 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2700 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2701 SmallVector<Instruction *, 8> NoReturnCalls; 2702 SmallVector<BasicBlock *, 16> AllBlocks; 2703 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2704 int NumAllocas = 0; 2705 2706 // Fill the set of memory operations to instrument. 2707 for (auto &BB : F) { 2708 AllBlocks.push_back(&BB); 2709 TempsToInstrument.clear(); 2710 int NumInsnsPerBB = 0; 2711 for (auto &Inst : BB) { 2712 if (LooksLikeCodeInBug11395(&Inst)) return false; 2713 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2714 getInterestingMemoryOperands(&Inst, InterestingOperands); 2715 2716 if (!InterestingOperands.empty()) { 2717 for (auto &Operand : InterestingOperands) { 2718 if (ClOpt && ClOptSameTemp) { 2719 Value *Ptr = Operand.getPtr(); 2720 // If we have a mask, skip instrumentation if we've already 2721 // instrumented the full object. But don't add to TempsToInstrument 2722 // because we might get another load/store with a different mask. 2723 if (Operand.MaybeMask) { 2724 if (TempsToInstrument.count(Ptr)) 2725 continue; // We've seen this (whole) temp in the current BB. 2726 } else { 2727 if (!TempsToInstrument.insert(Ptr).second) 2728 continue; // We've seen this temp in the current BB. 2729 } 2730 } 2731 OperandsToInstrument.push_back(Operand); 2732 NumInsnsPerBB++; 2733 } 2734 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2735 isInterestingPointerComparison(&Inst)) || 2736 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2737 isInterestingPointerSubtraction(&Inst))) { 2738 PointerComparisonsOrSubtracts.push_back(&Inst); 2739 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2740 // ok, take it. 2741 IntrinToInstrument.push_back(MI); 2742 NumInsnsPerBB++; 2743 } else { 2744 if (isa<AllocaInst>(Inst)) NumAllocas++; 2745 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2746 // A call inside BB. 2747 TempsToInstrument.clear(); 2748 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2749 NoReturnCalls.push_back(CB); 2750 } 2751 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2752 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2753 } 2754 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2755 } 2756 } 2757 2758 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2759 OperandsToInstrument.size() + IntrinToInstrument.size() > 2760 (unsigned)ClInstrumentationWithCallsThreshold); 2761 const DataLayout &DL = F.getParent()->getDataLayout(); 2762 ObjectSizeOpts ObjSizeOpts; 2763 ObjSizeOpts.RoundToAlign = true; 2764 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2765 2766 // Instrument. 2767 int NumInstrumented = 0; 2768 for (auto &Operand : OperandsToInstrument) { 2769 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2770 instrumentMop(ObjSizeVis, Operand, UseCalls, 2771 F.getParent()->getDataLayout()); 2772 FunctionModified = true; 2773 } 2774 for (auto Inst : IntrinToInstrument) { 2775 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2776 instrumentMemIntrinsic(Inst); 2777 FunctionModified = true; 2778 } 2779 2780 FunctionStackPoisoner FSP(F, *this); 2781 bool ChangedStack = FSP.runOnFunction(); 2782 2783 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2784 // See e.g. https://github.com/google/sanitizers/issues/37 2785 for (auto CI : NoReturnCalls) { 2786 IRBuilder<> IRB(CI); 2787 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2788 } 2789 2790 for (auto Inst : PointerComparisonsOrSubtracts) { 2791 instrumentPointerComparisonOrSubtraction(Inst); 2792 FunctionModified = true; 2793 } 2794 2795 if (ChangedStack || !NoReturnCalls.empty()) 2796 FunctionModified = true; 2797 2798 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2799 << F << "\n"); 2800 2801 return FunctionModified; 2802 } 2803 2804 // Workaround for bug 11395: we don't want to instrument stack in functions 2805 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2806 // FIXME: remove once the bug 11395 is fixed. 2807 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2808 if (LongSize != 32) return false; 2809 CallInst *CI = dyn_cast<CallInst>(I); 2810 if (!CI || !CI->isInlineAsm()) return false; 2811 if (CI->getNumArgOperands() <= 5) return false; 2812 // We have inline assembly with quite a few arguments. 2813 return true; 2814 } 2815 2816 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2817 IRBuilder<> IRB(*C); 2818 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2819 std::string Suffix = itostr(i); 2820 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2821 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2822 AsanStackFreeFunc[i] = 2823 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2824 IRB.getVoidTy(), IntptrTy, IntptrTy); 2825 } 2826 if (ASan.UseAfterScope) { 2827 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2828 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2829 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2830 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2831 } 2832 2833 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2834 std::ostringstream Name; 2835 Name << kAsanSetShadowPrefix; 2836 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2837 AsanSetShadowFunc[Val] = 2838 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2839 } 2840 2841 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2842 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2843 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2844 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2845 } 2846 2847 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2848 ArrayRef<uint8_t> ShadowBytes, 2849 size_t Begin, size_t End, 2850 IRBuilder<> &IRB, 2851 Value *ShadowBase) { 2852 if (Begin >= End) 2853 return; 2854 2855 const size_t LargestStoreSizeInBytes = 2856 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2857 2858 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2859 2860 // Poison given range in shadow using larges store size with out leading and 2861 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2862 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2863 // middle of a store. 2864 for (size_t i = Begin; i < End;) { 2865 if (!ShadowMask[i]) { 2866 assert(!ShadowBytes[i]); 2867 ++i; 2868 continue; 2869 } 2870 2871 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2872 // Fit store size into the range. 2873 while (StoreSizeInBytes > End - i) 2874 StoreSizeInBytes /= 2; 2875 2876 // Minimize store size by trimming trailing zeros. 2877 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2878 while (j <= StoreSizeInBytes / 2) 2879 StoreSizeInBytes /= 2; 2880 } 2881 2882 uint64_t Val = 0; 2883 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2884 if (IsLittleEndian) 2885 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2886 else 2887 Val = (Val << 8) | ShadowBytes[i + j]; 2888 } 2889 2890 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2891 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2892 IRB.CreateAlignedStore( 2893 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2894 Align(1)); 2895 2896 i += StoreSizeInBytes; 2897 } 2898 } 2899 2900 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2901 ArrayRef<uint8_t> ShadowBytes, 2902 IRBuilder<> &IRB, Value *ShadowBase) { 2903 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2904 } 2905 2906 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2907 ArrayRef<uint8_t> ShadowBytes, 2908 size_t Begin, size_t End, 2909 IRBuilder<> &IRB, Value *ShadowBase) { 2910 assert(ShadowMask.size() == ShadowBytes.size()); 2911 size_t Done = Begin; 2912 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2913 if (!ShadowMask[i]) { 2914 assert(!ShadowBytes[i]); 2915 continue; 2916 } 2917 uint8_t Val = ShadowBytes[i]; 2918 if (!AsanSetShadowFunc[Val]) 2919 continue; 2920 2921 // Skip same values. 2922 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2923 } 2924 2925 if (j - i >= ClMaxInlinePoisoningSize) { 2926 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2927 IRB.CreateCall(AsanSetShadowFunc[Val], 2928 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2929 ConstantInt::get(IntptrTy, j - i)}); 2930 Done = j; 2931 } 2932 } 2933 2934 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2935 } 2936 2937 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2938 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2939 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2940 assert(LocalStackSize <= kMaxStackMallocSize); 2941 uint64_t MaxSize = kMinStackMallocSize; 2942 for (int i = 0;; i++, MaxSize *= 2) 2943 if (LocalStackSize <= MaxSize) return i; 2944 llvm_unreachable("impossible LocalStackSize"); 2945 } 2946 2947 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2948 Instruction *CopyInsertPoint = &F.front().front(); 2949 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2950 // Insert after the dynamic shadow location is determined 2951 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2952 assert(CopyInsertPoint); 2953 } 2954 IRBuilder<> IRB(CopyInsertPoint); 2955 const DataLayout &DL = F.getParent()->getDataLayout(); 2956 for (Argument &Arg : F.args()) { 2957 if (Arg.hasByValAttr()) { 2958 Type *Ty = Arg.getParamByValType(); 2959 const Align Alignment = 2960 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2961 2962 AllocaInst *AI = IRB.CreateAlloca( 2963 Ty, nullptr, 2964 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2965 ".byval"); 2966 AI->setAlignment(Alignment); 2967 Arg.replaceAllUsesWith(AI); 2968 2969 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2970 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2971 } 2972 } 2973 } 2974 2975 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2976 Value *ValueIfTrue, 2977 Instruction *ThenTerm, 2978 Value *ValueIfFalse) { 2979 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2980 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2981 PHI->addIncoming(ValueIfFalse, CondBlock); 2982 BasicBlock *ThenBlock = ThenTerm->getParent(); 2983 PHI->addIncoming(ValueIfTrue, ThenBlock); 2984 return PHI; 2985 } 2986 2987 Value *FunctionStackPoisoner::createAllocaForLayout( 2988 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2989 AllocaInst *Alloca; 2990 if (Dynamic) { 2991 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2992 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2993 "MyAlloca"); 2994 } else { 2995 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2996 nullptr, "MyAlloca"); 2997 assert(Alloca->isStaticAlloca()); 2998 } 2999 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3000 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 3001 Alloca->setAlignment(Align(FrameAlignment)); 3002 return IRB.CreatePointerCast(Alloca, IntptrTy); 3003 } 3004 3005 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3006 BasicBlock &FirstBB = *F.begin(); 3007 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3008 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3009 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3010 DynamicAllocaLayout->setAlignment(Align(32)); 3011 } 3012 3013 void FunctionStackPoisoner::processDynamicAllocas() { 3014 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3015 assert(DynamicAllocaPoisonCallVec.empty()); 3016 return; 3017 } 3018 3019 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3020 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3021 assert(APC.InsBefore); 3022 assert(APC.AI); 3023 assert(ASan.isInterestingAlloca(*APC.AI)); 3024 assert(!APC.AI->isStaticAlloca()); 3025 3026 IRBuilder<> IRB(APC.InsBefore); 3027 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3028 // Dynamic allocas will be unpoisoned unconditionally below in 3029 // unpoisonDynamicAllocas. 3030 // Flag that we need unpoison static allocas. 3031 } 3032 3033 // Handle dynamic allocas. 3034 createDynamicAllocasInitStorage(); 3035 for (auto &AI : DynamicAllocaVec) 3036 handleDynamicAllocaCall(AI); 3037 unpoisonDynamicAllocas(); 3038 } 3039 3040 /// Collect instructions in the entry block after \p InsBefore which initialize 3041 /// permanent storage for a function argument. These instructions must remain in 3042 /// the entry block so that uninitialized values do not appear in backtraces. An 3043 /// added benefit is that this conserves spill slots. This does not move stores 3044 /// before instrumented / "interesting" allocas. 3045 static void findStoresToUninstrumentedArgAllocas( 3046 AddressSanitizer &ASan, Instruction &InsBefore, 3047 SmallVectorImpl<Instruction *> &InitInsts) { 3048 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3049 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3050 // Argument initialization looks like: 3051 // 1) store <Argument>, <Alloca> OR 3052 // 2) <CastArgument> = cast <Argument> to ... 3053 // store <CastArgument> to <Alloca> 3054 // Do not consider any other kind of instruction. 3055 // 3056 // Note: This covers all known cases, but may not be exhaustive. An 3057 // alternative to pattern-matching stores is to DFS over all Argument uses: 3058 // this might be more general, but is probably much more complicated. 3059 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3060 continue; 3061 if (auto *Store = dyn_cast<StoreInst>(It)) { 3062 // The store destination must be an alloca that isn't interesting for 3063 // ASan to instrument. These are moved up before InsBefore, and they're 3064 // not interesting because allocas for arguments can be mem2reg'd. 3065 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3066 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3067 continue; 3068 3069 Value *Val = Store->getValueOperand(); 3070 bool IsDirectArgInit = isa<Argument>(Val); 3071 bool IsArgInitViaCast = 3072 isa<CastInst>(Val) && 3073 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3074 // Check that the cast appears directly before the store. Otherwise 3075 // moving the cast before InsBefore may break the IR. 3076 Val == It->getPrevNonDebugInstruction(); 3077 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3078 if (!IsArgInit) 3079 continue; 3080 3081 if (IsArgInitViaCast) 3082 InitInsts.push_back(cast<Instruction>(Val)); 3083 InitInsts.push_back(Store); 3084 continue; 3085 } 3086 3087 // Do not reorder past unknown instructions: argument initialization should 3088 // only involve casts and stores. 3089 return; 3090 } 3091 } 3092 3093 void FunctionStackPoisoner::processStaticAllocas() { 3094 if (AllocaVec.empty()) { 3095 assert(StaticAllocaPoisonCallVec.empty()); 3096 return; 3097 } 3098 3099 int StackMallocIdx = -1; 3100 DebugLoc EntryDebugLocation; 3101 if (auto SP = F.getSubprogram()) 3102 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 3103 3104 Instruction *InsBefore = AllocaVec[0]; 3105 IRBuilder<> IRB(InsBefore); 3106 3107 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3108 // debug info is broken, because only entry-block allocas are treated as 3109 // regular stack slots. 3110 auto InsBeforeB = InsBefore->getParent(); 3111 assert(InsBeforeB == &F.getEntryBlock()); 3112 for (auto *AI : StaticAllocasToMoveUp) 3113 if (AI->getParent() == InsBeforeB) 3114 AI->moveBefore(InsBefore); 3115 3116 // Move stores of arguments into entry-block allocas as well. This prevents 3117 // extra stack slots from being generated (to house the argument values until 3118 // they can be stored into the allocas). This also prevents uninitialized 3119 // values from being shown in backtraces. 3120 SmallVector<Instruction *, 8> ArgInitInsts; 3121 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3122 for (Instruction *ArgInitInst : ArgInitInsts) 3123 ArgInitInst->moveBefore(InsBefore); 3124 3125 // If we have a call to llvm.localescape, keep it in the entry block. 3126 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3127 3128 SmallVector<ASanStackVariableDescription, 16> SVD; 3129 SVD.reserve(AllocaVec.size()); 3130 for (AllocaInst *AI : AllocaVec) { 3131 ASanStackVariableDescription D = {AI->getName().data(), 3132 ASan.getAllocaSizeInBytes(*AI), 3133 0, 3134 AI->getAlignment(), 3135 AI, 3136 0, 3137 0}; 3138 SVD.push_back(D); 3139 } 3140 3141 // Minimal header size (left redzone) is 4 pointers, 3142 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3143 size_t Granularity = 1ULL << Mapping.Scale; 3144 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3145 const ASanStackFrameLayout &L = 3146 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3147 3148 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3149 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3150 for (auto &Desc : SVD) 3151 AllocaToSVDMap[Desc.AI] = &Desc; 3152 3153 // Update SVD with information from lifetime intrinsics. 3154 for (const auto &APC : StaticAllocaPoisonCallVec) { 3155 assert(APC.InsBefore); 3156 assert(APC.AI); 3157 assert(ASan.isInterestingAlloca(*APC.AI)); 3158 assert(APC.AI->isStaticAlloca()); 3159 3160 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3161 Desc.LifetimeSize = Desc.Size; 3162 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3163 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3164 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3165 if (unsigned Line = LifetimeLoc->getLine()) 3166 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3167 } 3168 } 3169 } 3170 3171 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3172 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3173 uint64_t LocalStackSize = L.FrameSize; 3174 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3175 LocalStackSize <= kMaxStackMallocSize; 3176 bool DoDynamicAlloca = ClDynamicAllocaStack; 3177 // Don't do dynamic alloca or stack malloc if: 3178 // 1) There is inline asm: too often it makes assumptions on which registers 3179 // are available. 3180 // 2) There is a returns_twice call (typically setjmp), which is 3181 // optimization-hostile, and doesn't play well with introduced indirect 3182 // register-relative calculation of local variable addresses. 3183 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3184 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3185 3186 Value *StaticAlloca = 3187 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3188 3189 Value *FakeStack; 3190 Value *LocalStackBase; 3191 Value *LocalStackBaseAlloca; 3192 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3193 3194 if (DoStackMalloc) { 3195 LocalStackBaseAlloca = 3196 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3197 // void *FakeStack = __asan_option_detect_stack_use_after_return 3198 // ? __asan_stack_malloc_N(LocalStackSize) 3199 // : nullptr; 3200 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3201 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3202 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3203 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3204 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3205 Constant::getNullValue(IRB.getInt32Ty())); 3206 Instruction *Term = 3207 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3208 IRBuilder<> IRBIf(Term); 3209 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3210 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3211 Value *FakeStackValue = 3212 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3213 ConstantInt::get(IntptrTy, LocalStackSize)); 3214 IRB.SetInsertPoint(InsBefore); 3215 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3216 ConstantInt::get(IntptrTy, 0)); 3217 3218 Value *NoFakeStack = 3219 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3220 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3221 IRBIf.SetInsertPoint(Term); 3222 Value *AllocaValue = 3223 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3224 3225 IRB.SetInsertPoint(InsBefore); 3226 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3227 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3228 DIExprFlags |= DIExpression::DerefBefore; 3229 } else { 3230 // void *FakeStack = nullptr; 3231 // void *LocalStackBase = alloca(LocalStackSize); 3232 FakeStack = ConstantInt::get(IntptrTy, 0); 3233 LocalStackBase = 3234 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3235 LocalStackBaseAlloca = LocalStackBase; 3236 } 3237 3238 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3239 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3240 // later passes and can result in dropped variable coverage in debug info. 3241 Value *LocalStackBaseAllocaPtr = 3242 isa<PtrToIntInst>(LocalStackBaseAlloca) 3243 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3244 : LocalStackBaseAlloca; 3245 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3246 "Variable descriptions relative to ASan stack base will be dropped"); 3247 3248 // Replace Alloca instructions with base+offset. 3249 for (const auto &Desc : SVD) { 3250 AllocaInst *AI = Desc.AI; 3251 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3252 Desc.Offset); 3253 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3254 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3255 AI->getType()); 3256 AI->replaceAllUsesWith(NewAllocaPtr); 3257 } 3258 3259 // The left-most redzone has enough space for at least 4 pointers. 3260 // Write the Magic value to redzone[0]. 3261 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3262 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3263 BasePlus0); 3264 // Write the frame description constant to redzone[1]. 3265 Value *BasePlus1 = IRB.CreateIntToPtr( 3266 IRB.CreateAdd(LocalStackBase, 3267 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3268 IntptrPtrTy); 3269 GlobalVariable *StackDescriptionGlobal = 3270 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3271 /*AllowMerging*/ true, kAsanGenPrefix); 3272 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3273 IRB.CreateStore(Description, BasePlus1); 3274 // Write the PC to redzone[2]. 3275 Value *BasePlus2 = IRB.CreateIntToPtr( 3276 IRB.CreateAdd(LocalStackBase, 3277 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3278 IntptrPtrTy); 3279 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3280 3281 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3282 3283 // Poison the stack red zones at the entry. 3284 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3285 // As mask we must use most poisoned case: red zones and after scope. 3286 // As bytes we can use either the same or just red zones only. 3287 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3288 3289 if (!StaticAllocaPoisonCallVec.empty()) { 3290 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3291 3292 // Poison static allocas near lifetime intrinsics. 3293 for (const auto &APC : StaticAllocaPoisonCallVec) { 3294 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3295 assert(Desc.Offset % L.Granularity == 0); 3296 size_t Begin = Desc.Offset / L.Granularity; 3297 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3298 3299 IRBuilder<> IRB(APC.InsBefore); 3300 copyToShadow(ShadowAfterScope, 3301 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3302 IRB, ShadowBase); 3303 } 3304 } 3305 3306 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3307 SmallVector<uint8_t, 64> ShadowAfterReturn; 3308 3309 // (Un)poison the stack before all ret instructions. 3310 for (auto Ret : RetVec) { 3311 IRBuilder<> IRBRet(Ret); 3312 // Mark the current frame as retired. 3313 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3314 BasePlus0); 3315 if (DoStackMalloc) { 3316 assert(StackMallocIdx >= 0); 3317 // if FakeStack != 0 // LocalStackBase == FakeStack 3318 // // In use-after-return mode, poison the whole stack frame. 3319 // if StackMallocIdx <= 4 3320 // // For small sizes inline the whole thing: 3321 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3322 // **SavedFlagPtr(FakeStack) = 0 3323 // else 3324 // __asan_stack_free_N(FakeStack, LocalStackSize) 3325 // else 3326 // <This is not a fake stack; unpoison the redzones> 3327 Value *Cmp = 3328 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3329 Instruction *ThenTerm, *ElseTerm; 3330 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3331 3332 IRBuilder<> IRBPoison(ThenTerm); 3333 if (StackMallocIdx <= 4) { 3334 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3335 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3336 kAsanStackUseAfterReturnMagic); 3337 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3338 ShadowBase); 3339 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3340 FakeStack, 3341 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3342 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3343 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3344 IRBPoison.CreateStore( 3345 Constant::getNullValue(IRBPoison.getInt8Ty()), 3346 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3347 } else { 3348 // For larger frames call __asan_stack_free_*. 3349 IRBPoison.CreateCall( 3350 AsanStackFreeFunc[StackMallocIdx], 3351 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3352 } 3353 3354 IRBuilder<> IRBElse(ElseTerm); 3355 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3356 } else { 3357 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3358 } 3359 } 3360 3361 // We are done. Remove the old unused alloca instructions. 3362 for (auto AI : AllocaVec) AI->eraseFromParent(); 3363 } 3364 3365 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3366 IRBuilder<> &IRB, bool DoPoison) { 3367 // For now just insert the call to ASan runtime. 3368 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3369 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3370 IRB.CreateCall( 3371 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3372 {AddrArg, SizeArg}); 3373 } 3374 3375 // Handling llvm.lifetime intrinsics for a given %alloca: 3376 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3377 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3378 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3379 // could be poisoned by previous llvm.lifetime.end instruction, as the 3380 // variable may go in and out of scope several times, e.g. in loops). 3381 // (3) if we poisoned at least one %alloca in a function, 3382 // unpoison the whole stack frame at function exit. 3383 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3384 IRBuilder<> IRB(AI); 3385 3386 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3387 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3388 3389 Value *Zero = Constant::getNullValue(IntptrTy); 3390 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3391 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3392 3393 // Since we need to extend alloca with additional memory to locate 3394 // redzones, and OldSize is number of allocated blocks with 3395 // ElementSize size, get allocated memory size in bytes by 3396 // OldSize * ElementSize. 3397 const unsigned ElementSize = 3398 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3399 Value *OldSize = 3400 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3401 ConstantInt::get(IntptrTy, ElementSize)); 3402 3403 // PartialSize = OldSize % 32 3404 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3405 3406 // Misalign = kAllocaRzSize - PartialSize; 3407 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3408 3409 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3410 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3411 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3412 3413 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3414 // Alignment is added to locate left redzone, PartialPadding for possible 3415 // partial redzone and kAllocaRzSize for right redzone respectively. 3416 Value *AdditionalChunkSize = IRB.CreateAdd( 3417 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3418 3419 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3420 3421 // Insert new alloca with new NewSize and Alignment params. 3422 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3423 NewAlloca->setAlignment(Align(Alignment)); 3424 3425 // NewAddress = Address + Alignment 3426 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3427 ConstantInt::get(IntptrTy, Alignment)); 3428 3429 // Insert __asan_alloca_poison call for new created alloca. 3430 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3431 3432 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3433 // for unpoisoning stuff. 3434 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3435 3436 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3437 3438 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3439 AI->replaceAllUsesWith(NewAddressPtr); 3440 3441 // We are done. Erase old alloca from parent. 3442 AI->eraseFromParent(); 3443 } 3444 3445 // isSafeAccess returns true if Addr is always inbounds with respect to its 3446 // base object. For example, it is a field access or an array access with 3447 // constant inbounds index. 3448 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3449 Value *Addr, uint64_t TypeSize) const { 3450 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3451 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3452 uint64_t Size = SizeOffset.first.getZExtValue(); 3453 int64_t Offset = SizeOffset.second.getSExtValue(); 3454 // Three checks are required to ensure safety: 3455 // . Offset >= 0 (since the offset is given from the base ptr) 3456 // . Size >= Offset (unsigned) 3457 // . Size - Offset >= NeededSize (unsigned) 3458 return Offset >= 0 && Size >= uint64_t(Offset) && 3459 Size - uint64_t(Offset) >= TypeSize / 8; 3460 } 3461