1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/MachO.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstVisitor.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/MDBuilder.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/MC/MCSectionMachO.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/ModuleUtils.h" 76 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iomanip> 82 #include <limits> 83 #include <memory> 84 #include <sstream> 85 #include <string> 86 #include <tuple> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "asan" 91 92 static const uint64_t kDefaultShadowScale = 3; 93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 95 static const uint64_t kDynamicShadowSentinel = 96 std::numeric_limits<uint64_t>::max(); 97 static const uint64_t kIOSShadowOffset32 = 1ULL << 30; 98 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30; 99 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64; 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 109 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 111 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 112 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 113 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 114 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 115 116 static const uint64_t kMyriadShadowScale = 5; 117 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 118 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 119 static const uint64_t kMyriadTagShift = 29; 120 static const uint64_t kMyriadDDRTag = 4; 121 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 122 123 // The shadow memory space is dynamically allocated. 124 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 125 126 static const size_t kMinStackMallocSize = 1 << 6; // 64B 127 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 128 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 129 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 130 131 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 132 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 133 static const uint64_t kAsanCtorAndDtorPriority = 1; 134 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 135 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 136 static const char *const kAsanUnregisterGlobalsName = 137 "__asan_unregister_globals"; 138 static const char *const kAsanRegisterImageGlobalsName = 139 "__asan_register_image_globals"; 140 static const char *const kAsanUnregisterImageGlobalsName = 141 "__asan_unregister_image_globals"; 142 static const char *const kAsanRegisterElfGlobalsName = 143 "__asan_register_elf_globals"; 144 static const char *const kAsanUnregisterElfGlobalsName = 145 "__asan_unregister_elf_globals"; 146 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 147 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 148 static const char *const kAsanInitName = "__asan_init"; 149 static const char *const kAsanVersionCheckNamePrefix = 150 "__asan_version_mismatch_check_v"; 151 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 152 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 153 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 154 static const int kMaxAsanStackMallocSizeClass = 10; 155 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 156 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 157 static const char *const kAsanGenPrefix = "___asan_gen_"; 158 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 159 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 160 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 161 static const char *const kAsanPoisonStackMemoryName = 162 "__asan_poison_stack_memory"; 163 static const char *const kAsanUnpoisonStackMemoryName = 164 "__asan_unpoison_stack_memory"; 165 166 // ASan version script has __asan_* wildcard. Triple underscore prevents a 167 // linker (gold) warning about attempting to export a local symbol. 168 static const char *const kAsanGlobalsRegisteredFlagName = 169 "___asan_globals_registered"; 170 171 static const char *const kAsanOptionDetectUseAfterReturn = 172 "__asan_option_detect_stack_use_after_return"; 173 174 static const char *const kAsanShadowMemoryDynamicAddress = 175 "__asan_shadow_memory_dynamic_address"; 176 177 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 178 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 179 180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 181 static const size_t kNumberOfAccessSizes = 5; 182 183 static const unsigned kAllocaRzSize = 32; 184 185 // Command-line flags. 186 187 static cl::opt<bool> ClEnableKasan( 188 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 189 cl::Hidden, cl::init(false)); 190 191 static cl::opt<bool> ClRecover( 192 "asan-recover", 193 cl::desc("Enable recovery mode (continue-after-error)."), 194 cl::Hidden, cl::init(false)); 195 196 // This flag may need to be replaced with -f[no-]asan-reads. 197 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 198 cl::desc("instrument read instructions"), 199 cl::Hidden, cl::init(true)); 200 201 static cl::opt<bool> ClInstrumentWrites( 202 "asan-instrument-writes", cl::desc("instrument write instructions"), 203 cl::Hidden, cl::init(true)); 204 205 static cl::opt<bool> ClInstrumentAtomics( 206 "asan-instrument-atomics", 207 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 208 cl::init(true)); 209 210 static cl::opt<bool> ClAlwaysSlowPath( 211 "asan-always-slow-path", 212 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 213 cl::init(false)); 214 215 static cl::opt<bool> ClForceDynamicShadow( 216 "asan-force-dynamic-shadow", 217 cl::desc("Load shadow address into a local variable for each function"), 218 cl::Hidden, cl::init(false)); 219 220 static cl::opt<bool> 221 ClWithIfunc("asan-with-ifunc", 222 cl::desc("Access dynamic shadow through an ifunc global on " 223 "platforms that support this"), 224 cl::Hidden, cl::init(true)); 225 226 static cl::opt<bool> ClWithIfuncSuppressRemat( 227 "asan-with-ifunc-suppress-remat", 228 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 229 "it through inline asm in prologue."), 230 cl::Hidden, cl::init(true)); 231 232 // This flag limits the number of instructions to be instrumented 233 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 234 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 235 // set it to 10000. 236 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 237 "asan-max-ins-per-bb", cl::init(10000), 238 cl::desc("maximal number of instructions to instrument in any given BB"), 239 cl::Hidden); 240 241 // This flag may need to be replaced with -f[no]asan-stack. 242 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 243 cl::Hidden, cl::init(true)); 244 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 245 "asan-max-inline-poisoning-size", 246 cl::desc( 247 "Inline shadow poisoning for blocks up to the given size in bytes."), 248 cl::Hidden, cl::init(64)); 249 250 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 251 cl::desc("Check stack-use-after-return"), 252 cl::Hidden, cl::init(true)); 253 254 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 255 cl::desc("Create redzones for byval " 256 "arguments (extra copy " 257 "required)"), cl::Hidden, 258 cl::init(true)); 259 260 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 261 cl::desc("Check stack-use-after-scope"), 262 cl::Hidden, cl::init(false)); 263 264 // This flag may need to be replaced with -f[no]asan-globals. 265 static cl::opt<bool> ClGlobals("asan-globals", 266 cl::desc("Handle global objects"), cl::Hidden, 267 cl::init(true)); 268 269 static cl::opt<bool> ClInitializers("asan-initialization-order", 270 cl::desc("Handle C++ initializer order"), 271 cl::Hidden, cl::init(true)); 272 273 static cl::opt<bool> ClInvalidPointerPairs( 274 "asan-detect-invalid-pointer-pair", 275 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 276 cl::init(false)); 277 278 static cl::opt<bool> ClInvalidPointerCmp( 279 "asan-detect-invalid-pointer-cmp", 280 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 281 cl::init(false)); 282 283 static cl::opt<bool> ClInvalidPointerSub( 284 "asan-detect-invalid-pointer-sub", 285 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 286 cl::init(false)); 287 288 static cl::opt<unsigned> ClRealignStack( 289 "asan-realign-stack", 290 cl::desc("Realign stack to the value of this flag (power of two)"), 291 cl::Hidden, cl::init(32)); 292 293 static cl::opt<int> ClInstrumentationWithCallsThreshold( 294 "asan-instrumentation-with-call-threshold", 295 cl::desc( 296 "If the function being instrumented contains more than " 297 "this number of memory accesses, use callbacks instead of " 298 "inline checks (-1 means never use callbacks)."), 299 cl::Hidden, cl::init(7000)); 300 301 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 302 "asan-memory-access-callback-prefix", 303 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 304 cl::init("__asan_")); 305 306 static cl::opt<bool> 307 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 308 cl::desc("instrument dynamic allocas"), 309 cl::Hidden, cl::init(true)); 310 311 static cl::opt<bool> ClSkipPromotableAllocas( 312 "asan-skip-promotable-allocas", 313 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 314 cl::init(true)); 315 316 // These flags allow to change the shadow mapping. 317 // The shadow mapping looks like 318 // Shadow = (Mem >> scale) + offset 319 320 static cl::opt<int> ClMappingScale("asan-mapping-scale", 321 cl::desc("scale of asan shadow mapping"), 322 cl::Hidden, cl::init(0)); 323 324 static cl::opt<uint64_t> 325 ClMappingOffset("asan-mapping-offset", 326 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 327 cl::Hidden, cl::init(0)); 328 329 // Optimization flags. Not user visible, used mostly for testing 330 // and benchmarking the tool. 331 332 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 333 cl::Hidden, cl::init(true)); 334 335 static cl::opt<bool> ClOptSameTemp( 336 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 337 cl::Hidden, cl::init(true)); 338 339 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 340 cl::desc("Don't instrument scalar globals"), 341 cl::Hidden, cl::init(true)); 342 343 static cl::opt<bool> ClOptStack( 344 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 345 cl::Hidden, cl::init(false)); 346 347 static cl::opt<bool> ClDynamicAllocaStack( 348 "asan-stack-dynamic-alloca", 349 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 350 cl::init(true)); 351 352 static cl::opt<uint32_t> ClForceExperiment( 353 "asan-force-experiment", 354 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 355 cl::init(0)); 356 357 static cl::opt<bool> 358 ClUsePrivateAlias("asan-use-private-alias", 359 cl::desc("Use private aliases for global variables"), 360 cl::Hidden, cl::init(false)); 361 362 static cl::opt<bool> 363 ClUseOdrIndicator("asan-use-odr-indicator", 364 cl::desc("Use odr indicators to improve ODR reporting"), 365 cl::Hidden, cl::init(false)); 366 367 static cl::opt<bool> 368 ClUseGlobalsGC("asan-globals-live-support", 369 cl::desc("Use linker features to support dead " 370 "code stripping of globals"), 371 cl::Hidden, cl::init(true)); 372 373 // This is on by default even though there is a bug in gold: 374 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 375 static cl::opt<bool> 376 ClWithComdat("asan-with-comdat", 377 cl::desc("Place ASan constructors in comdat sections"), 378 cl::Hidden, cl::init(true)); 379 380 // Debug flags. 381 382 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 383 cl::init(0)); 384 385 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 386 cl::Hidden, cl::init(0)); 387 388 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 389 cl::desc("Debug func")); 390 391 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 392 cl::Hidden, cl::init(-1)); 393 394 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 395 cl::Hidden, cl::init(-1)); 396 397 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 398 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 399 STATISTIC(NumOptimizedAccessesToGlobalVar, 400 "Number of optimized accesses to global vars"); 401 STATISTIC(NumOptimizedAccessesToStackVar, 402 "Number of optimized accesses to stack vars"); 403 404 namespace { 405 406 /// This struct defines the shadow mapping using the rule: 407 /// shadow = (mem >> Scale) ADD-or-OR Offset. 408 /// If InGlobal is true, then 409 /// extern char __asan_shadow[]; 410 /// shadow = (mem >> Scale) + &__asan_shadow 411 struct ShadowMapping { 412 int Scale; 413 uint64_t Offset; 414 bool OrShadowOffset; 415 bool InGlobal; 416 }; 417 418 } // end anonymous namespace 419 420 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 421 bool IsKasan) { 422 bool IsAndroid = TargetTriple.isAndroid(); 423 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 424 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 425 bool IsNetBSD = TargetTriple.isOSNetBSD(); 426 bool IsPS4CPU = TargetTriple.isPS4CPU(); 427 bool IsLinux = TargetTriple.isOSLinux(); 428 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 429 TargetTriple.getArch() == Triple::ppc64le; 430 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 431 bool IsX86 = TargetTriple.getArch() == Triple::x86; 432 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 433 bool IsMIPS32 = TargetTriple.isMIPS32(); 434 bool IsMIPS64 = TargetTriple.isMIPS64(); 435 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 436 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 437 bool IsWindows = TargetTriple.isOSWindows(); 438 bool IsFuchsia = TargetTriple.isOSFuchsia(); 439 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 440 441 ShadowMapping Mapping; 442 443 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 444 if (ClMappingScale.getNumOccurrences() > 0) { 445 Mapping.Scale = ClMappingScale; 446 } 447 448 if (LongSize == 32) { 449 if (IsAndroid) 450 Mapping.Offset = kDynamicShadowSentinel; 451 else if (IsMIPS32) 452 Mapping.Offset = kMIPS32_ShadowOffset32; 453 else if (IsFreeBSD) 454 Mapping.Offset = kFreeBSD_ShadowOffset32; 455 else if (IsNetBSD) 456 Mapping.Offset = kNetBSD_ShadowOffset32; 457 else if (IsIOS) 458 // If we're targeting iOS and x86, the binary is built for iOS simulator. 459 Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32; 460 else if (IsWindows) 461 Mapping.Offset = kWindowsShadowOffset32; 462 else if (IsMyriad) { 463 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 464 (kMyriadMemorySize32 >> Mapping.Scale)); 465 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 466 } 467 else 468 Mapping.Offset = kDefaultShadowOffset32; 469 } else { // LongSize == 64 470 // Fuchsia is always PIE, which means that the beginning of the address 471 // space is always available. 472 if (IsFuchsia) 473 Mapping.Offset = 0; 474 else if (IsPPC64) 475 Mapping.Offset = kPPC64_ShadowOffset64; 476 else if (IsSystemZ) 477 Mapping.Offset = kSystemZ_ShadowOffset64; 478 else if (IsFreeBSD && !IsMIPS64) 479 Mapping.Offset = kFreeBSD_ShadowOffset64; 480 else if (IsNetBSD) { 481 if (IsKasan) 482 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 483 else 484 Mapping.Offset = kNetBSD_ShadowOffset64; 485 } else if (IsPS4CPU) 486 Mapping.Offset = kPS4CPU_ShadowOffset64; 487 else if (IsLinux && IsX86_64) { 488 if (IsKasan) 489 Mapping.Offset = kLinuxKasan_ShadowOffset64; 490 else 491 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 492 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 493 } else if (IsWindows && IsX86_64) { 494 Mapping.Offset = kWindowsShadowOffset64; 495 } else if (IsMIPS64) 496 Mapping.Offset = kMIPS64_ShadowOffset64; 497 else if (IsIOS) 498 // If we're targeting iOS and x86, the binary is built for iOS simulator. 499 // We are using dynamic shadow offset on the 64-bit devices. 500 Mapping.Offset = 501 IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel; 502 else if (IsAArch64) 503 Mapping.Offset = kAArch64_ShadowOffset64; 504 else 505 Mapping.Offset = kDefaultShadowOffset64; 506 } 507 508 if (ClForceDynamicShadow) { 509 Mapping.Offset = kDynamicShadowSentinel; 510 } 511 512 if (ClMappingOffset.getNumOccurrences() > 0) { 513 Mapping.Offset = ClMappingOffset; 514 } 515 516 // OR-ing shadow offset if more efficient (at least on x86) if the offset 517 // is a power of two, but on ppc64 we have to use add since the shadow 518 // offset is not necessary 1/8-th of the address space. On SystemZ, 519 // we could OR the constant in a single instruction, but it's more 520 // efficient to load it once and use indexed addressing. 521 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 522 !(Mapping.Offset & (Mapping.Offset - 1)) && 523 Mapping.Offset != kDynamicShadowSentinel; 524 bool IsAndroidWithIfuncSupport = 525 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 526 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 527 528 return Mapping; 529 } 530 531 static size_t RedzoneSizeForScale(int MappingScale) { 532 // Redzone used for stack and globals is at least 32 bytes. 533 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 534 return std::max(32U, 1U << MappingScale); 535 } 536 537 namespace { 538 539 /// Module analysis for getting various metadata about the module. 540 class ASanGlobalsMetadataWrapperPass : public ModulePass { 541 public: 542 static char ID; 543 544 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 545 initializeASanGlobalsMetadataWrapperPassPass( 546 *PassRegistry::getPassRegistry()); 547 } 548 549 bool runOnModule(Module &M) override { 550 GlobalsMD = GlobalsMetadata(M); 551 return false; 552 } 553 554 StringRef getPassName() const override { 555 return "ASanGlobalsMetadataWrapperPass"; 556 } 557 558 void getAnalysisUsage(AnalysisUsage &AU) const override { 559 AU.setPreservesAll(); 560 } 561 562 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 563 564 private: 565 GlobalsMetadata GlobalsMD; 566 }; 567 568 char ASanGlobalsMetadataWrapperPass::ID = 0; 569 570 /// AddressSanitizer: instrument the code in module to find memory bugs. 571 struct AddressSanitizer { 572 AddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD, 573 bool CompileKernel = false, bool Recover = false, 574 bool UseAfterScope = false) 575 : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(GlobalsMD) { 576 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 577 this->CompileKernel = 578 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 579 580 C = &(M.getContext()); 581 LongSize = M.getDataLayout().getPointerSizeInBits(); 582 IntptrTy = Type::getIntNTy(*C, LongSize); 583 TargetTriple = Triple(M.getTargetTriple()); 584 585 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 586 } 587 588 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 589 uint64_t ArraySize = 1; 590 if (AI.isArrayAllocation()) { 591 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 592 assert(CI && "non-constant array size"); 593 ArraySize = CI->getZExtValue(); 594 } 595 Type *Ty = AI.getAllocatedType(); 596 uint64_t SizeInBytes = 597 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 598 return SizeInBytes * ArraySize; 599 } 600 601 /// Check if we want (and can) handle this alloca. 602 bool isInterestingAlloca(const AllocaInst &AI); 603 604 /// If it is an interesting memory access, return the PointerOperand 605 /// and set IsWrite/Alignment. Otherwise return nullptr. 606 /// MaybeMask is an output parameter for the mask Value, if we're looking at a 607 /// masked load/store. 608 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 609 uint64_t *TypeSize, unsigned *Alignment, 610 Value **MaybeMask = nullptr); 611 612 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 613 bool UseCalls, const DataLayout &DL); 614 void instrumentPointerComparisonOrSubtraction(Instruction *I); 615 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 616 Value *Addr, uint32_t TypeSize, bool IsWrite, 617 Value *SizeArgument, bool UseCalls, uint32_t Exp); 618 void instrumentUnusualSizeOrAlignment(Instruction *I, 619 Instruction *InsertBefore, Value *Addr, 620 uint32_t TypeSize, bool IsWrite, 621 Value *SizeArgument, bool UseCalls, 622 uint32_t Exp); 623 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 624 Value *ShadowValue, uint32_t TypeSize); 625 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 626 bool IsWrite, size_t AccessSizeIndex, 627 Value *SizeArgument, uint32_t Exp); 628 void instrumentMemIntrinsic(MemIntrinsic *MI); 629 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 630 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 631 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 632 void maybeInsertDynamicShadowAtFunctionEntry(Function &F); 633 void markEscapedLocalAllocas(Function &F); 634 635 private: 636 friend struct FunctionStackPoisoner; 637 638 void initializeCallbacks(Module &M); 639 640 bool LooksLikeCodeInBug11395(Instruction *I); 641 bool GlobalIsLinkerInitialized(GlobalVariable *G); 642 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 643 uint64_t TypeSize) const; 644 645 /// Helper to cleanup per-function state. 646 struct FunctionStateRAII { 647 AddressSanitizer *Pass; 648 649 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 650 assert(Pass->ProcessedAllocas.empty() && 651 "last pass forgot to clear cache"); 652 assert(!Pass->LocalDynamicShadow); 653 } 654 655 ~FunctionStateRAII() { 656 Pass->LocalDynamicShadow = nullptr; 657 Pass->ProcessedAllocas.clear(); 658 } 659 }; 660 661 LLVMContext *C; 662 Triple TargetTriple; 663 int LongSize; 664 bool CompileKernel; 665 bool Recover; 666 bool UseAfterScope; 667 Type *IntptrTy; 668 ShadowMapping Mapping; 669 FunctionCallee AsanHandleNoReturnFunc; 670 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 671 Constant *AsanShadowGlobal; 672 673 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 674 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 675 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 676 677 // These arrays is indexed by AccessIsWrite and Experiment. 678 FunctionCallee AsanErrorCallbackSized[2][2]; 679 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 680 681 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 682 InlineAsm *EmptyAsm; 683 Value *LocalDynamicShadow = nullptr; 684 GlobalsMetadata GlobalsMD; 685 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 686 }; 687 688 class AddressSanitizerLegacyPass : public FunctionPass { 689 public: 690 static char ID; 691 692 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 693 bool Recover = false, 694 bool UseAfterScope = false) 695 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 696 UseAfterScope(UseAfterScope) { 697 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 698 } 699 700 StringRef getPassName() const override { 701 return "AddressSanitizerFunctionPass"; 702 } 703 704 void getAnalysisUsage(AnalysisUsage &AU) const override { 705 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 706 AU.addRequired<TargetLibraryInfoWrapperPass>(); 707 } 708 709 bool runOnFunction(Function &F) override { 710 GlobalsMetadata &GlobalsMD = 711 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 712 const TargetLibraryInfo *TLI = 713 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 714 AddressSanitizer ASan(*F.getParent(), GlobalsMD, CompileKernel, Recover, 715 UseAfterScope); 716 return ASan.instrumentFunction(F, TLI); 717 } 718 719 private: 720 bool CompileKernel; 721 bool Recover; 722 bool UseAfterScope; 723 }; 724 725 class ModuleAddressSanitizer { 726 public: 727 ModuleAddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD, 728 bool CompileKernel = false, bool Recover = false, 729 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 730 : GlobalsMD(GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC), 731 // Enable aliases as they should have no downside with ODR indicators. 732 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 733 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 734 // Not a typo: ClWithComdat is almost completely pointless without 735 // ClUseGlobalsGC (because then it only works on modules without 736 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 737 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 738 // argument is designed as workaround. Therefore, disable both 739 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 740 // do globals-gc. 741 UseCtorComdat(UseGlobalsGC && ClWithComdat) { 742 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 743 this->CompileKernel = 744 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 745 746 C = &(M.getContext()); 747 int LongSize = M.getDataLayout().getPointerSizeInBits(); 748 IntptrTy = Type::getIntNTy(*C, LongSize); 749 TargetTriple = Triple(M.getTargetTriple()); 750 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 751 } 752 753 bool instrumentModule(Module &); 754 755 private: 756 void initializeCallbacks(Module &M); 757 758 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 759 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 760 ArrayRef<GlobalVariable *> ExtendedGlobals, 761 ArrayRef<Constant *> MetadataInitializers); 762 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 763 ArrayRef<GlobalVariable *> ExtendedGlobals, 764 ArrayRef<Constant *> MetadataInitializers, 765 const std::string &UniqueModuleId); 766 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 767 ArrayRef<GlobalVariable *> ExtendedGlobals, 768 ArrayRef<Constant *> MetadataInitializers); 769 void 770 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 771 ArrayRef<GlobalVariable *> ExtendedGlobals, 772 ArrayRef<Constant *> MetadataInitializers); 773 774 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 775 StringRef OriginalName); 776 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 777 StringRef InternalSuffix); 778 IRBuilder<> CreateAsanModuleDtor(Module &M); 779 780 bool ShouldInstrumentGlobal(GlobalVariable *G); 781 bool ShouldUseMachOGlobalsSection() const; 782 StringRef getGlobalMetadataSection() const; 783 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 784 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 785 size_t MinRedzoneSizeForGlobal() const { 786 return RedzoneSizeForScale(Mapping.Scale); 787 } 788 int GetAsanVersion(const Module &M) const; 789 790 GlobalsMetadata GlobalsMD; 791 bool CompileKernel; 792 bool Recover; 793 bool UseGlobalsGC; 794 bool UsePrivateAlias; 795 bool UseOdrIndicator; 796 bool UseCtorComdat; 797 Type *IntptrTy; 798 LLVMContext *C; 799 Triple TargetTriple; 800 ShadowMapping Mapping; 801 FunctionCallee AsanPoisonGlobals; 802 FunctionCallee AsanUnpoisonGlobals; 803 FunctionCallee AsanRegisterGlobals; 804 FunctionCallee AsanUnregisterGlobals; 805 FunctionCallee AsanRegisterImageGlobals; 806 FunctionCallee AsanUnregisterImageGlobals; 807 FunctionCallee AsanRegisterElfGlobals; 808 FunctionCallee AsanUnregisterElfGlobals; 809 810 Function *AsanCtorFunction = nullptr; 811 Function *AsanDtorFunction = nullptr; 812 }; 813 814 class ModuleAddressSanitizerLegacyPass : public ModulePass { 815 public: 816 static char ID; 817 818 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 819 bool Recover = false, 820 bool UseGlobalGC = true, 821 bool UseOdrIndicator = false) 822 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 823 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 824 initializeModuleAddressSanitizerLegacyPassPass( 825 *PassRegistry::getPassRegistry()); 826 } 827 828 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 829 830 void getAnalysisUsage(AnalysisUsage &AU) const override { 831 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 832 } 833 834 bool runOnModule(Module &M) override { 835 GlobalsMetadata &GlobalsMD = 836 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 837 ModuleAddressSanitizer ASanModule(M, GlobalsMD, CompileKernel, Recover, 838 UseGlobalGC, UseOdrIndicator); 839 return ASanModule.instrumentModule(M); 840 } 841 842 private: 843 bool CompileKernel; 844 bool Recover; 845 bool UseGlobalGC; 846 bool UseOdrIndicator; 847 }; 848 849 // Stack poisoning does not play well with exception handling. 850 // When an exception is thrown, we essentially bypass the code 851 // that unpoisones the stack. This is why the run-time library has 852 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 853 // stack in the interceptor. This however does not work inside the 854 // actual function which catches the exception. Most likely because the 855 // compiler hoists the load of the shadow value somewhere too high. 856 // This causes asan to report a non-existing bug on 453.povray. 857 // It sounds like an LLVM bug. 858 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 859 Function &F; 860 AddressSanitizer &ASan; 861 DIBuilder DIB; 862 LLVMContext *C; 863 Type *IntptrTy; 864 Type *IntptrPtrTy; 865 ShadowMapping Mapping; 866 867 SmallVector<AllocaInst *, 16> AllocaVec; 868 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 869 SmallVector<Instruction *, 8> RetVec; 870 unsigned StackAlignment; 871 872 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 873 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 874 FunctionCallee AsanSetShadowFunc[0x100] = {}; 875 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 876 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 877 878 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 879 struct AllocaPoisonCall { 880 IntrinsicInst *InsBefore; 881 AllocaInst *AI; 882 uint64_t Size; 883 bool DoPoison; 884 }; 885 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 886 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 887 bool HasUntracedLifetimeIntrinsic = false; 888 889 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 890 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 891 AllocaInst *DynamicAllocaLayout = nullptr; 892 IntrinsicInst *LocalEscapeCall = nullptr; 893 894 // Maps Value to an AllocaInst from which the Value is originated. 895 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 896 AllocaForValueMapTy AllocaForValue; 897 898 bool HasNonEmptyInlineAsm = false; 899 bool HasReturnsTwiceCall = false; 900 std::unique_ptr<CallInst> EmptyInlineAsm; 901 902 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 903 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 904 C(ASan.C), IntptrTy(ASan.IntptrTy), 905 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 906 StackAlignment(1 << Mapping.Scale), 907 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 908 909 bool runOnFunction() { 910 if (!ClStack) return false; 911 912 if (ClRedzoneByvalArgs) 913 copyArgsPassedByValToAllocas(); 914 915 // Collect alloca, ret, lifetime instructions etc. 916 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 917 918 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 919 920 initializeCallbacks(*F.getParent()); 921 922 if (HasUntracedLifetimeIntrinsic) { 923 // If there are lifetime intrinsics which couldn't be traced back to an 924 // alloca, we may not know exactly when a variable enters scope, and 925 // therefore should "fail safe" by not poisoning them. 926 StaticAllocaPoisonCallVec.clear(); 927 DynamicAllocaPoisonCallVec.clear(); 928 } 929 930 processDynamicAllocas(); 931 processStaticAllocas(); 932 933 if (ClDebugStack) { 934 LLVM_DEBUG(dbgs() << F); 935 } 936 return true; 937 } 938 939 // Arguments marked with the "byval" attribute are implicitly copied without 940 // using an alloca instruction. To produce redzones for those arguments, we 941 // copy them a second time into memory allocated with an alloca instruction. 942 void copyArgsPassedByValToAllocas(); 943 944 // Finds all Alloca instructions and puts 945 // poisoned red zones around all of them. 946 // Then unpoison everything back before the function returns. 947 void processStaticAllocas(); 948 void processDynamicAllocas(); 949 950 void createDynamicAllocasInitStorage(); 951 952 // ----------------------- Visitors. 953 /// Collect all Ret instructions. 954 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 955 956 /// Collect all Resume instructions. 957 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 958 959 /// Collect all CatchReturnInst instructions. 960 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 961 962 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 963 Value *SavedStack) { 964 IRBuilder<> IRB(InstBefore); 965 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 966 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 967 // need to adjust extracted SP to compute the address of the most recent 968 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 969 // this purpose. 970 if (!isa<ReturnInst>(InstBefore)) { 971 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 972 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 973 {IntptrTy}); 974 975 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 976 977 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 978 DynamicAreaOffset); 979 } 980 981 IRB.CreateCall( 982 AsanAllocasUnpoisonFunc, 983 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 984 } 985 986 // Unpoison dynamic allocas redzones. 987 void unpoisonDynamicAllocas() { 988 for (auto &Ret : RetVec) 989 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 990 991 for (auto &StackRestoreInst : StackRestoreVec) 992 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 993 StackRestoreInst->getOperand(0)); 994 } 995 996 // Deploy and poison redzones around dynamic alloca call. To do this, we 997 // should replace this call with another one with changed parameters and 998 // replace all its uses with new address, so 999 // addr = alloca type, old_size, align 1000 // is replaced by 1001 // new_size = (old_size + additional_size) * sizeof(type) 1002 // tmp = alloca i8, new_size, max(align, 32) 1003 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1004 // Additional_size is added to make new memory allocation contain not only 1005 // requested memory, but also left, partial and right redzones. 1006 void handleDynamicAllocaCall(AllocaInst *AI); 1007 1008 /// Collect Alloca instructions we want (and can) handle. 1009 void visitAllocaInst(AllocaInst &AI) { 1010 if (!ASan.isInterestingAlloca(AI)) { 1011 if (AI.isStaticAlloca()) { 1012 // Skip over allocas that are present *before* the first instrumented 1013 // alloca, we don't want to move those around. 1014 if (AllocaVec.empty()) 1015 return; 1016 1017 StaticAllocasToMoveUp.push_back(&AI); 1018 } 1019 return; 1020 } 1021 1022 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1023 if (!AI.isStaticAlloca()) 1024 DynamicAllocaVec.push_back(&AI); 1025 else 1026 AllocaVec.push_back(&AI); 1027 } 1028 1029 /// Collect lifetime intrinsic calls to check for use-after-scope 1030 /// errors. 1031 void visitIntrinsicInst(IntrinsicInst &II) { 1032 Intrinsic::ID ID = II.getIntrinsicID(); 1033 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1034 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1035 if (!ASan.UseAfterScope) 1036 return; 1037 if (!II.isLifetimeStartOrEnd()) 1038 return; 1039 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1040 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 1041 // If size argument is undefined, don't do anything. 1042 if (Size->isMinusOne()) return; 1043 // Check that size doesn't saturate uint64_t and can 1044 // be stored in IntptrTy. 1045 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1046 if (SizeValue == ~0ULL || 1047 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1048 return; 1049 // Find alloca instruction that corresponds to llvm.lifetime argument. 1050 AllocaInst *AI = 1051 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue); 1052 if (!AI) { 1053 HasUntracedLifetimeIntrinsic = true; 1054 return; 1055 } 1056 // We're interested only in allocas we can handle. 1057 if (!ASan.isInterestingAlloca(*AI)) 1058 return; 1059 bool DoPoison = (ID == Intrinsic::lifetime_end); 1060 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1061 if (AI->isStaticAlloca()) 1062 StaticAllocaPoisonCallVec.push_back(APC); 1063 else if (ClInstrumentDynamicAllocas) 1064 DynamicAllocaPoisonCallVec.push_back(APC); 1065 } 1066 1067 void visitCallSite(CallSite CS) { 1068 Instruction *I = CS.getInstruction(); 1069 if (CallInst *CI = dyn_cast<CallInst>(I)) { 1070 HasNonEmptyInlineAsm |= CI->isInlineAsm() && 1071 !CI->isIdenticalTo(EmptyInlineAsm.get()) && 1072 I != ASan.LocalDynamicShadow; 1073 HasReturnsTwiceCall |= CI->canReturnTwice(); 1074 } 1075 } 1076 1077 // ---------------------- Helpers. 1078 void initializeCallbacks(Module &M); 1079 1080 // Copies bytes from ShadowBytes into shadow memory for indexes where 1081 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1082 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1083 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1084 IRBuilder<> &IRB, Value *ShadowBase); 1085 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1086 size_t Begin, size_t End, IRBuilder<> &IRB, 1087 Value *ShadowBase); 1088 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1089 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1090 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1091 1092 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1093 1094 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1095 bool Dynamic); 1096 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1097 Instruction *ThenTerm, Value *ValueIfFalse); 1098 }; 1099 1100 } // end anonymous namespace 1101 1102 void LocationMetadata::parse(MDNode *MDN) { 1103 assert(MDN->getNumOperands() == 3); 1104 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1105 Filename = DIFilename->getString(); 1106 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1107 ColumnNo = 1108 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1109 } 1110 1111 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1112 // we want to sanitize instead and reading this metadata on each pass over a 1113 // function instead of reading module level metadata at first. 1114 GlobalsMetadata::GlobalsMetadata(Module &M) { 1115 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1116 if (!Globals) 1117 return; 1118 for (auto MDN : Globals->operands()) { 1119 // Metadata node contains the global and the fields of "Entry". 1120 assert(MDN->getNumOperands() == 5); 1121 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1122 // The optimizer may optimize away a global entirely. 1123 if (!V) 1124 continue; 1125 auto *StrippedV = V->stripPointerCasts(); 1126 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1127 if (!GV) 1128 continue; 1129 // We can already have an entry for GV if it was merged with another 1130 // global. 1131 Entry &E = Entries[GV]; 1132 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1133 E.SourceLoc.parse(Loc); 1134 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1135 E.Name = Name->getString(); 1136 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1137 E.IsDynInit |= IsDynInit->isOne(); 1138 ConstantInt *IsBlacklisted = 1139 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1140 E.IsBlacklisted |= IsBlacklisted->isOne(); 1141 } 1142 } 1143 1144 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1145 1146 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1147 ModuleAnalysisManager &AM) { 1148 return GlobalsMetadata(M); 1149 } 1150 1151 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1152 bool UseAfterScope) 1153 : CompileKernel(CompileKernel), Recover(Recover), 1154 UseAfterScope(UseAfterScope) {} 1155 1156 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1157 AnalysisManager<Function> &AM) { 1158 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1159 auto &MAM = MAMProxy.getManager(); 1160 Module &M = *F.getParent(); 1161 if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1162 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1163 AddressSanitizer Sanitizer(M, *R, CompileKernel, Recover, UseAfterScope); 1164 if (Sanitizer.instrumentFunction(F, TLI)) 1165 return PreservedAnalyses::none(); 1166 return PreservedAnalyses::all(); 1167 } 1168 1169 report_fatal_error( 1170 "The ASanGlobalsMetadataAnalysis is required to run before " 1171 "AddressSanitizer can run"); 1172 return PreservedAnalyses::all(); 1173 } 1174 1175 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1176 bool Recover, 1177 bool UseGlobalGC, 1178 bool UseOdrIndicator) 1179 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1180 UseOdrIndicator(UseOdrIndicator) {} 1181 1182 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1183 AnalysisManager<Module> &AM) { 1184 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1185 ModuleAddressSanitizer Sanitizer(M, GlobalsMD, CompileKernel, Recover, 1186 UseGlobalGC, UseOdrIndicator); 1187 if (Sanitizer.instrumentModule(M)) 1188 return PreservedAnalyses::none(); 1189 return PreservedAnalyses::all(); 1190 } 1191 1192 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1193 "Read metadata to mark which globals should be instrumented " 1194 "when running ASan.", 1195 false, true) 1196 1197 char AddressSanitizerLegacyPass::ID = 0; 1198 1199 INITIALIZE_PASS_BEGIN( 1200 AddressSanitizerLegacyPass, "asan", 1201 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1202 false) 1203 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1204 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1205 INITIALIZE_PASS_END( 1206 AddressSanitizerLegacyPass, "asan", 1207 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1208 false) 1209 1210 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1211 bool Recover, 1212 bool UseAfterScope) { 1213 assert(!CompileKernel || Recover); 1214 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1215 } 1216 1217 char ModuleAddressSanitizerLegacyPass::ID = 0; 1218 1219 INITIALIZE_PASS( 1220 ModuleAddressSanitizerLegacyPass, "asan-module", 1221 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1222 "ModulePass", 1223 false, false) 1224 1225 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1226 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1227 assert(!CompileKernel || Recover); 1228 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1229 UseGlobalsGC, UseOdrIndicator); 1230 } 1231 1232 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1233 size_t Res = countTrailingZeros(TypeSize / 8); 1234 assert(Res < kNumberOfAccessSizes); 1235 return Res; 1236 } 1237 1238 /// Create a global describing a source location. 1239 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1240 LocationMetadata MD) { 1241 Constant *LocData[] = { 1242 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1243 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1244 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1245 }; 1246 auto LocStruct = ConstantStruct::getAnon(LocData); 1247 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1248 GlobalValue::PrivateLinkage, LocStruct, 1249 kAsanGenPrefix); 1250 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1251 return GV; 1252 } 1253 1254 /// Check if \p G has been created by a trusted compiler pass. 1255 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1256 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1257 if (G->getName().startswith("llvm.")) 1258 return true; 1259 1260 // Do not instrument asan globals. 1261 if (G->getName().startswith(kAsanGenPrefix) || 1262 G->getName().startswith(kSanCovGenPrefix) || 1263 G->getName().startswith(kODRGenPrefix)) 1264 return true; 1265 1266 // Do not instrument gcov counter arrays. 1267 if (G->getName() == "__llvm_gcov_ctr") 1268 return true; 1269 1270 return false; 1271 } 1272 1273 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1274 // Shadow >> scale 1275 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1276 if (Mapping.Offset == 0) return Shadow; 1277 // (Shadow >> scale) | offset 1278 Value *ShadowBase; 1279 if (LocalDynamicShadow) 1280 ShadowBase = LocalDynamicShadow; 1281 else 1282 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1283 if (Mapping.OrShadowOffset) 1284 return IRB.CreateOr(Shadow, ShadowBase); 1285 else 1286 return IRB.CreateAdd(Shadow, ShadowBase); 1287 } 1288 1289 // Instrument memset/memmove/memcpy 1290 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1291 IRBuilder<> IRB(MI); 1292 if (isa<MemTransferInst>(MI)) { 1293 IRB.CreateCall( 1294 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1295 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1296 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1297 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1298 } else if (isa<MemSetInst>(MI)) { 1299 IRB.CreateCall( 1300 AsanMemset, 1301 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1302 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1303 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1304 } 1305 MI->eraseFromParent(); 1306 } 1307 1308 /// Check if we want (and can) handle this alloca. 1309 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1310 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1311 1312 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1313 return PreviouslySeenAllocaInfo->getSecond(); 1314 1315 bool IsInteresting = 1316 (AI.getAllocatedType()->isSized() && 1317 // alloca() may be called with 0 size, ignore it. 1318 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1319 // We are only interested in allocas not promotable to registers. 1320 // Promotable allocas are common under -O0. 1321 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1322 // inalloca allocas are not treated as static, and we don't want 1323 // dynamic alloca instrumentation for them as well. 1324 !AI.isUsedWithInAlloca() && 1325 // swifterror allocas are register promoted by ISel 1326 !AI.isSwiftError()); 1327 1328 ProcessedAllocas[&AI] = IsInteresting; 1329 return IsInteresting; 1330 } 1331 1332 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 1333 bool *IsWrite, 1334 uint64_t *TypeSize, 1335 unsigned *Alignment, 1336 Value **MaybeMask) { 1337 // Skip memory accesses inserted by another instrumentation. 1338 if (I->getMetadata("nosanitize")) return nullptr; 1339 1340 // Do not instrument the load fetching the dynamic shadow address. 1341 if (LocalDynamicShadow == I) 1342 return nullptr; 1343 1344 Value *PtrOperand = nullptr; 1345 const DataLayout &DL = I->getModule()->getDataLayout(); 1346 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1347 if (!ClInstrumentReads) return nullptr; 1348 *IsWrite = false; 1349 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 1350 *Alignment = LI->getAlignment(); 1351 PtrOperand = LI->getPointerOperand(); 1352 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1353 if (!ClInstrumentWrites) return nullptr; 1354 *IsWrite = true; 1355 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 1356 *Alignment = SI->getAlignment(); 1357 PtrOperand = SI->getPointerOperand(); 1358 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1359 if (!ClInstrumentAtomics) return nullptr; 1360 *IsWrite = true; 1361 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 1362 *Alignment = 0; 1363 PtrOperand = RMW->getPointerOperand(); 1364 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1365 if (!ClInstrumentAtomics) return nullptr; 1366 *IsWrite = true; 1367 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 1368 *Alignment = 0; 1369 PtrOperand = XCHG->getPointerOperand(); 1370 } else if (auto CI = dyn_cast<CallInst>(I)) { 1371 auto *F = dyn_cast<Function>(CI->getCalledValue()); 1372 if (F && (F->getName().startswith("llvm.masked.load.") || 1373 F->getName().startswith("llvm.masked.store."))) { 1374 unsigned OpOffset = 0; 1375 if (F->getName().startswith("llvm.masked.store.")) { 1376 if (!ClInstrumentWrites) 1377 return nullptr; 1378 // Masked store has an initial operand for the value. 1379 OpOffset = 1; 1380 *IsWrite = true; 1381 } else { 1382 if (!ClInstrumentReads) 1383 return nullptr; 1384 *IsWrite = false; 1385 } 1386 1387 auto BasePtr = CI->getOperand(0 + OpOffset); 1388 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1389 *TypeSize = DL.getTypeStoreSizeInBits(Ty); 1390 if (auto AlignmentConstant = 1391 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1392 *Alignment = (unsigned)AlignmentConstant->getZExtValue(); 1393 else 1394 *Alignment = 1; // No alignment guarantees. We probably got Undef 1395 if (MaybeMask) 1396 *MaybeMask = CI->getOperand(2 + OpOffset); 1397 PtrOperand = BasePtr; 1398 } 1399 } 1400 1401 if (PtrOperand) { 1402 // Do not instrument acesses from different address spaces; we cannot deal 1403 // with them. 1404 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); 1405 if (PtrTy->getPointerAddressSpace() != 0) 1406 return nullptr; 1407 1408 // Ignore swifterror addresses. 1409 // swifterror memory addresses are mem2reg promoted by instruction 1410 // selection. As such they cannot have regular uses like an instrumentation 1411 // function and it makes no sense to track them as memory. 1412 if (PtrOperand->isSwiftError()) 1413 return nullptr; 1414 } 1415 1416 // Treat memory accesses to promotable allocas as non-interesting since they 1417 // will not cause memory violations. This greatly speeds up the instrumented 1418 // executable at -O0. 1419 if (ClSkipPromotableAllocas) 1420 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 1421 return isInterestingAlloca(*AI) ? AI : nullptr; 1422 1423 return PtrOperand; 1424 } 1425 1426 static bool isPointerOperand(Value *V) { 1427 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1428 } 1429 1430 // This is a rough heuristic; it may cause both false positives and 1431 // false negatives. The proper implementation requires cooperation with 1432 // the frontend. 1433 static bool isInterestingPointerComparison(Instruction *I) { 1434 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1435 if (!Cmp->isRelational()) 1436 return false; 1437 } else { 1438 return false; 1439 } 1440 return isPointerOperand(I->getOperand(0)) && 1441 isPointerOperand(I->getOperand(1)); 1442 } 1443 1444 // This is a rough heuristic; it may cause both false positives and 1445 // false negatives. The proper implementation requires cooperation with 1446 // the frontend. 1447 static bool isInterestingPointerSubtraction(Instruction *I) { 1448 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1449 if (BO->getOpcode() != Instruction::Sub) 1450 return false; 1451 } else { 1452 return false; 1453 } 1454 return isPointerOperand(I->getOperand(0)) && 1455 isPointerOperand(I->getOperand(1)); 1456 } 1457 1458 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1459 // If a global variable does not have dynamic initialization we don't 1460 // have to instrument it. However, if a global does not have initializer 1461 // at all, we assume it has dynamic initializer (in other TU). 1462 // 1463 // FIXME: Metadata should be attched directly to the global directly instead 1464 // of being added to llvm.asan.globals. 1465 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1466 } 1467 1468 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1469 Instruction *I) { 1470 IRBuilder<> IRB(I); 1471 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1472 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1473 for (Value *&i : Param) { 1474 if (i->getType()->isPointerTy()) 1475 i = IRB.CreatePointerCast(i, IntptrTy); 1476 } 1477 IRB.CreateCall(F, Param); 1478 } 1479 1480 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1481 Instruction *InsertBefore, Value *Addr, 1482 unsigned Alignment, unsigned Granularity, 1483 uint32_t TypeSize, bool IsWrite, 1484 Value *SizeArgument, bool UseCalls, 1485 uint32_t Exp) { 1486 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1487 // if the data is properly aligned. 1488 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1489 TypeSize == 128) && 1490 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1491 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1492 nullptr, UseCalls, Exp); 1493 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1494 IsWrite, nullptr, UseCalls, Exp); 1495 } 1496 1497 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1498 const DataLayout &DL, Type *IntptrTy, 1499 Value *Mask, Instruction *I, 1500 Value *Addr, unsigned Alignment, 1501 unsigned Granularity, uint32_t TypeSize, 1502 bool IsWrite, Value *SizeArgument, 1503 bool UseCalls, uint32_t Exp) { 1504 auto *VTy = cast<PointerType>(Addr->getType())->getElementType(); 1505 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1506 unsigned Num = VTy->getVectorNumElements(); 1507 auto Zero = ConstantInt::get(IntptrTy, 0); 1508 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1509 Value *InstrumentedAddress = nullptr; 1510 Instruction *InsertBefore = I; 1511 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1512 // dyn_cast as we might get UndefValue 1513 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1514 if (Masked->isZero()) 1515 // Mask is constant false, so no instrumentation needed. 1516 continue; 1517 // If we have a true or undef value, fall through to doInstrumentAddress 1518 // with InsertBefore == I 1519 } 1520 } else { 1521 IRBuilder<> IRB(I); 1522 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1523 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1524 InsertBefore = ThenTerm; 1525 } 1526 1527 IRBuilder<> IRB(InsertBefore); 1528 InstrumentedAddress = 1529 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1530 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1531 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1532 UseCalls, Exp); 1533 } 1534 } 1535 1536 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1537 Instruction *I, bool UseCalls, 1538 const DataLayout &DL) { 1539 bool IsWrite = false; 1540 unsigned Alignment = 0; 1541 uint64_t TypeSize = 0; 1542 Value *MaybeMask = nullptr; 1543 Value *Addr = 1544 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); 1545 assert(Addr); 1546 1547 // Optimization experiments. 1548 // The experiments can be used to evaluate potential optimizations that remove 1549 // instrumentation (assess false negatives). Instead of completely removing 1550 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1551 // experiments that want to remove instrumentation of this instruction). 1552 // If Exp is non-zero, this pass will emit special calls into runtime 1553 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1554 // make runtime terminate the program in a special way (with a different 1555 // exit status). Then you run the new compiler on a buggy corpus, collect 1556 // the special terminations (ideally, you don't see them at all -- no false 1557 // negatives) and make the decision on the optimization. 1558 uint32_t Exp = ClForceExperiment; 1559 1560 if (ClOpt && ClOptGlobals) { 1561 // If initialization order checking is disabled, a simple access to a 1562 // dynamically initialized global is always valid. 1563 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1564 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1565 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1566 NumOptimizedAccessesToGlobalVar++; 1567 return; 1568 } 1569 } 1570 1571 if (ClOpt && ClOptStack) { 1572 // A direct inbounds access to a stack variable is always valid. 1573 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1574 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1575 NumOptimizedAccessesToStackVar++; 1576 return; 1577 } 1578 } 1579 1580 if (IsWrite) 1581 NumInstrumentedWrites++; 1582 else 1583 NumInstrumentedReads++; 1584 1585 unsigned Granularity = 1 << Mapping.Scale; 1586 if (MaybeMask) { 1587 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr, 1588 Alignment, Granularity, TypeSize, IsWrite, 1589 nullptr, UseCalls, Exp); 1590 } else { 1591 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize, 1592 IsWrite, nullptr, UseCalls, Exp); 1593 } 1594 } 1595 1596 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1597 Value *Addr, bool IsWrite, 1598 size_t AccessSizeIndex, 1599 Value *SizeArgument, 1600 uint32_t Exp) { 1601 IRBuilder<> IRB(InsertBefore); 1602 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1603 CallInst *Call = nullptr; 1604 if (SizeArgument) { 1605 if (Exp == 0) 1606 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1607 {Addr, SizeArgument}); 1608 else 1609 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1610 {Addr, SizeArgument, ExpVal}); 1611 } else { 1612 if (Exp == 0) 1613 Call = 1614 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1615 else 1616 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1617 {Addr, ExpVal}); 1618 } 1619 1620 // We don't do Call->setDoesNotReturn() because the BB already has 1621 // UnreachableInst at the end. 1622 // This EmptyAsm is required to avoid callback merge. 1623 IRB.CreateCall(EmptyAsm, {}); 1624 return Call; 1625 } 1626 1627 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1628 Value *ShadowValue, 1629 uint32_t TypeSize) { 1630 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1631 // Addr & (Granularity - 1) 1632 Value *LastAccessedByte = 1633 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1634 // (Addr & (Granularity - 1)) + size - 1 1635 if (TypeSize / 8 > 1) 1636 LastAccessedByte = IRB.CreateAdd( 1637 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1638 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1639 LastAccessedByte = 1640 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1641 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1642 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1643 } 1644 1645 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1646 Instruction *InsertBefore, Value *Addr, 1647 uint32_t TypeSize, bool IsWrite, 1648 Value *SizeArgument, bool UseCalls, 1649 uint32_t Exp) { 1650 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1651 1652 IRBuilder<> IRB(InsertBefore); 1653 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1654 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1655 1656 if (UseCalls) { 1657 if (Exp == 0) 1658 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1659 AddrLong); 1660 else 1661 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1662 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1663 return; 1664 } 1665 1666 if (IsMyriad) { 1667 // Strip the cache bit and do range check. 1668 // AddrLong &= ~kMyriadCacheBitMask32 1669 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1670 // Tag = AddrLong >> kMyriadTagShift 1671 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1672 // Tag == kMyriadDDRTag 1673 Value *TagCheck = 1674 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1675 1676 Instruction *TagCheckTerm = 1677 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1678 MDBuilder(*C).createBranchWeights(1, 100000)); 1679 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1680 IRB.SetInsertPoint(TagCheckTerm); 1681 InsertBefore = TagCheckTerm; 1682 } 1683 1684 Type *ShadowTy = 1685 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1686 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1687 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1688 Value *CmpVal = Constant::getNullValue(ShadowTy); 1689 Value *ShadowValue = 1690 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1691 1692 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1693 size_t Granularity = 1ULL << Mapping.Scale; 1694 Instruction *CrashTerm = nullptr; 1695 1696 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1697 // We use branch weights for the slow path check, to indicate that the slow 1698 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1699 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1700 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1701 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1702 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1703 IRB.SetInsertPoint(CheckTerm); 1704 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1705 if (Recover) { 1706 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1707 } else { 1708 BasicBlock *CrashBlock = 1709 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1710 CrashTerm = new UnreachableInst(*C, CrashBlock); 1711 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1712 ReplaceInstWithInst(CheckTerm, NewTerm); 1713 } 1714 } else { 1715 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1716 } 1717 1718 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1719 AccessSizeIndex, SizeArgument, Exp); 1720 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1721 } 1722 1723 // Instrument unusual size or unusual alignment. 1724 // We can not do it with a single check, so we do 1-byte check for the first 1725 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1726 // to report the actual access size. 1727 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1728 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1729 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1730 IRBuilder<> IRB(InsertBefore); 1731 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1732 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1733 if (UseCalls) { 1734 if (Exp == 0) 1735 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1736 {AddrLong, Size}); 1737 else 1738 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1739 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1740 } else { 1741 Value *LastByte = IRB.CreateIntToPtr( 1742 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1743 Addr->getType()); 1744 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1745 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1746 } 1747 } 1748 1749 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1750 GlobalValue *ModuleName) { 1751 // Set up the arguments to our poison/unpoison functions. 1752 IRBuilder<> IRB(&GlobalInit.front(), 1753 GlobalInit.front().getFirstInsertionPt()); 1754 1755 // Add a call to poison all external globals before the given function starts. 1756 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1757 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1758 1759 // Add calls to unpoison all globals before each return instruction. 1760 for (auto &BB : GlobalInit.getBasicBlockList()) 1761 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1762 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1763 } 1764 1765 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1766 Module &M, GlobalValue *ModuleName) { 1767 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1768 if (!GV) 1769 return; 1770 1771 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1772 if (!CA) 1773 return; 1774 1775 for (Use &OP : CA->operands()) { 1776 if (isa<ConstantAggregateZero>(OP)) continue; 1777 ConstantStruct *CS = cast<ConstantStruct>(OP); 1778 1779 // Must have a function or null ptr. 1780 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1781 if (F->getName() == kAsanModuleCtorName) continue; 1782 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1783 // Don't instrument CTORs that will run before asan.module_ctor. 1784 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; 1785 poisonOneInitializer(*F, ModuleName); 1786 } 1787 } 1788 } 1789 1790 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) { 1791 Type *Ty = G->getValueType(); 1792 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1793 1794 // FIXME: Metadata should be attched directly to the global directly instead 1795 // of being added to llvm.asan.globals. 1796 if (GlobalsMD.get(G).IsBlacklisted) return false; 1797 if (!Ty->isSized()) return false; 1798 if (!G->hasInitializer()) return false; 1799 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1800 // Two problems with thread-locals: 1801 // - The address of the main thread's copy can't be computed at link-time. 1802 // - Need to poison all copies, not just the main thread's one. 1803 if (G->isThreadLocal()) return false; 1804 // For now, just ignore this Global if the alignment is large. 1805 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1806 1807 // For non-COFF targets, only instrument globals known to be defined by this 1808 // TU. 1809 // FIXME: We can instrument comdat globals on ELF if we are using the 1810 // GC-friendly metadata scheme. 1811 if (!TargetTriple.isOSBinFormatCOFF()) { 1812 if (!G->hasExactDefinition() || G->hasComdat()) 1813 return false; 1814 } else { 1815 // On COFF, don't instrument non-ODR linkages. 1816 if (G->isInterposable()) 1817 return false; 1818 } 1819 1820 // If a comdat is present, it must have a selection kind that implies ODR 1821 // semantics: no duplicates, any, or exact match. 1822 if (Comdat *C = G->getComdat()) { 1823 switch (C->getSelectionKind()) { 1824 case Comdat::Any: 1825 case Comdat::ExactMatch: 1826 case Comdat::NoDuplicates: 1827 break; 1828 case Comdat::Largest: 1829 case Comdat::SameSize: 1830 return false; 1831 } 1832 } 1833 1834 if (G->hasSection()) { 1835 StringRef Section = G->getSection(); 1836 1837 // Globals from llvm.metadata aren't emitted, do not instrument them. 1838 if (Section == "llvm.metadata") return false; 1839 // Do not instrument globals from special LLVM sections. 1840 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1841 1842 // Do not instrument function pointers to initialization and termination 1843 // routines: dynamic linker will not properly handle redzones. 1844 if (Section.startswith(".preinit_array") || 1845 Section.startswith(".init_array") || 1846 Section.startswith(".fini_array")) { 1847 return false; 1848 } 1849 1850 // On COFF, if the section name contains '$', it is highly likely that the 1851 // user is using section sorting to create an array of globals similar to 1852 // the way initialization callbacks are registered in .init_array and 1853 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1854 // to such globals is counterproductive, because the intent is that they 1855 // will form an array, and out-of-bounds accesses are expected. 1856 // See https://github.com/google/sanitizers/issues/305 1857 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1858 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1859 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1860 << *G << "\n"); 1861 return false; 1862 } 1863 1864 if (TargetTriple.isOSBinFormatMachO()) { 1865 StringRef ParsedSegment, ParsedSection; 1866 unsigned TAA = 0, StubSize = 0; 1867 bool TAAParsed; 1868 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1869 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1870 assert(ErrorCode.empty() && "Invalid section specifier."); 1871 1872 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1873 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1874 // them. 1875 if (ParsedSegment == "__OBJC" || 1876 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1877 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1878 return false; 1879 } 1880 // See https://github.com/google/sanitizers/issues/32 1881 // Constant CFString instances are compiled in the following way: 1882 // -- the string buffer is emitted into 1883 // __TEXT,__cstring,cstring_literals 1884 // -- the constant NSConstantString structure referencing that buffer 1885 // is placed into __DATA,__cfstring 1886 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1887 // Moreover, it causes the linker to crash on OS X 10.7 1888 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1889 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1890 return false; 1891 } 1892 // The linker merges the contents of cstring_literals and removes the 1893 // trailing zeroes. 1894 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1895 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1896 return false; 1897 } 1898 } 1899 } 1900 1901 return true; 1902 } 1903 1904 // On Mach-O platforms, we emit global metadata in a separate section of the 1905 // binary in order to allow the linker to properly dead strip. This is only 1906 // supported on recent versions of ld64. 1907 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1908 if (!TargetTriple.isOSBinFormatMachO()) 1909 return false; 1910 1911 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1912 return true; 1913 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1914 return true; 1915 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1916 return true; 1917 1918 return false; 1919 } 1920 1921 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1922 switch (TargetTriple.getObjectFormat()) { 1923 case Triple::COFF: return ".ASAN$GL"; 1924 case Triple::ELF: return "asan_globals"; 1925 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1926 default: break; 1927 } 1928 llvm_unreachable("unsupported object format"); 1929 } 1930 1931 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1932 IRBuilder<> IRB(*C); 1933 1934 // Declare our poisoning and unpoisoning functions. 1935 AsanPoisonGlobals = 1936 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1937 AsanUnpoisonGlobals = 1938 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1939 1940 // Declare functions that register/unregister globals. 1941 AsanRegisterGlobals = M.getOrInsertFunction( 1942 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1943 AsanUnregisterGlobals = M.getOrInsertFunction( 1944 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1945 1946 // Declare the functions that find globals in a shared object and then invoke 1947 // the (un)register function on them. 1948 AsanRegisterImageGlobals = M.getOrInsertFunction( 1949 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1950 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1951 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1952 1953 AsanRegisterElfGlobals = 1954 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1955 IntptrTy, IntptrTy, IntptrTy); 1956 AsanUnregisterElfGlobals = 1957 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1958 IntptrTy, IntptrTy, IntptrTy); 1959 } 1960 1961 // Put the metadata and the instrumented global in the same group. This ensures 1962 // that the metadata is discarded if the instrumented global is discarded. 1963 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 1964 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1965 Module &M = *G->getParent(); 1966 Comdat *C = G->getComdat(); 1967 if (!C) { 1968 if (!G->hasName()) { 1969 // If G is unnamed, it must be internal. Give it an artificial name 1970 // so we can put it in a comdat. 1971 assert(G->hasLocalLinkage()); 1972 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1973 } 1974 1975 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 1976 std::string Name = G->getName(); 1977 Name += InternalSuffix; 1978 C = M.getOrInsertComdat(Name); 1979 } else { 1980 C = M.getOrInsertComdat(G->getName()); 1981 } 1982 1983 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 1984 // linkage to internal linkage so that a symbol table entry is emitted. This 1985 // is necessary in order to create the comdat group. 1986 if (TargetTriple.isOSBinFormatCOFF()) { 1987 C->setSelectionKind(Comdat::NoDuplicates); 1988 if (G->hasPrivateLinkage()) 1989 G->setLinkage(GlobalValue::InternalLinkage); 1990 } 1991 G->setComdat(C); 1992 } 1993 1994 assert(G->hasComdat()); 1995 Metadata->setComdat(G->getComdat()); 1996 } 1997 1998 // Create a separate metadata global and put it in the appropriate ASan 1999 // global registration section. 2000 GlobalVariable * 2001 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2002 StringRef OriginalName) { 2003 auto Linkage = TargetTriple.isOSBinFormatMachO() 2004 ? GlobalVariable::InternalLinkage 2005 : GlobalVariable::PrivateLinkage; 2006 GlobalVariable *Metadata = new GlobalVariable( 2007 M, Initializer->getType(), false, Linkage, Initializer, 2008 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2009 Metadata->setSection(getGlobalMetadataSection()); 2010 return Metadata; 2011 } 2012 2013 IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2014 AsanDtorFunction = 2015 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 2016 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 2017 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2018 2019 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB)); 2020 } 2021 2022 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2023 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2024 ArrayRef<Constant *> MetadataInitializers) { 2025 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2026 auto &DL = M.getDataLayout(); 2027 2028 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2029 Constant *Initializer = MetadataInitializers[i]; 2030 GlobalVariable *G = ExtendedGlobals[i]; 2031 GlobalVariable *Metadata = 2032 CreateMetadataGlobal(M, Initializer, G->getName()); 2033 2034 // The MSVC linker always inserts padding when linking incrementally. We 2035 // cope with that by aligning each struct to its size, which must be a power 2036 // of two. 2037 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2038 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2039 "global metadata will not be padded appropriately"); 2040 Metadata->setAlignment(SizeOfGlobalStruct); 2041 2042 SetComdatForGlobalMetadata(G, Metadata, ""); 2043 } 2044 } 2045 2046 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2047 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2048 ArrayRef<Constant *> MetadataInitializers, 2049 const std::string &UniqueModuleId) { 2050 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2051 2052 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2053 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2054 GlobalVariable *G = ExtendedGlobals[i]; 2055 GlobalVariable *Metadata = 2056 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2057 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2058 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2059 MetadataGlobals[i] = Metadata; 2060 2061 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2062 } 2063 2064 // Update llvm.compiler.used, adding the new metadata globals. This is 2065 // needed so that during LTO these variables stay alive. 2066 if (!MetadataGlobals.empty()) 2067 appendToCompilerUsed(M, MetadataGlobals); 2068 2069 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2070 // to look up the loaded image that contains it. Second, we can store in it 2071 // whether registration has already occurred, to prevent duplicate 2072 // registration. 2073 // 2074 // Common linkage ensures that there is only one global per shared library. 2075 GlobalVariable *RegisteredFlag = new GlobalVariable( 2076 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2077 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2078 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2079 2080 // Create start and stop symbols. 2081 GlobalVariable *StartELFMetadata = new GlobalVariable( 2082 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2083 "__start_" + getGlobalMetadataSection()); 2084 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2085 GlobalVariable *StopELFMetadata = new GlobalVariable( 2086 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2087 "__stop_" + getGlobalMetadataSection()); 2088 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2089 2090 // Create a call to register the globals with the runtime. 2091 IRB.CreateCall(AsanRegisterElfGlobals, 2092 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2093 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2094 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2095 2096 // We also need to unregister globals at the end, e.g., when a shared library 2097 // gets closed. 2098 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2099 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2100 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2101 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2102 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2103 } 2104 2105 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2106 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2107 ArrayRef<Constant *> MetadataInitializers) { 2108 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2109 2110 // On recent Mach-O platforms, use a structure which binds the liveness of 2111 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2112 // created to be added to llvm.compiler.used 2113 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2114 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2115 2116 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2117 Constant *Initializer = MetadataInitializers[i]; 2118 GlobalVariable *G = ExtendedGlobals[i]; 2119 GlobalVariable *Metadata = 2120 CreateMetadataGlobal(M, Initializer, G->getName()); 2121 2122 // On recent Mach-O platforms, we emit the global metadata in a way that 2123 // allows the linker to properly strip dead globals. 2124 auto LivenessBinder = 2125 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2126 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2127 GlobalVariable *Liveness = new GlobalVariable( 2128 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2129 Twine("__asan_binder_") + G->getName()); 2130 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2131 LivenessGlobals[i] = Liveness; 2132 } 2133 2134 // Update llvm.compiler.used, adding the new liveness globals. This is 2135 // needed so that during LTO these variables stay alive. The alternative 2136 // would be to have the linker handling the LTO symbols, but libLTO 2137 // current API does not expose access to the section for each symbol. 2138 if (!LivenessGlobals.empty()) 2139 appendToCompilerUsed(M, LivenessGlobals); 2140 2141 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2142 // to look up the loaded image that contains it. Second, we can store in it 2143 // whether registration has already occurred, to prevent duplicate 2144 // registration. 2145 // 2146 // common linkage ensures that there is only one global per shared library. 2147 GlobalVariable *RegisteredFlag = new GlobalVariable( 2148 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2149 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2150 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2151 2152 IRB.CreateCall(AsanRegisterImageGlobals, 2153 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2154 2155 // We also need to unregister globals at the end, e.g., when a shared library 2156 // gets closed. 2157 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2158 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2159 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2160 } 2161 2162 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2163 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2164 ArrayRef<Constant *> MetadataInitializers) { 2165 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2166 unsigned N = ExtendedGlobals.size(); 2167 assert(N > 0); 2168 2169 // On platforms that don't have a custom metadata section, we emit an array 2170 // of global metadata structures. 2171 ArrayType *ArrayOfGlobalStructTy = 2172 ArrayType::get(MetadataInitializers[0]->getType(), N); 2173 auto AllGlobals = new GlobalVariable( 2174 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2175 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2176 if (Mapping.Scale > 3) 2177 AllGlobals->setAlignment(1ULL << Mapping.Scale); 2178 2179 IRB.CreateCall(AsanRegisterGlobals, 2180 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2181 ConstantInt::get(IntptrTy, N)}); 2182 2183 // We also need to unregister globals at the end, e.g., when a shared library 2184 // gets closed. 2185 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2186 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2187 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2188 ConstantInt::get(IntptrTy, N)}); 2189 } 2190 2191 // This function replaces all global variables with new variables that have 2192 // trailing redzones. It also creates a function that poisons 2193 // redzones and inserts this function into llvm.global_ctors. 2194 // Sets *CtorComdat to true if the global registration code emitted into the 2195 // asan constructor is comdat-compatible. 2196 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2197 bool *CtorComdat) { 2198 *CtorComdat = false; 2199 2200 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2201 2202 for (auto &G : M.globals()) { 2203 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 2204 } 2205 2206 size_t n = GlobalsToChange.size(); 2207 if (n == 0) { 2208 *CtorComdat = true; 2209 return false; 2210 } 2211 2212 auto &DL = M.getDataLayout(); 2213 2214 // A global is described by a structure 2215 // size_t beg; 2216 // size_t size; 2217 // size_t size_with_redzone; 2218 // const char *name; 2219 // const char *module_name; 2220 // size_t has_dynamic_init; 2221 // void *source_location; 2222 // size_t odr_indicator; 2223 // We initialize an array of such structures and pass it to a run-time call. 2224 StructType *GlobalStructTy = 2225 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2226 IntptrTy, IntptrTy, IntptrTy); 2227 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2228 SmallVector<Constant *, 16> Initializers(n); 2229 2230 bool HasDynamicallyInitializedGlobals = false; 2231 2232 // We shouldn't merge same module names, as this string serves as unique 2233 // module ID in runtime. 2234 GlobalVariable *ModuleName = createPrivateGlobalForString( 2235 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2236 2237 for (size_t i = 0; i < n; i++) { 2238 static const uint64_t kMaxGlobalRedzone = 1 << 18; 2239 GlobalVariable *G = GlobalsToChange[i]; 2240 2241 // FIXME: Metadata should be attched directly to the global directly instead 2242 // of being added to llvm.asan.globals. 2243 auto MD = GlobalsMD.get(G); 2244 StringRef NameForGlobal = G->getName(); 2245 // Create string holding the global name (use global name from metadata 2246 // if it's available, otherwise just write the name of global variable). 2247 GlobalVariable *Name = createPrivateGlobalForString( 2248 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2249 /*AllowMerging*/ true, kAsanGenPrefix); 2250 2251 Type *Ty = G->getValueType(); 2252 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2253 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 2254 // MinRZ <= RZ <= kMaxGlobalRedzone 2255 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 2256 uint64_t RZ = std::max( 2257 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 2258 uint64_t RightRedzoneSize = RZ; 2259 // Round up to MinRZ 2260 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 2261 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 2262 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2263 2264 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2265 Constant *NewInitializer = ConstantStruct::get( 2266 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2267 2268 // Create a new global variable with enough space for a redzone. 2269 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2270 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2271 Linkage = GlobalValue::InternalLinkage; 2272 GlobalVariable *NewGlobal = 2273 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2274 "", G, G->getThreadLocalMode()); 2275 NewGlobal->copyAttributesFrom(G); 2276 NewGlobal->setComdat(G->getComdat()); 2277 NewGlobal->setAlignment(MinRZ); 2278 // Don't fold globals with redzones. ODR violation detector and redzone 2279 // poisoning implicitly creates a dependence on the global's address, so it 2280 // is no longer valid for it to be marked unnamed_addr. 2281 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2282 2283 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2284 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2285 G->isConstant()) { 2286 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2287 if (Seq && Seq->isCString()) 2288 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2289 } 2290 2291 // Transfer the debug info. The payload starts at offset zero so we can 2292 // copy the debug info over as is. 2293 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2294 G->getDebugInfo(GVs); 2295 for (auto *GV : GVs) 2296 NewGlobal->addDebugInfo(GV); 2297 2298 Value *Indices2[2]; 2299 Indices2[0] = IRB.getInt32(0); 2300 Indices2[1] = IRB.getInt32(0); 2301 2302 G->replaceAllUsesWith( 2303 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2304 NewGlobal->takeName(G); 2305 G->eraseFromParent(); 2306 NewGlobals[i] = NewGlobal; 2307 2308 Constant *SourceLoc; 2309 if (!MD.SourceLoc.empty()) { 2310 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2311 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2312 } else { 2313 SourceLoc = ConstantInt::get(IntptrTy, 0); 2314 } 2315 2316 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2317 GlobalValue *InstrumentedGlobal = NewGlobal; 2318 2319 bool CanUsePrivateAliases = 2320 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2321 TargetTriple.isOSBinFormatWasm(); 2322 if (CanUsePrivateAliases && UsePrivateAlias) { 2323 // Create local alias for NewGlobal to avoid crash on ODR between 2324 // instrumented and non-instrumented libraries. 2325 InstrumentedGlobal = 2326 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2327 } 2328 2329 // ODR should not happen for local linkage. 2330 if (NewGlobal->hasLocalLinkage()) { 2331 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2332 IRB.getInt8PtrTy()); 2333 } else if (UseOdrIndicator) { 2334 // With local aliases, we need to provide another externally visible 2335 // symbol __odr_asan_XXX to detect ODR violation. 2336 auto *ODRIndicatorSym = 2337 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2338 Constant::getNullValue(IRB.getInt8Ty()), 2339 kODRGenPrefix + NameForGlobal, nullptr, 2340 NewGlobal->getThreadLocalMode()); 2341 2342 // Set meaningful attributes for indicator symbol. 2343 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2344 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2345 ODRIndicatorSym->setAlignment(1); 2346 ODRIndicator = ODRIndicatorSym; 2347 } 2348 2349 Constant *Initializer = ConstantStruct::get( 2350 GlobalStructTy, 2351 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2352 ConstantInt::get(IntptrTy, SizeInBytes), 2353 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2354 ConstantExpr::getPointerCast(Name, IntptrTy), 2355 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2356 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2357 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2358 2359 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2360 2361 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2362 2363 Initializers[i] = Initializer; 2364 } 2365 2366 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2367 // ConstantMerge'ing them. 2368 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2369 for (size_t i = 0; i < n; i++) { 2370 GlobalVariable *G = NewGlobals[i]; 2371 if (G->getName().empty()) continue; 2372 GlobalsToAddToUsedList.push_back(G); 2373 } 2374 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2375 2376 std::string ELFUniqueModuleId = 2377 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2378 : ""; 2379 2380 if (!ELFUniqueModuleId.empty()) { 2381 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2382 *CtorComdat = true; 2383 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2384 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2385 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2386 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2387 } else { 2388 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2389 } 2390 2391 // Create calls for poisoning before initializers run and unpoisoning after. 2392 if (HasDynamicallyInitializedGlobals) 2393 createInitializerPoisonCalls(M, ModuleName); 2394 2395 LLVM_DEBUG(dbgs() << M); 2396 return true; 2397 } 2398 2399 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2400 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2401 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2402 int Version = 8; 2403 // 32-bit Android is one version ahead because of the switch to dynamic 2404 // shadow. 2405 Version += (LongSize == 32 && isAndroid); 2406 return Version; 2407 } 2408 2409 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2410 initializeCallbacks(M); 2411 2412 if (CompileKernel) 2413 return false; 2414 2415 // Create a module constructor. A destructor is created lazily because not all 2416 // platforms, and not all modules need it. 2417 std::string VersionCheckName = 2418 kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M)); 2419 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 2420 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, 2421 /*InitArgs=*/{}, VersionCheckName); 2422 2423 bool CtorComdat = true; 2424 bool Changed = false; 2425 // TODO(glider): temporarily disabled globals instrumentation for KASan. 2426 if (ClGlobals) { 2427 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2428 Changed |= InstrumentGlobals(IRB, M, &CtorComdat); 2429 } 2430 2431 // Put the constructor and destructor in comdat if both 2432 // (1) global instrumentation is not TU-specific 2433 // (2) target is ELF. 2434 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2435 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2436 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority, 2437 AsanCtorFunction); 2438 if (AsanDtorFunction) { 2439 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2440 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority, 2441 AsanDtorFunction); 2442 } 2443 } else { 2444 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); 2445 if (AsanDtorFunction) 2446 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); 2447 } 2448 2449 return Changed; 2450 } 2451 2452 void AddressSanitizer::initializeCallbacks(Module &M) { 2453 IRBuilder<> IRB(*C); 2454 // Create __asan_report* callbacks. 2455 // IsWrite, TypeSize and Exp are encoded in the function name. 2456 for (int Exp = 0; Exp < 2; Exp++) { 2457 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2458 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2459 const std::string ExpStr = Exp ? "exp_" : ""; 2460 const std::string EndingStr = Recover ? "_noabort" : ""; 2461 2462 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2463 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2464 if (Exp) { 2465 Type *ExpType = Type::getInt32Ty(*C); 2466 Args2.push_back(ExpType); 2467 Args1.push_back(ExpType); 2468 } 2469 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2470 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2471 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2472 2473 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2474 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2475 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2476 2477 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2478 AccessSizeIndex++) { 2479 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2480 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2481 M.getOrInsertFunction( 2482 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2483 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2484 2485 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2486 M.getOrInsertFunction( 2487 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2488 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2489 } 2490 } 2491 } 2492 2493 const std::string MemIntrinCallbackPrefix = 2494 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2495 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2496 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2497 IRB.getInt8PtrTy(), IntptrTy); 2498 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2499 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2500 IRB.getInt8PtrTy(), IntptrTy); 2501 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2502 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2503 IRB.getInt32Ty(), IntptrTy); 2504 2505 AsanHandleNoReturnFunc = 2506 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2507 2508 AsanPtrCmpFunction = 2509 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2510 AsanPtrSubFunction = 2511 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2512 // We insert an empty inline asm after __asan_report* to avoid callback merge. 2513 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 2514 StringRef(""), StringRef(""), 2515 /*hasSideEffects=*/true); 2516 if (Mapping.InGlobal) 2517 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2518 ArrayType::get(IRB.getInt8Ty(), 0)); 2519 } 2520 2521 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2522 // For each NSObject descendant having a +load method, this method is invoked 2523 // by the ObjC runtime before any of the static constructors is called. 2524 // Therefore we need to instrument such methods with a call to __asan_init 2525 // at the beginning in order to initialize our runtime before any access to 2526 // the shadow memory. 2527 // We cannot just ignore these methods, because they may call other 2528 // instrumented functions. 2529 if (F.getName().find(" load]") != std::string::npos) { 2530 FunctionCallee AsanInitFunction = 2531 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2532 IRBuilder<> IRB(&F.front(), F.front().begin()); 2533 IRB.CreateCall(AsanInitFunction, {}); 2534 return true; 2535 } 2536 return false; 2537 } 2538 2539 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2540 // Generate code only when dynamic addressing is needed. 2541 if (Mapping.Offset != kDynamicShadowSentinel) 2542 return; 2543 2544 IRBuilder<> IRB(&F.front().front()); 2545 if (Mapping.InGlobal) { 2546 if (ClWithIfuncSuppressRemat) { 2547 // An empty inline asm with input reg == output reg. 2548 // An opaque pointer-to-int cast, basically. 2549 InlineAsm *Asm = InlineAsm::get( 2550 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2551 StringRef(""), StringRef("=r,0"), 2552 /*hasSideEffects=*/false); 2553 LocalDynamicShadow = 2554 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2555 } else { 2556 LocalDynamicShadow = 2557 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2558 } 2559 } else { 2560 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2561 kAsanShadowMemoryDynamicAddress, IntptrTy); 2562 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2563 } 2564 } 2565 2566 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2567 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2568 // to it as uninteresting. This assumes we haven't started processing allocas 2569 // yet. This check is done up front because iterating the use list in 2570 // isInterestingAlloca would be algorithmically slower. 2571 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2572 2573 // Try to get the declaration of llvm.localescape. If it's not in the module, 2574 // we can exit early. 2575 if (!F.getParent()->getFunction("llvm.localescape")) return; 2576 2577 // Look for a call to llvm.localescape call in the entry block. It can't be in 2578 // any other block. 2579 for (Instruction &I : F.getEntryBlock()) { 2580 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2581 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2582 // We found a call. Mark all the allocas passed in as uninteresting. 2583 for (Value *Arg : II->arg_operands()) { 2584 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2585 assert(AI && AI->isStaticAlloca() && 2586 "non-static alloca arg to localescape"); 2587 ProcessedAllocas[AI] = false; 2588 } 2589 break; 2590 } 2591 } 2592 } 2593 2594 bool AddressSanitizer::instrumentFunction(Function &F, 2595 const TargetLibraryInfo *TLI) { 2596 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2597 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2598 if (F.getName().startswith("__asan_")) return false; 2599 2600 bool FunctionModified = false; 2601 2602 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2603 // This function needs to be called even if the function body is not 2604 // instrumented. 2605 if (maybeInsertAsanInitAtFunctionEntry(F)) 2606 FunctionModified = true; 2607 2608 // Leave if the function doesn't need instrumentation. 2609 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2610 2611 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2612 2613 initializeCallbacks(*F.getParent()); 2614 2615 FunctionStateRAII CleanupObj(this); 2616 2617 maybeInsertDynamicShadowAtFunctionEntry(F); 2618 2619 // We can't instrument allocas used with llvm.localescape. Only static allocas 2620 // can be passed to that intrinsic. 2621 markEscapedLocalAllocas(F); 2622 2623 // We want to instrument every address only once per basic block (unless there 2624 // are calls between uses). 2625 SmallPtrSet<Value *, 16> TempsToInstrument; 2626 SmallVector<Instruction *, 16> ToInstrument; 2627 SmallVector<Instruction *, 8> NoReturnCalls; 2628 SmallVector<BasicBlock *, 16> AllBlocks; 2629 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2630 int NumAllocas = 0; 2631 bool IsWrite; 2632 unsigned Alignment; 2633 uint64_t TypeSize; 2634 2635 // Fill the set of memory operations to instrument. 2636 for (auto &BB : F) { 2637 AllBlocks.push_back(&BB); 2638 TempsToInstrument.clear(); 2639 int NumInsnsPerBB = 0; 2640 for (auto &Inst : BB) { 2641 if (LooksLikeCodeInBug11395(&Inst)) return false; 2642 Value *MaybeMask = nullptr; 2643 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 2644 &Alignment, &MaybeMask)) { 2645 if (ClOpt && ClOptSameTemp) { 2646 // If we have a mask, skip instrumentation if we've already 2647 // instrumented the full object. But don't add to TempsToInstrument 2648 // because we might get another load/store with a different mask. 2649 if (MaybeMask) { 2650 if (TempsToInstrument.count(Addr)) 2651 continue; // We've seen this (whole) temp in the current BB. 2652 } else { 2653 if (!TempsToInstrument.insert(Addr).second) 2654 continue; // We've seen this temp in the current BB. 2655 } 2656 } 2657 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2658 isInterestingPointerComparison(&Inst)) || 2659 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2660 isInterestingPointerSubtraction(&Inst))) { 2661 PointerComparisonsOrSubtracts.push_back(&Inst); 2662 continue; 2663 } else if (isa<MemIntrinsic>(Inst)) { 2664 // ok, take it. 2665 } else { 2666 if (isa<AllocaInst>(Inst)) NumAllocas++; 2667 CallSite CS(&Inst); 2668 if (CS) { 2669 // A call inside BB. 2670 TempsToInstrument.clear(); 2671 if (CS.doesNotReturn() && !CS->getMetadata("nosanitize")) 2672 NoReturnCalls.push_back(CS.getInstruction()); 2673 } 2674 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2675 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2676 continue; 2677 } 2678 ToInstrument.push_back(&Inst); 2679 NumInsnsPerBB++; 2680 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2681 } 2682 } 2683 2684 bool UseCalls = 2685 (ClInstrumentationWithCallsThreshold >= 0 && 2686 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 2687 const DataLayout &DL = F.getParent()->getDataLayout(); 2688 ObjectSizeOpts ObjSizeOpts; 2689 ObjSizeOpts.RoundToAlign = true; 2690 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2691 2692 // Instrument. 2693 int NumInstrumented = 0; 2694 for (auto Inst : ToInstrument) { 2695 if (ClDebugMin < 0 || ClDebugMax < 0 || 2696 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 2697 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 2698 instrumentMop(ObjSizeVis, Inst, UseCalls, 2699 F.getParent()->getDataLayout()); 2700 else 2701 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 2702 } 2703 NumInstrumented++; 2704 } 2705 2706 FunctionStackPoisoner FSP(F, *this); 2707 bool ChangedStack = FSP.runOnFunction(); 2708 2709 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2710 // See e.g. https://github.com/google/sanitizers/issues/37 2711 for (auto CI : NoReturnCalls) { 2712 IRBuilder<> IRB(CI); 2713 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2714 } 2715 2716 for (auto Inst : PointerComparisonsOrSubtracts) { 2717 instrumentPointerComparisonOrSubtraction(Inst); 2718 NumInstrumented++; 2719 } 2720 2721 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) 2722 FunctionModified = true; 2723 2724 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2725 << F << "\n"); 2726 2727 return FunctionModified; 2728 } 2729 2730 // Workaround for bug 11395: we don't want to instrument stack in functions 2731 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2732 // FIXME: remove once the bug 11395 is fixed. 2733 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2734 if (LongSize != 32) return false; 2735 CallInst *CI = dyn_cast<CallInst>(I); 2736 if (!CI || !CI->isInlineAsm()) return false; 2737 if (CI->getNumArgOperands() <= 5) return false; 2738 // We have inline assembly with quite a few arguments. 2739 return true; 2740 } 2741 2742 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2743 IRBuilder<> IRB(*C); 2744 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2745 std::string Suffix = itostr(i); 2746 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2747 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2748 AsanStackFreeFunc[i] = 2749 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2750 IRB.getVoidTy(), IntptrTy, IntptrTy); 2751 } 2752 if (ASan.UseAfterScope) { 2753 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2754 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2755 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2756 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2757 } 2758 2759 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2760 std::ostringstream Name; 2761 Name << kAsanSetShadowPrefix; 2762 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2763 AsanSetShadowFunc[Val] = 2764 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2765 } 2766 2767 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2768 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2769 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2770 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2771 } 2772 2773 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2774 ArrayRef<uint8_t> ShadowBytes, 2775 size_t Begin, size_t End, 2776 IRBuilder<> &IRB, 2777 Value *ShadowBase) { 2778 if (Begin >= End) 2779 return; 2780 2781 const size_t LargestStoreSizeInBytes = 2782 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2783 2784 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2785 2786 // Poison given range in shadow using larges store size with out leading and 2787 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2788 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2789 // middle of a store. 2790 for (size_t i = Begin; i < End;) { 2791 if (!ShadowMask[i]) { 2792 assert(!ShadowBytes[i]); 2793 ++i; 2794 continue; 2795 } 2796 2797 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2798 // Fit store size into the range. 2799 while (StoreSizeInBytes > End - i) 2800 StoreSizeInBytes /= 2; 2801 2802 // Minimize store size by trimming trailing zeros. 2803 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2804 while (j <= StoreSizeInBytes / 2) 2805 StoreSizeInBytes /= 2; 2806 } 2807 2808 uint64_t Val = 0; 2809 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2810 if (IsLittleEndian) 2811 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2812 else 2813 Val = (Val << 8) | ShadowBytes[i + j]; 2814 } 2815 2816 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2817 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2818 IRB.CreateAlignedStore( 2819 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); 2820 2821 i += StoreSizeInBytes; 2822 } 2823 } 2824 2825 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2826 ArrayRef<uint8_t> ShadowBytes, 2827 IRBuilder<> &IRB, Value *ShadowBase) { 2828 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2829 } 2830 2831 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2832 ArrayRef<uint8_t> ShadowBytes, 2833 size_t Begin, size_t End, 2834 IRBuilder<> &IRB, Value *ShadowBase) { 2835 assert(ShadowMask.size() == ShadowBytes.size()); 2836 size_t Done = Begin; 2837 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2838 if (!ShadowMask[i]) { 2839 assert(!ShadowBytes[i]); 2840 continue; 2841 } 2842 uint8_t Val = ShadowBytes[i]; 2843 if (!AsanSetShadowFunc[Val]) 2844 continue; 2845 2846 // Skip same values. 2847 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2848 } 2849 2850 if (j - i >= ClMaxInlinePoisoningSize) { 2851 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2852 IRB.CreateCall(AsanSetShadowFunc[Val], 2853 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2854 ConstantInt::get(IntptrTy, j - i)}); 2855 Done = j; 2856 } 2857 } 2858 2859 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2860 } 2861 2862 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2863 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2864 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2865 assert(LocalStackSize <= kMaxStackMallocSize); 2866 uint64_t MaxSize = kMinStackMallocSize; 2867 for (int i = 0;; i++, MaxSize *= 2) 2868 if (LocalStackSize <= MaxSize) return i; 2869 llvm_unreachable("impossible LocalStackSize"); 2870 } 2871 2872 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2873 Instruction *CopyInsertPoint = &F.front().front(); 2874 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2875 // Insert after the dynamic shadow location is determined 2876 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2877 assert(CopyInsertPoint); 2878 } 2879 IRBuilder<> IRB(CopyInsertPoint); 2880 const DataLayout &DL = F.getParent()->getDataLayout(); 2881 for (Argument &Arg : F.args()) { 2882 if (Arg.hasByValAttr()) { 2883 Type *Ty = Arg.getType()->getPointerElementType(); 2884 unsigned Align = Arg.getParamAlignment(); 2885 if (Align == 0) Align = DL.getABITypeAlignment(Ty); 2886 2887 AllocaInst *AI = IRB.CreateAlloca( 2888 Ty, nullptr, 2889 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2890 ".byval"); 2891 AI->setAlignment(Align); 2892 Arg.replaceAllUsesWith(AI); 2893 2894 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2895 IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize); 2896 } 2897 } 2898 } 2899 2900 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2901 Value *ValueIfTrue, 2902 Instruction *ThenTerm, 2903 Value *ValueIfFalse) { 2904 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2905 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2906 PHI->addIncoming(ValueIfFalse, CondBlock); 2907 BasicBlock *ThenBlock = ThenTerm->getParent(); 2908 PHI->addIncoming(ValueIfTrue, ThenBlock); 2909 return PHI; 2910 } 2911 2912 Value *FunctionStackPoisoner::createAllocaForLayout( 2913 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2914 AllocaInst *Alloca; 2915 if (Dynamic) { 2916 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2917 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2918 "MyAlloca"); 2919 } else { 2920 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2921 nullptr, "MyAlloca"); 2922 assert(Alloca->isStaticAlloca()); 2923 } 2924 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2925 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 2926 Alloca->setAlignment(FrameAlignment); 2927 return IRB.CreatePointerCast(Alloca, IntptrTy); 2928 } 2929 2930 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2931 BasicBlock &FirstBB = *F.begin(); 2932 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2933 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2934 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2935 DynamicAllocaLayout->setAlignment(32); 2936 } 2937 2938 void FunctionStackPoisoner::processDynamicAllocas() { 2939 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2940 assert(DynamicAllocaPoisonCallVec.empty()); 2941 return; 2942 } 2943 2944 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2945 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2946 assert(APC.InsBefore); 2947 assert(APC.AI); 2948 assert(ASan.isInterestingAlloca(*APC.AI)); 2949 assert(!APC.AI->isStaticAlloca()); 2950 2951 IRBuilder<> IRB(APC.InsBefore); 2952 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2953 // Dynamic allocas will be unpoisoned unconditionally below in 2954 // unpoisonDynamicAllocas. 2955 // Flag that we need unpoison static allocas. 2956 } 2957 2958 // Handle dynamic allocas. 2959 createDynamicAllocasInitStorage(); 2960 for (auto &AI : DynamicAllocaVec) 2961 handleDynamicAllocaCall(AI); 2962 unpoisonDynamicAllocas(); 2963 } 2964 2965 void FunctionStackPoisoner::processStaticAllocas() { 2966 if (AllocaVec.empty()) { 2967 assert(StaticAllocaPoisonCallVec.empty()); 2968 return; 2969 } 2970 2971 int StackMallocIdx = -1; 2972 DebugLoc EntryDebugLocation; 2973 if (auto SP = F.getSubprogram()) 2974 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 2975 2976 Instruction *InsBefore = AllocaVec[0]; 2977 IRBuilder<> IRB(InsBefore); 2978 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2979 2980 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 2981 // debug info is broken, because only entry-block allocas are treated as 2982 // regular stack slots. 2983 auto InsBeforeB = InsBefore->getParent(); 2984 assert(InsBeforeB == &F.getEntryBlock()); 2985 for (auto *AI : StaticAllocasToMoveUp) 2986 if (AI->getParent() == InsBeforeB) 2987 AI->moveBefore(InsBefore); 2988 2989 // If we have a call to llvm.localescape, keep it in the entry block. 2990 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 2991 2992 SmallVector<ASanStackVariableDescription, 16> SVD; 2993 SVD.reserve(AllocaVec.size()); 2994 for (AllocaInst *AI : AllocaVec) { 2995 ASanStackVariableDescription D = {AI->getName().data(), 2996 ASan.getAllocaSizeInBytes(*AI), 2997 0, 2998 AI->getAlignment(), 2999 AI, 3000 0, 3001 0}; 3002 SVD.push_back(D); 3003 } 3004 3005 // Minimal header size (left redzone) is 4 pointers, 3006 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3007 size_t Granularity = 1ULL << Mapping.Scale; 3008 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3009 const ASanStackFrameLayout &L = 3010 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3011 3012 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3013 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3014 for (auto &Desc : SVD) 3015 AllocaToSVDMap[Desc.AI] = &Desc; 3016 3017 // Update SVD with information from lifetime intrinsics. 3018 for (const auto &APC : StaticAllocaPoisonCallVec) { 3019 assert(APC.InsBefore); 3020 assert(APC.AI); 3021 assert(ASan.isInterestingAlloca(*APC.AI)); 3022 assert(APC.AI->isStaticAlloca()); 3023 3024 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3025 Desc.LifetimeSize = Desc.Size; 3026 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3027 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3028 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3029 if (unsigned Line = LifetimeLoc->getLine()) 3030 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3031 } 3032 } 3033 } 3034 3035 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3036 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3037 uint64_t LocalStackSize = L.FrameSize; 3038 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3039 LocalStackSize <= kMaxStackMallocSize; 3040 bool DoDynamicAlloca = ClDynamicAllocaStack; 3041 // Don't do dynamic alloca or stack malloc if: 3042 // 1) There is inline asm: too often it makes assumptions on which registers 3043 // are available. 3044 // 2) There is a returns_twice call (typically setjmp), which is 3045 // optimization-hostile, and doesn't play well with introduced indirect 3046 // register-relative calculation of local variable addresses. 3047 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3048 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3049 3050 Value *StaticAlloca = 3051 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3052 3053 Value *FakeStack; 3054 Value *LocalStackBase; 3055 Value *LocalStackBaseAlloca; 3056 bool Deref; 3057 3058 if (DoStackMalloc) { 3059 LocalStackBaseAlloca = 3060 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3061 // void *FakeStack = __asan_option_detect_stack_use_after_return 3062 // ? __asan_stack_malloc_N(LocalStackSize) 3063 // : nullptr; 3064 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3065 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3066 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3067 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3068 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3069 Constant::getNullValue(IRB.getInt32Ty())); 3070 Instruction *Term = 3071 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3072 IRBuilder<> IRBIf(Term); 3073 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 3074 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3075 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3076 Value *FakeStackValue = 3077 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3078 ConstantInt::get(IntptrTy, LocalStackSize)); 3079 IRB.SetInsertPoint(InsBefore); 3080 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3081 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3082 ConstantInt::get(IntptrTy, 0)); 3083 3084 Value *NoFakeStack = 3085 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3086 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3087 IRBIf.SetInsertPoint(Term); 3088 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 3089 Value *AllocaValue = 3090 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3091 3092 IRB.SetInsertPoint(InsBefore); 3093 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3094 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3095 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3096 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3097 Deref = true; 3098 } else { 3099 // void *FakeStack = nullptr; 3100 // void *LocalStackBase = alloca(LocalStackSize); 3101 FakeStack = ConstantInt::get(IntptrTy, 0); 3102 LocalStackBase = 3103 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3104 LocalStackBaseAlloca = LocalStackBase; 3105 Deref = false; 3106 } 3107 3108 // Replace Alloca instructions with base+offset. 3109 for (const auto &Desc : SVD) { 3110 AllocaInst *AI = Desc.AI; 3111 replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, Deref, 3112 Desc.Offset, DIExpression::NoDeref); 3113 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3114 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3115 AI->getType()); 3116 AI->replaceAllUsesWith(NewAllocaPtr); 3117 } 3118 3119 // The left-most redzone has enough space for at least 4 pointers. 3120 // Write the Magic value to redzone[0]. 3121 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3122 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3123 BasePlus0); 3124 // Write the frame description constant to redzone[1]. 3125 Value *BasePlus1 = IRB.CreateIntToPtr( 3126 IRB.CreateAdd(LocalStackBase, 3127 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3128 IntptrPtrTy); 3129 GlobalVariable *StackDescriptionGlobal = 3130 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3131 /*AllowMerging*/ true, kAsanGenPrefix); 3132 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3133 IRB.CreateStore(Description, BasePlus1); 3134 // Write the PC to redzone[2]. 3135 Value *BasePlus2 = IRB.CreateIntToPtr( 3136 IRB.CreateAdd(LocalStackBase, 3137 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3138 IntptrPtrTy); 3139 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3140 3141 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3142 3143 // Poison the stack red zones at the entry. 3144 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3145 // As mask we must use most poisoned case: red zones and after scope. 3146 // As bytes we can use either the same or just red zones only. 3147 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3148 3149 if (!StaticAllocaPoisonCallVec.empty()) { 3150 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3151 3152 // Poison static allocas near lifetime intrinsics. 3153 for (const auto &APC : StaticAllocaPoisonCallVec) { 3154 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3155 assert(Desc.Offset % L.Granularity == 0); 3156 size_t Begin = Desc.Offset / L.Granularity; 3157 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3158 3159 IRBuilder<> IRB(APC.InsBefore); 3160 copyToShadow(ShadowAfterScope, 3161 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3162 IRB, ShadowBase); 3163 } 3164 } 3165 3166 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3167 SmallVector<uint8_t, 64> ShadowAfterReturn; 3168 3169 // (Un)poison the stack before all ret instructions. 3170 for (auto Ret : RetVec) { 3171 IRBuilder<> IRBRet(Ret); 3172 // Mark the current frame as retired. 3173 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3174 BasePlus0); 3175 if (DoStackMalloc) { 3176 assert(StackMallocIdx >= 0); 3177 // if FakeStack != 0 // LocalStackBase == FakeStack 3178 // // In use-after-return mode, poison the whole stack frame. 3179 // if StackMallocIdx <= 4 3180 // // For small sizes inline the whole thing: 3181 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3182 // **SavedFlagPtr(FakeStack) = 0 3183 // else 3184 // __asan_stack_free_N(FakeStack, LocalStackSize) 3185 // else 3186 // <This is not a fake stack; unpoison the redzones> 3187 Value *Cmp = 3188 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3189 Instruction *ThenTerm, *ElseTerm; 3190 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3191 3192 IRBuilder<> IRBPoison(ThenTerm); 3193 if (StackMallocIdx <= 4) { 3194 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3195 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3196 kAsanStackUseAfterReturnMagic); 3197 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3198 ShadowBase); 3199 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3200 FakeStack, 3201 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3202 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3203 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3204 IRBPoison.CreateStore( 3205 Constant::getNullValue(IRBPoison.getInt8Ty()), 3206 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3207 } else { 3208 // For larger frames call __asan_stack_free_*. 3209 IRBPoison.CreateCall( 3210 AsanStackFreeFunc[StackMallocIdx], 3211 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3212 } 3213 3214 IRBuilder<> IRBElse(ElseTerm); 3215 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3216 } else { 3217 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3218 } 3219 } 3220 3221 // We are done. Remove the old unused alloca instructions. 3222 for (auto AI : AllocaVec) AI->eraseFromParent(); 3223 } 3224 3225 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3226 IRBuilder<> &IRB, bool DoPoison) { 3227 // For now just insert the call to ASan runtime. 3228 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3229 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3230 IRB.CreateCall( 3231 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3232 {AddrArg, SizeArg}); 3233 } 3234 3235 // Handling llvm.lifetime intrinsics for a given %alloca: 3236 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3237 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3238 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3239 // could be poisoned by previous llvm.lifetime.end instruction, as the 3240 // variable may go in and out of scope several times, e.g. in loops). 3241 // (3) if we poisoned at least one %alloca in a function, 3242 // unpoison the whole stack frame at function exit. 3243 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3244 IRBuilder<> IRB(AI); 3245 3246 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 3247 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3248 3249 Value *Zero = Constant::getNullValue(IntptrTy); 3250 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3251 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3252 3253 // Since we need to extend alloca with additional memory to locate 3254 // redzones, and OldSize is number of allocated blocks with 3255 // ElementSize size, get allocated memory size in bytes by 3256 // OldSize * ElementSize. 3257 const unsigned ElementSize = 3258 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3259 Value *OldSize = 3260 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3261 ConstantInt::get(IntptrTy, ElementSize)); 3262 3263 // PartialSize = OldSize % 32 3264 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3265 3266 // Misalign = kAllocaRzSize - PartialSize; 3267 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3268 3269 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3270 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3271 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3272 3273 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 3274 // Align is added to locate left redzone, PartialPadding for possible 3275 // partial redzone and kAllocaRzSize for right redzone respectively. 3276 Value *AdditionalChunkSize = IRB.CreateAdd( 3277 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 3278 3279 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3280 3281 // Insert new alloca with new NewSize and Align params. 3282 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3283 NewAlloca->setAlignment(Align); 3284 3285 // NewAddress = Address + Align 3286 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3287 ConstantInt::get(IntptrTy, Align)); 3288 3289 // Insert __asan_alloca_poison call for new created alloca. 3290 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3291 3292 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3293 // for unpoisoning stuff. 3294 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3295 3296 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3297 3298 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3299 AI->replaceAllUsesWith(NewAddressPtr); 3300 3301 // We are done. Erase old alloca from parent. 3302 AI->eraseFromParent(); 3303 } 3304 3305 // isSafeAccess returns true if Addr is always inbounds with respect to its 3306 // base object. For example, it is a field access or an array access with 3307 // constant inbounds index. 3308 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3309 Value *Addr, uint64_t TypeSize) const { 3310 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3311 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3312 uint64_t Size = SizeOffset.first.getZExtValue(); 3313 int64_t Offset = SizeOffset.second.getSExtValue(); 3314 // Three checks are required to ensure safety: 3315 // . Offset >= 0 (since the offset is given from the base ptr) 3316 // . Size >= Offset (unsigned) 3317 // . Size - Offset >= NeededSize (unsigned) 3318 return Offset >= 0 && Size >= uint64_t(Offset) && 3319 Size - uint64_t(Offset) >= TypeSize / 8; 3320 } 3321