1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address basic correctness 10 // checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 // FIXME: This sanitizer does not yet handle scalable vectors 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/BinaryFormat/MachO.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/IRBuilder.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstVisitor.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/MDBuilder.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/MC/MCSectionMachO.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 73 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 74 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 #include "llvm/Transforms/Utils/ModuleUtils.h" 78 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iomanip> 84 #include <limits> 85 #include <sstream> 86 #include <string> 87 #include <tuple> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "asan" 92 93 static const uint64_t kDefaultShadowScale = 3; 94 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 95 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 96 static const uint64_t kDynamicShadowSentinel = 97 std::numeric_limits<uint64_t>::max(); 98 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 99 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 100 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 101 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 102 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 103 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 104 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 105 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 106 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 107 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 108 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 109 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 110 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 111 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 112 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 113 static const uint64_t kPS4_ShadowOffset64 = 1ULL << 40; 114 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 115 static const uint64_t kEmscriptenShadowOffset = 0; 116 117 // The shadow memory space is dynamically allocated. 118 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 119 120 static const size_t kMinStackMallocSize = 1 << 6; // 64B 121 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 122 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 123 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 124 125 const char kAsanModuleCtorName[] = "asan.module_ctor"; 126 const char kAsanModuleDtorName[] = "asan.module_dtor"; 127 static const uint64_t kAsanCtorAndDtorPriority = 1; 128 // On Emscripten, the system needs more than one priorities for constructors. 129 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 130 const char kAsanReportErrorTemplate[] = "__asan_report_"; 131 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 132 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 133 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 134 const char kAsanUnregisterImageGlobalsName[] = 135 "__asan_unregister_image_globals"; 136 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 137 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 138 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 139 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 140 const char kAsanInitName[] = "__asan_init"; 141 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 142 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 143 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 144 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 145 static const int kMaxAsanStackMallocSizeClass = 10; 146 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 147 const char kAsanStackMallocAlwaysNameTemplate[] = 148 "__asan_stack_malloc_always_"; 149 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 150 const char kAsanGenPrefix[] = "___asan_gen_"; 151 const char kODRGenPrefix[] = "__odr_asan_gen_"; 152 const char kSanCovGenPrefix[] = "__sancov_gen_"; 153 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 154 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 155 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 156 157 // ASan version script has __asan_* wildcard. Triple underscore prevents a 158 // linker (gold) warning about attempting to export a local symbol. 159 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 160 161 const char kAsanOptionDetectUseAfterReturn[] = 162 "__asan_option_detect_stack_use_after_return"; 163 164 const char kAsanShadowMemoryDynamicAddress[] = 165 "__asan_shadow_memory_dynamic_address"; 166 167 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 168 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 169 170 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 171 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 172 173 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 174 static const size_t kNumberOfAccessSizes = 5; 175 176 static const uint64_t kAllocaRzSize = 32; 177 178 // ASanAccessInfo implementation constants. 179 constexpr size_t kCompileKernelShift = 0; 180 constexpr size_t kCompileKernelMask = 0x1; 181 constexpr size_t kAccessSizeIndexShift = 1; 182 constexpr size_t kAccessSizeIndexMask = 0xf; 183 constexpr size_t kIsWriteShift = 5; 184 constexpr size_t kIsWriteMask = 0x1; 185 186 // Command-line flags. 187 188 static cl::opt<bool> ClEnableKasan( 189 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 190 cl::Hidden, cl::init(false)); 191 192 static cl::opt<bool> ClRecover( 193 "asan-recover", 194 cl::desc("Enable recovery mode (continue-after-error)."), 195 cl::Hidden, cl::init(false)); 196 197 static cl::opt<bool> ClInsertVersionCheck( 198 "asan-guard-against-version-mismatch", 199 cl::desc("Guard against compiler/runtime version mismatch."), 200 cl::Hidden, cl::init(true)); 201 202 // This flag may need to be replaced with -f[no-]asan-reads. 203 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 204 cl::desc("instrument read instructions"), 205 cl::Hidden, cl::init(true)); 206 207 static cl::opt<bool> ClInstrumentWrites( 208 "asan-instrument-writes", cl::desc("instrument write instructions"), 209 cl::Hidden, cl::init(true)); 210 211 static cl::opt<bool> 212 ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false), 213 cl::Hidden, cl::desc("Use Stack Safety analysis results"), 214 cl::Optional); 215 216 static cl::opt<bool> ClInstrumentAtomics( 217 "asan-instrument-atomics", 218 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 219 cl::init(true)); 220 221 static cl::opt<bool> 222 ClInstrumentByval("asan-instrument-byval", 223 cl::desc("instrument byval call arguments"), cl::Hidden, 224 cl::init(true)); 225 226 static cl::opt<bool> ClAlwaysSlowPath( 227 "asan-always-slow-path", 228 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 229 cl::init(false)); 230 231 static cl::opt<bool> ClForceDynamicShadow( 232 "asan-force-dynamic-shadow", 233 cl::desc("Load shadow address into a local variable for each function"), 234 cl::Hidden, cl::init(false)); 235 236 static cl::opt<bool> 237 ClWithIfunc("asan-with-ifunc", 238 cl::desc("Access dynamic shadow through an ifunc global on " 239 "platforms that support this"), 240 cl::Hidden, cl::init(true)); 241 242 static cl::opt<bool> ClWithIfuncSuppressRemat( 243 "asan-with-ifunc-suppress-remat", 244 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 245 "it through inline asm in prologue."), 246 cl::Hidden, cl::init(true)); 247 248 // This flag limits the number of instructions to be instrumented 249 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 250 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 251 // set it to 10000. 252 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 253 "asan-max-ins-per-bb", cl::init(10000), 254 cl::desc("maximal number of instructions to instrument in any given BB"), 255 cl::Hidden); 256 257 // This flag may need to be replaced with -f[no]asan-stack. 258 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 259 cl::Hidden, cl::init(true)); 260 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 261 "asan-max-inline-poisoning-size", 262 cl::desc( 263 "Inline shadow poisoning for blocks up to the given size in bytes."), 264 cl::Hidden, cl::init(64)); 265 266 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 267 "asan-use-after-return", 268 cl::desc("Sets the mode of detection for stack-use-after-return."), 269 cl::values( 270 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 271 "Never detect stack use after return."), 272 clEnumValN( 273 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 274 "Detect stack use after return if " 275 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 276 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 277 "Always detect stack use after return.")), 278 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 279 280 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 281 cl::desc("Create redzones for byval " 282 "arguments (extra copy " 283 "required)"), cl::Hidden, 284 cl::init(true)); 285 286 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 287 cl::desc("Check stack-use-after-scope"), 288 cl::Hidden, cl::init(false)); 289 290 // This flag may need to be replaced with -f[no]asan-globals. 291 static cl::opt<bool> ClGlobals("asan-globals", 292 cl::desc("Handle global objects"), cl::Hidden, 293 cl::init(true)); 294 295 static cl::opt<bool> ClInitializers("asan-initialization-order", 296 cl::desc("Handle C++ initializer order"), 297 cl::Hidden, cl::init(true)); 298 299 static cl::opt<bool> ClInvalidPointerPairs( 300 "asan-detect-invalid-pointer-pair", 301 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 302 cl::init(false)); 303 304 static cl::opt<bool> ClInvalidPointerCmp( 305 "asan-detect-invalid-pointer-cmp", 306 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 307 cl::init(false)); 308 309 static cl::opt<bool> ClInvalidPointerSub( 310 "asan-detect-invalid-pointer-sub", 311 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 312 cl::init(false)); 313 314 static cl::opt<unsigned> ClRealignStack( 315 "asan-realign-stack", 316 cl::desc("Realign stack to the value of this flag (power of two)"), 317 cl::Hidden, cl::init(32)); 318 319 static cl::opt<int> ClInstrumentationWithCallsThreshold( 320 "asan-instrumentation-with-call-threshold", 321 cl::desc( 322 "If the function being instrumented contains more than " 323 "this number of memory accesses, use callbacks instead of " 324 "inline checks (-1 means never use callbacks)."), 325 cl::Hidden, cl::init(7000)); 326 327 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 328 "asan-memory-access-callback-prefix", 329 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 330 cl::init("__asan_")); 331 332 static cl::opt<bool> ClKasanMemIntrinCallbackPrefix( 333 "asan-kernel-mem-intrinsic-prefix", 334 cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden, 335 cl::init(false)); 336 337 static cl::opt<bool> 338 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 339 cl::desc("instrument dynamic allocas"), 340 cl::Hidden, cl::init(true)); 341 342 static cl::opt<bool> ClSkipPromotableAllocas( 343 "asan-skip-promotable-allocas", 344 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 345 cl::init(true)); 346 347 // These flags allow to change the shadow mapping. 348 // The shadow mapping looks like 349 // Shadow = (Mem >> scale) + offset 350 351 static cl::opt<int> ClMappingScale("asan-mapping-scale", 352 cl::desc("scale of asan shadow mapping"), 353 cl::Hidden, cl::init(0)); 354 355 static cl::opt<uint64_t> 356 ClMappingOffset("asan-mapping-offset", 357 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 358 cl::Hidden, cl::init(0)); 359 360 // Optimization flags. Not user visible, used mostly for testing 361 // and benchmarking the tool. 362 363 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 364 cl::Hidden, cl::init(true)); 365 366 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 367 cl::desc("Optimize callbacks"), 368 cl::Hidden, cl::init(false)); 369 370 static cl::opt<bool> ClOptSameTemp( 371 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 372 cl::Hidden, cl::init(true)); 373 374 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 375 cl::desc("Don't instrument scalar globals"), 376 cl::Hidden, cl::init(true)); 377 378 static cl::opt<bool> ClOptStack( 379 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 380 cl::Hidden, cl::init(false)); 381 382 static cl::opt<bool> ClDynamicAllocaStack( 383 "asan-stack-dynamic-alloca", 384 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 385 cl::init(true)); 386 387 static cl::opt<uint32_t> ClForceExperiment( 388 "asan-force-experiment", 389 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 390 cl::init(0)); 391 392 static cl::opt<bool> 393 ClUsePrivateAlias("asan-use-private-alias", 394 cl::desc("Use private aliases for global variables"), 395 cl::Hidden, cl::init(false)); 396 397 static cl::opt<bool> 398 ClUseOdrIndicator("asan-use-odr-indicator", 399 cl::desc("Use odr indicators to improve ODR reporting"), 400 cl::Hidden, cl::init(false)); 401 402 static cl::opt<bool> 403 ClUseGlobalsGC("asan-globals-live-support", 404 cl::desc("Use linker features to support dead " 405 "code stripping of globals"), 406 cl::Hidden, cl::init(true)); 407 408 // This is on by default even though there is a bug in gold: 409 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 410 static cl::opt<bool> 411 ClWithComdat("asan-with-comdat", 412 cl::desc("Place ASan constructors in comdat sections"), 413 cl::Hidden, cl::init(true)); 414 415 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 416 "asan-destructor-kind", 417 cl::desc("Sets the ASan destructor kind. The default is to use the value " 418 "provided to the pass constructor"), 419 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 420 clEnumValN(AsanDtorKind::Global, "global", 421 "Use global destructors")), 422 cl::init(AsanDtorKind::Invalid), cl::Hidden); 423 424 // Debug flags. 425 426 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 427 cl::init(0)); 428 429 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 430 cl::Hidden, cl::init(0)); 431 432 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 433 cl::desc("Debug func")); 434 435 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 436 cl::Hidden, cl::init(-1)); 437 438 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 439 cl::Hidden, cl::init(-1)); 440 441 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 442 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 443 STATISTIC(NumOptimizedAccessesToGlobalVar, 444 "Number of optimized accesses to global vars"); 445 STATISTIC(NumOptimizedAccessesToStackVar, 446 "Number of optimized accesses to stack vars"); 447 448 namespace { 449 450 /// This struct defines the shadow mapping using the rule: 451 /// shadow = (mem >> Scale) ADD-or-OR Offset. 452 /// If InGlobal is true, then 453 /// extern char __asan_shadow[]; 454 /// shadow = (mem >> Scale) + &__asan_shadow 455 struct ShadowMapping { 456 int Scale; 457 uint64_t Offset; 458 bool OrShadowOffset; 459 bool InGlobal; 460 }; 461 462 } // end anonymous namespace 463 464 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 465 bool IsKasan) { 466 bool IsAndroid = TargetTriple.isAndroid(); 467 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() || 468 TargetTriple.isDriverKit(); 469 bool IsMacOS = TargetTriple.isMacOSX(); 470 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 471 bool IsNetBSD = TargetTriple.isOSNetBSD(); 472 bool IsPS4 = TargetTriple.isPS4(); 473 bool IsLinux = TargetTriple.isOSLinux(); 474 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 475 TargetTriple.getArch() == Triple::ppc64le; 476 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 477 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 478 bool IsMIPS32 = TargetTriple.isMIPS32(); 479 bool IsMIPS64 = TargetTriple.isMIPS64(); 480 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 481 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 482 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 483 bool IsWindows = TargetTriple.isOSWindows(); 484 bool IsFuchsia = TargetTriple.isOSFuchsia(); 485 bool IsEmscripten = TargetTriple.isOSEmscripten(); 486 bool IsAMDGPU = TargetTriple.isAMDGPU(); 487 488 ShadowMapping Mapping; 489 490 Mapping.Scale = kDefaultShadowScale; 491 if (ClMappingScale.getNumOccurrences() > 0) { 492 Mapping.Scale = ClMappingScale; 493 } 494 495 if (LongSize == 32) { 496 if (IsAndroid) 497 Mapping.Offset = kDynamicShadowSentinel; 498 else if (IsMIPS32) 499 Mapping.Offset = kMIPS32_ShadowOffset32; 500 else if (IsFreeBSD) 501 Mapping.Offset = kFreeBSD_ShadowOffset32; 502 else if (IsNetBSD) 503 Mapping.Offset = kNetBSD_ShadowOffset32; 504 else if (IsIOS) 505 Mapping.Offset = kDynamicShadowSentinel; 506 else if (IsWindows) 507 Mapping.Offset = kWindowsShadowOffset32; 508 else if (IsEmscripten) 509 Mapping.Offset = kEmscriptenShadowOffset; 510 else 511 Mapping.Offset = kDefaultShadowOffset32; 512 } else { // LongSize == 64 513 // Fuchsia is always PIE, which means that the beginning of the address 514 // space is always available. 515 if (IsFuchsia) 516 Mapping.Offset = 0; 517 else if (IsPPC64) 518 Mapping.Offset = kPPC64_ShadowOffset64; 519 else if (IsSystemZ) 520 Mapping.Offset = kSystemZ_ShadowOffset64; 521 else if (IsFreeBSD && !IsMIPS64) { 522 if (IsKasan) 523 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 524 else 525 Mapping.Offset = kFreeBSD_ShadowOffset64; 526 } else if (IsNetBSD) { 527 if (IsKasan) 528 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 529 else 530 Mapping.Offset = kNetBSD_ShadowOffset64; 531 } else if (IsPS4) 532 Mapping.Offset = kPS4_ShadowOffset64; 533 else if (IsLinux && IsX86_64) { 534 if (IsKasan) 535 Mapping.Offset = kLinuxKasan_ShadowOffset64; 536 else 537 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 538 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 539 } else if (IsWindows && IsX86_64) { 540 Mapping.Offset = kWindowsShadowOffset64; 541 } else if (IsMIPS64) 542 Mapping.Offset = kMIPS64_ShadowOffset64; 543 else if (IsIOS) 544 Mapping.Offset = kDynamicShadowSentinel; 545 else if (IsMacOS && IsAArch64) 546 Mapping.Offset = kDynamicShadowSentinel; 547 else if (IsAArch64) 548 Mapping.Offset = kAArch64_ShadowOffset64; 549 else if (IsRISCV64) 550 Mapping.Offset = kRISCV64_ShadowOffset64; 551 else if (IsAMDGPU) 552 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 553 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 554 else 555 Mapping.Offset = kDefaultShadowOffset64; 556 } 557 558 if (ClForceDynamicShadow) { 559 Mapping.Offset = kDynamicShadowSentinel; 560 } 561 562 if (ClMappingOffset.getNumOccurrences() > 0) { 563 Mapping.Offset = ClMappingOffset; 564 } 565 566 // OR-ing shadow offset if more efficient (at least on x86) if the offset 567 // is a power of two, but on ppc64 we have to use add since the shadow 568 // offset is not necessary 1/8-th of the address space. On SystemZ, 569 // we could OR the constant in a single instruction, but it's more 570 // efficient to load it once and use indexed addressing. 571 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4 && 572 !IsRISCV64 && 573 !(Mapping.Offset & (Mapping.Offset - 1)) && 574 Mapping.Offset != kDynamicShadowSentinel; 575 bool IsAndroidWithIfuncSupport = 576 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 577 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 578 579 return Mapping; 580 } 581 582 namespace llvm { 583 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 584 bool IsKasan, uint64_t *ShadowBase, 585 int *MappingScale, bool *OrShadowOffset) { 586 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 587 *ShadowBase = Mapping.Offset; 588 *MappingScale = Mapping.Scale; 589 *OrShadowOffset = Mapping.OrShadowOffset; 590 } 591 592 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 593 : Packed(Packed), 594 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 595 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 596 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 597 598 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 599 uint8_t AccessSizeIndex) 600 : Packed((IsWrite << kIsWriteShift) + 601 (CompileKernel << kCompileKernelShift) + 602 (AccessSizeIndex << kAccessSizeIndexShift)), 603 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 604 CompileKernel(CompileKernel) {} 605 606 } // namespace llvm 607 608 static uint64_t getRedzoneSizeForScale(int MappingScale) { 609 // Redzone used for stack and globals is at least 32 bytes. 610 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 611 return std::max(32U, 1U << MappingScale); 612 } 613 614 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 615 if (TargetTriple.isOSEmscripten()) { 616 return kAsanEmscriptenCtorAndDtorPriority; 617 } else { 618 return kAsanCtorAndDtorPriority; 619 } 620 } 621 622 namespace { 623 624 /// AddressSanitizer: instrument the code in module to find memory bugs. 625 struct AddressSanitizer { 626 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 627 const StackSafetyGlobalInfo *SSGI, 628 bool CompileKernel = false, bool Recover = false, 629 bool UseAfterScope = false, 630 AsanDetectStackUseAfterReturnMode UseAfterReturn = 631 AsanDetectStackUseAfterReturnMode::Runtime) 632 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 633 : CompileKernel), 634 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 635 UseAfterScope(UseAfterScope || ClUseAfterScope), 636 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 637 : UseAfterReturn), 638 GlobalsMD(*GlobalsMD), SSGI(SSGI) { 639 C = &(M.getContext()); 640 LongSize = M.getDataLayout().getPointerSizeInBits(); 641 IntptrTy = Type::getIntNTy(*C, LongSize); 642 Int8PtrTy = Type::getInt8PtrTy(*C); 643 Int32Ty = Type::getInt32Ty(*C); 644 TargetTriple = Triple(M.getTargetTriple()); 645 646 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 647 648 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 649 } 650 651 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 652 uint64_t ArraySize = 1; 653 if (AI.isArrayAllocation()) { 654 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 655 assert(CI && "non-constant array size"); 656 ArraySize = CI->getZExtValue(); 657 } 658 Type *Ty = AI.getAllocatedType(); 659 uint64_t SizeInBytes = 660 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 661 return SizeInBytes * ArraySize; 662 } 663 664 /// Check if we want (and can) handle this alloca. 665 bool isInterestingAlloca(const AllocaInst &AI); 666 667 bool ignoreAccess(Instruction *Inst, Value *Ptr); 668 void getInterestingMemoryOperands( 669 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 670 671 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 672 InterestingMemoryOperand &O, bool UseCalls, 673 const DataLayout &DL); 674 void instrumentPointerComparisonOrSubtraction(Instruction *I); 675 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 676 Value *Addr, uint32_t TypeSize, bool IsWrite, 677 Value *SizeArgument, bool UseCalls, uint32_t Exp); 678 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 679 Instruction *InsertBefore, Value *Addr, 680 uint32_t TypeSize, bool IsWrite, 681 Value *SizeArgument); 682 void instrumentUnusualSizeOrAlignment(Instruction *I, 683 Instruction *InsertBefore, Value *Addr, 684 uint32_t TypeSize, bool IsWrite, 685 Value *SizeArgument, bool UseCalls, 686 uint32_t Exp); 687 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 688 Value *ShadowValue, uint32_t TypeSize); 689 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 690 bool IsWrite, size_t AccessSizeIndex, 691 Value *SizeArgument, uint32_t Exp); 692 void instrumentMemIntrinsic(MemIntrinsic *MI); 693 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 694 bool suppressInstrumentationSiteForDebug(int &Instrumented); 695 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 696 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 697 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 698 void markEscapedLocalAllocas(Function &F); 699 700 private: 701 friend struct FunctionStackPoisoner; 702 703 void initializeCallbacks(Module &M); 704 705 bool LooksLikeCodeInBug11395(Instruction *I); 706 bool GlobalIsLinkerInitialized(GlobalVariable *G); 707 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 708 uint64_t TypeSize) const; 709 710 /// Helper to cleanup per-function state. 711 struct FunctionStateRAII { 712 AddressSanitizer *Pass; 713 714 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 715 assert(Pass->ProcessedAllocas.empty() && 716 "last pass forgot to clear cache"); 717 assert(!Pass->LocalDynamicShadow); 718 } 719 720 ~FunctionStateRAII() { 721 Pass->LocalDynamicShadow = nullptr; 722 Pass->ProcessedAllocas.clear(); 723 } 724 }; 725 726 LLVMContext *C; 727 Triple TargetTriple; 728 int LongSize; 729 bool CompileKernel; 730 bool Recover; 731 bool UseAfterScope; 732 AsanDetectStackUseAfterReturnMode UseAfterReturn; 733 Type *IntptrTy; 734 Type *Int8PtrTy; 735 Type *Int32Ty; 736 ShadowMapping Mapping; 737 FunctionCallee AsanHandleNoReturnFunc; 738 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 739 Constant *AsanShadowGlobal; 740 741 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 742 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 743 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 744 745 // These arrays is indexed by AccessIsWrite and Experiment. 746 FunctionCallee AsanErrorCallbackSized[2][2]; 747 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 748 749 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 750 Value *LocalDynamicShadow = nullptr; 751 const GlobalsMetadata &GlobalsMD; 752 const StackSafetyGlobalInfo *SSGI; 753 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 754 755 FunctionCallee AMDGPUAddressShared; 756 FunctionCallee AMDGPUAddressPrivate; 757 }; 758 759 class ModuleAddressSanitizer { 760 public: 761 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 762 bool CompileKernel = false, bool Recover = false, 763 bool UseGlobalsGC = true, bool UseOdrIndicator = false, 764 AsanDtorKind DestructorKind = AsanDtorKind::Global) 765 : GlobalsMD(*GlobalsMD), 766 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 767 : CompileKernel), 768 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 769 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 770 // Enable aliases as they should have no downside with ODR indicators. 771 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 772 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 773 // Not a typo: ClWithComdat is almost completely pointless without 774 // ClUseGlobalsGC (because then it only works on modules without 775 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 776 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 777 // argument is designed as workaround. Therefore, disable both 778 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 779 // do globals-gc. 780 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 781 DestructorKind(DestructorKind) { 782 C = &(M.getContext()); 783 int LongSize = M.getDataLayout().getPointerSizeInBits(); 784 IntptrTy = Type::getIntNTy(*C, LongSize); 785 TargetTriple = Triple(M.getTargetTriple()); 786 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 787 788 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 789 this->DestructorKind = ClOverrideDestructorKind; 790 assert(this->DestructorKind != AsanDtorKind::Invalid); 791 } 792 793 bool instrumentModule(Module &); 794 795 private: 796 void initializeCallbacks(Module &M); 797 798 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 799 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 800 ArrayRef<GlobalVariable *> ExtendedGlobals, 801 ArrayRef<Constant *> MetadataInitializers); 802 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 803 ArrayRef<GlobalVariable *> ExtendedGlobals, 804 ArrayRef<Constant *> MetadataInitializers, 805 const std::string &UniqueModuleId); 806 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 807 ArrayRef<GlobalVariable *> ExtendedGlobals, 808 ArrayRef<Constant *> MetadataInitializers); 809 void 810 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 811 ArrayRef<GlobalVariable *> ExtendedGlobals, 812 ArrayRef<Constant *> MetadataInitializers); 813 814 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 815 StringRef OriginalName); 816 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 817 StringRef InternalSuffix); 818 Instruction *CreateAsanModuleDtor(Module &M); 819 820 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 821 bool shouldInstrumentGlobal(GlobalVariable *G) const; 822 bool ShouldUseMachOGlobalsSection() const; 823 StringRef getGlobalMetadataSection() const; 824 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 825 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 826 uint64_t getMinRedzoneSizeForGlobal() const { 827 return getRedzoneSizeForScale(Mapping.Scale); 828 } 829 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 830 int GetAsanVersion(const Module &M) const; 831 832 const GlobalsMetadata &GlobalsMD; 833 bool CompileKernel; 834 bool Recover; 835 bool UseGlobalsGC; 836 bool UsePrivateAlias; 837 bool UseOdrIndicator; 838 bool UseCtorComdat; 839 AsanDtorKind DestructorKind; 840 Type *IntptrTy; 841 LLVMContext *C; 842 Triple TargetTriple; 843 ShadowMapping Mapping; 844 FunctionCallee AsanPoisonGlobals; 845 FunctionCallee AsanUnpoisonGlobals; 846 FunctionCallee AsanRegisterGlobals; 847 FunctionCallee AsanUnregisterGlobals; 848 FunctionCallee AsanRegisterImageGlobals; 849 FunctionCallee AsanUnregisterImageGlobals; 850 FunctionCallee AsanRegisterElfGlobals; 851 FunctionCallee AsanUnregisterElfGlobals; 852 853 Function *AsanCtorFunction = nullptr; 854 Function *AsanDtorFunction = nullptr; 855 }; 856 857 // Stack poisoning does not play well with exception handling. 858 // When an exception is thrown, we essentially bypass the code 859 // that unpoisones the stack. This is why the run-time library has 860 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 861 // stack in the interceptor. This however does not work inside the 862 // actual function which catches the exception. Most likely because the 863 // compiler hoists the load of the shadow value somewhere too high. 864 // This causes asan to report a non-existing bug on 453.povray. 865 // It sounds like an LLVM bug. 866 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 867 Function &F; 868 AddressSanitizer &ASan; 869 DIBuilder DIB; 870 LLVMContext *C; 871 Type *IntptrTy; 872 Type *IntptrPtrTy; 873 ShadowMapping Mapping; 874 875 SmallVector<AllocaInst *, 16> AllocaVec; 876 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 877 SmallVector<Instruction *, 8> RetVec; 878 879 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 880 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 881 FunctionCallee AsanSetShadowFunc[0x100] = {}; 882 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 883 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 884 885 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 886 struct AllocaPoisonCall { 887 IntrinsicInst *InsBefore; 888 AllocaInst *AI; 889 uint64_t Size; 890 bool DoPoison; 891 }; 892 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 893 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 894 bool HasUntracedLifetimeIntrinsic = false; 895 896 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 897 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 898 AllocaInst *DynamicAllocaLayout = nullptr; 899 IntrinsicInst *LocalEscapeCall = nullptr; 900 901 bool HasInlineAsm = false; 902 bool HasReturnsTwiceCall = false; 903 bool PoisonStack; 904 905 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 906 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 907 C(ASan.C), IntptrTy(ASan.IntptrTy), 908 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 909 PoisonStack(ClStack && 910 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 911 912 bool runOnFunction() { 913 if (!PoisonStack) 914 return false; 915 916 if (ClRedzoneByvalArgs) 917 copyArgsPassedByValToAllocas(); 918 919 // Collect alloca, ret, lifetime instructions etc. 920 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 921 922 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 923 924 initializeCallbacks(*F.getParent()); 925 926 if (HasUntracedLifetimeIntrinsic) { 927 // If there are lifetime intrinsics which couldn't be traced back to an 928 // alloca, we may not know exactly when a variable enters scope, and 929 // therefore should "fail safe" by not poisoning them. 930 StaticAllocaPoisonCallVec.clear(); 931 DynamicAllocaPoisonCallVec.clear(); 932 } 933 934 processDynamicAllocas(); 935 processStaticAllocas(); 936 937 if (ClDebugStack) { 938 LLVM_DEBUG(dbgs() << F); 939 } 940 return true; 941 } 942 943 // Arguments marked with the "byval" attribute are implicitly copied without 944 // using an alloca instruction. To produce redzones for those arguments, we 945 // copy them a second time into memory allocated with an alloca instruction. 946 void copyArgsPassedByValToAllocas(); 947 948 // Finds all Alloca instructions and puts 949 // poisoned red zones around all of them. 950 // Then unpoison everything back before the function returns. 951 void processStaticAllocas(); 952 void processDynamicAllocas(); 953 954 void createDynamicAllocasInitStorage(); 955 956 // ----------------------- Visitors. 957 /// Collect all Ret instructions, or the musttail call instruction if it 958 /// precedes the return instruction. 959 void visitReturnInst(ReturnInst &RI) { 960 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 961 RetVec.push_back(CI); 962 else 963 RetVec.push_back(&RI); 964 } 965 966 /// Collect all Resume instructions. 967 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 968 969 /// Collect all CatchReturnInst instructions. 970 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 971 972 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 973 Value *SavedStack) { 974 IRBuilder<> IRB(InstBefore); 975 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 976 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 977 // need to adjust extracted SP to compute the address of the most recent 978 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 979 // this purpose. 980 if (!isa<ReturnInst>(InstBefore)) { 981 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 982 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 983 {IntptrTy}); 984 985 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 986 987 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 988 DynamicAreaOffset); 989 } 990 991 IRB.CreateCall( 992 AsanAllocasUnpoisonFunc, 993 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 994 } 995 996 // Unpoison dynamic allocas redzones. 997 void unpoisonDynamicAllocas() { 998 for (Instruction *Ret : RetVec) 999 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1000 1001 for (Instruction *StackRestoreInst : StackRestoreVec) 1002 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1003 StackRestoreInst->getOperand(0)); 1004 } 1005 1006 // Deploy and poison redzones around dynamic alloca call. To do this, we 1007 // should replace this call with another one with changed parameters and 1008 // replace all its uses with new address, so 1009 // addr = alloca type, old_size, align 1010 // is replaced by 1011 // new_size = (old_size + additional_size) * sizeof(type) 1012 // tmp = alloca i8, new_size, max(align, 32) 1013 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1014 // Additional_size is added to make new memory allocation contain not only 1015 // requested memory, but also left, partial and right redzones. 1016 void handleDynamicAllocaCall(AllocaInst *AI); 1017 1018 /// Collect Alloca instructions we want (and can) handle. 1019 void visitAllocaInst(AllocaInst &AI) { 1020 if (!ASan.isInterestingAlloca(AI)) { 1021 if (AI.isStaticAlloca()) { 1022 // Skip over allocas that are present *before* the first instrumented 1023 // alloca, we don't want to move those around. 1024 if (AllocaVec.empty()) 1025 return; 1026 1027 StaticAllocasToMoveUp.push_back(&AI); 1028 } 1029 return; 1030 } 1031 1032 if (!AI.isStaticAlloca()) 1033 DynamicAllocaVec.push_back(&AI); 1034 else 1035 AllocaVec.push_back(&AI); 1036 } 1037 1038 /// Collect lifetime intrinsic calls to check for use-after-scope 1039 /// errors. 1040 void visitIntrinsicInst(IntrinsicInst &II) { 1041 Intrinsic::ID ID = II.getIntrinsicID(); 1042 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1043 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1044 if (!ASan.UseAfterScope) 1045 return; 1046 if (!II.isLifetimeStartOrEnd()) 1047 return; 1048 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1049 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1050 // If size argument is undefined, don't do anything. 1051 if (Size->isMinusOne()) return; 1052 // Check that size doesn't saturate uint64_t and can 1053 // be stored in IntptrTy. 1054 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1055 if (SizeValue == ~0ULL || 1056 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1057 return; 1058 // Find alloca instruction that corresponds to llvm.lifetime argument. 1059 // Currently we can only handle lifetime markers pointing to the 1060 // beginning of the alloca. 1061 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1062 if (!AI) { 1063 HasUntracedLifetimeIntrinsic = true; 1064 return; 1065 } 1066 // We're interested only in allocas we can handle. 1067 if (!ASan.isInterestingAlloca(*AI)) 1068 return; 1069 bool DoPoison = (ID == Intrinsic::lifetime_end); 1070 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1071 if (AI->isStaticAlloca()) 1072 StaticAllocaPoisonCallVec.push_back(APC); 1073 else if (ClInstrumentDynamicAllocas) 1074 DynamicAllocaPoisonCallVec.push_back(APC); 1075 } 1076 1077 void visitCallBase(CallBase &CB) { 1078 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1079 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1080 HasReturnsTwiceCall |= CI->canReturnTwice(); 1081 } 1082 } 1083 1084 // ---------------------- Helpers. 1085 void initializeCallbacks(Module &M); 1086 1087 // Copies bytes from ShadowBytes into shadow memory for indexes where 1088 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1089 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1090 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1091 IRBuilder<> &IRB, Value *ShadowBase); 1092 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1093 size_t Begin, size_t End, IRBuilder<> &IRB, 1094 Value *ShadowBase); 1095 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1096 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1097 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1098 1099 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1100 1101 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1102 bool Dynamic); 1103 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1104 Instruction *ThenTerm, Value *ValueIfFalse); 1105 }; 1106 1107 } // end anonymous namespace 1108 1109 void LocationMetadata::parse(MDNode *MDN) { 1110 assert(MDN->getNumOperands() == 3); 1111 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1112 Filename = DIFilename->getString(); 1113 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1114 ColumnNo = 1115 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1116 } 1117 1118 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1119 // we want to sanitize instead and reading this metadata on each pass over a 1120 // function instead of reading module level metadata at first. 1121 GlobalsMetadata::GlobalsMetadata(Module &M) { 1122 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1123 if (!Globals) 1124 return; 1125 for (auto MDN : Globals->operands()) { 1126 // Metadata node contains the global and the fields of "Entry". 1127 assert(MDN->getNumOperands() == 5); 1128 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1129 // The optimizer may optimize away a global entirely. 1130 if (!V) 1131 continue; 1132 auto *StrippedV = V->stripPointerCasts(); 1133 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1134 if (!GV) 1135 continue; 1136 // We can already have an entry for GV if it was merged with another 1137 // global. 1138 Entry &E = Entries[GV]; 1139 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1140 E.SourceLoc.parse(Loc); 1141 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1142 E.Name = Name->getString(); 1143 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1144 E.IsDynInit |= IsDynInit->isOne(); 1145 ConstantInt *IsExcluded = 1146 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1147 E.IsExcluded |= IsExcluded->isOne(); 1148 } 1149 } 1150 1151 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1152 1153 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1154 ModuleAnalysisManager &AM) { 1155 return GlobalsMetadata(M); 1156 } 1157 1158 void ModuleAddressSanitizerPass::printPipeline( 1159 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1160 static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline( 1161 OS, MapClassName2PassName); 1162 OS << "<"; 1163 if (Options.CompileKernel) 1164 OS << "kernel"; 1165 OS << ">"; 1166 } 1167 1168 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( 1169 const AddressSanitizerOptions &Options, bool UseGlobalGC, 1170 bool UseOdrIndicator, AsanDtorKind DestructorKind) 1171 : Options(Options), UseGlobalGC(UseGlobalGC), 1172 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} 1173 1174 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1175 ModuleAnalysisManager &MAM) { 1176 GlobalsMetadata &GlobalsMD = MAM.getResult<ASanGlobalsMetadataAnalysis>(M); 1177 ModuleAddressSanitizer ModuleSanitizer(M, &GlobalsMD, Options.CompileKernel, 1178 Options.Recover, UseGlobalGC, 1179 UseOdrIndicator, DestructorKind); 1180 bool Modified = false; 1181 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1182 const StackSafetyGlobalInfo *const SSGI = 1183 ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; 1184 for (Function &F : M) { 1185 AddressSanitizer FunctionSanitizer( 1186 M, &GlobalsMD, SSGI, Options.CompileKernel, Options.Recover, 1187 Options.UseAfterScope, Options.UseAfterReturn); 1188 const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1189 Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); 1190 } 1191 Modified |= ModuleSanitizer.instrumentModule(M); 1192 return Modified ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1193 } 1194 1195 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1196 size_t Res = countTrailingZeros(TypeSize / 8); 1197 assert(Res < kNumberOfAccessSizes); 1198 return Res; 1199 } 1200 1201 /// Create a global describing a source location. 1202 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1203 LocationMetadata MD) { 1204 Constant *LocData[] = { 1205 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1206 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1207 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1208 }; 1209 auto LocStruct = ConstantStruct::getAnon(LocData); 1210 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1211 GlobalValue::PrivateLinkage, LocStruct, 1212 kAsanGenPrefix); 1213 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1214 return GV; 1215 } 1216 1217 /// Check if \p G has been created by a trusted compiler pass. 1218 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1219 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1220 if (G->getName().startswith("llvm.")) 1221 return true; 1222 1223 // Do not instrument asan globals. 1224 if (G->getName().startswith(kAsanGenPrefix) || 1225 G->getName().startswith(kSanCovGenPrefix) || 1226 G->getName().startswith(kODRGenPrefix)) 1227 return true; 1228 1229 // Do not instrument gcov counter arrays. 1230 if (G->getName() == "__llvm_gcov_ctr") 1231 return true; 1232 1233 return false; 1234 } 1235 1236 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1237 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1238 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1239 if (AddrSpace == 3 || AddrSpace == 5) 1240 return true; 1241 return false; 1242 } 1243 1244 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1245 // Shadow >> scale 1246 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1247 if (Mapping.Offset == 0) return Shadow; 1248 // (Shadow >> scale) | offset 1249 Value *ShadowBase; 1250 if (LocalDynamicShadow) 1251 ShadowBase = LocalDynamicShadow; 1252 else 1253 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1254 if (Mapping.OrShadowOffset) 1255 return IRB.CreateOr(Shadow, ShadowBase); 1256 else 1257 return IRB.CreateAdd(Shadow, ShadowBase); 1258 } 1259 1260 // Instrument memset/memmove/memcpy 1261 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1262 IRBuilder<> IRB(MI); 1263 if (isa<MemTransferInst>(MI)) { 1264 IRB.CreateCall( 1265 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1266 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1267 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1268 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1269 } else if (isa<MemSetInst>(MI)) { 1270 IRB.CreateCall( 1271 AsanMemset, 1272 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1273 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1274 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1275 } 1276 MI->eraseFromParent(); 1277 } 1278 1279 /// Check if we want (and can) handle this alloca. 1280 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1281 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1282 1283 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1284 return PreviouslySeenAllocaInfo->getSecond(); 1285 1286 bool IsInteresting = 1287 (AI.getAllocatedType()->isSized() && 1288 // alloca() may be called with 0 size, ignore it. 1289 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1290 // We are only interested in allocas not promotable to registers. 1291 // Promotable allocas are common under -O0. 1292 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1293 // inalloca allocas are not treated as static, and we don't want 1294 // dynamic alloca instrumentation for them as well. 1295 !AI.isUsedWithInAlloca() && 1296 // swifterror allocas are register promoted by ISel 1297 !AI.isSwiftError()); 1298 1299 ProcessedAllocas[&AI] = IsInteresting; 1300 return IsInteresting; 1301 } 1302 1303 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { 1304 // Instrument acesses from different address spaces only for AMDGPU. 1305 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1306 if (PtrTy->getPointerAddressSpace() != 0 && 1307 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1308 return true; 1309 1310 // Ignore swifterror addresses. 1311 // swifterror memory addresses are mem2reg promoted by instruction 1312 // selection. As such they cannot have regular uses like an instrumentation 1313 // function and it makes no sense to track them as memory. 1314 if (Ptr->isSwiftError()) 1315 return true; 1316 1317 // Treat memory accesses to promotable allocas as non-interesting since they 1318 // will not cause memory violations. This greatly speeds up the instrumented 1319 // executable at -O0. 1320 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1321 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1322 return true; 1323 1324 if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && 1325 findAllocaForValue(Ptr)) 1326 return true; 1327 1328 return false; 1329 } 1330 1331 void AddressSanitizer::getInterestingMemoryOperands( 1332 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1333 // Do not instrument the load fetching the dynamic shadow address. 1334 if (LocalDynamicShadow == I) 1335 return; 1336 1337 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1338 if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand())) 1339 return; 1340 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1341 LI->getType(), LI->getAlign()); 1342 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1343 if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand())) 1344 return; 1345 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1346 SI->getValueOperand()->getType(), SI->getAlign()); 1347 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1348 if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand())) 1349 return; 1350 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1351 RMW->getValOperand()->getType(), None); 1352 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1353 if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand())) 1354 return; 1355 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1356 XCHG->getCompareOperand()->getType(), None); 1357 } else if (auto CI = dyn_cast<CallInst>(I)) { 1358 if (CI->getIntrinsicID() == Intrinsic::masked_load || 1359 CI->getIntrinsicID() == Intrinsic::masked_store) { 1360 bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_store; 1361 // Masked store has an initial operand for the value. 1362 unsigned OpOffset = IsWrite ? 1 : 0; 1363 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1364 return; 1365 1366 auto BasePtr = CI->getOperand(OpOffset); 1367 if (ignoreAccess(I, BasePtr)) 1368 return; 1369 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1370 MaybeAlign Alignment = Align(1); 1371 // Otherwise no alignment guarantees. We probably got Undef. 1372 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1373 Alignment = Op->getMaybeAlignValue(); 1374 Value *Mask = CI->getOperand(2 + OpOffset); 1375 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1376 } else { 1377 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1378 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1379 ignoreAccess(I, CI->getArgOperand(ArgNo))) 1380 continue; 1381 Type *Ty = CI->getParamByValType(ArgNo); 1382 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1383 } 1384 } 1385 } 1386 } 1387 1388 static bool isPointerOperand(Value *V) { 1389 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1390 } 1391 1392 // This is a rough heuristic; it may cause both false positives and 1393 // false negatives. The proper implementation requires cooperation with 1394 // the frontend. 1395 static bool isInterestingPointerComparison(Instruction *I) { 1396 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1397 if (!Cmp->isRelational()) 1398 return false; 1399 } else { 1400 return false; 1401 } 1402 return isPointerOperand(I->getOperand(0)) && 1403 isPointerOperand(I->getOperand(1)); 1404 } 1405 1406 // This is a rough heuristic; it may cause both false positives and 1407 // false negatives. The proper implementation requires cooperation with 1408 // the frontend. 1409 static bool isInterestingPointerSubtraction(Instruction *I) { 1410 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1411 if (BO->getOpcode() != Instruction::Sub) 1412 return false; 1413 } else { 1414 return false; 1415 } 1416 return isPointerOperand(I->getOperand(0)) && 1417 isPointerOperand(I->getOperand(1)); 1418 } 1419 1420 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1421 // If a global variable does not have dynamic initialization we don't 1422 // have to instrument it. However, if a global does not have initializer 1423 // at all, we assume it has dynamic initializer (in other TU). 1424 // 1425 // FIXME: Metadata should be attched directly to the global directly instead 1426 // of being added to llvm.asan.globals. 1427 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1428 } 1429 1430 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1431 Instruction *I) { 1432 IRBuilder<> IRB(I); 1433 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1434 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1435 for (Value *&i : Param) { 1436 if (i->getType()->isPointerTy()) 1437 i = IRB.CreatePointerCast(i, IntptrTy); 1438 } 1439 IRB.CreateCall(F, Param); 1440 } 1441 1442 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1443 Instruction *InsertBefore, Value *Addr, 1444 MaybeAlign Alignment, unsigned Granularity, 1445 uint32_t TypeSize, bool IsWrite, 1446 Value *SizeArgument, bool UseCalls, 1447 uint32_t Exp) { 1448 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1449 // if the data is properly aligned. 1450 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1451 TypeSize == 128) && 1452 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1453 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1454 nullptr, UseCalls, Exp); 1455 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1456 IsWrite, nullptr, UseCalls, Exp); 1457 } 1458 1459 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1460 const DataLayout &DL, Type *IntptrTy, 1461 Value *Mask, Instruction *I, 1462 Value *Addr, MaybeAlign Alignment, 1463 unsigned Granularity, Type *OpType, 1464 bool IsWrite, Value *SizeArgument, 1465 bool UseCalls, uint32_t Exp) { 1466 auto *VTy = cast<FixedVectorType>(OpType); 1467 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1468 unsigned Num = VTy->getNumElements(); 1469 auto Zero = ConstantInt::get(IntptrTy, 0); 1470 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1471 Value *InstrumentedAddress = nullptr; 1472 Instruction *InsertBefore = I; 1473 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1474 // dyn_cast as we might get UndefValue 1475 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1476 if (Masked->isZero()) 1477 // Mask is constant false, so no instrumentation needed. 1478 continue; 1479 // If we have a true or undef value, fall through to doInstrumentAddress 1480 // with InsertBefore == I 1481 } 1482 } else { 1483 IRBuilder<> IRB(I); 1484 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1485 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1486 InsertBefore = ThenTerm; 1487 } 1488 1489 IRBuilder<> IRB(InsertBefore); 1490 InstrumentedAddress = 1491 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1492 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1493 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1494 UseCalls, Exp); 1495 } 1496 } 1497 1498 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1499 InterestingMemoryOperand &O, bool UseCalls, 1500 const DataLayout &DL) { 1501 Value *Addr = O.getPtr(); 1502 1503 // Optimization experiments. 1504 // The experiments can be used to evaluate potential optimizations that remove 1505 // instrumentation (assess false negatives). Instead of completely removing 1506 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1507 // experiments that want to remove instrumentation of this instruction). 1508 // If Exp is non-zero, this pass will emit special calls into runtime 1509 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1510 // make runtime terminate the program in a special way (with a different 1511 // exit status). Then you run the new compiler on a buggy corpus, collect 1512 // the special terminations (ideally, you don't see them at all -- no false 1513 // negatives) and make the decision on the optimization. 1514 uint32_t Exp = ClForceExperiment; 1515 1516 if (ClOpt && ClOptGlobals) { 1517 // If initialization order checking is disabled, a simple access to a 1518 // dynamically initialized global is always valid. 1519 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1520 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1521 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1522 NumOptimizedAccessesToGlobalVar++; 1523 return; 1524 } 1525 } 1526 1527 if (ClOpt && ClOptStack) { 1528 // A direct inbounds access to a stack variable is always valid. 1529 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1530 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1531 NumOptimizedAccessesToStackVar++; 1532 return; 1533 } 1534 } 1535 1536 if (O.IsWrite) 1537 NumInstrumentedWrites++; 1538 else 1539 NumInstrumentedReads++; 1540 1541 unsigned Granularity = 1 << Mapping.Scale; 1542 if (O.MaybeMask) { 1543 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1544 Addr, O.Alignment, Granularity, O.OpType, 1545 O.IsWrite, nullptr, UseCalls, Exp); 1546 } else { 1547 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1548 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1549 Exp); 1550 } 1551 } 1552 1553 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1554 Value *Addr, bool IsWrite, 1555 size_t AccessSizeIndex, 1556 Value *SizeArgument, 1557 uint32_t Exp) { 1558 IRBuilder<> IRB(InsertBefore); 1559 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1560 CallInst *Call = nullptr; 1561 if (SizeArgument) { 1562 if (Exp == 0) 1563 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1564 {Addr, SizeArgument}); 1565 else 1566 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1567 {Addr, SizeArgument, ExpVal}); 1568 } else { 1569 if (Exp == 0) 1570 Call = 1571 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1572 else 1573 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1574 {Addr, ExpVal}); 1575 } 1576 1577 Call->setCannotMerge(); 1578 return Call; 1579 } 1580 1581 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1582 Value *ShadowValue, 1583 uint32_t TypeSize) { 1584 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1585 // Addr & (Granularity - 1) 1586 Value *LastAccessedByte = 1587 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1588 // (Addr & (Granularity - 1)) + size - 1 1589 if (TypeSize / 8 > 1) 1590 LastAccessedByte = IRB.CreateAdd( 1591 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1592 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1593 LastAccessedByte = 1594 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1595 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1596 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1597 } 1598 1599 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1600 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1601 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { 1602 // Do not instrument unsupported addrspaces. 1603 if (isUnsupportedAMDGPUAddrspace(Addr)) 1604 return nullptr; 1605 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1606 // Follow host instrumentation for global and constant addresses. 1607 if (PtrTy->getPointerAddressSpace() != 0) 1608 return InsertBefore; 1609 // Instrument generic addresses in supported addressspaces. 1610 IRBuilder<> IRB(InsertBefore); 1611 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); 1612 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); 1613 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); 1614 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1615 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); 1616 Value *AddrSpaceZeroLanding = 1617 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1618 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1619 return InsertBefore; 1620 } 1621 1622 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1623 Instruction *InsertBefore, Value *Addr, 1624 uint32_t TypeSize, bool IsWrite, 1625 Value *SizeArgument, bool UseCalls, 1626 uint32_t Exp) { 1627 if (TargetTriple.isAMDGPU()) { 1628 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1629 TypeSize, IsWrite, SizeArgument); 1630 if (!InsertBefore) 1631 return; 1632 } 1633 1634 IRBuilder<> IRB(InsertBefore); 1635 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1636 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1637 1638 if (UseCalls && ClOptimizeCallbacks) { 1639 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1640 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1641 IRB.CreateCall( 1642 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), 1643 {IRB.CreatePointerCast(Addr, Int8PtrTy), 1644 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1645 return; 1646 } 1647 1648 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1649 if (UseCalls) { 1650 if (Exp == 0) 1651 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1652 AddrLong); 1653 else 1654 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1655 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1656 return; 1657 } 1658 1659 Type *ShadowTy = 1660 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1661 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1662 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1663 Value *CmpVal = Constant::getNullValue(ShadowTy); 1664 Value *ShadowValue = 1665 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1666 1667 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1668 size_t Granularity = 1ULL << Mapping.Scale; 1669 Instruction *CrashTerm = nullptr; 1670 1671 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1672 // We use branch weights for the slow path check, to indicate that the slow 1673 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1674 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1675 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1676 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1677 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1678 IRB.SetInsertPoint(CheckTerm); 1679 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1680 if (Recover) { 1681 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1682 } else { 1683 BasicBlock *CrashBlock = 1684 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1685 CrashTerm = new UnreachableInst(*C, CrashBlock); 1686 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1687 ReplaceInstWithInst(CheckTerm, NewTerm); 1688 } 1689 } else { 1690 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1691 } 1692 1693 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1694 AccessSizeIndex, SizeArgument, Exp); 1695 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1696 } 1697 1698 // Instrument unusual size or unusual alignment. 1699 // We can not do it with a single check, so we do 1-byte check for the first 1700 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1701 // to report the actual access size. 1702 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1703 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1704 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1705 IRBuilder<> IRB(InsertBefore); 1706 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1707 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1708 if (UseCalls) { 1709 if (Exp == 0) 1710 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1711 {AddrLong, Size}); 1712 else 1713 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1714 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1715 } else { 1716 Value *LastByte = IRB.CreateIntToPtr( 1717 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1718 Addr->getType()); 1719 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1720 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1721 } 1722 } 1723 1724 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1725 GlobalValue *ModuleName) { 1726 // Set up the arguments to our poison/unpoison functions. 1727 IRBuilder<> IRB(&GlobalInit.front(), 1728 GlobalInit.front().getFirstInsertionPt()); 1729 1730 // Add a call to poison all external globals before the given function starts. 1731 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1732 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1733 1734 // Add calls to unpoison all globals before each return instruction. 1735 for (auto &BB : GlobalInit.getBasicBlockList()) 1736 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1737 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1738 } 1739 1740 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1741 Module &M, GlobalValue *ModuleName) { 1742 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1743 if (!GV) 1744 return; 1745 1746 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1747 if (!CA) 1748 return; 1749 1750 for (Use &OP : CA->operands()) { 1751 if (isa<ConstantAggregateZero>(OP)) continue; 1752 ConstantStruct *CS = cast<ConstantStruct>(OP); 1753 1754 // Must have a function or null ptr. 1755 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1756 if (F->getName() == kAsanModuleCtorName) continue; 1757 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1758 // Don't instrument CTORs that will run before asan.module_ctor. 1759 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1760 continue; 1761 poisonOneInitializer(*F, ModuleName); 1762 } 1763 } 1764 } 1765 1766 const GlobalVariable * 1767 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1768 // In case this function should be expanded to include rules that do not just 1769 // apply when CompileKernel is true, either guard all existing rules with an 1770 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1771 // should also apply to user space. 1772 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1773 1774 const Constant *C = GA.getAliasee(); 1775 1776 // When compiling the kernel, globals that are aliased by symbols prefixed 1777 // by "__" are special and cannot be padded with a redzone. 1778 if (GA.getName().startswith("__")) 1779 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1780 1781 return nullptr; 1782 } 1783 1784 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1785 Type *Ty = G->getValueType(); 1786 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1787 1788 // FIXME: Metadata should be attched directly to the global directly instead 1789 // of being added to llvm.asan.globals. 1790 if (GlobalsMD.get(G).IsExcluded) return false; 1791 if (!Ty->isSized()) return false; 1792 if (!G->hasInitializer()) return false; 1793 // Globals in address space 1 and 4 are supported for AMDGPU. 1794 if (G->getAddressSpace() && 1795 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1796 return false; 1797 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1798 // Two problems with thread-locals: 1799 // - The address of the main thread's copy can't be computed at link-time. 1800 // - Need to poison all copies, not just the main thread's one. 1801 if (G->isThreadLocal()) return false; 1802 // For now, just ignore this Global if the alignment is large. 1803 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1804 1805 // For non-COFF targets, only instrument globals known to be defined by this 1806 // TU. 1807 // FIXME: We can instrument comdat globals on ELF if we are using the 1808 // GC-friendly metadata scheme. 1809 if (!TargetTriple.isOSBinFormatCOFF()) { 1810 if (!G->hasExactDefinition() || G->hasComdat()) 1811 return false; 1812 } else { 1813 // On COFF, don't instrument non-ODR linkages. 1814 if (G->isInterposable()) 1815 return false; 1816 } 1817 1818 // If a comdat is present, it must have a selection kind that implies ODR 1819 // semantics: no duplicates, any, or exact match. 1820 if (Comdat *C = G->getComdat()) { 1821 switch (C->getSelectionKind()) { 1822 case Comdat::Any: 1823 case Comdat::ExactMatch: 1824 case Comdat::NoDeduplicate: 1825 break; 1826 case Comdat::Largest: 1827 case Comdat::SameSize: 1828 return false; 1829 } 1830 } 1831 1832 if (G->hasSection()) { 1833 // The kernel uses explicit sections for mostly special global variables 1834 // that we should not instrument. E.g. the kernel may rely on their layout 1835 // without redzones, or remove them at link time ("discard.*"), etc. 1836 if (CompileKernel) 1837 return false; 1838 1839 StringRef Section = G->getSection(); 1840 1841 // Globals from llvm.metadata aren't emitted, do not instrument them. 1842 if (Section == "llvm.metadata") return false; 1843 // Do not instrument globals from special LLVM sections. 1844 if (Section.contains("__llvm") || Section.contains("__LLVM")) 1845 return false; 1846 1847 // Do not instrument function pointers to initialization and termination 1848 // routines: dynamic linker will not properly handle redzones. 1849 if (Section.startswith(".preinit_array") || 1850 Section.startswith(".init_array") || 1851 Section.startswith(".fini_array")) { 1852 return false; 1853 } 1854 1855 // Do not instrument user-defined sections (with names resembling 1856 // valid C identifiers) 1857 if (TargetTriple.isOSBinFormatELF()) { 1858 if (llvm::all_of(Section, 1859 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 1860 return false; 1861 } 1862 1863 // On COFF, if the section name contains '$', it is highly likely that the 1864 // user is using section sorting to create an array of globals similar to 1865 // the way initialization callbacks are registered in .init_array and 1866 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1867 // to such globals is counterproductive, because the intent is that they 1868 // will form an array, and out-of-bounds accesses are expected. 1869 // See https://github.com/google/sanitizers/issues/305 1870 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1871 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1872 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1873 << *G << "\n"); 1874 return false; 1875 } 1876 1877 if (TargetTriple.isOSBinFormatMachO()) { 1878 StringRef ParsedSegment, ParsedSection; 1879 unsigned TAA = 0, StubSize = 0; 1880 bool TAAParsed; 1881 cantFail(MCSectionMachO::ParseSectionSpecifier( 1882 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 1883 1884 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1885 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1886 // them. 1887 if (ParsedSegment == "__OBJC" || 1888 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1889 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1890 return false; 1891 } 1892 // See https://github.com/google/sanitizers/issues/32 1893 // Constant CFString instances are compiled in the following way: 1894 // -- the string buffer is emitted into 1895 // __TEXT,__cstring,cstring_literals 1896 // -- the constant NSConstantString structure referencing that buffer 1897 // is placed into __DATA,__cfstring 1898 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1899 // Moreover, it causes the linker to crash on OS X 10.7 1900 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1901 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1902 return false; 1903 } 1904 // The linker merges the contents of cstring_literals and removes the 1905 // trailing zeroes. 1906 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1907 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1908 return false; 1909 } 1910 } 1911 } 1912 1913 if (CompileKernel) { 1914 // Globals that prefixed by "__" are special and cannot be padded with a 1915 // redzone. 1916 if (G->getName().startswith("__")) 1917 return false; 1918 } 1919 1920 return true; 1921 } 1922 1923 // On Mach-O platforms, we emit global metadata in a separate section of the 1924 // binary in order to allow the linker to properly dead strip. This is only 1925 // supported on recent versions of ld64. 1926 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1927 if (!TargetTriple.isOSBinFormatMachO()) 1928 return false; 1929 1930 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1931 return true; 1932 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1933 return true; 1934 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1935 return true; 1936 if (TargetTriple.isDriverKit()) 1937 return true; 1938 1939 return false; 1940 } 1941 1942 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1943 switch (TargetTriple.getObjectFormat()) { 1944 case Triple::COFF: return ".ASAN$GL"; 1945 case Triple::ELF: return "asan_globals"; 1946 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1947 case Triple::Wasm: 1948 case Triple::GOFF: 1949 case Triple::SPIRV: 1950 case Triple::XCOFF: 1951 case Triple::DXContainer: 1952 report_fatal_error( 1953 "ModuleAddressSanitizer not implemented for object file format"); 1954 case Triple::UnknownObjectFormat: 1955 break; 1956 } 1957 llvm_unreachable("unsupported object format"); 1958 } 1959 1960 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1961 IRBuilder<> IRB(*C); 1962 1963 // Declare our poisoning and unpoisoning functions. 1964 AsanPoisonGlobals = 1965 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1966 AsanUnpoisonGlobals = 1967 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1968 1969 // Declare functions that register/unregister globals. 1970 AsanRegisterGlobals = M.getOrInsertFunction( 1971 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1972 AsanUnregisterGlobals = M.getOrInsertFunction( 1973 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1974 1975 // Declare the functions that find globals in a shared object and then invoke 1976 // the (un)register function on them. 1977 AsanRegisterImageGlobals = M.getOrInsertFunction( 1978 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1979 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1980 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1981 1982 AsanRegisterElfGlobals = 1983 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1984 IntptrTy, IntptrTy, IntptrTy); 1985 AsanUnregisterElfGlobals = 1986 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1987 IntptrTy, IntptrTy, IntptrTy); 1988 } 1989 1990 // Put the metadata and the instrumented global in the same group. This ensures 1991 // that the metadata is discarded if the instrumented global is discarded. 1992 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 1993 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1994 Module &M = *G->getParent(); 1995 Comdat *C = G->getComdat(); 1996 if (!C) { 1997 if (!G->hasName()) { 1998 // If G is unnamed, it must be internal. Give it an artificial name 1999 // so we can put it in a comdat. 2000 assert(G->hasLocalLinkage()); 2001 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2002 } 2003 2004 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2005 std::string Name = std::string(G->getName()); 2006 Name += InternalSuffix; 2007 C = M.getOrInsertComdat(Name); 2008 } else { 2009 C = M.getOrInsertComdat(G->getName()); 2010 } 2011 2012 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2013 // linkage to internal linkage so that a symbol table entry is emitted. This 2014 // is necessary in order to create the comdat group. 2015 if (TargetTriple.isOSBinFormatCOFF()) { 2016 C->setSelectionKind(Comdat::NoDeduplicate); 2017 if (G->hasPrivateLinkage()) 2018 G->setLinkage(GlobalValue::InternalLinkage); 2019 } 2020 G->setComdat(C); 2021 } 2022 2023 assert(G->hasComdat()); 2024 Metadata->setComdat(G->getComdat()); 2025 } 2026 2027 // Create a separate metadata global and put it in the appropriate ASan 2028 // global registration section. 2029 GlobalVariable * 2030 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2031 StringRef OriginalName) { 2032 auto Linkage = TargetTriple.isOSBinFormatMachO() 2033 ? GlobalVariable::InternalLinkage 2034 : GlobalVariable::PrivateLinkage; 2035 GlobalVariable *Metadata = new GlobalVariable( 2036 M, Initializer->getType(), false, Linkage, Initializer, 2037 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2038 Metadata->setSection(getGlobalMetadataSection()); 2039 return Metadata; 2040 } 2041 2042 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2043 AsanDtorFunction = Function::createWithDefaultAttr( 2044 FunctionType::get(Type::getVoidTy(*C), false), 2045 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2046 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 2047 // Ensure Dtor cannot be discarded, even if in a comdat. 2048 appendToUsed(M, {AsanDtorFunction}); 2049 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2050 2051 return ReturnInst::Create(*C, AsanDtorBB); 2052 } 2053 2054 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2055 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2056 ArrayRef<Constant *> MetadataInitializers) { 2057 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2058 auto &DL = M.getDataLayout(); 2059 2060 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2061 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2062 Constant *Initializer = MetadataInitializers[i]; 2063 GlobalVariable *G = ExtendedGlobals[i]; 2064 GlobalVariable *Metadata = 2065 CreateMetadataGlobal(M, Initializer, G->getName()); 2066 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2067 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2068 MetadataGlobals[i] = Metadata; 2069 2070 // The MSVC linker always inserts padding when linking incrementally. We 2071 // cope with that by aligning each struct to its size, which must be a power 2072 // of two. 2073 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2074 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2075 "global metadata will not be padded appropriately"); 2076 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2077 2078 SetComdatForGlobalMetadata(G, Metadata, ""); 2079 } 2080 2081 // Update llvm.compiler.used, adding the new metadata globals. This is 2082 // needed so that during LTO these variables stay alive. 2083 if (!MetadataGlobals.empty()) 2084 appendToCompilerUsed(M, MetadataGlobals); 2085 } 2086 2087 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2088 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2089 ArrayRef<Constant *> MetadataInitializers, 2090 const std::string &UniqueModuleId) { 2091 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2092 2093 // Putting globals in a comdat changes the semantic and potentially cause 2094 // false negative odr violations at link time. If odr indicators are used, we 2095 // keep the comdat sections, as link time odr violations will be dectected on 2096 // the odr indicator symbols. 2097 bool UseComdatForGlobalsGC = UseOdrIndicator; 2098 2099 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2100 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2101 GlobalVariable *G = ExtendedGlobals[i]; 2102 GlobalVariable *Metadata = 2103 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2104 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2105 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2106 MetadataGlobals[i] = Metadata; 2107 2108 if (UseComdatForGlobalsGC) 2109 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2110 } 2111 2112 // Update llvm.compiler.used, adding the new metadata globals. This is 2113 // needed so that during LTO these variables stay alive. 2114 if (!MetadataGlobals.empty()) 2115 appendToCompilerUsed(M, MetadataGlobals); 2116 2117 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2118 // to look up the loaded image that contains it. Second, we can store in it 2119 // whether registration has already occurred, to prevent duplicate 2120 // registration. 2121 // 2122 // Common linkage ensures that there is only one global per shared library. 2123 GlobalVariable *RegisteredFlag = new GlobalVariable( 2124 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2125 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2126 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2127 2128 // Create start and stop symbols. 2129 GlobalVariable *StartELFMetadata = new GlobalVariable( 2130 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2131 "__start_" + getGlobalMetadataSection()); 2132 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2133 GlobalVariable *StopELFMetadata = new GlobalVariable( 2134 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2135 "__stop_" + getGlobalMetadataSection()); 2136 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2137 2138 // Create a call to register the globals with the runtime. 2139 IRB.CreateCall(AsanRegisterElfGlobals, 2140 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2141 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2142 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2143 2144 // We also need to unregister globals at the end, e.g., when a shared library 2145 // gets closed. 2146 if (DestructorKind != AsanDtorKind::None) { 2147 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2148 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2149 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2150 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2151 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2152 } 2153 } 2154 2155 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2156 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2157 ArrayRef<Constant *> MetadataInitializers) { 2158 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2159 2160 // On recent Mach-O platforms, use a structure which binds the liveness of 2161 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2162 // created to be added to llvm.compiler.used 2163 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2164 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2165 2166 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2167 Constant *Initializer = MetadataInitializers[i]; 2168 GlobalVariable *G = ExtendedGlobals[i]; 2169 GlobalVariable *Metadata = 2170 CreateMetadataGlobal(M, Initializer, G->getName()); 2171 2172 // On recent Mach-O platforms, we emit the global metadata in a way that 2173 // allows the linker to properly strip dead globals. 2174 auto LivenessBinder = 2175 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2176 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2177 GlobalVariable *Liveness = new GlobalVariable( 2178 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2179 Twine("__asan_binder_") + G->getName()); 2180 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2181 LivenessGlobals[i] = Liveness; 2182 } 2183 2184 // Update llvm.compiler.used, adding the new liveness globals. This is 2185 // needed so that during LTO these variables stay alive. The alternative 2186 // would be to have the linker handling the LTO symbols, but libLTO 2187 // current API does not expose access to the section for each symbol. 2188 if (!LivenessGlobals.empty()) 2189 appendToCompilerUsed(M, LivenessGlobals); 2190 2191 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2192 // to look up the loaded image that contains it. Second, we can store in it 2193 // whether registration has already occurred, to prevent duplicate 2194 // registration. 2195 // 2196 // common linkage ensures that there is only one global per shared library. 2197 GlobalVariable *RegisteredFlag = new GlobalVariable( 2198 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2199 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2200 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2201 2202 IRB.CreateCall(AsanRegisterImageGlobals, 2203 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2204 2205 // We also need to unregister globals at the end, e.g., when a shared library 2206 // gets closed. 2207 if (DestructorKind != AsanDtorKind::None) { 2208 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2209 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2210 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2211 } 2212 } 2213 2214 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2215 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2216 ArrayRef<Constant *> MetadataInitializers) { 2217 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2218 unsigned N = ExtendedGlobals.size(); 2219 assert(N > 0); 2220 2221 // On platforms that don't have a custom metadata section, we emit an array 2222 // of global metadata structures. 2223 ArrayType *ArrayOfGlobalStructTy = 2224 ArrayType::get(MetadataInitializers[0]->getType(), N); 2225 auto AllGlobals = new GlobalVariable( 2226 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2227 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2228 if (Mapping.Scale > 3) 2229 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2230 2231 IRB.CreateCall(AsanRegisterGlobals, 2232 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2233 ConstantInt::get(IntptrTy, N)}); 2234 2235 // We also need to unregister globals at the end, e.g., when a shared library 2236 // gets closed. 2237 if (DestructorKind != AsanDtorKind::None) { 2238 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2239 IrbDtor.CreateCall(AsanUnregisterGlobals, 2240 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2241 ConstantInt::get(IntptrTy, N)}); 2242 } 2243 } 2244 2245 // This function replaces all global variables with new variables that have 2246 // trailing redzones. It also creates a function that poisons 2247 // redzones and inserts this function into llvm.global_ctors. 2248 // Sets *CtorComdat to true if the global registration code emitted into the 2249 // asan constructor is comdat-compatible. 2250 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2251 bool *CtorComdat) { 2252 *CtorComdat = false; 2253 2254 // Build set of globals that are aliased by some GA, where 2255 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2256 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2257 if (CompileKernel) { 2258 for (auto &GA : M.aliases()) { 2259 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2260 AliasedGlobalExclusions.insert(GV); 2261 } 2262 } 2263 2264 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2265 for (auto &G : M.globals()) { 2266 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2267 GlobalsToChange.push_back(&G); 2268 } 2269 2270 size_t n = GlobalsToChange.size(); 2271 if (n == 0) { 2272 *CtorComdat = true; 2273 return false; 2274 } 2275 2276 auto &DL = M.getDataLayout(); 2277 2278 // A global is described by a structure 2279 // size_t beg; 2280 // size_t size; 2281 // size_t size_with_redzone; 2282 // const char *name; 2283 // const char *module_name; 2284 // size_t has_dynamic_init; 2285 // void *source_location; 2286 // size_t odr_indicator; 2287 // We initialize an array of such structures and pass it to a run-time call. 2288 StructType *GlobalStructTy = 2289 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2290 IntptrTy, IntptrTy, IntptrTy); 2291 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2292 SmallVector<Constant *, 16> Initializers(n); 2293 2294 bool HasDynamicallyInitializedGlobals = false; 2295 2296 // We shouldn't merge same module names, as this string serves as unique 2297 // module ID in runtime. 2298 GlobalVariable *ModuleName = createPrivateGlobalForString( 2299 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2300 2301 for (size_t i = 0; i < n; i++) { 2302 GlobalVariable *G = GlobalsToChange[i]; 2303 2304 // FIXME: Metadata should be attched directly to the global directly instead 2305 // of being added to llvm.asan.globals. 2306 auto MD = GlobalsMD.get(G); 2307 StringRef NameForGlobal = G->getName(); 2308 // Create string holding the global name (use global name from metadata 2309 // if it's available, otherwise just write the name of global variable). 2310 GlobalVariable *Name = createPrivateGlobalForString( 2311 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2312 /*AllowMerging*/ true, kAsanGenPrefix); 2313 2314 Type *Ty = G->getValueType(); 2315 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2316 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2317 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2318 2319 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2320 Constant *NewInitializer = ConstantStruct::get( 2321 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2322 2323 // Create a new global variable with enough space for a redzone. 2324 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2325 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2326 Linkage = GlobalValue::InternalLinkage; 2327 GlobalVariable *NewGlobal = new GlobalVariable( 2328 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2329 G->getThreadLocalMode(), G->getAddressSpace()); 2330 NewGlobal->copyAttributesFrom(G); 2331 NewGlobal->setComdat(G->getComdat()); 2332 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2333 // Don't fold globals with redzones. ODR violation detector and redzone 2334 // poisoning implicitly creates a dependence on the global's address, so it 2335 // is no longer valid for it to be marked unnamed_addr. 2336 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2337 2338 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2339 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2340 G->isConstant()) { 2341 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2342 if (Seq && Seq->isCString()) 2343 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2344 } 2345 2346 // Transfer the debug info and type metadata. The payload starts at offset 2347 // zero so we can copy the metadata over as is. 2348 NewGlobal->copyMetadata(G, 0); 2349 2350 Value *Indices2[2]; 2351 Indices2[0] = IRB.getInt32(0); 2352 Indices2[1] = IRB.getInt32(0); 2353 2354 G->replaceAllUsesWith( 2355 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2356 NewGlobal->takeName(G); 2357 G->eraseFromParent(); 2358 NewGlobals[i] = NewGlobal; 2359 2360 Constant *SourceLoc; 2361 if (!MD.SourceLoc.empty()) { 2362 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2363 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2364 } else { 2365 SourceLoc = ConstantInt::get(IntptrTy, 0); 2366 } 2367 2368 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2369 GlobalValue *InstrumentedGlobal = NewGlobal; 2370 2371 bool CanUsePrivateAliases = 2372 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2373 TargetTriple.isOSBinFormatWasm(); 2374 if (CanUsePrivateAliases && UsePrivateAlias) { 2375 // Create local alias for NewGlobal to avoid crash on ODR between 2376 // instrumented and non-instrumented libraries. 2377 InstrumentedGlobal = 2378 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2379 } 2380 2381 // ODR should not happen for local linkage. 2382 if (NewGlobal->hasLocalLinkage()) { 2383 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2384 IRB.getInt8PtrTy()); 2385 } else if (UseOdrIndicator) { 2386 // With local aliases, we need to provide another externally visible 2387 // symbol __odr_asan_XXX to detect ODR violation. 2388 auto *ODRIndicatorSym = 2389 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2390 Constant::getNullValue(IRB.getInt8Ty()), 2391 kODRGenPrefix + NameForGlobal, nullptr, 2392 NewGlobal->getThreadLocalMode()); 2393 2394 // Set meaningful attributes for indicator symbol. 2395 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2396 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2397 ODRIndicatorSym->setAlignment(Align(1)); 2398 ODRIndicator = ODRIndicatorSym; 2399 } 2400 2401 Constant *Initializer = ConstantStruct::get( 2402 GlobalStructTy, 2403 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2404 ConstantInt::get(IntptrTy, SizeInBytes), 2405 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2406 ConstantExpr::getPointerCast(Name, IntptrTy), 2407 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2408 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2409 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2410 2411 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2412 2413 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2414 2415 Initializers[i] = Initializer; 2416 } 2417 2418 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2419 // ConstantMerge'ing them. 2420 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2421 for (size_t i = 0; i < n; i++) { 2422 GlobalVariable *G = NewGlobals[i]; 2423 if (G->getName().empty()) continue; 2424 GlobalsToAddToUsedList.push_back(G); 2425 } 2426 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2427 2428 std::string ELFUniqueModuleId = 2429 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2430 : ""; 2431 2432 if (!ELFUniqueModuleId.empty()) { 2433 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2434 *CtorComdat = true; 2435 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2436 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2437 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2438 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2439 } else { 2440 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2441 } 2442 2443 // Create calls for poisoning before initializers run and unpoisoning after. 2444 if (HasDynamicallyInitializedGlobals) 2445 createInitializerPoisonCalls(M, ModuleName); 2446 2447 LLVM_DEBUG(dbgs() << M); 2448 return true; 2449 } 2450 2451 uint64_t 2452 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2453 constexpr uint64_t kMaxRZ = 1 << 18; 2454 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2455 2456 uint64_t RZ = 0; 2457 if (SizeInBytes <= MinRZ / 2) { 2458 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2459 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2460 // half of MinRZ. 2461 RZ = MinRZ - SizeInBytes; 2462 } else { 2463 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2464 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2465 2466 // Round up to multiple of MinRZ. 2467 if (SizeInBytes % MinRZ) 2468 RZ += MinRZ - (SizeInBytes % MinRZ); 2469 } 2470 2471 assert((RZ + SizeInBytes) % MinRZ == 0); 2472 2473 return RZ; 2474 } 2475 2476 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2477 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2478 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2479 int Version = 8; 2480 // 32-bit Android is one version ahead because of the switch to dynamic 2481 // shadow. 2482 Version += (LongSize == 32 && isAndroid); 2483 return Version; 2484 } 2485 2486 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2487 initializeCallbacks(M); 2488 2489 // Create a module constructor. A destructor is created lazily because not all 2490 // platforms, and not all modules need it. 2491 if (CompileKernel) { 2492 // The kernel always builds with its own runtime, and therefore does not 2493 // need the init and version check calls. 2494 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2495 } else { 2496 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2497 std::string VersionCheckName = 2498 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2499 std::tie(AsanCtorFunction, std::ignore) = 2500 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2501 kAsanInitName, /*InitArgTypes=*/{}, 2502 /*InitArgs=*/{}, VersionCheckName); 2503 } 2504 2505 bool CtorComdat = true; 2506 if (ClGlobals) { 2507 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2508 InstrumentGlobals(IRB, M, &CtorComdat); 2509 } 2510 2511 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2512 2513 // Put the constructor and destructor in comdat if both 2514 // (1) global instrumentation is not TU-specific 2515 // (2) target is ELF. 2516 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2517 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2518 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2519 if (AsanDtorFunction) { 2520 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2521 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2522 } 2523 } else { 2524 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2525 if (AsanDtorFunction) 2526 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2527 } 2528 2529 return true; 2530 } 2531 2532 void AddressSanitizer::initializeCallbacks(Module &M) { 2533 IRBuilder<> IRB(*C); 2534 // Create __asan_report* callbacks. 2535 // IsWrite, TypeSize and Exp are encoded in the function name. 2536 for (int Exp = 0; Exp < 2; Exp++) { 2537 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2538 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2539 const std::string ExpStr = Exp ? "exp_" : ""; 2540 const std::string EndingStr = Recover ? "_noabort" : ""; 2541 2542 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2543 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2544 if (Exp) { 2545 Type *ExpType = Type::getInt32Ty(*C); 2546 Args2.push_back(ExpType); 2547 Args1.push_back(ExpType); 2548 } 2549 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2550 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2551 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2552 2553 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2554 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2555 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2556 2557 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2558 AccessSizeIndex++) { 2559 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2560 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2561 M.getOrInsertFunction( 2562 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2563 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2564 2565 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2566 M.getOrInsertFunction( 2567 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2568 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2569 } 2570 } 2571 } 2572 2573 const std::string MemIntrinCallbackPrefix = 2574 (CompileKernel && !ClKasanMemIntrinCallbackPrefix) 2575 ? std::string("") 2576 : ClMemoryAccessCallbackPrefix; 2577 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2578 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2579 IRB.getInt8PtrTy(), IntptrTy); 2580 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2581 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2582 IRB.getInt8PtrTy(), IntptrTy); 2583 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2584 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2585 IRB.getInt32Ty(), IntptrTy); 2586 2587 AsanHandleNoReturnFunc = 2588 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2589 2590 AsanPtrCmpFunction = 2591 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2592 AsanPtrSubFunction = 2593 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2594 if (Mapping.InGlobal) 2595 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2596 ArrayType::get(IRB.getInt8Ty(), 0)); 2597 2598 AMDGPUAddressShared = M.getOrInsertFunction( 2599 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2600 AMDGPUAddressPrivate = M.getOrInsertFunction( 2601 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2602 } 2603 2604 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2605 // For each NSObject descendant having a +load method, this method is invoked 2606 // by the ObjC runtime before any of the static constructors is called. 2607 // Therefore we need to instrument such methods with a call to __asan_init 2608 // at the beginning in order to initialize our runtime before any access to 2609 // the shadow memory. 2610 // We cannot just ignore these methods, because they may call other 2611 // instrumented functions. 2612 if (F.getName().find(" load]") != std::string::npos) { 2613 FunctionCallee AsanInitFunction = 2614 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2615 IRBuilder<> IRB(&F.front(), F.front().begin()); 2616 IRB.CreateCall(AsanInitFunction, {}); 2617 return true; 2618 } 2619 return false; 2620 } 2621 2622 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2623 // Generate code only when dynamic addressing is needed. 2624 if (Mapping.Offset != kDynamicShadowSentinel) 2625 return false; 2626 2627 IRBuilder<> IRB(&F.front().front()); 2628 if (Mapping.InGlobal) { 2629 if (ClWithIfuncSuppressRemat) { 2630 // An empty inline asm with input reg == output reg. 2631 // An opaque pointer-to-int cast, basically. 2632 InlineAsm *Asm = InlineAsm::get( 2633 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2634 StringRef(""), StringRef("=r,0"), 2635 /*hasSideEffects=*/false); 2636 LocalDynamicShadow = 2637 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2638 } else { 2639 LocalDynamicShadow = 2640 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2641 } 2642 } else { 2643 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2644 kAsanShadowMemoryDynamicAddress, IntptrTy); 2645 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2646 } 2647 return true; 2648 } 2649 2650 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2651 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2652 // to it as uninteresting. This assumes we haven't started processing allocas 2653 // yet. This check is done up front because iterating the use list in 2654 // isInterestingAlloca would be algorithmically slower. 2655 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2656 2657 // Try to get the declaration of llvm.localescape. If it's not in the module, 2658 // we can exit early. 2659 if (!F.getParent()->getFunction("llvm.localescape")) return; 2660 2661 // Look for a call to llvm.localescape call in the entry block. It can't be in 2662 // any other block. 2663 for (Instruction &I : F.getEntryBlock()) { 2664 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2665 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2666 // We found a call. Mark all the allocas passed in as uninteresting. 2667 for (Value *Arg : II->args()) { 2668 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2669 assert(AI && AI->isStaticAlloca() && 2670 "non-static alloca arg to localescape"); 2671 ProcessedAllocas[AI] = false; 2672 } 2673 break; 2674 } 2675 } 2676 } 2677 2678 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2679 bool ShouldInstrument = 2680 ClDebugMin < 0 || ClDebugMax < 0 || 2681 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2682 Instrumented++; 2683 return !ShouldInstrument; 2684 } 2685 2686 bool AddressSanitizer::instrumentFunction(Function &F, 2687 const TargetLibraryInfo *TLI) { 2688 if (F.empty()) 2689 return false; 2690 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2691 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2692 if (F.getName().startswith("__asan_")) return false; 2693 2694 bool FunctionModified = false; 2695 2696 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2697 // This function needs to be called even if the function body is not 2698 // instrumented. 2699 if (maybeInsertAsanInitAtFunctionEntry(F)) 2700 FunctionModified = true; 2701 2702 // Leave if the function doesn't need instrumentation. 2703 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2704 2705 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 2706 return FunctionModified; 2707 2708 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2709 2710 initializeCallbacks(*F.getParent()); 2711 2712 FunctionStateRAII CleanupObj(this); 2713 2714 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2715 2716 // We can't instrument allocas used with llvm.localescape. Only static allocas 2717 // can be passed to that intrinsic. 2718 markEscapedLocalAllocas(F); 2719 2720 // We want to instrument every address only once per basic block (unless there 2721 // are calls between uses). 2722 SmallPtrSet<Value *, 16> TempsToInstrument; 2723 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2724 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2725 SmallVector<Instruction *, 8> NoReturnCalls; 2726 SmallVector<BasicBlock *, 16> AllBlocks; 2727 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2728 2729 // Fill the set of memory operations to instrument. 2730 for (auto &BB : F) { 2731 AllBlocks.push_back(&BB); 2732 TempsToInstrument.clear(); 2733 int NumInsnsPerBB = 0; 2734 for (auto &Inst : BB) { 2735 if (LooksLikeCodeInBug11395(&Inst)) return false; 2736 // Skip instructions inserted by another instrumentation. 2737 if (Inst.hasMetadata(LLVMContext::MD_nosanitize)) 2738 continue; 2739 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2740 getInterestingMemoryOperands(&Inst, InterestingOperands); 2741 2742 if (!InterestingOperands.empty()) { 2743 for (auto &Operand : InterestingOperands) { 2744 if (ClOpt && ClOptSameTemp) { 2745 Value *Ptr = Operand.getPtr(); 2746 // If we have a mask, skip instrumentation if we've already 2747 // instrumented the full object. But don't add to TempsToInstrument 2748 // because we might get another load/store with a different mask. 2749 if (Operand.MaybeMask) { 2750 if (TempsToInstrument.count(Ptr)) 2751 continue; // We've seen this (whole) temp in the current BB. 2752 } else { 2753 if (!TempsToInstrument.insert(Ptr).second) 2754 continue; // We've seen this temp in the current BB. 2755 } 2756 } 2757 OperandsToInstrument.push_back(Operand); 2758 NumInsnsPerBB++; 2759 } 2760 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2761 isInterestingPointerComparison(&Inst)) || 2762 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2763 isInterestingPointerSubtraction(&Inst))) { 2764 PointerComparisonsOrSubtracts.push_back(&Inst); 2765 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2766 // ok, take it. 2767 IntrinToInstrument.push_back(MI); 2768 NumInsnsPerBB++; 2769 } else { 2770 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2771 // A call inside BB. 2772 TempsToInstrument.clear(); 2773 if (CB->doesNotReturn()) 2774 NoReturnCalls.push_back(CB); 2775 } 2776 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2777 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2778 } 2779 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2780 } 2781 } 2782 2783 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2784 OperandsToInstrument.size() + IntrinToInstrument.size() > 2785 (unsigned)ClInstrumentationWithCallsThreshold); 2786 const DataLayout &DL = F.getParent()->getDataLayout(); 2787 ObjectSizeOpts ObjSizeOpts; 2788 ObjSizeOpts.RoundToAlign = true; 2789 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2790 2791 // Instrument. 2792 int NumInstrumented = 0; 2793 for (auto &Operand : OperandsToInstrument) { 2794 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2795 instrumentMop(ObjSizeVis, Operand, UseCalls, 2796 F.getParent()->getDataLayout()); 2797 FunctionModified = true; 2798 } 2799 for (auto Inst : IntrinToInstrument) { 2800 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2801 instrumentMemIntrinsic(Inst); 2802 FunctionModified = true; 2803 } 2804 2805 FunctionStackPoisoner FSP(F, *this); 2806 bool ChangedStack = FSP.runOnFunction(); 2807 2808 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2809 // See e.g. https://github.com/google/sanitizers/issues/37 2810 for (auto CI : NoReturnCalls) { 2811 IRBuilder<> IRB(CI); 2812 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2813 } 2814 2815 for (auto Inst : PointerComparisonsOrSubtracts) { 2816 instrumentPointerComparisonOrSubtraction(Inst); 2817 FunctionModified = true; 2818 } 2819 2820 if (ChangedStack || !NoReturnCalls.empty()) 2821 FunctionModified = true; 2822 2823 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2824 << F << "\n"); 2825 2826 return FunctionModified; 2827 } 2828 2829 // Workaround for bug 11395: we don't want to instrument stack in functions 2830 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2831 // FIXME: remove once the bug 11395 is fixed. 2832 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2833 if (LongSize != 32) return false; 2834 CallInst *CI = dyn_cast<CallInst>(I); 2835 if (!CI || !CI->isInlineAsm()) return false; 2836 if (CI->arg_size() <= 5) 2837 return false; 2838 // We have inline assembly with quite a few arguments. 2839 return true; 2840 } 2841 2842 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2843 IRBuilder<> IRB(*C); 2844 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 2845 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 2846 const char *MallocNameTemplate = 2847 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 2848 ? kAsanStackMallocAlwaysNameTemplate 2849 : kAsanStackMallocNameTemplate; 2850 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 2851 std::string Suffix = itostr(Index); 2852 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 2853 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2854 AsanStackFreeFunc[Index] = 2855 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2856 IRB.getVoidTy(), IntptrTy, IntptrTy); 2857 } 2858 } 2859 if (ASan.UseAfterScope) { 2860 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2861 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2862 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2863 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2864 } 2865 2866 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2867 std::ostringstream Name; 2868 Name << kAsanSetShadowPrefix; 2869 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2870 AsanSetShadowFunc[Val] = 2871 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2872 } 2873 2874 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2875 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2876 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2877 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2878 } 2879 2880 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2881 ArrayRef<uint8_t> ShadowBytes, 2882 size_t Begin, size_t End, 2883 IRBuilder<> &IRB, 2884 Value *ShadowBase) { 2885 if (Begin >= End) 2886 return; 2887 2888 const size_t LargestStoreSizeInBytes = 2889 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2890 2891 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2892 2893 // Poison given range in shadow using larges store size with out leading and 2894 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2895 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2896 // middle of a store. 2897 for (size_t i = Begin; i < End;) { 2898 if (!ShadowMask[i]) { 2899 assert(!ShadowBytes[i]); 2900 ++i; 2901 continue; 2902 } 2903 2904 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2905 // Fit store size into the range. 2906 while (StoreSizeInBytes > End - i) 2907 StoreSizeInBytes /= 2; 2908 2909 // Minimize store size by trimming trailing zeros. 2910 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2911 while (j <= StoreSizeInBytes / 2) 2912 StoreSizeInBytes /= 2; 2913 } 2914 2915 uint64_t Val = 0; 2916 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2917 if (IsLittleEndian) 2918 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2919 else 2920 Val = (Val << 8) | ShadowBytes[i + j]; 2921 } 2922 2923 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2924 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2925 IRB.CreateAlignedStore( 2926 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2927 Align(1)); 2928 2929 i += StoreSizeInBytes; 2930 } 2931 } 2932 2933 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2934 ArrayRef<uint8_t> ShadowBytes, 2935 IRBuilder<> &IRB, Value *ShadowBase) { 2936 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2937 } 2938 2939 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2940 ArrayRef<uint8_t> ShadowBytes, 2941 size_t Begin, size_t End, 2942 IRBuilder<> &IRB, Value *ShadowBase) { 2943 assert(ShadowMask.size() == ShadowBytes.size()); 2944 size_t Done = Begin; 2945 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2946 if (!ShadowMask[i]) { 2947 assert(!ShadowBytes[i]); 2948 continue; 2949 } 2950 uint8_t Val = ShadowBytes[i]; 2951 if (!AsanSetShadowFunc[Val]) 2952 continue; 2953 2954 // Skip same values. 2955 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2956 } 2957 2958 if (j - i >= ClMaxInlinePoisoningSize) { 2959 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2960 IRB.CreateCall(AsanSetShadowFunc[Val], 2961 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2962 ConstantInt::get(IntptrTy, j - i)}); 2963 Done = j; 2964 } 2965 } 2966 2967 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2968 } 2969 2970 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2971 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2972 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2973 assert(LocalStackSize <= kMaxStackMallocSize); 2974 uint64_t MaxSize = kMinStackMallocSize; 2975 for (int i = 0;; i++, MaxSize *= 2) 2976 if (LocalStackSize <= MaxSize) return i; 2977 llvm_unreachable("impossible LocalStackSize"); 2978 } 2979 2980 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2981 Instruction *CopyInsertPoint = &F.front().front(); 2982 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2983 // Insert after the dynamic shadow location is determined 2984 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2985 assert(CopyInsertPoint); 2986 } 2987 IRBuilder<> IRB(CopyInsertPoint); 2988 const DataLayout &DL = F.getParent()->getDataLayout(); 2989 for (Argument &Arg : F.args()) { 2990 if (Arg.hasByValAttr()) { 2991 Type *Ty = Arg.getParamByValType(); 2992 const Align Alignment = 2993 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2994 2995 AllocaInst *AI = IRB.CreateAlloca( 2996 Ty, nullptr, 2997 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2998 ".byval"); 2999 AI->setAlignment(Alignment); 3000 Arg.replaceAllUsesWith(AI); 3001 3002 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3003 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3004 } 3005 } 3006 } 3007 3008 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3009 Value *ValueIfTrue, 3010 Instruction *ThenTerm, 3011 Value *ValueIfFalse) { 3012 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3013 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3014 PHI->addIncoming(ValueIfFalse, CondBlock); 3015 BasicBlock *ThenBlock = ThenTerm->getParent(); 3016 PHI->addIncoming(ValueIfTrue, ThenBlock); 3017 return PHI; 3018 } 3019 3020 Value *FunctionStackPoisoner::createAllocaForLayout( 3021 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3022 AllocaInst *Alloca; 3023 if (Dynamic) { 3024 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3025 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3026 "MyAlloca"); 3027 } else { 3028 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3029 nullptr, "MyAlloca"); 3030 assert(Alloca->isStaticAlloca()); 3031 } 3032 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3033 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); 3034 Alloca->setAlignment(Align(FrameAlignment)); 3035 return IRB.CreatePointerCast(Alloca, IntptrTy); 3036 } 3037 3038 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3039 BasicBlock &FirstBB = *F.begin(); 3040 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3041 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3042 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3043 DynamicAllocaLayout->setAlignment(Align(32)); 3044 } 3045 3046 void FunctionStackPoisoner::processDynamicAllocas() { 3047 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3048 assert(DynamicAllocaPoisonCallVec.empty()); 3049 return; 3050 } 3051 3052 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3053 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3054 assert(APC.InsBefore); 3055 assert(APC.AI); 3056 assert(ASan.isInterestingAlloca(*APC.AI)); 3057 assert(!APC.AI->isStaticAlloca()); 3058 3059 IRBuilder<> IRB(APC.InsBefore); 3060 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3061 // Dynamic allocas will be unpoisoned unconditionally below in 3062 // unpoisonDynamicAllocas. 3063 // Flag that we need unpoison static allocas. 3064 } 3065 3066 // Handle dynamic allocas. 3067 createDynamicAllocasInitStorage(); 3068 for (auto &AI : DynamicAllocaVec) 3069 handleDynamicAllocaCall(AI); 3070 unpoisonDynamicAllocas(); 3071 } 3072 3073 /// Collect instructions in the entry block after \p InsBefore which initialize 3074 /// permanent storage for a function argument. These instructions must remain in 3075 /// the entry block so that uninitialized values do not appear in backtraces. An 3076 /// added benefit is that this conserves spill slots. This does not move stores 3077 /// before instrumented / "interesting" allocas. 3078 static void findStoresToUninstrumentedArgAllocas( 3079 AddressSanitizer &ASan, Instruction &InsBefore, 3080 SmallVectorImpl<Instruction *> &InitInsts) { 3081 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3082 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3083 // Argument initialization looks like: 3084 // 1) store <Argument>, <Alloca> OR 3085 // 2) <CastArgument> = cast <Argument> to ... 3086 // store <CastArgument> to <Alloca> 3087 // Do not consider any other kind of instruction. 3088 // 3089 // Note: This covers all known cases, but may not be exhaustive. An 3090 // alternative to pattern-matching stores is to DFS over all Argument uses: 3091 // this might be more general, but is probably much more complicated. 3092 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3093 continue; 3094 if (auto *Store = dyn_cast<StoreInst>(It)) { 3095 // The store destination must be an alloca that isn't interesting for 3096 // ASan to instrument. These are moved up before InsBefore, and they're 3097 // not interesting because allocas for arguments can be mem2reg'd. 3098 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3099 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3100 continue; 3101 3102 Value *Val = Store->getValueOperand(); 3103 bool IsDirectArgInit = isa<Argument>(Val); 3104 bool IsArgInitViaCast = 3105 isa<CastInst>(Val) && 3106 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3107 // Check that the cast appears directly before the store. Otherwise 3108 // moving the cast before InsBefore may break the IR. 3109 Val == It->getPrevNonDebugInstruction(); 3110 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3111 if (!IsArgInit) 3112 continue; 3113 3114 if (IsArgInitViaCast) 3115 InitInsts.push_back(cast<Instruction>(Val)); 3116 InitInsts.push_back(Store); 3117 continue; 3118 } 3119 3120 // Do not reorder past unknown instructions: argument initialization should 3121 // only involve casts and stores. 3122 return; 3123 } 3124 } 3125 3126 void FunctionStackPoisoner::processStaticAllocas() { 3127 if (AllocaVec.empty()) { 3128 assert(StaticAllocaPoisonCallVec.empty()); 3129 return; 3130 } 3131 3132 int StackMallocIdx = -1; 3133 DebugLoc EntryDebugLocation; 3134 if (auto SP = F.getSubprogram()) 3135 EntryDebugLocation = 3136 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3137 3138 Instruction *InsBefore = AllocaVec[0]; 3139 IRBuilder<> IRB(InsBefore); 3140 3141 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3142 // debug info is broken, because only entry-block allocas are treated as 3143 // regular stack slots. 3144 auto InsBeforeB = InsBefore->getParent(); 3145 assert(InsBeforeB == &F.getEntryBlock()); 3146 for (auto *AI : StaticAllocasToMoveUp) 3147 if (AI->getParent() == InsBeforeB) 3148 AI->moveBefore(InsBefore); 3149 3150 // Move stores of arguments into entry-block allocas as well. This prevents 3151 // extra stack slots from being generated (to house the argument values until 3152 // they can be stored into the allocas). This also prevents uninitialized 3153 // values from being shown in backtraces. 3154 SmallVector<Instruction *, 8> ArgInitInsts; 3155 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3156 for (Instruction *ArgInitInst : ArgInitInsts) 3157 ArgInitInst->moveBefore(InsBefore); 3158 3159 // If we have a call to llvm.localescape, keep it in the entry block. 3160 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3161 3162 SmallVector<ASanStackVariableDescription, 16> SVD; 3163 SVD.reserve(AllocaVec.size()); 3164 for (AllocaInst *AI : AllocaVec) { 3165 ASanStackVariableDescription D = {AI->getName().data(), 3166 ASan.getAllocaSizeInBytes(*AI), 3167 0, 3168 AI->getAlignment(), 3169 AI, 3170 0, 3171 0}; 3172 SVD.push_back(D); 3173 } 3174 3175 // Minimal header size (left redzone) is 4 pointers, 3176 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3177 uint64_t Granularity = 1ULL << Mapping.Scale; 3178 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); 3179 const ASanStackFrameLayout &L = 3180 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3181 3182 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3183 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3184 for (auto &Desc : SVD) 3185 AllocaToSVDMap[Desc.AI] = &Desc; 3186 3187 // Update SVD with information from lifetime intrinsics. 3188 for (const auto &APC : StaticAllocaPoisonCallVec) { 3189 assert(APC.InsBefore); 3190 assert(APC.AI); 3191 assert(ASan.isInterestingAlloca(*APC.AI)); 3192 assert(APC.AI->isStaticAlloca()); 3193 3194 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3195 Desc.LifetimeSize = Desc.Size; 3196 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3197 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3198 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3199 if (unsigned Line = LifetimeLoc->getLine()) 3200 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3201 } 3202 } 3203 } 3204 3205 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3206 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3207 uint64_t LocalStackSize = L.FrameSize; 3208 bool DoStackMalloc = 3209 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3210 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3211 bool DoDynamicAlloca = ClDynamicAllocaStack; 3212 // Don't do dynamic alloca or stack malloc if: 3213 // 1) There is inline asm: too often it makes assumptions on which registers 3214 // are available. 3215 // 2) There is a returns_twice call (typically setjmp), which is 3216 // optimization-hostile, and doesn't play well with introduced indirect 3217 // register-relative calculation of local variable addresses. 3218 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3219 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3220 3221 Value *StaticAlloca = 3222 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3223 3224 Value *FakeStack; 3225 Value *LocalStackBase; 3226 Value *LocalStackBaseAlloca; 3227 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3228 3229 if (DoStackMalloc) { 3230 LocalStackBaseAlloca = 3231 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3232 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3233 // void *FakeStack = __asan_option_detect_stack_use_after_return 3234 // ? __asan_stack_malloc_N(LocalStackSize) 3235 // : nullptr; 3236 // void *LocalStackBase = (FakeStack) ? FakeStack : 3237 // alloca(LocalStackSize); 3238 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3239 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3240 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3241 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3242 Constant::getNullValue(IRB.getInt32Ty())); 3243 Instruction *Term = 3244 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3245 IRBuilder<> IRBIf(Term); 3246 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3247 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3248 Value *FakeStackValue = 3249 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3250 ConstantInt::get(IntptrTy, LocalStackSize)); 3251 IRB.SetInsertPoint(InsBefore); 3252 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3253 ConstantInt::get(IntptrTy, 0)); 3254 } else { 3255 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3256 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3257 // void *LocalStackBase = (FakeStack) ? FakeStack : 3258 // alloca(LocalStackSize); 3259 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3260 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3261 ConstantInt::get(IntptrTy, LocalStackSize)); 3262 } 3263 Value *NoFakeStack = 3264 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3265 Instruction *Term = 3266 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3267 IRBuilder<> IRBIf(Term); 3268 Value *AllocaValue = 3269 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3270 3271 IRB.SetInsertPoint(InsBefore); 3272 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3273 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3274 DIExprFlags |= DIExpression::DerefBefore; 3275 } else { 3276 // void *FakeStack = nullptr; 3277 // void *LocalStackBase = alloca(LocalStackSize); 3278 FakeStack = ConstantInt::get(IntptrTy, 0); 3279 LocalStackBase = 3280 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3281 LocalStackBaseAlloca = LocalStackBase; 3282 } 3283 3284 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3285 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3286 // later passes and can result in dropped variable coverage in debug info. 3287 Value *LocalStackBaseAllocaPtr = 3288 isa<PtrToIntInst>(LocalStackBaseAlloca) 3289 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3290 : LocalStackBaseAlloca; 3291 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3292 "Variable descriptions relative to ASan stack base will be dropped"); 3293 3294 // Replace Alloca instructions with base+offset. 3295 for (const auto &Desc : SVD) { 3296 AllocaInst *AI = Desc.AI; 3297 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3298 Desc.Offset); 3299 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3300 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3301 AI->getType()); 3302 AI->replaceAllUsesWith(NewAllocaPtr); 3303 } 3304 3305 // The left-most redzone has enough space for at least 4 pointers. 3306 // Write the Magic value to redzone[0]. 3307 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3308 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3309 BasePlus0); 3310 // Write the frame description constant to redzone[1]. 3311 Value *BasePlus1 = IRB.CreateIntToPtr( 3312 IRB.CreateAdd(LocalStackBase, 3313 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3314 IntptrPtrTy); 3315 GlobalVariable *StackDescriptionGlobal = 3316 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3317 /*AllowMerging*/ true, kAsanGenPrefix); 3318 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3319 IRB.CreateStore(Description, BasePlus1); 3320 // Write the PC to redzone[2]. 3321 Value *BasePlus2 = IRB.CreateIntToPtr( 3322 IRB.CreateAdd(LocalStackBase, 3323 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3324 IntptrPtrTy); 3325 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3326 3327 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3328 3329 // Poison the stack red zones at the entry. 3330 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3331 // As mask we must use most poisoned case: red zones and after scope. 3332 // As bytes we can use either the same or just red zones only. 3333 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3334 3335 if (!StaticAllocaPoisonCallVec.empty()) { 3336 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3337 3338 // Poison static allocas near lifetime intrinsics. 3339 for (const auto &APC : StaticAllocaPoisonCallVec) { 3340 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3341 assert(Desc.Offset % L.Granularity == 0); 3342 size_t Begin = Desc.Offset / L.Granularity; 3343 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3344 3345 IRBuilder<> IRB(APC.InsBefore); 3346 copyToShadow(ShadowAfterScope, 3347 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3348 IRB, ShadowBase); 3349 } 3350 } 3351 3352 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3353 SmallVector<uint8_t, 64> ShadowAfterReturn; 3354 3355 // (Un)poison the stack before all ret instructions. 3356 for (Instruction *Ret : RetVec) { 3357 IRBuilder<> IRBRet(Ret); 3358 // Mark the current frame as retired. 3359 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3360 BasePlus0); 3361 if (DoStackMalloc) { 3362 assert(StackMallocIdx >= 0); 3363 // if FakeStack != 0 // LocalStackBase == FakeStack 3364 // // In use-after-return mode, poison the whole stack frame. 3365 // if StackMallocIdx <= 4 3366 // // For small sizes inline the whole thing: 3367 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3368 // **SavedFlagPtr(FakeStack) = 0 3369 // else 3370 // __asan_stack_free_N(FakeStack, LocalStackSize) 3371 // else 3372 // <This is not a fake stack; unpoison the redzones> 3373 Value *Cmp = 3374 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3375 Instruction *ThenTerm, *ElseTerm; 3376 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3377 3378 IRBuilder<> IRBPoison(ThenTerm); 3379 if (StackMallocIdx <= 4) { 3380 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3381 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3382 kAsanStackUseAfterReturnMagic); 3383 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3384 ShadowBase); 3385 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3386 FakeStack, 3387 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3388 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3389 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3390 IRBPoison.CreateStore( 3391 Constant::getNullValue(IRBPoison.getInt8Ty()), 3392 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3393 } else { 3394 // For larger frames call __asan_stack_free_*. 3395 IRBPoison.CreateCall( 3396 AsanStackFreeFunc[StackMallocIdx], 3397 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3398 } 3399 3400 IRBuilder<> IRBElse(ElseTerm); 3401 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3402 } else { 3403 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3404 } 3405 } 3406 3407 // We are done. Remove the old unused alloca instructions. 3408 for (auto AI : AllocaVec) AI->eraseFromParent(); 3409 } 3410 3411 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3412 IRBuilder<> &IRB, bool DoPoison) { 3413 // For now just insert the call to ASan runtime. 3414 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3415 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3416 IRB.CreateCall( 3417 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3418 {AddrArg, SizeArg}); 3419 } 3420 3421 // Handling llvm.lifetime intrinsics for a given %alloca: 3422 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3423 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3424 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3425 // could be poisoned by previous llvm.lifetime.end instruction, as the 3426 // variable may go in and out of scope several times, e.g. in loops). 3427 // (3) if we poisoned at least one %alloca in a function, 3428 // unpoison the whole stack frame at function exit. 3429 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3430 IRBuilder<> IRB(AI); 3431 3432 const uint64_t Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3433 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3434 3435 Value *Zero = Constant::getNullValue(IntptrTy); 3436 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3437 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3438 3439 // Since we need to extend alloca with additional memory to locate 3440 // redzones, and OldSize is number of allocated blocks with 3441 // ElementSize size, get allocated memory size in bytes by 3442 // OldSize * ElementSize. 3443 const unsigned ElementSize = 3444 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3445 Value *OldSize = 3446 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3447 ConstantInt::get(IntptrTy, ElementSize)); 3448 3449 // PartialSize = OldSize % 32 3450 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3451 3452 // Misalign = kAllocaRzSize - PartialSize; 3453 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3454 3455 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3456 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3457 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3458 3459 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3460 // Alignment is added to locate left redzone, PartialPadding for possible 3461 // partial redzone and kAllocaRzSize for right redzone respectively. 3462 Value *AdditionalChunkSize = IRB.CreateAdd( 3463 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3464 3465 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3466 3467 // Insert new alloca with new NewSize and Alignment params. 3468 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3469 NewAlloca->setAlignment(Align(Alignment)); 3470 3471 // NewAddress = Address + Alignment 3472 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3473 ConstantInt::get(IntptrTy, Alignment)); 3474 3475 // Insert __asan_alloca_poison call for new created alloca. 3476 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3477 3478 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3479 // for unpoisoning stuff. 3480 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3481 3482 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3483 3484 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3485 AI->replaceAllUsesWith(NewAddressPtr); 3486 3487 // We are done. Erase old alloca from parent. 3488 AI->eraseFromParent(); 3489 } 3490 3491 // isSafeAccess returns true if Addr is always inbounds with respect to its 3492 // base object. For example, it is a field access or an array access with 3493 // constant inbounds index. 3494 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3495 Value *Addr, uint64_t TypeSize) const { 3496 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3497 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3498 uint64_t Size = SizeOffset.first.getZExtValue(); 3499 int64_t Offset = SizeOffset.second.getSExtValue(); 3500 // Three checks are required to ensure safety: 3501 // . Offset >= 0 (since the offset is given from the base ptr) 3502 // . Size >= Offset (unsigned) 3503 // . Size - Offset >= NeededSize (unsigned) 3504 return Offset >= 0 && Size >= uint64_t(Offset) && 3505 Size - uint64_t(Offset) >= TypeSize / 8; 3506 } 3507