1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of AddressSanitizer, an address sanity checker. 11 // Details of the algorithm: 12 // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/InstVisitor.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/MC/MCSectionMachO.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/DataTypes.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/Endian.h" 46 #include "llvm/Support/SwapByteOrder.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/Instrumentation.h" 49 #include "llvm/Transforms/Scalar.h" 50 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Cloning.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include "llvm/Transforms/Utils/ModuleUtils.h" 55 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 56 #include <algorithm> 57 #include <string> 58 #include <system_error> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "asan" 63 64 static const uint64_t kDefaultShadowScale = 3; 65 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 66 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 67 static const uint64_t kIOSShadowOffset32 = 1ULL << 30; 68 static const uint64_t kIOSShadowOffset64 = 0x120200000; 69 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30; 70 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64; 71 static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000; // < 2G. 72 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 73 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41; 74 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 75 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 76 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 77 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 78 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 79 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 80 81 static const size_t kMinStackMallocSize = 1 << 6; // 64B 82 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 83 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 84 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 85 86 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 87 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 88 static const uint64_t kAsanCtorAndDtorPriority = 1; 89 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 90 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 91 static const char *const kAsanUnregisterGlobalsName = 92 "__asan_unregister_globals"; 93 static const char *const kAsanRegisterImageGlobalsName = 94 "__asan_register_image_globals"; 95 static const char *const kAsanUnregisterImageGlobalsName = 96 "__asan_unregister_image_globals"; 97 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 98 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 99 static const char *const kAsanInitName = "__asan_init"; 100 static const char *const kAsanVersionCheckName = 101 "__asan_version_mismatch_check_v8"; 102 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 103 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 104 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 105 static const int kMaxAsanStackMallocSizeClass = 10; 106 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 107 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 108 static const char *const kAsanGenPrefix = "__asan_gen_"; 109 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 110 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 111 static const char *const kAsanPoisonStackMemoryName = 112 "__asan_poison_stack_memory"; 113 static const char *const kAsanUnpoisonStackMemoryName = 114 "__asan_unpoison_stack_memory"; 115 static const char *const kAsanGlobalsRegisteredFlagName = 116 "__asan_globals_registered"; 117 118 static const char *const kAsanOptionDetectUAR = 119 "__asan_option_detect_stack_use_after_return"; 120 121 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 122 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 123 124 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 125 static const size_t kNumberOfAccessSizes = 5; 126 127 static const unsigned kAllocaRzSize = 32; 128 129 // Command-line flags. 130 static cl::opt<bool> ClEnableKasan( 131 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 132 cl::Hidden, cl::init(false)); 133 static cl::opt<bool> ClRecover( 134 "asan-recover", 135 cl::desc("Enable recovery mode (continue-after-error)."), 136 cl::Hidden, cl::init(false)); 137 138 // This flag may need to be replaced with -f[no-]asan-reads. 139 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 140 cl::desc("instrument read instructions"), 141 cl::Hidden, cl::init(true)); 142 static cl::opt<bool> ClInstrumentWrites( 143 "asan-instrument-writes", cl::desc("instrument write instructions"), 144 cl::Hidden, cl::init(true)); 145 static cl::opt<bool> ClInstrumentAtomics( 146 "asan-instrument-atomics", 147 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 148 cl::init(true)); 149 static cl::opt<bool> ClAlwaysSlowPath( 150 "asan-always-slow-path", 151 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 152 cl::init(false)); 153 // This flag limits the number of instructions to be instrumented 154 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 155 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 156 // set it to 10000. 157 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 158 "asan-max-ins-per-bb", cl::init(10000), 159 cl::desc("maximal number of instructions to instrument in any given BB"), 160 cl::Hidden); 161 // This flag may need to be replaced with -f[no]asan-stack. 162 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 163 cl::Hidden, cl::init(true)); 164 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 165 cl::desc("Check return-after-free"), 166 cl::Hidden, cl::init(true)); 167 // This flag may need to be replaced with -f[no]asan-globals. 168 static cl::opt<bool> ClGlobals("asan-globals", 169 cl::desc("Handle global objects"), cl::Hidden, 170 cl::init(true)); 171 static cl::opt<bool> ClInitializers("asan-initialization-order", 172 cl::desc("Handle C++ initializer order"), 173 cl::Hidden, cl::init(true)); 174 static cl::opt<bool> ClInvalidPointerPairs( 175 "asan-detect-invalid-pointer-pair", 176 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 177 cl::init(false)); 178 static cl::opt<unsigned> ClRealignStack( 179 "asan-realign-stack", 180 cl::desc("Realign stack to the value of this flag (power of two)"), 181 cl::Hidden, cl::init(32)); 182 static cl::opt<int> ClInstrumentationWithCallsThreshold( 183 "asan-instrumentation-with-call-threshold", 184 cl::desc( 185 "If the function being instrumented contains more than " 186 "this number of memory accesses, use callbacks instead of " 187 "inline checks (-1 means never use callbacks)."), 188 cl::Hidden, cl::init(7000)); 189 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 190 "asan-memory-access-callback-prefix", 191 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 192 cl::init("__asan_")); 193 static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas", 194 cl::desc("instrument dynamic allocas"), 195 cl::Hidden, cl::init(true)); 196 static cl::opt<bool> ClSkipPromotableAllocas( 197 "asan-skip-promotable-allocas", 198 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 199 cl::init(true)); 200 201 // These flags allow to change the shadow mapping. 202 // The shadow mapping looks like 203 // Shadow = (Mem >> scale) + (1 << offset_log) 204 static cl::opt<int> ClMappingScale("asan-mapping-scale", 205 cl::desc("scale of asan shadow mapping"), 206 cl::Hidden, cl::init(0)); 207 208 // Optimization flags. Not user visible, used mostly for testing 209 // and benchmarking the tool. 210 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 211 cl::Hidden, cl::init(true)); 212 static cl::opt<bool> ClOptSameTemp( 213 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 214 cl::Hidden, cl::init(true)); 215 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 216 cl::desc("Don't instrument scalar globals"), 217 cl::Hidden, cl::init(true)); 218 static cl::opt<bool> ClOptStack( 219 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 220 cl::Hidden, cl::init(false)); 221 222 static cl::opt<bool> ClCheckLifetime( 223 "asan-check-lifetime", 224 cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), cl::Hidden, 225 cl::init(false)); 226 227 static cl::opt<bool> ClDynamicAllocaStack( 228 "asan-stack-dynamic-alloca", 229 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 230 cl::init(true)); 231 232 static cl::opt<uint32_t> ClForceExperiment( 233 "asan-force-experiment", 234 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 235 cl::init(0)); 236 237 static cl::opt<bool> 238 ClUsePrivateAliasForGlobals("asan-use-private-alias", 239 cl::desc("Use private aliases for global" 240 " variables"), 241 cl::Hidden, cl::init(false)); 242 243 // Debug flags. 244 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 245 cl::init(0)); 246 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 247 cl::Hidden, cl::init(0)); 248 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 249 cl::desc("Debug func")); 250 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 251 cl::Hidden, cl::init(-1)); 252 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"), 253 cl::Hidden, cl::init(-1)); 254 255 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 256 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 257 STATISTIC(NumOptimizedAccessesToGlobalVar, 258 "Number of optimized accesses to global vars"); 259 STATISTIC(NumOptimizedAccessesToStackVar, 260 "Number of optimized accesses to stack vars"); 261 262 namespace { 263 /// Frontend-provided metadata for source location. 264 struct LocationMetadata { 265 StringRef Filename; 266 int LineNo; 267 int ColumnNo; 268 269 LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {} 270 271 bool empty() const { return Filename.empty(); } 272 273 void parse(MDNode *MDN) { 274 assert(MDN->getNumOperands() == 3); 275 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 276 Filename = DIFilename->getString(); 277 LineNo = 278 mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 279 ColumnNo = 280 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 281 } 282 }; 283 284 /// Frontend-provided metadata for global variables. 285 class GlobalsMetadata { 286 public: 287 struct Entry { 288 Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {} 289 LocationMetadata SourceLoc; 290 StringRef Name; 291 bool IsDynInit; 292 bool IsBlacklisted; 293 }; 294 295 GlobalsMetadata() : inited_(false) {} 296 297 void reset() { 298 inited_ = false; 299 Entries.clear(); 300 } 301 302 void init(Module &M) { 303 assert(!inited_); 304 inited_ = true; 305 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 306 if (!Globals) return; 307 for (auto MDN : Globals->operands()) { 308 // Metadata node contains the global and the fields of "Entry". 309 assert(MDN->getNumOperands() == 5); 310 auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0)); 311 // The optimizer may optimize away a global entirely. 312 if (!GV) continue; 313 // We can already have an entry for GV if it was merged with another 314 // global. 315 Entry &E = Entries[GV]; 316 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 317 E.SourceLoc.parse(Loc); 318 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 319 E.Name = Name->getString(); 320 ConstantInt *IsDynInit = 321 mdconst::extract<ConstantInt>(MDN->getOperand(3)); 322 E.IsDynInit |= IsDynInit->isOne(); 323 ConstantInt *IsBlacklisted = 324 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 325 E.IsBlacklisted |= IsBlacklisted->isOne(); 326 } 327 } 328 329 /// Returns metadata entry for a given global. 330 Entry get(GlobalVariable *G) const { 331 auto Pos = Entries.find(G); 332 return (Pos != Entries.end()) ? Pos->second : Entry(); 333 } 334 335 private: 336 bool inited_; 337 DenseMap<GlobalVariable *, Entry> Entries; 338 }; 339 340 /// This struct defines the shadow mapping using the rule: 341 /// shadow = (mem >> Scale) ADD-or-OR Offset. 342 struct ShadowMapping { 343 int Scale; 344 uint64_t Offset; 345 bool OrShadowOffset; 346 }; 347 348 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 349 bool IsKasan) { 350 bool IsAndroid = TargetTriple.isAndroid(); 351 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 352 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 353 bool IsLinux = TargetTriple.isOSLinux(); 354 bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 || 355 TargetTriple.getArch() == llvm::Triple::ppc64le; 356 bool IsX86 = TargetTriple.getArch() == llvm::Triple::x86; 357 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; 358 bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips || 359 TargetTriple.getArch() == llvm::Triple::mipsel; 360 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 || 361 TargetTriple.getArch() == llvm::Triple::mips64el; 362 bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64; 363 bool IsWindows = TargetTriple.isOSWindows(); 364 365 ShadowMapping Mapping; 366 367 if (LongSize == 32) { 368 // Android is always PIE, which means that the beginning of the address 369 // space is always available. 370 if (IsAndroid) 371 Mapping.Offset = 0; 372 else if (IsMIPS32) 373 Mapping.Offset = kMIPS32_ShadowOffset32; 374 else if (IsFreeBSD) 375 Mapping.Offset = kFreeBSD_ShadowOffset32; 376 else if (IsIOS) 377 // If we're targeting iOS and x86, the binary is built for iOS simulator. 378 Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32; 379 else if (IsWindows) 380 Mapping.Offset = kWindowsShadowOffset32; 381 else 382 Mapping.Offset = kDefaultShadowOffset32; 383 } else { // LongSize == 64 384 if (IsPPC64) 385 Mapping.Offset = kPPC64_ShadowOffset64; 386 else if (IsFreeBSD) 387 Mapping.Offset = kFreeBSD_ShadowOffset64; 388 else if (IsLinux && IsX86_64) { 389 if (IsKasan) 390 Mapping.Offset = kLinuxKasan_ShadowOffset64; 391 else 392 Mapping.Offset = kSmallX86_64ShadowOffset; 393 } else if (IsMIPS64) 394 Mapping.Offset = kMIPS64_ShadowOffset64; 395 else if (IsIOS) 396 // If we're targeting iOS and x86, the binary is built for iOS simulator. 397 Mapping.Offset = IsX86_64 ? kIOSSimShadowOffset64 : kIOSShadowOffset64; 398 else if (IsAArch64) 399 Mapping.Offset = kAArch64_ShadowOffset64; 400 else 401 Mapping.Offset = kDefaultShadowOffset64; 402 } 403 404 Mapping.Scale = kDefaultShadowScale; 405 if (ClMappingScale) { 406 Mapping.Scale = ClMappingScale; 407 } 408 409 // OR-ing shadow offset if more efficient (at least on x86) if the offset 410 // is a power of two, but on ppc64 we have to use add since the shadow 411 // offset is not necessary 1/8-th of the address space. 412 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 413 && !(Mapping.Offset & (Mapping.Offset - 1)); 414 415 return Mapping; 416 } 417 418 static size_t RedzoneSizeForScale(int MappingScale) { 419 // Redzone used for stack and globals is at least 32 bytes. 420 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 421 return std::max(32U, 1U << MappingScale); 422 } 423 424 /// AddressSanitizer: instrument the code in module to find memory bugs. 425 struct AddressSanitizer : public FunctionPass { 426 explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false) 427 : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan), 428 Recover(Recover || ClRecover) { 429 initializeAddressSanitizerPass(*PassRegistry::getPassRegistry()); 430 } 431 const char *getPassName() const override { 432 return "AddressSanitizerFunctionPass"; 433 } 434 void getAnalysisUsage(AnalysisUsage &AU) const override { 435 AU.addRequired<DominatorTreeWrapperPass>(); 436 AU.addRequired<TargetLibraryInfoWrapperPass>(); 437 } 438 uint64_t getAllocaSizeInBytes(AllocaInst *AI) const { 439 Type *Ty = AI->getAllocatedType(); 440 uint64_t SizeInBytes = 441 AI->getModule()->getDataLayout().getTypeAllocSize(Ty); 442 return SizeInBytes; 443 } 444 /// Check if we want (and can) handle this alloca. 445 bool isInterestingAlloca(AllocaInst &AI); 446 447 // Check if we have dynamic alloca. 448 bool isDynamicAlloca(AllocaInst &AI) const { 449 return AI.isArrayAllocation() || !AI.isStaticAlloca(); 450 } 451 452 /// If it is an interesting memory access, return the PointerOperand 453 /// and set IsWrite/Alignment. Otherwise return nullptr. 454 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 455 uint64_t *TypeSize, unsigned *Alignment); 456 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 457 bool UseCalls, const DataLayout &DL); 458 void instrumentPointerComparisonOrSubtraction(Instruction *I); 459 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 460 Value *Addr, uint32_t TypeSize, bool IsWrite, 461 Value *SizeArgument, bool UseCalls, uint32_t Exp); 462 void instrumentUnusualSizeOrAlignment(Instruction *I, Value *Addr, 463 uint32_t TypeSize, bool IsWrite, 464 Value *SizeArgument, bool UseCalls, 465 uint32_t Exp); 466 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 467 Value *ShadowValue, uint32_t TypeSize); 468 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 469 bool IsWrite, size_t AccessSizeIndex, 470 Value *SizeArgument, uint32_t Exp); 471 void instrumentMemIntrinsic(MemIntrinsic *MI); 472 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 473 bool runOnFunction(Function &F) override; 474 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 475 void markEscapedLocalAllocas(Function &F); 476 bool doInitialization(Module &M) override; 477 bool doFinalization(Module &M) override; 478 static char ID; // Pass identification, replacement for typeid 479 480 DominatorTree &getDominatorTree() const { return *DT; } 481 482 private: 483 void initializeCallbacks(Module &M); 484 485 bool LooksLikeCodeInBug11395(Instruction *I); 486 bool GlobalIsLinkerInitialized(GlobalVariable *G); 487 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 488 uint64_t TypeSize) const; 489 490 /// Helper to cleanup per-function state. 491 struct FunctionStateRAII { 492 AddressSanitizer *Pass; 493 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 494 assert(Pass->ProcessedAllocas.empty() && 495 "last pass forgot to clear cache"); 496 } 497 ~FunctionStateRAII() { Pass->ProcessedAllocas.clear(); } 498 }; 499 500 LLVMContext *C; 501 Triple TargetTriple; 502 int LongSize; 503 bool CompileKernel; 504 bool Recover; 505 Type *IntptrTy; 506 ShadowMapping Mapping; 507 DominatorTree *DT; 508 Function *AsanCtorFunction = nullptr; 509 Function *AsanInitFunction = nullptr; 510 Function *AsanHandleNoReturnFunc; 511 Function *AsanPtrCmpFunction, *AsanPtrSubFunction; 512 // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize). 513 Function *AsanErrorCallback[2][2][kNumberOfAccessSizes]; 514 Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 515 // This array is indexed by AccessIsWrite and Experiment. 516 Function *AsanErrorCallbackSized[2][2]; 517 Function *AsanMemoryAccessCallbackSized[2][2]; 518 Function *AsanMemmove, *AsanMemcpy, *AsanMemset; 519 InlineAsm *EmptyAsm; 520 GlobalsMetadata GlobalsMD; 521 DenseMap<AllocaInst *, bool> ProcessedAllocas; 522 523 friend struct FunctionStackPoisoner; 524 }; 525 526 class AddressSanitizerModule : public ModulePass { 527 public: 528 explicit AddressSanitizerModule(bool CompileKernel = false, 529 bool Recover = false) 530 : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan), 531 Recover(Recover || ClRecover) {} 532 bool runOnModule(Module &M) override; 533 static char ID; // Pass identification, replacement for typeid 534 const char *getPassName() const override { return "AddressSanitizerModule"; } 535 536 private: 537 void initializeCallbacks(Module &M); 538 539 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M); 540 bool ShouldInstrumentGlobal(GlobalVariable *G); 541 bool ShouldUseMachOGlobalsSection() const; 542 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 543 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 544 size_t MinRedzoneSizeForGlobal() const { 545 return RedzoneSizeForScale(Mapping.Scale); 546 } 547 548 GlobalsMetadata GlobalsMD; 549 bool CompileKernel; 550 bool Recover; 551 Type *IntptrTy; 552 LLVMContext *C; 553 Triple TargetTriple; 554 ShadowMapping Mapping; 555 Function *AsanPoisonGlobals; 556 Function *AsanUnpoisonGlobals; 557 Function *AsanRegisterGlobals; 558 Function *AsanUnregisterGlobals; 559 Function *AsanRegisterImageGlobals; 560 Function *AsanUnregisterImageGlobals; 561 }; 562 563 // Stack poisoning does not play well with exception handling. 564 // When an exception is thrown, we essentially bypass the code 565 // that unpoisones the stack. This is why the run-time library has 566 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 567 // stack in the interceptor. This however does not work inside the 568 // actual function which catches the exception. Most likely because the 569 // compiler hoists the load of the shadow value somewhere too high. 570 // This causes asan to report a non-existing bug on 453.povray. 571 // It sounds like an LLVM bug. 572 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 573 Function &F; 574 AddressSanitizer &ASan; 575 DIBuilder DIB; 576 LLVMContext *C; 577 Type *IntptrTy; 578 Type *IntptrPtrTy; 579 ShadowMapping Mapping; 580 581 SmallVector<AllocaInst *, 16> AllocaVec; 582 SmallSetVector<AllocaInst *, 16> NonInstrumentedStaticAllocaVec; 583 SmallVector<Instruction *, 8> RetVec; 584 unsigned StackAlignment; 585 586 Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 587 *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 588 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; 589 Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc; 590 591 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 592 struct AllocaPoisonCall { 593 IntrinsicInst *InsBefore; 594 AllocaInst *AI; 595 uint64_t Size; 596 bool DoPoison; 597 }; 598 SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec; 599 600 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 601 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 602 AllocaInst *DynamicAllocaLayout = nullptr; 603 IntrinsicInst *LocalEscapeCall = nullptr; 604 605 // Maps Value to an AllocaInst from which the Value is originated. 606 typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy; 607 AllocaForValueMapTy AllocaForValue; 608 609 bool HasNonEmptyInlineAsm = false; 610 bool HasReturnsTwiceCall = false; 611 std::unique_ptr<CallInst> EmptyInlineAsm; 612 613 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 614 : F(F), 615 ASan(ASan), 616 DIB(*F.getParent(), /*AllowUnresolved*/ false), 617 C(ASan.C), 618 IntptrTy(ASan.IntptrTy), 619 IntptrPtrTy(PointerType::get(IntptrTy, 0)), 620 Mapping(ASan.Mapping), 621 StackAlignment(1 << Mapping.Scale), 622 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 623 624 bool runOnFunction() { 625 if (!ClStack) return false; 626 // Collect alloca, ret, lifetime instructions etc. 627 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 628 629 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 630 631 initializeCallbacks(*F.getParent()); 632 633 poisonStack(); 634 635 if (ClDebugStack) { 636 DEBUG(dbgs() << F); 637 } 638 return true; 639 } 640 641 // Finds all Alloca instructions and puts 642 // poisoned red zones around all of them. 643 // Then unpoison everything back before the function returns. 644 void poisonStack(); 645 646 void createDynamicAllocasInitStorage(); 647 648 // ----------------------- Visitors. 649 /// \brief Collect all Ret instructions. 650 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 651 652 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 653 Value *SavedStack) { 654 IRBuilder<> IRB(InstBefore); 655 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 656 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 657 // need to adjust extracted SP to compute the address of the most recent 658 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 659 // this purpose. 660 if (!isa<ReturnInst>(InstBefore)) { 661 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 662 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 663 {IntptrTy}); 664 665 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 666 667 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 668 DynamicAreaOffset); 669 } 670 671 IRB.CreateCall(AsanAllocasUnpoisonFunc, 672 {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr}); 673 } 674 675 // Unpoison dynamic allocas redzones. 676 void unpoisonDynamicAllocas() { 677 for (auto &Ret : RetVec) 678 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 679 680 for (auto &StackRestoreInst : StackRestoreVec) 681 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 682 StackRestoreInst->getOperand(0)); 683 } 684 685 // Deploy and poison redzones around dynamic alloca call. To do this, we 686 // should replace this call with another one with changed parameters and 687 // replace all its uses with new address, so 688 // addr = alloca type, old_size, align 689 // is replaced by 690 // new_size = (old_size + additional_size) * sizeof(type) 691 // tmp = alloca i8, new_size, max(align, 32) 692 // addr = tmp + 32 (first 32 bytes are for the left redzone). 693 // Additional_size is added to make new memory allocation contain not only 694 // requested memory, but also left, partial and right redzones. 695 void handleDynamicAllocaCall(AllocaInst *AI); 696 697 /// \brief Collect Alloca instructions we want (and can) handle. 698 void visitAllocaInst(AllocaInst &AI) { 699 if (!ASan.isInterestingAlloca(AI)) { 700 if (AI.isStaticAlloca()) NonInstrumentedStaticAllocaVec.insert(&AI); 701 return; 702 } 703 704 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 705 if (ASan.isDynamicAlloca(AI)) 706 DynamicAllocaVec.push_back(&AI); 707 else 708 AllocaVec.push_back(&AI); 709 } 710 711 /// \brief Collect lifetime intrinsic calls to check for use-after-scope 712 /// errors. 713 void visitIntrinsicInst(IntrinsicInst &II) { 714 Intrinsic::ID ID = II.getIntrinsicID(); 715 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 716 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 717 if (!ClCheckLifetime) return; 718 if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end) 719 return; 720 // Found lifetime intrinsic, add ASan instrumentation if necessary. 721 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 722 // If size argument is undefined, don't do anything. 723 if (Size->isMinusOne()) return; 724 // Check that size doesn't saturate uint64_t and can 725 // be stored in IntptrTy. 726 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 727 if (SizeValue == ~0ULL || 728 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 729 return; 730 // Find alloca instruction that corresponds to llvm.lifetime argument. 731 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); 732 if (!AI) return; 733 bool DoPoison = (ID == Intrinsic::lifetime_end); 734 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 735 AllocaPoisonCallVec.push_back(APC); 736 } 737 738 void visitCallSite(CallSite CS) { 739 Instruction *I = CS.getInstruction(); 740 if (CallInst *CI = dyn_cast<CallInst>(I)) { 741 HasNonEmptyInlineAsm |= 742 CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get()); 743 HasReturnsTwiceCall |= CI->canReturnTwice(); 744 } 745 } 746 747 // ---------------------- Helpers. 748 void initializeCallbacks(Module &M); 749 750 bool doesDominateAllExits(const Instruction *I) const { 751 for (auto Ret : RetVec) { 752 if (!ASan.getDominatorTree().dominates(I, Ret)) return false; 753 } 754 return true; 755 } 756 757 /// Finds alloca where the value comes from. 758 AllocaInst *findAllocaForValue(Value *V); 759 void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB, 760 Value *ShadowBase, bool DoPoison); 761 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 762 763 void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase, 764 int Size); 765 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 766 bool Dynamic); 767 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 768 Instruction *ThenTerm, Value *ValueIfFalse); 769 }; 770 771 } // anonymous namespace 772 773 char AddressSanitizer::ID = 0; 774 INITIALIZE_PASS_BEGIN( 775 AddressSanitizer, "asan", 776 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 777 false) 778 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 779 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 780 INITIALIZE_PASS_END( 781 AddressSanitizer, "asan", 782 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 783 false) 784 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 785 bool Recover) { 786 assert(!CompileKernel || Recover); 787 return new AddressSanitizer(CompileKernel, Recover); 788 } 789 790 char AddressSanitizerModule::ID = 0; 791 INITIALIZE_PASS( 792 AddressSanitizerModule, "asan-module", 793 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 794 "ModulePass", 795 false, false) 796 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel, 797 bool Recover) { 798 assert(!CompileKernel || Recover); 799 return new AddressSanitizerModule(CompileKernel, Recover); 800 } 801 802 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 803 size_t Res = countTrailingZeros(TypeSize / 8); 804 assert(Res < kNumberOfAccessSizes); 805 return Res; 806 } 807 808 // \brief Create a constant for Str so that we can pass it to the run-time lib. 809 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str, 810 bool AllowMerging) { 811 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 812 // We use private linkage for module-local strings. If they can be merged 813 // with another one, we set the unnamed_addr attribute. 814 GlobalVariable *GV = 815 new GlobalVariable(M, StrConst->getType(), true, 816 GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix); 817 if (AllowMerging) GV->setUnnamedAddr(true); 818 GV->setAlignment(1); // Strings may not be merged w/o setting align 1. 819 return GV; 820 } 821 822 /// \brief Create a global describing a source location. 823 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 824 LocationMetadata MD) { 825 Constant *LocData[] = { 826 createPrivateGlobalForString(M, MD.Filename, true), 827 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 828 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 829 }; 830 auto LocStruct = ConstantStruct::getAnon(LocData); 831 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 832 GlobalValue::PrivateLinkage, LocStruct, 833 kAsanGenPrefix); 834 GV->setUnnamedAddr(true); 835 return GV; 836 } 837 838 static bool GlobalWasGeneratedByAsan(GlobalVariable *G) { 839 return G->getName().find(kAsanGenPrefix) == 0 || 840 G->getName().find(kSanCovGenPrefix) == 0 || 841 G->getName().find(kODRGenPrefix) == 0; 842 } 843 844 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 845 // Shadow >> scale 846 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 847 if (Mapping.Offset == 0) return Shadow; 848 // (Shadow >> scale) | offset 849 if (Mapping.OrShadowOffset) 850 return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); 851 else 852 return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); 853 } 854 855 // Instrument memset/memmove/memcpy 856 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 857 IRBuilder<> IRB(MI); 858 if (isa<MemTransferInst>(MI)) { 859 IRB.CreateCall( 860 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 861 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 862 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 863 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 864 } else if (isa<MemSetInst>(MI)) { 865 IRB.CreateCall( 866 AsanMemset, 867 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 868 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 869 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 870 } 871 MI->eraseFromParent(); 872 } 873 874 /// Check if we want (and can) handle this alloca. 875 bool AddressSanitizer::isInterestingAlloca(AllocaInst &AI) { 876 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 877 878 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 879 return PreviouslySeenAllocaInfo->getSecond(); 880 881 bool IsInteresting = 882 (AI.getAllocatedType()->isSized() && 883 // alloca() may be called with 0 size, ignore it. 884 getAllocaSizeInBytes(&AI) > 0 && 885 // We are only interested in allocas not promotable to registers. 886 // Promotable allocas are common under -O0. 887 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 888 // inalloca allocas are not treated as static, and we don't want 889 // dynamic alloca instrumentation for them as well. 890 !AI.isUsedWithInAlloca()); 891 892 ProcessedAllocas[&AI] = IsInteresting; 893 return IsInteresting; 894 } 895 896 /// If I is an interesting memory access, return the PointerOperand 897 /// and set IsWrite/Alignment. Otherwise return nullptr. 898 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 899 bool *IsWrite, 900 uint64_t *TypeSize, 901 unsigned *Alignment) { 902 // Skip memory accesses inserted by another instrumentation. 903 if (I->getMetadata("nosanitize")) return nullptr; 904 905 Value *PtrOperand = nullptr; 906 const DataLayout &DL = I->getModule()->getDataLayout(); 907 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 908 if (!ClInstrumentReads) return nullptr; 909 *IsWrite = false; 910 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 911 *Alignment = LI->getAlignment(); 912 PtrOperand = LI->getPointerOperand(); 913 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 914 if (!ClInstrumentWrites) return nullptr; 915 *IsWrite = true; 916 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 917 *Alignment = SI->getAlignment(); 918 PtrOperand = SI->getPointerOperand(); 919 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 920 if (!ClInstrumentAtomics) return nullptr; 921 *IsWrite = true; 922 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 923 *Alignment = 0; 924 PtrOperand = RMW->getPointerOperand(); 925 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 926 if (!ClInstrumentAtomics) return nullptr; 927 *IsWrite = true; 928 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 929 *Alignment = 0; 930 PtrOperand = XCHG->getPointerOperand(); 931 } 932 933 // Treat memory accesses to promotable allocas as non-interesting since they 934 // will not cause memory violations. This greatly speeds up the instrumented 935 // executable at -O0. 936 if (ClSkipPromotableAllocas) 937 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 938 return isInterestingAlloca(*AI) ? AI : nullptr; 939 940 return PtrOperand; 941 } 942 943 static bool isPointerOperand(Value *V) { 944 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 945 } 946 947 // This is a rough heuristic; it may cause both false positives and 948 // false negatives. The proper implementation requires cooperation with 949 // the frontend. 950 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { 951 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 952 if (!Cmp->isRelational()) return false; 953 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 954 if (BO->getOpcode() != Instruction::Sub) return false; 955 } else { 956 return false; 957 } 958 return isPointerOperand(I->getOperand(0)) && 959 isPointerOperand(I->getOperand(1)); 960 } 961 962 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 963 // If a global variable does not have dynamic initialization we don't 964 // have to instrument it. However, if a global does not have initializer 965 // at all, we assume it has dynamic initializer (in other TU). 966 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 967 } 968 969 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 970 Instruction *I) { 971 IRBuilder<> IRB(I); 972 Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 973 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 974 for (int i = 0; i < 2; i++) { 975 if (Param[i]->getType()->isPointerTy()) 976 Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy); 977 } 978 IRB.CreateCall(F, Param); 979 } 980 981 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 982 Instruction *I, bool UseCalls, 983 const DataLayout &DL) { 984 bool IsWrite = false; 985 unsigned Alignment = 0; 986 uint64_t TypeSize = 0; 987 Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment); 988 assert(Addr); 989 990 // Optimization experiments. 991 // The experiments can be used to evaluate potential optimizations that remove 992 // instrumentation (assess false negatives). Instead of completely removing 993 // some instrumentation, you set Exp to a non-zero value (mask of optimization 994 // experiments that want to remove instrumentation of this instruction). 995 // If Exp is non-zero, this pass will emit special calls into runtime 996 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 997 // make runtime terminate the program in a special way (with a different 998 // exit status). Then you run the new compiler on a buggy corpus, collect 999 // the special terminations (ideally, you don't see them at all -- no false 1000 // negatives) and make the decision on the optimization. 1001 uint32_t Exp = ClForceExperiment; 1002 1003 if (ClOpt && ClOptGlobals) { 1004 // If initialization order checking is disabled, a simple access to a 1005 // dynamically initialized global is always valid. 1006 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1007 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1008 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1009 NumOptimizedAccessesToGlobalVar++; 1010 return; 1011 } 1012 } 1013 1014 if (ClOpt && ClOptStack) { 1015 // A direct inbounds access to a stack variable is always valid. 1016 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1017 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1018 NumOptimizedAccessesToStackVar++; 1019 return; 1020 } 1021 } 1022 1023 if (IsWrite) 1024 NumInstrumentedWrites++; 1025 else 1026 NumInstrumentedReads++; 1027 1028 unsigned Granularity = 1 << Mapping.Scale; 1029 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1030 // if the data is properly aligned. 1031 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1032 TypeSize == 128) && 1033 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1034 return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls, 1035 Exp); 1036 instrumentUnusualSizeOrAlignment(I, Addr, TypeSize, IsWrite, nullptr, 1037 UseCalls, Exp); 1038 } 1039 1040 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1041 Value *Addr, bool IsWrite, 1042 size_t AccessSizeIndex, 1043 Value *SizeArgument, 1044 uint32_t Exp) { 1045 IRBuilder<> IRB(InsertBefore); 1046 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1047 CallInst *Call = nullptr; 1048 if (SizeArgument) { 1049 if (Exp == 0) 1050 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1051 {Addr, SizeArgument}); 1052 else 1053 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1054 {Addr, SizeArgument, ExpVal}); 1055 } else { 1056 if (Exp == 0) 1057 Call = 1058 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1059 else 1060 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1061 {Addr, ExpVal}); 1062 } 1063 1064 // We don't do Call->setDoesNotReturn() because the BB already has 1065 // UnreachableInst at the end. 1066 // This EmptyAsm is required to avoid callback merge. 1067 IRB.CreateCall(EmptyAsm, {}); 1068 return Call; 1069 } 1070 1071 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1072 Value *ShadowValue, 1073 uint32_t TypeSize) { 1074 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1075 // Addr & (Granularity - 1) 1076 Value *LastAccessedByte = 1077 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1078 // (Addr & (Granularity - 1)) + size - 1 1079 if (TypeSize / 8 > 1) 1080 LastAccessedByte = IRB.CreateAdd( 1081 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1082 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1083 LastAccessedByte = 1084 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1085 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1086 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1087 } 1088 1089 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1090 Instruction *InsertBefore, Value *Addr, 1091 uint32_t TypeSize, bool IsWrite, 1092 Value *SizeArgument, bool UseCalls, 1093 uint32_t Exp) { 1094 IRBuilder<> IRB(InsertBefore); 1095 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1096 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1097 1098 if (UseCalls) { 1099 if (Exp == 0) 1100 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1101 AddrLong); 1102 else 1103 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1104 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1105 return; 1106 } 1107 1108 Type *ShadowTy = 1109 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1110 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1111 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1112 Value *CmpVal = Constant::getNullValue(ShadowTy); 1113 Value *ShadowValue = 1114 IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1115 1116 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1117 size_t Granularity = 1ULL << Mapping.Scale; 1118 TerminatorInst *CrashTerm = nullptr; 1119 1120 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1121 // We use branch weights for the slow path check, to indicate that the slow 1122 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1123 TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen( 1124 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1125 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1126 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1127 IRB.SetInsertPoint(CheckTerm); 1128 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1129 if (Recover) { 1130 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1131 } else { 1132 BasicBlock *CrashBlock = 1133 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1134 CrashTerm = new UnreachableInst(*C, CrashBlock); 1135 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1136 ReplaceInstWithInst(CheckTerm, NewTerm); 1137 } 1138 } else { 1139 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1140 } 1141 1142 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1143 AccessSizeIndex, SizeArgument, Exp); 1144 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1145 } 1146 1147 // Instrument unusual size or unusual alignment. 1148 // We can not do it with a single check, so we do 1-byte check for the first 1149 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1150 // to report the actual access size. 1151 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1152 Instruction *I, Value *Addr, uint32_t TypeSize, bool IsWrite, 1153 Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1154 IRBuilder<> IRB(I); 1155 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1156 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1157 if (UseCalls) { 1158 if (Exp == 0) 1159 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1160 {AddrLong, Size}); 1161 else 1162 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1163 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1164 } else { 1165 Value *LastByte = IRB.CreateIntToPtr( 1166 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1167 Addr->getType()); 1168 instrumentAddress(I, I, Addr, 8, IsWrite, Size, false, Exp); 1169 instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false, Exp); 1170 } 1171 } 1172 1173 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit, 1174 GlobalValue *ModuleName) { 1175 // Set up the arguments to our poison/unpoison functions. 1176 IRBuilder<> IRB(&GlobalInit.front(), 1177 GlobalInit.front().getFirstInsertionPt()); 1178 1179 // Add a call to poison all external globals before the given function starts. 1180 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1181 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1182 1183 // Add calls to unpoison all globals before each return instruction. 1184 for (auto &BB : GlobalInit.getBasicBlockList()) 1185 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1186 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1187 } 1188 1189 void AddressSanitizerModule::createInitializerPoisonCalls( 1190 Module &M, GlobalValue *ModuleName) { 1191 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1192 1193 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1194 for (Use &OP : CA->operands()) { 1195 if (isa<ConstantAggregateZero>(OP)) continue; 1196 ConstantStruct *CS = cast<ConstantStruct>(OP); 1197 1198 // Must have a function or null ptr. 1199 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1200 if (F->getName() == kAsanModuleCtorName) continue; 1201 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1202 // Don't instrument CTORs that will run before asan.module_ctor. 1203 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; 1204 poisonOneInitializer(*F, ModuleName); 1205 } 1206 } 1207 } 1208 1209 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { 1210 Type *Ty = G->getValueType(); 1211 DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1212 1213 if (GlobalsMD.get(G).IsBlacklisted) return false; 1214 if (!Ty->isSized()) return false; 1215 if (!G->hasInitializer()) return false; 1216 if (GlobalWasGeneratedByAsan(G)) return false; // Our own global. 1217 // Touch only those globals that will not be defined in other modules. 1218 // Don't handle ODR linkage types and COMDATs since other modules may be built 1219 // without ASan. 1220 if (G->getLinkage() != GlobalVariable::ExternalLinkage && 1221 G->getLinkage() != GlobalVariable::PrivateLinkage && 1222 G->getLinkage() != GlobalVariable::InternalLinkage) 1223 return false; 1224 if (G->hasComdat()) return false; 1225 // Two problems with thread-locals: 1226 // - The address of the main thread's copy can't be computed at link-time. 1227 // - Need to poison all copies, not just the main thread's one. 1228 if (G->isThreadLocal()) return false; 1229 // For now, just ignore this Global if the alignment is large. 1230 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1231 1232 if (G->hasSection()) { 1233 StringRef Section(G->getSection()); 1234 1235 // Globals from llvm.metadata aren't emitted, do not instrument them. 1236 if (Section == "llvm.metadata") return false; 1237 // Do not instrument globals from special LLVM sections. 1238 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1239 1240 // Do not instrument function pointers to initialization and termination 1241 // routines: dynamic linker will not properly handle redzones. 1242 if (Section.startswith(".preinit_array") || 1243 Section.startswith(".init_array") || 1244 Section.startswith(".fini_array")) { 1245 return false; 1246 } 1247 1248 // Callbacks put into the CRT initializer/terminator sections 1249 // should not be instrumented. 1250 // See https://code.google.com/p/address-sanitizer/issues/detail?id=305 1251 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1252 if (Section.startswith(".CRT")) { 1253 DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n"); 1254 return false; 1255 } 1256 1257 if (TargetTriple.isOSBinFormatMachO()) { 1258 StringRef ParsedSegment, ParsedSection; 1259 unsigned TAA = 0, StubSize = 0; 1260 bool TAAParsed; 1261 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1262 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1263 assert(ErrorCode.empty() && "Invalid section specifier."); 1264 1265 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1266 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1267 // them. 1268 if (ParsedSegment == "__OBJC" || 1269 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1270 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1271 return false; 1272 } 1273 // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 1274 // Constant CFString instances are compiled in the following way: 1275 // -- the string buffer is emitted into 1276 // __TEXT,__cstring,cstring_literals 1277 // -- the constant NSConstantString structure referencing that buffer 1278 // is placed into __DATA,__cfstring 1279 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1280 // Moreover, it causes the linker to crash on OS X 10.7 1281 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1282 DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1283 return false; 1284 } 1285 // The linker merges the contents of cstring_literals and removes the 1286 // trailing zeroes. 1287 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1288 DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1289 return false; 1290 } 1291 } 1292 } 1293 1294 return true; 1295 } 1296 1297 // On Mach-O platforms, we emit global metadata in a separate section of the 1298 // binary in order to allow the linker to properly dead strip. This is only 1299 // supported on recent versions of ld64. 1300 bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const { 1301 if (!TargetTriple.isOSBinFormatMachO()) 1302 return false; 1303 1304 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1305 return true; 1306 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1307 return true; 1308 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1309 return true; 1310 1311 return false; 1312 } 1313 1314 void AddressSanitizerModule::initializeCallbacks(Module &M) { 1315 IRBuilder<> IRB(*C); 1316 1317 // Declare our poisoning and unpoisoning functions. 1318 AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1319 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr)); 1320 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); 1321 AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1322 kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr)); 1323 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); 1324 1325 // Declare functions that register/unregister globals. 1326 AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1327 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1328 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); 1329 AsanUnregisterGlobals = checkSanitizerInterfaceFunction( 1330 M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(), 1331 IntptrTy, IntptrTy, nullptr)); 1332 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); 1333 1334 // Declare the functions that find globals in a shared object and then invoke 1335 // the (un)register function on them. 1336 AsanRegisterImageGlobals = checkSanitizerInterfaceFunction( 1337 M.getOrInsertFunction(kAsanRegisterImageGlobalsName, 1338 IRB.getVoidTy(), IntptrTy, nullptr)); 1339 AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage); 1340 1341 AsanUnregisterImageGlobals = checkSanitizerInterfaceFunction( 1342 M.getOrInsertFunction(kAsanUnregisterImageGlobalsName, 1343 IRB.getVoidTy(), IntptrTy, nullptr)); 1344 AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage); 1345 } 1346 1347 // This function replaces all global variables with new variables that have 1348 // trailing redzones. It also creates a function that poisons 1349 // redzones and inserts this function into llvm.global_ctors. 1350 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) { 1351 GlobalsMD.init(M); 1352 1353 SmallVector<GlobalVariable *, 16> GlobalsToChange; 1354 1355 for (auto &G : M.globals()) { 1356 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 1357 } 1358 1359 size_t n = GlobalsToChange.size(); 1360 if (n == 0) return false; 1361 1362 // A global is described by a structure 1363 // size_t beg; 1364 // size_t size; 1365 // size_t size_with_redzone; 1366 // const char *name; 1367 // const char *module_name; 1368 // size_t has_dynamic_init; 1369 // void *source_location; 1370 // size_t odr_indicator; 1371 // We initialize an array of such structures and pass it to a run-time call. 1372 StructType *GlobalStructTy = 1373 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 1374 IntptrTy, IntptrTy, IntptrTy, nullptr); 1375 SmallVector<Constant *, 16> Initializers(n); 1376 1377 bool HasDynamicallyInitializedGlobals = false; 1378 1379 // We shouldn't merge same module names, as this string serves as unique 1380 // module ID in runtime. 1381 GlobalVariable *ModuleName = createPrivateGlobalForString( 1382 M, M.getModuleIdentifier(), /*AllowMerging*/ false); 1383 1384 auto &DL = M.getDataLayout(); 1385 for (size_t i = 0; i < n; i++) { 1386 static const uint64_t kMaxGlobalRedzone = 1 << 18; 1387 GlobalVariable *G = GlobalsToChange[i]; 1388 1389 auto MD = GlobalsMD.get(G); 1390 StringRef NameForGlobal = G->getName(); 1391 // Create string holding the global name (use global name from metadata 1392 // if it's available, otherwise just write the name of global variable). 1393 GlobalVariable *Name = createPrivateGlobalForString( 1394 M, MD.Name.empty() ? NameForGlobal : MD.Name, 1395 /*AllowMerging*/ true); 1396 1397 Type *Ty = G->getValueType(); 1398 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 1399 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 1400 // MinRZ <= RZ <= kMaxGlobalRedzone 1401 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 1402 uint64_t RZ = std::max( 1403 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 1404 uint64_t RightRedzoneSize = RZ; 1405 // Round up to MinRZ 1406 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 1407 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 1408 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 1409 1410 StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr); 1411 Constant *NewInitializer = 1412 ConstantStruct::get(NewTy, G->getInitializer(), 1413 Constant::getNullValue(RightRedZoneTy), nullptr); 1414 1415 // Create a new global variable with enough space for a redzone. 1416 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 1417 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 1418 Linkage = GlobalValue::InternalLinkage; 1419 GlobalVariable *NewGlobal = 1420 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 1421 "", G, G->getThreadLocalMode()); 1422 NewGlobal->copyAttributesFrom(G); 1423 NewGlobal->setAlignment(MinRZ); 1424 1425 Value *Indices2[2]; 1426 Indices2[0] = IRB.getInt32(0); 1427 Indices2[1] = IRB.getInt32(0); 1428 1429 G->replaceAllUsesWith( 1430 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 1431 NewGlobal->takeName(G); 1432 G->eraseFromParent(); 1433 1434 Constant *SourceLoc; 1435 if (!MD.SourceLoc.empty()) { 1436 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 1437 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 1438 } else { 1439 SourceLoc = ConstantInt::get(IntptrTy, 0); 1440 } 1441 1442 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 1443 GlobalValue *InstrumentedGlobal = NewGlobal; 1444 1445 bool CanUsePrivateAliases = TargetTriple.isOSBinFormatELF(); 1446 if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) { 1447 // Create local alias for NewGlobal to avoid crash on ODR between 1448 // instrumented and non-instrumented libraries. 1449 auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage, 1450 NameForGlobal + M.getName(), NewGlobal); 1451 1452 // With local aliases, we need to provide another externally visible 1453 // symbol __odr_asan_XXX to detect ODR violation. 1454 auto *ODRIndicatorSym = 1455 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 1456 Constant::getNullValue(IRB.getInt8Ty()), 1457 kODRGenPrefix + NameForGlobal, nullptr, 1458 NewGlobal->getThreadLocalMode()); 1459 1460 // Set meaningful attributes for indicator symbol. 1461 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 1462 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 1463 ODRIndicatorSym->setAlignment(1); 1464 ODRIndicator = ODRIndicatorSym; 1465 InstrumentedGlobal = GA; 1466 } 1467 1468 Initializers[i] = ConstantStruct::get( 1469 GlobalStructTy, 1470 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 1471 ConstantInt::get(IntptrTy, SizeInBytes), 1472 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 1473 ConstantExpr::getPointerCast(Name, IntptrTy), 1474 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 1475 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 1476 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy), nullptr); 1477 1478 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 1479 1480 DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 1481 } 1482 1483 1484 GlobalVariable *AllGlobals = nullptr; 1485 GlobalVariable *RegisteredFlag = nullptr; 1486 1487 // On recent Mach-O platforms, we emit the global metadata in a way that 1488 // allows the linker to properly strip dead globals. 1489 if (ShouldUseMachOGlobalsSection()) { 1490 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 1491 // to look up the loaded image that contains it. Second, we can store in it 1492 // whether registration has already occurred, to prevent duplicate 1493 // registration. 1494 // 1495 // Common linkage allows us to coalesce needles defined in each object 1496 // file so that there's only one per shared library. 1497 RegisteredFlag = new GlobalVariable( 1498 M, IntptrTy, false, GlobalVariable::CommonLinkage, 1499 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 1500 1501 // We also emit a structure which binds the liveness of the global 1502 // variable to the metadata struct. 1503 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy, nullptr); 1504 1505 for (size_t i = 0; i < n; i++) { 1506 GlobalVariable *Metadata = new GlobalVariable( 1507 M, GlobalStructTy, false, GlobalVariable::InternalLinkage, 1508 Initializers[i], ""); 1509 Metadata->setSection("__DATA,__asan_globals,regular"); 1510 Metadata->setAlignment(1); // don't leave padding in between 1511 1512 auto LivenessBinder = ConstantStruct::get(LivenessTy, 1513 Initializers[i]->getAggregateElement(0u), 1514 ConstantExpr::getPointerCast(Metadata, IntptrTy), 1515 nullptr); 1516 GlobalVariable *Liveness = new GlobalVariable( 1517 M, LivenessTy, false, GlobalVariable::InternalLinkage, 1518 LivenessBinder, ""); 1519 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 1520 } 1521 } else { 1522 // On all other platfoms, we just emit an array of global metadata 1523 // structures. 1524 ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); 1525 AllGlobals = new GlobalVariable( 1526 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 1527 ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); 1528 } 1529 1530 // Create calls for poisoning before initializers run and unpoisoning after. 1531 if (HasDynamicallyInitializedGlobals) 1532 createInitializerPoisonCalls(M, ModuleName); 1533 1534 // Create a call to register the globals with the runtime. 1535 if (ShouldUseMachOGlobalsSection()) { 1536 IRB.CreateCall(AsanRegisterImageGlobals, 1537 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1538 } else { 1539 IRB.CreateCall(AsanRegisterGlobals, 1540 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1541 ConstantInt::get(IntptrTy, n)}); 1542 } 1543 1544 // We also need to unregister globals at the end, e.g., when a shared library 1545 // gets closed. 1546 Function *AsanDtorFunction = 1547 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 1548 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 1549 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 1550 IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); 1551 1552 if (ShouldUseMachOGlobalsSection()) { 1553 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 1554 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1555 } else { 1556 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 1557 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1558 ConstantInt::get(IntptrTy, n)}); 1559 } 1560 1561 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); 1562 1563 DEBUG(dbgs() << M); 1564 return true; 1565 } 1566 1567 bool AddressSanitizerModule::runOnModule(Module &M) { 1568 C = &(M.getContext()); 1569 int LongSize = M.getDataLayout().getPointerSizeInBits(); 1570 IntptrTy = Type::getIntNTy(*C, LongSize); 1571 TargetTriple = Triple(M.getTargetTriple()); 1572 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 1573 initializeCallbacks(M); 1574 1575 bool Changed = false; 1576 1577 // TODO(glider): temporarily disabled globals instrumentation for KASan. 1578 if (ClGlobals && !CompileKernel) { 1579 Function *CtorFunc = M.getFunction(kAsanModuleCtorName); 1580 assert(CtorFunc); 1581 IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator()); 1582 Changed |= InstrumentGlobals(IRB, M); 1583 } 1584 1585 return Changed; 1586 } 1587 1588 void AddressSanitizer::initializeCallbacks(Module &M) { 1589 IRBuilder<> IRB(*C); 1590 // Create __asan_report* callbacks. 1591 // IsWrite, TypeSize and Exp are encoded in the function name. 1592 for (int Exp = 0; Exp < 2; Exp++) { 1593 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 1594 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 1595 const std::string ExpStr = Exp ? "exp_" : ""; 1596 const std::string SuffixStr = CompileKernel ? "N" : "_n"; 1597 const std::string EndingStr = Recover ? "_noabort" : ""; 1598 Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr; 1599 AsanErrorCallbackSized[AccessIsWrite][Exp] = 1600 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1601 kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr, 1602 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr)); 1603 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = 1604 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1605 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 1606 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr)); 1607 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 1608 AccessSizeIndex++) { 1609 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 1610 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 1611 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1612 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 1613 IRB.getVoidTy(), IntptrTy, ExpType, nullptr)); 1614 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 1615 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1616 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 1617 IRB.getVoidTy(), IntptrTy, ExpType, nullptr)); 1618 } 1619 } 1620 } 1621 1622 const std::string MemIntrinCallbackPrefix = 1623 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 1624 AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1625 MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(), 1626 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); 1627 AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1628 MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), 1629 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); 1630 AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1631 MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(), 1632 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr)); 1633 1634 AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction( 1635 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr)); 1636 1637 AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1638 kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1639 AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1640 kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1641 // We insert an empty inline asm after __asan_report* to avoid callback merge. 1642 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 1643 StringRef(""), StringRef(""), 1644 /*hasSideEffects=*/true); 1645 } 1646 1647 // virtual 1648 bool AddressSanitizer::doInitialization(Module &M) { 1649 // Initialize the private fields. No one has accessed them before. 1650 1651 GlobalsMD.init(M); 1652 1653 C = &(M.getContext()); 1654 LongSize = M.getDataLayout().getPointerSizeInBits(); 1655 IntptrTy = Type::getIntNTy(*C, LongSize); 1656 TargetTriple = Triple(M.getTargetTriple()); 1657 1658 if (!CompileKernel) { 1659 std::tie(AsanCtorFunction, AsanInitFunction) = 1660 createSanitizerCtorAndInitFunctions( 1661 M, kAsanModuleCtorName, kAsanInitName, 1662 /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName); 1663 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); 1664 } 1665 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 1666 return true; 1667 } 1668 1669 bool AddressSanitizer::doFinalization(Module &M) { 1670 GlobalsMD.reset(); 1671 return false; 1672 } 1673 1674 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 1675 // For each NSObject descendant having a +load method, this method is invoked 1676 // by the ObjC runtime before any of the static constructors is called. 1677 // Therefore we need to instrument such methods with a call to __asan_init 1678 // at the beginning in order to initialize our runtime before any access to 1679 // the shadow memory. 1680 // We cannot just ignore these methods, because they may call other 1681 // instrumented functions. 1682 if (F.getName().find(" load]") != std::string::npos) { 1683 IRBuilder<> IRB(&F.front(), F.front().begin()); 1684 IRB.CreateCall(AsanInitFunction, {}); 1685 return true; 1686 } 1687 return false; 1688 } 1689 1690 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 1691 // Find the one possible call to llvm.localescape and pre-mark allocas passed 1692 // to it as uninteresting. This assumes we haven't started processing allocas 1693 // yet. This check is done up front because iterating the use list in 1694 // isInterestingAlloca would be algorithmically slower. 1695 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 1696 1697 // Try to get the declaration of llvm.localescape. If it's not in the module, 1698 // we can exit early. 1699 if (!F.getParent()->getFunction("llvm.localescape")) return; 1700 1701 // Look for a call to llvm.localescape call in the entry block. It can't be in 1702 // any other block. 1703 for (Instruction &I : F.getEntryBlock()) { 1704 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 1705 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 1706 // We found a call. Mark all the allocas passed in as uninteresting. 1707 for (Value *Arg : II->arg_operands()) { 1708 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 1709 assert(AI && AI->isStaticAlloca() && 1710 "non-static alloca arg to localescape"); 1711 ProcessedAllocas[AI] = false; 1712 } 1713 break; 1714 } 1715 } 1716 } 1717 1718 bool AddressSanitizer::runOnFunction(Function &F) { 1719 if (&F == AsanCtorFunction) return false; 1720 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 1721 DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 1722 initializeCallbacks(*F.getParent()); 1723 1724 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1725 1726 // If needed, insert __asan_init before checking for SanitizeAddress attr. 1727 maybeInsertAsanInitAtFunctionEntry(F); 1728 1729 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false; 1730 1731 if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false; 1732 1733 FunctionStateRAII CleanupObj(this); 1734 1735 // We can't instrument allocas used with llvm.localescape. Only static allocas 1736 // can be passed to that intrinsic. 1737 markEscapedLocalAllocas(F); 1738 1739 // We want to instrument every address only once per basic block (unless there 1740 // are calls between uses). 1741 SmallSet<Value *, 16> TempsToInstrument; 1742 SmallVector<Instruction *, 16> ToInstrument; 1743 SmallVector<Instruction *, 8> NoReturnCalls; 1744 SmallVector<BasicBlock *, 16> AllBlocks; 1745 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 1746 int NumAllocas = 0; 1747 bool IsWrite; 1748 unsigned Alignment; 1749 uint64_t TypeSize; 1750 1751 // Fill the set of memory operations to instrument. 1752 for (auto &BB : F) { 1753 AllBlocks.push_back(&BB); 1754 TempsToInstrument.clear(); 1755 int NumInsnsPerBB = 0; 1756 for (auto &Inst : BB) { 1757 if (LooksLikeCodeInBug11395(&Inst)) return false; 1758 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 1759 &Alignment)) { 1760 if (ClOpt && ClOptSameTemp) { 1761 if (!TempsToInstrument.insert(Addr).second) 1762 continue; // We've seen this temp in the current BB. 1763 } 1764 } else if (ClInvalidPointerPairs && 1765 isInterestingPointerComparisonOrSubtraction(&Inst)) { 1766 PointerComparisonsOrSubtracts.push_back(&Inst); 1767 continue; 1768 } else if (isa<MemIntrinsic>(Inst)) { 1769 // ok, take it. 1770 } else { 1771 if (isa<AllocaInst>(Inst)) NumAllocas++; 1772 CallSite CS(&Inst); 1773 if (CS) { 1774 // A call inside BB. 1775 TempsToInstrument.clear(); 1776 if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction()); 1777 } 1778 continue; 1779 } 1780 ToInstrument.push_back(&Inst); 1781 NumInsnsPerBB++; 1782 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 1783 } 1784 } 1785 1786 bool UseCalls = 1787 CompileKernel || 1788 (ClInstrumentationWithCallsThreshold >= 0 && 1789 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 1790 const TargetLibraryInfo *TLI = 1791 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1792 const DataLayout &DL = F.getParent()->getDataLayout(); 1793 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), 1794 /*RoundToAlign=*/true); 1795 1796 // Instrument. 1797 int NumInstrumented = 0; 1798 for (auto Inst : ToInstrument) { 1799 if (ClDebugMin < 0 || ClDebugMax < 0 || 1800 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 1801 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 1802 instrumentMop(ObjSizeVis, Inst, UseCalls, 1803 F.getParent()->getDataLayout()); 1804 else 1805 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 1806 } 1807 NumInstrumented++; 1808 } 1809 1810 FunctionStackPoisoner FSP(F, *this); 1811 bool ChangedStack = FSP.runOnFunction(); 1812 1813 // We must unpoison the stack before every NoReturn call (throw, _exit, etc). 1814 // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 1815 for (auto CI : NoReturnCalls) { 1816 IRBuilder<> IRB(CI); 1817 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 1818 } 1819 1820 for (auto Inst : PointerComparisonsOrSubtracts) { 1821 instrumentPointerComparisonOrSubtraction(Inst); 1822 NumInstrumented++; 1823 } 1824 1825 bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty(); 1826 1827 DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n"); 1828 1829 return res; 1830 } 1831 1832 // Workaround for bug 11395: we don't want to instrument stack in functions 1833 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 1834 // FIXME: remove once the bug 11395 is fixed. 1835 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 1836 if (LongSize != 32) return false; 1837 CallInst *CI = dyn_cast<CallInst>(I); 1838 if (!CI || !CI->isInlineAsm()) return false; 1839 if (CI->getNumArgOperands() <= 5) return false; 1840 // We have inline assembly with quite a few arguments. 1841 return true; 1842 } 1843 1844 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 1845 IRBuilder<> IRB(*C); 1846 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 1847 std::string Suffix = itostr(i); 1848 AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction( 1849 M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy, 1850 IntptrTy, nullptr)); 1851 AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction( 1852 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 1853 IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1854 } 1855 AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 1856 M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(), 1857 IntptrTy, IntptrTy, nullptr)); 1858 AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 1859 M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), 1860 IntptrTy, IntptrTy, nullptr)); 1861 AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1862 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1863 AsanAllocasUnpoisonFunc = 1864 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1865 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1866 } 1867 1868 void FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes, 1869 IRBuilder<> &IRB, Value *ShadowBase, 1870 bool DoPoison) { 1871 size_t n = ShadowBytes.size(); 1872 size_t i = 0; 1873 // We need to (un)poison n bytes of stack shadow. Poison as many as we can 1874 // using 64-bit stores (if we are on 64-bit arch), then poison the rest 1875 // with 32-bit stores, then with 16-byte stores, then with 8-byte stores. 1876 for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8; 1877 LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) { 1878 for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) { 1879 uint64_t Val = 0; 1880 for (size_t j = 0; j < LargeStoreSizeInBytes; j++) { 1881 if (F.getParent()->getDataLayout().isLittleEndian()) 1882 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 1883 else 1884 Val = (Val << 8) | ShadowBytes[i + j]; 1885 } 1886 if (!Val) continue; 1887 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 1888 Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8); 1889 Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0); 1890 IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo())); 1891 } 1892 } 1893 } 1894 1895 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 1896 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 1897 static int StackMallocSizeClass(uint64_t LocalStackSize) { 1898 assert(LocalStackSize <= kMaxStackMallocSize); 1899 uint64_t MaxSize = kMinStackMallocSize; 1900 for (int i = 0;; i++, MaxSize *= 2) 1901 if (LocalStackSize <= MaxSize) return i; 1902 llvm_unreachable("impossible LocalStackSize"); 1903 } 1904 1905 // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic. 1906 // We can not use MemSet intrinsic because it may end up calling the actual 1907 // memset. Size is a multiple of 8. 1908 // Currently this generates 8-byte stores on x86_64; it may be better to 1909 // generate wider stores. 1910 void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined( 1911 IRBuilder<> &IRB, Value *ShadowBase, int Size) { 1912 assert(!(Size % 8)); 1913 1914 // kAsanStackAfterReturnMagic is 0xf5. 1915 const uint64_t kAsanStackAfterReturnMagic64 = 0xf5f5f5f5f5f5f5f5ULL; 1916 1917 for (int i = 0; i < Size; i += 8) { 1918 Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 1919 IRB.CreateStore( 1920 ConstantInt::get(IRB.getInt64Ty(), kAsanStackAfterReturnMagic64), 1921 IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo())); 1922 } 1923 } 1924 1925 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 1926 Value *ValueIfTrue, 1927 Instruction *ThenTerm, 1928 Value *ValueIfFalse) { 1929 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 1930 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 1931 PHI->addIncoming(ValueIfFalse, CondBlock); 1932 BasicBlock *ThenBlock = ThenTerm->getParent(); 1933 PHI->addIncoming(ValueIfTrue, ThenBlock); 1934 return PHI; 1935 } 1936 1937 Value *FunctionStackPoisoner::createAllocaForLayout( 1938 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 1939 AllocaInst *Alloca; 1940 if (Dynamic) { 1941 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 1942 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 1943 "MyAlloca"); 1944 } else { 1945 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 1946 nullptr, "MyAlloca"); 1947 assert(Alloca->isStaticAlloca()); 1948 } 1949 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 1950 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 1951 Alloca->setAlignment(FrameAlignment); 1952 return IRB.CreatePointerCast(Alloca, IntptrTy); 1953 } 1954 1955 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 1956 BasicBlock &FirstBB = *F.begin(); 1957 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 1958 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 1959 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 1960 DynamicAllocaLayout->setAlignment(32); 1961 } 1962 1963 void FunctionStackPoisoner::poisonStack() { 1964 assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0); 1965 1966 // Insert poison calls for lifetime intrinsics for alloca. 1967 bool HavePoisonedAllocas = false; 1968 for (const auto &APC : AllocaPoisonCallVec) { 1969 assert(APC.InsBefore); 1970 assert(APC.AI); 1971 IRBuilder<> IRB(APC.InsBefore); 1972 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 1973 HavePoisonedAllocas |= APC.DoPoison; 1974 } 1975 1976 if (ClInstrumentAllocas && DynamicAllocaVec.size() > 0) { 1977 // Handle dynamic allocas. 1978 createDynamicAllocasInitStorage(); 1979 for (auto &AI : DynamicAllocaVec) handleDynamicAllocaCall(AI); 1980 1981 unpoisonDynamicAllocas(); 1982 } 1983 1984 if (AllocaVec.empty()) return; 1985 1986 int StackMallocIdx = -1; 1987 DebugLoc EntryDebugLocation; 1988 if (auto SP = F.getSubprogram()) 1989 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 1990 1991 Instruction *InsBefore = AllocaVec[0]; 1992 IRBuilder<> IRB(InsBefore); 1993 IRB.SetCurrentDebugLocation(EntryDebugLocation); 1994 1995 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 1996 // debug info is broken, because only entry-block allocas are treated as 1997 // regular stack slots. 1998 auto InsBeforeB = InsBefore->getParent(); 1999 assert(InsBeforeB == &F.getEntryBlock()); 2000 for (BasicBlock::iterator I(InsBefore); I != InsBeforeB->end(); ++I) 2001 if (auto *AI = dyn_cast<AllocaInst>(I)) 2002 if (NonInstrumentedStaticAllocaVec.count(AI) > 0) 2003 AI->moveBefore(InsBefore); 2004 2005 // If we have a call to llvm.localescape, keep it in the entry block. 2006 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 2007 2008 SmallVector<ASanStackVariableDescription, 16> SVD; 2009 SVD.reserve(AllocaVec.size()); 2010 for (AllocaInst *AI : AllocaVec) { 2011 ASanStackVariableDescription D = {AI->getName().data(), 2012 ASan.getAllocaSizeInBytes(AI), 2013 AI->getAlignment(), AI, 0}; 2014 SVD.push_back(D); 2015 } 2016 // Minimal header size (left redzone) is 4 pointers, 2017 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 2018 size_t MinHeaderSize = ASan.LongSize / 2; 2019 ASanStackFrameLayout L; 2020 ComputeASanStackFrameLayout(SVD, 1ULL << Mapping.Scale, MinHeaderSize, &L); 2021 DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n"); 2022 uint64_t LocalStackSize = L.FrameSize; 2023 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 2024 LocalStackSize <= kMaxStackMallocSize; 2025 bool DoDynamicAlloca = ClDynamicAllocaStack; 2026 // Don't do dynamic alloca or stack malloc if: 2027 // 1) There is inline asm: too often it makes assumptions on which registers 2028 // are available. 2029 // 2) There is a returns_twice call (typically setjmp), which is 2030 // optimization-hostile, and doesn't play well with introduced indirect 2031 // register-relative calculation of local variable addresses. 2032 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2033 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2034 2035 Value *StaticAlloca = 2036 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 2037 2038 Value *FakeStack; 2039 Value *LocalStackBase; 2040 2041 if (DoStackMalloc) { 2042 // void *FakeStack = __asan_option_detect_stack_use_after_return 2043 // ? __asan_stack_malloc_N(LocalStackSize) 2044 // : nullptr; 2045 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 2046 Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal( 2047 kAsanOptionDetectUAR, IRB.getInt32Ty()); 2048 Value *UARIsEnabled = 2049 IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR), 2050 Constant::getNullValue(IRB.getInt32Ty())); 2051 Instruction *Term = 2052 SplitBlockAndInsertIfThen(UARIsEnabled, InsBefore, false); 2053 IRBuilder<> IRBIf(Term); 2054 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2055 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 2056 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 2057 Value *FakeStackValue = 2058 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 2059 ConstantInt::get(IntptrTy, LocalStackSize)); 2060 IRB.SetInsertPoint(InsBefore); 2061 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2062 FakeStack = createPHI(IRB, UARIsEnabled, FakeStackValue, Term, 2063 ConstantInt::get(IntptrTy, 0)); 2064 2065 Value *NoFakeStack = 2066 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 2067 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 2068 IRBIf.SetInsertPoint(Term); 2069 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2070 Value *AllocaValue = 2071 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 2072 IRB.SetInsertPoint(InsBefore); 2073 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2074 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 2075 } else { 2076 // void *FakeStack = nullptr; 2077 // void *LocalStackBase = alloca(LocalStackSize); 2078 FakeStack = ConstantInt::get(IntptrTy, 0); 2079 LocalStackBase = 2080 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 2081 } 2082 2083 // Replace Alloca instructions with base+offset. 2084 for (const auto &Desc : SVD) { 2085 AllocaInst *AI = Desc.AI; 2086 Value *NewAllocaPtr = IRB.CreateIntToPtr( 2087 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 2088 AI->getType()); 2089 replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true); 2090 AI->replaceAllUsesWith(NewAllocaPtr); 2091 } 2092 2093 // The left-most redzone has enough space for at least 4 pointers. 2094 // Write the Magic value to redzone[0]. 2095 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 2096 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 2097 BasePlus0); 2098 // Write the frame description constant to redzone[1]. 2099 Value *BasePlus1 = IRB.CreateIntToPtr( 2100 IRB.CreateAdd(LocalStackBase, 2101 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 2102 IntptrPtrTy); 2103 GlobalVariable *StackDescriptionGlobal = 2104 createPrivateGlobalForString(*F.getParent(), L.DescriptionString, 2105 /*AllowMerging*/ true); 2106 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 2107 IRB.CreateStore(Description, BasePlus1); 2108 // Write the PC to redzone[2]. 2109 Value *BasePlus2 = IRB.CreateIntToPtr( 2110 IRB.CreateAdd(LocalStackBase, 2111 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 2112 IntptrPtrTy); 2113 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 2114 2115 // Poison the stack redzones at the entry. 2116 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 2117 poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true); 2118 2119 // (Un)poison the stack before all ret instructions. 2120 for (auto Ret : RetVec) { 2121 IRBuilder<> IRBRet(Ret); 2122 // Mark the current frame as retired. 2123 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 2124 BasePlus0); 2125 if (DoStackMalloc) { 2126 assert(StackMallocIdx >= 0); 2127 // if FakeStack != 0 // LocalStackBase == FakeStack 2128 // // In use-after-return mode, poison the whole stack frame. 2129 // if StackMallocIdx <= 4 2130 // // For small sizes inline the whole thing: 2131 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 2132 // **SavedFlagPtr(FakeStack) = 0 2133 // else 2134 // __asan_stack_free_N(FakeStack, LocalStackSize) 2135 // else 2136 // <This is not a fake stack; unpoison the redzones> 2137 Value *Cmp = 2138 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 2139 TerminatorInst *ThenTerm, *ElseTerm; 2140 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 2141 2142 IRBuilder<> IRBPoison(ThenTerm); 2143 if (StackMallocIdx <= 4) { 2144 int ClassSize = kMinStackMallocSize << StackMallocIdx; 2145 SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase, 2146 ClassSize >> Mapping.Scale); 2147 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 2148 FakeStack, 2149 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 2150 Value *SavedFlagPtr = IRBPoison.CreateLoad( 2151 IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 2152 IRBPoison.CreateStore( 2153 Constant::getNullValue(IRBPoison.getInt8Ty()), 2154 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 2155 } else { 2156 // For larger frames call __asan_stack_free_*. 2157 IRBPoison.CreateCall( 2158 AsanStackFreeFunc[StackMallocIdx], 2159 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 2160 } 2161 2162 IRBuilder<> IRBElse(ElseTerm); 2163 poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false); 2164 } else if (HavePoisonedAllocas) { 2165 // If we poisoned some allocas in llvm.lifetime analysis, 2166 // unpoison whole stack frame now. 2167 poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false); 2168 } else { 2169 poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false); 2170 } 2171 } 2172 2173 // We are done. Remove the old unused alloca instructions. 2174 for (auto AI : AllocaVec) AI->eraseFromParent(); 2175 } 2176 2177 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 2178 IRBuilder<> &IRB, bool DoPoison) { 2179 // For now just insert the call to ASan runtime. 2180 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 2181 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 2182 IRB.CreateCall( 2183 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 2184 {AddrArg, SizeArg}); 2185 } 2186 2187 // Handling llvm.lifetime intrinsics for a given %alloca: 2188 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 2189 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 2190 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 2191 // could be poisoned by previous llvm.lifetime.end instruction, as the 2192 // variable may go in and out of scope several times, e.g. in loops). 2193 // (3) if we poisoned at least one %alloca in a function, 2194 // unpoison the whole stack frame at function exit. 2195 2196 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { 2197 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2198 // We're intested only in allocas we can handle. 2199 return ASan.isInterestingAlloca(*AI) ? AI : nullptr; 2200 // See if we've already calculated (or started to calculate) alloca for a 2201 // given value. 2202 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 2203 if (I != AllocaForValue.end()) return I->second; 2204 // Store 0 while we're calculating alloca for value V to avoid 2205 // infinite recursion if the value references itself. 2206 AllocaForValue[V] = nullptr; 2207 AllocaInst *Res = nullptr; 2208 if (CastInst *CI = dyn_cast<CastInst>(V)) 2209 Res = findAllocaForValue(CI->getOperand(0)); 2210 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2211 for (Value *IncValue : PN->incoming_values()) { 2212 // Allow self-referencing phi-nodes. 2213 if (IncValue == PN) continue; 2214 AllocaInst *IncValueAI = findAllocaForValue(IncValue); 2215 // AI for incoming values should exist and should all be equal. 2216 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 2217 return nullptr; 2218 Res = IncValueAI; 2219 } 2220 } 2221 if (Res) AllocaForValue[V] = Res; 2222 return Res; 2223 } 2224 2225 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 2226 IRBuilder<> IRB(AI); 2227 2228 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 2229 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 2230 2231 Value *Zero = Constant::getNullValue(IntptrTy); 2232 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 2233 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 2234 2235 // Since we need to extend alloca with additional memory to locate 2236 // redzones, and OldSize is number of allocated blocks with 2237 // ElementSize size, get allocated memory size in bytes by 2238 // OldSize * ElementSize. 2239 const unsigned ElementSize = 2240 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 2241 Value *OldSize = 2242 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 2243 ConstantInt::get(IntptrTy, ElementSize)); 2244 2245 // PartialSize = OldSize % 32 2246 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 2247 2248 // Misalign = kAllocaRzSize - PartialSize; 2249 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 2250 2251 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 2252 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 2253 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 2254 2255 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 2256 // Align is added to locate left redzone, PartialPadding for possible 2257 // partial redzone and kAllocaRzSize for right redzone respectively. 2258 Value *AdditionalChunkSize = IRB.CreateAdd( 2259 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 2260 2261 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 2262 2263 // Insert new alloca with new NewSize and Align params. 2264 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 2265 NewAlloca->setAlignment(Align); 2266 2267 // NewAddress = Address + Align 2268 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 2269 ConstantInt::get(IntptrTy, Align)); 2270 2271 // Insert __asan_alloca_poison call for new created alloca. 2272 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 2273 2274 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 2275 // for unpoisoning stuff. 2276 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 2277 2278 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 2279 2280 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 2281 AI->replaceAllUsesWith(NewAddressPtr); 2282 2283 // We are done. Erase old alloca from parent. 2284 AI->eraseFromParent(); 2285 } 2286 2287 // isSafeAccess returns true if Addr is always inbounds with respect to its 2288 // base object. For example, it is a field access or an array access with 2289 // constant inbounds index. 2290 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 2291 Value *Addr, uint64_t TypeSize) const { 2292 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 2293 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 2294 uint64_t Size = SizeOffset.first.getZExtValue(); 2295 int64_t Offset = SizeOffset.second.getSExtValue(); 2296 // Three checks are required to ensure safety: 2297 // . Offset >= 0 (since the offset is given from the base ptr) 2298 // . Size >= Offset (unsigned) 2299 // . Size - Offset >= NeededSize (unsigned) 2300 return Offset >= 0 && Size >= uint64_t(Offset) && 2301 Size - uint64_t(Offset) >= TypeSize / 8; 2302 } 2303