1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/MachO.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Comdat.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DIBuilder.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstVisitor.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/MCSectionMachO.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
73 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/ModuleUtils.h"
77 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iomanip>
83 #include <limits>
84 #include <memory>
85 #include <sstream>
86 #include <string>
87 #include <tuple>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "asan"
92 
93 static const uint64_t kDefaultShadowScale = 3;
94 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
95 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
96 static const uint64_t kDynamicShadowSentinel =
97     std::numeric_limits<uint64_t>::max();
98 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
99 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
100 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
101 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
102 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
103 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
104 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
105 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
106 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
107 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
108 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
109 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
110 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
111 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
112 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
113 static const uint64_t kEmscriptenShadowOffset = 0;
114 
115 static const uint64_t kMyriadShadowScale = 5;
116 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
117 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
118 static const uint64_t kMyriadTagShift = 29;
119 static const uint64_t kMyriadDDRTag = 4;
120 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
121 
122 // The shadow memory space is dynamically allocated.
123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
124 
125 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
126 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
129 
130 static const char *const kAsanModuleCtorName = "asan.module_ctor";
131 static const char *const kAsanModuleDtorName = "asan.module_dtor";
132 static const uint64_t kAsanCtorAndDtorPriority = 1;
133 // On Emscripten, the system needs more than one priorities for constructors.
134 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
135 static const char *const kAsanReportErrorTemplate = "__asan_report_";
136 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
137 static const char *const kAsanUnregisterGlobalsName =
138     "__asan_unregister_globals";
139 static const char *const kAsanRegisterImageGlobalsName =
140   "__asan_register_image_globals";
141 static const char *const kAsanUnregisterImageGlobalsName =
142   "__asan_unregister_image_globals";
143 static const char *const kAsanRegisterElfGlobalsName =
144   "__asan_register_elf_globals";
145 static const char *const kAsanUnregisterElfGlobalsName =
146   "__asan_unregister_elf_globals";
147 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
148 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
149 static const char *const kAsanInitName = "__asan_init";
150 static const char *const kAsanVersionCheckNamePrefix =
151     "__asan_version_mismatch_check_v";
152 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
153 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
154 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
155 static const int kMaxAsanStackMallocSizeClass = 10;
156 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
157 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
158 static const char *const kAsanGenPrefix = "___asan_gen_";
159 static const char *const kODRGenPrefix = "__odr_asan_gen_";
160 static const char *const kSanCovGenPrefix = "__sancov_gen_";
161 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
162 static const char *const kAsanPoisonStackMemoryName =
163     "__asan_poison_stack_memory";
164 static const char *const kAsanUnpoisonStackMemoryName =
165     "__asan_unpoison_stack_memory";
166 
167 // ASan version script has __asan_* wildcard. Triple underscore prevents a
168 // linker (gold) warning about attempting to export a local symbol.
169 static const char *const kAsanGlobalsRegisteredFlagName =
170     "___asan_globals_registered";
171 
172 static const char *const kAsanOptionDetectUseAfterReturn =
173     "__asan_option_detect_stack_use_after_return";
174 
175 static const char *const kAsanShadowMemoryDynamicAddress =
176     "__asan_shadow_memory_dynamic_address";
177 
178 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
179 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
180 
181 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
182 static const size_t kNumberOfAccessSizes = 5;
183 
184 static const unsigned kAllocaRzSize = 32;
185 
186 // Command-line flags.
187 
188 static cl::opt<bool> ClEnableKasan(
189     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
190     cl::Hidden, cl::init(false));
191 
192 static cl::opt<bool> ClRecover(
193     "asan-recover",
194     cl::desc("Enable recovery mode (continue-after-error)."),
195     cl::Hidden, cl::init(false));
196 
197 static cl::opt<bool> ClInsertVersionCheck(
198     "asan-guard-against-version-mismatch",
199     cl::desc("Guard against compiler/runtime version mismatch."),
200     cl::Hidden, cl::init(true));
201 
202 // This flag may need to be replaced with -f[no-]asan-reads.
203 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
204                                        cl::desc("instrument read instructions"),
205                                        cl::Hidden, cl::init(true));
206 
207 static cl::opt<bool> ClInstrumentWrites(
208     "asan-instrument-writes", cl::desc("instrument write instructions"),
209     cl::Hidden, cl::init(true));
210 
211 static cl::opt<bool> ClInstrumentAtomics(
212     "asan-instrument-atomics",
213     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
214     cl::init(true));
215 
216 static cl::opt<bool>
217     ClInstrumentByval("asan-instrument-byval",
218                       cl::desc("instrument byval call arguments"), cl::Hidden,
219                       cl::init(true));
220 
221 static cl::opt<bool> ClAlwaysSlowPath(
222     "asan-always-slow-path",
223     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
224     cl::init(false));
225 
226 static cl::opt<bool> ClForceDynamicShadow(
227     "asan-force-dynamic-shadow",
228     cl::desc("Load shadow address into a local variable for each function"),
229     cl::Hidden, cl::init(false));
230 
231 static cl::opt<bool>
232     ClWithIfunc("asan-with-ifunc",
233                 cl::desc("Access dynamic shadow through an ifunc global on "
234                          "platforms that support this"),
235                 cl::Hidden, cl::init(true));
236 
237 static cl::opt<bool> ClWithIfuncSuppressRemat(
238     "asan-with-ifunc-suppress-remat",
239     cl::desc("Suppress rematerialization of dynamic shadow address by passing "
240              "it through inline asm in prologue."),
241     cl::Hidden, cl::init(true));
242 
243 // This flag limits the number of instructions to be instrumented
244 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
245 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
246 // set it to 10000.
247 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
248     "asan-max-ins-per-bb", cl::init(10000),
249     cl::desc("maximal number of instructions to instrument in any given BB"),
250     cl::Hidden);
251 
252 // This flag may need to be replaced with -f[no]asan-stack.
253 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
254                              cl::Hidden, cl::init(true));
255 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
256     "asan-max-inline-poisoning-size",
257     cl::desc(
258         "Inline shadow poisoning for blocks up to the given size in bytes."),
259     cl::Hidden, cl::init(64));
260 
261 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
262                                       cl::desc("Check stack-use-after-return"),
263                                       cl::Hidden, cl::init(true));
264 
265 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
266                                         cl::desc("Create redzones for byval "
267                                                  "arguments (extra copy "
268                                                  "required)"), cl::Hidden,
269                                         cl::init(true));
270 
271 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
272                                      cl::desc("Check stack-use-after-scope"),
273                                      cl::Hidden, cl::init(false));
274 
275 // This flag may need to be replaced with -f[no]asan-globals.
276 static cl::opt<bool> ClGlobals("asan-globals",
277                                cl::desc("Handle global objects"), cl::Hidden,
278                                cl::init(true));
279 
280 static cl::opt<bool> ClInitializers("asan-initialization-order",
281                                     cl::desc("Handle C++ initializer order"),
282                                     cl::Hidden, cl::init(true));
283 
284 static cl::opt<bool> ClInvalidPointerPairs(
285     "asan-detect-invalid-pointer-pair",
286     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
287     cl::init(false));
288 
289 static cl::opt<bool> ClInvalidPointerCmp(
290     "asan-detect-invalid-pointer-cmp",
291     cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
292     cl::init(false));
293 
294 static cl::opt<bool> ClInvalidPointerSub(
295     "asan-detect-invalid-pointer-sub",
296     cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
297     cl::init(false));
298 
299 static cl::opt<unsigned> ClRealignStack(
300     "asan-realign-stack",
301     cl::desc("Realign stack to the value of this flag (power of two)"),
302     cl::Hidden, cl::init(32));
303 
304 static cl::opt<int> ClInstrumentationWithCallsThreshold(
305     "asan-instrumentation-with-call-threshold",
306     cl::desc(
307         "If the function being instrumented contains more than "
308         "this number of memory accesses, use callbacks instead of "
309         "inline checks (-1 means never use callbacks)."),
310     cl::Hidden, cl::init(7000));
311 
312 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
313     "asan-memory-access-callback-prefix",
314     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
315     cl::init("__asan_"));
316 
317 static cl::opt<bool>
318     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
319                                cl::desc("instrument dynamic allocas"),
320                                cl::Hidden, cl::init(true));
321 
322 static cl::opt<bool> ClSkipPromotableAllocas(
323     "asan-skip-promotable-allocas",
324     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
325     cl::init(true));
326 
327 // These flags allow to change the shadow mapping.
328 // The shadow mapping looks like
329 //    Shadow = (Mem >> scale) + offset
330 
331 static cl::opt<int> ClMappingScale("asan-mapping-scale",
332                                    cl::desc("scale of asan shadow mapping"),
333                                    cl::Hidden, cl::init(0));
334 
335 static cl::opt<uint64_t>
336     ClMappingOffset("asan-mapping-offset",
337                     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
338                     cl::Hidden, cl::init(0));
339 
340 // Optimization flags. Not user visible, used mostly for testing
341 // and benchmarking the tool.
342 
343 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
344                            cl::Hidden, cl::init(true));
345 
346 static cl::opt<bool> ClOptSameTemp(
347     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
348     cl::Hidden, cl::init(true));
349 
350 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
351                                   cl::desc("Don't instrument scalar globals"),
352                                   cl::Hidden, cl::init(true));
353 
354 static cl::opt<bool> ClOptStack(
355     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
356     cl::Hidden, cl::init(false));
357 
358 static cl::opt<bool> ClDynamicAllocaStack(
359     "asan-stack-dynamic-alloca",
360     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
361     cl::init(true));
362 
363 static cl::opt<uint32_t> ClForceExperiment(
364     "asan-force-experiment",
365     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
366     cl::init(0));
367 
368 static cl::opt<bool>
369     ClUsePrivateAlias("asan-use-private-alias",
370                       cl::desc("Use private aliases for global variables"),
371                       cl::Hidden, cl::init(false));
372 
373 static cl::opt<bool>
374     ClUseOdrIndicator("asan-use-odr-indicator",
375                       cl::desc("Use odr indicators to improve ODR reporting"),
376                       cl::Hidden, cl::init(false));
377 
378 static cl::opt<bool>
379     ClUseGlobalsGC("asan-globals-live-support",
380                    cl::desc("Use linker features to support dead "
381                             "code stripping of globals"),
382                    cl::Hidden, cl::init(true));
383 
384 // This is on by default even though there is a bug in gold:
385 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
386 static cl::opt<bool>
387     ClWithComdat("asan-with-comdat",
388                  cl::desc("Place ASan constructors in comdat sections"),
389                  cl::Hidden, cl::init(true));
390 
391 // Debug flags.
392 
393 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
394                             cl::init(0));
395 
396 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
397                                  cl::Hidden, cl::init(0));
398 
399 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
400                                         cl::desc("Debug func"));
401 
402 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
403                                cl::Hidden, cl::init(-1));
404 
405 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
406                                cl::Hidden, cl::init(-1));
407 
408 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
409 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
410 STATISTIC(NumOptimizedAccessesToGlobalVar,
411           "Number of optimized accesses to global vars");
412 STATISTIC(NumOptimizedAccessesToStackVar,
413           "Number of optimized accesses to stack vars");
414 
415 namespace {
416 
417 /// This struct defines the shadow mapping using the rule:
418 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
419 /// If InGlobal is true, then
420 ///   extern char __asan_shadow[];
421 ///   shadow = (mem >> Scale) + &__asan_shadow
422 struct ShadowMapping {
423   int Scale;
424   uint64_t Offset;
425   bool OrShadowOffset;
426   bool InGlobal;
427 };
428 
429 } // end anonymous namespace
430 
431 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
432                                       bool IsKasan) {
433   bool IsAndroid = TargetTriple.isAndroid();
434   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
435   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
436   bool IsNetBSD = TargetTriple.isOSNetBSD();
437   bool IsPS4CPU = TargetTriple.isPS4CPU();
438   bool IsLinux = TargetTriple.isOSLinux();
439   bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
440                  TargetTriple.getArch() == Triple::ppc64le;
441   bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
442   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
443   bool IsMIPS32 = TargetTriple.isMIPS32();
444   bool IsMIPS64 = TargetTriple.isMIPS64();
445   bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
446   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
447   bool IsWindows = TargetTriple.isOSWindows();
448   bool IsFuchsia = TargetTriple.isOSFuchsia();
449   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
450   bool IsEmscripten = TargetTriple.isOSEmscripten();
451 
452   ShadowMapping Mapping;
453 
454   Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
455   if (ClMappingScale.getNumOccurrences() > 0) {
456     Mapping.Scale = ClMappingScale;
457   }
458 
459   if (LongSize == 32) {
460     if (IsAndroid)
461       Mapping.Offset = kDynamicShadowSentinel;
462     else if (IsMIPS32)
463       Mapping.Offset = kMIPS32_ShadowOffset32;
464     else if (IsFreeBSD)
465       Mapping.Offset = kFreeBSD_ShadowOffset32;
466     else if (IsNetBSD)
467       Mapping.Offset = kNetBSD_ShadowOffset32;
468     else if (IsIOS)
469       Mapping.Offset = kDynamicShadowSentinel;
470     else if (IsWindows)
471       Mapping.Offset = kWindowsShadowOffset32;
472     else if (IsEmscripten)
473       Mapping.Offset = kEmscriptenShadowOffset;
474     else if (IsMyriad) {
475       uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
476                                (kMyriadMemorySize32 >> Mapping.Scale));
477       Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
478     }
479     else
480       Mapping.Offset = kDefaultShadowOffset32;
481   } else {  // LongSize == 64
482     // Fuchsia is always PIE, which means that the beginning of the address
483     // space is always available.
484     if (IsFuchsia)
485       Mapping.Offset = 0;
486     else if (IsPPC64)
487       Mapping.Offset = kPPC64_ShadowOffset64;
488     else if (IsSystemZ)
489       Mapping.Offset = kSystemZ_ShadowOffset64;
490     else if (IsFreeBSD && !IsMIPS64)
491       Mapping.Offset = kFreeBSD_ShadowOffset64;
492     else if (IsNetBSD) {
493       if (IsKasan)
494         Mapping.Offset = kNetBSDKasan_ShadowOffset64;
495       else
496         Mapping.Offset = kNetBSD_ShadowOffset64;
497     } else if (IsPS4CPU)
498       Mapping.Offset = kPS4CPU_ShadowOffset64;
499     else if (IsLinux && IsX86_64) {
500       if (IsKasan)
501         Mapping.Offset = kLinuxKasan_ShadowOffset64;
502       else
503         Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
504                           (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
505     } else if (IsWindows && IsX86_64) {
506       Mapping.Offset = kWindowsShadowOffset64;
507     } else if (IsMIPS64)
508       Mapping.Offset = kMIPS64_ShadowOffset64;
509     else if (IsIOS)
510       Mapping.Offset = kDynamicShadowSentinel;
511     else if (IsAArch64)
512       Mapping.Offset = kAArch64_ShadowOffset64;
513     else
514       Mapping.Offset = kDefaultShadowOffset64;
515   }
516 
517   if (ClForceDynamicShadow) {
518     Mapping.Offset = kDynamicShadowSentinel;
519   }
520 
521   if (ClMappingOffset.getNumOccurrences() > 0) {
522     Mapping.Offset = ClMappingOffset;
523   }
524 
525   // OR-ing shadow offset if more efficient (at least on x86) if the offset
526   // is a power of two, but on ppc64 we have to use add since the shadow
527   // offset is not necessary 1/8-th of the address space.  On SystemZ,
528   // we could OR the constant in a single instruction, but it's more
529   // efficient to load it once and use indexed addressing.
530   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
531                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
532                            Mapping.Offset != kDynamicShadowSentinel;
533   bool IsAndroidWithIfuncSupport =
534       IsAndroid && !TargetTriple.isAndroidVersionLT(21);
535   Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
536 
537   return Mapping;
538 }
539 
540 static size_t RedzoneSizeForScale(int MappingScale) {
541   // Redzone used for stack and globals is at least 32 bytes.
542   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
543   return std::max(32U, 1U << MappingScale);
544 }
545 
546 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
547   if (TargetTriple.isOSEmscripten()) {
548     return kAsanEmscriptenCtorAndDtorPriority;
549   } else {
550     return kAsanCtorAndDtorPriority;
551   }
552 }
553 
554 namespace {
555 
556 /// Module analysis for getting various metadata about the module.
557 class ASanGlobalsMetadataWrapperPass : public ModulePass {
558 public:
559   static char ID;
560 
561   ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
562     initializeASanGlobalsMetadataWrapperPassPass(
563         *PassRegistry::getPassRegistry());
564   }
565 
566   bool runOnModule(Module &M) override {
567     GlobalsMD = GlobalsMetadata(M);
568     return false;
569   }
570 
571   StringRef getPassName() const override {
572     return "ASanGlobalsMetadataWrapperPass";
573   }
574 
575   void getAnalysisUsage(AnalysisUsage &AU) const override {
576     AU.setPreservesAll();
577   }
578 
579   GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
580 
581 private:
582   GlobalsMetadata GlobalsMD;
583 };
584 
585 char ASanGlobalsMetadataWrapperPass::ID = 0;
586 
587 /// AddressSanitizer: instrument the code in module to find memory bugs.
588 struct AddressSanitizer {
589   AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
590                    bool CompileKernel = false, bool Recover = false,
591                    bool UseAfterScope = false)
592       : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) {
593     this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
594     this->CompileKernel =
595         ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
596 
597     C = &(M.getContext());
598     LongSize = M.getDataLayout().getPointerSizeInBits();
599     IntptrTy = Type::getIntNTy(*C, LongSize);
600     TargetTriple = Triple(M.getTargetTriple());
601 
602     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
603   }
604 
605   uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
606     uint64_t ArraySize = 1;
607     if (AI.isArrayAllocation()) {
608       const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
609       assert(CI && "non-constant array size");
610       ArraySize = CI->getZExtValue();
611     }
612     Type *Ty = AI.getAllocatedType();
613     uint64_t SizeInBytes =
614         AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
615     return SizeInBytes * ArraySize;
616   }
617 
618   /// Check if we want (and can) handle this alloca.
619   bool isInterestingAlloca(const AllocaInst &AI);
620 
621   bool ignoreAccess(Value *Ptr);
622   void getInterestingMemoryOperands(
623       Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
624 
625   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
626                      InterestingMemoryOperand &O, bool UseCalls,
627                      const DataLayout &DL);
628   void instrumentPointerComparisonOrSubtraction(Instruction *I);
629   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
630                          Value *Addr, uint32_t TypeSize, bool IsWrite,
631                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
632   void instrumentUnusualSizeOrAlignment(Instruction *I,
633                                         Instruction *InsertBefore, Value *Addr,
634                                         uint32_t TypeSize, bool IsWrite,
635                                         Value *SizeArgument, bool UseCalls,
636                                         uint32_t Exp);
637   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
638                            Value *ShadowValue, uint32_t TypeSize);
639   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
640                                  bool IsWrite, size_t AccessSizeIndex,
641                                  Value *SizeArgument, uint32_t Exp);
642   void instrumentMemIntrinsic(MemIntrinsic *MI);
643   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
644   bool suppressInstrumentationSiteForDebug(int &Instrumented);
645   bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
646   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
647   void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
648   void markEscapedLocalAllocas(Function &F);
649 
650 private:
651   friend struct FunctionStackPoisoner;
652 
653   void initializeCallbacks(Module &M);
654 
655   bool LooksLikeCodeInBug11395(Instruction *I);
656   bool GlobalIsLinkerInitialized(GlobalVariable *G);
657   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
658                     uint64_t TypeSize) const;
659 
660   /// Helper to cleanup per-function state.
661   struct FunctionStateRAII {
662     AddressSanitizer *Pass;
663 
664     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
665       assert(Pass->ProcessedAllocas.empty() &&
666              "last pass forgot to clear cache");
667       assert(!Pass->LocalDynamicShadow);
668     }
669 
670     ~FunctionStateRAII() {
671       Pass->LocalDynamicShadow = nullptr;
672       Pass->ProcessedAllocas.clear();
673     }
674   };
675 
676   LLVMContext *C;
677   Triple TargetTriple;
678   int LongSize;
679   bool CompileKernel;
680   bool Recover;
681   bool UseAfterScope;
682   Type *IntptrTy;
683   ShadowMapping Mapping;
684   FunctionCallee AsanHandleNoReturnFunc;
685   FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
686   Constant *AsanShadowGlobal;
687 
688   // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
689   FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
690   FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
691 
692   // These arrays is indexed by AccessIsWrite and Experiment.
693   FunctionCallee AsanErrorCallbackSized[2][2];
694   FunctionCallee AsanMemoryAccessCallbackSized[2][2];
695 
696   FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
697   InlineAsm *EmptyAsm;
698   Value *LocalDynamicShadow = nullptr;
699   const GlobalsMetadata &GlobalsMD;
700   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
701 };
702 
703 class AddressSanitizerLegacyPass : public FunctionPass {
704 public:
705   static char ID;
706 
707   explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
708                                       bool Recover = false,
709                                       bool UseAfterScope = false)
710       : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
711         UseAfterScope(UseAfterScope) {
712     initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
713   }
714 
715   StringRef getPassName() const override {
716     return "AddressSanitizerFunctionPass";
717   }
718 
719   void getAnalysisUsage(AnalysisUsage &AU) const override {
720     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
721     AU.addRequired<TargetLibraryInfoWrapperPass>();
722   }
723 
724   bool runOnFunction(Function &F) override {
725     GlobalsMetadata &GlobalsMD =
726         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
727     const TargetLibraryInfo *TLI =
728         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
729     AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
730                           UseAfterScope);
731     return ASan.instrumentFunction(F, TLI);
732   }
733 
734 private:
735   bool CompileKernel;
736   bool Recover;
737   bool UseAfterScope;
738 };
739 
740 class ModuleAddressSanitizer {
741 public:
742   ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
743                          bool CompileKernel = false, bool Recover = false,
744                          bool UseGlobalsGC = true, bool UseOdrIndicator = false)
745       : GlobalsMD(*GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC),
746         // Enable aliases as they should have no downside with ODR indicators.
747         UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
748         UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
749         // Not a typo: ClWithComdat is almost completely pointless without
750         // ClUseGlobalsGC (because then it only works on modules without
751         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
752         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
753         // argument is designed as workaround. Therefore, disable both
754         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
755         // do globals-gc.
756         UseCtorComdat(UseGlobalsGC && ClWithComdat) {
757     this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
758     this->CompileKernel =
759         ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
760 
761     C = &(M.getContext());
762     int LongSize = M.getDataLayout().getPointerSizeInBits();
763     IntptrTy = Type::getIntNTy(*C, LongSize);
764     TargetTriple = Triple(M.getTargetTriple());
765     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
766   }
767 
768   bool instrumentModule(Module &);
769 
770 private:
771   void initializeCallbacks(Module &M);
772 
773   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
774   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
775                              ArrayRef<GlobalVariable *> ExtendedGlobals,
776                              ArrayRef<Constant *> MetadataInitializers);
777   void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
778                             ArrayRef<GlobalVariable *> ExtendedGlobals,
779                             ArrayRef<Constant *> MetadataInitializers,
780                             const std::string &UniqueModuleId);
781   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
782                               ArrayRef<GlobalVariable *> ExtendedGlobals,
783                               ArrayRef<Constant *> MetadataInitializers);
784   void
785   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
786                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
787                                      ArrayRef<Constant *> MetadataInitializers);
788 
789   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
790                                        StringRef OriginalName);
791   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
792                                   StringRef InternalSuffix);
793   Instruction *CreateAsanModuleDtor(Module &M);
794 
795   bool ShouldInstrumentGlobal(GlobalVariable *G);
796   bool ShouldUseMachOGlobalsSection() const;
797   StringRef getGlobalMetadataSection() const;
798   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
799   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
800   size_t MinRedzoneSizeForGlobal() const {
801     return RedzoneSizeForScale(Mapping.Scale);
802   }
803   int GetAsanVersion(const Module &M) const;
804 
805   const GlobalsMetadata &GlobalsMD;
806   bool CompileKernel;
807   bool Recover;
808   bool UseGlobalsGC;
809   bool UsePrivateAlias;
810   bool UseOdrIndicator;
811   bool UseCtorComdat;
812   Type *IntptrTy;
813   LLVMContext *C;
814   Triple TargetTriple;
815   ShadowMapping Mapping;
816   FunctionCallee AsanPoisonGlobals;
817   FunctionCallee AsanUnpoisonGlobals;
818   FunctionCallee AsanRegisterGlobals;
819   FunctionCallee AsanUnregisterGlobals;
820   FunctionCallee AsanRegisterImageGlobals;
821   FunctionCallee AsanUnregisterImageGlobals;
822   FunctionCallee AsanRegisterElfGlobals;
823   FunctionCallee AsanUnregisterElfGlobals;
824 
825   Function *AsanCtorFunction = nullptr;
826   Function *AsanDtorFunction = nullptr;
827 };
828 
829 class ModuleAddressSanitizerLegacyPass : public ModulePass {
830 public:
831   static char ID;
832 
833   explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false,
834                                             bool Recover = false,
835                                             bool UseGlobalGC = true,
836                                             bool UseOdrIndicator = false)
837       : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
838         UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) {
839     initializeModuleAddressSanitizerLegacyPassPass(
840         *PassRegistry::getPassRegistry());
841   }
842 
843   StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
844 
845   void getAnalysisUsage(AnalysisUsage &AU) const override {
846     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
847   }
848 
849   bool runOnModule(Module &M) override {
850     GlobalsMetadata &GlobalsMD =
851         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
852     ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
853                                       UseGlobalGC, UseOdrIndicator);
854     return ASanModule.instrumentModule(M);
855   }
856 
857 private:
858   bool CompileKernel;
859   bool Recover;
860   bool UseGlobalGC;
861   bool UseOdrIndicator;
862 };
863 
864 // Stack poisoning does not play well with exception handling.
865 // When an exception is thrown, we essentially bypass the code
866 // that unpoisones the stack. This is why the run-time library has
867 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
868 // stack in the interceptor. This however does not work inside the
869 // actual function which catches the exception. Most likely because the
870 // compiler hoists the load of the shadow value somewhere too high.
871 // This causes asan to report a non-existing bug on 453.povray.
872 // It sounds like an LLVM bug.
873 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
874   Function &F;
875   AddressSanitizer &ASan;
876   DIBuilder DIB;
877   LLVMContext *C;
878   Type *IntptrTy;
879   Type *IntptrPtrTy;
880   ShadowMapping Mapping;
881 
882   SmallVector<AllocaInst *, 16> AllocaVec;
883   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
884   SmallVector<Instruction *, 8> RetVec;
885   unsigned StackAlignment;
886 
887   FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
888       AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
889   FunctionCallee AsanSetShadowFunc[0x100] = {};
890   FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
891   FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
892 
893   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
894   struct AllocaPoisonCall {
895     IntrinsicInst *InsBefore;
896     AllocaInst *AI;
897     uint64_t Size;
898     bool DoPoison;
899   };
900   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
901   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
902   bool HasUntracedLifetimeIntrinsic = false;
903 
904   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
905   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
906   AllocaInst *DynamicAllocaLayout = nullptr;
907   IntrinsicInst *LocalEscapeCall = nullptr;
908 
909   // Maps Value to an AllocaInst from which the Value is originated.
910   using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
911   AllocaForValueMapTy AllocaForValue;
912 
913   bool HasNonEmptyInlineAsm = false;
914   bool HasReturnsTwiceCall = false;
915   std::unique_ptr<CallInst> EmptyInlineAsm;
916 
917   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
918       : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
919         C(ASan.C), IntptrTy(ASan.IntptrTy),
920         IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
921         StackAlignment(1 << Mapping.Scale),
922         EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
923 
924   bool runOnFunction() {
925     if (!ClStack) return false;
926 
927     if (ClRedzoneByvalArgs)
928       copyArgsPassedByValToAllocas();
929 
930     // Collect alloca, ret, lifetime instructions etc.
931     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
932 
933     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
934 
935     initializeCallbacks(*F.getParent());
936 
937     if (HasUntracedLifetimeIntrinsic) {
938       // If there are lifetime intrinsics which couldn't be traced back to an
939       // alloca, we may not know exactly when a variable enters scope, and
940       // therefore should "fail safe" by not poisoning them.
941       StaticAllocaPoisonCallVec.clear();
942       DynamicAllocaPoisonCallVec.clear();
943     }
944 
945     processDynamicAllocas();
946     processStaticAllocas();
947 
948     if (ClDebugStack) {
949       LLVM_DEBUG(dbgs() << F);
950     }
951     return true;
952   }
953 
954   // Arguments marked with the "byval" attribute are implicitly copied without
955   // using an alloca instruction.  To produce redzones for those arguments, we
956   // copy them a second time into memory allocated with an alloca instruction.
957   void copyArgsPassedByValToAllocas();
958 
959   // Finds all Alloca instructions and puts
960   // poisoned red zones around all of them.
961   // Then unpoison everything back before the function returns.
962   void processStaticAllocas();
963   void processDynamicAllocas();
964 
965   void createDynamicAllocasInitStorage();
966 
967   // ----------------------- Visitors.
968   /// Collect all Ret instructions.
969   void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
970 
971   /// Collect all Resume instructions.
972   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
973 
974   /// Collect all CatchReturnInst instructions.
975   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
976 
977   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
978                                         Value *SavedStack) {
979     IRBuilder<> IRB(InstBefore);
980     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
981     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
982     // need to adjust extracted SP to compute the address of the most recent
983     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
984     // this purpose.
985     if (!isa<ReturnInst>(InstBefore)) {
986       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
987           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
988           {IntptrTy});
989 
990       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
991 
992       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
993                                      DynamicAreaOffset);
994     }
995 
996     IRB.CreateCall(
997         AsanAllocasUnpoisonFunc,
998         {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
999   }
1000 
1001   // Unpoison dynamic allocas redzones.
1002   void unpoisonDynamicAllocas() {
1003     for (auto &Ret : RetVec)
1004       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1005 
1006     for (auto &StackRestoreInst : StackRestoreVec)
1007       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1008                                        StackRestoreInst->getOperand(0));
1009   }
1010 
1011   // Deploy and poison redzones around dynamic alloca call. To do this, we
1012   // should replace this call with another one with changed parameters and
1013   // replace all its uses with new address, so
1014   //   addr = alloca type, old_size, align
1015   // is replaced by
1016   //   new_size = (old_size + additional_size) * sizeof(type)
1017   //   tmp = alloca i8, new_size, max(align, 32)
1018   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
1019   // Additional_size is added to make new memory allocation contain not only
1020   // requested memory, but also left, partial and right redzones.
1021   void handleDynamicAllocaCall(AllocaInst *AI);
1022 
1023   /// Collect Alloca instructions we want (and can) handle.
1024   void visitAllocaInst(AllocaInst &AI) {
1025     if (!ASan.isInterestingAlloca(AI)) {
1026       if (AI.isStaticAlloca()) {
1027         // Skip over allocas that are present *before* the first instrumented
1028         // alloca, we don't want to move those around.
1029         if (AllocaVec.empty())
1030           return;
1031 
1032         StaticAllocasToMoveUp.push_back(&AI);
1033       }
1034       return;
1035     }
1036 
1037     StackAlignment = std::max(StackAlignment, AI.getAlignment());
1038     if (!AI.isStaticAlloca())
1039       DynamicAllocaVec.push_back(&AI);
1040     else
1041       AllocaVec.push_back(&AI);
1042   }
1043 
1044   /// Collect lifetime intrinsic calls to check for use-after-scope
1045   /// errors.
1046   void visitIntrinsicInst(IntrinsicInst &II) {
1047     Intrinsic::ID ID = II.getIntrinsicID();
1048     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1049     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1050     if (!ASan.UseAfterScope)
1051       return;
1052     if (!II.isLifetimeStartOrEnd())
1053       return;
1054     // Found lifetime intrinsic, add ASan instrumentation if necessary.
1055     auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1056     // If size argument is undefined, don't do anything.
1057     if (Size->isMinusOne()) return;
1058     // Check that size doesn't saturate uint64_t and can
1059     // be stored in IntptrTy.
1060     const uint64_t SizeValue = Size->getValue().getLimitedValue();
1061     if (SizeValue == ~0ULL ||
1062         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1063       return;
1064     // Find alloca instruction that corresponds to llvm.lifetime argument.
1065     AllocaInst *AI =
1066         llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue);
1067     if (!AI) {
1068       HasUntracedLifetimeIntrinsic = true;
1069       return;
1070     }
1071     // We're interested only in allocas we can handle.
1072     if (!ASan.isInterestingAlloca(*AI))
1073       return;
1074     bool DoPoison = (ID == Intrinsic::lifetime_end);
1075     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1076     if (AI->isStaticAlloca())
1077       StaticAllocaPoisonCallVec.push_back(APC);
1078     else if (ClInstrumentDynamicAllocas)
1079       DynamicAllocaPoisonCallVec.push_back(APC);
1080   }
1081 
1082   void visitCallBase(CallBase &CB) {
1083     if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1084       HasNonEmptyInlineAsm |= CI->isInlineAsm() &&
1085                               !CI->isIdenticalTo(EmptyInlineAsm.get()) &&
1086                               &CB != ASan.LocalDynamicShadow;
1087       HasReturnsTwiceCall |= CI->canReturnTwice();
1088     }
1089   }
1090 
1091   // ---------------------- Helpers.
1092   void initializeCallbacks(Module &M);
1093 
1094   // Copies bytes from ShadowBytes into shadow memory for indexes where
1095   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1096   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1097   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1098                     IRBuilder<> &IRB, Value *ShadowBase);
1099   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1100                     size_t Begin, size_t End, IRBuilder<> &IRB,
1101                     Value *ShadowBase);
1102   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1103                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1104                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1105 
1106   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1107 
1108   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1109                                bool Dynamic);
1110   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1111                      Instruction *ThenTerm, Value *ValueIfFalse);
1112 };
1113 
1114 } // end anonymous namespace
1115 
1116 void LocationMetadata::parse(MDNode *MDN) {
1117   assert(MDN->getNumOperands() == 3);
1118   MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1119   Filename = DIFilename->getString();
1120   LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1121   ColumnNo =
1122       mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1123 }
1124 
1125 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1126 // we want to sanitize instead and reading this metadata on each pass over a
1127 // function instead of reading module level metadata at first.
1128 GlobalsMetadata::GlobalsMetadata(Module &M) {
1129   NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1130   if (!Globals)
1131     return;
1132   for (auto MDN : Globals->operands()) {
1133     // Metadata node contains the global and the fields of "Entry".
1134     assert(MDN->getNumOperands() == 5);
1135     auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1136     // The optimizer may optimize away a global entirely.
1137     if (!V)
1138       continue;
1139     auto *StrippedV = V->stripPointerCasts();
1140     auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1141     if (!GV)
1142       continue;
1143     // We can already have an entry for GV if it was merged with another
1144     // global.
1145     Entry &E = Entries[GV];
1146     if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1147       E.SourceLoc.parse(Loc);
1148     if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1149       E.Name = Name->getString();
1150     ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1151     E.IsDynInit |= IsDynInit->isOne();
1152     ConstantInt *IsBlacklisted =
1153         mdconst::extract<ConstantInt>(MDN->getOperand(4));
1154     E.IsBlacklisted |= IsBlacklisted->isOne();
1155   }
1156 }
1157 
1158 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1159 
1160 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1161                                                  ModuleAnalysisManager &AM) {
1162   return GlobalsMetadata(M);
1163 }
1164 
1165 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
1166                                            bool UseAfterScope)
1167     : CompileKernel(CompileKernel), Recover(Recover),
1168       UseAfterScope(UseAfterScope) {}
1169 
1170 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1171                                             AnalysisManager<Function> &AM) {
1172   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1173   Module &M = *F.getParent();
1174   if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1175     const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1176     AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope);
1177     if (Sanitizer.instrumentFunction(F, TLI))
1178       return PreservedAnalyses::none();
1179     return PreservedAnalyses::all();
1180   }
1181 
1182   report_fatal_error(
1183       "The ASanGlobalsMetadataAnalysis is required to run before "
1184       "AddressSanitizer can run");
1185   return PreservedAnalyses::all();
1186 }
1187 
1188 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel,
1189                                                        bool Recover,
1190                                                        bool UseGlobalGC,
1191                                                        bool UseOdrIndicator)
1192     : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1193       UseOdrIndicator(UseOdrIndicator) {}
1194 
1195 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1196                                                   AnalysisManager<Module> &AM) {
1197   GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1198   ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
1199                                    UseGlobalGC, UseOdrIndicator);
1200   if (Sanitizer.instrumentModule(M))
1201     return PreservedAnalyses::none();
1202   return PreservedAnalyses::all();
1203 }
1204 
1205 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1206                 "Read metadata to mark which globals should be instrumented "
1207                 "when running ASan.",
1208                 false, true)
1209 
1210 char AddressSanitizerLegacyPass::ID = 0;
1211 
1212 INITIALIZE_PASS_BEGIN(
1213     AddressSanitizerLegacyPass, "asan",
1214     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1215     false)
1216 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1217 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1218 INITIALIZE_PASS_END(
1219     AddressSanitizerLegacyPass, "asan",
1220     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1221     false)
1222 
1223 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1224                                                        bool Recover,
1225                                                        bool UseAfterScope) {
1226   assert(!CompileKernel || Recover);
1227   return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
1228 }
1229 
1230 char ModuleAddressSanitizerLegacyPass::ID = 0;
1231 
1232 INITIALIZE_PASS(
1233     ModuleAddressSanitizerLegacyPass, "asan-module",
1234     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1235     "ModulePass",
1236     false, false)
1237 
1238 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1239     bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) {
1240   assert(!CompileKernel || Recover);
1241   return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover,
1242                                               UseGlobalsGC, UseOdrIndicator);
1243 }
1244 
1245 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1246   size_t Res = countTrailingZeros(TypeSize / 8);
1247   assert(Res < kNumberOfAccessSizes);
1248   return Res;
1249 }
1250 
1251 /// Create a global describing a source location.
1252 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1253                                                        LocationMetadata MD) {
1254   Constant *LocData[] = {
1255       createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1256       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1257       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1258   };
1259   auto LocStruct = ConstantStruct::getAnon(LocData);
1260   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1261                                GlobalValue::PrivateLinkage, LocStruct,
1262                                kAsanGenPrefix);
1263   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1264   return GV;
1265 }
1266 
1267 /// Check if \p G has been created by a trusted compiler pass.
1268 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1269   // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1270   if (G->getName().startswith("llvm."))
1271     return true;
1272 
1273   // Do not instrument asan globals.
1274   if (G->getName().startswith(kAsanGenPrefix) ||
1275       G->getName().startswith(kSanCovGenPrefix) ||
1276       G->getName().startswith(kODRGenPrefix))
1277     return true;
1278 
1279   // Do not instrument gcov counter arrays.
1280   if (G->getName() == "__llvm_gcov_ctr")
1281     return true;
1282 
1283   return false;
1284 }
1285 
1286 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1287   // Shadow >> scale
1288   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1289   if (Mapping.Offset == 0) return Shadow;
1290   // (Shadow >> scale) | offset
1291   Value *ShadowBase;
1292   if (LocalDynamicShadow)
1293     ShadowBase = LocalDynamicShadow;
1294   else
1295     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1296   if (Mapping.OrShadowOffset)
1297     return IRB.CreateOr(Shadow, ShadowBase);
1298   else
1299     return IRB.CreateAdd(Shadow, ShadowBase);
1300 }
1301 
1302 // Instrument memset/memmove/memcpy
1303 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1304   IRBuilder<> IRB(MI);
1305   if (isa<MemTransferInst>(MI)) {
1306     IRB.CreateCall(
1307         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1308         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1309          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1310          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1311   } else if (isa<MemSetInst>(MI)) {
1312     IRB.CreateCall(
1313         AsanMemset,
1314         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1315          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1316          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1317   }
1318   MI->eraseFromParent();
1319 }
1320 
1321 /// Check if we want (and can) handle this alloca.
1322 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1323   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1324 
1325   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1326     return PreviouslySeenAllocaInfo->getSecond();
1327 
1328   bool IsInteresting =
1329       (AI.getAllocatedType()->isSized() &&
1330        // alloca() may be called with 0 size, ignore it.
1331        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1332        // We are only interested in allocas not promotable to registers.
1333        // Promotable allocas are common under -O0.
1334        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1335        // inalloca allocas are not treated as static, and we don't want
1336        // dynamic alloca instrumentation for them as well.
1337        !AI.isUsedWithInAlloca() &&
1338        // swifterror allocas are register promoted by ISel
1339        !AI.isSwiftError());
1340 
1341   ProcessedAllocas[&AI] = IsInteresting;
1342   return IsInteresting;
1343 }
1344 
1345 bool AddressSanitizer::ignoreAccess(Value *Ptr) {
1346   // Do not instrument acesses from different address spaces; we cannot deal
1347   // with them.
1348   Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1349   if (PtrTy->getPointerAddressSpace() != 0)
1350     return true;
1351 
1352   // Ignore swifterror addresses.
1353   // swifterror memory addresses are mem2reg promoted by instruction
1354   // selection. As such they cannot have regular uses like an instrumentation
1355   // function and it makes no sense to track them as memory.
1356   if (Ptr->isSwiftError())
1357     return true;
1358 
1359   // Treat memory accesses to promotable allocas as non-interesting since they
1360   // will not cause memory violations. This greatly speeds up the instrumented
1361   // executable at -O0.
1362   if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1363     if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1364       return true;
1365 
1366   return false;
1367 }
1368 
1369 void AddressSanitizer::getInterestingMemoryOperands(
1370     Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1371   // Skip memory accesses inserted by another instrumentation.
1372   if (I->hasMetadata("nosanitize"))
1373     return;
1374 
1375   // Do not instrument the load fetching the dynamic shadow address.
1376   if (LocalDynamicShadow == I)
1377     return;
1378 
1379   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1380     if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
1381       return;
1382     Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1383                              LI->getType(), LI->getAlignment());
1384   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1385     if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
1386       return;
1387     Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1388                              SI->getValueOperand()->getType(),
1389                              SI->getAlignment());
1390   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1391     if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
1392       return;
1393     Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1394                              RMW->getValOperand()->getType(), 0);
1395   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1396     if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
1397       return;
1398     Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1399                              XCHG->getCompareOperand()->getType(), 0);
1400   } else if (auto CI = dyn_cast<CallInst>(I)) {
1401     auto *F = CI->getCalledFunction();
1402     if (F && (F->getName().startswith("llvm.masked.load.") ||
1403               F->getName().startswith("llvm.masked.store."))) {
1404       bool IsWrite = F->getName().startswith("llvm.masked.store.");
1405       // Masked store has an initial operand for the value.
1406       unsigned OpOffset = IsWrite ? 1 : 0;
1407       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1408         return;
1409 
1410       auto BasePtr = CI->getOperand(OpOffset);
1411       if (ignoreAccess(BasePtr))
1412         return;
1413       auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1414       unsigned Alignment = 1;
1415       // Otherwise no alignment guarantees. We probably got Undef.
1416       if (auto AlignmentConstant =
1417               dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1418         Alignment = (unsigned)AlignmentConstant->getZExtValue();
1419       Value *Mask = CI->getOperand(2 + OpOffset);
1420       Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1421     } else {
1422       for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
1423         if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1424             ignoreAccess(CI->getArgOperand(ArgNo)))
1425           continue;
1426         Type *Ty = CI->getParamByValType(ArgNo);
1427         Interesting.emplace_back(I, ArgNo, false, Ty, 1);
1428       }
1429     }
1430   }
1431 }
1432 
1433 static bool isPointerOperand(Value *V) {
1434   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1435 }
1436 
1437 // This is a rough heuristic; it may cause both false positives and
1438 // false negatives. The proper implementation requires cooperation with
1439 // the frontend.
1440 static bool isInterestingPointerComparison(Instruction *I) {
1441   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1442     if (!Cmp->isRelational())
1443       return false;
1444   } else {
1445     return false;
1446   }
1447   return isPointerOperand(I->getOperand(0)) &&
1448          isPointerOperand(I->getOperand(1));
1449 }
1450 
1451 // This is a rough heuristic; it may cause both false positives and
1452 // false negatives. The proper implementation requires cooperation with
1453 // the frontend.
1454 static bool isInterestingPointerSubtraction(Instruction *I) {
1455   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1456     if (BO->getOpcode() != Instruction::Sub)
1457       return false;
1458   } else {
1459     return false;
1460   }
1461   return isPointerOperand(I->getOperand(0)) &&
1462          isPointerOperand(I->getOperand(1));
1463 }
1464 
1465 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1466   // If a global variable does not have dynamic initialization we don't
1467   // have to instrument it.  However, if a global does not have initializer
1468   // at all, we assume it has dynamic initializer (in other TU).
1469   //
1470   // FIXME: Metadata should be attched directly to the global directly instead
1471   // of being added to llvm.asan.globals.
1472   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1473 }
1474 
1475 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1476     Instruction *I) {
1477   IRBuilder<> IRB(I);
1478   FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1479   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1480   for (Value *&i : Param) {
1481     if (i->getType()->isPointerTy())
1482       i = IRB.CreatePointerCast(i, IntptrTy);
1483   }
1484   IRB.CreateCall(F, Param);
1485 }
1486 
1487 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1488                                 Instruction *InsertBefore, Value *Addr,
1489                                 unsigned Alignment, unsigned Granularity,
1490                                 uint32_t TypeSize, bool IsWrite,
1491                                 Value *SizeArgument, bool UseCalls,
1492                                 uint32_t Exp) {
1493   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1494   // if the data is properly aligned.
1495   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1496        TypeSize == 128) &&
1497       (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1498     return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1499                                    nullptr, UseCalls, Exp);
1500   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1501                                          IsWrite, nullptr, UseCalls, Exp);
1502 }
1503 
1504 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1505                                         const DataLayout &DL, Type *IntptrTy,
1506                                         Value *Mask, Instruction *I,
1507                                         Value *Addr, unsigned Alignment,
1508                                         unsigned Granularity, uint32_t TypeSize,
1509                                         bool IsWrite, Value *SizeArgument,
1510                                         bool UseCalls, uint32_t Exp) {
1511   auto *VTy =
1512       cast<VectorType>(cast<PointerType>(Addr->getType())->getElementType());
1513   uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1514   unsigned Num = VTy->getNumElements();
1515   auto Zero = ConstantInt::get(IntptrTy, 0);
1516   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1517     Value *InstrumentedAddress = nullptr;
1518     Instruction *InsertBefore = I;
1519     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1520       // dyn_cast as we might get UndefValue
1521       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1522         if (Masked->isZero())
1523           // Mask is constant false, so no instrumentation needed.
1524           continue;
1525         // If we have a true or undef value, fall through to doInstrumentAddress
1526         // with InsertBefore == I
1527       }
1528     } else {
1529       IRBuilder<> IRB(I);
1530       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1531       Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1532       InsertBefore = ThenTerm;
1533     }
1534 
1535     IRBuilder<> IRB(InsertBefore);
1536     InstrumentedAddress =
1537         IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1538     doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1539                         Granularity, ElemTypeSize, IsWrite, SizeArgument,
1540                         UseCalls, Exp);
1541   }
1542 }
1543 
1544 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1545                                      InterestingMemoryOperand &O, bool UseCalls,
1546                                      const DataLayout &DL) {
1547   Value *Addr = O.getPtr();
1548 
1549   // Optimization experiments.
1550   // The experiments can be used to evaluate potential optimizations that remove
1551   // instrumentation (assess false negatives). Instead of completely removing
1552   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1553   // experiments that want to remove instrumentation of this instruction).
1554   // If Exp is non-zero, this pass will emit special calls into runtime
1555   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1556   // make runtime terminate the program in a special way (with a different
1557   // exit status). Then you run the new compiler on a buggy corpus, collect
1558   // the special terminations (ideally, you don't see them at all -- no false
1559   // negatives) and make the decision on the optimization.
1560   uint32_t Exp = ClForceExperiment;
1561 
1562   if (ClOpt && ClOptGlobals) {
1563     // If initialization order checking is disabled, a simple access to a
1564     // dynamically initialized global is always valid.
1565     GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1566     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1567         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1568       NumOptimizedAccessesToGlobalVar++;
1569       return;
1570     }
1571   }
1572 
1573   if (ClOpt && ClOptStack) {
1574     // A direct inbounds access to a stack variable is always valid.
1575     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1576         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1577       NumOptimizedAccessesToStackVar++;
1578       return;
1579     }
1580   }
1581 
1582   if (O.IsWrite)
1583     NumInstrumentedWrites++;
1584   else
1585     NumInstrumentedReads++;
1586 
1587   unsigned Granularity = 1 << Mapping.Scale;
1588   if (O.MaybeMask) {
1589     instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
1590                                 Addr, O.Alignment, Granularity, O.TypeSize,
1591                                 O.IsWrite, nullptr, UseCalls, Exp);
1592   } else {
1593     doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1594                         Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
1595                         Exp);
1596   }
1597 }
1598 
1599 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1600                                                  Value *Addr, bool IsWrite,
1601                                                  size_t AccessSizeIndex,
1602                                                  Value *SizeArgument,
1603                                                  uint32_t Exp) {
1604   IRBuilder<> IRB(InsertBefore);
1605   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1606   CallInst *Call = nullptr;
1607   if (SizeArgument) {
1608     if (Exp == 0)
1609       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1610                             {Addr, SizeArgument});
1611     else
1612       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1613                             {Addr, SizeArgument, ExpVal});
1614   } else {
1615     if (Exp == 0)
1616       Call =
1617           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1618     else
1619       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1620                             {Addr, ExpVal});
1621   }
1622 
1623   // We don't do Call->setDoesNotReturn() because the BB already has
1624   // UnreachableInst at the end.
1625   // This EmptyAsm is required to avoid callback merge.
1626   IRB.CreateCall(EmptyAsm, {});
1627   return Call;
1628 }
1629 
1630 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1631                                            Value *ShadowValue,
1632                                            uint32_t TypeSize) {
1633   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1634   // Addr & (Granularity - 1)
1635   Value *LastAccessedByte =
1636       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1637   // (Addr & (Granularity - 1)) + size - 1
1638   if (TypeSize / 8 > 1)
1639     LastAccessedByte = IRB.CreateAdd(
1640         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1641   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1642   LastAccessedByte =
1643       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1644   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1645   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1646 }
1647 
1648 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1649                                          Instruction *InsertBefore, Value *Addr,
1650                                          uint32_t TypeSize, bool IsWrite,
1651                                          Value *SizeArgument, bool UseCalls,
1652                                          uint32_t Exp) {
1653   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1654 
1655   IRBuilder<> IRB(InsertBefore);
1656   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1657   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1658 
1659   if (UseCalls) {
1660     if (Exp == 0)
1661       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1662                      AddrLong);
1663     else
1664       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1665                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1666     return;
1667   }
1668 
1669   if (IsMyriad) {
1670     // Strip the cache bit and do range check.
1671     // AddrLong &= ~kMyriadCacheBitMask32
1672     AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1673     // Tag = AddrLong >> kMyriadTagShift
1674     Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1675     // Tag == kMyriadDDRTag
1676     Value *TagCheck =
1677         IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1678 
1679     Instruction *TagCheckTerm =
1680         SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
1681                                   MDBuilder(*C).createBranchWeights(1, 100000));
1682     assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1683     IRB.SetInsertPoint(TagCheckTerm);
1684     InsertBefore = TagCheckTerm;
1685   }
1686 
1687   Type *ShadowTy =
1688       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1689   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1690   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1691   Value *CmpVal = Constant::getNullValue(ShadowTy);
1692   Value *ShadowValue =
1693       IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1694 
1695   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1696   size_t Granularity = 1ULL << Mapping.Scale;
1697   Instruction *CrashTerm = nullptr;
1698 
1699   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1700     // We use branch weights for the slow path check, to indicate that the slow
1701     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1702     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1703         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1704     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1705     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1706     IRB.SetInsertPoint(CheckTerm);
1707     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1708     if (Recover) {
1709       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1710     } else {
1711       BasicBlock *CrashBlock =
1712         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1713       CrashTerm = new UnreachableInst(*C, CrashBlock);
1714       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1715       ReplaceInstWithInst(CheckTerm, NewTerm);
1716     }
1717   } else {
1718     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1719   }
1720 
1721   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1722                                          AccessSizeIndex, SizeArgument, Exp);
1723   Crash->setDebugLoc(OrigIns->getDebugLoc());
1724 }
1725 
1726 // Instrument unusual size or unusual alignment.
1727 // We can not do it with a single check, so we do 1-byte check for the first
1728 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1729 // to report the actual access size.
1730 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1731     Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1732     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1733   IRBuilder<> IRB(InsertBefore);
1734   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1735   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1736   if (UseCalls) {
1737     if (Exp == 0)
1738       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1739                      {AddrLong, Size});
1740     else
1741       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1742                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1743   } else {
1744     Value *LastByte = IRB.CreateIntToPtr(
1745         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1746         Addr->getType());
1747     instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1748     instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1749   }
1750 }
1751 
1752 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1753                                                   GlobalValue *ModuleName) {
1754   // Set up the arguments to our poison/unpoison functions.
1755   IRBuilder<> IRB(&GlobalInit.front(),
1756                   GlobalInit.front().getFirstInsertionPt());
1757 
1758   // Add a call to poison all external globals before the given function starts.
1759   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1760   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1761 
1762   // Add calls to unpoison all globals before each return instruction.
1763   for (auto &BB : GlobalInit.getBasicBlockList())
1764     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1765       CallInst::Create(AsanUnpoisonGlobals, "", RI);
1766 }
1767 
1768 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1769     Module &M, GlobalValue *ModuleName) {
1770   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1771   if (!GV)
1772     return;
1773 
1774   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1775   if (!CA)
1776     return;
1777 
1778   for (Use &OP : CA->operands()) {
1779     if (isa<ConstantAggregateZero>(OP)) continue;
1780     ConstantStruct *CS = cast<ConstantStruct>(OP);
1781 
1782     // Must have a function or null ptr.
1783     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1784       if (F->getName() == kAsanModuleCtorName) continue;
1785       auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1786       // Don't instrument CTORs that will run before asan.module_ctor.
1787       if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1788         continue;
1789       poisonOneInitializer(*F, ModuleName);
1790     }
1791   }
1792 }
1793 
1794 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
1795   Type *Ty = G->getValueType();
1796   LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1797 
1798   // FIXME: Metadata should be attched directly to the global directly instead
1799   // of being added to llvm.asan.globals.
1800   if (GlobalsMD.get(G).IsBlacklisted) return false;
1801   if (!Ty->isSized()) return false;
1802   if (!G->hasInitializer()) return false;
1803   // Only instrument globals of default address spaces
1804   if (G->getAddressSpace()) return false;
1805   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1806   // Two problems with thread-locals:
1807   //   - The address of the main thread's copy can't be computed at link-time.
1808   //   - Need to poison all copies, not just the main thread's one.
1809   if (G->isThreadLocal()) return false;
1810   // For now, just ignore this Global if the alignment is large.
1811   if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1812 
1813   // For non-COFF targets, only instrument globals known to be defined by this
1814   // TU.
1815   // FIXME: We can instrument comdat globals on ELF if we are using the
1816   // GC-friendly metadata scheme.
1817   if (!TargetTriple.isOSBinFormatCOFF()) {
1818     if (!G->hasExactDefinition() || G->hasComdat())
1819       return false;
1820   } else {
1821     // On COFF, don't instrument non-ODR linkages.
1822     if (G->isInterposable())
1823       return false;
1824   }
1825 
1826   // If a comdat is present, it must have a selection kind that implies ODR
1827   // semantics: no duplicates, any, or exact match.
1828   if (Comdat *C = G->getComdat()) {
1829     switch (C->getSelectionKind()) {
1830     case Comdat::Any:
1831     case Comdat::ExactMatch:
1832     case Comdat::NoDuplicates:
1833       break;
1834     case Comdat::Largest:
1835     case Comdat::SameSize:
1836       return false;
1837     }
1838   }
1839 
1840   if (G->hasSection()) {
1841     StringRef Section = G->getSection();
1842 
1843     // Globals from llvm.metadata aren't emitted, do not instrument them.
1844     if (Section == "llvm.metadata") return false;
1845     // Do not instrument globals from special LLVM sections.
1846     if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1847 
1848     // Do not instrument function pointers to initialization and termination
1849     // routines: dynamic linker will not properly handle redzones.
1850     if (Section.startswith(".preinit_array") ||
1851         Section.startswith(".init_array") ||
1852         Section.startswith(".fini_array")) {
1853       return false;
1854     }
1855 
1856     // On COFF, if the section name contains '$', it is highly likely that the
1857     // user is using section sorting to create an array of globals similar to
1858     // the way initialization callbacks are registered in .init_array and
1859     // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1860     // to such globals is counterproductive, because the intent is that they
1861     // will form an array, and out-of-bounds accesses are expected.
1862     // See https://github.com/google/sanitizers/issues/305
1863     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1864     if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1865       LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1866                         << *G << "\n");
1867       return false;
1868     }
1869 
1870     if (TargetTriple.isOSBinFormatMachO()) {
1871       StringRef ParsedSegment, ParsedSection;
1872       unsigned TAA = 0, StubSize = 0;
1873       bool TAAParsed;
1874       std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1875           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1876       assert(ErrorCode.empty() && "Invalid section specifier.");
1877 
1878       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1879       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1880       // them.
1881       if (ParsedSegment == "__OBJC" ||
1882           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1883         LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1884         return false;
1885       }
1886       // See https://github.com/google/sanitizers/issues/32
1887       // Constant CFString instances are compiled in the following way:
1888       //  -- the string buffer is emitted into
1889       //     __TEXT,__cstring,cstring_literals
1890       //  -- the constant NSConstantString structure referencing that buffer
1891       //     is placed into __DATA,__cfstring
1892       // Therefore there's no point in placing redzones into __DATA,__cfstring.
1893       // Moreover, it causes the linker to crash on OS X 10.7
1894       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1895         LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1896         return false;
1897       }
1898       // The linker merges the contents of cstring_literals and removes the
1899       // trailing zeroes.
1900       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1901         LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1902         return false;
1903       }
1904     }
1905   }
1906 
1907   return true;
1908 }
1909 
1910 // On Mach-O platforms, we emit global metadata in a separate section of the
1911 // binary in order to allow the linker to properly dead strip. This is only
1912 // supported on recent versions of ld64.
1913 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
1914   if (!TargetTriple.isOSBinFormatMachO())
1915     return false;
1916 
1917   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1918     return true;
1919   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1920     return true;
1921   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1922     return true;
1923 
1924   return false;
1925 }
1926 
1927 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
1928   switch (TargetTriple.getObjectFormat()) {
1929   case Triple::COFF:  return ".ASAN$GL";
1930   case Triple::ELF:   return "asan_globals";
1931   case Triple::MachO: return "__DATA,__asan_globals,regular";
1932   case Triple::Wasm:
1933   case Triple::XCOFF:
1934     report_fatal_error(
1935         "ModuleAddressSanitizer not implemented for object file format.");
1936   case Triple::UnknownObjectFormat:
1937     break;
1938   }
1939   llvm_unreachable("unsupported object format");
1940 }
1941 
1942 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
1943   IRBuilder<> IRB(*C);
1944 
1945   // Declare our poisoning and unpoisoning functions.
1946   AsanPoisonGlobals =
1947       M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
1948   AsanUnpoisonGlobals =
1949       M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
1950 
1951   // Declare functions that register/unregister globals.
1952   AsanRegisterGlobals = M.getOrInsertFunction(
1953       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1954   AsanUnregisterGlobals = M.getOrInsertFunction(
1955       kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1956 
1957   // Declare the functions that find globals in a shared object and then invoke
1958   // the (un)register function on them.
1959   AsanRegisterImageGlobals = M.getOrInsertFunction(
1960       kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1961   AsanUnregisterImageGlobals = M.getOrInsertFunction(
1962       kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1963 
1964   AsanRegisterElfGlobals =
1965       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
1966                             IntptrTy, IntptrTy, IntptrTy);
1967   AsanUnregisterElfGlobals =
1968       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
1969                             IntptrTy, IntptrTy, IntptrTy);
1970 }
1971 
1972 // Put the metadata and the instrumented global in the same group. This ensures
1973 // that the metadata is discarded if the instrumented global is discarded.
1974 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
1975     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
1976   Module &M = *G->getParent();
1977   Comdat *C = G->getComdat();
1978   if (!C) {
1979     if (!G->hasName()) {
1980       // If G is unnamed, it must be internal. Give it an artificial name
1981       // so we can put it in a comdat.
1982       assert(G->hasLocalLinkage());
1983       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
1984     }
1985 
1986     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
1987       std::string Name = std::string(G->getName());
1988       Name += InternalSuffix;
1989       C = M.getOrInsertComdat(Name);
1990     } else {
1991       C = M.getOrInsertComdat(G->getName());
1992     }
1993 
1994     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
1995     // linkage to internal linkage so that a symbol table entry is emitted. This
1996     // is necessary in order to create the comdat group.
1997     if (TargetTriple.isOSBinFormatCOFF()) {
1998       C->setSelectionKind(Comdat::NoDuplicates);
1999       if (G->hasPrivateLinkage())
2000         G->setLinkage(GlobalValue::InternalLinkage);
2001     }
2002     G->setComdat(C);
2003   }
2004 
2005   assert(G->hasComdat());
2006   Metadata->setComdat(G->getComdat());
2007 }
2008 
2009 // Create a separate metadata global and put it in the appropriate ASan
2010 // global registration section.
2011 GlobalVariable *
2012 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2013                                              StringRef OriginalName) {
2014   auto Linkage = TargetTriple.isOSBinFormatMachO()
2015                      ? GlobalVariable::InternalLinkage
2016                      : GlobalVariable::PrivateLinkage;
2017   GlobalVariable *Metadata = new GlobalVariable(
2018       M, Initializer->getType(), false, Linkage, Initializer,
2019       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2020   Metadata->setSection(getGlobalMetadataSection());
2021   return Metadata;
2022 }
2023 
2024 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2025   AsanDtorFunction =
2026       Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
2027                        GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
2028   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2029 
2030   return ReturnInst::Create(*C, AsanDtorBB);
2031 }
2032 
2033 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2034     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2035     ArrayRef<Constant *> MetadataInitializers) {
2036   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2037   auto &DL = M.getDataLayout();
2038 
2039   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2040     Constant *Initializer = MetadataInitializers[i];
2041     GlobalVariable *G = ExtendedGlobals[i];
2042     GlobalVariable *Metadata =
2043         CreateMetadataGlobal(M, Initializer, G->getName());
2044 
2045     // The MSVC linker always inserts padding when linking incrementally. We
2046     // cope with that by aligning each struct to its size, which must be a power
2047     // of two.
2048     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2049     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2050            "global metadata will not be padded appropriately");
2051     Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2052 
2053     SetComdatForGlobalMetadata(G, Metadata, "");
2054   }
2055 }
2056 
2057 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2058     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2059     ArrayRef<Constant *> MetadataInitializers,
2060     const std::string &UniqueModuleId) {
2061   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2062 
2063   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2064   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2065     GlobalVariable *G = ExtendedGlobals[i];
2066     GlobalVariable *Metadata =
2067         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2068     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2069     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2070     MetadataGlobals[i] = Metadata;
2071 
2072     SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2073   }
2074 
2075   // Update llvm.compiler.used, adding the new metadata globals. This is
2076   // needed so that during LTO these variables stay alive.
2077   if (!MetadataGlobals.empty())
2078     appendToCompilerUsed(M, MetadataGlobals);
2079 
2080   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2081   // to look up the loaded image that contains it. Second, we can store in it
2082   // whether registration has already occurred, to prevent duplicate
2083   // registration.
2084   //
2085   // Common linkage ensures that there is only one global per shared library.
2086   GlobalVariable *RegisteredFlag = new GlobalVariable(
2087       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2088       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2089   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2090 
2091   // Create start and stop symbols.
2092   GlobalVariable *StartELFMetadata = new GlobalVariable(
2093       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2094       "__start_" + getGlobalMetadataSection());
2095   StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2096   GlobalVariable *StopELFMetadata = new GlobalVariable(
2097       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2098       "__stop_" + getGlobalMetadataSection());
2099   StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2100 
2101   // Create a call to register the globals with the runtime.
2102   IRB.CreateCall(AsanRegisterElfGlobals,
2103                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2104                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2105                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2106 
2107   // We also need to unregister globals at the end, e.g., when a shared library
2108   // gets closed.
2109   IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
2110   IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
2111                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2112                        IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2113                        IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2114 }
2115 
2116 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2117     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2118     ArrayRef<Constant *> MetadataInitializers) {
2119   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2120 
2121   // On recent Mach-O platforms, use a structure which binds the liveness of
2122   // the global variable to the metadata struct. Keep the list of "Liveness" GV
2123   // created to be added to llvm.compiler.used
2124   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2125   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2126 
2127   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2128     Constant *Initializer = MetadataInitializers[i];
2129     GlobalVariable *G = ExtendedGlobals[i];
2130     GlobalVariable *Metadata =
2131         CreateMetadataGlobal(M, Initializer, G->getName());
2132 
2133     // On recent Mach-O platforms, we emit the global metadata in a way that
2134     // allows the linker to properly strip dead globals.
2135     auto LivenessBinder =
2136         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2137                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
2138     GlobalVariable *Liveness = new GlobalVariable(
2139         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2140         Twine("__asan_binder_") + G->getName());
2141     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2142     LivenessGlobals[i] = Liveness;
2143   }
2144 
2145   // Update llvm.compiler.used, adding the new liveness globals. This is
2146   // needed so that during LTO these variables stay alive. The alternative
2147   // would be to have the linker handling the LTO symbols, but libLTO
2148   // current API does not expose access to the section for each symbol.
2149   if (!LivenessGlobals.empty())
2150     appendToCompilerUsed(M, LivenessGlobals);
2151 
2152   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2153   // to look up the loaded image that contains it. Second, we can store in it
2154   // whether registration has already occurred, to prevent duplicate
2155   // registration.
2156   //
2157   // common linkage ensures that there is only one global per shared library.
2158   GlobalVariable *RegisteredFlag = new GlobalVariable(
2159       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2160       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2161   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2162 
2163   IRB.CreateCall(AsanRegisterImageGlobals,
2164                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2165 
2166   // We also need to unregister globals at the end, e.g., when a shared library
2167   // gets closed.
2168   IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
2169   IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
2170                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2171 }
2172 
2173 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2174     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2175     ArrayRef<Constant *> MetadataInitializers) {
2176   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2177   unsigned N = ExtendedGlobals.size();
2178   assert(N > 0);
2179 
2180   // On platforms that don't have a custom metadata section, we emit an array
2181   // of global metadata structures.
2182   ArrayType *ArrayOfGlobalStructTy =
2183       ArrayType::get(MetadataInitializers[0]->getType(), N);
2184   auto AllGlobals = new GlobalVariable(
2185       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2186       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2187   if (Mapping.Scale > 3)
2188     AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2189 
2190   IRB.CreateCall(AsanRegisterGlobals,
2191                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2192                   ConstantInt::get(IntptrTy, N)});
2193 
2194   // We also need to unregister globals at the end, e.g., when a shared library
2195   // gets closed.
2196   IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
2197   IRB_Dtor.CreateCall(AsanUnregisterGlobals,
2198                       {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2199                        ConstantInt::get(IntptrTy, N)});
2200 }
2201 
2202 // This function replaces all global variables with new variables that have
2203 // trailing redzones. It also creates a function that poisons
2204 // redzones and inserts this function into llvm.global_ctors.
2205 // Sets *CtorComdat to true if the global registration code emitted into the
2206 // asan constructor is comdat-compatible.
2207 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2208                                                bool *CtorComdat) {
2209   *CtorComdat = false;
2210 
2211   SmallVector<GlobalVariable *, 16> GlobalsToChange;
2212 
2213   for (auto &G : M.globals()) {
2214     if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
2215   }
2216 
2217   size_t n = GlobalsToChange.size();
2218   if (n == 0) {
2219     *CtorComdat = true;
2220     return false;
2221   }
2222 
2223   auto &DL = M.getDataLayout();
2224 
2225   // A global is described by a structure
2226   //   size_t beg;
2227   //   size_t size;
2228   //   size_t size_with_redzone;
2229   //   const char *name;
2230   //   const char *module_name;
2231   //   size_t has_dynamic_init;
2232   //   void *source_location;
2233   //   size_t odr_indicator;
2234   // We initialize an array of such structures and pass it to a run-time call.
2235   StructType *GlobalStructTy =
2236       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2237                       IntptrTy, IntptrTy, IntptrTy);
2238   SmallVector<GlobalVariable *, 16> NewGlobals(n);
2239   SmallVector<Constant *, 16> Initializers(n);
2240 
2241   bool HasDynamicallyInitializedGlobals = false;
2242 
2243   // We shouldn't merge same module names, as this string serves as unique
2244   // module ID in runtime.
2245   GlobalVariable *ModuleName = createPrivateGlobalForString(
2246       M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2247 
2248   for (size_t i = 0; i < n; i++) {
2249     static const uint64_t kMaxGlobalRedzone = 1 << 18;
2250     GlobalVariable *G = GlobalsToChange[i];
2251 
2252     // FIXME: Metadata should be attched directly to the global directly instead
2253     // of being added to llvm.asan.globals.
2254     auto MD = GlobalsMD.get(G);
2255     StringRef NameForGlobal = G->getName();
2256     // Create string holding the global name (use global name from metadata
2257     // if it's available, otherwise just write the name of global variable).
2258     GlobalVariable *Name = createPrivateGlobalForString(
2259         M, MD.Name.empty() ? NameForGlobal : MD.Name,
2260         /*AllowMerging*/ true, kAsanGenPrefix);
2261 
2262     Type *Ty = G->getValueType();
2263     uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2264     uint64_t MinRZ = MinRedzoneSizeForGlobal();
2265     // MinRZ <= RZ <= kMaxGlobalRedzone
2266     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
2267     uint64_t RZ = std::max(
2268         MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
2269     uint64_t RightRedzoneSize = RZ;
2270     // Round up to MinRZ
2271     if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
2272     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
2273     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2274 
2275     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2276     Constant *NewInitializer = ConstantStruct::get(
2277         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2278 
2279     // Create a new global variable with enough space for a redzone.
2280     GlobalValue::LinkageTypes Linkage = G->getLinkage();
2281     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2282       Linkage = GlobalValue::InternalLinkage;
2283     GlobalVariable *NewGlobal =
2284         new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
2285                            "", G, G->getThreadLocalMode());
2286     NewGlobal->copyAttributesFrom(G);
2287     NewGlobal->setComdat(G->getComdat());
2288     NewGlobal->setAlignment(MaybeAlign(MinRZ));
2289     // Don't fold globals with redzones. ODR violation detector and redzone
2290     // poisoning implicitly creates a dependence on the global's address, so it
2291     // is no longer valid for it to be marked unnamed_addr.
2292     NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2293 
2294     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2295     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2296         G->isConstant()) {
2297       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2298       if (Seq && Seq->isCString())
2299         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2300     }
2301 
2302     // Transfer the debug info.  The payload starts at offset zero so we can
2303     // copy the debug info over as is.
2304     SmallVector<DIGlobalVariableExpression *, 1> GVs;
2305     G->getDebugInfo(GVs);
2306     for (auto *GV : GVs)
2307       NewGlobal->addDebugInfo(GV);
2308 
2309     Value *Indices2[2];
2310     Indices2[0] = IRB.getInt32(0);
2311     Indices2[1] = IRB.getInt32(0);
2312 
2313     G->replaceAllUsesWith(
2314         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2315     NewGlobal->takeName(G);
2316     G->eraseFromParent();
2317     NewGlobals[i] = NewGlobal;
2318 
2319     Constant *SourceLoc;
2320     if (!MD.SourceLoc.empty()) {
2321       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2322       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2323     } else {
2324       SourceLoc = ConstantInt::get(IntptrTy, 0);
2325     }
2326 
2327     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2328     GlobalValue *InstrumentedGlobal = NewGlobal;
2329 
2330     bool CanUsePrivateAliases =
2331         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2332         TargetTriple.isOSBinFormatWasm();
2333     if (CanUsePrivateAliases && UsePrivateAlias) {
2334       // Create local alias for NewGlobal to avoid crash on ODR between
2335       // instrumented and non-instrumented libraries.
2336       InstrumentedGlobal =
2337           GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2338     }
2339 
2340     // ODR should not happen for local linkage.
2341     if (NewGlobal->hasLocalLinkage()) {
2342       ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2343                                                IRB.getInt8PtrTy());
2344     } else if (UseOdrIndicator) {
2345       // With local aliases, we need to provide another externally visible
2346       // symbol __odr_asan_XXX to detect ODR violation.
2347       auto *ODRIndicatorSym =
2348           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2349                              Constant::getNullValue(IRB.getInt8Ty()),
2350                              kODRGenPrefix + NameForGlobal, nullptr,
2351                              NewGlobal->getThreadLocalMode());
2352 
2353       // Set meaningful attributes for indicator symbol.
2354       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2355       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2356       ODRIndicatorSym->setAlignment(Align(1));
2357       ODRIndicator = ODRIndicatorSym;
2358     }
2359 
2360     Constant *Initializer = ConstantStruct::get(
2361         GlobalStructTy,
2362         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2363         ConstantInt::get(IntptrTy, SizeInBytes),
2364         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2365         ConstantExpr::getPointerCast(Name, IntptrTy),
2366         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2367         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2368         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2369 
2370     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2371 
2372     LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2373 
2374     Initializers[i] = Initializer;
2375   }
2376 
2377   // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2378   // ConstantMerge'ing them.
2379   SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2380   for (size_t i = 0; i < n; i++) {
2381     GlobalVariable *G = NewGlobals[i];
2382     if (G->getName().empty()) continue;
2383     GlobalsToAddToUsedList.push_back(G);
2384   }
2385   appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2386 
2387   std::string ELFUniqueModuleId =
2388       (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2389                                                         : "";
2390 
2391   if (!ELFUniqueModuleId.empty()) {
2392     InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2393     *CtorComdat = true;
2394   } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2395     InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2396   } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2397     InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2398   } else {
2399     InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2400   }
2401 
2402   // Create calls for poisoning before initializers run and unpoisoning after.
2403   if (HasDynamicallyInitializedGlobals)
2404     createInitializerPoisonCalls(M, ModuleName);
2405 
2406   LLVM_DEBUG(dbgs() << M);
2407   return true;
2408 }
2409 
2410 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2411   int LongSize = M.getDataLayout().getPointerSizeInBits();
2412   bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2413   int Version = 8;
2414   // 32-bit Android is one version ahead because of the switch to dynamic
2415   // shadow.
2416   Version += (LongSize == 32 && isAndroid);
2417   return Version;
2418 }
2419 
2420 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2421   initializeCallbacks(M);
2422 
2423   if (CompileKernel)
2424     return false;
2425 
2426   // Create a module constructor. A destructor is created lazily because not all
2427   // platforms, and not all modules need it.
2428   std::string AsanVersion = std::to_string(GetAsanVersion(M));
2429   std::string VersionCheckName =
2430       ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2431   std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
2432       M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
2433       /*InitArgs=*/{}, VersionCheckName);
2434 
2435   bool CtorComdat = true;
2436   // TODO(glider): temporarily disabled globals instrumentation for KASan.
2437   if (ClGlobals) {
2438     IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2439     InstrumentGlobals(IRB, M, &CtorComdat);
2440   }
2441 
2442   const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2443 
2444   // Put the constructor and destructor in comdat if both
2445   // (1) global instrumentation is not TU-specific
2446   // (2) target is ELF.
2447   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2448     AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2449     appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2450     if (AsanDtorFunction) {
2451       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2452       appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2453     }
2454   } else {
2455     appendToGlobalCtors(M, AsanCtorFunction, Priority);
2456     if (AsanDtorFunction)
2457       appendToGlobalDtors(M, AsanDtorFunction, Priority);
2458   }
2459 
2460   return true;
2461 }
2462 
2463 void AddressSanitizer::initializeCallbacks(Module &M) {
2464   IRBuilder<> IRB(*C);
2465   // Create __asan_report* callbacks.
2466   // IsWrite, TypeSize and Exp are encoded in the function name.
2467   for (int Exp = 0; Exp < 2; Exp++) {
2468     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2469       const std::string TypeStr = AccessIsWrite ? "store" : "load";
2470       const std::string ExpStr = Exp ? "exp_" : "";
2471       const std::string EndingStr = Recover ? "_noabort" : "";
2472 
2473       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2474       SmallVector<Type *, 2> Args1{1, IntptrTy};
2475       if (Exp) {
2476         Type *ExpType = Type::getInt32Ty(*C);
2477         Args2.push_back(ExpType);
2478         Args1.push_back(ExpType);
2479       }
2480       AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2481           kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2482           FunctionType::get(IRB.getVoidTy(), Args2, false));
2483 
2484       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2485           ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2486           FunctionType::get(IRB.getVoidTy(), Args2, false));
2487 
2488       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2489            AccessSizeIndex++) {
2490         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2491         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2492             M.getOrInsertFunction(
2493                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2494                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2495 
2496         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2497             M.getOrInsertFunction(
2498                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2499                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2500       }
2501     }
2502   }
2503 
2504   const std::string MemIntrinCallbackPrefix =
2505       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2506   AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2507                                       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2508                                       IRB.getInt8PtrTy(), IntptrTy);
2509   AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2510                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2511                                      IRB.getInt8PtrTy(), IntptrTy);
2512   AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2513                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2514                                      IRB.getInt32Ty(), IntptrTy);
2515 
2516   AsanHandleNoReturnFunc =
2517       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2518 
2519   AsanPtrCmpFunction =
2520       M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2521   AsanPtrSubFunction =
2522       M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2523   // We insert an empty inline asm after __asan_report* to avoid callback merge.
2524   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
2525                             StringRef(""), StringRef(""),
2526                             /*hasSideEffects=*/true);
2527   if (Mapping.InGlobal)
2528     AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2529                                            ArrayType::get(IRB.getInt8Ty(), 0));
2530 }
2531 
2532 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2533   // For each NSObject descendant having a +load method, this method is invoked
2534   // by the ObjC runtime before any of the static constructors is called.
2535   // Therefore we need to instrument such methods with a call to __asan_init
2536   // at the beginning in order to initialize our runtime before any access to
2537   // the shadow memory.
2538   // We cannot just ignore these methods, because they may call other
2539   // instrumented functions.
2540   if (F.getName().find(" load]") != std::string::npos) {
2541     FunctionCallee AsanInitFunction =
2542         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2543     IRBuilder<> IRB(&F.front(), F.front().begin());
2544     IRB.CreateCall(AsanInitFunction, {});
2545     return true;
2546   }
2547   return false;
2548 }
2549 
2550 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2551   // Generate code only when dynamic addressing is needed.
2552   if (Mapping.Offset != kDynamicShadowSentinel)
2553     return;
2554 
2555   IRBuilder<> IRB(&F.front().front());
2556   if (Mapping.InGlobal) {
2557     if (ClWithIfuncSuppressRemat) {
2558       // An empty inline asm with input reg == output reg.
2559       // An opaque pointer-to-int cast, basically.
2560       InlineAsm *Asm = InlineAsm::get(
2561           FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2562           StringRef(""), StringRef("=r,0"),
2563           /*hasSideEffects=*/false);
2564       LocalDynamicShadow =
2565           IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2566     } else {
2567       LocalDynamicShadow =
2568           IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2569     }
2570   } else {
2571     Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2572         kAsanShadowMemoryDynamicAddress, IntptrTy);
2573     LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2574   }
2575 }
2576 
2577 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2578   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2579   // to it as uninteresting. This assumes we haven't started processing allocas
2580   // yet. This check is done up front because iterating the use list in
2581   // isInterestingAlloca would be algorithmically slower.
2582   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2583 
2584   // Try to get the declaration of llvm.localescape. If it's not in the module,
2585   // we can exit early.
2586   if (!F.getParent()->getFunction("llvm.localescape")) return;
2587 
2588   // Look for a call to llvm.localescape call in the entry block. It can't be in
2589   // any other block.
2590   for (Instruction &I : F.getEntryBlock()) {
2591     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2592     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2593       // We found a call. Mark all the allocas passed in as uninteresting.
2594       for (Value *Arg : II->arg_operands()) {
2595         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2596         assert(AI && AI->isStaticAlloca() &&
2597                "non-static alloca arg to localescape");
2598         ProcessedAllocas[AI] = false;
2599       }
2600       break;
2601     }
2602   }
2603 }
2604 
2605 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2606   bool ShouldInstrument =
2607       ClDebugMin < 0 || ClDebugMax < 0 ||
2608       (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2609   Instrumented++;
2610   return !ShouldInstrument;
2611 }
2612 
2613 bool AddressSanitizer::instrumentFunction(Function &F,
2614                                           const TargetLibraryInfo *TLI) {
2615   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2616   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2617   if (F.getName().startswith("__asan_")) return false;
2618 
2619   bool FunctionModified = false;
2620 
2621   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2622   // This function needs to be called even if the function body is not
2623   // instrumented.
2624   if (maybeInsertAsanInitAtFunctionEntry(F))
2625     FunctionModified = true;
2626 
2627   // Leave if the function doesn't need instrumentation.
2628   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2629 
2630   LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2631 
2632   initializeCallbacks(*F.getParent());
2633 
2634   FunctionStateRAII CleanupObj(this);
2635 
2636   maybeInsertDynamicShadowAtFunctionEntry(F);
2637 
2638   // We can't instrument allocas used with llvm.localescape. Only static allocas
2639   // can be passed to that intrinsic.
2640   markEscapedLocalAllocas(F);
2641 
2642   // We want to instrument every address only once per basic block (unless there
2643   // are calls between uses).
2644   SmallPtrSet<Value *, 16> TempsToInstrument;
2645   SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2646   SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2647   SmallVector<Instruction *, 8> NoReturnCalls;
2648   SmallVector<BasicBlock *, 16> AllBlocks;
2649   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2650   int NumAllocas = 0;
2651 
2652   // Fill the set of memory operations to instrument.
2653   for (auto &BB : F) {
2654     AllBlocks.push_back(&BB);
2655     TempsToInstrument.clear();
2656     int NumInsnsPerBB = 0;
2657     for (auto &Inst : BB) {
2658       if (LooksLikeCodeInBug11395(&Inst)) return false;
2659       SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2660       getInterestingMemoryOperands(&Inst, InterestingOperands);
2661 
2662       if (!InterestingOperands.empty()) {
2663         for (auto &Operand : InterestingOperands) {
2664           if (ClOpt && ClOptSameTemp) {
2665             Value *Ptr = Operand.getPtr();
2666             // If we have a mask, skip instrumentation if we've already
2667             // instrumented the full object. But don't add to TempsToInstrument
2668             // because we might get another load/store with a different mask.
2669             if (Operand.MaybeMask) {
2670               if (TempsToInstrument.count(Ptr))
2671                 continue; // We've seen this (whole) temp in the current BB.
2672             } else {
2673               if (!TempsToInstrument.insert(Ptr).second)
2674                 continue; // We've seen this temp in the current BB.
2675             }
2676           }
2677           OperandsToInstrument.push_back(Operand);
2678           NumInsnsPerBB++;
2679         }
2680       } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2681                   isInterestingPointerComparison(&Inst)) ||
2682                  ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2683                   isInterestingPointerSubtraction(&Inst))) {
2684         PointerComparisonsOrSubtracts.push_back(&Inst);
2685       } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2686         // ok, take it.
2687         IntrinToInstrument.push_back(MI);
2688         NumInsnsPerBB++;
2689       } else {
2690         if (isa<AllocaInst>(Inst)) NumAllocas++;
2691         if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2692           // A call inside BB.
2693           TempsToInstrument.clear();
2694           if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
2695             NoReturnCalls.push_back(CB);
2696         }
2697         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2698           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2699       }
2700       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2701     }
2702   }
2703 
2704   bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
2705                    OperandsToInstrument.size() + IntrinToInstrument.size() >
2706                        (unsigned)ClInstrumentationWithCallsThreshold);
2707   const DataLayout &DL = F.getParent()->getDataLayout();
2708   ObjectSizeOpts ObjSizeOpts;
2709   ObjSizeOpts.RoundToAlign = true;
2710   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2711 
2712   // Instrument.
2713   int NumInstrumented = 0;
2714   for (auto &Operand : OperandsToInstrument) {
2715     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2716       instrumentMop(ObjSizeVis, Operand, UseCalls,
2717                     F.getParent()->getDataLayout());
2718     FunctionModified = true;
2719   }
2720   for (auto Inst : IntrinToInstrument) {
2721     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2722       instrumentMemIntrinsic(Inst);
2723     FunctionModified = true;
2724   }
2725 
2726   FunctionStackPoisoner FSP(F, *this);
2727   bool ChangedStack = FSP.runOnFunction();
2728 
2729   // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2730   // See e.g. https://github.com/google/sanitizers/issues/37
2731   for (auto CI : NoReturnCalls) {
2732     IRBuilder<> IRB(CI);
2733     IRB.CreateCall(AsanHandleNoReturnFunc, {});
2734   }
2735 
2736   for (auto Inst : PointerComparisonsOrSubtracts) {
2737     instrumentPointerComparisonOrSubtraction(Inst);
2738     FunctionModified = true;
2739   }
2740 
2741   if (ChangedStack || !NoReturnCalls.empty())
2742     FunctionModified = true;
2743 
2744   LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2745                     << F << "\n");
2746 
2747   return FunctionModified;
2748 }
2749 
2750 // Workaround for bug 11395: we don't want to instrument stack in functions
2751 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2752 // FIXME: remove once the bug 11395 is fixed.
2753 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2754   if (LongSize != 32) return false;
2755   CallInst *CI = dyn_cast<CallInst>(I);
2756   if (!CI || !CI->isInlineAsm()) return false;
2757   if (CI->getNumArgOperands() <= 5) return false;
2758   // We have inline assembly with quite a few arguments.
2759   return true;
2760 }
2761 
2762 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2763   IRBuilder<> IRB(*C);
2764   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2765     std::string Suffix = itostr(i);
2766     AsanStackMallocFunc[i] = M.getOrInsertFunction(
2767         kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2768     AsanStackFreeFunc[i] =
2769         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2770                               IRB.getVoidTy(), IntptrTy, IntptrTy);
2771   }
2772   if (ASan.UseAfterScope) {
2773     AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2774         kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2775     AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2776         kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2777   }
2778 
2779   for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2780     std::ostringstream Name;
2781     Name << kAsanSetShadowPrefix;
2782     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2783     AsanSetShadowFunc[Val] =
2784         M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2785   }
2786 
2787   AsanAllocaPoisonFunc = M.getOrInsertFunction(
2788       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2789   AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2790       kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2791 }
2792 
2793 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2794                                                ArrayRef<uint8_t> ShadowBytes,
2795                                                size_t Begin, size_t End,
2796                                                IRBuilder<> &IRB,
2797                                                Value *ShadowBase) {
2798   if (Begin >= End)
2799     return;
2800 
2801   const size_t LargestStoreSizeInBytes =
2802       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2803 
2804   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2805 
2806   // Poison given range in shadow using larges store size with out leading and
2807   // trailing zeros in ShadowMask. Zeros never change, so they need neither
2808   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2809   // middle of a store.
2810   for (size_t i = Begin; i < End;) {
2811     if (!ShadowMask[i]) {
2812       assert(!ShadowBytes[i]);
2813       ++i;
2814       continue;
2815     }
2816 
2817     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2818     // Fit store size into the range.
2819     while (StoreSizeInBytes > End - i)
2820       StoreSizeInBytes /= 2;
2821 
2822     // Minimize store size by trimming trailing zeros.
2823     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2824       while (j <= StoreSizeInBytes / 2)
2825         StoreSizeInBytes /= 2;
2826     }
2827 
2828     uint64_t Val = 0;
2829     for (size_t j = 0; j < StoreSizeInBytes; j++) {
2830       if (IsLittleEndian)
2831         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
2832       else
2833         Val = (Val << 8) | ShadowBytes[i + j];
2834     }
2835 
2836     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
2837     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
2838     IRB.CreateAlignedStore(
2839         Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
2840         Align(1));
2841 
2842     i += StoreSizeInBytes;
2843   }
2844 }
2845 
2846 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2847                                          ArrayRef<uint8_t> ShadowBytes,
2848                                          IRBuilder<> &IRB, Value *ShadowBase) {
2849   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
2850 }
2851 
2852 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2853                                          ArrayRef<uint8_t> ShadowBytes,
2854                                          size_t Begin, size_t End,
2855                                          IRBuilder<> &IRB, Value *ShadowBase) {
2856   assert(ShadowMask.size() == ShadowBytes.size());
2857   size_t Done = Begin;
2858   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
2859     if (!ShadowMask[i]) {
2860       assert(!ShadowBytes[i]);
2861       continue;
2862     }
2863     uint8_t Val = ShadowBytes[i];
2864     if (!AsanSetShadowFunc[Val])
2865       continue;
2866 
2867     // Skip same values.
2868     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
2869     }
2870 
2871     if (j - i >= ClMaxInlinePoisoningSize) {
2872       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
2873       IRB.CreateCall(AsanSetShadowFunc[Val],
2874                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
2875                       ConstantInt::get(IntptrTy, j - i)});
2876       Done = j;
2877     }
2878   }
2879 
2880   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
2881 }
2882 
2883 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2884 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2885 static int StackMallocSizeClass(uint64_t LocalStackSize) {
2886   assert(LocalStackSize <= kMaxStackMallocSize);
2887   uint64_t MaxSize = kMinStackMallocSize;
2888   for (int i = 0;; i++, MaxSize *= 2)
2889     if (LocalStackSize <= MaxSize) return i;
2890   llvm_unreachable("impossible LocalStackSize");
2891 }
2892 
2893 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2894   Instruction *CopyInsertPoint = &F.front().front();
2895   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
2896     // Insert after the dynamic shadow location is determined
2897     CopyInsertPoint = CopyInsertPoint->getNextNode();
2898     assert(CopyInsertPoint);
2899   }
2900   IRBuilder<> IRB(CopyInsertPoint);
2901   const DataLayout &DL = F.getParent()->getDataLayout();
2902   for (Argument &Arg : F.args()) {
2903     if (Arg.hasByValAttr()) {
2904       Type *Ty = Arg.getType()->getPointerElementType();
2905       const Align Alignment =
2906           DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
2907 
2908       AllocaInst *AI = IRB.CreateAlloca(
2909           Ty, nullptr,
2910           (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
2911               ".byval");
2912       AI->setAlignment(Alignment);
2913       Arg.replaceAllUsesWith(AI);
2914 
2915       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2916       IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
2917     }
2918   }
2919 }
2920 
2921 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
2922                                           Value *ValueIfTrue,
2923                                           Instruction *ThenTerm,
2924                                           Value *ValueIfFalse) {
2925   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
2926   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
2927   PHI->addIncoming(ValueIfFalse, CondBlock);
2928   BasicBlock *ThenBlock = ThenTerm->getParent();
2929   PHI->addIncoming(ValueIfTrue, ThenBlock);
2930   return PHI;
2931 }
2932 
2933 Value *FunctionStackPoisoner::createAllocaForLayout(
2934     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
2935   AllocaInst *Alloca;
2936   if (Dynamic) {
2937     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
2938                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
2939                               "MyAlloca");
2940   } else {
2941     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
2942                               nullptr, "MyAlloca");
2943     assert(Alloca->isStaticAlloca());
2944   }
2945   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
2946   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
2947   Alloca->setAlignment(MaybeAlign(FrameAlignment));
2948   return IRB.CreatePointerCast(Alloca, IntptrTy);
2949 }
2950 
2951 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2952   BasicBlock &FirstBB = *F.begin();
2953   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
2954   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
2955   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
2956   DynamicAllocaLayout->setAlignment(Align(32));
2957 }
2958 
2959 void FunctionStackPoisoner::processDynamicAllocas() {
2960   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
2961     assert(DynamicAllocaPoisonCallVec.empty());
2962     return;
2963   }
2964 
2965   // Insert poison calls for lifetime intrinsics for dynamic allocas.
2966   for (const auto &APC : DynamicAllocaPoisonCallVec) {
2967     assert(APC.InsBefore);
2968     assert(APC.AI);
2969     assert(ASan.isInterestingAlloca(*APC.AI));
2970     assert(!APC.AI->isStaticAlloca());
2971 
2972     IRBuilder<> IRB(APC.InsBefore);
2973     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
2974     // Dynamic allocas will be unpoisoned unconditionally below in
2975     // unpoisonDynamicAllocas.
2976     // Flag that we need unpoison static allocas.
2977   }
2978 
2979   // Handle dynamic allocas.
2980   createDynamicAllocasInitStorage();
2981   for (auto &AI : DynamicAllocaVec)
2982     handleDynamicAllocaCall(AI);
2983   unpoisonDynamicAllocas();
2984 }
2985 
2986 /// Collect instructions in the entry block after \p InsBefore which initialize
2987 /// permanent storage for a function argument. These instructions must remain in
2988 /// the entry block so that uninitialized values do not appear in backtraces. An
2989 /// added benefit is that this conserves spill slots. This does not move stores
2990 /// before instrumented / "interesting" allocas.
2991 static void findStoresToUninstrumentedArgAllocas(
2992     AddressSanitizer &ASan, Instruction &InsBefore,
2993     SmallVectorImpl<Instruction *> &InitInsts) {
2994   Instruction *Start = InsBefore.getNextNonDebugInstruction();
2995   for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
2996     // Argument initialization looks like:
2997     // 1) store <Argument>, <Alloca> OR
2998     // 2) <CastArgument> = cast <Argument> to ...
2999     //    store <CastArgument> to <Alloca>
3000     // Do not consider any other kind of instruction.
3001     //
3002     // Note: This covers all known cases, but may not be exhaustive. An
3003     // alternative to pattern-matching stores is to DFS over all Argument uses:
3004     // this might be more general, but is probably much more complicated.
3005     if (isa<AllocaInst>(It) || isa<CastInst>(It))
3006       continue;
3007     if (auto *Store = dyn_cast<StoreInst>(It)) {
3008       // The store destination must be an alloca that isn't interesting for
3009       // ASan to instrument. These are moved up before InsBefore, and they're
3010       // not interesting because allocas for arguments can be mem2reg'd.
3011       auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3012       if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3013         continue;
3014 
3015       Value *Val = Store->getValueOperand();
3016       bool IsDirectArgInit = isa<Argument>(Val);
3017       bool IsArgInitViaCast =
3018           isa<CastInst>(Val) &&
3019           isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3020           // Check that the cast appears directly before the store. Otherwise
3021           // moving the cast before InsBefore may break the IR.
3022           Val == It->getPrevNonDebugInstruction();
3023       bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3024       if (!IsArgInit)
3025         continue;
3026 
3027       if (IsArgInitViaCast)
3028         InitInsts.push_back(cast<Instruction>(Val));
3029       InitInsts.push_back(Store);
3030       continue;
3031     }
3032 
3033     // Do not reorder past unknown instructions: argument initialization should
3034     // only involve casts and stores.
3035     return;
3036   }
3037 }
3038 
3039 void FunctionStackPoisoner::processStaticAllocas() {
3040   if (AllocaVec.empty()) {
3041     assert(StaticAllocaPoisonCallVec.empty());
3042     return;
3043   }
3044 
3045   int StackMallocIdx = -1;
3046   DebugLoc EntryDebugLocation;
3047   if (auto SP = F.getSubprogram())
3048     EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
3049 
3050   Instruction *InsBefore = AllocaVec[0];
3051   IRBuilder<> IRB(InsBefore);
3052 
3053   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3054   // debug info is broken, because only entry-block allocas are treated as
3055   // regular stack slots.
3056   auto InsBeforeB = InsBefore->getParent();
3057   assert(InsBeforeB == &F.getEntryBlock());
3058   for (auto *AI : StaticAllocasToMoveUp)
3059     if (AI->getParent() == InsBeforeB)
3060       AI->moveBefore(InsBefore);
3061 
3062   // Move stores of arguments into entry-block allocas as well. This prevents
3063   // extra stack slots from being generated (to house the argument values until
3064   // they can be stored into the allocas). This also prevents uninitialized
3065   // values from being shown in backtraces.
3066   SmallVector<Instruction *, 8> ArgInitInsts;
3067   findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3068   for (Instruction *ArgInitInst : ArgInitInsts)
3069     ArgInitInst->moveBefore(InsBefore);
3070 
3071   // If we have a call to llvm.localescape, keep it in the entry block.
3072   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3073 
3074   SmallVector<ASanStackVariableDescription, 16> SVD;
3075   SVD.reserve(AllocaVec.size());
3076   for (AllocaInst *AI : AllocaVec) {
3077     ASanStackVariableDescription D = {AI->getName().data(),
3078                                       ASan.getAllocaSizeInBytes(*AI),
3079                                       0,
3080                                       AI->getAlignment(),
3081                                       AI,
3082                                       0,
3083                                       0};
3084     SVD.push_back(D);
3085   }
3086 
3087   // Minimal header size (left redzone) is 4 pointers,
3088   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3089   size_t Granularity = 1ULL << Mapping.Scale;
3090   size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3091   const ASanStackFrameLayout &L =
3092       ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3093 
3094   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3095   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3096   for (auto &Desc : SVD)
3097     AllocaToSVDMap[Desc.AI] = &Desc;
3098 
3099   // Update SVD with information from lifetime intrinsics.
3100   for (const auto &APC : StaticAllocaPoisonCallVec) {
3101     assert(APC.InsBefore);
3102     assert(APC.AI);
3103     assert(ASan.isInterestingAlloca(*APC.AI));
3104     assert(APC.AI->isStaticAlloca());
3105 
3106     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3107     Desc.LifetimeSize = Desc.Size;
3108     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3109       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3110         if (LifetimeLoc->getFile() == FnLoc->getFile())
3111           if (unsigned Line = LifetimeLoc->getLine())
3112             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3113       }
3114     }
3115   }
3116 
3117   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3118   LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3119   uint64_t LocalStackSize = L.FrameSize;
3120   bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
3121                        LocalStackSize <= kMaxStackMallocSize;
3122   bool DoDynamicAlloca = ClDynamicAllocaStack;
3123   // Don't do dynamic alloca or stack malloc if:
3124   // 1) There is inline asm: too often it makes assumptions on which registers
3125   //    are available.
3126   // 2) There is a returns_twice call (typically setjmp), which is
3127   //    optimization-hostile, and doesn't play well with introduced indirect
3128   //    register-relative calculation of local variable addresses.
3129   DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3130   DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3131 
3132   Value *StaticAlloca =
3133       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3134 
3135   Value *FakeStack;
3136   Value *LocalStackBase;
3137   Value *LocalStackBaseAlloca;
3138   uint8_t DIExprFlags = DIExpression::ApplyOffset;
3139 
3140   if (DoStackMalloc) {
3141     LocalStackBaseAlloca =
3142         IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3143     // void *FakeStack = __asan_option_detect_stack_use_after_return
3144     //     ? __asan_stack_malloc_N(LocalStackSize)
3145     //     : nullptr;
3146     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3147     Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3148         kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3149     Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3150         IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3151         Constant::getNullValue(IRB.getInt32Ty()));
3152     Instruction *Term =
3153         SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3154     IRBuilder<> IRBIf(Term);
3155     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3156     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3157     Value *FakeStackValue =
3158         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3159                          ConstantInt::get(IntptrTy, LocalStackSize));
3160     IRB.SetInsertPoint(InsBefore);
3161     FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3162                           ConstantInt::get(IntptrTy, 0));
3163 
3164     Value *NoFakeStack =
3165         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3166     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3167     IRBIf.SetInsertPoint(Term);
3168     Value *AllocaValue =
3169         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3170 
3171     IRB.SetInsertPoint(InsBefore);
3172     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3173     IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3174     DIExprFlags |= DIExpression::DerefBefore;
3175   } else {
3176     // void *FakeStack = nullptr;
3177     // void *LocalStackBase = alloca(LocalStackSize);
3178     FakeStack = ConstantInt::get(IntptrTy, 0);
3179     LocalStackBase =
3180         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3181     LocalStackBaseAlloca = LocalStackBase;
3182   }
3183 
3184   // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3185   // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3186   // later passes and can result in dropped variable coverage in debug info.
3187   Value *LocalStackBaseAllocaPtr =
3188       isa<PtrToIntInst>(LocalStackBaseAlloca)
3189           ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3190           : LocalStackBaseAlloca;
3191   assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3192          "Variable descriptions relative to ASan stack base will be dropped");
3193 
3194   // Replace Alloca instructions with base+offset.
3195   for (const auto &Desc : SVD) {
3196     AllocaInst *AI = Desc.AI;
3197     replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3198                       Desc.Offset);
3199     Value *NewAllocaPtr = IRB.CreateIntToPtr(
3200         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3201         AI->getType());
3202     AI->replaceAllUsesWith(NewAllocaPtr);
3203   }
3204 
3205   // The left-most redzone has enough space for at least 4 pointers.
3206   // Write the Magic value to redzone[0].
3207   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3208   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3209                   BasePlus0);
3210   // Write the frame description constant to redzone[1].
3211   Value *BasePlus1 = IRB.CreateIntToPtr(
3212       IRB.CreateAdd(LocalStackBase,
3213                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3214       IntptrPtrTy);
3215   GlobalVariable *StackDescriptionGlobal =
3216       createPrivateGlobalForString(*F.getParent(), DescriptionString,
3217                                    /*AllowMerging*/ true, kAsanGenPrefix);
3218   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3219   IRB.CreateStore(Description, BasePlus1);
3220   // Write the PC to redzone[2].
3221   Value *BasePlus2 = IRB.CreateIntToPtr(
3222       IRB.CreateAdd(LocalStackBase,
3223                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3224       IntptrPtrTy);
3225   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3226 
3227   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3228 
3229   // Poison the stack red zones at the entry.
3230   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3231   // As mask we must use most poisoned case: red zones and after scope.
3232   // As bytes we can use either the same or just red zones only.
3233   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3234 
3235   if (!StaticAllocaPoisonCallVec.empty()) {
3236     const auto &ShadowInScope = GetShadowBytes(SVD, L);
3237 
3238     // Poison static allocas near lifetime intrinsics.
3239     for (const auto &APC : StaticAllocaPoisonCallVec) {
3240       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3241       assert(Desc.Offset % L.Granularity == 0);
3242       size_t Begin = Desc.Offset / L.Granularity;
3243       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3244 
3245       IRBuilder<> IRB(APC.InsBefore);
3246       copyToShadow(ShadowAfterScope,
3247                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3248                    IRB, ShadowBase);
3249     }
3250   }
3251 
3252   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3253   SmallVector<uint8_t, 64> ShadowAfterReturn;
3254 
3255   // (Un)poison the stack before all ret instructions.
3256   for (auto Ret : RetVec) {
3257     IRBuilder<> IRBRet(Ret);
3258     // Mark the current frame as retired.
3259     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3260                        BasePlus0);
3261     if (DoStackMalloc) {
3262       assert(StackMallocIdx >= 0);
3263       // if FakeStack != 0  // LocalStackBase == FakeStack
3264       //     // In use-after-return mode, poison the whole stack frame.
3265       //     if StackMallocIdx <= 4
3266       //         // For small sizes inline the whole thing:
3267       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3268       //         **SavedFlagPtr(FakeStack) = 0
3269       //     else
3270       //         __asan_stack_free_N(FakeStack, LocalStackSize)
3271       // else
3272       //     <This is not a fake stack; unpoison the redzones>
3273       Value *Cmp =
3274           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3275       Instruction *ThenTerm, *ElseTerm;
3276       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3277 
3278       IRBuilder<> IRBPoison(ThenTerm);
3279       if (StackMallocIdx <= 4) {
3280         int ClassSize = kMinStackMallocSize << StackMallocIdx;
3281         ShadowAfterReturn.resize(ClassSize / L.Granularity,
3282                                  kAsanStackUseAfterReturnMagic);
3283         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3284                      ShadowBase);
3285         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3286             FakeStack,
3287             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3288         Value *SavedFlagPtr = IRBPoison.CreateLoad(
3289             IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3290         IRBPoison.CreateStore(
3291             Constant::getNullValue(IRBPoison.getInt8Ty()),
3292             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3293       } else {
3294         // For larger frames call __asan_stack_free_*.
3295         IRBPoison.CreateCall(
3296             AsanStackFreeFunc[StackMallocIdx],
3297             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3298       }
3299 
3300       IRBuilder<> IRBElse(ElseTerm);
3301       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3302     } else {
3303       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3304     }
3305   }
3306 
3307   // We are done. Remove the old unused alloca instructions.
3308   for (auto AI : AllocaVec) AI->eraseFromParent();
3309 }
3310 
3311 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3312                                          IRBuilder<> &IRB, bool DoPoison) {
3313   // For now just insert the call to ASan runtime.
3314   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3315   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3316   IRB.CreateCall(
3317       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3318       {AddrArg, SizeArg});
3319 }
3320 
3321 // Handling llvm.lifetime intrinsics for a given %alloca:
3322 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3323 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3324 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3325 //     could be poisoned by previous llvm.lifetime.end instruction, as the
3326 //     variable may go in and out of scope several times, e.g. in loops).
3327 // (3) if we poisoned at least one %alloca in a function,
3328 //     unpoison the whole stack frame at function exit.
3329 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3330   IRBuilder<> IRB(AI);
3331 
3332   const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
3333   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3334 
3335   Value *Zero = Constant::getNullValue(IntptrTy);
3336   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3337   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3338 
3339   // Since we need to extend alloca with additional memory to locate
3340   // redzones, and OldSize is number of allocated blocks with
3341   // ElementSize size, get allocated memory size in bytes by
3342   // OldSize * ElementSize.
3343   const unsigned ElementSize =
3344       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3345   Value *OldSize =
3346       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3347                     ConstantInt::get(IntptrTy, ElementSize));
3348 
3349   // PartialSize = OldSize % 32
3350   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3351 
3352   // Misalign = kAllocaRzSize - PartialSize;
3353   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3354 
3355   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3356   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3357   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3358 
3359   // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
3360   // Align is added to locate left redzone, PartialPadding for possible
3361   // partial redzone and kAllocaRzSize for right redzone respectively.
3362   Value *AdditionalChunkSize = IRB.CreateAdd(
3363       ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
3364 
3365   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3366 
3367   // Insert new alloca with new NewSize and Align params.
3368   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3369   NewAlloca->setAlignment(MaybeAlign(Align));
3370 
3371   // NewAddress = Address + Align
3372   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3373                                     ConstantInt::get(IntptrTy, Align));
3374 
3375   // Insert __asan_alloca_poison call for new created alloca.
3376   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3377 
3378   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3379   // for unpoisoning stuff.
3380   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3381 
3382   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3383 
3384   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3385   AI->replaceAllUsesWith(NewAddressPtr);
3386 
3387   // We are done. Erase old alloca from parent.
3388   AI->eraseFromParent();
3389 }
3390 
3391 // isSafeAccess returns true if Addr is always inbounds with respect to its
3392 // base object. For example, it is a field access or an array access with
3393 // constant inbounds index.
3394 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3395                                     Value *Addr, uint64_t TypeSize) const {
3396   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3397   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3398   uint64_t Size = SizeOffset.first.getZExtValue();
3399   int64_t Offset = SizeOffset.second.getSExtValue();
3400   // Three checks are required to ensure safety:
3401   // . Offset >= 0  (since the offset is given from the base ptr)
3402   // . Size >= Offset  (unsigned)
3403   // . Size - Offset >= NeededSize  (unsigned)
3404   return Offset >= 0 && Size >= uint64_t(Offset) &&
3405          Size - uint64_t(Offset) >= TypeSize / 8;
3406 }
3407