1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/MachO.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DIBuilder.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/IRBuilder.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstVisitor.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/MCSectionMachO.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 73 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/ModuleUtils.h" 77 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iomanip> 83 #include <limits> 84 #include <memory> 85 #include <sstream> 86 #include <string> 87 #include <tuple> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "asan" 92 93 static const uint64_t kDefaultShadowScale = 3; 94 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 95 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 96 static const uint64_t kDynamicShadowSentinel = 97 std::numeric_limits<uint64_t>::max(); 98 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 99 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 100 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 101 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 102 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 103 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 104 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 105 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 106 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 107 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 108 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 109 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 111 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 112 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 113 static const uint64_t kEmscriptenShadowOffset = 0; 114 115 static const uint64_t kMyriadShadowScale = 5; 116 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 117 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 118 static const uint64_t kMyriadTagShift = 29; 119 static const uint64_t kMyriadDDRTag = 4; 120 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 121 122 // The shadow memory space is dynamically allocated. 123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 124 125 static const size_t kMinStackMallocSize = 1 << 6; // 64B 126 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 129 130 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 131 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 132 static const uint64_t kAsanCtorAndDtorPriority = 1; 133 // On Emscripten, the system needs more than one priorities for constructors. 134 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 135 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 136 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 137 static const char *const kAsanUnregisterGlobalsName = 138 "__asan_unregister_globals"; 139 static const char *const kAsanRegisterImageGlobalsName = 140 "__asan_register_image_globals"; 141 static const char *const kAsanUnregisterImageGlobalsName = 142 "__asan_unregister_image_globals"; 143 static const char *const kAsanRegisterElfGlobalsName = 144 "__asan_register_elf_globals"; 145 static const char *const kAsanUnregisterElfGlobalsName = 146 "__asan_unregister_elf_globals"; 147 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 148 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 149 static const char *const kAsanInitName = "__asan_init"; 150 static const char *const kAsanVersionCheckNamePrefix = 151 "__asan_version_mismatch_check_v"; 152 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 153 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 154 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 155 static const int kMaxAsanStackMallocSizeClass = 10; 156 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 157 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 158 static const char *const kAsanGenPrefix = "___asan_gen_"; 159 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 160 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 161 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 162 static const char *const kAsanPoisonStackMemoryName = 163 "__asan_poison_stack_memory"; 164 static const char *const kAsanUnpoisonStackMemoryName = 165 "__asan_unpoison_stack_memory"; 166 167 // ASan version script has __asan_* wildcard. Triple underscore prevents a 168 // linker (gold) warning about attempting to export a local symbol. 169 static const char *const kAsanGlobalsRegisteredFlagName = 170 "___asan_globals_registered"; 171 172 static const char *const kAsanOptionDetectUseAfterReturn = 173 "__asan_option_detect_stack_use_after_return"; 174 175 static const char *const kAsanShadowMemoryDynamicAddress = 176 "__asan_shadow_memory_dynamic_address"; 177 178 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 179 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 180 181 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 182 static const size_t kNumberOfAccessSizes = 5; 183 184 static const unsigned kAllocaRzSize = 32; 185 186 // Command-line flags. 187 188 static cl::opt<bool> ClEnableKasan( 189 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 190 cl::Hidden, cl::init(false)); 191 192 static cl::opt<bool> ClRecover( 193 "asan-recover", 194 cl::desc("Enable recovery mode (continue-after-error)."), 195 cl::Hidden, cl::init(false)); 196 197 static cl::opt<bool> ClInsertVersionCheck( 198 "asan-guard-against-version-mismatch", 199 cl::desc("Guard against compiler/runtime version mismatch."), 200 cl::Hidden, cl::init(true)); 201 202 // This flag may need to be replaced with -f[no-]asan-reads. 203 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 204 cl::desc("instrument read instructions"), 205 cl::Hidden, cl::init(true)); 206 207 static cl::opt<bool> ClInstrumentWrites( 208 "asan-instrument-writes", cl::desc("instrument write instructions"), 209 cl::Hidden, cl::init(true)); 210 211 static cl::opt<bool> ClInstrumentAtomics( 212 "asan-instrument-atomics", 213 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 214 cl::init(true)); 215 216 static cl::opt<bool> 217 ClInstrumentByval("asan-instrument-byval", 218 cl::desc("instrument byval call arguments"), cl::Hidden, 219 cl::init(true)); 220 221 static cl::opt<bool> ClAlwaysSlowPath( 222 "asan-always-slow-path", 223 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 224 cl::init(false)); 225 226 static cl::opt<bool> ClForceDynamicShadow( 227 "asan-force-dynamic-shadow", 228 cl::desc("Load shadow address into a local variable for each function"), 229 cl::Hidden, cl::init(false)); 230 231 static cl::opt<bool> 232 ClWithIfunc("asan-with-ifunc", 233 cl::desc("Access dynamic shadow through an ifunc global on " 234 "platforms that support this"), 235 cl::Hidden, cl::init(true)); 236 237 static cl::opt<bool> ClWithIfuncSuppressRemat( 238 "asan-with-ifunc-suppress-remat", 239 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 240 "it through inline asm in prologue."), 241 cl::Hidden, cl::init(true)); 242 243 // This flag limits the number of instructions to be instrumented 244 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 245 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 246 // set it to 10000. 247 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 248 "asan-max-ins-per-bb", cl::init(10000), 249 cl::desc("maximal number of instructions to instrument in any given BB"), 250 cl::Hidden); 251 252 // This flag may need to be replaced with -f[no]asan-stack. 253 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 254 cl::Hidden, cl::init(true)); 255 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 256 "asan-max-inline-poisoning-size", 257 cl::desc( 258 "Inline shadow poisoning for blocks up to the given size in bytes."), 259 cl::Hidden, cl::init(64)); 260 261 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 262 cl::desc("Check stack-use-after-return"), 263 cl::Hidden, cl::init(true)); 264 265 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 266 cl::desc("Create redzones for byval " 267 "arguments (extra copy " 268 "required)"), cl::Hidden, 269 cl::init(true)); 270 271 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 272 cl::desc("Check stack-use-after-scope"), 273 cl::Hidden, cl::init(false)); 274 275 // This flag may need to be replaced with -f[no]asan-globals. 276 static cl::opt<bool> ClGlobals("asan-globals", 277 cl::desc("Handle global objects"), cl::Hidden, 278 cl::init(true)); 279 280 static cl::opt<bool> ClInitializers("asan-initialization-order", 281 cl::desc("Handle C++ initializer order"), 282 cl::Hidden, cl::init(true)); 283 284 static cl::opt<bool> ClInvalidPointerPairs( 285 "asan-detect-invalid-pointer-pair", 286 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 287 cl::init(false)); 288 289 static cl::opt<bool> ClInvalidPointerCmp( 290 "asan-detect-invalid-pointer-cmp", 291 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 292 cl::init(false)); 293 294 static cl::opt<bool> ClInvalidPointerSub( 295 "asan-detect-invalid-pointer-sub", 296 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 297 cl::init(false)); 298 299 static cl::opt<unsigned> ClRealignStack( 300 "asan-realign-stack", 301 cl::desc("Realign stack to the value of this flag (power of two)"), 302 cl::Hidden, cl::init(32)); 303 304 static cl::opt<int> ClInstrumentationWithCallsThreshold( 305 "asan-instrumentation-with-call-threshold", 306 cl::desc( 307 "If the function being instrumented contains more than " 308 "this number of memory accesses, use callbacks instead of " 309 "inline checks (-1 means never use callbacks)."), 310 cl::Hidden, cl::init(7000)); 311 312 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 313 "asan-memory-access-callback-prefix", 314 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 315 cl::init("__asan_")); 316 317 static cl::opt<bool> 318 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 319 cl::desc("instrument dynamic allocas"), 320 cl::Hidden, cl::init(true)); 321 322 static cl::opt<bool> ClSkipPromotableAllocas( 323 "asan-skip-promotable-allocas", 324 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 325 cl::init(true)); 326 327 // These flags allow to change the shadow mapping. 328 // The shadow mapping looks like 329 // Shadow = (Mem >> scale) + offset 330 331 static cl::opt<int> ClMappingScale("asan-mapping-scale", 332 cl::desc("scale of asan shadow mapping"), 333 cl::Hidden, cl::init(0)); 334 335 static cl::opt<uint64_t> 336 ClMappingOffset("asan-mapping-offset", 337 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 338 cl::Hidden, cl::init(0)); 339 340 // Optimization flags. Not user visible, used mostly for testing 341 // and benchmarking the tool. 342 343 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 344 cl::Hidden, cl::init(true)); 345 346 static cl::opt<bool> ClOptSameTemp( 347 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 348 cl::Hidden, cl::init(true)); 349 350 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 351 cl::desc("Don't instrument scalar globals"), 352 cl::Hidden, cl::init(true)); 353 354 static cl::opt<bool> ClOptStack( 355 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 356 cl::Hidden, cl::init(false)); 357 358 static cl::opt<bool> ClDynamicAllocaStack( 359 "asan-stack-dynamic-alloca", 360 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 361 cl::init(true)); 362 363 static cl::opt<uint32_t> ClForceExperiment( 364 "asan-force-experiment", 365 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 366 cl::init(0)); 367 368 static cl::opt<bool> 369 ClUsePrivateAlias("asan-use-private-alias", 370 cl::desc("Use private aliases for global variables"), 371 cl::Hidden, cl::init(false)); 372 373 static cl::opt<bool> 374 ClUseOdrIndicator("asan-use-odr-indicator", 375 cl::desc("Use odr indicators to improve ODR reporting"), 376 cl::Hidden, cl::init(false)); 377 378 static cl::opt<bool> 379 ClUseGlobalsGC("asan-globals-live-support", 380 cl::desc("Use linker features to support dead " 381 "code stripping of globals"), 382 cl::Hidden, cl::init(true)); 383 384 // This is on by default even though there is a bug in gold: 385 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 386 static cl::opt<bool> 387 ClWithComdat("asan-with-comdat", 388 cl::desc("Place ASan constructors in comdat sections"), 389 cl::Hidden, cl::init(true)); 390 391 // Debug flags. 392 393 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 394 cl::init(0)); 395 396 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 397 cl::Hidden, cl::init(0)); 398 399 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 400 cl::desc("Debug func")); 401 402 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 403 cl::Hidden, cl::init(-1)); 404 405 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 406 cl::Hidden, cl::init(-1)); 407 408 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 409 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 410 STATISTIC(NumOptimizedAccessesToGlobalVar, 411 "Number of optimized accesses to global vars"); 412 STATISTIC(NumOptimizedAccessesToStackVar, 413 "Number of optimized accesses to stack vars"); 414 415 namespace { 416 417 /// This struct defines the shadow mapping using the rule: 418 /// shadow = (mem >> Scale) ADD-or-OR Offset. 419 /// If InGlobal is true, then 420 /// extern char __asan_shadow[]; 421 /// shadow = (mem >> Scale) + &__asan_shadow 422 struct ShadowMapping { 423 int Scale; 424 uint64_t Offset; 425 bool OrShadowOffset; 426 bool InGlobal; 427 }; 428 429 } // end anonymous namespace 430 431 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 432 bool IsKasan) { 433 bool IsAndroid = TargetTriple.isAndroid(); 434 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 435 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 436 bool IsNetBSD = TargetTriple.isOSNetBSD(); 437 bool IsPS4CPU = TargetTriple.isPS4CPU(); 438 bool IsLinux = TargetTriple.isOSLinux(); 439 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 440 TargetTriple.getArch() == Triple::ppc64le; 441 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 442 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 443 bool IsMIPS32 = TargetTriple.isMIPS32(); 444 bool IsMIPS64 = TargetTriple.isMIPS64(); 445 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 446 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 447 bool IsWindows = TargetTriple.isOSWindows(); 448 bool IsFuchsia = TargetTriple.isOSFuchsia(); 449 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 450 bool IsEmscripten = TargetTriple.isOSEmscripten(); 451 452 ShadowMapping Mapping; 453 454 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 455 if (ClMappingScale.getNumOccurrences() > 0) { 456 Mapping.Scale = ClMappingScale; 457 } 458 459 if (LongSize == 32) { 460 if (IsAndroid) 461 Mapping.Offset = kDynamicShadowSentinel; 462 else if (IsMIPS32) 463 Mapping.Offset = kMIPS32_ShadowOffset32; 464 else if (IsFreeBSD) 465 Mapping.Offset = kFreeBSD_ShadowOffset32; 466 else if (IsNetBSD) 467 Mapping.Offset = kNetBSD_ShadowOffset32; 468 else if (IsIOS) 469 Mapping.Offset = kDynamicShadowSentinel; 470 else if (IsWindows) 471 Mapping.Offset = kWindowsShadowOffset32; 472 else if (IsEmscripten) 473 Mapping.Offset = kEmscriptenShadowOffset; 474 else if (IsMyriad) { 475 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 476 (kMyriadMemorySize32 >> Mapping.Scale)); 477 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 478 } 479 else 480 Mapping.Offset = kDefaultShadowOffset32; 481 } else { // LongSize == 64 482 // Fuchsia is always PIE, which means that the beginning of the address 483 // space is always available. 484 if (IsFuchsia) 485 Mapping.Offset = 0; 486 else if (IsPPC64) 487 Mapping.Offset = kPPC64_ShadowOffset64; 488 else if (IsSystemZ) 489 Mapping.Offset = kSystemZ_ShadowOffset64; 490 else if (IsFreeBSD && !IsMIPS64) 491 Mapping.Offset = kFreeBSD_ShadowOffset64; 492 else if (IsNetBSD) { 493 if (IsKasan) 494 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 495 else 496 Mapping.Offset = kNetBSD_ShadowOffset64; 497 } else if (IsPS4CPU) 498 Mapping.Offset = kPS4CPU_ShadowOffset64; 499 else if (IsLinux && IsX86_64) { 500 if (IsKasan) 501 Mapping.Offset = kLinuxKasan_ShadowOffset64; 502 else 503 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 504 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 505 } else if (IsWindows && IsX86_64) { 506 Mapping.Offset = kWindowsShadowOffset64; 507 } else if (IsMIPS64) 508 Mapping.Offset = kMIPS64_ShadowOffset64; 509 else if (IsIOS) 510 Mapping.Offset = kDynamicShadowSentinel; 511 else if (IsAArch64) 512 Mapping.Offset = kAArch64_ShadowOffset64; 513 else 514 Mapping.Offset = kDefaultShadowOffset64; 515 } 516 517 if (ClForceDynamicShadow) { 518 Mapping.Offset = kDynamicShadowSentinel; 519 } 520 521 if (ClMappingOffset.getNumOccurrences() > 0) { 522 Mapping.Offset = ClMappingOffset; 523 } 524 525 // OR-ing shadow offset if more efficient (at least on x86) if the offset 526 // is a power of two, but on ppc64 we have to use add since the shadow 527 // offset is not necessary 1/8-th of the address space. On SystemZ, 528 // we could OR the constant in a single instruction, but it's more 529 // efficient to load it once and use indexed addressing. 530 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 531 !(Mapping.Offset & (Mapping.Offset - 1)) && 532 Mapping.Offset != kDynamicShadowSentinel; 533 bool IsAndroidWithIfuncSupport = 534 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 535 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 536 537 return Mapping; 538 } 539 540 static size_t RedzoneSizeForScale(int MappingScale) { 541 // Redzone used for stack and globals is at least 32 bytes. 542 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 543 return std::max(32U, 1U << MappingScale); 544 } 545 546 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 547 if (TargetTriple.isOSEmscripten()) { 548 return kAsanEmscriptenCtorAndDtorPriority; 549 } else { 550 return kAsanCtorAndDtorPriority; 551 } 552 } 553 554 namespace { 555 556 /// Module analysis for getting various metadata about the module. 557 class ASanGlobalsMetadataWrapperPass : public ModulePass { 558 public: 559 static char ID; 560 561 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 562 initializeASanGlobalsMetadataWrapperPassPass( 563 *PassRegistry::getPassRegistry()); 564 } 565 566 bool runOnModule(Module &M) override { 567 GlobalsMD = GlobalsMetadata(M); 568 return false; 569 } 570 571 StringRef getPassName() const override { 572 return "ASanGlobalsMetadataWrapperPass"; 573 } 574 575 void getAnalysisUsage(AnalysisUsage &AU) const override { 576 AU.setPreservesAll(); 577 } 578 579 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 580 581 private: 582 GlobalsMetadata GlobalsMD; 583 }; 584 585 char ASanGlobalsMetadataWrapperPass::ID = 0; 586 587 /// AddressSanitizer: instrument the code in module to find memory bugs. 588 struct AddressSanitizer { 589 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 590 bool CompileKernel = false, bool Recover = false, 591 bool UseAfterScope = false) 592 : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 593 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 594 this->CompileKernel = 595 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 596 597 C = &(M.getContext()); 598 LongSize = M.getDataLayout().getPointerSizeInBits(); 599 IntptrTy = Type::getIntNTy(*C, LongSize); 600 TargetTriple = Triple(M.getTargetTriple()); 601 602 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 603 } 604 605 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 606 uint64_t ArraySize = 1; 607 if (AI.isArrayAllocation()) { 608 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 609 assert(CI && "non-constant array size"); 610 ArraySize = CI->getZExtValue(); 611 } 612 Type *Ty = AI.getAllocatedType(); 613 uint64_t SizeInBytes = 614 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 615 return SizeInBytes * ArraySize; 616 } 617 618 /// Check if we want (and can) handle this alloca. 619 bool isInterestingAlloca(const AllocaInst &AI); 620 621 bool ignoreAccess(Value *Ptr); 622 void getInterestingMemoryOperands( 623 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 624 625 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 626 InterestingMemoryOperand &O, bool UseCalls, 627 const DataLayout &DL); 628 void instrumentPointerComparisonOrSubtraction(Instruction *I); 629 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 630 Value *Addr, uint32_t TypeSize, bool IsWrite, 631 Value *SizeArgument, bool UseCalls, uint32_t Exp); 632 void instrumentUnusualSizeOrAlignment(Instruction *I, 633 Instruction *InsertBefore, Value *Addr, 634 uint32_t TypeSize, bool IsWrite, 635 Value *SizeArgument, bool UseCalls, 636 uint32_t Exp); 637 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 638 Value *ShadowValue, uint32_t TypeSize); 639 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 640 bool IsWrite, size_t AccessSizeIndex, 641 Value *SizeArgument, uint32_t Exp); 642 void instrumentMemIntrinsic(MemIntrinsic *MI); 643 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 644 bool suppressInstrumentationSiteForDebug(int &Instrumented); 645 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 646 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 647 void maybeInsertDynamicShadowAtFunctionEntry(Function &F); 648 void markEscapedLocalAllocas(Function &F); 649 650 private: 651 friend struct FunctionStackPoisoner; 652 653 void initializeCallbacks(Module &M); 654 655 bool LooksLikeCodeInBug11395(Instruction *I); 656 bool GlobalIsLinkerInitialized(GlobalVariable *G); 657 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 658 uint64_t TypeSize) const; 659 660 /// Helper to cleanup per-function state. 661 struct FunctionStateRAII { 662 AddressSanitizer *Pass; 663 664 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 665 assert(Pass->ProcessedAllocas.empty() && 666 "last pass forgot to clear cache"); 667 assert(!Pass->LocalDynamicShadow); 668 } 669 670 ~FunctionStateRAII() { 671 Pass->LocalDynamicShadow = nullptr; 672 Pass->ProcessedAllocas.clear(); 673 } 674 }; 675 676 LLVMContext *C; 677 Triple TargetTriple; 678 int LongSize; 679 bool CompileKernel; 680 bool Recover; 681 bool UseAfterScope; 682 Type *IntptrTy; 683 ShadowMapping Mapping; 684 FunctionCallee AsanHandleNoReturnFunc; 685 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 686 Constant *AsanShadowGlobal; 687 688 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 689 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 690 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 691 692 // These arrays is indexed by AccessIsWrite and Experiment. 693 FunctionCallee AsanErrorCallbackSized[2][2]; 694 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 695 696 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 697 InlineAsm *EmptyAsm; 698 Value *LocalDynamicShadow = nullptr; 699 const GlobalsMetadata &GlobalsMD; 700 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 701 }; 702 703 class AddressSanitizerLegacyPass : public FunctionPass { 704 public: 705 static char ID; 706 707 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 708 bool Recover = false, 709 bool UseAfterScope = false) 710 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 711 UseAfterScope(UseAfterScope) { 712 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 713 } 714 715 StringRef getPassName() const override { 716 return "AddressSanitizerFunctionPass"; 717 } 718 719 void getAnalysisUsage(AnalysisUsage &AU) const override { 720 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 721 AU.addRequired<TargetLibraryInfoWrapperPass>(); 722 } 723 724 bool runOnFunction(Function &F) override { 725 GlobalsMetadata &GlobalsMD = 726 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 727 const TargetLibraryInfo *TLI = 728 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 729 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 730 UseAfterScope); 731 return ASan.instrumentFunction(F, TLI); 732 } 733 734 private: 735 bool CompileKernel; 736 bool Recover; 737 bool UseAfterScope; 738 }; 739 740 class ModuleAddressSanitizer { 741 public: 742 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 743 bool CompileKernel = false, bool Recover = false, 744 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 745 : GlobalsMD(*GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC), 746 // Enable aliases as they should have no downside with ODR indicators. 747 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 748 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 749 // Not a typo: ClWithComdat is almost completely pointless without 750 // ClUseGlobalsGC (because then it only works on modules without 751 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 752 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 753 // argument is designed as workaround. Therefore, disable both 754 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 755 // do globals-gc. 756 UseCtorComdat(UseGlobalsGC && ClWithComdat) { 757 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 758 this->CompileKernel = 759 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 760 761 C = &(M.getContext()); 762 int LongSize = M.getDataLayout().getPointerSizeInBits(); 763 IntptrTy = Type::getIntNTy(*C, LongSize); 764 TargetTriple = Triple(M.getTargetTriple()); 765 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 766 } 767 768 bool instrumentModule(Module &); 769 770 private: 771 void initializeCallbacks(Module &M); 772 773 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 774 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 775 ArrayRef<GlobalVariable *> ExtendedGlobals, 776 ArrayRef<Constant *> MetadataInitializers); 777 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 778 ArrayRef<GlobalVariable *> ExtendedGlobals, 779 ArrayRef<Constant *> MetadataInitializers, 780 const std::string &UniqueModuleId); 781 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 782 ArrayRef<GlobalVariable *> ExtendedGlobals, 783 ArrayRef<Constant *> MetadataInitializers); 784 void 785 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 786 ArrayRef<GlobalVariable *> ExtendedGlobals, 787 ArrayRef<Constant *> MetadataInitializers); 788 789 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 790 StringRef OriginalName); 791 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 792 StringRef InternalSuffix); 793 Instruction *CreateAsanModuleDtor(Module &M); 794 795 bool ShouldInstrumentGlobal(GlobalVariable *G); 796 bool ShouldUseMachOGlobalsSection() const; 797 StringRef getGlobalMetadataSection() const; 798 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 799 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 800 size_t MinRedzoneSizeForGlobal() const { 801 return RedzoneSizeForScale(Mapping.Scale); 802 } 803 int GetAsanVersion(const Module &M) const; 804 805 const GlobalsMetadata &GlobalsMD; 806 bool CompileKernel; 807 bool Recover; 808 bool UseGlobalsGC; 809 bool UsePrivateAlias; 810 bool UseOdrIndicator; 811 bool UseCtorComdat; 812 Type *IntptrTy; 813 LLVMContext *C; 814 Triple TargetTriple; 815 ShadowMapping Mapping; 816 FunctionCallee AsanPoisonGlobals; 817 FunctionCallee AsanUnpoisonGlobals; 818 FunctionCallee AsanRegisterGlobals; 819 FunctionCallee AsanUnregisterGlobals; 820 FunctionCallee AsanRegisterImageGlobals; 821 FunctionCallee AsanUnregisterImageGlobals; 822 FunctionCallee AsanRegisterElfGlobals; 823 FunctionCallee AsanUnregisterElfGlobals; 824 825 Function *AsanCtorFunction = nullptr; 826 Function *AsanDtorFunction = nullptr; 827 }; 828 829 class ModuleAddressSanitizerLegacyPass : public ModulePass { 830 public: 831 static char ID; 832 833 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 834 bool Recover = false, 835 bool UseGlobalGC = true, 836 bool UseOdrIndicator = false) 837 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 838 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 839 initializeModuleAddressSanitizerLegacyPassPass( 840 *PassRegistry::getPassRegistry()); 841 } 842 843 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 844 845 void getAnalysisUsage(AnalysisUsage &AU) const override { 846 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 847 } 848 849 bool runOnModule(Module &M) override { 850 GlobalsMetadata &GlobalsMD = 851 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 852 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 853 UseGlobalGC, UseOdrIndicator); 854 return ASanModule.instrumentModule(M); 855 } 856 857 private: 858 bool CompileKernel; 859 bool Recover; 860 bool UseGlobalGC; 861 bool UseOdrIndicator; 862 }; 863 864 // Stack poisoning does not play well with exception handling. 865 // When an exception is thrown, we essentially bypass the code 866 // that unpoisones the stack. This is why the run-time library has 867 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 868 // stack in the interceptor. This however does not work inside the 869 // actual function which catches the exception. Most likely because the 870 // compiler hoists the load of the shadow value somewhere too high. 871 // This causes asan to report a non-existing bug on 453.povray. 872 // It sounds like an LLVM bug. 873 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 874 Function &F; 875 AddressSanitizer &ASan; 876 DIBuilder DIB; 877 LLVMContext *C; 878 Type *IntptrTy; 879 Type *IntptrPtrTy; 880 ShadowMapping Mapping; 881 882 SmallVector<AllocaInst *, 16> AllocaVec; 883 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 884 SmallVector<Instruction *, 8> RetVec; 885 unsigned StackAlignment; 886 887 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 888 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 889 FunctionCallee AsanSetShadowFunc[0x100] = {}; 890 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 891 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 892 893 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 894 struct AllocaPoisonCall { 895 IntrinsicInst *InsBefore; 896 AllocaInst *AI; 897 uint64_t Size; 898 bool DoPoison; 899 }; 900 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 901 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 902 bool HasUntracedLifetimeIntrinsic = false; 903 904 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 905 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 906 AllocaInst *DynamicAllocaLayout = nullptr; 907 IntrinsicInst *LocalEscapeCall = nullptr; 908 909 // Maps Value to an AllocaInst from which the Value is originated. 910 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 911 AllocaForValueMapTy AllocaForValue; 912 913 bool HasNonEmptyInlineAsm = false; 914 bool HasReturnsTwiceCall = false; 915 std::unique_ptr<CallInst> EmptyInlineAsm; 916 917 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 918 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 919 C(ASan.C), IntptrTy(ASan.IntptrTy), 920 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 921 StackAlignment(1 << Mapping.Scale), 922 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 923 924 bool runOnFunction() { 925 if (!ClStack) return false; 926 927 if (ClRedzoneByvalArgs) 928 copyArgsPassedByValToAllocas(); 929 930 // Collect alloca, ret, lifetime instructions etc. 931 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 932 933 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 934 935 initializeCallbacks(*F.getParent()); 936 937 if (HasUntracedLifetimeIntrinsic) { 938 // If there are lifetime intrinsics which couldn't be traced back to an 939 // alloca, we may not know exactly when a variable enters scope, and 940 // therefore should "fail safe" by not poisoning them. 941 StaticAllocaPoisonCallVec.clear(); 942 DynamicAllocaPoisonCallVec.clear(); 943 } 944 945 processDynamicAllocas(); 946 processStaticAllocas(); 947 948 if (ClDebugStack) { 949 LLVM_DEBUG(dbgs() << F); 950 } 951 return true; 952 } 953 954 // Arguments marked with the "byval" attribute are implicitly copied without 955 // using an alloca instruction. To produce redzones for those arguments, we 956 // copy them a second time into memory allocated with an alloca instruction. 957 void copyArgsPassedByValToAllocas(); 958 959 // Finds all Alloca instructions and puts 960 // poisoned red zones around all of them. 961 // Then unpoison everything back before the function returns. 962 void processStaticAllocas(); 963 void processDynamicAllocas(); 964 965 void createDynamicAllocasInitStorage(); 966 967 // ----------------------- Visitors. 968 /// Collect all Ret instructions. 969 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 970 971 /// Collect all Resume instructions. 972 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 973 974 /// Collect all CatchReturnInst instructions. 975 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 976 977 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 978 Value *SavedStack) { 979 IRBuilder<> IRB(InstBefore); 980 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 981 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 982 // need to adjust extracted SP to compute the address of the most recent 983 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 984 // this purpose. 985 if (!isa<ReturnInst>(InstBefore)) { 986 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 987 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 988 {IntptrTy}); 989 990 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 991 992 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 993 DynamicAreaOffset); 994 } 995 996 IRB.CreateCall( 997 AsanAllocasUnpoisonFunc, 998 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 999 } 1000 1001 // Unpoison dynamic allocas redzones. 1002 void unpoisonDynamicAllocas() { 1003 for (auto &Ret : RetVec) 1004 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1005 1006 for (auto &StackRestoreInst : StackRestoreVec) 1007 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1008 StackRestoreInst->getOperand(0)); 1009 } 1010 1011 // Deploy and poison redzones around dynamic alloca call. To do this, we 1012 // should replace this call with another one with changed parameters and 1013 // replace all its uses with new address, so 1014 // addr = alloca type, old_size, align 1015 // is replaced by 1016 // new_size = (old_size + additional_size) * sizeof(type) 1017 // tmp = alloca i8, new_size, max(align, 32) 1018 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1019 // Additional_size is added to make new memory allocation contain not only 1020 // requested memory, but also left, partial and right redzones. 1021 void handleDynamicAllocaCall(AllocaInst *AI); 1022 1023 /// Collect Alloca instructions we want (and can) handle. 1024 void visitAllocaInst(AllocaInst &AI) { 1025 if (!ASan.isInterestingAlloca(AI)) { 1026 if (AI.isStaticAlloca()) { 1027 // Skip over allocas that are present *before* the first instrumented 1028 // alloca, we don't want to move those around. 1029 if (AllocaVec.empty()) 1030 return; 1031 1032 StaticAllocasToMoveUp.push_back(&AI); 1033 } 1034 return; 1035 } 1036 1037 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1038 if (!AI.isStaticAlloca()) 1039 DynamicAllocaVec.push_back(&AI); 1040 else 1041 AllocaVec.push_back(&AI); 1042 } 1043 1044 /// Collect lifetime intrinsic calls to check for use-after-scope 1045 /// errors. 1046 void visitIntrinsicInst(IntrinsicInst &II) { 1047 Intrinsic::ID ID = II.getIntrinsicID(); 1048 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1049 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1050 if (!ASan.UseAfterScope) 1051 return; 1052 if (!II.isLifetimeStartOrEnd()) 1053 return; 1054 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1055 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1056 // If size argument is undefined, don't do anything. 1057 if (Size->isMinusOne()) return; 1058 // Check that size doesn't saturate uint64_t and can 1059 // be stored in IntptrTy. 1060 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1061 if (SizeValue == ~0ULL || 1062 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1063 return; 1064 // Find alloca instruction that corresponds to llvm.lifetime argument. 1065 AllocaInst *AI = 1066 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue); 1067 if (!AI) { 1068 HasUntracedLifetimeIntrinsic = true; 1069 return; 1070 } 1071 // We're interested only in allocas we can handle. 1072 if (!ASan.isInterestingAlloca(*AI)) 1073 return; 1074 bool DoPoison = (ID == Intrinsic::lifetime_end); 1075 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1076 if (AI->isStaticAlloca()) 1077 StaticAllocaPoisonCallVec.push_back(APC); 1078 else if (ClInstrumentDynamicAllocas) 1079 DynamicAllocaPoisonCallVec.push_back(APC); 1080 } 1081 1082 void visitCallBase(CallBase &CB) { 1083 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1084 HasNonEmptyInlineAsm |= CI->isInlineAsm() && 1085 !CI->isIdenticalTo(EmptyInlineAsm.get()) && 1086 &CB != ASan.LocalDynamicShadow; 1087 HasReturnsTwiceCall |= CI->canReturnTwice(); 1088 } 1089 } 1090 1091 // ---------------------- Helpers. 1092 void initializeCallbacks(Module &M); 1093 1094 // Copies bytes from ShadowBytes into shadow memory for indexes where 1095 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1096 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1097 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1098 IRBuilder<> &IRB, Value *ShadowBase); 1099 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1100 size_t Begin, size_t End, IRBuilder<> &IRB, 1101 Value *ShadowBase); 1102 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1103 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1104 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1105 1106 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1107 1108 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1109 bool Dynamic); 1110 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1111 Instruction *ThenTerm, Value *ValueIfFalse); 1112 }; 1113 1114 } // end anonymous namespace 1115 1116 void LocationMetadata::parse(MDNode *MDN) { 1117 assert(MDN->getNumOperands() == 3); 1118 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1119 Filename = DIFilename->getString(); 1120 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1121 ColumnNo = 1122 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1123 } 1124 1125 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1126 // we want to sanitize instead and reading this metadata on each pass over a 1127 // function instead of reading module level metadata at first. 1128 GlobalsMetadata::GlobalsMetadata(Module &M) { 1129 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1130 if (!Globals) 1131 return; 1132 for (auto MDN : Globals->operands()) { 1133 // Metadata node contains the global and the fields of "Entry". 1134 assert(MDN->getNumOperands() == 5); 1135 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1136 // The optimizer may optimize away a global entirely. 1137 if (!V) 1138 continue; 1139 auto *StrippedV = V->stripPointerCasts(); 1140 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1141 if (!GV) 1142 continue; 1143 // We can already have an entry for GV if it was merged with another 1144 // global. 1145 Entry &E = Entries[GV]; 1146 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1147 E.SourceLoc.parse(Loc); 1148 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1149 E.Name = Name->getString(); 1150 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1151 E.IsDynInit |= IsDynInit->isOne(); 1152 ConstantInt *IsBlacklisted = 1153 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1154 E.IsBlacklisted |= IsBlacklisted->isOne(); 1155 } 1156 } 1157 1158 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1159 1160 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1161 ModuleAnalysisManager &AM) { 1162 return GlobalsMetadata(M); 1163 } 1164 1165 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1166 bool UseAfterScope) 1167 : CompileKernel(CompileKernel), Recover(Recover), 1168 UseAfterScope(UseAfterScope) {} 1169 1170 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1171 AnalysisManager<Function> &AM) { 1172 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1173 Module &M = *F.getParent(); 1174 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1175 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1176 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1177 if (Sanitizer.instrumentFunction(F, TLI)) 1178 return PreservedAnalyses::none(); 1179 return PreservedAnalyses::all(); 1180 } 1181 1182 report_fatal_error( 1183 "The ASanGlobalsMetadataAnalysis is required to run before " 1184 "AddressSanitizer can run"); 1185 return PreservedAnalyses::all(); 1186 } 1187 1188 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1189 bool Recover, 1190 bool UseGlobalGC, 1191 bool UseOdrIndicator) 1192 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1193 UseOdrIndicator(UseOdrIndicator) {} 1194 1195 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1196 AnalysisManager<Module> &AM) { 1197 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1198 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1199 UseGlobalGC, UseOdrIndicator); 1200 if (Sanitizer.instrumentModule(M)) 1201 return PreservedAnalyses::none(); 1202 return PreservedAnalyses::all(); 1203 } 1204 1205 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1206 "Read metadata to mark which globals should be instrumented " 1207 "when running ASan.", 1208 false, true) 1209 1210 char AddressSanitizerLegacyPass::ID = 0; 1211 1212 INITIALIZE_PASS_BEGIN( 1213 AddressSanitizerLegacyPass, "asan", 1214 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1215 false) 1216 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1217 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1218 INITIALIZE_PASS_END( 1219 AddressSanitizerLegacyPass, "asan", 1220 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1221 false) 1222 1223 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1224 bool Recover, 1225 bool UseAfterScope) { 1226 assert(!CompileKernel || Recover); 1227 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1228 } 1229 1230 char ModuleAddressSanitizerLegacyPass::ID = 0; 1231 1232 INITIALIZE_PASS( 1233 ModuleAddressSanitizerLegacyPass, "asan-module", 1234 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1235 "ModulePass", 1236 false, false) 1237 1238 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1239 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1240 assert(!CompileKernel || Recover); 1241 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1242 UseGlobalsGC, UseOdrIndicator); 1243 } 1244 1245 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1246 size_t Res = countTrailingZeros(TypeSize / 8); 1247 assert(Res < kNumberOfAccessSizes); 1248 return Res; 1249 } 1250 1251 /// Create a global describing a source location. 1252 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1253 LocationMetadata MD) { 1254 Constant *LocData[] = { 1255 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1256 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1257 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1258 }; 1259 auto LocStruct = ConstantStruct::getAnon(LocData); 1260 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1261 GlobalValue::PrivateLinkage, LocStruct, 1262 kAsanGenPrefix); 1263 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1264 return GV; 1265 } 1266 1267 /// Check if \p G has been created by a trusted compiler pass. 1268 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1269 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1270 if (G->getName().startswith("llvm.")) 1271 return true; 1272 1273 // Do not instrument asan globals. 1274 if (G->getName().startswith(kAsanGenPrefix) || 1275 G->getName().startswith(kSanCovGenPrefix) || 1276 G->getName().startswith(kODRGenPrefix)) 1277 return true; 1278 1279 // Do not instrument gcov counter arrays. 1280 if (G->getName() == "__llvm_gcov_ctr") 1281 return true; 1282 1283 return false; 1284 } 1285 1286 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1287 // Shadow >> scale 1288 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1289 if (Mapping.Offset == 0) return Shadow; 1290 // (Shadow >> scale) | offset 1291 Value *ShadowBase; 1292 if (LocalDynamicShadow) 1293 ShadowBase = LocalDynamicShadow; 1294 else 1295 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1296 if (Mapping.OrShadowOffset) 1297 return IRB.CreateOr(Shadow, ShadowBase); 1298 else 1299 return IRB.CreateAdd(Shadow, ShadowBase); 1300 } 1301 1302 // Instrument memset/memmove/memcpy 1303 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1304 IRBuilder<> IRB(MI); 1305 if (isa<MemTransferInst>(MI)) { 1306 IRB.CreateCall( 1307 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1308 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1309 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1310 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1311 } else if (isa<MemSetInst>(MI)) { 1312 IRB.CreateCall( 1313 AsanMemset, 1314 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1315 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1316 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1317 } 1318 MI->eraseFromParent(); 1319 } 1320 1321 /// Check if we want (and can) handle this alloca. 1322 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1323 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1324 1325 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1326 return PreviouslySeenAllocaInfo->getSecond(); 1327 1328 bool IsInteresting = 1329 (AI.getAllocatedType()->isSized() && 1330 // alloca() may be called with 0 size, ignore it. 1331 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1332 // We are only interested in allocas not promotable to registers. 1333 // Promotable allocas are common under -O0. 1334 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1335 // inalloca allocas are not treated as static, and we don't want 1336 // dynamic alloca instrumentation for them as well. 1337 !AI.isUsedWithInAlloca() && 1338 // swifterror allocas are register promoted by ISel 1339 !AI.isSwiftError()); 1340 1341 ProcessedAllocas[&AI] = IsInteresting; 1342 return IsInteresting; 1343 } 1344 1345 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1346 // Do not instrument acesses from different address spaces; we cannot deal 1347 // with them. 1348 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1349 if (PtrTy->getPointerAddressSpace() != 0) 1350 return true; 1351 1352 // Ignore swifterror addresses. 1353 // swifterror memory addresses are mem2reg promoted by instruction 1354 // selection. As such they cannot have regular uses like an instrumentation 1355 // function and it makes no sense to track them as memory. 1356 if (Ptr->isSwiftError()) 1357 return true; 1358 1359 // Treat memory accesses to promotable allocas as non-interesting since they 1360 // will not cause memory violations. This greatly speeds up the instrumented 1361 // executable at -O0. 1362 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1363 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1364 return true; 1365 1366 return false; 1367 } 1368 1369 void AddressSanitizer::getInterestingMemoryOperands( 1370 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1371 // Skip memory accesses inserted by another instrumentation. 1372 if (I->hasMetadata("nosanitize")) 1373 return; 1374 1375 // Do not instrument the load fetching the dynamic shadow address. 1376 if (LocalDynamicShadow == I) 1377 return; 1378 1379 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1380 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1381 return; 1382 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1383 LI->getType(), LI->getAlignment()); 1384 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1385 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1386 return; 1387 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1388 SI->getValueOperand()->getType(), 1389 SI->getAlignment()); 1390 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1391 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1392 return; 1393 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1394 RMW->getValOperand()->getType(), 0); 1395 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1396 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1397 return; 1398 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1399 XCHG->getCompareOperand()->getType(), 0); 1400 } else if (auto CI = dyn_cast<CallInst>(I)) { 1401 auto *F = CI->getCalledFunction(); 1402 if (F && (F->getName().startswith("llvm.masked.load.") || 1403 F->getName().startswith("llvm.masked.store."))) { 1404 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1405 // Masked store has an initial operand for the value. 1406 unsigned OpOffset = IsWrite ? 1 : 0; 1407 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1408 return; 1409 1410 auto BasePtr = CI->getOperand(OpOffset); 1411 if (ignoreAccess(BasePtr)) 1412 return; 1413 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1414 unsigned Alignment = 1; 1415 // Otherwise no alignment guarantees. We probably got Undef. 1416 if (auto AlignmentConstant = 1417 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1418 Alignment = (unsigned)AlignmentConstant->getZExtValue(); 1419 Value *Mask = CI->getOperand(2 + OpOffset); 1420 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1421 } else { 1422 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { 1423 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1424 ignoreAccess(CI->getArgOperand(ArgNo))) 1425 continue; 1426 Type *Ty = CI->getParamByValType(ArgNo); 1427 Interesting.emplace_back(I, ArgNo, false, Ty, 1); 1428 } 1429 } 1430 } 1431 } 1432 1433 static bool isPointerOperand(Value *V) { 1434 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1435 } 1436 1437 // This is a rough heuristic; it may cause both false positives and 1438 // false negatives. The proper implementation requires cooperation with 1439 // the frontend. 1440 static bool isInterestingPointerComparison(Instruction *I) { 1441 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1442 if (!Cmp->isRelational()) 1443 return false; 1444 } else { 1445 return false; 1446 } 1447 return isPointerOperand(I->getOperand(0)) && 1448 isPointerOperand(I->getOperand(1)); 1449 } 1450 1451 // This is a rough heuristic; it may cause both false positives and 1452 // false negatives. The proper implementation requires cooperation with 1453 // the frontend. 1454 static bool isInterestingPointerSubtraction(Instruction *I) { 1455 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1456 if (BO->getOpcode() != Instruction::Sub) 1457 return false; 1458 } else { 1459 return false; 1460 } 1461 return isPointerOperand(I->getOperand(0)) && 1462 isPointerOperand(I->getOperand(1)); 1463 } 1464 1465 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1466 // If a global variable does not have dynamic initialization we don't 1467 // have to instrument it. However, if a global does not have initializer 1468 // at all, we assume it has dynamic initializer (in other TU). 1469 // 1470 // FIXME: Metadata should be attched directly to the global directly instead 1471 // of being added to llvm.asan.globals. 1472 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1473 } 1474 1475 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1476 Instruction *I) { 1477 IRBuilder<> IRB(I); 1478 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1479 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1480 for (Value *&i : Param) { 1481 if (i->getType()->isPointerTy()) 1482 i = IRB.CreatePointerCast(i, IntptrTy); 1483 } 1484 IRB.CreateCall(F, Param); 1485 } 1486 1487 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1488 Instruction *InsertBefore, Value *Addr, 1489 unsigned Alignment, unsigned Granularity, 1490 uint32_t TypeSize, bool IsWrite, 1491 Value *SizeArgument, bool UseCalls, 1492 uint32_t Exp) { 1493 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1494 // if the data is properly aligned. 1495 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1496 TypeSize == 128) && 1497 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1498 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1499 nullptr, UseCalls, Exp); 1500 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1501 IsWrite, nullptr, UseCalls, Exp); 1502 } 1503 1504 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1505 const DataLayout &DL, Type *IntptrTy, 1506 Value *Mask, Instruction *I, 1507 Value *Addr, unsigned Alignment, 1508 unsigned Granularity, uint32_t TypeSize, 1509 bool IsWrite, Value *SizeArgument, 1510 bool UseCalls, uint32_t Exp) { 1511 auto *VTy = 1512 cast<VectorType>(cast<PointerType>(Addr->getType())->getElementType()); 1513 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1514 unsigned Num = VTy->getNumElements(); 1515 auto Zero = ConstantInt::get(IntptrTy, 0); 1516 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1517 Value *InstrumentedAddress = nullptr; 1518 Instruction *InsertBefore = I; 1519 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1520 // dyn_cast as we might get UndefValue 1521 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1522 if (Masked->isZero()) 1523 // Mask is constant false, so no instrumentation needed. 1524 continue; 1525 // If we have a true or undef value, fall through to doInstrumentAddress 1526 // with InsertBefore == I 1527 } 1528 } else { 1529 IRBuilder<> IRB(I); 1530 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1531 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1532 InsertBefore = ThenTerm; 1533 } 1534 1535 IRBuilder<> IRB(InsertBefore); 1536 InstrumentedAddress = 1537 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1538 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1539 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1540 UseCalls, Exp); 1541 } 1542 } 1543 1544 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1545 InterestingMemoryOperand &O, bool UseCalls, 1546 const DataLayout &DL) { 1547 Value *Addr = O.getPtr(); 1548 1549 // Optimization experiments. 1550 // The experiments can be used to evaluate potential optimizations that remove 1551 // instrumentation (assess false negatives). Instead of completely removing 1552 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1553 // experiments that want to remove instrumentation of this instruction). 1554 // If Exp is non-zero, this pass will emit special calls into runtime 1555 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1556 // make runtime terminate the program in a special way (with a different 1557 // exit status). Then you run the new compiler on a buggy corpus, collect 1558 // the special terminations (ideally, you don't see them at all -- no false 1559 // negatives) and make the decision on the optimization. 1560 uint32_t Exp = ClForceExperiment; 1561 1562 if (ClOpt && ClOptGlobals) { 1563 // If initialization order checking is disabled, a simple access to a 1564 // dynamically initialized global is always valid. 1565 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1566 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1567 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1568 NumOptimizedAccessesToGlobalVar++; 1569 return; 1570 } 1571 } 1572 1573 if (ClOpt && ClOptStack) { 1574 // A direct inbounds access to a stack variable is always valid. 1575 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1576 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1577 NumOptimizedAccessesToStackVar++; 1578 return; 1579 } 1580 } 1581 1582 if (O.IsWrite) 1583 NumInstrumentedWrites++; 1584 else 1585 NumInstrumentedReads++; 1586 1587 unsigned Granularity = 1 << Mapping.Scale; 1588 if (O.MaybeMask) { 1589 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1590 Addr, O.Alignment, Granularity, O.TypeSize, 1591 O.IsWrite, nullptr, UseCalls, Exp); 1592 } else { 1593 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1594 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1595 Exp); 1596 } 1597 } 1598 1599 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1600 Value *Addr, bool IsWrite, 1601 size_t AccessSizeIndex, 1602 Value *SizeArgument, 1603 uint32_t Exp) { 1604 IRBuilder<> IRB(InsertBefore); 1605 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1606 CallInst *Call = nullptr; 1607 if (SizeArgument) { 1608 if (Exp == 0) 1609 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1610 {Addr, SizeArgument}); 1611 else 1612 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1613 {Addr, SizeArgument, ExpVal}); 1614 } else { 1615 if (Exp == 0) 1616 Call = 1617 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1618 else 1619 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1620 {Addr, ExpVal}); 1621 } 1622 1623 // We don't do Call->setDoesNotReturn() because the BB already has 1624 // UnreachableInst at the end. 1625 // This EmptyAsm is required to avoid callback merge. 1626 IRB.CreateCall(EmptyAsm, {}); 1627 return Call; 1628 } 1629 1630 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1631 Value *ShadowValue, 1632 uint32_t TypeSize) { 1633 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1634 // Addr & (Granularity - 1) 1635 Value *LastAccessedByte = 1636 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1637 // (Addr & (Granularity - 1)) + size - 1 1638 if (TypeSize / 8 > 1) 1639 LastAccessedByte = IRB.CreateAdd( 1640 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1641 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1642 LastAccessedByte = 1643 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1644 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1645 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1646 } 1647 1648 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1649 Instruction *InsertBefore, Value *Addr, 1650 uint32_t TypeSize, bool IsWrite, 1651 Value *SizeArgument, bool UseCalls, 1652 uint32_t Exp) { 1653 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1654 1655 IRBuilder<> IRB(InsertBefore); 1656 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1657 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1658 1659 if (UseCalls) { 1660 if (Exp == 0) 1661 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1662 AddrLong); 1663 else 1664 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1665 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1666 return; 1667 } 1668 1669 if (IsMyriad) { 1670 // Strip the cache bit and do range check. 1671 // AddrLong &= ~kMyriadCacheBitMask32 1672 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1673 // Tag = AddrLong >> kMyriadTagShift 1674 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1675 // Tag == kMyriadDDRTag 1676 Value *TagCheck = 1677 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1678 1679 Instruction *TagCheckTerm = 1680 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1681 MDBuilder(*C).createBranchWeights(1, 100000)); 1682 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1683 IRB.SetInsertPoint(TagCheckTerm); 1684 InsertBefore = TagCheckTerm; 1685 } 1686 1687 Type *ShadowTy = 1688 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1689 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1690 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1691 Value *CmpVal = Constant::getNullValue(ShadowTy); 1692 Value *ShadowValue = 1693 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1694 1695 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1696 size_t Granularity = 1ULL << Mapping.Scale; 1697 Instruction *CrashTerm = nullptr; 1698 1699 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1700 // We use branch weights for the slow path check, to indicate that the slow 1701 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1702 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1703 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1704 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1705 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1706 IRB.SetInsertPoint(CheckTerm); 1707 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1708 if (Recover) { 1709 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1710 } else { 1711 BasicBlock *CrashBlock = 1712 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1713 CrashTerm = new UnreachableInst(*C, CrashBlock); 1714 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1715 ReplaceInstWithInst(CheckTerm, NewTerm); 1716 } 1717 } else { 1718 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1719 } 1720 1721 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1722 AccessSizeIndex, SizeArgument, Exp); 1723 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1724 } 1725 1726 // Instrument unusual size or unusual alignment. 1727 // We can not do it with a single check, so we do 1-byte check for the first 1728 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1729 // to report the actual access size. 1730 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1731 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1732 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1733 IRBuilder<> IRB(InsertBefore); 1734 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1735 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1736 if (UseCalls) { 1737 if (Exp == 0) 1738 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1739 {AddrLong, Size}); 1740 else 1741 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1742 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1743 } else { 1744 Value *LastByte = IRB.CreateIntToPtr( 1745 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1746 Addr->getType()); 1747 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1748 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1749 } 1750 } 1751 1752 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1753 GlobalValue *ModuleName) { 1754 // Set up the arguments to our poison/unpoison functions. 1755 IRBuilder<> IRB(&GlobalInit.front(), 1756 GlobalInit.front().getFirstInsertionPt()); 1757 1758 // Add a call to poison all external globals before the given function starts. 1759 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1760 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1761 1762 // Add calls to unpoison all globals before each return instruction. 1763 for (auto &BB : GlobalInit.getBasicBlockList()) 1764 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1765 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1766 } 1767 1768 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1769 Module &M, GlobalValue *ModuleName) { 1770 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1771 if (!GV) 1772 return; 1773 1774 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1775 if (!CA) 1776 return; 1777 1778 for (Use &OP : CA->operands()) { 1779 if (isa<ConstantAggregateZero>(OP)) continue; 1780 ConstantStruct *CS = cast<ConstantStruct>(OP); 1781 1782 // Must have a function or null ptr. 1783 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1784 if (F->getName() == kAsanModuleCtorName) continue; 1785 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1786 // Don't instrument CTORs that will run before asan.module_ctor. 1787 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1788 continue; 1789 poisonOneInitializer(*F, ModuleName); 1790 } 1791 } 1792 } 1793 1794 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) { 1795 Type *Ty = G->getValueType(); 1796 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1797 1798 // FIXME: Metadata should be attched directly to the global directly instead 1799 // of being added to llvm.asan.globals. 1800 if (GlobalsMD.get(G).IsBlacklisted) return false; 1801 if (!Ty->isSized()) return false; 1802 if (!G->hasInitializer()) return false; 1803 // Only instrument globals of default address spaces 1804 if (G->getAddressSpace()) return false; 1805 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1806 // Two problems with thread-locals: 1807 // - The address of the main thread's copy can't be computed at link-time. 1808 // - Need to poison all copies, not just the main thread's one. 1809 if (G->isThreadLocal()) return false; 1810 // For now, just ignore this Global if the alignment is large. 1811 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1812 1813 // For non-COFF targets, only instrument globals known to be defined by this 1814 // TU. 1815 // FIXME: We can instrument comdat globals on ELF if we are using the 1816 // GC-friendly metadata scheme. 1817 if (!TargetTriple.isOSBinFormatCOFF()) { 1818 if (!G->hasExactDefinition() || G->hasComdat()) 1819 return false; 1820 } else { 1821 // On COFF, don't instrument non-ODR linkages. 1822 if (G->isInterposable()) 1823 return false; 1824 } 1825 1826 // If a comdat is present, it must have a selection kind that implies ODR 1827 // semantics: no duplicates, any, or exact match. 1828 if (Comdat *C = G->getComdat()) { 1829 switch (C->getSelectionKind()) { 1830 case Comdat::Any: 1831 case Comdat::ExactMatch: 1832 case Comdat::NoDuplicates: 1833 break; 1834 case Comdat::Largest: 1835 case Comdat::SameSize: 1836 return false; 1837 } 1838 } 1839 1840 if (G->hasSection()) { 1841 StringRef Section = G->getSection(); 1842 1843 // Globals from llvm.metadata aren't emitted, do not instrument them. 1844 if (Section == "llvm.metadata") return false; 1845 // Do not instrument globals from special LLVM sections. 1846 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1847 1848 // Do not instrument function pointers to initialization and termination 1849 // routines: dynamic linker will not properly handle redzones. 1850 if (Section.startswith(".preinit_array") || 1851 Section.startswith(".init_array") || 1852 Section.startswith(".fini_array")) { 1853 return false; 1854 } 1855 1856 // On COFF, if the section name contains '$', it is highly likely that the 1857 // user is using section sorting to create an array of globals similar to 1858 // the way initialization callbacks are registered in .init_array and 1859 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1860 // to such globals is counterproductive, because the intent is that they 1861 // will form an array, and out-of-bounds accesses are expected. 1862 // See https://github.com/google/sanitizers/issues/305 1863 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1864 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1865 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1866 << *G << "\n"); 1867 return false; 1868 } 1869 1870 if (TargetTriple.isOSBinFormatMachO()) { 1871 StringRef ParsedSegment, ParsedSection; 1872 unsigned TAA = 0, StubSize = 0; 1873 bool TAAParsed; 1874 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1875 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1876 assert(ErrorCode.empty() && "Invalid section specifier."); 1877 1878 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1879 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1880 // them. 1881 if (ParsedSegment == "__OBJC" || 1882 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1883 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1884 return false; 1885 } 1886 // See https://github.com/google/sanitizers/issues/32 1887 // Constant CFString instances are compiled in the following way: 1888 // -- the string buffer is emitted into 1889 // __TEXT,__cstring,cstring_literals 1890 // -- the constant NSConstantString structure referencing that buffer 1891 // is placed into __DATA,__cfstring 1892 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1893 // Moreover, it causes the linker to crash on OS X 10.7 1894 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1895 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1896 return false; 1897 } 1898 // The linker merges the contents of cstring_literals and removes the 1899 // trailing zeroes. 1900 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1901 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1902 return false; 1903 } 1904 } 1905 } 1906 1907 return true; 1908 } 1909 1910 // On Mach-O platforms, we emit global metadata in a separate section of the 1911 // binary in order to allow the linker to properly dead strip. This is only 1912 // supported on recent versions of ld64. 1913 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1914 if (!TargetTriple.isOSBinFormatMachO()) 1915 return false; 1916 1917 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1918 return true; 1919 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1920 return true; 1921 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1922 return true; 1923 1924 return false; 1925 } 1926 1927 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1928 switch (TargetTriple.getObjectFormat()) { 1929 case Triple::COFF: return ".ASAN$GL"; 1930 case Triple::ELF: return "asan_globals"; 1931 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1932 case Triple::Wasm: 1933 case Triple::XCOFF: 1934 report_fatal_error( 1935 "ModuleAddressSanitizer not implemented for object file format."); 1936 case Triple::UnknownObjectFormat: 1937 break; 1938 } 1939 llvm_unreachable("unsupported object format"); 1940 } 1941 1942 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1943 IRBuilder<> IRB(*C); 1944 1945 // Declare our poisoning and unpoisoning functions. 1946 AsanPoisonGlobals = 1947 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1948 AsanUnpoisonGlobals = 1949 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1950 1951 // Declare functions that register/unregister globals. 1952 AsanRegisterGlobals = M.getOrInsertFunction( 1953 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1954 AsanUnregisterGlobals = M.getOrInsertFunction( 1955 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1956 1957 // Declare the functions that find globals in a shared object and then invoke 1958 // the (un)register function on them. 1959 AsanRegisterImageGlobals = M.getOrInsertFunction( 1960 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1961 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1962 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1963 1964 AsanRegisterElfGlobals = 1965 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1966 IntptrTy, IntptrTy, IntptrTy); 1967 AsanUnregisterElfGlobals = 1968 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1969 IntptrTy, IntptrTy, IntptrTy); 1970 } 1971 1972 // Put the metadata and the instrumented global in the same group. This ensures 1973 // that the metadata is discarded if the instrumented global is discarded. 1974 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 1975 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1976 Module &M = *G->getParent(); 1977 Comdat *C = G->getComdat(); 1978 if (!C) { 1979 if (!G->hasName()) { 1980 // If G is unnamed, it must be internal. Give it an artificial name 1981 // so we can put it in a comdat. 1982 assert(G->hasLocalLinkage()); 1983 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1984 } 1985 1986 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 1987 std::string Name = std::string(G->getName()); 1988 Name += InternalSuffix; 1989 C = M.getOrInsertComdat(Name); 1990 } else { 1991 C = M.getOrInsertComdat(G->getName()); 1992 } 1993 1994 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 1995 // linkage to internal linkage so that a symbol table entry is emitted. This 1996 // is necessary in order to create the comdat group. 1997 if (TargetTriple.isOSBinFormatCOFF()) { 1998 C->setSelectionKind(Comdat::NoDuplicates); 1999 if (G->hasPrivateLinkage()) 2000 G->setLinkage(GlobalValue::InternalLinkage); 2001 } 2002 G->setComdat(C); 2003 } 2004 2005 assert(G->hasComdat()); 2006 Metadata->setComdat(G->getComdat()); 2007 } 2008 2009 // Create a separate metadata global and put it in the appropriate ASan 2010 // global registration section. 2011 GlobalVariable * 2012 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2013 StringRef OriginalName) { 2014 auto Linkage = TargetTriple.isOSBinFormatMachO() 2015 ? GlobalVariable::InternalLinkage 2016 : GlobalVariable::PrivateLinkage; 2017 GlobalVariable *Metadata = new GlobalVariable( 2018 M, Initializer->getType(), false, Linkage, Initializer, 2019 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2020 Metadata->setSection(getGlobalMetadataSection()); 2021 return Metadata; 2022 } 2023 2024 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2025 AsanDtorFunction = 2026 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 2027 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 2028 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2029 2030 return ReturnInst::Create(*C, AsanDtorBB); 2031 } 2032 2033 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2034 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2035 ArrayRef<Constant *> MetadataInitializers) { 2036 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2037 auto &DL = M.getDataLayout(); 2038 2039 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2040 Constant *Initializer = MetadataInitializers[i]; 2041 GlobalVariable *G = ExtendedGlobals[i]; 2042 GlobalVariable *Metadata = 2043 CreateMetadataGlobal(M, Initializer, G->getName()); 2044 2045 // The MSVC linker always inserts padding when linking incrementally. We 2046 // cope with that by aligning each struct to its size, which must be a power 2047 // of two. 2048 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2049 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2050 "global metadata will not be padded appropriately"); 2051 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2052 2053 SetComdatForGlobalMetadata(G, Metadata, ""); 2054 } 2055 } 2056 2057 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2058 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2059 ArrayRef<Constant *> MetadataInitializers, 2060 const std::string &UniqueModuleId) { 2061 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2062 2063 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2064 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2065 GlobalVariable *G = ExtendedGlobals[i]; 2066 GlobalVariable *Metadata = 2067 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2068 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2069 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2070 MetadataGlobals[i] = Metadata; 2071 2072 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2073 } 2074 2075 // Update llvm.compiler.used, adding the new metadata globals. This is 2076 // needed so that during LTO these variables stay alive. 2077 if (!MetadataGlobals.empty()) 2078 appendToCompilerUsed(M, MetadataGlobals); 2079 2080 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2081 // to look up the loaded image that contains it. Second, we can store in it 2082 // whether registration has already occurred, to prevent duplicate 2083 // registration. 2084 // 2085 // Common linkage ensures that there is only one global per shared library. 2086 GlobalVariable *RegisteredFlag = new GlobalVariable( 2087 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2088 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2089 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2090 2091 // Create start and stop symbols. 2092 GlobalVariable *StartELFMetadata = new GlobalVariable( 2093 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2094 "__start_" + getGlobalMetadataSection()); 2095 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2096 GlobalVariable *StopELFMetadata = new GlobalVariable( 2097 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2098 "__stop_" + getGlobalMetadataSection()); 2099 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2100 2101 // Create a call to register the globals with the runtime. 2102 IRB.CreateCall(AsanRegisterElfGlobals, 2103 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2104 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2105 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2106 2107 // We also need to unregister globals at the end, e.g., when a shared library 2108 // gets closed. 2109 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2110 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2111 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2112 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2113 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2114 } 2115 2116 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2117 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2118 ArrayRef<Constant *> MetadataInitializers) { 2119 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2120 2121 // On recent Mach-O platforms, use a structure which binds the liveness of 2122 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2123 // created to be added to llvm.compiler.used 2124 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2125 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2126 2127 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2128 Constant *Initializer = MetadataInitializers[i]; 2129 GlobalVariable *G = ExtendedGlobals[i]; 2130 GlobalVariable *Metadata = 2131 CreateMetadataGlobal(M, Initializer, G->getName()); 2132 2133 // On recent Mach-O platforms, we emit the global metadata in a way that 2134 // allows the linker to properly strip dead globals. 2135 auto LivenessBinder = 2136 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2137 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2138 GlobalVariable *Liveness = new GlobalVariable( 2139 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2140 Twine("__asan_binder_") + G->getName()); 2141 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2142 LivenessGlobals[i] = Liveness; 2143 } 2144 2145 // Update llvm.compiler.used, adding the new liveness globals. This is 2146 // needed so that during LTO these variables stay alive. The alternative 2147 // would be to have the linker handling the LTO symbols, but libLTO 2148 // current API does not expose access to the section for each symbol. 2149 if (!LivenessGlobals.empty()) 2150 appendToCompilerUsed(M, LivenessGlobals); 2151 2152 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2153 // to look up the loaded image that contains it. Second, we can store in it 2154 // whether registration has already occurred, to prevent duplicate 2155 // registration. 2156 // 2157 // common linkage ensures that there is only one global per shared library. 2158 GlobalVariable *RegisteredFlag = new GlobalVariable( 2159 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2160 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2161 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2162 2163 IRB.CreateCall(AsanRegisterImageGlobals, 2164 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2165 2166 // We also need to unregister globals at the end, e.g., when a shared library 2167 // gets closed. 2168 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2169 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2170 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2171 } 2172 2173 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2174 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2175 ArrayRef<Constant *> MetadataInitializers) { 2176 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2177 unsigned N = ExtendedGlobals.size(); 2178 assert(N > 0); 2179 2180 // On platforms that don't have a custom metadata section, we emit an array 2181 // of global metadata structures. 2182 ArrayType *ArrayOfGlobalStructTy = 2183 ArrayType::get(MetadataInitializers[0]->getType(), N); 2184 auto AllGlobals = new GlobalVariable( 2185 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2186 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2187 if (Mapping.Scale > 3) 2188 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2189 2190 IRB.CreateCall(AsanRegisterGlobals, 2191 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2192 ConstantInt::get(IntptrTy, N)}); 2193 2194 // We also need to unregister globals at the end, e.g., when a shared library 2195 // gets closed. 2196 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2197 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2198 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2199 ConstantInt::get(IntptrTy, N)}); 2200 } 2201 2202 // This function replaces all global variables with new variables that have 2203 // trailing redzones. It also creates a function that poisons 2204 // redzones and inserts this function into llvm.global_ctors. 2205 // Sets *CtorComdat to true if the global registration code emitted into the 2206 // asan constructor is comdat-compatible. 2207 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2208 bool *CtorComdat) { 2209 *CtorComdat = false; 2210 2211 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2212 2213 for (auto &G : M.globals()) { 2214 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 2215 } 2216 2217 size_t n = GlobalsToChange.size(); 2218 if (n == 0) { 2219 *CtorComdat = true; 2220 return false; 2221 } 2222 2223 auto &DL = M.getDataLayout(); 2224 2225 // A global is described by a structure 2226 // size_t beg; 2227 // size_t size; 2228 // size_t size_with_redzone; 2229 // const char *name; 2230 // const char *module_name; 2231 // size_t has_dynamic_init; 2232 // void *source_location; 2233 // size_t odr_indicator; 2234 // We initialize an array of such structures and pass it to a run-time call. 2235 StructType *GlobalStructTy = 2236 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2237 IntptrTy, IntptrTy, IntptrTy); 2238 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2239 SmallVector<Constant *, 16> Initializers(n); 2240 2241 bool HasDynamicallyInitializedGlobals = false; 2242 2243 // We shouldn't merge same module names, as this string serves as unique 2244 // module ID in runtime. 2245 GlobalVariable *ModuleName = createPrivateGlobalForString( 2246 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2247 2248 for (size_t i = 0; i < n; i++) { 2249 static const uint64_t kMaxGlobalRedzone = 1 << 18; 2250 GlobalVariable *G = GlobalsToChange[i]; 2251 2252 // FIXME: Metadata should be attched directly to the global directly instead 2253 // of being added to llvm.asan.globals. 2254 auto MD = GlobalsMD.get(G); 2255 StringRef NameForGlobal = G->getName(); 2256 // Create string holding the global name (use global name from metadata 2257 // if it's available, otherwise just write the name of global variable). 2258 GlobalVariable *Name = createPrivateGlobalForString( 2259 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2260 /*AllowMerging*/ true, kAsanGenPrefix); 2261 2262 Type *Ty = G->getValueType(); 2263 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2264 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 2265 // MinRZ <= RZ <= kMaxGlobalRedzone 2266 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 2267 uint64_t RZ = std::max( 2268 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 2269 uint64_t RightRedzoneSize = RZ; 2270 // Round up to MinRZ 2271 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 2272 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 2273 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2274 2275 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2276 Constant *NewInitializer = ConstantStruct::get( 2277 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2278 2279 // Create a new global variable with enough space for a redzone. 2280 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2281 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2282 Linkage = GlobalValue::InternalLinkage; 2283 GlobalVariable *NewGlobal = 2284 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2285 "", G, G->getThreadLocalMode()); 2286 NewGlobal->copyAttributesFrom(G); 2287 NewGlobal->setComdat(G->getComdat()); 2288 NewGlobal->setAlignment(MaybeAlign(MinRZ)); 2289 // Don't fold globals with redzones. ODR violation detector and redzone 2290 // poisoning implicitly creates a dependence on the global's address, so it 2291 // is no longer valid for it to be marked unnamed_addr. 2292 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2293 2294 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2295 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2296 G->isConstant()) { 2297 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2298 if (Seq && Seq->isCString()) 2299 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2300 } 2301 2302 // Transfer the debug info. The payload starts at offset zero so we can 2303 // copy the debug info over as is. 2304 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2305 G->getDebugInfo(GVs); 2306 for (auto *GV : GVs) 2307 NewGlobal->addDebugInfo(GV); 2308 2309 Value *Indices2[2]; 2310 Indices2[0] = IRB.getInt32(0); 2311 Indices2[1] = IRB.getInt32(0); 2312 2313 G->replaceAllUsesWith( 2314 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2315 NewGlobal->takeName(G); 2316 G->eraseFromParent(); 2317 NewGlobals[i] = NewGlobal; 2318 2319 Constant *SourceLoc; 2320 if (!MD.SourceLoc.empty()) { 2321 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2322 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2323 } else { 2324 SourceLoc = ConstantInt::get(IntptrTy, 0); 2325 } 2326 2327 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2328 GlobalValue *InstrumentedGlobal = NewGlobal; 2329 2330 bool CanUsePrivateAliases = 2331 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2332 TargetTriple.isOSBinFormatWasm(); 2333 if (CanUsePrivateAliases && UsePrivateAlias) { 2334 // Create local alias for NewGlobal to avoid crash on ODR between 2335 // instrumented and non-instrumented libraries. 2336 InstrumentedGlobal = 2337 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2338 } 2339 2340 // ODR should not happen for local linkage. 2341 if (NewGlobal->hasLocalLinkage()) { 2342 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2343 IRB.getInt8PtrTy()); 2344 } else if (UseOdrIndicator) { 2345 // With local aliases, we need to provide another externally visible 2346 // symbol __odr_asan_XXX to detect ODR violation. 2347 auto *ODRIndicatorSym = 2348 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2349 Constant::getNullValue(IRB.getInt8Ty()), 2350 kODRGenPrefix + NameForGlobal, nullptr, 2351 NewGlobal->getThreadLocalMode()); 2352 2353 // Set meaningful attributes for indicator symbol. 2354 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2355 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2356 ODRIndicatorSym->setAlignment(Align(1)); 2357 ODRIndicator = ODRIndicatorSym; 2358 } 2359 2360 Constant *Initializer = ConstantStruct::get( 2361 GlobalStructTy, 2362 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2363 ConstantInt::get(IntptrTy, SizeInBytes), 2364 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2365 ConstantExpr::getPointerCast(Name, IntptrTy), 2366 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2367 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2368 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2369 2370 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2371 2372 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2373 2374 Initializers[i] = Initializer; 2375 } 2376 2377 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2378 // ConstantMerge'ing them. 2379 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2380 for (size_t i = 0; i < n; i++) { 2381 GlobalVariable *G = NewGlobals[i]; 2382 if (G->getName().empty()) continue; 2383 GlobalsToAddToUsedList.push_back(G); 2384 } 2385 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2386 2387 std::string ELFUniqueModuleId = 2388 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2389 : ""; 2390 2391 if (!ELFUniqueModuleId.empty()) { 2392 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2393 *CtorComdat = true; 2394 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2395 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2396 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2397 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2398 } else { 2399 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2400 } 2401 2402 // Create calls for poisoning before initializers run and unpoisoning after. 2403 if (HasDynamicallyInitializedGlobals) 2404 createInitializerPoisonCalls(M, ModuleName); 2405 2406 LLVM_DEBUG(dbgs() << M); 2407 return true; 2408 } 2409 2410 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2411 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2412 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2413 int Version = 8; 2414 // 32-bit Android is one version ahead because of the switch to dynamic 2415 // shadow. 2416 Version += (LongSize == 32 && isAndroid); 2417 return Version; 2418 } 2419 2420 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2421 initializeCallbacks(M); 2422 2423 if (CompileKernel) 2424 return false; 2425 2426 // Create a module constructor. A destructor is created lazily because not all 2427 // platforms, and not all modules need it. 2428 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2429 std::string VersionCheckName = 2430 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2431 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 2432 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, 2433 /*InitArgs=*/{}, VersionCheckName); 2434 2435 bool CtorComdat = true; 2436 // TODO(glider): temporarily disabled globals instrumentation for KASan. 2437 if (ClGlobals) { 2438 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2439 InstrumentGlobals(IRB, M, &CtorComdat); 2440 } 2441 2442 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2443 2444 // Put the constructor and destructor in comdat if both 2445 // (1) global instrumentation is not TU-specific 2446 // (2) target is ELF. 2447 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2448 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2449 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2450 if (AsanDtorFunction) { 2451 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2452 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2453 } 2454 } else { 2455 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2456 if (AsanDtorFunction) 2457 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2458 } 2459 2460 return true; 2461 } 2462 2463 void AddressSanitizer::initializeCallbacks(Module &M) { 2464 IRBuilder<> IRB(*C); 2465 // Create __asan_report* callbacks. 2466 // IsWrite, TypeSize and Exp are encoded in the function name. 2467 for (int Exp = 0; Exp < 2; Exp++) { 2468 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2469 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2470 const std::string ExpStr = Exp ? "exp_" : ""; 2471 const std::string EndingStr = Recover ? "_noabort" : ""; 2472 2473 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2474 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2475 if (Exp) { 2476 Type *ExpType = Type::getInt32Ty(*C); 2477 Args2.push_back(ExpType); 2478 Args1.push_back(ExpType); 2479 } 2480 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2481 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2482 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2483 2484 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2485 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2486 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2487 2488 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2489 AccessSizeIndex++) { 2490 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2491 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2492 M.getOrInsertFunction( 2493 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2494 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2495 2496 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2497 M.getOrInsertFunction( 2498 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2499 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2500 } 2501 } 2502 } 2503 2504 const std::string MemIntrinCallbackPrefix = 2505 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2506 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2507 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2508 IRB.getInt8PtrTy(), IntptrTy); 2509 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2510 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2511 IRB.getInt8PtrTy(), IntptrTy); 2512 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2513 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2514 IRB.getInt32Ty(), IntptrTy); 2515 2516 AsanHandleNoReturnFunc = 2517 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2518 2519 AsanPtrCmpFunction = 2520 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2521 AsanPtrSubFunction = 2522 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2523 // We insert an empty inline asm after __asan_report* to avoid callback merge. 2524 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 2525 StringRef(""), StringRef(""), 2526 /*hasSideEffects=*/true); 2527 if (Mapping.InGlobal) 2528 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2529 ArrayType::get(IRB.getInt8Ty(), 0)); 2530 } 2531 2532 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2533 // For each NSObject descendant having a +load method, this method is invoked 2534 // by the ObjC runtime before any of the static constructors is called. 2535 // Therefore we need to instrument such methods with a call to __asan_init 2536 // at the beginning in order to initialize our runtime before any access to 2537 // the shadow memory. 2538 // We cannot just ignore these methods, because they may call other 2539 // instrumented functions. 2540 if (F.getName().find(" load]") != std::string::npos) { 2541 FunctionCallee AsanInitFunction = 2542 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2543 IRBuilder<> IRB(&F.front(), F.front().begin()); 2544 IRB.CreateCall(AsanInitFunction, {}); 2545 return true; 2546 } 2547 return false; 2548 } 2549 2550 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2551 // Generate code only when dynamic addressing is needed. 2552 if (Mapping.Offset != kDynamicShadowSentinel) 2553 return; 2554 2555 IRBuilder<> IRB(&F.front().front()); 2556 if (Mapping.InGlobal) { 2557 if (ClWithIfuncSuppressRemat) { 2558 // An empty inline asm with input reg == output reg. 2559 // An opaque pointer-to-int cast, basically. 2560 InlineAsm *Asm = InlineAsm::get( 2561 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2562 StringRef(""), StringRef("=r,0"), 2563 /*hasSideEffects=*/false); 2564 LocalDynamicShadow = 2565 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2566 } else { 2567 LocalDynamicShadow = 2568 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2569 } 2570 } else { 2571 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2572 kAsanShadowMemoryDynamicAddress, IntptrTy); 2573 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2574 } 2575 } 2576 2577 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2578 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2579 // to it as uninteresting. This assumes we haven't started processing allocas 2580 // yet. This check is done up front because iterating the use list in 2581 // isInterestingAlloca would be algorithmically slower. 2582 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2583 2584 // Try to get the declaration of llvm.localescape. If it's not in the module, 2585 // we can exit early. 2586 if (!F.getParent()->getFunction("llvm.localescape")) return; 2587 2588 // Look for a call to llvm.localescape call in the entry block. It can't be in 2589 // any other block. 2590 for (Instruction &I : F.getEntryBlock()) { 2591 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2592 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2593 // We found a call. Mark all the allocas passed in as uninteresting. 2594 for (Value *Arg : II->arg_operands()) { 2595 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2596 assert(AI && AI->isStaticAlloca() && 2597 "non-static alloca arg to localescape"); 2598 ProcessedAllocas[AI] = false; 2599 } 2600 break; 2601 } 2602 } 2603 } 2604 2605 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2606 bool ShouldInstrument = 2607 ClDebugMin < 0 || ClDebugMax < 0 || 2608 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2609 Instrumented++; 2610 return !ShouldInstrument; 2611 } 2612 2613 bool AddressSanitizer::instrumentFunction(Function &F, 2614 const TargetLibraryInfo *TLI) { 2615 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2616 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2617 if (F.getName().startswith("__asan_")) return false; 2618 2619 bool FunctionModified = false; 2620 2621 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2622 // This function needs to be called even if the function body is not 2623 // instrumented. 2624 if (maybeInsertAsanInitAtFunctionEntry(F)) 2625 FunctionModified = true; 2626 2627 // Leave if the function doesn't need instrumentation. 2628 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2629 2630 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2631 2632 initializeCallbacks(*F.getParent()); 2633 2634 FunctionStateRAII CleanupObj(this); 2635 2636 maybeInsertDynamicShadowAtFunctionEntry(F); 2637 2638 // We can't instrument allocas used with llvm.localescape. Only static allocas 2639 // can be passed to that intrinsic. 2640 markEscapedLocalAllocas(F); 2641 2642 // We want to instrument every address only once per basic block (unless there 2643 // are calls between uses). 2644 SmallPtrSet<Value *, 16> TempsToInstrument; 2645 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2646 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2647 SmallVector<Instruction *, 8> NoReturnCalls; 2648 SmallVector<BasicBlock *, 16> AllBlocks; 2649 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2650 int NumAllocas = 0; 2651 2652 // Fill the set of memory operations to instrument. 2653 for (auto &BB : F) { 2654 AllBlocks.push_back(&BB); 2655 TempsToInstrument.clear(); 2656 int NumInsnsPerBB = 0; 2657 for (auto &Inst : BB) { 2658 if (LooksLikeCodeInBug11395(&Inst)) return false; 2659 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2660 getInterestingMemoryOperands(&Inst, InterestingOperands); 2661 2662 if (!InterestingOperands.empty()) { 2663 for (auto &Operand : InterestingOperands) { 2664 if (ClOpt && ClOptSameTemp) { 2665 Value *Ptr = Operand.getPtr(); 2666 // If we have a mask, skip instrumentation if we've already 2667 // instrumented the full object. But don't add to TempsToInstrument 2668 // because we might get another load/store with a different mask. 2669 if (Operand.MaybeMask) { 2670 if (TempsToInstrument.count(Ptr)) 2671 continue; // We've seen this (whole) temp in the current BB. 2672 } else { 2673 if (!TempsToInstrument.insert(Ptr).second) 2674 continue; // We've seen this temp in the current BB. 2675 } 2676 } 2677 OperandsToInstrument.push_back(Operand); 2678 NumInsnsPerBB++; 2679 } 2680 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2681 isInterestingPointerComparison(&Inst)) || 2682 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2683 isInterestingPointerSubtraction(&Inst))) { 2684 PointerComparisonsOrSubtracts.push_back(&Inst); 2685 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2686 // ok, take it. 2687 IntrinToInstrument.push_back(MI); 2688 NumInsnsPerBB++; 2689 } else { 2690 if (isa<AllocaInst>(Inst)) NumAllocas++; 2691 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2692 // A call inside BB. 2693 TempsToInstrument.clear(); 2694 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2695 NoReturnCalls.push_back(CB); 2696 } 2697 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2698 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2699 } 2700 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2701 } 2702 } 2703 2704 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2705 OperandsToInstrument.size() + IntrinToInstrument.size() > 2706 (unsigned)ClInstrumentationWithCallsThreshold); 2707 const DataLayout &DL = F.getParent()->getDataLayout(); 2708 ObjectSizeOpts ObjSizeOpts; 2709 ObjSizeOpts.RoundToAlign = true; 2710 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2711 2712 // Instrument. 2713 int NumInstrumented = 0; 2714 for (auto &Operand : OperandsToInstrument) { 2715 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2716 instrumentMop(ObjSizeVis, Operand, UseCalls, 2717 F.getParent()->getDataLayout()); 2718 FunctionModified = true; 2719 } 2720 for (auto Inst : IntrinToInstrument) { 2721 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2722 instrumentMemIntrinsic(Inst); 2723 FunctionModified = true; 2724 } 2725 2726 FunctionStackPoisoner FSP(F, *this); 2727 bool ChangedStack = FSP.runOnFunction(); 2728 2729 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2730 // See e.g. https://github.com/google/sanitizers/issues/37 2731 for (auto CI : NoReturnCalls) { 2732 IRBuilder<> IRB(CI); 2733 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2734 } 2735 2736 for (auto Inst : PointerComparisonsOrSubtracts) { 2737 instrumentPointerComparisonOrSubtraction(Inst); 2738 FunctionModified = true; 2739 } 2740 2741 if (ChangedStack || !NoReturnCalls.empty()) 2742 FunctionModified = true; 2743 2744 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2745 << F << "\n"); 2746 2747 return FunctionModified; 2748 } 2749 2750 // Workaround for bug 11395: we don't want to instrument stack in functions 2751 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2752 // FIXME: remove once the bug 11395 is fixed. 2753 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2754 if (LongSize != 32) return false; 2755 CallInst *CI = dyn_cast<CallInst>(I); 2756 if (!CI || !CI->isInlineAsm()) return false; 2757 if (CI->getNumArgOperands() <= 5) return false; 2758 // We have inline assembly with quite a few arguments. 2759 return true; 2760 } 2761 2762 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2763 IRBuilder<> IRB(*C); 2764 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2765 std::string Suffix = itostr(i); 2766 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2767 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2768 AsanStackFreeFunc[i] = 2769 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2770 IRB.getVoidTy(), IntptrTy, IntptrTy); 2771 } 2772 if (ASan.UseAfterScope) { 2773 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2774 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2775 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2776 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2777 } 2778 2779 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2780 std::ostringstream Name; 2781 Name << kAsanSetShadowPrefix; 2782 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2783 AsanSetShadowFunc[Val] = 2784 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2785 } 2786 2787 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2788 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2789 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2790 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2791 } 2792 2793 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2794 ArrayRef<uint8_t> ShadowBytes, 2795 size_t Begin, size_t End, 2796 IRBuilder<> &IRB, 2797 Value *ShadowBase) { 2798 if (Begin >= End) 2799 return; 2800 2801 const size_t LargestStoreSizeInBytes = 2802 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2803 2804 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2805 2806 // Poison given range in shadow using larges store size with out leading and 2807 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2808 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2809 // middle of a store. 2810 for (size_t i = Begin; i < End;) { 2811 if (!ShadowMask[i]) { 2812 assert(!ShadowBytes[i]); 2813 ++i; 2814 continue; 2815 } 2816 2817 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2818 // Fit store size into the range. 2819 while (StoreSizeInBytes > End - i) 2820 StoreSizeInBytes /= 2; 2821 2822 // Minimize store size by trimming trailing zeros. 2823 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2824 while (j <= StoreSizeInBytes / 2) 2825 StoreSizeInBytes /= 2; 2826 } 2827 2828 uint64_t Val = 0; 2829 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2830 if (IsLittleEndian) 2831 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2832 else 2833 Val = (Val << 8) | ShadowBytes[i + j]; 2834 } 2835 2836 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2837 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2838 IRB.CreateAlignedStore( 2839 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2840 Align(1)); 2841 2842 i += StoreSizeInBytes; 2843 } 2844 } 2845 2846 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2847 ArrayRef<uint8_t> ShadowBytes, 2848 IRBuilder<> &IRB, Value *ShadowBase) { 2849 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2850 } 2851 2852 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2853 ArrayRef<uint8_t> ShadowBytes, 2854 size_t Begin, size_t End, 2855 IRBuilder<> &IRB, Value *ShadowBase) { 2856 assert(ShadowMask.size() == ShadowBytes.size()); 2857 size_t Done = Begin; 2858 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2859 if (!ShadowMask[i]) { 2860 assert(!ShadowBytes[i]); 2861 continue; 2862 } 2863 uint8_t Val = ShadowBytes[i]; 2864 if (!AsanSetShadowFunc[Val]) 2865 continue; 2866 2867 // Skip same values. 2868 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2869 } 2870 2871 if (j - i >= ClMaxInlinePoisoningSize) { 2872 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2873 IRB.CreateCall(AsanSetShadowFunc[Val], 2874 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2875 ConstantInt::get(IntptrTy, j - i)}); 2876 Done = j; 2877 } 2878 } 2879 2880 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2881 } 2882 2883 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2884 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2885 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2886 assert(LocalStackSize <= kMaxStackMallocSize); 2887 uint64_t MaxSize = kMinStackMallocSize; 2888 for (int i = 0;; i++, MaxSize *= 2) 2889 if (LocalStackSize <= MaxSize) return i; 2890 llvm_unreachable("impossible LocalStackSize"); 2891 } 2892 2893 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2894 Instruction *CopyInsertPoint = &F.front().front(); 2895 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2896 // Insert after the dynamic shadow location is determined 2897 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2898 assert(CopyInsertPoint); 2899 } 2900 IRBuilder<> IRB(CopyInsertPoint); 2901 const DataLayout &DL = F.getParent()->getDataLayout(); 2902 for (Argument &Arg : F.args()) { 2903 if (Arg.hasByValAttr()) { 2904 Type *Ty = Arg.getType()->getPointerElementType(); 2905 const Align Alignment = 2906 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2907 2908 AllocaInst *AI = IRB.CreateAlloca( 2909 Ty, nullptr, 2910 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2911 ".byval"); 2912 AI->setAlignment(Alignment); 2913 Arg.replaceAllUsesWith(AI); 2914 2915 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2916 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2917 } 2918 } 2919 } 2920 2921 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2922 Value *ValueIfTrue, 2923 Instruction *ThenTerm, 2924 Value *ValueIfFalse) { 2925 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2926 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2927 PHI->addIncoming(ValueIfFalse, CondBlock); 2928 BasicBlock *ThenBlock = ThenTerm->getParent(); 2929 PHI->addIncoming(ValueIfTrue, ThenBlock); 2930 return PHI; 2931 } 2932 2933 Value *FunctionStackPoisoner::createAllocaForLayout( 2934 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2935 AllocaInst *Alloca; 2936 if (Dynamic) { 2937 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2938 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2939 "MyAlloca"); 2940 } else { 2941 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2942 nullptr, "MyAlloca"); 2943 assert(Alloca->isStaticAlloca()); 2944 } 2945 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2946 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 2947 Alloca->setAlignment(MaybeAlign(FrameAlignment)); 2948 return IRB.CreatePointerCast(Alloca, IntptrTy); 2949 } 2950 2951 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2952 BasicBlock &FirstBB = *F.begin(); 2953 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2954 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2955 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2956 DynamicAllocaLayout->setAlignment(Align(32)); 2957 } 2958 2959 void FunctionStackPoisoner::processDynamicAllocas() { 2960 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2961 assert(DynamicAllocaPoisonCallVec.empty()); 2962 return; 2963 } 2964 2965 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2966 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2967 assert(APC.InsBefore); 2968 assert(APC.AI); 2969 assert(ASan.isInterestingAlloca(*APC.AI)); 2970 assert(!APC.AI->isStaticAlloca()); 2971 2972 IRBuilder<> IRB(APC.InsBefore); 2973 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2974 // Dynamic allocas will be unpoisoned unconditionally below in 2975 // unpoisonDynamicAllocas. 2976 // Flag that we need unpoison static allocas. 2977 } 2978 2979 // Handle dynamic allocas. 2980 createDynamicAllocasInitStorage(); 2981 for (auto &AI : DynamicAllocaVec) 2982 handleDynamicAllocaCall(AI); 2983 unpoisonDynamicAllocas(); 2984 } 2985 2986 /// Collect instructions in the entry block after \p InsBefore which initialize 2987 /// permanent storage for a function argument. These instructions must remain in 2988 /// the entry block so that uninitialized values do not appear in backtraces. An 2989 /// added benefit is that this conserves spill slots. This does not move stores 2990 /// before instrumented / "interesting" allocas. 2991 static void findStoresToUninstrumentedArgAllocas( 2992 AddressSanitizer &ASan, Instruction &InsBefore, 2993 SmallVectorImpl<Instruction *> &InitInsts) { 2994 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 2995 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 2996 // Argument initialization looks like: 2997 // 1) store <Argument>, <Alloca> OR 2998 // 2) <CastArgument> = cast <Argument> to ... 2999 // store <CastArgument> to <Alloca> 3000 // Do not consider any other kind of instruction. 3001 // 3002 // Note: This covers all known cases, but may not be exhaustive. An 3003 // alternative to pattern-matching stores is to DFS over all Argument uses: 3004 // this might be more general, but is probably much more complicated. 3005 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3006 continue; 3007 if (auto *Store = dyn_cast<StoreInst>(It)) { 3008 // The store destination must be an alloca that isn't interesting for 3009 // ASan to instrument. These are moved up before InsBefore, and they're 3010 // not interesting because allocas for arguments can be mem2reg'd. 3011 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3012 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3013 continue; 3014 3015 Value *Val = Store->getValueOperand(); 3016 bool IsDirectArgInit = isa<Argument>(Val); 3017 bool IsArgInitViaCast = 3018 isa<CastInst>(Val) && 3019 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3020 // Check that the cast appears directly before the store. Otherwise 3021 // moving the cast before InsBefore may break the IR. 3022 Val == It->getPrevNonDebugInstruction(); 3023 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3024 if (!IsArgInit) 3025 continue; 3026 3027 if (IsArgInitViaCast) 3028 InitInsts.push_back(cast<Instruction>(Val)); 3029 InitInsts.push_back(Store); 3030 continue; 3031 } 3032 3033 // Do not reorder past unknown instructions: argument initialization should 3034 // only involve casts and stores. 3035 return; 3036 } 3037 } 3038 3039 void FunctionStackPoisoner::processStaticAllocas() { 3040 if (AllocaVec.empty()) { 3041 assert(StaticAllocaPoisonCallVec.empty()); 3042 return; 3043 } 3044 3045 int StackMallocIdx = -1; 3046 DebugLoc EntryDebugLocation; 3047 if (auto SP = F.getSubprogram()) 3048 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 3049 3050 Instruction *InsBefore = AllocaVec[0]; 3051 IRBuilder<> IRB(InsBefore); 3052 3053 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3054 // debug info is broken, because only entry-block allocas are treated as 3055 // regular stack slots. 3056 auto InsBeforeB = InsBefore->getParent(); 3057 assert(InsBeforeB == &F.getEntryBlock()); 3058 for (auto *AI : StaticAllocasToMoveUp) 3059 if (AI->getParent() == InsBeforeB) 3060 AI->moveBefore(InsBefore); 3061 3062 // Move stores of arguments into entry-block allocas as well. This prevents 3063 // extra stack slots from being generated (to house the argument values until 3064 // they can be stored into the allocas). This also prevents uninitialized 3065 // values from being shown in backtraces. 3066 SmallVector<Instruction *, 8> ArgInitInsts; 3067 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3068 for (Instruction *ArgInitInst : ArgInitInsts) 3069 ArgInitInst->moveBefore(InsBefore); 3070 3071 // If we have a call to llvm.localescape, keep it in the entry block. 3072 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3073 3074 SmallVector<ASanStackVariableDescription, 16> SVD; 3075 SVD.reserve(AllocaVec.size()); 3076 for (AllocaInst *AI : AllocaVec) { 3077 ASanStackVariableDescription D = {AI->getName().data(), 3078 ASan.getAllocaSizeInBytes(*AI), 3079 0, 3080 AI->getAlignment(), 3081 AI, 3082 0, 3083 0}; 3084 SVD.push_back(D); 3085 } 3086 3087 // Minimal header size (left redzone) is 4 pointers, 3088 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3089 size_t Granularity = 1ULL << Mapping.Scale; 3090 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3091 const ASanStackFrameLayout &L = 3092 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3093 3094 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3095 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3096 for (auto &Desc : SVD) 3097 AllocaToSVDMap[Desc.AI] = &Desc; 3098 3099 // Update SVD with information from lifetime intrinsics. 3100 for (const auto &APC : StaticAllocaPoisonCallVec) { 3101 assert(APC.InsBefore); 3102 assert(APC.AI); 3103 assert(ASan.isInterestingAlloca(*APC.AI)); 3104 assert(APC.AI->isStaticAlloca()); 3105 3106 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3107 Desc.LifetimeSize = Desc.Size; 3108 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3109 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3110 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3111 if (unsigned Line = LifetimeLoc->getLine()) 3112 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3113 } 3114 } 3115 } 3116 3117 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3118 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3119 uint64_t LocalStackSize = L.FrameSize; 3120 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3121 LocalStackSize <= kMaxStackMallocSize; 3122 bool DoDynamicAlloca = ClDynamicAllocaStack; 3123 // Don't do dynamic alloca or stack malloc if: 3124 // 1) There is inline asm: too often it makes assumptions on which registers 3125 // are available. 3126 // 2) There is a returns_twice call (typically setjmp), which is 3127 // optimization-hostile, and doesn't play well with introduced indirect 3128 // register-relative calculation of local variable addresses. 3129 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3130 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3131 3132 Value *StaticAlloca = 3133 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3134 3135 Value *FakeStack; 3136 Value *LocalStackBase; 3137 Value *LocalStackBaseAlloca; 3138 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3139 3140 if (DoStackMalloc) { 3141 LocalStackBaseAlloca = 3142 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3143 // void *FakeStack = __asan_option_detect_stack_use_after_return 3144 // ? __asan_stack_malloc_N(LocalStackSize) 3145 // : nullptr; 3146 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3147 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3148 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3149 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3150 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3151 Constant::getNullValue(IRB.getInt32Ty())); 3152 Instruction *Term = 3153 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3154 IRBuilder<> IRBIf(Term); 3155 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3156 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3157 Value *FakeStackValue = 3158 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3159 ConstantInt::get(IntptrTy, LocalStackSize)); 3160 IRB.SetInsertPoint(InsBefore); 3161 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3162 ConstantInt::get(IntptrTy, 0)); 3163 3164 Value *NoFakeStack = 3165 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3166 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3167 IRBIf.SetInsertPoint(Term); 3168 Value *AllocaValue = 3169 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3170 3171 IRB.SetInsertPoint(InsBefore); 3172 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3173 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3174 DIExprFlags |= DIExpression::DerefBefore; 3175 } else { 3176 // void *FakeStack = nullptr; 3177 // void *LocalStackBase = alloca(LocalStackSize); 3178 FakeStack = ConstantInt::get(IntptrTy, 0); 3179 LocalStackBase = 3180 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3181 LocalStackBaseAlloca = LocalStackBase; 3182 } 3183 3184 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3185 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3186 // later passes and can result in dropped variable coverage in debug info. 3187 Value *LocalStackBaseAllocaPtr = 3188 isa<PtrToIntInst>(LocalStackBaseAlloca) 3189 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3190 : LocalStackBaseAlloca; 3191 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3192 "Variable descriptions relative to ASan stack base will be dropped"); 3193 3194 // Replace Alloca instructions with base+offset. 3195 for (const auto &Desc : SVD) { 3196 AllocaInst *AI = Desc.AI; 3197 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3198 Desc.Offset); 3199 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3200 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3201 AI->getType()); 3202 AI->replaceAllUsesWith(NewAllocaPtr); 3203 } 3204 3205 // The left-most redzone has enough space for at least 4 pointers. 3206 // Write the Magic value to redzone[0]. 3207 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3208 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3209 BasePlus0); 3210 // Write the frame description constant to redzone[1]. 3211 Value *BasePlus1 = IRB.CreateIntToPtr( 3212 IRB.CreateAdd(LocalStackBase, 3213 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3214 IntptrPtrTy); 3215 GlobalVariable *StackDescriptionGlobal = 3216 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3217 /*AllowMerging*/ true, kAsanGenPrefix); 3218 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3219 IRB.CreateStore(Description, BasePlus1); 3220 // Write the PC to redzone[2]. 3221 Value *BasePlus2 = IRB.CreateIntToPtr( 3222 IRB.CreateAdd(LocalStackBase, 3223 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3224 IntptrPtrTy); 3225 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3226 3227 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3228 3229 // Poison the stack red zones at the entry. 3230 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3231 // As mask we must use most poisoned case: red zones and after scope. 3232 // As bytes we can use either the same or just red zones only. 3233 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3234 3235 if (!StaticAllocaPoisonCallVec.empty()) { 3236 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3237 3238 // Poison static allocas near lifetime intrinsics. 3239 for (const auto &APC : StaticAllocaPoisonCallVec) { 3240 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3241 assert(Desc.Offset % L.Granularity == 0); 3242 size_t Begin = Desc.Offset / L.Granularity; 3243 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3244 3245 IRBuilder<> IRB(APC.InsBefore); 3246 copyToShadow(ShadowAfterScope, 3247 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3248 IRB, ShadowBase); 3249 } 3250 } 3251 3252 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3253 SmallVector<uint8_t, 64> ShadowAfterReturn; 3254 3255 // (Un)poison the stack before all ret instructions. 3256 for (auto Ret : RetVec) { 3257 IRBuilder<> IRBRet(Ret); 3258 // Mark the current frame as retired. 3259 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3260 BasePlus0); 3261 if (DoStackMalloc) { 3262 assert(StackMallocIdx >= 0); 3263 // if FakeStack != 0 // LocalStackBase == FakeStack 3264 // // In use-after-return mode, poison the whole stack frame. 3265 // if StackMallocIdx <= 4 3266 // // For small sizes inline the whole thing: 3267 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3268 // **SavedFlagPtr(FakeStack) = 0 3269 // else 3270 // __asan_stack_free_N(FakeStack, LocalStackSize) 3271 // else 3272 // <This is not a fake stack; unpoison the redzones> 3273 Value *Cmp = 3274 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3275 Instruction *ThenTerm, *ElseTerm; 3276 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3277 3278 IRBuilder<> IRBPoison(ThenTerm); 3279 if (StackMallocIdx <= 4) { 3280 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3281 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3282 kAsanStackUseAfterReturnMagic); 3283 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3284 ShadowBase); 3285 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3286 FakeStack, 3287 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3288 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3289 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3290 IRBPoison.CreateStore( 3291 Constant::getNullValue(IRBPoison.getInt8Ty()), 3292 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3293 } else { 3294 // For larger frames call __asan_stack_free_*. 3295 IRBPoison.CreateCall( 3296 AsanStackFreeFunc[StackMallocIdx], 3297 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3298 } 3299 3300 IRBuilder<> IRBElse(ElseTerm); 3301 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3302 } else { 3303 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3304 } 3305 } 3306 3307 // We are done. Remove the old unused alloca instructions. 3308 for (auto AI : AllocaVec) AI->eraseFromParent(); 3309 } 3310 3311 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3312 IRBuilder<> &IRB, bool DoPoison) { 3313 // For now just insert the call to ASan runtime. 3314 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3315 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3316 IRB.CreateCall( 3317 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3318 {AddrArg, SizeArg}); 3319 } 3320 3321 // Handling llvm.lifetime intrinsics for a given %alloca: 3322 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3323 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3324 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3325 // could be poisoned by previous llvm.lifetime.end instruction, as the 3326 // variable may go in and out of scope several times, e.g. in loops). 3327 // (3) if we poisoned at least one %alloca in a function, 3328 // unpoison the whole stack frame at function exit. 3329 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3330 IRBuilder<> IRB(AI); 3331 3332 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 3333 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3334 3335 Value *Zero = Constant::getNullValue(IntptrTy); 3336 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3337 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3338 3339 // Since we need to extend alloca with additional memory to locate 3340 // redzones, and OldSize is number of allocated blocks with 3341 // ElementSize size, get allocated memory size in bytes by 3342 // OldSize * ElementSize. 3343 const unsigned ElementSize = 3344 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3345 Value *OldSize = 3346 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3347 ConstantInt::get(IntptrTy, ElementSize)); 3348 3349 // PartialSize = OldSize % 32 3350 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3351 3352 // Misalign = kAllocaRzSize - PartialSize; 3353 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3354 3355 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3356 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3357 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3358 3359 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 3360 // Align is added to locate left redzone, PartialPadding for possible 3361 // partial redzone and kAllocaRzSize for right redzone respectively. 3362 Value *AdditionalChunkSize = IRB.CreateAdd( 3363 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 3364 3365 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3366 3367 // Insert new alloca with new NewSize and Align params. 3368 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3369 NewAlloca->setAlignment(MaybeAlign(Align)); 3370 3371 // NewAddress = Address + Align 3372 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3373 ConstantInt::get(IntptrTy, Align)); 3374 3375 // Insert __asan_alloca_poison call for new created alloca. 3376 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3377 3378 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3379 // for unpoisoning stuff. 3380 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3381 3382 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3383 3384 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3385 AI->replaceAllUsesWith(NewAddressPtr); 3386 3387 // We are done. Erase old alloca from parent. 3388 AI->eraseFromParent(); 3389 } 3390 3391 // isSafeAccess returns true if Addr is always inbounds with respect to its 3392 // base object. For example, it is a field access or an array access with 3393 // constant inbounds index. 3394 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3395 Value *Addr, uint64_t TypeSize) const { 3396 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3397 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3398 uint64_t Size = SizeOffset.first.getZExtValue(); 3399 int64_t Offset = SizeOffset.second.getSExtValue(); 3400 // Three checks are required to ensure safety: 3401 // . Offset >= 0 (since the offset is given from the base ptr) 3402 // . Size >= Offset (unsigned) 3403 // . Size - Offset >= NeededSize (unsigned) 3404 return Offset >= 0 && Size >= uint64_t(Offset) && 3405 Size - uint64_t(Offset) >= TypeSize / 8; 3406 } 3407