1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of AddressSanitizer, an address sanity checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/Utils/Local.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/BinaryFormat/MachO.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DIBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstVisitor.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/MC/MCSectionMachO.h" 64 #include "llvm/Pass.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/ScopedPrinter.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Instrumentation.h" 73 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/ModuleUtils.h" 76 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iomanip> 82 #include <limits> 83 #include <memory> 84 #include <sstream> 85 #include <string> 86 #include <tuple> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "asan" 91 92 static const uint64_t kDefaultShadowScale = 3; 93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 95 static const uint64_t kDynamicShadowSentinel = 96 std::numeric_limits<uint64_t>::max(); 97 static const uint64_t kIOSShadowOffset32 = 1ULL << 30; 98 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30; 99 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64; 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 109 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 111 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 112 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 113 114 // The shadow memory space is dynamically allocated. 115 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 116 117 static const size_t kMinStackMallocSize = 1 << 6; // 64B 118 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 119 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 120 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 121 122 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 123 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 124 static const uint64_t kAsanCtorAndDtorPriority = 1; 125 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 126 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 127 static const char *const kAsanUnregisterGlobalsName = 128 "__asan_unregister_globals"; 129 static const char *const kAsanRegisterImageGlobalsName = 130 "__asan_register_image_globals"; 131 static const char *const kAsanUnregisterImageGlobalsName = 132 "__asan_unregister_image_globals"; 133 static const char *const kAsanRegisterElfGlobalsName = 134 "__asan_register_elf_globals"; 135 static const char *const kAsanUnregisterElfGlobalsName = 136 "__asan_unregister_elf_globals"; 137 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 138 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 139 static const char *const kAsanInitName = "__asan_init"; 140 static const char *const kAsanVersionCheckNamePrefix = 141 "__asan_version_mismatch_check_v"; 142 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 143 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 144 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 145 static const int kMaxAsanStackMallocSizeClass = 10; 146 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 147 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 148 static const char *const kAsanGenPrefix = "__asan_gen_"; 149 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 150 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 151 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 152 static const char *const kAsanPoisonStackMemoryName = 153 "__asan_poison_stack_memory"; 154 static const char *const kAsanUnpoisonStackMemoryName = 155 "__asan_unpoison_stack_memory"; 156 157 // ASan version script has __asan_* wildcard. Triple underscore prevents a 158 // linker (gold) warning about attempting to export a local symbol. 159 static const char *const kAsanGlobalsRegisteredFlagName = 160 "___asan_globals_registered"; 161 162 static const char *const kAsanOptionDetectUseAfterReturn = 163 "__asan_option_detect_stack_use_after_return"; 164 165 static const char *const kAsanShadowMemoryDynamicAddress = 166 "__asan_shadow_memory_dynamic_address"; 167 168 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 169 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 170 171 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 172 static const size_t kNumberOfAccessSizes = 5; 173 174 static const unsigned kAllocaRzSize = 32; 175 176 // Command-line flags. 177 178 static cl::opt<bool> ClEnableKasan( 179 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 180 cl::Hidden, cl::init(false)); 181 182 static cl::opt<bool> ClRecover( 183 "asan-recover", 184 cl::desc("Enable recovery mode (continue-after-error)."), 185 cl::Hidden, cl::init(false)); 186 187 // This flag may need to be replaced with -f[no-]asan-reads. 188 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 189 cl::desc("instrument read instructions"), 190 cl::Hidden, cl::init(true)); 191 192 static cl::opt<bool> ClInstrumentWrites( 193 "asan-instrument-writes", cl::desc("instrument write instructions"), 194 cl::Hidden, cl::init(true)); 195 196 static cl::opt<bool> ClInstrumentAtomics( 197 "asan-instrument-atomics", 198 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 199 cl::init(true)); 200 201 static cl::opt<bool> ClAlwaysSlowPath( 202 "asan-always-slow-path", 203 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 204 cl::init(false)); 205 206 static cl::opt<bool> ClForceDynamicShadow( 207 "asan-force-dynamic-shadow", 208 cl::desc("Load shadow address into a local variable for each function"), 209 cl::Hidden, cl::init(false)); 210 211 static cl::opt<bool> 212 ClWithIfunc("asan-with-ifunc", 213 cl::desc("Access dynamic shadow through an ifunc global on " 214 "platforms that support this"), 215 cl::Hidden, cl::init(true)); 216 217 static cl::opt<bool> ClWithIfuncSuppressRemat( 218 "asan-with-ifunc-suppress-remat", 219 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 220 "it through inline asm in prologue."), 221 cl::Hidden, cl::init(true)); 222 223 // This flag limits the number of instructions to be instrumented 224 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 225 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 226 // set it to 10000. 227 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 228 "asan-max-ins-per-bb", cl::init(10000), 229 cl::desc("maximal number of instructions to instrument in any given BB"), 230 cl::Hidden); 231 232 // This flag may need to be replaced with -f[no]asan-stack. 233 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 234 cl::Hidden, cl::init(true)); 235 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 236 "asan-max-inline-poisoning-size", 237 cl::desc( 238 "Inline shadow poisoning for blocks up to the given size in bytes."), 239 cl::Hidden, cl::init(64)); 240 241 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 242 cl::desc("Check stack-use-after-return"), 243 cl::Hidden, cl::init(true)); 244 245 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 246 cl::desc("Create redzones for byval " 247 "arguments (extra copy " 248 "required)"), cl::Hidden, 249 cl::init(true)); 250 251 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 252 cl::desc("Check stack-use-after-scope"), 253 cl::Hidden, cl::init(false)); 254 255 // This flag may need to be replaced with -f[no]asan-globals. 256 static cl::opt<bool> ClGlobals("asan-globals", 257 cl::desc("Handle global objects"), cl::Hidden, 258 cl::init(true)); 259 260 static cl::opt<bool> ClInitializers("asan-initialization-order", 261 cl::desc("Handle C++ initializer order"), 262 cl::Hidden, cl::init(true)); 263 264 static cl::opt<bool> ClInvalidPointerPairs( 265 "asan-detect-invalid-pointer-pair", 266 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 267 cl::init(false)); 268 269 static cl::opt<unsigned> ClRealignStack( 270 "asan-realign-stack", 271 cl::desc("Realign stack to the value of this flag (power of two)"), 272 cl::Hidden, cl::init(32)); 273 274 static cl::opt<int> ClInstrumentationWithCallsThreshold( 275 "asan-instrumentation-with-call-threshold", 276 cl::desc( 277 "If the function being instrumented contains more than " 278 "this number of memory accesses, use callbacks instead of " 279 "inline checks (-1 means never use callbacks)."), 280 cl::Hidden, cl::init(7000)); 281 282 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 283 "asan-memory-access-callback-prefix", 284 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 285 cl::init("__asan_")); 286 287 static cl::opt<bool> 288 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 289 cl::desc("instrument dynamic allocas"), 290 cl::Hidden, cl::init(true)); 291 292 static cl::opt<bool> ClSkipPromotableAllocas( 293 "asan-skip-promotable-allocas", 294 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 295 cl::init(true)); 296 297 // These flags allow to change the shadow mapping. 298 // The shadow mapping looks like 299 // Shadow = (Mem >> scale) + offset 300 301 static cl::opt<int> ClMappingScale("asan-mapping-scale", 302 cl::desc("scale of asan shadow mapping"), 303 cl::Hidden, cl::init(0)); 304 305 static cl::opt<unsigned long long> ClMappingOffset( 306 "asan-mapping-offset", 307 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden, 308 cl::init(0)); 309 310 // Optimization flags. Not user visible, used mostly for testing 311 // and benchmarking the tool. 312 313 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 314 cl::Hidden, cl::init(true)); 315 316 static cl::opt<bool> ClOptSameTemp( 317 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 318 cl::Hidden, cl::init(true)); 319 320 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 321 cl::desc("Don't instrument scalar globals"), 322 cl::Hidden, cl::init(true)); 323 324 static cl::opt<bool> ClOptStack( 325 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 326 cl::Hidden, cl::init(false)); 327 328 static cl::opt<bool> ClDynamicAllocaStack( 329 "asan-stack-dynamic-alloca", 330 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 331 cl::init(true)); 332 333 static cl::opt<uint32_t> ClForceExperiment( 334 "asan-force-experiment", 335 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 336 cl::init(0)); 337 338 static cl::opt<bool> 339 ClUsePrivateAliasForGlobals("asan-use-private-alias", 340 cl::desc("Use private aliases for global" 341 " variables"), 342 cl::Hidden, cl::init(false)); 343 344 static cl::opt<bool> 345 ClUseGlobalsGC("asan-globals-live-support", 346 cl::desc("Use linker features to support dead " 347 "code stripping of globals"), 348 cl::Hidden, cl::init(true)); 349 350 // This is on by default even though there is a bug in gold: 351 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 352 static cl::opt<bool> 353 ClWithComdat("asan-with-comdat", 354 cl::desc("Place ASan constructors in comdat sections"), 355 cl::Hidden, cl::init(true)); 356 357 // Debug flags. 358 359 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 360 cl::init(0)); 361 362 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 363 cl::Hidden, cl::init(0)); 364 365 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 366 cl::desc("Debug func")); 367 368 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 369 cl::Hidden, cl::init(-1)); 370 371 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 372 cl::Hidden, cl::init(-1)); 373 374 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 375 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 376 STATISTIC(NumOptimizedAccessesToGlobalVar, 377 "Number of optimized accesses to global vars"); 378 STATISTIC(NumOptimizedAccessesToStackVar, 379 "Number of optimized accesses to stack vars"); 380 381 namespace { 382 383 /// Frontend-provided metadata for source location. 384 struct LocationMetadata { 385 StringRef Filename; 386 int LineNo = 0; 387 int ColumnNo = 0; 388 389 LocationMetadata() = default; 390 391 bool empty() const { return Filename.empty(); } 392 393 void parse(MDNode *MDN) { 394 assert(MDN->getNumOperands() == 3); 395 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 396 Filename = DIFilename->getString(); 397 LineNo = 398 mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 399 ColumnNo = 400 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 401 } 402 }; 403 404 /// Frontend-provided metadata for global variables. 405 class GlobalsMetadata { 406 public: 407 struct Entry { 408 LocationMetadata SourceLoc; 409 StringRef Name; 410 bool IsDynInit = false; 411 bool IsBlacklisted = false; 412 413 Entry() = default; 414 }; 415 416 GlobalsMetadata() = default; 417 418 void reset() { 419 inited_ = false; 420 Entries.clear(); 421 } 422 423 void init(Module &M) { 424 assert(!inited_); 425 inited_ = true; 426 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 427 if (!Globals) return; 428 for (auto MDN : Globals->operands()) { 429 // Metadata node contains the global and the fields of "Entry". 430 assert(MDN->getNumOperands() == 5); 431 auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0)); 432 // The optimizer may optimize away a global entirely. 433 if (!GV) continue; 434 // We can already have an entry for GV if it was merged with another 435 // global. 436 Entry &E = Entries[GV]; 437 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 438 E.SourceLoc.parse(Loc); 439 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 440 E.Name = Name->getString(); 441 ConstantInt *IsDynInit = 442 mdconst::extract<ConstantInt>(MDN->getOperand(3)); 443 E.IsDynInit |= IsDynInit->isOne(); 444 ConstantInt *IsBlacklisted = 445 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 446 E.IsBlacklisted |= IsBlacklisted->isOne(); 447 } 448 } 449 450 /// Returns metadata entry for a given global. 451 Entry get(GlobalVariable *G) const { 452 auto Pos = Entries.find(G); 453 return (Pos != Entries.end()) ? Pos->second : Entry(); 454 } 455 456 private: 457 bool inited_ = false; 458 DenseMap<GlobalVariable *, Entry> Entries; 459 }; 460 461 /// This struct defines the shadow mapping using the rule: 462 /// shadow = (mem >> Scale) ADD-or-OR Offset. 463 /// If InGlobal is true, then 464 /// extern char __asan_shadow[]; 465 /// shadow = (mem >> Scale) + &__asan_shadow 466 struct ShadowMapping { 467 int Scale; 468 uint64_t Offset; 469 bool OrShadowOffset; 470 bool InGlobal; 471 }; 472 473 } // end anonymous namespace 474 475 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 476 bool IsKasan) { 477 bool IsAndroid = TargetTriple.isAndroid(); 478 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 479 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 480 bool IsNetBSD = TargetTriple.isOSNetBSD(); 481 bool IsPS4CPU = TargetTriple.isPS4CPU(); 482 bool IsLinux = TargetTriple.isOSLinux(); 483 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 484 TargetTriple.getArch() == Triple::ppc64le; 485 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 486 bool IsX86 = TargetTriple.getArch() == Triple::x86; 487 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 488 bool IsMIPS32 = TargetTriple.getArch() == Triple::mips || 489 TargetTriple.getArch() == Triple::mipsel; 490 bool IsMIPS64 = TargetTriple.getArch() == Triple::mips64 || 491 TargetTriple.getArch() == Triple::mips64el; 492 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 493 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 494 bool IsWindows = TargetTriple.isOSWindows(); 495 bool IsFuchsia = TargetTriple.isOSFuchsia(); 496 497 ShadowMapping Mapping; 498 499 Mapping.Scale = kDefaultShadowScale; 500 if (ClMappingScale.getNumOccurrences() > 0) { 501 Mapping.Scale = ClMappingScale; 502 } 503 504 if (LongSize == 32) { 505 if (IsAndroid) 506 Mapping.Offset = kDynamicShadowSentinel; 507 else if (IsMIPS32) 508 Mapping.Offset = kMIPS32_ShadowOffset32; 509 else if (IsFreeBSD) 510 Mapping.Offset = kFreeBSD_ShadowOffset32; 511 else if (IsIOS) 512 // If we're targeting iOS and x86, the binary is built for iOS simulator. 513 Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32; 514 else if (IsWindows) 515 Mapping.Offset = kWindowsShadowOffset32; 516 else 517 Mapping.Offset = kDefaultShadowOffset32; 518 } else { // LongSize == 64 519 // Fuchsia is always PIE, which means that the beginning of the address 520 // space is always available. 521 if (IsFuchsia) 522 Mapping.Offset = 0; 523 else if (IsPPC64) 524 Mapping.Offset = kPPC64_ShadowOffset64; 525 else if (IsSystemZ) 526 Mapping.Offset = kSystemZ_ShadowOffset64; 527 else if (IsFreeBSD) 528 Mapping.Offset = kFreeBSD_ShadowOffset64; 529 else if (IsNetBSD) 530 Mapping.Offset = kNetBSD_ShadowOffset64; 531 else if (IsPS4CPU) 532 Mapping.Offset = kPS4CPU_ShadowOffset64; 533 else if (IsLinux && IsX86_64) { 534 if (IsKasan) 535 Mapping.Offset = kLinuxKasan_ShadowOffset64; 536 else 537 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 538 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 539 } else if (IsWindows && IsX86_64) { 540 Mapping.Offset = kWindowsShadowOffset64; 541 } else if (IsMIPS64) 542 Mapping.Offset = kMIPS64_ShadowOffset64; 543 else if (IsIOS) 544 // If we're targeting iOS and x86, the binary is built for iOS simulator. 545 // We are using dynamic shadow offset on the 64-bit devices. 546 Mapping.Offset = 547 IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel; 548 else if (IsAArch64) 549 Mapping.Offset = kAArch64_ShadowOffset64; 550 else 551 Mapping.Offset = kDefaultShadowOffset64; 552 } 553 554 if (ClForceDynamicShadow) { 555 Mapping.Offset = kDynamicShadowSentinel; 556 } 557 558 if (ClMappingOffset.getNumOccurrences() > 0) { 559 Mapping.Offset = ClMappingOffset; 560 } 561 562 // OR-ing shadow offset if more efficient (at least on x86) if the offset 563 // is a power of two, but on ppc64 we have to use add since the shadow 564 // offset is not necessary 1/8-th of the address space. On SystemZ, 565 // we could OR the constant in a single instruction, but it's more 566 // efficient to load it once and use indexed addressing. 567 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 568 !(Mapping.Offset & (Mapping.Offset - 1)) && 569 Mapping.Offset != kDynamicShadowSentinel; 570 bool IsAndroidWithIfuncSupport = 571 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 572 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 573 574 return Mapping; 575 } 576 577 static size_t RedzoneSizeForScale(int MappingScale) { 578 // Redzone used for stack and globals is at least 32 bytes. 579 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 580 return std::max(32U, 1U << MappingScale); 581 } 582 583 namespace { 584 585 /// AddressSanitizer: instrument the code in module to find memory bugs. 586 struct AddressSanitizer : public FunctionPass { 587 // Pass identification, replacement for typeid 588 static char ID; 589 590 explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false, 591 bool UseAfterScope = false) 592 : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan), 593 Recover(Recover || ClRecover), 594 UseAfterScope(UseAfterScope || ClUseAfterScope) { 595 initializeAddressSanitizerPass(*PassRegistry::getPassRegistry()); 596 } 597 598 StringRef getPassName() const override { 599 return "AddressSanitizerFunctionPass"; 600 } 601 602 void getAnalysisUsage(AnalysisUsage &AU) const override { 603 AU.addRequired<DominatorTreeWrapperPass>(); 604 AU.addRequired<TargetLibraryInfoWrapperPass>(); 605 } 606 607 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 608 uint64_t ArraySize = 1; 609 if (AI.isArrayAllocation()) { 610 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 611 assert(CI && "non-constant array size"); 612 ArraySize = CI->getZExtValue(); 613 } 614 Type *Ty = AI.getAllocatedType(); 615 uint64_t SizeInBytes = 616 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 617 return SizeInBytes * ArraySize; 618 } 619 620 /// Check if we want (and can) handle this alloca. 621 bool isInterestingAlloca(const AllocaInst &AI); 622 623 /// If it is an interesting memory access, return the PointerOperand 624 /// and set IsWrite/Alignment. Otherwise return nullptr. 625 /// MaybeMask is an output parameter for the mask Value, if we're looking at a 626 /// masked load/store. 627 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 628 uint64_t *TypeSize, unsigned *Alignment, 629 Value **MaybeMask = nullptr); 630 631 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 632 bool UseCalls, const DataLayout &DL); 633 void instrumentPointerComparisonOrSubtraction(Instruction *I); 634 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 635 Value *Addr, uint32_t TypeSize, bool IsWrite, 636 Value *SizeArgument, bool UseCalls, uint32_t Exp); 637 void instrumentUnusualSizeOrAlignment(Instruction *I, 638 Instruction *InsertBefore, Value *Addr, 639 uint32_t TypeSize, bool IsWrite, 640 Value *SizeArgument, bool UseCalls, 641 uint32_t Exp); 642 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 643 Value *ShadowValue, uint32_t TypeSize); 644 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 645 bool IsWrite, size_t AccessSizeIndex, 646 Value *SizeArgument, uint32_t Exp); 647 void instrumentMemIntrinsic(MemIntrinsic *MI); 648 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 649 bool runOnFunction(Function &F) override; 650 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 651 void maybeInsertDynamicShadowAtFunctionEntry(Function &F); 652 void markEscapedLocalAllocas(Function &F); 653 bool doInitialization(Module &M) override; 654 bool doFinalization(Module &M) override; 655 656 DominatorTree &getDominatorTree() const { return *DT; } 657 658 private: 659 friend struct FunctionStackPoisoner; 660 661 void initializeCallbacks(Module &M); 662 663 bool LooksLikeCodeInBug11395(Instruction *I); 664 bool GlobalIsLinkerInitialized(GlobalVariable *G); 665 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 666 uint64_t TypeSize) const; 667 668 /// Helper to cleanup per-function state. 669 struct FunctionStateRAII { 670 AddressSanitizer *Pass; 671 672 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 673 assert(Pass->ProcessedAllocas.empty() && 674 "last pass forgot to clear cache"); 675 assert(!Pass->LocalDynamicShadow); 676 } 677 678 ~FunctionStateRAII() { 679 Pass->LocalDynamicShadow = nullptr; 680 Pass->ProcessedAllocas.clear(); 681 } 682 }; 683 684 LLVMContext *C; 685 Triple TargetTriple; 686 int LongSize; 687 bool CompileKernel; 688 bool Recover; 689 bool UseAfterScope; 690 Type *IntptrTy; 691 ShadowMapping Mapping; 692 DominatorTree *DT; 693 Function *AsanHandleNoReturnFunc; 694 Function *AsanPtrCmpFunction, *AsanPtrSubFunction; 695 Constant *AsanShadowGlobal; 696 697 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 698 Function *AsanErrorCallback[2][2][kNumberOfAccessSizes]; 699 Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 700 701 // These arrays is indexed by AccessIsWrite and Experiment. 702 Function *AsanErrorCallbackSized[2][2]; 703 Function *AsanMemoryAccessCallbackSized[2][2]; 704 705 Function *AsanMemmove, *AsanMemcpy, *AsanMemset; 706 InlineAsm *EmptyAsm; 707 Value *LocalDynamicShadow = nullptr; 708 GlobalsMetadata GlobalsMD; 709 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 710 }; 711 712 class AddressSanitizerModule : public ModulePass { 713 public: 714 // Pass identification, replacement for typeid 715 static char ID; 716 717 explicit AddressSanitizerModule(bool CompileKernel = false, 718 bool Recover = false, 719 bool UseGlobalsGC = true) 720 : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan), 721 Recover(Recover || ClRecover), 722 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC), 723 // Not a typo: ClWithComdat is almost completely pointless without 724 // ClUseGlobalsGC (because then it only works on modules without 725 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 726 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 727 // argument is designed as workaround. Therefore, disable both 728 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 729 // do globals-gc. 730 UseCtorComdat(UseGlobalsGC && ClWithComdat) {} 731 732 bool runOnModule(Module &M) override; 733 StringRef getPassName() const override { return "AddressSanitizerModule"; } 734 735 private: 736 void initializeCallbacks(Module &M); 737 738 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 739 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 740 ArrayRef<GlobalVariable *> ExtendedGlobals, 741 ArrayRef<Constant *> MetadataInitializers); 742 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 743 ArrayRef<GlobalVariable *> ExtendedGlobals, 744 ArrayRef<Constant *> MetadataInitializers, 745 const std::string &UniqueModuleId); 746 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 747 ArrayRef<GlobalVariable *> ExtendedGlobals, 748 ArrayRef<Constant *> MetadataInitializers); 749 void 750 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 751 ArrayRef<GlobalVariable *> ExtendedGlobals, 752 ArrayRef<Constant *> MetadataInitializers); 753 754 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 755 StringRef OriginalName); 756 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 757 StringRef InternalSuffix); 758 IRBuilder<> CreateAsanModuleDtor(Module &M); 759 760 bool ShouldInstrumentGlobal(GlobalVariable *G); 761 bool ShouldUseMachOGlobalsSection() const; 762 StringRef getGlobalMetadataSection() const; 763 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 764 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 765 size_t MinRedzoneSizeForGlobal() const { 766 return RedzoneSizeForScale(Mapping.Scale); 767 } 768 int GetAsanVersion(const Module &M) const; 769 770 GlobalsMetadata GlobalsMD; 771 bool CompileKernel; 772 bool Recover; 773 bool UseGlobalsGC; 774 bool UseCtorComdat; 775 Type *IntptrTy; 776 LLVMContext *C; 777 Triple TargetTriple; 778 ShadowMapping Mapping; 779 Function *AsanPoisonGlobals; 780 Function *AsanUnpoisonGlobals; 781 Function *AsanRegisterGlobals; 782 Function *AsanUnregisterGlobals; 783 Function *AsanRegisterImageGlobals; 784 Function *AsanUnregisterImageGlobals; 785 Function *AsanRegisterElfGlobals; 786 Function *AsanUnregisterElfGlobals; 787 788 Function *AsanCtorFunction = nullptr; 789 Function *AsanDtorFunction = nullptr; 790 }; 791 792 // Stack poisoning does not play well with exception handling. 793 // When an exception is thrown, we essentially bypass the code 794 // that unpoisones the stack. This is why the run-time library has 795 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 796 // stack in the interceptor. This however does not work inside the 797 // actual function which catches the exception. Most likely because the 798 // compiler hoists the load of the shadow value somewhere too high. 799 // This causes asan to report a non-existing bug on 453.povray. 800 // It sounds like an LLVM bug. 801 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 802 Function &F; 803 AddressSanitizer &ASan; 804 DIBuilder DIB; 805 LLVMContext *C; 806 Type *IntptrTy; 807 Type *IntptrPtrTy; 808 ShadowMapping Mapping; 809 810 SmallVector<AllocaInst *, 16> AllocaVec; 811 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 812 SmallVector<Instruction *, 8> RetVec; 813 unsigned StackAlignment; 814 815 Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 816 *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 817 Function *AsanSetShadowFunc[0x100] = {}; 818 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; 819 Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc; 820 821 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 822 struct AllocaPoisonCall { 823 IntrinsicInst *InsBefore; 824 AllocaInst *AI; 825 uint64_t Size; 826 bool DoPoison; 827 }; 828 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 829 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 830 831 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 832 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 833 AllocaInst *DynamicAllocaLayout = nullptr; 834 IntrinsicInst *LocalEscapeCall = nullptr; 835 836 // Maps Value to an AllocaInst from which the Value is originated. 837 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 838 AllocaForValueMapTy AllocaForValue; 839 840 bool HasNonEmptyInlineAsm = false; 841 bool HasReturnsTwiceCall = false; 842 std::unique_ptr<CallInst> EmptyInlineAsm; 843 844 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 845 : F(F), 846 ASan(ASan), 847 DIB(*F.getParent(), /*AllowUnresolved*/ false), 848 C(ASan.C), 849 IntptrTy(ASan.IntptrTy), 850 IntptrPtrTy(PointerType::get(IntptrTy, 0)), 851 Mapping(ASan.Mapping), 852 StackAlignment(1 << Mapping.Scale), 853 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 854 855 bool runOnFunction() { 856 if (!ClStack) return false; 857 858 if (ClRedzoneByvalArgs) 859 copyArgsPassedByValToAllocas(); 860 861 // Collect alloca, ret, lifetime instructions etc. 862 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 863 864 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 865 866 initializeCallbacks(*F.getParent()); 867 868 processDynamicAllocas(); 869 processStaticAllocas(); 870 871 if (ClDebugStack) { 872 DEBUG(dbgs() << F); 873 } 874 return true; 875 } 876 877 // Arguments marked with the "byval" attribute are implicitly copied without 878 // using an alloca instruction. To produce redzones for those arguments, we 879 // copy them a second time into memory allocated with an alloca instruction. 880 void copyArgsPassedByValToAllocas(); 881 882 // Finds all Alloca instructions and puts 883 // poisoned red zones around all of them. 884 // Then unpoison everything back before the function returns. 885 void processStaticAllocas(); 886 void processDynamicAllocas(); 887 888 void createDynamicAllocasInitStorage(); 889 890 // ----------------------- Visitors. 891 /// \brief Collect all Ret instructions. 892 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 893 894 /// \brief Collect all Resume instructions. 895 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 896 897 /// \brief Collect all CatchReturnInst instructions. 898 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 899 900 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 901 Value *SavedStack) { 902 IRBuilder<> IRB(InstBefore); 903 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 904 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 905 // need to adjust extracted SP to compute the address of the most recent 906 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 907 // this purpose. 908 if (!isa<ReturnInst>(InstBefore)) { 909 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 910 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 911 {IntptrTy}); 912 913 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 914 915 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 916 DynamicAreaOffset); 917 } 918 919 IRB.CreateCall(AsanAllocasUnpoisonFunc, 920 {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr}); 921 } 922 923 // Unpoison dynamic allocas redzones. 924 void unpoisonDynamicAllocas() { 925 for (auto &Ret : RetVec) 926 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 927 928 for (auto &StackRestoreInst : StackRestoreVec) 929 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 930 StackRestoreInst->getOperand(0)); 931 } 932 933 // Deploy and poison redzones around dynamic alloca call. To do this, we 934 // should replace this call with another one with changed parameters and 935 // replace all its uses with new address, so 936 // addr = alloca type, old_size, align 937 // is replaced by 938 // new_size = (old_size + additional_size) * sizeof(type) 939 // tmp = alloca i8, new_size, max(align, 32) 940 // addr = tmp + 32 (first 32 bytes are for the left redzone). 941 // Additional_size is added to make new memory allocation contain not only 942 // requested memory, but also left, partial and right redzones. 943 void handleDynamicAllocaCall(AllocaInst *AI); 944 945 /// \brief Collect Alloca instructions we want (and can) handle. 946 void visitAllocaInst(AllocaInst &AI) { 947 if (!ASan.isInterestingAlloca(AI)) { 948 if (AI.isStaticAlloca()) { 949 // Skip over allocas that are present *before* the first instrumented 950 // alloca, we don't want to move those around. 951 if (AllocaVec.empty()) 952 return; 953 954 StaticAllocasToMoveUp.push_back(&AI); 955 } 956 return; 957 } 958 959 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 960 if (!AI.isStaticAlloca()) 961 DynamicAllocaVec.push_back(&AI); 962 else 963 AllocaVec.push_back(&AI); 964 } 965 966 /// \brief Collect lifetime intrinsic calls to check for use-after-scope 967 /// errors. 968 void visitIntrinsicInst(IntrinsicInst &II) { 969 Intrinsic::ID ID = II.getIntrinsicID(); 970 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 971 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 972 if (!ASan.UseAfterScope) 973 return; 974 if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end) 975 return; 976 // Found lifetime intrinsic, add ASan instrumentation if necessary. 977 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 978 // If size argument is undefined, don't do anything. 979 if (Size->isMinusOne()) return; 980 // Check that size doesn't saturate uint64_t and can 981 // be stored in IntptrTy. 982 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 983 if (SizeValue == ~0ULL || 984 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 985 return; 986 // Find alloca instruction that corresponds to llvm.lifetime argument. 987 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); 988 if (!AI || !ASan.isInterestingAlloca(*AI)) 989 return; 990 bool DoPoison = (ID == Intrinsic::lifetime_end); 991 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 992 if (AI->isStaticAlloca()) 993 StaticAllocaPoisonCallVec.push_back(APC); 994 else if (ClInstrumentDynamicAllocas) 995 DynamicAllocaPoisonCallVec.push_back(APC); 996 } 997 998 void visitCallSite(CallSite CS) { 999 Instruction *I = CS.getInstruction(); 1000 if (CallInst *CI = dyn_cast<CallInst>(I)) { 1001 HasNonEmptyInlineAsm |= CI->isInlineAsm() && 1002 !CI->isIdenticalTo(EmptyInlineAsm.get()) && 1003 I != ASan.LocalDynamicShadow; 1004 HasReturnsTwiceCall |= CI->canReturnTwice(); 1005 } 1006 } 1007 1008 // ---------------------- Helpers. 1009 void initializeCallbacks(Module &M); 1010 1011 bool doesDominateAllExits(const Instruction *I) const { 1012 for (auto Ret : RetVec) { 1013 if (!ASan.getDominatorTree().dominates(I, Ret)) return false; 1014 } 1015 return true; 1016 } 1017 1018 /// Finds alloca where the value comes from. 1019 AllocaInst *findAllocaForValue(Value *V); 1020 1021 // Copies bytes from ShadowBytes into shadow memory for indexes where 1022 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1023 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1024 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1025 IRBuilder<> &IRB, Value *ShadowBase); 1026 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1027 size_t Begin, size_t End, IRBuilder<> &IRB, 1028 Value *ShadowBase); 1029 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1030 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1031 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1032 1033 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1034 1035 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1036 bool Dynamic); 1037 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1038 Instruction *ThenTerm, Value *ValueIfFalse); 1039 }; 1040 1041 } // end anonymous namespace 1042 1043 char AddressSanitizer::ID = 0; 1044 1045 INITIALIZE_PASS_BEGIN( 1046 AddressSanitizer, "asan", 1047 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1048 false) 1049 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1050 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1051 INITIALIZE_PASS_END( 1052 AddressSanitizer, "asan", 1053 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1054 false) 1055 1056 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1057 bool Recover, 1058 bool UseAfterScope) { 1059 assert(!CompileKernel || Recover); 1060 return new AddressSanitizer(CompileKernel, Recover, UseAfterScope); 1061 } 1062 1063 char AddressSanitizerModule::ID = 0; 1064 1065 INITIALIZE_PASS( 1066 AddressSanitizerModule, "asan-module", 1067 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1068 "ModulePass", 1069 false, false) 1070 1071 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel, 1072 bool Recover, 1073 bool UseGlobalsGC) { 1074 assert(!CompileKernel || Recover); 1075 return new AddressSanitizerModule(CompileKernel, Recover, UseGlobalsGC); 1076 } 1077 1078 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1079 size_t Res = countTrailingZeros(TypeSize / 8); 1080 assert(Res < kNumberOfAccessSizes); 1081 return Res; 1082 } 1083 1084 // \brief Create a constant for Str so that we can pass it to the run-time lib. 1085 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str, 1086 bool AllowMerging) { 1087 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 1088 // We use private linkage for module-local strings. If they can be merged 1089 // with another one, we set the unnamed_addr attribute. 1090 GlobalVariable *GV = 1091 new GlobalVariable(M, StrConst->getType(), true, 1092 GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix); 1093 if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1094 GV->setAlignment(1); // Strings may not be merged w/o setting align 1. 1095 return GV; 1096 } 1097 1098 /// \brief Create a global describing a source location. 1099 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1100 LocationMetadata MD) { 1101 Constant *LocData[] = { 1102 createPrivateGlobalForString(M, MD.Filename, true), 1103 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1104 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1105 }; 1106 auto LocStruct = ConstantStruct::getAnon(LocData); 1107 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1108 GlobalValue::PrivateLinkage, LocStruct, 1109 kAsanGenPrefix); 1110 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1111 return GV; 1112 } 1113 1114 /// \brief Check if \p G has been created by a trusted compiler pass. 1115 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1116 // Do not instrument asan globals. 1117 if (G->getName().startswith(kAsanGenPrefix) || 1118 G->getName().startswith(kSanCovGenPrefix) || 1119 G->getName().startswith(kODRGenPrefix)) 1120 return true; 1121 1122 // Do not instrument gcov counter arrays. 1123 if (G->getName() == "__llvm_gcov_ctr") 1124 return true; 1125 1126 return false; 1127 } 1128 1129 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1130 // Shadow >> scale 1131 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1132 if (Mapping.Offset == 0) return Shadow; 1133 // (Shadow >> scale) | offset 1134 Value *ShadowBase; 1135 if (LocalDynamicShadow) 1136 ShadowBase = LocalDynamicShadow; 1137 else 1138 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1139 if (Mapping.OrShadowOffset) 1140 return IRB.CreateOr(Shadow, ShadowBase); 1141 else 1142 return IRB.CreateAdd(Shadow, ShadowBase); 1143 } 1144 1145 // Instrument memset/memmove/memcpy 1146 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1147 IRBuilder<> IRB(MI); 1148 if (isa<MemTransferInst>(MI)) { 1149 IRB.CreateCall( 1150 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1151 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1152 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1153 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1154 } else if (isa<MemSetInst>(MI)) { 1155 IRB.CreateCall( 1156 AsanMemset, 1157 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1158 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1159 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1160 } 1161 MI->eraseFromParent(); 1162 } 1163 1164 /// Check if we want (and can) handle this alloca. 1165 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1166 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1167 1168 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1169 return PreviouslySeenAllocaInfo->getSecond(); 1170 1171 bool IsInteresting = 1172 (AI.getAllocatedType()->isSized() && 1173 // alloca() may be called with 0 size, ignore it. 1174 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1175 // We are only interested in allocas not promotable to registers. 1176 // Promotable allocas are common under -O0. 1177 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1178 // inalloca allocas are not treated as static, and we don't want 1179 // dynamic alloca instrumentation for them as well. 1180 !AI.isUsedWithInAlloca() && 1181 // swifterror allocas are register promoted by ISel 1182 !AI.isSwiftError()); 1183 1184 ProcessedAllocas[&AI] = IsInteresting; 1185 return IsInteresting; 1186 } 1187 1188 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 1189 bool *IsWrite, 1190 uint64_t *TypeSize, 1191 unsigned *Alignment, 1192 Value **MaybeMask) { 1193 // Skip memory accesses inserted by another instrumentation. 1194 if (I->getMetadata("nosanitize")) return nullptr; 1195 1196 // Do not instrument the load fetching the dynamic shadow address. 1197 if (LocalDynamicShadow == I) 1198 return nullptr; 1199 1200 Value *PtrOperand = nullptr; 1201 const DataLayout &DL = I->getModule()->getDataLayout(); 1202 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1203 if (!ClInstrumentReads) return nullptr; 1204 *IsWrite = false; 1205 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 1206 *Alignment = LI->getAlignment(); 1207 PtrOperand = LI->getPointerOperand(); 1208 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1209 if (!ClInstrumentWrites) return nullptr; 1210 *IsWrite = true; 1211 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 1212 *Alignment = SI->getAlignment(); 1213 PtrOperand = SI->getPointerOperand(); 1214 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1215 if (!ClInstrumentAtomics) return nullptr; 1216 *IsWrite = true; 1217 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 1218 *Alignment = 0; 1219 PtrOperand = RMW->getPointerOperand(); 1220 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1221 if (!ClInstrumentAtomics) return nullptr; 1222 *IsWrite = true; 1223 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 1224 *Alignment = 0; 1225 PtrOperand = XCHG->getPointerOperand(); 1226 } else if (auto CI = dyn_cast<CallInst>(I)) { 1227 auto *F = dyn_cast<Function>(CI->getCalledValue()); 1228 if (F && (F->getName().startswith("llvm.masked.load.") || 1229 F->getName().startswith("llvm.masked.store."))) { 1230 unsigned OpOffset = 0; 1231 if (F->getName().startswith("llvm.masked.store.")) { 1232 if (!ClInstrumentWrites) 1233 return nullptr; 1234 // Masked store has an initial operand for the value. 1235 OpOffset = 1; 1236 *IsWrite = true; 1237 } else { 1238 if (!ClInstrumentReads) 1239 return nullptr; 1240 *IsWrite = false; 1241 } 1242 1243 auto BasePtr = CI->getOperand(0 + OpOffset); 1244 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1245 *TypeSize = DL.getTypeStoreSizeInBits(Ty); 1246 if (auto AlignmentConstant = 1247 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1248 *Alignment = (unsigned)AlignmentConstant->getZExtValue(); 1249 else 1250 *Alignment = 1; // No alignment guarantees. We probably got Undef 1251 if (MaybeMask) 1252 *MaybeMask = CI->getOperand(2 + OpOffset); 1253 PtrOperand = BasePtr; 1254 } 1255 } 1256 1257 if (PtrOperand) { 1258 // Do not instrument acesses from different address spaces; we cannot deal 1259 // with them. 1260 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); 1261 if (PtrTy->getPointerAddressSpace() != 0) 1262 return nullptr; 1263 1264 // Ignore swifterror addresses. 1265 // swifterror memory addresses are mem2reg promoted by instruction 1266 // selection. As such they cannot have regular uses like an instrumentation 1267 // function and it makes no sense to track them as memory. 1268 if (PtrOperand->isSwiftError()) 1269 return nullptr; 1270 } 1271 1272 // Treat memory accesses to promotable allocas as non-interesting since they 1273 // will not cause memory violations. This greatly speeds up the instrumented 1274 // executable at -O0. 1275 if (ClSkipPromotableAllocas) 1276 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 1277 return isInterestingAlloca(*AI) ? AI : nullptr; 1278 1279 return PtrOperand; 1280 } 1281 1282 static bool isPointerOperand(Value *V) { 1283 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1284 } 1285 1286 // This is a rough heuristic; it may cause both false positives and 1287 // false negatives. The proper implementation requires cooperation with 1288 // the frontend. 1289 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { 1290 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1291 if (!Cmp->isRelational()) return false; 1292 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1293 if (BO->getOpcode() != Instruction::Sub) return false; 1294 } else { 1295 return false; 1296 } 1297 return isPointerOperand(I->getOperand(0)) && 1298 isPointerOperand(I->getOperand(1)); 1299 } 1300 1301 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1302 // If a global variable does not have dynamic initialization we don't 1303 // have to instrument it. However, if a global does not have initializer 1304 // at all, we assume it has dynamic initializer (in other TU). 1305 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1306 } 1307 1308 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1309 Instruction *I) { 1310 IRBuilder<> IRB(I); 1311 Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1312 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1313 for (Value *&i : Param) { 1314 if (i->getType()->isPointerTy()) 1315 i = IRB.CreatePointerCast(i, IntptrTy); 1316 } 1317 IRB.CreateCall(F, Param); 1318 } 1319 1320 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1321 Instruction *InsertBefore, Value *Addr, 1322 unsigned Alignment, unsigned Granularity, 1323 uint32_t TypeSize, bool IsWrite, 1324 Value *SizeArgument, bool UseCalls, 1325 uint32_t Exp) { 1326 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1327 // if the data is properly aligned. 1328 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1329 TypeSize == 128) && 1330 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1331 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1332 nullptr, UseCalls, Exp); 1333 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1334 IsWrite, nullptr, UseCalls, Exp); 1335 } 1336 1337 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1338 const DataLayout &DL, Type *IntptrTy, 1339 Value *Mask, Instruction *I, 1340 Value *Addr, unsigned Alignment, 1341 unsigned Granularity, uint32_t TypeSize, 1342 bool IsWrite, Value *SizeArgument, 1343 bool UseCalls, uint32_t Exp) { 1344 auto *VTy = cast<PointerType>(Addr->getType())->getElementType(); 1345 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1346 unsigned Num = VTy->getVectorNumElements(); 1347 auto Zero = ConstantInt::get(IntptrTy, 0); 1348 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1349 Value *InstrumentedAddress = nullptr; 1350 Instruction *InsertBefore = I; 1351 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1352 // dyn_cast as we might get UndefValue 1353 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1354 if (Masked->isZero()) 1355 // Mask is constant false, so no instrumentation needed. 1356 continue; 1357 // If we have a true or undef value, fall through to doInstrumentAddress 1358 // with InsertBefore == I 1359 } 1360 } else { 1361 IRBuilder<> IRB(I); 1362 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1363 TerminatorInst *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1364 InsertBefore = ThenTerm; 1365 } 1366 1367 IRBuilder<> IRB(InsertBefore); 1368 InstrumentedAddress = 1369 IRB.CreateGEP(Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1370 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1371 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1372 UseCalls, Exp); 1373 } 1374 } 1375 1376 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1377 Instruction *I, bool UseCalls, 1378 const DataLayout &DL) { 1379 bool IsWrite = false; 1380 unsigned Alignment = 0; 1381 uint64_t TypeSize = 0; 1382 Value *MaybeMask = nullptr; 1383 Value *Addr = 1384 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); 1385 assert(Addr); 1386 1387 // Optimization experiments. 1388 // The experiments can be used to evaluate potential optimizations that remove 1389 // instrumentation (assess false negatives). Instead of completely removing 1390 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1391 // experiments that want to remove instrumentation of this instruction). 1392 // If Exp is non-zero, this pass will emit special calls into runtime 1393 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1394 // make runtime terminate the program in a special way (with a different 1395 // exit status). Then you run the new compiler on a buggy corpus, collect 1396 // the special terminations (ideally, you don't see them at all -- no false 1397 // negatives) and make the decision on the optimization. 1398 uint32_t Exp = ClForceExperiment; 1399 1400 if (ClOpt && ClOptGlobals) { 1401 // If initialization order checking is disabled, a simple access to a 1402 // dynamically initialized global is always valid. 1403 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1404 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1405 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1406 NumOptimizedAccessesToGlobalVar++; 1407 return; 1408 } 1409 } 1410 1411 if (ClOpt && ClOptStack) { 1412 // A direct inbounds access to a stack variable is always valid. 1413 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1414 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1415 NumOptimizedAccessesToStackVar++; 1416 return; 1417 } 1418 } 1419 1420 if (IsWrite) 1421 NumInstrumentedWrites++; 1422 else 1423 NumInstrumentedReads++; 1424 1425 unsigned Granularity = 1 << Mapping.Scale; 1426 if (MaybeMask) { 1427 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr, 1428 Alignment, Granularity, TypeSize, IsWrite, 1429 nullptr, UseCalls, Exp); 1430 } else { 1431 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize, 1432 IsWrite, nullptr, UseCalls, Exp); 1433 } 1434 } 1435 1436 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1437 Value *Addr, bool IsWrite, 1438 size_t AccessSizeIndex, 1439 Value *SizeArgument, 1440 uint32_t Exp) { 1441 IRBuilder<> IRB(InsertBefore); 1442 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1443 CallInst *Call = nullptr; 1444 if (SizeArgument) { 1445 if (Exp == 0) 1446 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1447 {Addr, SizeArgument}); 1448 else 1449 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1450 {Addr, SizeArgument, ExpVal}); 1451 } else { 1452 if (Exp == 0) 1453 Call = 1454 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1455 else 1456 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1457 {Addr, ExpVal}); 1458 } 1459 1460 // We don't do Call->setDoesNotReturn() because the BB already has 1461 // UnreachableInst at the end. 1462 // This EmptyAsm is required to avoid callback merge. 1463 IRB.CreateCall(EmptyAsm, {}); 1464 return Call; 1465 } 1466 1467 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1468 Value *ShadowValue, 1469 uint32_t TypeSize) { 1470 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1471 // Addr & (Granularity - 1) 1472 Value *LastAccessedByte = 1473 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1474 // (Addr & (Granularity - 1)) + size - 1 1475 if (TypeSize / 8 > 1) 1476 LastAccessedByte = IRB.CreateAdd( 1477 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1478 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1479 LastAccessedByte = 1480 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1481 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1482 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1483 } 1484 1485 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1486 Instruction *InsertBefore, Value *Addr, 1487 uint32_t TypeSize, bool IsWrite, 1488 Value *SizeArgument, bool UseCalls, 1489 uint32_t Exp) { 1490 IRBuilder<> IRB(InsertBefore); 1491 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1492 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1493 1494 if (UseCalls) { 1495 if (Exp == 0) 1496 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1497 AddrLong); 1498 else 1499 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1500 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1501 return; 1502 } 1503 1504 Type *ShadowTy = 1505 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1506 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1507 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1508 Value *CmpVal = Constant::getNullValue(ShadowTy); 1509 Value *ShadowValue = 1510 IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1511 1512 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1513 size_t Granularity = 1ULL << Mapping.Scale; 1514 TerminatorInst *CrashTerm = nullptr; 1515 1516 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1517 // We use branch weights for the slow path check, to indicate that the slow 1518 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1519 TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen( 1520 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1521 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1522 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1523 IRB.SetInsertPoint(CheckTerm); 1524 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1525 if (Recover) { 1526 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1527 } else { 1528 BasicBlock *CrashBlock = 1529 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1530 CrashTerm = new UnreachableInst(*C, CrashBlock); 1531 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1532 ReplaceInstWithInst(CheckTerm, NewTerm); 1533 } 1534 } else { 1535 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1536 } 1537 1538 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1539 AccessSizeIndex, SizeArgument, Exp); 1540 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1541 } 1542 1543 // Instrument unusual size or unusual alignment. 1544 // We can not do it with a single check, so we do 1-byte check for the first 1545 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1546 // to report the actual access size. 1547 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1548 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1549 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1550 IRBuilder<> IRB(InsertBefore); 1551 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1552 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1553 if (UseCalls) { 1554 if (Exp == 0) 1555 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1556 {AddrLong, Size}); 1557 else 1558 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1559 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1560 } else { 1561 Value *LastByte = IRB.CreateIntToPtr( 1562 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1563 Addr->getType()); 1564 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1565 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1566 } 1567 } 1568 1569 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit, 1570 GlobalValue *ModuleName) { 1571 // Set up the arguments to our poison/unpoison functions. 1572 IRBuilder<> IRB(&GlobalInit.front(), 1573 GlobalInit.front().getFirstInsertionPt()); 1574 1575 // Add a call to poison all external globals before the given function starts. 1576 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1577 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1578 1579 // Add calls to unpoison all globals before each return instruction. 1580 for (auto &BB : GlobalInit.getBasicBlockList()) 1581 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1582 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1583 } 1584 1585 void AddressSanitizerModule::createInitializerPoisonCalls( 1586 Module &M, GlobalValue *ModuleName) { 1587 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1588 if (!GV) 1589 return; 1590 1591 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1592 if (!CA) 1593 return; 1594 1595 for (Use &OP : CA->operands()) { 1596 if (isa<ConstantAggregateZero>(OP)) continue; 1597 ConstantStruct *CS = cast<ConstantStruct>(OP); 1598 1599 // Must have a function or null ptr. 1600 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1601 if (F->getName() == kAsanModuleCtorName) continue; 1602 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1603 // Don't instrument CTORs that will run before asan.module_ctor. 1604 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; 1605 poisonOneInitializer(*F, ModuleName); 1606 } 1607 } 1608 } 1609 1610 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { 1611 Type *Ty = G->getValueType(); 1612 DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1613 1614 if (GlobalsMD.get(G).IsBlacklisted) return false; 1615 if (!Ty->isSized()) return false; 1616 if (!G->hasInitializer()) return false; 1617 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1618 // Touch only those globals that will not be defined in other modules. 1619 // Don't handle ODR linkage types and COMDATs since other modules may be built 1620 // without ASan. 1621 if (G->getLinkage() != GlobalVariable::ExternalLinkage && 1622 G->getLinkage() != GlobalVariable::PrivateLinkage && 1623 G->getLinkage() != GlobalVariable::InternalLinkage) 1624 return false; 1625 if (G->hasComdat()) return false; 1626 // Two problems with thread-locals: 1627 // - The address of the main thread's copy can't be computed at link-time. 1628 // - Need to poison all copies, not just the main thread's one. 1629 if (G->isThreadLocal()) return false; 1630 // For now, just ignore this Global if the alignment is large. 1631 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1632 1633 if (G->hasSection()) { 1634 StringRef Section = G->getSection(); 1635 1636 // Globals from llvm.metadata aren't emitted, do not instrument them. 1637 if (Section == "llvm.metadata") return false; 1638 // Do not instrument globals from special LLVM sections. 1639 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1640 1641 // Do not instrument function pointers to initialization and termination 1642 // routines: dynamic linker will not properly handle redzones. 1643 if (Section.startswith(".preinit_array") || 1644 Section.startswith(".init_array") || 1645 Section.startswith(".fini_array")) { 1646 return false; 1647 } 1648 1649 // Callbacks put into the CRT initializer/terminator sections 1650 // should not be instrumented. 1651 // See https://github.com/google/sanitizers/issues/305 1652 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1653 if (Section.startswith(".CRT")) { 1654 DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n"); 1655 return false; 1656 } 1657 1658 if (TargetTriple.isOSBinFormatMachO()) { 1659 StringRef ParsedSegment, ParsedSection; 1660 unsigned TAA = 0, StubSize = 0; 1661 bool TAAParsed; 1662 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1663 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1664 assert(ErrorCode.empty() && "Invalid section specifier."); 1665 1666 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1667 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1668 // them. 1669 if (ParsedSegment == "__OBJC" || 1670 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1671 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1672 return false; 1673 } 1674 // See https://github.com/google/sanitizers/issues/32 1675 // Constant CFString instances are compiled in the following way: 1676 // -- the string buffer is emitted into 1677 // __TEXT,__cstring,cstring_literals 1678 // -- the constant NSConstantString structure referencing that buffer 1679 // is placed into __DATA,__cfstring 1680 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1681 // Moreover, it causes the linker to crash on OS X 10.7 1682 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1683 DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1684 return false; 1685 } 1686 // The linker merges the contents of cstring_literals and removes the 1687 // trailing zeroes. 1688 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1689 DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1690 return false; 1691 } 1692 } 1693 } 1694 1695 return true; 1696 } 1697 1698 // On Mach-O platforms, we emit global metadata in a separate section of the 1699 // binary in order to allow the linker to properly dead strip. This is only 1700 // supported on recent versions of ld64. 1701 bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const { 1702 if (!TargetTriple.isOSBinFormatMachO()) 1703 return false; 1704 1705 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1706 return true; 1707 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1708 return true; 1709 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1710 return true; 1711 1712 return false; 1713 } 1714 1715 StringRef AddressSanitizerModule::getGlobalMetadataSection() const { 1716 switch (TargetTriple.getObjectFormat()) { 1717 case Triple::COFF: return ".ASAN$GL"; 1718 case Triple::ELF: return "asan_globals"; 1719 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1720 default: break; 1721 } 1722 llvm_unreachable("unsupported object format"); 1723 } 1724 1725 void AddressSanitizerModule::initializeCallbacks(Module &M) { 1726 IRBuilder<> IRB(*C); 1727 1728 // Declare our poisoning and unpoisoning functions. 1729 AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1730 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy)); 1731 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); 1732 AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1733 kAsanUnpoisonGlobalsName, IRB.getVoidTy())); 1734 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); 1735 1736 // Declare functions that register/unregister globals. 1737 AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1738 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy)); 1739 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); 1740 AsanUnregisterGlobals = checkSanitizerInterfaceFunction( 1741 M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(), 1742 IntptrTy, IntptrTy)); 1743 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); 1744 1745 // Declare the functions that find globals in a shared object and then invoke 1746 // the (un)register function on them. 1747 AsanRegisterImageGlobals = 1748 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1749 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy)); 1750 AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage); 1751 1752 AsanUnregisterImageGlobals = 1753 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1754 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy)); 1755 AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage); 1756 1757 AsanRegisterElfGlobals = checkSanitizerInterfaceFunction( 1758 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1759 IntptrTy, IntptrTy, IntptrTy)); 1760 AsanRegisterElfGlobals->setLinkage(Function::ExternalLinkage); 1761 1762 AsanUnregisterElfGlobals = checkSanitizerInterfaceFunction( 1763 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1764 IntptrTy, IntptrTy, IntptrTy)); 1765 AsanUnregisterElfGlobals->setLinkage(Function::ExternalLinkage); 1766 } 1767 1768 // Put the metadata and the instrumented global in the same group. This ensures 1769 // that the metadata is discarded if the instrumented global is discarded. 1770 void AddressSanitizerModule::SetComdatForGlobalMetadata( 1771 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1772 Module &M = *G->getParent(); 1773 Comdat *C = G->getComdat(); 1774 if (!C) { 1775 if (!G->hasName()) { 1776 // If G is unnamed, it must be internal. Give it an artificial name 1777 // so we can put it in a comdat. 1778 assert(G->hasLocalLinkage()); 1779 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1780 } 1781 1782 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 1783 std::string Name = G->getName(); 1784 Name += InternalSuffix; 1785 C = M.getOrInsertComdat(Name); 1786 } else { 1787 C = M.getOrInsertComdat(G->getName()); 1788 } 1789 1790 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 1791 // linkage to internal linkage so that a symbol table entry is emitted. This 1792 // is necessary in order to create the comdat group. 1793 if (TargetTriple.isOSBinFormatCOFF()) { 1794 C->setSelectionKind(Comdat::NoDuplicates); 1795 if (G->hasPrivateLinkage()) 1796 G->setLinkage(GlobalValue::InternalLinkage); 1797 } 1798 G->setComdat(C); 1799 } 1800 1801 assert(G->hasComdat()); 1802 Metadata->setComdat(G->getComdat()); 1803 } 1804 1805 // Create a separate metadata global and put it in the appropriate ASan 1806 // global registration section. 1807 GlobalVariable * 1808 AddressSanitizerModule::CreateMetadataGlobal(Module &M, Constant *Initializer, 1809 StringRef OriginalName) { 1810 auto Linkage = TargetTriple.isOSBinFormatMachO() 1811 ? GlobalVariable::InternalLinkage 1812 : GlobalVariable::PrivateLinkage; 1813 GlobalVariable *Metadata = new GlobalVariable( 1814 M, Initializer->getType(), false, Linkage, Initializer, 1815 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 1816 Metadata->setSection(getGlobalMetadataSection()); 1817 return Metadata; 1818 } 1819 1820 IRBuilder<> AddressSanitizerModule::CreateAsanModuleDtor(Module &M) { 1821 AsanDtorFunction = 1822 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 1823 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 1824 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 1825 1826 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB)); 1827 } 1828 1829 void AddressSanitizerModule::InstrumentGlobalsCOFF( 1830 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1831 ArrayRef<Constant *> MetadataInitializers) { 1832 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1833 auto &DL = M.getDataLayout(); 1834 1835 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 1836 Constant *Initializer = MetadataInitializers[i]; 1837 GlobalVariable *G = ExtendedGlobals[i]; 1838 GlobalVariable *Metadata = 1839 CreateMetadataGlobal(M, Initializer, G->getName()); 1840 1841 // The MSVC linker always inserts padding when linking incrementally. We 1842 // cope with that by aligning each struct to its size, which must be a power 1843 // of two. 1844 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 1845 assert(isPowerOf2_32(SizeOfGlobalStruct) && 1846 "global metadata will not be padded appropriately"); 1847 Metadata->setAlignment(SizeOfGlobalStruct); 1848 1849 SetComdatForGlobalMetadata(G, Metadata, ""); 1850 } 1851 } 1852 1853 void AddressSanitizerModule::InstrumentGlobalsELF( 1854 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1855 ArrayRef<Constant *> MetadataInitializers, 1856 const std::string &UniqueModuleId) { 1857 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1858 1859 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 1860 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 1861 GlobalVariable *G = ExtendedGlobals[i]; 1862 GlobalVariable *Metadata = 1863 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 1864 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 1865 Metadata->setMetadata(LLVMContext::MD_associated, MD); 1866 MetadataGlobals[i] = Metadata; 1867 1868 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 1869 } 1870 1871 // Update llvm.compiler.used, adding the new metadata globals. This is 1872 // needed so that during LTO these variables stay alive. 1873 if (!MetadataGlobals.empty()) 1874 appendToCompilerUsed(M, MetadataGlobals); 1875 1876 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 1877 // to look up the loaded image that contains it. Second, we can store in it 1878 // whether registration has already occurred, to prevent duplicate 1879 // registration. 1880 // 1881 // Common linkage ensures that there is only one global per shared library. 1882 GlobalVariable *RegisteredFlag = new GlobalVariable( 1883 M, IntptrTy, false, GlobalVariable::CommonLinkage, 1884 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 1885 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 1886 1887 // Create start and stop symbols. 1888 GlobalVariable *StartELFMetadata = new GlobalVariable( 1889 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 1890 "__start_" + getGlobalMetadataSection()); 1891 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 1892 GlobalVariable *StopELFMetadata = new GlobalVariable( 1893 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 1894 "__stop_" + getGlobalMetadataSection()); 1895 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 1896 1897 // Create a call to register the globals with the runtime. 1898 IRB.CreateCall(AsanRegisterElfGlobals, 1899 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 1900 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 1901 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 1902 1903 // We also need to unregister globals at the end, e.g., when a shared library 1904 // gets closed. 1905 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 1906 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 1907 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 1908 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 1909 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 1910 } 1911 1912 void AddressSanitizerModule::InstrumentGlobalsMachO( 1913 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1914 ArrayRef<Constant *> MetadataInitializers) { 1915 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1916 1917 // On recent Mach-O platforms, use a structure which binds the liveness of 1918 // the global variable to the metadata struct. Keep the list of "Liveness" GV 1919 // created to be added to llvm.compiler.used 1920 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 1921 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 1922 1923 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 1924 Constant *Initializer = MetadataInitializers[i]; 1925 GlobalVariable *G = ExtendedGlobals[i]; 1926 GlobalVariable *Metadata = 1927 CreateMetadataGlobal(M, Initializer, G->getName()); 1928 1929 // On recent Mach-O platforms, we emit the global metadata in a way that 1930 // allows the linker to properly strip dead globals. 1931 auto LivenessBinder = 1932 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 1933 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 1934 GlobalVariable *Liveness = new GlobalVariable( 1935 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 1936 Twine("__asan_binder_") + G->getName()); 1937 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 1938 LivenessGlobals[i] = Liveness; 1939 } 1940 1941 // Update llvm.compiler.used, adding the new liveness globals. This is 1942 // needed so that during LTO these variables stay alive. The alternative 1943 // would be to have the linker handling the LTO symbols, but libLTO 1944 // current API does not expose access to the section for each symbol. 1945 if (!LivenessGlobals.empty()) 1946 appendToCompilerUsed(M, LivenessGlobals); 1947 1948 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 1949 // to look up the loaded image that contains it. Second, we can store in it 1950 // whether registration has already occurred, to prevent duplicate 1951 // registration. 1952 // 1953 // common linkage ensures that there is only one global per shared library. 1954 GlobalVariable *RegisteredFlag = new GlobalVariable( 1955 M, IntptrTy, false, GlobalVariable::CommonLinkage, 1956 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 1957 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 1958 1959 IRB.CreateCall(AsanRegisterImageGlobals, 1960 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1961 1962 // We also need to unregister globals at the end, e.g., when a shared library 1963 // gets closed. 1964 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 1965 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 1966 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1967 } 1968 1969 void AddressSanitizerModule::InstrumentGlobalsWithMetadataArray( 1970 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1971 ArrayRef<Constant *> MetadataInitializers) { 1972 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1973 unsigned N = ExtendedGlobals.size(); 1974 assert(N > 0); 1975 1976 // On platforms that don't have a custom metadata section, we emit an array 1977 // of global metadata structures. 1978 ArrayType *ArrayOfGlobalStructTy = 1979 ArrayType::get(MetadataInitializers[0]->getType(), N); 1980 auto AllGlobals = new GlobalVariable( 1981 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 1982 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 1983 if (Mapping.Scale > 3) 1984 AllGlobals->setAlignment(1ULL << Mapping.Scale); 1985 1986 IRB.CreateCall(AsanRegisterGlobals, 1987 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1988 ConstantInt::get(IntptrTy, N)}); 1989 1990 // We also need to unregister globals at the end, e.g., when a shared library 1991 // gets closed. 1992 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 1993 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 1994 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1995 ConstantInt::get(IntptrTy, N)}); 1996 } 1997 1998 // This function replaces all global variables with new variables that have 1999 // trailing redzones. It also creates a function that poisons 2000 // redzones and inserts this function into llvm.global_ctors. 2001 // Sets *CtorComdat to true if the global registration code emitted into the 2002 // asan constructor is comdat-compatible. 2003 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat) { 2004 *CtorComdat = false; 2005 GlobalsMD.init(M); 2006 2007 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2008 2009 for (auto &G : M.globals()) { 2010 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 2011 } 2012 2013 size_t n = GlobalsToChange.size(); 2014 if (n == 0) { 2015 *CtorComdat = true; 2016 return false; 2017 } 2018 2019 auto &DL = M.getDataLayout(); 2020 2021 // A global is described by a structure 2022 // size_t beg; 2023 // size_t size; 2024 // size_t size_with_redzone; 2025 // const char *name; 2026 // const char *module_name; 2027 // size_t has_dynamic_init; 2028 // void *source_location; 2029 // size_t odr_indicator; 2030 // We initialize an array of such structures and pass it to a run-time call. 2031 StructType *GlobalStructTy = 2032 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2033 IntptrTy, IntptrTy, IntptrTy); 2034 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2035 SmallVector<Constant *, 16> Initializers(n); 2036 2037 bool HasDynamicallyInitializedGlobals = false; 2038 2039 // We shouldn't merge same module names, as this string serves as unique 2040 // module ID in runtime. 2041 GlobalVariable *ModuleName = createPrivateGlobalForString( 2042 M, M.getModuleIdentifier(), /*AllowMerging*/ false); 2043 2044 for (size_t i = 0; i < n; i++) { 2045 static const uint64_t kMaxGlobalRedzone = 1 << 18; 2046 GlobalVariable *G = GlobalsToChange[i]; 2047 2048 auto MD = GlobalsMD.get(G); 2049 StringRef NameForGlobal = G->getName(); 2050 // Create string holding the global name (use global name from metadata 2051 // if it's available, otherwise just write the name of global variable). 2052 GlobalVariable *Name = createPrivateGlobalForString( 2053 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2054 /*AllowMerging*/ true); 2055 2056 Type *Ty = G->getValueType(); 2057 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2058 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 2059 // MinRZ <= RZ <= kMaxGlobalRedzone 2060 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 2061 uint64_t RZ = std::max( 2062 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 2063 uint64_t RightRedzoneSize = RZ; 2064 // Round up to MinRZ 2065 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 2066 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 2067 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2068 2069 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2070 Constant *NewInitializer = ConstantStruct::get( 2071 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2072 2073 // Create a new global variable with enough space for a redzone. 2074 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2075 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2076 Linkage = GlobalValue::InternalLinkage; 2077 GlobalVariable *NewGlobal = 2078 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2079 "", G, G->getThreadLocalMode()); 2080 NewGlobal->copyAttributesFrom(G); 2081 NewGlobal->setAlignment(MinRZ); 2082 2083 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2084 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2085 G->isConstant()) { 2086 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2087 if (Seq && Seq->isCString()) 2088 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2089 } 2090 2091 // Transfer the debug info. The payload starts at offset zero so we can 2092 // copy the debug info over as is. 2093 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2094 G->getDebugInfo(GVs); 2095 for (auto *GV : GVs) 2096 NewGlobal->addDebugInfo(GV); 2097 2098 Value *Indices2[2]; 2099 Indices2[0] = IRB.getInt32(0); 2100 Indices2[1] = IRB.getInt32(0); 2101 2102 G->replaceAllUsesWith( 2103 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2104 NewGlobal->takeName(G); 2105 G->eraseFromParent(); 2106 NewGlobals[i] = NewGlobal; 2107 2108 Constant *SourceLoc; 2109 if (!MD.SourceLoc.empty()) { 2110 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2111 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2112 } else { 2113 SourceLoc = ConstantInt::get(IntptrTy, 0); 2114 } 2115 2116 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2117 GlobalValue *InstrumentedGlobal = NewGlobal; 2118 2119 bool CanUsePrivateAliases = 2120 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2121 TargetTriple.isOSBinFormatWasm(); 2122 if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) { 2123 // Create local alias for NewGlobal to avoid crash on ODR between 2124 // instrumented and non-instrumented libraries. 2125 auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage, 2126 NameForGlobal + M.getName(), NewGlobal); 2127 2128 // With local aliases, we need to provide another externally visible 2129 // symbol __odr_asan_XXX to detect ODR violation. 2130 auto *ODRIndicatorSym = 2131 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2132 Constant::getNullValue(IRB.getInt8Ty()), 2133 kODRGenPrefix + NameForGlobal, nullptr, 2134 NewGlobal->getThreadLocalMode()); 2135 2136 // Set meaningful attributes for indicator symbol. 2137 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2138 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2139 ODRIndicatorSym->setAlignment(1); 2140 ODRIndicator = ODRIndicatorSym; 2141 InstrumentedGlobal = GA; 2142 } 2143 2144 Constant *Initializer = ConstantStruct::get( 2145 GlobalStructTy, 2146 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2147 ConstantInt::get(IntptrTy, SizeInBytes), 2148 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2149 ConstantExpr::getPointerCast(Name, IntptrTy), 2150 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2151 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2152 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2153 2154 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2155 2156 DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2157 2158 Initializers[i] = Initializer; 2159 } 2160 2161 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2162 // ConstantMerge'ing them. 2163 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2164 for (size_t i = 0; i < n; i++) { 2165 GlobalVariable *G = NewGlobals[i]; 2166 if (G->getName().empty()) continue; 2167 GlobalsToAddToUsedList.push_back(G); 2168 } 2169 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2170 2171 std::string ELFUniqueModuleId = 2172 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2173 : ""; 2174 2175 if (!ELFUniqueModuleId.empty()) { 2176 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2177 *CtorComdat = true; 2178 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2179 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2180 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2181 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2182 } else { 2183 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2184 } 2185 2186 // Create calls for poisoning before initializers run and unpoisoning after. 2187 if (HasDynamicallyInitializedGlobals) 2188 createInitializerPoisonCalls(M, ModuleName); 2189 2190 DEBUG(dbgs() << M); 2191 return true; 2192 } 2193 2194 int AddressSanitizerModule::GetAsanVersion(const Module &M) const { 2195 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2196 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2197 int Version = 8; 2198 // 32-bit Android is one version ahead because of the switch to dynamic 2199 // shadow. 2200 Version += (LongSize == 32 && isAndroid); 2201 return Version; 2202 } 2203 2204 bool AddressSanitizerModule::runOnModule(Module &M) { 2205 C = &(M.getContext()); 2206 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2207 IntptrTy = Type::getIntNTy(*C, LongSize); 2208 TargetTriple = Triple(M.getTargetTriple()); 2209 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 2210 initializeCallbacks(M); 2211 2212 if (CompileKernel) 2213 return false; 2214 2215 // Create a module constructor. A destructor is created lazily because not all 2216 // platforms, and not all modules need it. 2217 std::string VersionCheckName = 2218 kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M)); 2219 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 2220 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, 2221 /*InitArgs=*/{}, VersionCheckName); 2222 2223 bool CtorComdat = true; 2224 bool Changed = false; 2225 // TODO(glider): temporarily disabled globals instrumentation for KASan. 2226 if (ClGlobals) { 2227 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2228 Changed |= InstrumentGlobals(IRB, M, &CtorComdat); 2229 } 2230 2231 // Put the constructor and destructor in comdat if both 2232 // (1) global instrumentation is not TU-specific 2233 // (2) target is ELF. 2234 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2235 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2236 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority, 2237 AsanCtorFunction); 2238 if (AsanDtorFunction) { 2239 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2240 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority, 2241 AsanDtorFunction); 2242 } 2243 } else { 2244 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); 2245 if (AsanDtorFunction) 2246 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); 2247 } 2248 2249 return Changed; 2250 } 2251 2252 void AddressSanitizer::initializeCallbacks(Module &M) { 2253 IRBuilder<> IRB(*C); 2254 // Create __asan_report* callbacks. 2255 // IsWrite, TypeSize and Exp are encoded in the function name. 2256 for (int Exp = 0; Exp < 2; Exp++) { 2257 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2258 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2259 const std::string ExpStr = Exp ? "exp_" : ""; 2260 const std::string EndingStr = Recover ? "_noabort" : ""; 2261 2262 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2263 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2264 if (Exp) { 2265 Type *ExpType = Type::getInt32Ty(*C); 2266 Args2.push_back(ExpType); 2267 Args1.push_back(ExpType); 2268 } 2269 AsanErrorCallbackSized[AccessIsWrite][Exp] = 2270 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2271 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2272 FunctionType::get(IRB.getVoidTy(), Args2, false))); 2273 2274 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = 2275 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2276 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2277 FunctionType::get(IRB.getVoidTy(), Args2, false))); 2278 2279 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2280 AccessSizeIndex++) { 2281 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2282 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2283 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2284 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2285 FunctionType::get(IRB.getVoidTy(), Args1, false))); 2286 2287 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2288 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2289 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2290 FunctionType::get(IRB.getVoidTy(), Args1, false))); 2291 } 2292 } 2293 } 2294 2295 const std::string MemIntrinCallbackPrefix = 2296 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2297 AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2298 MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(), 2299 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy)); 2300 AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2301 MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), 2302 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy)); 2303 AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2304 MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(), 2305 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy)); 2306 2307 AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction( 2308 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy())); 2309 2310 AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2311 kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy)); 2312 AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2313 kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy)); 2314 // We insert an empty inline asm after __asan_report* to avoid callback merge. 2315 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 2316 StringRef(""), StringRef(""), 2317 /*hasSideEffects=*/true); 2318 if (Mapping.InGlobal) 2319 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2320 ArrayType::get(IRB.getInt8Ty(), 0)); 2321 } 2322 2323 // virtual 2324 bool AddressSanitizer::doInitialization(Module &M) { 2325 // Initialize the private fields. No one has accessed them before. 2326 GlobalsMD.init(M); 2327 2328 C = &(M.getContext()); 2329 LongSize = M.getDataLayout().getPointerSizeInBits(); 2330 IntptrTy = Type::getIntNTy(*C, LongSize); 2331 TargetTriple = Triple(M.getTargetTriple()); 2332 2333 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 2334 return true; 2335 } 2336 2337 bool AddressSanitizer::doFinalization(Module &M) { 2338 GlobalsMD.reset(); 2339 return false; 2340 } 2341 2342 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2343 // For each NSObject descendant having a +load method, this method is invoked 2344 // by the ObjC runtime before any of the static constructors is called. 2345 // Therefore we need to instrument such methods with a call to __asan_init 2346 // at the beginning in order to initialize our runtime before any access to 2347 // the shadow memory. 2348 // We cannot just ignore these methods, because they may call other 2349 // instrumented functions. 2350 if (F.getName().find(" load]") != std::string::npos) { 2351 Function *AsanInitFunction = 2352 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2353 IRBuilder<> IRB(&F.front(), F.front().begin()); 2354 IRB.CreateCall(AsanInitFunction, {}); 2355 return true; 2356 } 2357 return false; 2358 } 2359 2360 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2361 // Generate code only when dynamic addressing is needed. 2362 if (Mapping.Offset != kDynamicShadowSentinel) 2363 return; 2364 2365 IRBuilder<> IRB(&F.front().front()); 2366 if (Mapping.InGlobal) { 2367 if (ClWithIfuncSuppressRemat) { 2368 // An empty inline asm with input reg == output reg. 2369 // An opaque pointer-to-int cast, basically. 2370 InlineAsm *Asm = InlineAsm::get( 2371 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2372 StringRef(""), StringRef("=r,0"), 2373 /*hasSideEffects=*/false); 2374 LocalDynamicShadow = 2375 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2376 } else { 2377 LocalDynamicShadow = 2378 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2379 } 2380 } else { 2381 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2382 kAsanShadowMemoryDynamicAddress, IntptrTy); 2383 LocalDynamicShadow = IRB.CreateLoad(GlobalDynamicAddress); 2384 } 2385 } 2386 2387 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2388 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2389 // to it as uninteresting. This assumes we haven't started processing allocas 2390 // yet. This check is done up front because iterating the use list in 2391 // isInterestingAlloca would be algorithmically slower. 2392 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2393 2394 // Try to get the declaration of llvm.localescape. If it's not in the module, 2395 // we can exit early. 2396 if (!F.getParent()->getFunction("llvm.localescape")) return; 2397 2398 // Look for a call to llvm.localescape call in the entry block. It can't be in 2399 // any other block. 2400 for (Instruction &I : F.getEntryBlock()) { 2401 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2402 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2403 // We found a call. Mark all the allocas passed in as uninteresting. 2404 for (Value *Arg : II->arg_operands()) { 2405 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2406 assert(AI && AI->isStaticAlloca() && 2407 "non-static alloca arg to localescape"); 2408 ProcessedAllocas[AI] = false; 2409 } 2410 break; 2411 } 2412 } 2413 } 2414 2415 bool AddressSanitizer::runOnFunction(Function &F) { 2416 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2417 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2418 if (F.getName().startswith("__asan_")) return false; 2419 2420 bool FunctionModified = false; 2421 2422 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2423 // This function needs to be called even if the function body is not 2424 // instrumented. 2425 if (maybeInsertAsanInitAtFunctionEntry(F)) 2426 FunctionModified = true; 2427 2428 // Leave if the function doesn't need instrumentation. 2429 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2430 2431 DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2432 2433 initializeCallbacks(*F.getParent()); 2434 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2435 2436 FunctionStateRAII CleanupObj(this); 2437 2438 maybeInsertDynamicShadowAtFunctionEntry(F); 2439 2440 // We can't instrument allocas used with llvm.localescape. Only static allocas 2441 // can be passed to that intrinsic. 2442 markEscapedLocalAllocas(F); 2443 2444 // We want to instrument every address only once per basic block (unless there 2445 // are calls between uses). 2446 SmallSet<Value *, 16> TempsToInstrument; 2447 SmallVector<Instruction *, 16> ToInstrument; 2448 SmallVector<Instruction *, 8> NoReturnCalls; 2449 SmallVector<BasicBlock *, 16> AllBlocks; 2450 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2451 int NumAllocas = 0; 2452 bool IsWrite; 2453 unsigned Alignment; 2454 uint64_t TypeSize; 2455 const TargetLibraryInfo *TLI = 2456 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2457 2458 // Fill the set of memory operations to instrument. 2459 for (auto &BB : F) { 2460 AllBlocks.push_back(&BB); 2461 TempsToInstrument.clear(); 2462 int NumInsnsPerBB = 0; 2463 for (auto &Inst : BB) { 2464 if (LooksLikeCodeInBug11395(&Inst)) return false; 2465 Value *MaybeMask = nullptr; 2466 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 2467 &Alignment, &MaybeMask)) { 2468 if (ClOpt && ClOptSameTemp) { 2469 // If we have a mask, skip instrumentation if we've already 2470 // instrumented the full object. But don't add to TempsToInstrument 2471 // because we might get another load/store with a different mask. 2472 if (MaybeMask) { 2473 if (TempsToInstrument.count(Addr)) 2474 continue; // We've seen this (whole) temp in the current BB. 2475 } else { 2476 if (!TempsToInstrument.insert(Addr).second) 2477 continue; // We've seen this temp in the current BB. 2478 } 2479 } 2480 } else if (ClInvalidPointerPairs && 2481 isInterestingPointerComparisonOrSubtraction(&Inst)) { 2482 PointerComparisonsOrSubtracts.push_back(&Inst); 2483 continue; 2484 } else if (isa<MemIntrinsic>(Inst)) { 2485 // ok, take it. 2486 } else { 2487 if (isa<AllocaInst>(Inst)) NumAllocas++; 2488 CallSite CS(&Inst); 2489 if (CS) { 2490 // A call inside BB. 2491 TempsToInstrument.clear(); 2492 if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction()); 2493 } 2494 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2495 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2496 continue; 2497 } 2498 ToInstrument.push_back(&Inst); 2499 NumInsnsPerBB++; 2500 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2501 } 2502 } 2503 2504 bool UseCalls = 2505 (ClInstrumentationWithCallsThreshold >= 0 && 2506 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 2507 const DataLayout &DL = F.getParent()->getDataLayout(); 2508 ObjectSizeOpts ObjSizeOpts; 2509 ObjSizeOpts.RoundToAlign = true; 2510 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2511 2512 // Instrument. 2513 int NumInstrumented = 0; 2514 for (auto Inst : ToInstrument) { 2515 if (ClDebugMin < 0 || ClDebugMax < 0 || 2516 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 2517 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 2518 instrumentMop(ObjSizeVis, Inst, UseCalls, 2519 F.getParent()->getDataLayout()); 2520 else 2521 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 2522 } 2523 NumInstrumented++; 2524 } 2525 2526 FunctionStackPoisoner FSP(F, *this); 2527 bool ChangedStack = FSP.runOnFunction(); 2528 2529 // We must unpoison the stack before every NoReturn call (throw, _exit, etc). 2530 // See e.g. https://github.com/google/sanitizers/issues/37 2531 for (auto CI : NoReturnCalls) { 2532 IRBuilder<> IRB(CI); 2533 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2534 } 2535 2536 for (auto Inst : PointerComparisonsOrSubtracts) { 2537 instrumentPointerComparisonOrSubtraction(Inst); 2538 NumInstrumented++; 2539 } 2540 2541 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) 2542 FunctionModified = true; 2543 2544 DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2545 << F << "\n"); 2546 2547 return FunctionModified; 2548 } 2549 2550 // Workaround for bug 11395: we don't want to instrument stack in functions 2551 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2552 // FIXME: remove once the bug 11395 is fixed. 2553 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2554 if (LongSize != 32) return false; 2555 CallInst *CI = dyn_cast<CallInst>(I); 2556 if (!CI || !CI->isInlineAsm()) return false; 2557 if (CI->getNumArgOperands() <= 5) return false; 2558 // We have inline assembly with quite a few arguments. 2559 return true; 2560 } 2561 2562 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2563 IRBuilder<> IRB(*C); 2564 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2565 std::string Suffix = itostr(i); 2566 AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction( 2567 M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy, 2568 IntptrTy)); 2569 AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction( 2570 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2571 IRB.getVoidTy(), IntptrTy, IntptrTy)); 2572 } 2573 if (ASan.UseAfterScope) { 2574 AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 2575 M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(), 2576 IntptrTy, IntptrTy)); 2577 AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 2578 M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), 2579 IntptrTy, IntptrTy)); 2580 } 2581 2582 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2583 std::ostringstream Name; 2584 Name << kAsanSetShadowPrefix; 2585 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2586 AsanSetShadowFunc[Val] = 2587 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2588 Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy)); 2589 } 2590 2591 AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2592 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy)); 2593 AsanAllocasUnpoisonFunc = 2594 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2595 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy)); 2596 } 2597 2598 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2599 ArrayRef<uint8_t> ShadowBytes, 2600 size_t Begin, size_t End, 2601 IRBuilder<> &IRB, 2602 Value *ShadowBase) { 2603 if (Begin >= End) 2604 return; 2605 2606 const size_t LargestStoreSizeInBytes = 2607 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2608 2609 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2610 2611 // Poison given range in shadow using larges store size with out leading and 2612 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2613 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2614 // middle of a store. 2615 for (size_t i = Begin; i < End;) { 2616 if (!ShadowMask[i]) { 2617 assert(!ShadowBytes[i]); 2618 ++i; 2619 continue; 2620 } 2621 2622 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2623 // Fit store size into the range. 2624 while (StoreSizeInBytes > End - i) 2625 StoreSizeInBytes /= 2; 2626 2627 // Minimize store size by trimming trailing zeros. 2628 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2629 while (j <= StoreSizeInBytes / 2) 2630 StoreSizeInBytes /= 2; 2631 } 2632 2633 uint64_t Val = 0; 2634 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2635 if (IsLittleEndian) 2636 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2637 else 2638 Val = (Val << 8) | ShadowBytes[i + j]; 2639 } 2640 2641 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2642 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2643 IRB.CreateAlignedStore( 2644 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); 2645 2646 i += StoreSizeInBytes; 2647 } 2648 } 2649 2650 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2651 ArrayRef<uint8_t> ShadowBytes, 2652 IRBuilder<> &IRB, Value *ShadowBase) { 2653 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2654 } 2655 2656 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2657 ArrayRef<uint8_t> ShadowBytes, 2658 size_t Begin, size_t End, 2659 IRBuilder<> &IRB, Value *ShadowBase) { 2660 assert(ShadowMask.size() == ShadowBytes.size()); 2661 size_t Done = Begin; 2662 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2663 if (!ShadowMask[i]) { 2664 assert(!ShadowBytes[i]); 2665 continue; 2666 } 2667 uint8_t Val = ShadowBytes[i]; 2668 if (!AsanSetShadowFunc[Val]) 2669 continue; 2670 2671 // Skip same values. 2672 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2673 } 2674 2675 if (j - i >= ClMaxInlinePoisoningSize) { 2676 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2677 IRB.CreateCall(AsanSetShadowFunc[Val], 2678 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2679 ConstantInt::get(IntptrTy, j - i)}); 2680 Done = j; 2681 } 2682 } 2683 2684 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2685 } 2686 2687 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2688 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2689 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2690 assert(LocalStackSize <= kMaxStackMallocSize); 2691 uint64_t MaxSize = kMinStackMallocSize; 2692 for (int i = 0;; i++, MaxSize *= 2) 2693 if (LocalStackSize <= MaxSize) return i; 2694 llvm_unreachable("impossible LocalStackSize"); 2695 } 2696 2697 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2698 Instruction *CopyInsertPoint = &F.front().front(); 2699 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2700 // Insert after the dynamic shadow location is determined 2701 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2702 assert(CopyInsertPoint); 2703 } 2704 IRBuilder<> IRB(CopyInsertPoint); 2705 const DataLayout &DL = F.getParent()->getDataLayout(); 2706 for (Argument &Arg : F.args()) { 2707 if (Arg.hasByValAttr()) { 2708 Type *Ty = Arg.getType()->getPointerElementType(); 2709 unsigned Align = Arg.getParamAlignment(); 2710 if (Align == 0) Align = DL.getABITypeAlignment(Ty); 2711 2712 AllocaInst *AI = IRB.CreateAlloca( 2713 Ty, nullptr, 2714 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2715 ".byval"); 2716 AI->setAlignment(Align); 2717 Arg.replaceAllUsesWith(AI); 2718 2719 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2720 IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize); 2721 } 2722 } 2723 } 2724 2725 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2726 Value *ValueIfTrue, 2727 Instruction *ThenTerm, 2728 Value *ValueIfFalse) { 2729 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2730 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2731 PHI->addIncoming(ValueIfFalse, CondBlock); 2732 BasicBlock *ThenBlock = ThenTerm->getParent(); 2733 PHI->addIncoming(ValueIfTrue, ThenBlock); 2734 return PHI; 2735 } 2736 2737 Value *FunctionStackPoisoner::createAllocaForLayout( 2738 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2739 AllocaInst *Alloca; 2740 if (Dynamic) { 2741 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2742 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2743 "MyAlloca"); 2744 } else { 2745 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2746 nullptr, "MyAlloca"); 2747 assert(Alloca->isStaticAlloca()); 2748 } 2749 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2750 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 2751 Alloca->setAlignment(FrameAlignment); 2752 return IRB.CreatePointerCast(Alloca, IntptrTy); 2753 } 2754 2755 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2756 BasicBlock &FirstBB = *F.begin(); 2757 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2758 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2759 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2760 DynamicAllocaLayout->setAlignment(32); 2761 } 2762 2763 void FunctionStackPoisoner::processDynamicAllocas() { 2764 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2765 assert(DynamicAllocaPoisonCallVec.empty()); 2766 return; 2767 } 2768 2769 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2770 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2771 assert(APC.InsBefore); 2772 assert(APC.AI); 2773 assert(ASan.isInterestingAlloca(*APC.AI)); 2774 assert(!APC.AI->isStaticAlloca()); 2775 2776 IRBuilder<> IRB(APC.InsBefore); 2777 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2778 // Dynamic allocas will be unpoisoned unconditionally below in 2779 // unpoisonDynamicAllocas. 2780 // Flag that we need unpoison static allocas. 2781 } 2782 2783 // Handle dynamic allocas. 2784 createDynamicAllocasInitStorage(); 2785 for (auto &AI : DynamicAllocaVec) 2786 handleDynamicAllocaCall(AI); 2787 unpoisonDynamicAllocas(); 2788 } 2789 2790 void FunctionStackPoisoner::processStaticAllocas() { 2791 if (AllocaVec.empty()) { 2792 assert(StaticAllocaPoisonCallVec.empty()); 2793 return; 2794 } 2795 2796 int StackMallocIdx = -1; 2797 DebugLoc EntryDebugLocation; 2798 if (auto SP = F.getSubprogram()) 2799 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 2800 2801 Instruction *InsBefore = AllocaVec[0]; 2802 IRBuilder<> IRB(InsBefore); 2803 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2804 2805 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 2806 // debug info is broken, because only entry-block allocas are treated as 2807 // regular stack slots. 2808 auto InsBeforeB = InsBefore->getParent(); 2809 assert(InsBeforeB == &F.getEntryBlock()); 2810 for (auto *AI : StaticAllocasToMoveUp) 2811 if (AI->getParent() == InsBeforeB) 2812 AI->moveBefore(InsBefore); 2813 2814 // If we have a call to llvm.localescape, keep it in the entry block. 2815 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 2816 2817 SmallVector<ASanStackVariableDescription, 16> SVD; 2818 SVD.reserve(AllocaVec.size()); 2819 for (AllocaInst *AI : AllocaVec) { 2820 ASanStackVariableDescription D = {AI->getName().data(), 2821 ASan.getAllocaSizeInBytes(*AI), 2822 0, 2823 AI->getAlignment(), 2824 AI, 2825 0, 2826 0}; 2827 SVD.push_back(D); 2828 } 2829 2830 // Minimal header size (left redzone) is 4 pointers, 2831 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 2832 size_t Granularity = 1ULL << Mapping.Scale; 2833 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 2834 const ASanStackFrameLayout &L = 2835 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 2836 2837 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 2838 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 2839 for (auto &Desc : SVD) 2840 AllocaToSVDMap[Desc.AI] = &Desc; 2841 2842 // Update SVD with information from lifetime intrinsics. 2843 for (const auto &APC : StaticAllocaPoisonCallVec) { 2844 assert(APC.InsBefore); 2845 assert(APC.AI); 2846 assert(ASan.isInterestingAlloca(*APC.AI)); 2847 assert(APC.AI->isStaticAlloca()); 2848 2849 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 2850 Desc.LifetimeSize = Desc.Size; 2851 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 2852 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 2853 if (LifetimeLoc->getFile() == FnLoc->getFile()) 2854 if (unsigned Line = LifetimeLoc->getLine()) 2855 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 2856 } 2857 } 2858 } 2859 2860 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 2861 DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 2862 uint64_t LocalStackSize = L.FrameSize; 2863 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 2864 LocalStackSize <= kMaxStackMallocSize; 2865 bool DoDynamicAlloca = ClDynamicAllocaStack; 2866 // Don't do dynamic alloca or stack malloc if: 2867 // 1) There is inline asm: too often it makes assumptions on which registers 2868 // are available. 2869 // 2) There is a returns_twice call (typically setjmp), which is 2870 // optimization-hostile, and doesn't play well with introduced indirect 2871 // register-relative calculation of local variable addresses. 2872 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2873 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2874 2875 Value *StaticAlloca = 2876 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 2877 2878 Value *FakeStack; 2879 Value *LocalStackBase; 2880 Value *LocalStackBaseAlloca; 2881 bool Deref; 2882 2883 if (DoStackMalloc) { 2884 LocalStackBaseAlloca = 2885 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 2886 // void *FakeStack = __asan_option_detect_stack_use_after_return 2887 // ? __asan_stack_malloc_N(LocalStackSize) 2888 // : nullptr; 2889 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 2890 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 2891 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 2892 Value *UseAfterReturnIsEnabled = 2893 IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn), 2894 Constant::getNullValue(IRB.getInt32Ty())); 2895 Instruction *Term = 2896 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 2897 IRBuilder<> IRBIf(Term); 2898 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2899 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 2900 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 2901 Value *FakeStackValue = 2902 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 2903 ConstantInt::get(IntptrTy, LocalStackSize)); 2904 IRB.SetInsertPoint(InsBefore); 2905 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2906 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 2907 ConstantInt::get(IntptrTy, 0)); 2908 2909 Value *NoFakeStack = 2910 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 2911 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 2912 IRBIf.SetInsertPoint(Term); 2913 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2914 Value *AllocaValue = 2915 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 2916 2917 IRB.SetInsertPoint(InsBefore); 2918 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2919 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 2920 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2921 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 2922 Deref = true; 2923 } else { 2924 // void *FakeStack = nullptr; 2925 // void *LocalStackBase = alloca(LocalStackSize); 2926 FakeStack = ConstantInt::get(IntptrTy, 0); 2927 LocalStackBase = 2928 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 2929 LocalStackBaseAlloca = LocalStackBase; 2930 Deref = false; 2931 } 2932 2933 // Replace Alloca instructions with base+offset. 2934 for (const auto &Desc : SVD) { 2935 AllocaInst *AI = Desc.AI; 2936 replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, Deref, 2937 Desc.Offset, DIExpression::NoDeref); 2938 Value *NewAllocaPtr = IRB.CreateIntToPtr( 2939 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 2940 AI->getType()); 2941 AI->replaceAllUsesWith(NewAllocaPtr); 2942 } 2943 2944 // The left-most redzone has enough space for at least 4 pointers. 2945 // Write the Magic value to redzone[0]. 2946 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 2947 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 2948 BasePlus0); 2949 // Write the frame description constant to redzone[1]. 2950 Value *BasePlus1 = IRB.CreateIntToPtr( 2951 IRB.CreateAdd(LocalStackBase, 2952 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 2953 IntptrPtrTy); 2954 GlobalVariable *StackDescriptionGlobal = 2955 createPrivateGlobalForString(*F.getParent(), DescriptionString, 2956 /*AllowMerging*/ true); 2957 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 2958 IRB.CreateStore(Description, BasePlus1); 2959 // Write the PC to redzone[2]. 2960 Value *BasePlus2 = IRB.CreateIntToPtr( 2961 IRB.CreateAdd(LocalStackBase, 2962 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 2963 IntptrPtrTy); 2964 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 2965 2966 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 2967 2968 // Poison the stack red zones at the entry. 2969 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 2970 // As mask we must use most poisoned case: red zones and after scope. 2971 // As bytes we can use either the same or just red zones only. 2972 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 2973 2974 if (!StaticAllocaPoisonCallVec.empty()) { 2975 const auto &ShadowInScope = GetShadowBytes(SVD, L); 2976 2977 // Poison static allocas near lifetime intrinsics. 2978 for (const auto &APC : StaticAllocaPoisonCallVec) { 2979 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 2980 assert(Desc.Offset % L.Granularity == 0); 2981 size_t Begin = Desc.Offset / L.Granularity; 2982 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 2983 2984 IRBuilder<> IRB(APC.InsBefore); 2985 copyToShadow(ShadowAfterScope, 2986 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 2987 IRB, ShadowBase); 2988 } 2989 } 2990 2991 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 2992 SmallVector<uint8_t, 64> ShadowAfterReturn; 2993 2994 // (Un)poison the stack before all ret instructions. 2995 for (auto Ret : RetVec) { 2996 IRBuilder<> IRBRet(Ret); 2997 // Mark the current frame as retired. 2998 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 2999 BasePlus0); 3000 if (DoStackMalloc) { 3001 assert(StackMallocIdx >= 0); 3002 // if FakeStack != 0 // LocalStackBase == FakeStack 3003 // // In use-after-return mode, poison the whole stack frame. 3004 // if StackMallocIdx <= 4 3005 // // For small sizes inline the whole thing: 3006 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3007 // **SavedFlagPtr(FakeStack) = 0 3008 // else 3009 // __asan_stack_free_N(FakeStack, LocalStackSize) 3010 // else 3011 // <This is not a fake stack; unpoison the redzones> 3012 Value *Cmp = 3013 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3014 TerminatorInst *ThenTerm, *ElseTerm; 3015 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3016 3017 IRBuilder<> IRBPoison(ThenTerm); 3018 if (StackMallocIdx <= 4) { 3019 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3020 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3021 kAsanStackUseAfterReturnMagic); 3022 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3023 ShadowBase); 3024 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3025 FakeStack, 3026 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3027 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3028 IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3029 IRBPoison.CreateStore( 3030 Constant::getNullValue(IRBPoison.getInt8Ty()), 3031 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3032 } else { 3033 // For larger frames call __asan_stack_free_*. 3034 IRBPoison.CreateCall( 3035 AsanStackFreeFunc[StackMallocIdx], 3036 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3037 } 3038 3039 IRBuilder<> IRBElse(ElseTerm); 3040 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3041 } else { 3042 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3043 } 3044 } 3045 3046 // We are done. Remove the old unused alloca instructions. 3047 for (auto AI : AllocaVec) AI->eraseFromParent(); 3048 } 3049 3050 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3051 IRBuilder<> &IRB, bool DoPoison) { 3052 // For now just insert the call to ASan runtime. 3053 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3054 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3055 IRB.CreateCall( 3056 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3057 {AddrArg, SizeArg}); 3058 } 3059 3060 // Handling llvm.lifetime intrinsics for a given %alloca: 3061 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3062 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3063 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3064 // could be poisoned by previous llvm.lifetime.end instruction, as the 3065 // variable may go in and out of scope several times, e.g. in loops). 3066 // (3) if we poisoned at least one %alloca in a function, 3067 // unpoison the whole stack frame at function exit. 3068 3069 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { 3070 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 3071 // We're interested only in allocas we can handle. 3072 return ASan.isInterestingAlloca(*AI) ? AI : nullptr; 3073 // See if we've already calculated (or started to calculate) alloca for a 3074 // given value. 3075 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 3076 if (I != AllocaForValue.end()) return I->second; 3077 // Store 0 while we're calculating alloca for value V to avoid 3078 // infinite recursion if the value references itself. 3079 AllocaForValue[V] = nullptr; 3080 AllocaInst *Res = nullptr; 3081 if (CastInst *CI = dyn_cast<CastInst>(V)) 3082 Res = findAllocaForValue(CI->getOperand(0)); 3083 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 3084 for (Value *IncValue : PN->incoming_values()) { 3085 // Allow self-referencing phi-nodes. 3086 if (IncValue == PN) continue; 3087 AllocaInst *IncValueAI = findAllocaForValue(IncValue); 3088 // AI for incoming values should exist and should all be equal. 3089 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 3090 return nullptr; 3091 Res = IncValueAI; 3092 } 3093 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 3094 Res = findAllocaForValue(EP->getPointerOperand()); 3095 } else { 3096 DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V << "\n"); 3097 } 3098 if (Res) AllocaForValue[V] = Res; 3099 return Res; 3100 } 3101 3102 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3103 IRBuilder<> IRB(AI); 3104 3105 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 3106 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3107 3108 Value *Zero = Constant::getNullValue(IntptrTy); 3109 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3110 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3111 3112 // Since we need to extend alloca with additional memory to locate 3113 // redzones, and OldSize is number of allocated blocks with 3114 // ElementSize size, get allocated memory size in bytes by 3115 // OldSize * ElementSize. 3116 const unsigned ElementSize = 3117 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3118 Value *OldSize = 3119 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3120 ConstantInt::get(IntptrTy, ElementSize)); 3121 3122 // PartialSize = OldSize % 32 3123 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3124 3125 // Misalign = kAllocaRzSize - PartialSize; 3126 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3127 3128 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3129 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3130 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3131 3132 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 3133 // Align is added to locate left redzone, PartialPadding for possible 3134 // partial redzone and kAllocaRzSize for right redzone respectively. 3135 Value *AdditionalChunkSize = IRB.CreateAdd( 3136 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 3137 3138 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3139 3140 // Insert new alloca with new NewSize and Align params. 3141 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3142 NewAlloca->setAlignment(Align); 3143 3144 // NewAddress = Address + Align 3145 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3146 ConstantInt::get(IntptrTy, Align)); 3147 3148 // Insert __asan_alloca_poison call for new created alloca. 3149 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3150 3151 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3152 // for unpoisoning stuff. 3153 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3154 3155 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3156 3157 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3158 AI->replaceAllUsesWith(NewAddressPtr); 3159 3160 // We are done. Erase old alloca from parent. 3161 AI->eraseFromParent(); 3162 } 3163 3164 // isSafeAccess returns true if Addr is always inbounds with respect to its 3165 // base object. For example, it is a field access or an array access with 3166 // constant inbounds index. 3167 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3168 Value *Addr, uint64_t TypeSize) const { 3169 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3170 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3171 uint64_t Size = SizeOffset.first.getZExtValue(); 3172 int64_t Offset = SizeOffset.second.getSExtValue(); 3173 // Three checks are required to ensure safety: 3174 // . Offset >= 0 (since the offset is given from the base ptr) 3175 // . Size >= Offset (unsigned) 3176 // . Size - Offset >= NeededSize (unsigned) 3177 return Offset >= 0 && Size >= uint64_t(Offset) && 3178 Size - uint64_t(Offset) >= TypeSize / 8; 3179 } 3180