1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of AddressSanitizer, an address sanity checker. 11 // Details of the algorithm: 12 // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/InstVisitor.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/MC/MCSectionMachO.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/DataTypes.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/Endian.h" 46 #include "llvm/Support/SwapByteOrder.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/Instrumentation.h" 49 #include "llvm/Transforms/Scalar.h" 50 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Cloning.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include "llvm/Transforms/Utils/ModuleUtils.h" 55 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 56 #include <algorithm> 57 #include <iomanip> 58 #include <limits> 59 #include <sstream> 60 #include <string> 61 #include <system_error> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "asan" 66 67 static const uint64_t kDefaultShadowScale = 3; 68 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 69 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 70 static const uint64_t kDynamicShadowSentinel = ~(uint64_t)0; 71 static const uint64_t kIOSShadowOffset32 = 1ULL << 30; 72 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30; 73 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64; 74 static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000; // < 2G. 75 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 76 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41; 77 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 78 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 79 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 80 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 81 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 82 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 83 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 84 // The shadow memory space is dynamically allocated. 85 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 86 87 static const size_t kMinStackMallocSize = 1 << 6; // 64B 88 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 89 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 90 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 91 92 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 93 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 94 static const uint64_t kAsanCtorAndDtorPriority = 1; 95 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 96 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 97 static const char *const kAsanUnregisterGlobalsName = 98 "__asan_unregister_globals"; 99 static const char *const kAsanRegisterImageGlobalsName = 100 "__asan_register_image_globals"; 101 static const char *const kAsanUnregisterImageGlobalsName = 102 "__asan_unregister_image_globals"; 103 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 104 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 105 static const char *const kAsanInitName = "__asan_init"; 106 static const char *const kAsanVersionCheckName = 107 "__asan_version_mismatch_check_v8"; 108 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 109 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 110 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 111 static const int kMaxAsanStackMallocSizeClass = 10; 112 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 113 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 114 static const char *const kAsanGenPrefix = "__asan_gen_"; 115 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 116 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 117 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 118 static const char *const kAsanPoisonStackMemoryName = 119 "__asan_poison_stack_memory"; 120 static const char *const kAsanUnpoisonStackMemoryName = 121 "__asan_unpoison_stack_memory"; 122 static const char *const kAsanGlobalsRegisteredFlagName = 123 "__asan_globals_registered"; 124 125 static const char *const kAsanOptionDetectUseAfterReturn = 126 "__asan_option_detect_stack_use_after_return"; 127 128 static const char *const kAsanShadowMemoryDynamicAddress = 129 "__asan_shadow_memory_dynamic_address"; 130 131 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 132 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 133 134 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 135 static const size_t kNumberOfAccessSizes = 5; 136 137 static const unsigned kAllocaRzSize = 32; 138 139 // Command-line flags. 140 static cl::opt<bool> ClEnableKasan( 141 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 142 cl::Hidden, cl::init(false)); 143 static cl::opt<bool> ClRecover( 144 "asan-recover", 145 cl::desc("Enable recovery mode (continue-after-error)."), 146 cl::Hidden, cl::init(false)); 147 148 // This flag may need to be replaced with -f[no-]asan-reads. 149 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 150 cl::desc("instrument read instructions"), 151 cl::Hidden, cl::init(true)); 152 static cl::opt<bool> ClInstrumentWrites( 153 "asan-instrument-writes", cl::desc("instrument write instructions"), 154 cl::Hidden, cl::init(true)); 155 static cl::opt<bool> ClInstrumentAtomics( 156 "asan-instrument-atomics", 157 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 158 cl::init(true)); 159 static cl::opt<bool> ClAlwaysSlowPath( 160 "asan-always-slow-path", 161 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 162 cl::init(false)); 163 static cl::opt<bool> ClForceDynamicShadow( 164 "asan-force-dynamic-shadow", 165 cl::desc("Load shadow address into a local variable for each function"), 166 cl::Hidden, cl::init(false)); 167 168 // This flag limits the number of instructions to be instrumented 169 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 170 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 171 // set it to 10000. 172 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 173 "asan-max-ins-per-bb", cl::init(10000), 174 cl::desc("maximal number of instructions to instrument in any given BB"), 175 cl::Hidden); 176 // This flag may need to be replaced with -f[no]asan-stack. 177 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 178 cl::Hidden, cl::init(true)); 179 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 180 "asan-max-inline-poisoning-size", 181 cl::desc( 182 "Inline shadow poisoning for blocks up to the given size in bytes."), 183 cl::Hidden, cl::init(64)); 184 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 185 cl::desc("Check stack-use-after-return"), 186 cl::Hidden, cl::init(true)); 187 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 188 cl::desc("Check stack-use-after-scope"), 189 cl::Hidden, cl::init(false)); 190 // This flag may need to be replaced with -f[no]asan-globals. 191 static cl::opt<bool> ClGlobals("asan-globals", 192 cl::desc("Handle global objects"), cl::Hidden, 193 cl::init(true)); 194 static cl::opt<bool> ClInitializers("asan-initialization-order", 195 cl::desc("Handle C++ initializer order"), 196 cl::Hidden, cl::init(true)); 197 static cl::opt<bool> ClInvalidPointerPairs( 198 "asan-detect-invalid-pointer-pair", 199 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 200 cl::init(false)); 201 static cl::opt<unsigned> ClRealignStack( 202 "asan-realign-stack", 203 cl::desc("Realign stack to the value of this flag (power of two)"), 204 cl::Hidden, cl::init(32)); 205 static cl::opt<int> ClInstrumentationWithCallsThreshold( 206 "asan-instrumentation-with-call-threshold", 207 cl::desc( 208 "If the function being instrumented contains more than " 209 "this number of memory accesses, use callbacks instead of " 210 "inline checks (-1 means never use callbacks)."), 211 cl::Hidden, cl::init(7000)); 212 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 213 "asan-memory-access-callback-prefix", 214 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 215 cl::init("__asan_")); 216 static cl::opt<bool> 217 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 218 cl::desc("instrument dynamic allocas"), 219 cl::Hidden, cl::init(true)); 220 static cl::opt<bool> ClSkipPromotableAllocas( 221 "asan-skip-promotable-allocas", 222 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 223 cl::init(true)); 224 225 // These flags allow to change the shadow mapping. 226 // The shadow mapping looks like 227 // Shadow = (Mem >> scale) + offset 228 static cl::opt<int> ClMappingScale("asan-mapping-scale", 229 cl::desc("scale of asan shadow mapping"), 230 cl::Hidden, cl::init(0)); 231 static cl::opt<unsigned long long> ClMappingOffset( 232 "asan-mapping-offset", 233 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden, 234 cl::init(0)); 235 236 // Optimization flags. Not user visible, used mostly for testing 237 // and benchmarking the tool. 238 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 239 cl::Hidden, cl::init(true)); 240 static cl::opt<bool> ClOptSameTemp( 241 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 242 cl::Hidden, cl::init(true)); 243 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 244 cl::desc("Don't instrument scalar globals"), 245 cl::Hidden, cl::init(true)); 246 static cl::opt<bool> ClOptStack( 247 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 248 cl::Hidden, cl::init(false)); 249 250 static cl::opt<bool> ClDynamicAllocaStack( 251 "asan-stack-dynamic-alloca", 252 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 253 cl::init(true)); 254 255 static cl::opt<uint32_t> ClForceExperiment( 256 "asan-force-experiment", 257 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 258 cl::init(0)); 259 260 static cl::opt<bool> 261 ClUsePrivateAliasForGlobals("asan-use-private-alias", 262 cl::desc("Use private aliases for global" 263 " variables"), 264 cl::Hidden, cl::init(false)); 265 266 static cl::opt<bool> 267 ClUseMachOGlobalsSection("asan-globals-live-support", 268 cl::desc("Use linker features to support dead " 269 "code stripping of globals " 270 "(Mach-O only)"), 271 cl::Hidden, cl::init(true)); 272 273 // Debug flags. 274 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 275 cl::init(0)); 276 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 277 cl::Hidden, cl::init(0)); 278 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 279 cl::desc("Debug func")); 280 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 281 cl::Hidden, cl::init(-1)); 282 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 283 cl::Hidden, cl::init(-1)); 284 285 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 286 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 287 STATISTIC(NumOptimizedAccessesToGlobalVar, 288 "Number of optimized accesses to global vars"); 289 STATISTIC(NumOptimizedAccessesToStackVar, 290 "Number of optimized accesses to stack vars"); 291 292 namespace { 293 /// Frontend-provided metadata for source location. 294 struct LocationMetadata { 295 StringRef Filename; 296 int LineNo; 297 int ColumnNo; 298 299 LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {} 300 301 bool empty() const { return Filename.empty(); } 302 303 void parse(MDNode *MDN) { 304 assert(MDN->getNumOperands() == 3); 305 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 306 Filename = DIFilename->getString(); 307 LineNo = 308 mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 309 ColumnNo = 310 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 311 } 312 }; 313 314 /// Frontend-provided metadata for global variables. 315 class GlobalsMetadata { 316 public: 317 struct Entry { 318 Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {} 319 LocationMetadata SourceLoc; 320 StringRef Name; 321 bool IsDynInit; 322 bool IsBlacklisted; 323 }; 324 325 GlobalsMetadata() : inited_(false) {} 326 327 void reset() { 328 inited_ = false; 329 Entries.clear(); 330 } 331 332 void init(Module &M) { 333 assert(!inited_); 334 inited_ = true; 335 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 336 if (!Globals) return; 337 for (auto MDN : Globals->operands()) { 338 // Metadata node contains the global and the fields of "Entry". 339 assert(MDN->getNumOperands() == 5); 340 auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0)); 341 // The optimizer may optimize away a global entirely. 342 if (!GV) continue; 343 // We can already have an entry for GV if it was merged with another 344 // global. 345 Entry &E = Entries[GV]; 346 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 347 E.SourceLoc.parse(Loc); 348 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 349 E.Name = Name->getString(); 350 ConstantInt *IsDynInit = 351 mdconst::extract<ConstantInt>(MDN->getOperand(3)); 352 E.IsDynInit |= IsDynInit->isOne(); 353 ConstantInt *IsBlacklisted = 354 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 355 E.IsBlacklisted |= IsBlacklisted->isOne(); 356 } 357 } 358 359 /// Returns metadata entry for a given global. 360 Entry get(GlobalVariable *G) const { 361 auto Pos = Entries.find(G); 362 return (Pos != Entries.end()) ? Pos->second : Entry(); 363 } 364 365 private: 366 bool inited_; 367 DenseMap<GlobalVariable *, Entry> Entries; 368 }; 369 370 /// This struct defines the shadow mapping using the rule: 371 /// shadow = (mem >> Scale) ADD-or-OR Offset. 372 struct ShadowMapping { 373 int Scale; 374 uint64_t Offset; 375 bool OrShadowOffset; 376 }; 377 378 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 379 bool IsKasan) { 380 bool IsAndroid = TargetTriple.isAndroid(); 381 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 382 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 383 bool IsLinux = TargetTriple.isOSLinux(); 384 bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 || 385 TargetTriple.getArch() == llvm::Triple::ppc64le; 386 bool IsSystemZ = TargetTriple.getArch() == llvm::Triple::systemz; 387 bool IsX86 = TargetTriple.getArch() == llvm::Triple::x86; 388 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; 389 bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips || 390 TargetTriple.getArch() == llvm::Triple::mipsel; 391 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 || 392 TargetTriple.getArch() == llvm::Triple::mips64el; 393 bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64; 394 bool IsWindows = TargetTriple.isOSWindows(); 395 396 ShadowMapping Mapping; 397 398 if (LongSize == 32) { 399 // Android is always PIE, which means that the beginning of the address 400 // space is always available. 401 if (IsAndroid) 402 Mapping.Offset = 0; 403 else if (IsMIPS32) 404 Mapping.Offset = kMIPS32_ShadowOffset32; 405 else if (IsFreeBSD) 406 Mapping.Offset = kFreeBSD_ShadowOffset32; 407 else if (IsIOS) 408 // If we're targeting iOS and x86, the binary is built for iOS simulator. 409 Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32; 410 else if (IsWindows) 411 Mapping.Offset = kWindowsShadowOffset32; 412 else 413 Mapping.Offset = kDefaultShadowOffset32; 414 } else { // LongSize == 64 415 if (IsPPC64) 416 Mapping.Offset = kPPC64_ShadowOffset64; 417 else if (IsSystemZ) 418 Mapping.Offset = kSystemZ_ShadowOffset64; 419 else if (IsFreeBSD) 420 Mapping.Offset = kFreeBSD_ShadowOffset64; 421 else if (IsLinux && IsX86_64) { 422 if (IsKasan) 423 Mapping.Offset = kLinuxKasan_ShadowOffset64; 424 else 425 Mapping.Offset = kSmallX86_64ShadowOffset; 426 } else if (IsWindows && IsX86_64) { 427 Mapping.Offset = kWindowsShadowOffset64; 428 } else if (IsMIPS64) 429 Mapping.Offset = kMIPS64_ShadowOffset64; 430 else if (IsIOS) 431 // If we're targeting iOS and x86, the binary is built for iOS simulator. 432 // We are using dynamic shadow offset on the 64-bit devices. 433 Mapping.Offset = 434 IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel; 435 else if (IsAArch64) 436 Mapping.Offset = kAArch64_ShadowOffset64; 437 else 438 Mapping.Offset = kDefaultShadowOffset64; 439 } 440 441 if (ClForceDynamicShadow) { 442 Mapping.Offset = kDynamicShadowSentinel; 443 } 444 445 Mapping.Scale = kDefaultShadowScale; 446 if (ClMappingScale.getNumOccurrences() > 0) { 447 Mapping.Scale = ClMappingScale; 448 } 449 450 if (ClMappingOffset.getNumOccurrences() > 0) { 451 Mapping.Offset = ClMappingOffset; 452 } 453 454 // OR-ing shadow offset if more efficient (at least on x86) if the offset 455 // is a power of two, but on ppc64 we have to use add since the shadow 456 // offset is not necessary 1/8-th of the address space. On SystemZ, 457 // we could OR the constant in a single instruction, but it's more 458 // efficient to load it once and use indexed addressing. 459 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ 460 && !(Mapping.Offset & (Mapping.Offset - 1)) 461 && Mapping.Offset != kDynamicShadowSentinel; 462 463 return Mapping; 464 } 465 466 static size_t RedzoneSizeForScale(int MappingScale) { 467 // Redzone used for stack and globals is at least 32 bytes. 468 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 469 return std::max(32U, 1U << MappingScale); 470 } 471 472 /// AddressSanitizer: instrument the code in module to find memory bugs. 473 struct AddressSanitizer : public FunctionPass { 474 explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false, 475 bool UseAfterScope = false) 476 : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan), 477 Recover(Recover || ClRecover), 478 UseAfterScope(UseAfterScope || ClUseAfterScope), 479 LocalDynamicShadow(nullptr) { 480 initializeAddressSanitizerPass(*PassRegistry::getPassRegistry()); 481 } 482 StringRef getPassName() const override { 483 return "AddressSanitizerFunctionPass"; 484 } 485 void getAnalysisUsage(AnalysisUsage &AU) const override { 486 AU.addRequired<DominatorTreeWrapperPass>(); 487 AU.addRequired<TargetLibraryInfoWrapperPass>(); 488 } 489 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 490 uint64_t ArraySize = 1; 491 if (AI.isArrayAllocation()) { 492 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 493 assert(CI && "non-constant array size"); 494 ArraySize = CI->getZExtValue(); 495 } 496 Type *Ty = AI.getAllocatedType(); 497 uint64_t SizeInBytes = 498 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 499 return SizeInBytes * ArraySize; 500 } 501 /// Check if we want (and can) handle this alloca. 502 bool isInterestingAlloca(const AllocaInst &AI); 503 504 /// If it is an interesting memory access, return the PointerOperand 505 /// and set IsWrite/Alignment. Otherwise return nullptr. 506 /// MaybeMask is an output parameter for the mask Value, if we're looking at a 507 /// masked load/store. 508 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 509 uint64_t *TypeSize, unsigned *Alignment, 510 Value **MaybeMask = nullptr); 511 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 512 bool UseCalls, const DataLayout &DL); 513 void instrumentPointerComparisonOrSubtraction(Instruction *I); 514 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 515 Value *Addr, uint32_t TypeSize, bool IsWrite, 516 Value *SizeArgument, bool UseCalls, uint32_t Exp); 517 void instrumentUnusualSizeOrAlignment(Instruction *I, 518 Instruction *InsertBefore, Value *Addr, 519 uint32_t TypeSize, bool IsWrite, 520 Value *SizeArgument, bool UseCalls, 521 uint32_t Exp); 522 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 523 Value *ShadowValue, uint32_t TypeSize); 524 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 525 bool IsWrite, size_t AccessSizeIndex, 526 Value *SizeArgument, uint32_t Exp); 527 void instrumentMemIntrinsic(MemIntrinsic *MI); 528 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 529 bool runOnFunction(Function &F) override; 530 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 531 void maybeInsertDynamicShadowAtFunctionEntry(Function &F); 532 void markEscapedLocalAllocas(Function &F); 533 bool doInitialization(Module &M) override; 534 bool doFinalization(Module &M) override; 535 static char ID; // Pass identification, replacement for typeid 536 537 DominatorTree &getDominatorTree() const { return *DT; } 538 539 private: 540 void initializeCallbacks(Module &M); 541 542 bool LooksLikeCodeInBug11395(Instruction *I); 543 bool GlobalIsLinkerInitialized(GlobalVariable *G); 544 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 545 uint64_t TypeSize) const; 546 547 /// Helper to cleanup per-function state. 548 struct FunctionStateRAII { 549 AddressSanitizer *Pass; 550 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 551 assert(Pass->ProcessedAllocas.empty() && 552 "last pass forgot to clear cache"); 553 assert(!Pass->LocalDynamicShadow); 554 } 555 ~FunctionStateRAII() { 556 Pass->LocalDynamicShadow = nullptr; 557 Pass->ProcessedAllocas.clear(); 558 } 559 }; 560 561 LLVMContext *C; 562 Triple TargetTriple; 563 int LongSize; 564 bool CompileKernel; 565 bool Recover; 566 bool UseAfterScope; 567 Type *IntptrTy; 568 ShadowMapping Mapping; 569 DominatorTree *DT; 570 Function *AsanCtorFunction = nullptr; 571 Function *AsanInitFunction = nullptr; 572 Function *AsanHandleNoReturnFunc; 573 Function *AsanPtrCmpFunction, *AsanPtrSubFunction; 574 // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize). 575 Function *AsanErrorCallback[2][2][kNumberOfAccessSizes]; 576 Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 577 // This array is indexed by AccessIsWrite and Experiment. 578 Function *AsanErrorCallbackSized[2][2]; 579 Function *AsanMemoryAccessCallbackSized[2][2]; 580 Function *AsanMemmove, *AsanMemcpy, *AsanMemset; 581 InlineAsm *EmptyAsm; 582 Value *LocalDynamicShadow; 583 GlobalsMetadata GlobalsMD; 584 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 585 586 friend struct FunctionStackPoisoner; 587 }; 588 589 class AddressSanitizerModule : public ModulePass { 590 public: 591 explicit AddressSanitizerModule(bool CompileKernel = false, 592 bool Recover = false) 593 : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan), 594 Recover(Recover || ClRecover) {} 595 bool runOnModule(Module &M) override; 596 static char ID; // Pass identification, replacement for typeid 597 StringRef getPassName() const override { return "AddressSanitizerModule"; } 598 599 private: 600 void initializeCallbacks(Module &M); 601 602 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M); 603 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 604 ArrayRef<GlobalVariable *> ExtendedGlobals, 605 ArrayRef<Constant *> MetadataInitializers); 606 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 607 ArrayRef<GlobalVariable *> ExtendedGlobals, 608 ArrayRef<Constant *> MetadataInitializers); 609 void 610 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 611 ArrayRef<GlobalVariable *> ExtendedGlobals, 612 ArrayRef<Constant *> MetadataInitializers); 613 614 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 615 StringRef OriginalName); 616 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata); 617 IRBuilder<> CreateAsanModuleDtor(Module &M); 618 619 bool ShouldInstrumentGlobal(GlobalVariable *G); 620 bool ShouldUseMachOGlobalsSection() const; 621 StringRef getGlobalMetadataSection() const; 622 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 623 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 624 size_t MinRedzoneSizeForGlobal() const { 625 return RedzoneSizeForScale(Mapping.Scale); 626 } 627 628 GlobalsMetadata GlobalsMD; 629 bool CompileKernel; 630 bool Recover; 631 Type *IntptrTy; 632 LLVMContext *C; 633 Triple TargetTriple; 634 ShadowMapping Mapping; 635 Function *AsanPoisonGlobals; 636 Function *AsanUnpoisonGlobals; 637 Function *AsanRegisterGlobals; 638 Function *AsanUnregisterGlobals; 639 Function *AsanRegisterImageGlobals; 640 Function *AsanUnregisterImageGlobals; 641 }; 642 643 // Stack poisoning does not play well with exception handling. 644 // When an exception is thrown, we essentially bypass the code 645 // that unpoisones the stack. This is why the run-time library has 646 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 647 // stack in the interceptor. This however does not work inside the 648 // actual function which catches the exception. Most likely because the 649 // compiler hoists the load of the shadow value somewhere too high. 650 // This causes asan to report a non-existing bug on 453.povray. 651 // It sounds like an LLVM bug. 652 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 653 Function &F; 654 AddressSanitizer &ASan; 655 DIBuilder DIB; 656 LLVMContext *C; 657 Type *IntptrTy; 658 Type *IntptrPtrTy; 659 ShadowMapping Mapping; 660 661 SmallVector<AllocaInst *, 16> AllocaVec; 662 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 663 SmallVector<Instruction *, 8> RetVec; 664 unsigned StackAlignment; 665 666 Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 667 *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 668 Function *AsanSetShadowFunc[0x100] = {}; 669 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; 670 Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc; 671 672 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 673 struct AllocaPoisonCall { 674 IntrinsicInst *InsBefore; 675 AllocaInst *AI; 676 uint64_t Size; 677 bool DoPoison; 678 }; 679 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 680 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 681 682 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 683 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 684 AllocaInst *DynamicAllocaLayout = nullptr; 685 IntrinsicInst *LocalEscapeCall = nullptr; 686 687 // Maps Value to an AllocaInst from which the Value is originated. 688 typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy; 689 AllocaForValueMapTy AllocaForValue; 690 691 bool HasNonEmptyInlineAsm = false; 692 bool HasReturnsTwiceCall = false; 693 std::unique_ptr<CallInst> EmptyInlineAsm; 694 695 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 696 : F(F), 697 ASan(ASan), 698 DIB(*F.getParent(), /*AllowUnresolved*/ false), 699 C(ASan.C), 700 IntptrTy(ASan.IntptrTy), 701 IntptrPtrTy(PointerType::get(IntptrTy, 0)), 702 Mapping(ASan.Mapping), 703 StackAlignment(1 << Mapping.Scale), 704 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 705 706 bool runOnFunction() { 707 if (!ClStack) return false; 708 // Collect alloca, ret, lifetime instructions etc. 709 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 710 711 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 712 713 initializeCallbacks(*F.getParent()); 714 715 processDynamicAllocas(); 716 processStaticAllocas(); 717 718 if (ClDebugStack) { 719 DEBUG(dbgs() << F); 720 } 721 return true; 722 } 723 724 // Finds all Alloca instructions and puts 725 // poisoned red zones around all of them. 726 // Then unpoison everything back before the function returns. 727 void processStaticAllocas(); 728 void processDynamicAllocas(); 729 730 void createDynamicAllocasInitStorage(); 731 732 // ----------------------- Visitors. 733 /// \brief Collect all Ret instructions. 734 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 735 736 /// \brief Collect all Resume instructions. 737 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 738 739 /// \brief Collect all CatchReturnInst instructions. 740 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 741 742 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 743 Value *SavedStack) { 744 IRBuilder<> IRB(InstBefore); 745 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 746 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 747 // need to adjust extracted SP to compute the address of the most recent 748 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 749 // this purpose. 750 if (!isa<ReturnInst>(InstBefore)) { 751 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 752 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 753 {IntptrTy}); 754 755 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 756 757 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 758 DynamicAreaOffset); 759 } 760 761 IRB.CreateCall(AsanAllocasUnpoisonFunc, 762 {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr}); 763 } 764 765 // Unpoison dynamic allocas redzones. 766 void unpoisonDynamicAllocas() { 767 for (auto &Ret : RetVec) 768 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 769 770 for (auto &StackRestoreInst : StackRestoreVec) 771 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 772 StackRestoreInst->getOperand(0)); 773 } 774 775 // Deploy and poison redzones around dynamic alloca call. To do this, we 776 // should replace this call with another one with changed parameters and 777 // replace all its uses with new address, so 778 // addr = alloca type, old_size, align 779 // is replaced by 780 // new_size = (old_size + additional_size) * sizeof(type) 781 // tmp = alloca i8, new_size, max(align, 32) 782 // addr = tmp + 32 (first 32 bytes are for the left redzone). 783 // Additional_size is added to make new memory allocation contain not only 784 // requested memory, but also left, partial and right redzones. 785 void handleDynamicAllocaCall(AllocaInst *AI); 786 787 /// \brief Collect Alloca instructions we want (and can) handle. 788 void visitAllocaInst(AllocaInst &AI) { 789 if (!ASan.isInterestingAlloca(AI)) { 790 if (AI.isStaticAlloca()) { 791 // Skip over allocas that are present *before* the first instrumented 792 // alloca, we don't want to move those around. 793 if (AllocaVec.empty()) 794 return; 795 796 StaticAllocasToMoveUp.push_back(&AI); 797 } 798 return; 799 } 800 801 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 802 if (!AI.isStaticAlloca()) 803 DynamicAllocaVec.push_back(&AI); 804 else 805 AllocaVec.push_back(&AI); 806 } 807 808 /// \brief Collect lifetime intrinsic calls to check for use-after-scope 809 /// errors. 810 void visitIntrinsicInst(IntrinsicInst &II) { 811 Intrinsic::ID ID = II.getIntrinsicID(); 812 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 813 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 814 if (!ASan.UseAfterScope) 815 return; 816 if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end) 817 return; 818 // Found lifetime intrinsic, add ASan instrumentation if necessary. 819 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 820 // If size argument is undefined, don't do anything. 821 if (Size->isMinusOne()) return; 822 // Check that size doesn't saturate uint64_t and can 823 // be stored in IntptrTy. 824 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 825 if (SizeValue == ~0ULL || 826 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 827 return; 828 // Find alloca instruction that corresponds to llvm.lifetime argument. 829 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); 830 if (!AI || !ASan.isInterestingAlloca(*AI)) 831 return; 832 bool DoPoison = (ID == Intrinsic::lifetime_end); 833 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 834 if (AI->isStaticAlloca()) 835 StaticAllocaPoisonCallVec.push_back(APC); 836 else if (ClInstrumentDynamicAllocas) 837 DynamicAllocaPoisonCallVec.push_back(APC); 838 } 839 840 void visitCallSite(CallSite CS) { 841 Instruction *I = CS.getInstruction(); 842 if (CallInst *CI = dyn_cast<CallInst>(I)) { 843 HasNonEmptyInlineAsm |= 844 CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get()); 845 HasReturnsTwiceCall |= CI->canReturnTwice(); 846 } 847 } 848 849 // ---------------------- Helpers. 850 void initializeCallbacks(Module &M); 851 852 bool doesDominateAllExits(const Instruction *I) const { 853 for (auto Ret : RetVec) { 854 if (!ASan.getDominatorTree().dominates(I, Ret)) return false; 855 } 856 return true; 857 } 858 859 /// Finds alloca where the value comes from. 860 AllocaInst *findAllocaForValue(Value *V); 861 862 // Copies bytes from ShadowBytes into shadow memory for indexes where 863 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 864 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 865 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 866 IRBuilder<> &IRB, Value *ShadowBase); 867 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 868 size_t Begin, size_t End, IRBuilder<> &IRB, 869 Value *ShadowBase); 870 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 871 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 872 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 873 874 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 875 876 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 877 bool Dynamic); 878 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 879 Instruction *ThenTerm, Value *ValueIfFalse); 880 }; 881 882 } // anonymous namespace 883 884 char AddressSanitizer::ID = 0; 885 INITIALIZE_PASS_BEGIN( 886 AddressSanitizer, "asan", 887 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 888 false) 889 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 890 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 891 INITIALIZE_PASS_END( 892 AddressSanitizer, "asan", 893 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 894 false) 895 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 896 bool Recover, 897 bool UseAfterScope) { 898 assert(!CompileKernel || Recover); 899 return new AddressSanitizer(CompileKernel, Recover, UseAfterScope); 900 } 901 902 char AddressSanitizerModule::ID = 0; 903 INITIALIZE_PASS( 904 AddressSanitizerModule, "asan-module", 905 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 906 "ModulePass", 907 false, false) 908 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel, 909 bool Recover) { 910 assert(!CompileKernel || Recover); 911 return new AddressSanitizerModule(CompileKernel, Recover); 912 } 913 914 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 915 size_t Res = countTrailingZeros(TypeSize / 8); 916 assert(Res < kNumberOfAccessSizes); 917 return Res; 918 } 919 920 // \brief Create a constant for Str so that we can pass it to the run-time lib. 921 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str, 922 bool AllowMerging) { 923 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 924 // We use private linkage for module-local strings. If they can be merged 925 // with another one, we set the unnamed_addr attribute. 926 GlobalVariable *GV = 927 new GlobalVariable(M, StrConst->getType(), true, 928 GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix); 929 if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 930 GV->setAlignment(1); // Strings may not be merged w/o setting align 1. 931 return GV; 932 } 933 934 /// \brief Create a global describing a source location. 935 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 936 LocationMetadata MD) { 937 Constant *LocData[] = { 938 createPrivateGlobalForString(M, MD.Filename, true), 939 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 940 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 941 }; 942 auto LocStruct = ConstantStruct::getAnon(LocData); 943 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 944 GlobalValue::PrivateLinkage, LocStruct, 945 kAsanGenPrefix); 946 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 947 return GV; 948 } 949 950 /// \brief Check if \p G has been created by a trusted compiler pass. 951 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 952 // Do not instrument asan globals. 953 if (G->getName().startswith(kAsanGenPrefix) || 954 G->getName().startswith(kSanCovGenPrefix) || 955 G->getName().startswith(kODRGenPrefix)) 956 return true; 957 958 // Do not instrument gcov counter arrays. 959 if (G->getName() == "__llvm_gcov_ctr") 960 return true; 961 962 return false; 963 } 964 965 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 966 // Shadow >> scale 967 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 968 if (Mapping.Offset == 0) return Shadow; 969 // (Shadow >> scale) | offset 970 Value *ShadowBase; 971 if (LocalDynamicShadow) 972 ShadowBase = LocalDynamicShadow; 973 else 974 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 975 if (Mapping.OrShadowOffset) 976 return IRB.CreateOr(Shadow, ShadowBase); 977 else 978 return IRB.CreateAdd(Shadow, ShadowBase); 979 } 980 981 // Instrument memset/memmove/memcpy 982 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 983 IRBuilder<> IRB(MI); 984 if (isa<MemTransferInst>(MI)) { 985 IRB.CreateCall( 986 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 987 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 988 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 989 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 990 } else if (isa<MemSetInst>(MI)) { 991 IRB.CreateCall( 992 AsanMemset, 993 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 994 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 995 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 996 } 997 MI->eraseFromParent(); 998 } 999 1000 /// Check if we want (and can) handle this alloca. 1001 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1002 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1003 1004 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1005 return PreviouslySeenAllocaInfo->getSecond(); 1006 1007 bool IsInteresting = 1008 (AI.getAllocatedType()->isSized() && 1009 // alloca() may be called with 0 size, ignore it. 1010 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1011 // We are only interested in allocas not promotable to registers. 1012 // Promotable allocas are common under -O0. 1013 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1014 // inalloca allocas are not treated as static, and we don't want 1015 // dynamic alloca instrumentation for them as well. 1016 !AI.isUsedWithInAlloca()); 1017 1018 ProcessedAllocas[&AI] = IsInteresting; 1019 return IsInteresting; 1020 } 1021 1022 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 1023 bool *IsWrite, 1024 uint64_t *TypeSize, 1025 unsigned *Alignment, 1026 Value **MaybeMask) { 1027 // Skip memory accesses inserted by another instrumentation. 1028 if (I->getMetadata("nosanitize")) return nullptr; 1029 1030 // Do not instrument the load fetching the dynamic shadow address. 1031 if (LocalDynamicShadow == I) 1032 return nullptr; 1033 1034 Value *PtrOperand = nullptr; 1035 const DataLayout &DL = I->getModule()->getDataLayout(); 1036 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1037 if (!ClInstrumentReads) return nullptr; 1038 *IsWrite = false; 1039 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 1040 *Alignment = LI->getAlignment(); 1041 PtrOperand = LI->getPointerOperand(); 1042 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1043 if (!ClInstrumentWrites) return nullptr; 1044 *IsWrite = true; 1045 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 1046 *Alignment = SI->getAlignment(); 1047 PtrOperand = SI->getPointerOperand(); 1048 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1049 if (!ClInstrumentAtomics) return nullptr; 1050 *IsWrite = true; 1051 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 1052 *Alignment = 0; 1053 PtrOperand = RMW->getPointerOperand(); 1054 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1055 if (!ClInstrumentAtomics) return nullptr; 1056 *IsWrite = true; 1057 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 1058 *Alignment = 0; 1059 PtrOperand = XCHG->getPointerOperand(); 1060 } else if (auto CI = dyn_cast<CallInst>(I)) { 1061 auto *F = dyn_cast<Function>(CI->getCalledValue()); 1062 if (F && (F->getName().startswith("llvm.masked.load.") || 1063 F->getName().startswith("llvm.masked.store."))) { 1064 unsigned OpOffset = 0; 1065 if (F->getName().startswith("llvm.masked.store.")) { 1066 if (!ClInstrumentWrites) 1067 return nullptr; 1068 // Masked store has an initial operand for the value. 1069 OpOffset = 1; 1070 *IsWrite = true; 1071 } else { 1072 if (!ClInstrumentReads) 1073 return nullptr; 1074 *IsWrite = false; 1075 } 1076 1077 auto BasePtr = CI->getOperand(0 + OpOffset); 1078 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1079 *TypeSize = DL.getTypeStoreSizeInBits(Ty); 1080 if (auto AlignmentConstant = 1081 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1082 *Alignment = (unsigned)AlignmentConstant->getZExtValue(); 1083 else 1084 *Alignment = 1; // No alignment guarantees. We probably got Undef 1085 if (MaybeMask) 1086 *MaybeMask = CI->getOperand(2 + OpOffset); 1087 PtrOperand = BasePtr; 1088 } 1089 } 1090 1091 // Do not instrument acesses from different address spaces; we cannot deal 1092 // with them. 1093 if (PtrOperand) { 1094 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); 1095 if (PtrTy->getPointerAddressSpace() != 0) 1096 return nullptr; 1097 } 1098 1099 // Treat memory accesses to promotable allocas as non-interesting since they 1100 // will not cause memory violations. This greatly speeds up the instrumented 1101 // executable at -O0. 1102 if (ClSkipPromotableAllocas) 1103 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 1104 return isInterestingAlloca(*AI) ? AI : nullptr; 1105 1106 return PtrOperand; 1107 } 1108 1109 static bool isPointerOperand(Value *V) { 1110 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1111 } 1112 1113 // This is a rough heuristic; it may cause both false positives and 1114 // false negatives. The proper implementation requires cooperation with 1115 // the frontend. 1116 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { 1117 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1118 if (!Cmp->isRelational()) return false; 1119 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1120 if (BO->getOpcode() != Instruction::Sub) return false; 1121 } else { 1122 return false; 1123 } 1124 return isPointerOperand(I->getOperand(0)) && 1125 isPointerOperand(I->getOperand(1)); 1126 } 1127 1128 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1129 // If a global variable does not have dynamic initialization we don't 1130 // have to instrument it. However, if a global does not have initializer 1131 // at all, we assume it has dynamic initializer (in other TU). 1132 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1133 } 1134 1135 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1136 Instruction *I) { 1137 IRBuilder<> IRB(I); 1138 Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1139 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1140 for (Value *&i : Param) { 1141 if (i->getType()->isPointerTy()) 1142 i = IRB.CreatePointerCast(i, IntptrTy); 1143 } 1144 IRB.CreateCall(F, Param); 1145 } 1146 1147 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1148 Instruction *InsertBefore, Value *Addr, 1149 unsigned Alignment, unsigned Granularity, 1150 uint32_t TypeSize, bool IsWrite, 1151 Value *SizeArgument, bool UseCalls, 1152 uint32_t Exp) { 1153 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1154 // if the data is properly aligned. 1155 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1156 TypeSize == 128) && 1157 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1158 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1159 nullptr, UseCalls, Exp); 1160 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1161 IsWrite, nullptr, UseCalls, Exp); 1162 } 1163 1164 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1165 const DataLayout &DL, Type *IntptrTy, 1166 Value *Mask, Instruction *I, 1167 Value *Addr, unsigned Alignment, 1168 unsigned Granularity, uint32_t TypeSize, 1169 bool IsWrite, Value *SizeArgument, 1170 bool UseCalls, uint32_t Exp) { 1171 auto *VTy = cast<PointerType>(Addr->getType())->getElementType(); 1172 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1173 unsigned Num = VTy->getVectorNumElements(); 1174 auto Zero = ConstantInt::get(IntptrTy, 0); 1175 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1176 Value *InstrumentedAddress = nullptr; 1177 Instruction *InsertBefore = I; 1178 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1179 // dyn_cast as we might get UndefValue 1180 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1181 if (Masked->isNullValue()) 1182 // Mask is constant false, so no instrumentation needed. 1183 continue; 1184 // If we have a true or undef value, fall through to doInstrumentAddress 1185 // with InsertBefore == I 1186 } 1187 } else { 1188 IRBuilder<> IRB(I); 1189 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1190 TerminatorInst *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1191 InsertBefore = ThenTerm; 1192 } 1193 1194 IRBuilder<> IRB(InsertBefore); 1195 InstrumentedAddress = 1196 IRB.CreateGEP(Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1197 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1198 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1199 UseCalls, Exp); 1200 } 1201 } 1202 1203 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1204 Instruction *I, bool UseCalls, 1205 const DataLayout &DL) { 1206 bool IsWrite = false; 1207 unsigned Alignment = 0; 1208 uint64_t TypeSize = 0; 1209 Value *MaybeMask = nullptr; 1210 Value *Addr = 1211 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); 1212 assert(Addr); 1213 1214 // Optimization experiments. 1215 // The experiments can be used to evaluate potential optimizations that remove 1216 // instrumentation (assess false negatives). Instead of completely removing 1217 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1218 // experiments that want to remove instrumentation of this instruction). 1219 // If Exp is non-zero, this pass will emit special calls into runtime 1220 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1221 // make runtime terminate the program in a special way (with a different 1222 // exit status). Then you run the new compiler on a buggy corpus, collect 1223 // the special terminations (ideally, you don't see them at all -- no false 1224 // negatives) and make the decision on the optimization. 1225 uint32_t Exp = ClForceExperiment; 1226 1227 if (ClOpt && ClOptGlobals) { 1228 // If initialization order checking is disabled, a simple access to a 1229 // dynamically initialized global is always valid. 1230 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1231 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1232 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1233 NumOptimizedAccessesToGlobalVar++; 1234 return; 1235 } 1236 } 1237 1238 if (ClOpt && ClOptStack) { 1239 // A direct inbounds access to a stack variable is always valid. 1240 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1241 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1242 NumOptimizedAccessesToStackVar++; 1243 return; 1244 } 1245 } 1246 1247 if (IsWrite) 1248 NumInstrumentedWrites++; 1249 else 1250 NumInstrumentedReads++; 1251 1252 unsigned Granularity = 1 << Mapping.Scale; 1253 if (MaybeMask) { 1254 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr, 1255 Alignment, Granularity, TypeSize, IsWrite, 1256 nullptr, UseCalls, Exp); 1257 } else { 1258 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize, 1259 IsWrite, nullptr, UseCalls, Exp); 1260 } 1261 } 1262 1263 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1264 Value *Addr, bool IsWrite, 1265 size_t AccessSizeIndex, 1266 Value *SizeArgument, 1267 uint32_t Exp) { 1268 IRBuilder<> IRB(InsertBefore); 1269 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1270 CallInst *Call = nullptr; 1271 if (SizeArgument) { 1272 if (Exp == 0) 1273 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1274 {Addr, SizeArgument}); 1275 else 1276 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1277 {Addr, SizeArgument, ExpVal}); 1278 } else { 1279 if (Exp == 0) 1280 Call = 1281 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1282 else 1283 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1284 {Addr, ExpVal}); 1285 } 1286 1287 // We don't do Call->setDoesNotReturn() because the BB already has 1288 // UnreachableInst at the end. 1289 // This EmptyAsm is required to avoid callback merge. 1290 IRB.CreateCall(EmptyAsm, {}); 1291 return Call; 1292 } 1293 1294 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1295 Value *ShadowValue, 1296 uint32_t TypeSize) { 1297 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1298 // Addr & (Granularity - 1) 1299 Value *LastAccessedByte = 1300 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1301 // (Addr & (Granularity - 1)) + size - 1 1302 if (TypeSize / 8 > 1) 1303 LastAccessedByte = IRB.CreateAdd( 1304 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1305 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1306 LastAccessedByte = 1307 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1308 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1309 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1310 } 1311 1312 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1313 Instruction *InsertBefore, Value *Addr, 1314 uint32_t TypeSize, bool IsWrite, 1315 Value *SizeArgument, bool UseCalls, 1316 uint32_t Exp) { 1317 IRBuilder<> IRB(InsertBefore); 1318 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1319 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1320 1321 if (UseCalls) { 1322 if (Exp == 0) 1323 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1324 AddrLong); 1325 else 1326 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1327 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1328 return; 1329 } 1330 1331 Type *ShadowTy = 1332 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1333 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1334 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1335 Value *CmpVal = Constant::getNullValue(ShadowTy); 1336 Value *ShadowValue = 1337 IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1338 1339 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1340 size_t Granularity = 1ULL << Mapping.Scale; 1341 TerminatorInst *CrashTerm = nullptr; 1342 1343 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1344 // We use branch weights for the slow path check, to indicate that the slow 1345 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1346 TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen( 1347 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1348 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1349 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1350 IRB.SetInsertPoint(CheckTerm); 1351 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1352 if (Recover) { 1353 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1354 } else { 1355 BasicBlock *CrashBlock = 1356 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1357 CrashTerm = new UnreachableInst(*C, CrashBlock); 1358 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1359 ReplaceInstWithInst(CheckTerm, NewTerm); 1360 } 1361 } else { 1362 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1363 } 1364 1365 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1366 AccessSizeIndex, SizeArgument, Exp); 1367 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1368 } 1369 1370 // Instrument unusual size or unusual alignment. 1371 // We can not do it with a single check, so we do 1-byte check for the first 1372 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1373 // to report the actual access size. 1374 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1375 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1376 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1377 IRBuilder<> IRB(InsertBefore); 1378 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1379 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1380 if (UseCalls) { 1381 if (Exp == 0) 1382 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1383 {AddrLong, Size}); 1384 else 1385 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1386 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1387 } else { 1388 Value *LastByte = IRB.CreateIntToPtr( 1389 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1390 Addr->getType()); 1391 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1392 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1393 } 1394 } 1395 1396 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit, 1397 GlobalValue *ModuleName) { 1398 // Set up the arguments to our poison/unpoison functions. 1399 IRBuilder<> IRB(&GlobalInit.front(), 1400 GlobalInit.front().getFirstInsertionPt()); 1401 1402 // Add a call to poison all external globals before the given function starts. 1403 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1404 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1405 1406 // Add calls to unpoison all globals before each return instruction. 1407 for (auto &BB : GlobalInit.getBasicBlockList()) 1408 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1409 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1410 } 1411 1412 void AddressSanitizerModule::createInitializerPoisonCalls( 1413 Module &M, GlobalValue *ModuleName) { 1414 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1415 1416 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1417 for (Use &OP : CA->operands()) { 1418 if (isa<ConstantAggregateZero>(OP)) continue; 1419 ConstantStruct *CS = cast<ConstantStruct>(OP); 1420 1421 // Must have a function or null ptr. 1422 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1423 if (F->getName() == kAsanModuleCtorName) continue; 1424 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1425 // Don't instrument CTORs that will run before asan.module_ctor. 1426 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; 1427 poisonOneInitializer(*F, ModuleName); 1428 } 1429 } 1430 } 1431 1432 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { 1433 Type *Ty = G->getValueType(); 1434 DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1435 1436 if (GlobalsMD.get(G).IsBlacklisted) return false; 1437 if (!Ty->isSized()) return false; 1438 if (!G->hasInitializer()) return false; 1439 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1440 // Touch only those globals that will not be defined in other modules. 1441 // Don't handle ODR linkage types and COMDATs since other modules may be built 1442 // without ASan. 1443 if (G->getLinkage() != GlobalVariable::ExternalLinkage && 1444 G->getLinkage() != GlobalVariable::PrivateLinkage && 1445 G->getLinkage() != GlobalVariable::InternalLinkage) 1446 return false; 1447 if (G->hasComdat()) return false; 1448 // Two problems with thread-locals: 1449 // - The address of the main thread's copy can't be computed at link-time. 1450 // - Need to poison all copies, not just the main thread's one. 1451 if (G->isThreadLocal()) return false; 1452 // For now, just ignore this Global if the alignment is large. 1453 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1454 1455 if (G->hasSection()) { 1456 StringRef Section = G->getSection(); 1457 1458 // Globals from llvm.metadata aren't emitted, do not instrument them. 1459 if (Section == "llvm.metadata") return false; 1460 // Do not instrument globals from special LLVM sections. 1461 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1462 1463 // Do not instrument function pointers to initialization and termination 1464 // routines: dynamic linker will not properly handle redzones. 1465 if (Section.startswith(".preinit_array") || 1466 Section.startswith(".init_array") || 1467 Section.startswith(".fini_array")) { 1468 return false; 1469 } 1470 1471 // Callbacks put into the CRT initializer/terminator sections 1472 // should not be instrumented. 1473 // See https://code.google.com/p/address-sanitizer/issues/detail?id=305 1474 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1475 if (Section.startswith(".CRT")) { 1476 DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n"); 1477 return false; 1478 } 1479 1480 if (TargetTriple.isOSBinFormatMachO()) { 1481 StringRef ParsedSegment, ParsedSection; 1482 unsigned TAA = 0, StubSize = 0; 1483 bool TAAParsed; 1484 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1485 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1486 assert(ErrorCode.empty() && "Invalid section specifier."); 1487 1488 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1489 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1490 // them. 1491 if (ParsedSegment == "__OBJC" || 1492 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1493 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1494 return false; 1495 } 1496 // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 1497 // Constant CFString instances are compiled in the following way: 1498 // -- the string buffer is emitted into 1499 // __TEXT,__cstring,cstring_literals 1500 // -- the constant NSConstantString structure referencing that buffer 1501 // is placed into __DATA,__cfstring 1502 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1503 // Moreover, it causes the linker to crash on OS X 10.7 1504 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1505 DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1506 return false; 1507 } 1508 // The linker merges the contents of cstring_literals and removes the 1509 // trailing zeroes. 1510 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1511 DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1512 return false; 1513 } 1514 } 1515 } 1516 1517 return true; 1518 } 1519 1520 // On Mach-O platforms, we emit global metadata in a separate section of the 1521 // binary in order to allow the linker to properly dead strip. This is only 1522 // supported on recent versions of ld64. 1523 bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const { 1524 if (!ClUseMachOGlobalsSection) 1525 return false; 1526 1527 if (!TargetTriple.isOSBinFormatMachO()) 1528 return false; 1529 1530 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1531 return true; 1532 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1533 return true; 1534 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1535 return true; 1536 1537 return false; 1538 } 1539 1540 StringRef AddressSanitizerModule::getGlobalMetadataSection() const { 1541 switch (TargetTriple.getObjectFormat()) { 1542 case Triple::COFF: return ".ASAN$GL"; 1543 case Triple::ELF: return "asan_globals"; 1544 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1545 default: break; 1546 } 1547 llvm_unreachable("unsupported object format"); 1548 } 1549 1550 void AddressSanitizerModule::initializeCallbacks(Module &M) { 1551 IRBuilder<> IRB(*C); 1552 1553 // Declare our poisoning and unpoisoning functions. 1554 AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1555 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr)); 1556 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); 1557 AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1558 kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr)); 1559 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); 1560 1561 // Declare functions that register/unregister globals. 1562 AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1563 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1564 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); 1565 AsanUnregisterGlobals = checkSanitizerInterfaceFunction( 1566 M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(), 1567 IntptrTy, IntptrTy, nullptr)); 1568 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); 1569 1570 // Declare the functions that find globals in a shared object and then invoke 1571 // the (un)register function on them. 1572 AsanRegisterImageGlobals = 1573 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1574 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr)); 1575 AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage); 1576 1577 AsanUnregisterImageGlobals = 1578 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1579 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr)); 1580 AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage); 1581 } 1582 1583 // Put the metadata and the instrumented global in the same group. This ensures 1584 // that the metadata is discarded if the instrumented global is discarded. 1585 void AddressSanitizerModule::SetComdatForGlobalMetadata( 1586 GlobalVariable *G, GlobalVariable *Metadata) { 1587 Module &M = *G->getParent(); 1588 Comdat *C = G->getComdat(); 1589 if (!C) { 1590 if (!G->hasName()) { 1591 // If G is unnamed, it must be internal. Give it an artificial name 1592 // so we can put it in a comdat. 1593 assert(G->hasLocalLinkage()); 1594 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1595 } 1596 C = M.getOrInsertComdat(G->getName()); 1597 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. 1598 if (TargetTriple.isOSBinFormatCOFF()) 1599 C->setSelectionKind(Comdat::NoDuplicates); 1600 G->setComdat(C); 1601 } 1602 1603 assert(G->hasComdat()); 1604 Metadata->setComdat(G->getComdat()); 1605 } 1606 1607 // Create a separate metadata global and put it in the appropriate ASan 1608 // global registration section. 1609 GlobalVariable * 1610 AddressSanitizerModule::CreateMetadataGlobal(Module &M, Constant *Initializer, 1611 StringRef OriginalName) { 1612 GlobalVariable *Metadata = 1613 new GlobalVariable(M, Initializer->getType(), false, 1614 GlobalVariable::InternalLinkage, Initializer, 1615 Twine("__asan_global_") + 1616 GlobalValue::getRealLinkageName(OriginalName)); 1617 Metadata->setSection(getGlobalMetadataSection()); 1618 return Metadata; 1619 } 1620 1621 IRBuilder<> AddressSanitizerModule::CreateAsanModuleDtor(Module &M) { 1622 Function *AsanDtorFunction = 1623 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 1624 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 1625 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 1626 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); 1627 1628 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB)); 1629 } 1630 1631 void AddressSanitizerModule::InstrumentGlobalsCOFF( 1632 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1633 ArrayRef<Constant *> MetadataInitializers) { 1634 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1635 auto &DL = M.getDataLayout(); 1636 1637 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 1638 Constant *Initializer = MetadataInitializers[i]; 1639 GlobalVariable *G = ExtendedGlobals[i]; 1640 GlobalVariable *Metadata = 1641 CreateMetadataGlobal(M, Initializer, G->getName()); 1642 1643 // The MSVC linker always inserts padding when linking incrementally. We 1644 // cope with that by aligning each struct to its size, which must be a power 1645 // of two. 1646 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 1647 assert(isPowerOf2_32(SizeOfGlobalStruct) && 1648 "global metadata will not be padded appropriately"); 1649 Metadata->setAlignment(SizeOfGlobalStruct); 1650 1651 SetComdatForGlobalMetadata(G, Metadata); 1652 } 1653 } 1654 1655 void AddressSanitizerModule::InstrumentGlobalsMachO( 1656 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1657 ArrayRef<Constant *> MetadataInitializers) { 1658 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1659 1660 // On recent Mach-O platforms, use a structure which binds the liveness of 1661 // the global variable to the metadata struct. Keep the list of "Liveness" GV 1662 // created to be added to llvm.compiler.used 1663 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy, nullptr); 1664 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 1665 1666 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 1667 Constant *Initializer = MetadataInitializers[i]; 1668 GlobalVariable *G = ExtendedGlobals[i]; 1669 GlobalVariable *Metadata = 1670 CreateMetadataGlobal(M, Initializer, G->getName()); 1671 1672 // On recent Mach-O platforms, we emit the global metadata in a way that 1673 // allows the linker to properly strip dead globals. 1674 auto LivenessBinder = ConstantStruct::get( 1675 LivenessTy, Initializer->getAggregateElement(0u), 1676 ConstantExpr::getPointerCast(Metadata, IntptrTy), nullptr); 1677 GlobalVariable *Liveness = new GlobalVariable( 1678 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 1679 Twine("__asan_binder_") + G->getName()); 1680 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 1681 LivenessGlobals[i] = Liveness; 1682 } 1683 1684 // Update llvm.compiler.used, adding the new liveness globals. This is 1685 // needed so that during LTO these variables stay alive. The alternative 1686 // would be to have the linker handling the LTO symbols, but libLTO 1687 // current API does not expose access to the section for each symbol. 1688 if (!LivenessGlobals.empty()) 1689 appendToCompilerUsed(M, LivenessGlobals); 1690 1691 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 1692 // to look up the loaded image that contains it. Second, we can store in it 1693 // whether registration has already occurred, to prevent duplicate 1694 // registration. 1695 // 1696 // common linkage ensures that there is only one global per shared library. 1697 GlobalVariable *RegisteredFlag = new GlobalVariable( 1698 M, IntptrTy, false, GlobalVariable::CommonLinkage, 1699 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 1700 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 1701 1702 IRB.CreateCall(AsanRegisterImageGlobals, 1703 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1704 1705 // We also need to unregister globals at the end, e.g., when a shared library 1706 // gets closed. 1707 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 1708 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 1709 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1710 } 1711 1712 void AddressSanitizerModule::InstrumentGlobalsWithMetadataArray( 1713 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1714 ArrayRef<Constant *> MetadataInitializers) { 1715 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1716 unsigned N = ExtendedGlobals.size(); 1717 assert(N > 0); 1718 1719 // On platforms that don't have a custom metadata section, we emit an array 1720 // of global metadata structures. 1721 ArrayType *ArrayOfGlobalStructTy = 1722 ArrayType::get(MetadataInitializers[0]->getType(), N); 1723 auto AllGlobals = new GlobalVariable( 1724 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 1725 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 1726 1727 IRB.CreateCall(AsanRegisterGlobals, 1728 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1729 ConstantInt::get(IntptrTy, N)}); 1730 1731 // We also need to unregister globals at the end, e.g., when a shared library 1732 // gets closed. 1733 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 1734 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 1735 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1736 ConstantInt::get(IntptrTy, N)}); 1737 } 1738 1739 // This function replaces all global variables with new variables that have 1740 // trailing redzones. It also creates a function that poisons 1741 // redzones and inserts this function into llvm.global_ctors. 1742 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) { 1743 GlobalsMD.init(M); 1744 1745 SmallVector<GlobalVariable *, 16> GlobalsToChange; 1746 1747 for (auto &G : M.globals()) { 1748 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 1749 } 1750 1751 size_t n = GlobalsToChange.size(); 1752 if (n == 0) return false; 1753 1754 auto &DL = M.getDataLayout(); 1755 1756 // A global is described by a structure 1757 // size_t beg; 1758 // size_t size; 1759 // size_t size_with_redzone; 1760 // const char *name; 1761 // const char *module_name; 1762 // size_t has_dynamic_init; 1763 // void *source_location; 1764 // size_t odr_indicator; 1765 // We initialize an array of such structures and pass it to a run-time call. 1766 StructType *GlobalStructTy = 1767 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 1768 IntptrTy, IntptrTy, IntptrTy, nullptr); 1769 SmallVector<GlobalVariable *, 16> NewGlobals(n); 1770 SmallVector<Constant *, 16> Initializers(n); 1771 1772 bool HasDynamicallyInitializedGlobals = false; 1773 1774 // We shouldn't merge same module names, as this string serves as unique 1775 // module ID in runtime. 1776 GlobalVariable *ModuleName = createPrivateGlobalForString( 1777 M, M.getModuleIdentifier(), /*AllowMerging*/ false); 1778 1779 for (size_t i = 0; i < n; i++) { 1780 static const uint64_t kMaxGlobalRedzone = 1 << 18; 1781 GlobalVariable *G = GlobalsToChange[i]; 1782 1783 auto MD = GlobalsMD.get(G); 1784 StringRef NameForGlobal = G->getName(); 1785 // Create string holding the global name (use global name from metadata 1786 // if it's available, otherwise just write the name of global variable). 1787 GlobalVariable *Name = createPrivateGlobalForString( 1788 M, MD.Name.empty() ? NameForGlobal : MD.Name, 1789 /*AllowMerging*/ true); 1790 1791 Type *Ty = G->getValueType(); 1792 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 1793 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 1794 // MinRZ <= RZ <= kMaxGlobalRedzone 1795 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 1796 uint64_t RZ = std::max( 1797 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 1798 uint64_t RightRedzoneSize = RZ; 1799 // Round up to MinRZ 1800 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 1801 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 1802 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 1803 1804 StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr); 1805 Constant *NewInitializer = 1806 ConstantStruct::get(NewTy, G->getInitializer(), 1807 Constant::getNullValue(RightRedZoneTy), nullptr); 1808 1809 // Create a new global variable with enough space for a redzone. 1810 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 1811 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 1812 Linkage = GlobalValue::InternalLinkage; 1813 GlobalVariable *NewGlobal = 1814 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 1815 "", G, G->getThreadLocalMode()); 1816 NewGlobal->copyAttributesFrom(G); 1817 NewGlobal->setAlignment(MinRZ); 1818 1819 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 1820 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 1821 G->isConstant()) { 1822 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 1823 if (Seq && Seq->isCString()) 1824 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 1825 } 1826 1827 // Transfer the debug info. The payload starts at offset zero so we can 1828 // copy the debug info over as is. 1829 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1830 G->getDebugInfo(GVs); 1831 for (auto *GV : GVs) 1832 NewGlobal->addDebugInfo(GV); 1833 1834 Value *Indices2[2]; 1835 Indices2[0] = IRB.getInt32(0); 1836 Indices2[1] = IRB.getInt32(0); 1837 1838 G->replaceAllUsesWith( 1839 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 1840 NewGlobal->takeName(G); 1841 G->eraseFromParent(); 1842 NewGlobals[i] = NewGlobal; 1843 1844 Constant *SourceLoc; 1845 if (!MD.SourceLoc.empty()) { 1846 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 1847 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 1848 } else { 1849 SourceLoc = ConstantInt::get(IntptrTy, 0); 1850 } 1851 1852 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 1853 GlobalValue *InstrumentedGlobal = NewGlobal; 1854 1855 bool CanUsePrivateAliases = 1856 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 1857 TargetTriple.isOSBinFormatWasm(); 1858 if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) { 1859 // Create local alias for NewGlobal to avoid crash on ODR between 1860 // instrumented and non-instrumented libraries. 1861 auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage, 1862 NameForGlobal + M.getName(), NewGlobal); 1863 1864 // With local aliases, we need to provide another externally visible 1865 // symbol __odr_asan_XXX to detect ODR violation. 1866 auto *ODRIndicatorSym = 1867 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 1868 Constant::getNullValue(IRB.getInt8Ty()), 1869 kODRGenPrefix + NameForGlobal, nullptr, 1870 NewGlobal->getThreadLocalMode()); 1871 1872 // Set meaningful attributes for indicator symbol. 1873 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 1874 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 1875 ODRIndicatorSym->setAlignment(1); 1876 ODRIndicator = ODRIndicatorSym; 1877 InstrumentedGlobal = GA; 1878 } 1879 1880 Constant *Initializer = ConstantStruct::get( 1881 GlobalStructTy, 1882 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 1883 ConstantInt::get(IntptrTy, SizeInBytes), 1884 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 1885 ConstantExpr::getPointerCast(Name, IntptrTy), 1886 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 1887 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 1888 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy), nullptr); 1889 1890 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 1891 1892 DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 1893 1894 Initializers[i] = Initializer; 1895 } 1896 1897 if (TargetTriple.isOSBinFormatCOFF()) { 1898 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 1899 } else if (ShouldUseMachOGlobalsSection()) { 1900 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 1901 } else { 1902 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 1903 } 1904 1905 // Create calls for poisoning before initializers run and unpoisoning after. 1906 if (HasDynamicallyInitializedGlobals) 1907 createInitializerPoisonCalls(M, ModuleName); 1908 1909 DEBUG(dbgs() << M); 1910 return true; 1911 } 1912 1913 bool AddressSanitizerModule::runOnModule(Module &M) { 1914 C = &(M.getContext()); 1915 int LongSize = M.getDataLayout().getPointerSizeInBits(); 1916 IntptrTy = Type::getIntNTy(*C, LongSize); 1917 TargetTriple = Triple(M.getTargetTriple()); 1918 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 1919 initializeCallbacks(M); 1920 1921 bool Changed = false; 1922 1923 // TODO(glider): temporarily disabled globals instrumentation for KASan. 1924 if (ClGlobals && !CompileKernel) { 1925 Function *CtorFunc = M.getFunction(kAsanModuleCtorName); 1926 assert(CtorFunc); 1927 IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator()); 1928 Changed |= InstrumentGlobals(IRB, M); 1929 } 1930 1931 return Changed; 1932 } 1933 1934 void AddressSanitizer::initializeCallbacks(Module &M) { 1935 IRBuilder<> IRB(*C); 1936 // Create __asan_report* callbacks. 1937 // IsWrite, TypeSize and Exp are encoded in the function name. 1938 for (int Exp = 0; Exp < 2; Exp++) { 1939 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 1940 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 1941 const std::string ExpStr = Exp ? "exp_" : ""; 1942 const std::string SuffixStr = CompileKernel ? "N" : "_n"; 1943 const std::string EndingStr = Recover ? "_noabort" : ""; 1944 Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr; 1945 AsanErrorCallbackSized[AccessIsWrite][Exp] = 1946 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1947 kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr, 1948 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr)); 1949 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = 1950 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1951 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 1952 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr)); 1953 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 1954 AccessSizeIndex++) { 1955 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 1956 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 1957 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1958 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 1959 IRB.getVoidTy(), IntptrTy, ExpType, nullptr)); 1960 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 1961 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1962 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 1963 IRB.getVoidTy(), IntptrTy, ExpType, nullptr)); 1964 } 1965 } 1966 } 1967 1968 const std::string MemIntrinCallbackPrefix = 1969 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 1970 AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1971 MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(), 1972 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); 1973 AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1974 MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), 1975 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); 1976 AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1977 MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(), 1978 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr)); 1979 1980 AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction( 1981 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr)); 1982 1983 AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1984 kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1985 AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1986 kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1987 // We insert an empty inline asm after __asan_report* to avoid callback merge. 1988 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 1989 StringRef(""), StringRef(""), 1990 /*hasSideEffects=*/true); 1991 } 1992 1993 // virtual 1994 bool AddressSanitizer::doInitialization(Module &M) { 1995 // Initialize the private fields. No one has accessed them before. 1996 1997 GlobalsMD.init(M); 1998 1999 C = &(M.getContext()); 2000 LongSize = M.getDataLayout().getPointerSizeInBits(); 2001 IntptrTy = Type::getIntNTy(*C, LongSize); 2002 TargetTriple = Triple(M.getTargetTriple()); 2003 2004 if (!CompileKernel) { 2005 std::tie(AsanCtorFunction, AsanInitFunction) = 2006 createSanitizerCtorAndInitFunctions( 2007 M, kAsanModuleCtorName, kAsanInitName, 2008 /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName); 2009 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); 2010 } 2011 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 2012 return true; 2013 } 2014 2015 bool AddressSanitizer::doFinalization(Module &M) { 2016 GlobalsMD.reset(); 2017 return false; 2018 } 2019 2020 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2021 // For each NSObject descendant having a +load method, this method is invoked 2022 // by the ObjC runtime before any of the static constructors is called. 2023 // Therefore we need to instrument such methods with a call to __asan_init 2024 // at the beginning in order to initialize our runtime before any access to 2025 // the shadow memory. 2026 // We cannot just ignore these methods, because they may call other 2027 // instrumented functions. 2028 if (F.getName().find(" load]") != std::string::npos) { 2029 IRBuilder<> IRB(&F.front(), F.front().begin()); 2030 IRB.CreateCall(AsanInitFunction, {}); 2031 return true; 2032 } 2033 return false; 2034 } 2035 2036 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2037 // Generate code only when dynamic addressing is needed. 2038 if (Mapping.Offset != kDynamicShadowSentinel) 2039 return; 2040 2041 IRBuilder<> IRB(&F.front().front()); 2042 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2043 kAsanShadowMemoryDynamicAddress, IntptrTy); 2044 LocalDynamicShadow = IRB.CreateLoad(GlobalDynamicAddress); 2045 } 2046 2047 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2048 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2049 // to it as uninteresting. This assumes we haven't started processing allocas 2050 // yet. This check is done up front because iterating the use list in 2051 // isInterestingAlloca would be algorithmically slower. 2052 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2053 2054 // Try to get the declaration of llvm.localescape. If it's not in the module, 2055 // we can exit early. 2056 if (!F.getParent()->getFunction("llvm.localescape")) return; 2057 2058 // Look for a call to llvm.localescape call in the entry block. It can't be in 2059 // any other block. 2060 for (Instruction &I : F.getEntryBlock()) { 2061 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2062 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2063 // We found a call. Mark all the allocas passed in as uninteresting. 2064 for (Value *Arg : II->arg_operands()) { 2065 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2066 assert(AI && AI->isStaticAlloca() && 2067 "non-static alloca arg to localescape"); 2068 ProcessedAllocas[AI] = false; 2069 } 2070 break; 2071 } 2072 } 2073 } 2074 2075 bool AddressSanitizer::runOnFunction(Function &F) { 2076 if (&F == AsanCtorFunction) return false; 2077 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2078 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2079 if (F.getName().startswith("__asan_")) return false; 2080 2081 bool FunctionModified = false; 2082 2083 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2084 // This function needs to be called even if the function body is not 2085 // instrumented. 2086 if (maybeInsertAsanInitAtFunctionEntry(F)) 2087 FunctionModified = true; 2088 2089 // Leave if the function doesn't need instrumentation. 2090 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2091 2092 DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2093 2094 initializeCallbacks(*F.getParent()); 2095 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2096 2097 FunctionStateRAII CleanupObj(this); 2098 2099 maybeInsertDynamicShadowAtFunctionEntry(F); 2100 2101 // We can't instrument allocas used with llvm.localescape. Only static allocas 2102 // can be passed to that intrinsic. 2103 markEscapedLocalAllocas(F); 2104 2105 // We want to instrument every address only once per basic block (unless there 2106 // are calls between uses). 2107 SmallSet<Value *, 16> TempsToInstrument; 2108 SmallVector<Instruction *, 16> ToInstrument; 2109 SmallVector<Instruction *, 8> NoReturnCalls; 2110 SmallVector<BasicBlock *, 16> AllBlocks; 2111 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2112 int NumAllocas = 0; 2113 bool IsWrite; 2114 unsigned Alignment; 2115 uint64_t TypeSize; 2116 const TargetLibraryInfo *TLI = 2117 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2118 2119 // Fill the set of memory operations to instrument. 2120 for (auto &BB : F) { 2121 AllBlocks.push_back(&BB); 2122 TempsToInstrument.clear(); 2123 int NumInsnsPerBB = 0; 2124 for (auto &Inst : BB) { 2125 if (LooksLikeCodeInBug11395(&Inst)) return false; 2126 Value *MaybeMask = nullptr; 2127 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 2128 &Alignment, &MaybeMask)) { 2129 if (ClOpt && ClOptSameTemp) { 2130 // If we have a mask, skip instrumentation if we've already 2131 // instrumented the full object. But don't add to TempsToInstrument 2132 // because we might get another load/store with a different mask. 2133 if (MaybeMask) { 2134 if (TempsToInstrument.count(Addr)) 2135 continue; // We've seen this (whole) temp in the current BB. 2136 } else { 2137 if (!TempsToInstrument.insert(Addr).second) 2138 continue; // We've seen this temp in the current BB. 2139 } 2140 } 2141 } else if (ClInvalidPointerPairs && 2142 isInterestingPointerComparisonOrSubtraction(&Inst)) { 2143 PointerComparisonsOrSubtracts.push_back(&Inst); 2144 continue; 2145 } else if (isa<MemIntrinsic>(Inst)) { 2146 // ok, take it. 2147 } else { 2148 if (isa<AllocaInst>(Inst)) NumAllocas++; 2149 CallSite CS(&Inst); 2150 if (CS) { 2151 // A call inside BB. 2152 TempsToInstrument.clear(); 2153 if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction()); 2154 } 2155 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2156 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2157 continue; 2158 } 2159 ToInstrument.push_back(&Inst); 2160 NumInsnsPerBB++; 2161 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2162 } 2163 } 2164 2165 bool UseCalls = 2166 CompileKernel || 2167 (ClInstrumentationWithCallsThreshold >= 0 && 2168 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 2169 const DataLayout &DL = F.getParent()->getDataLayout(); 2170 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), 2171 /*RoundToAlign=*/true); 2172 2173 // Instrument. 2174 int NumInstrumented = 0; 2175 for (auto Inst : ToInstrument) { 2176 if (ClDebugMin < 0 || ClDebugMax < 0 || 2177 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 2178 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 2179 instrumentMop(ObjSizeVis, Inst, UseCalls, 2180 F.getParent()->getDataLayout()); 2181 else 2182 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 2183 } 2184 NumInstrumented++; 2185 } 2186 2187 FunctionStackPoisoner FSP(F, *this); 2188 bool ChangedStack = FSP.runOnFunction(); 2189 2190 // We must unpoison the stack before every NoReturn call (throw, _exit, etc). 2191 // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 2192 for (auto CI : NoReturnCalls) { 2193 IRBuilder<> IRB(CI); 2194 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2195 } 2196 2197 for (auto Inst : PointerComparisonsOrSubtracts) { 2198 instrumentPointerComparisonOrSubtraction(Inst); 2199 NumInstrumented++; 2200 } 2201 2202 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) 2203 FunctionModified = true; 2204 2205 DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2206 << F << "\n"); 2207 2208 return FunctionModified; 2209 } 2210 2211 // Workaround for bug 11395: we don't want to instrument stack in functions 2212 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2213 // FIXME: remove once the bug 11395 is fixed. 2214 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2215 if (LongSize != 32) return false; 2216 CallInst *CI = dyn_cast<CallInst>(I); 2217 if (!CI || !CI->isInlineAsm()) return false; 2218 if (CI->getNumArgOperands() <= 5) return false; 2219 // We have inline assembly with quite a few arguments. 2220 return true; 2221 } 2222 2223 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2224 IRBuilder<> IRB(*C); 2225 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2226 std::string Suffix = itostr(i); 2227 AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction( 2228 M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy, 2229 IntptrTy, nullptr)); 2230 AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction( 2231 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2232 IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 2233 } 2234 if (ASan.UseAfterScope) { 2235 AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 2236 M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(), 2237 IntptrTy, IntptrTy, nullptr)); 2238 AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 2239 M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), 2240 IntptrTy, IntptrTy, nullptr)); 2241 } 2242 2243 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2244 std::ostringstream Name; 2245 Name << kAsanSetShadowPrefix; 2246 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2247 AsanSetShadowFunc[Val] = 2248 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2249 Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 2250 } 2251 2252 AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2253 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 2254 AsanAllocasUnpoisonFunc = 2255 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 2256 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 2257 } 2258 2259 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2260 ArrayRef<uint8_t> ShadowBytes, 2261 size_t Begin, size_t End, 2262 IRBuilder<> &IRB, 2263 Value *ShadowBase) { 2264 if (Begin >= End) 2265 return; 2266 2267 const size_t LargestStoreSizeInBytes = 2268 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2269 2270 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2271 2272 // Poison given range in shadow using larges store size with out leading and 2273 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2274 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2275 // middle of a store. 2276 for (size_t i = Begin; i < End;) { 2277 if (!ShadowMask[i]) { 2278 assert(!ShadowBytes[i]); 2279 ++i; 2280 continue; 2281 } 2282 2283 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2284 // Fit store size into the range. 2285 while (StoreSizeInBytes > End - i) 2286 StoreSizeInBytes /= 2; 2287 2288 // Minimize store size by trimming trailing zeros. 2289 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2290 while (j <= StoreSizeInBytes / 2) 2291 StoreSizeInBytes /= 2; 2292 } 2293 2294 uint64_t Val = 0; 2295 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2296 if (IsLittleEndian) 2297 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2298 else 2299 Val = (Val << 8) | ShadowBytes[i + j]; 2300 } 2301 2302 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2303 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2304 IRB.CreateAlignedStore( 2305 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); 2306 2307 i += StoreSizeInBytes; 2308 } 2309 } 2310 2311 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2312 ArrayRef<uint8_t> ShadowBytes, 2313 IRBuilder<> &IRB, Value *ShadowBase) { 2314 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2315 } 2316 2317 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2318 ArrayRef<uint8_t> ShadowBytes, 2319 size_t Begin, size_t End, 2320 IRBuilder<> &IRB, Value *ShadowBase) { 2321 assert(ShadowMask.size() == ShadowBytes.size()); 2322 size_t Done = Begin; 2323 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2324 if (!ShadowMask[i]) { 2325 assert(!ShadowBytes[i]); 2326 continue; 2327 } 2328 uint8_t Val = ShadowBytes[i]; 2329 if (!AsanSetShadowFunc[Val]) 2330 continue; 2331 2332 // Skip same values. 2333 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2334 } 2335 2336 if (j - i >= ClMaxInlinePoisoningSize) { 2337 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2338 IRB.CreateCall(AsanSetShadowFunc[Val], 2339 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2340 ConstantInt::get(IntptrTy, j - i)}); 2341 Done = j; 2342 } 2343 } 2344 2345 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2346 } 2347 2348 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2349 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2350 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2351 assert(LocalStackSize <= kMaxStackMallocSize); 2352 uint64_t MaxSize = kMinStackMallocSize; 2353 for (int i = 0;; i++, MaxSize *= 2) 2354 if (LocalStackSize <= MaxSize) return i; 2355 llvm_unreachable("impossible LocalStackSize"); 2356 } 2357 2358 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2359 Value *ValueIfTrue, 2360 Instruction *ThenTerm, 2361 Value *ValueIfFalse) { 2362 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2363 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2364 PHI->addIncoming(ValueIfFalse, CondBlock); 2365 BasicBlock *ThenBlock = ThenTerm->getParent(); 2366 PHI->addIncoming(ValueIfTrue, ThenBlock); 2367 return PHI; 2368 } 2369 2370 Value *FunctionStackPoisoner::createAllocaForLayout( 2371 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2372 AllocaInst *Alloca; 2373 if (Dynamic) { 2374 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2375 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2376 "MyAlloca"); 2377 } else { 2378 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2379 nullptr, "MyAlloca"); 2380 assert(Alloca->isStaticAlloca()); 2381 } 2382 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2383 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 2384 Alloca->setAlignment(FrameAlignment); 2385 return IRB.CreatePointerCast(Alloca, IntptrTy); 2386 } 2387 2388 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2389 BasicBlock &FirstBB = *F.begin(); 2390 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2391 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2392 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2393 DynamicAllocaLayout->setAlignment(32); 2394 } 2395 2396 void FunctionStackPoisoner::processDynamicAllocas() { 2397 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2398 assert(DynamicAllocaPoisonCallVec.empty()); 2399 return; 2400 } 2401 2402 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2403 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2404 assert(APC.InsBefore); 2405 assert(APC.AI); 2406 assert(ASan.isInterestingAlloca(*APC.AI)); 2407 assert(!APC.AI->isStaticAlloca()); 2408 2409 IRBuilder<> IRB(APC.InsBefore); 2410 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2411 // Dynamic allocas will be unpoisoned unconditionally below in 2412 // unpoisonDynamicAllocas. 2413 // Flag that we need unpoison static allocas. 2414 } 2415 2416 // Handle dynamic allocas. 2417 createDynamicAllocasInitStorage(); 2418 for (auto &AI : DynamicAllocaVec) 2419 handleDynamicAllocaCall(AI); 2420 unpoisonDynamicAllocas(); 2421 } 2422 2423 void FunctionStackPoisoner::processStaticAllocas() { 2424 if (AllocaVec.empty()) { 2425 assert(StaticAllocaPoisonCallVec.empty()); 2426 return; 2427 } 2428 2429 int StackMallocIdx = -1; 2430 DebugLoc EntryDebugLocation; 2431 if (auto SP = F.getSubprogram()) 2432 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 2433 2434 Instruction *InsBefore = AllocaVec[0]; 2435 IRBuilder<> IRB(InsBefore); 2436 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2437 2438 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 2439 // debug info is broken, because only entry-block allocas are treated as 2440 // regular stack slots. 2441 auto InsBeforeB = InsBefore->getParent(); 2442 assert(InsBeforeB == &F.getEntryBlock()); 2443 for (auto *AI : StaticAllocasToMoveUp) 2444 if (AI->getParent() == InsBeforeB) 2445 AI->moveBefore(InsBefore); 2446 2447 // If we have a call to llvm.localescape, keep it in the entry block. 2448 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 2449 2450 SmallVector<ASanStackVariableDescription, 16> SVD; 2451 SVD.reserve(AllocaVec.size()); 2452 for (AllocaInst *AI : AllocaVec) { 2453 ASanStackVariableDescription D = {AI->getName().data(), 2454 ASan.getAllocaSizeInBytes(*AI), 2455 0, 2456 AI->getAlignment(), 2457 AI, 2458 0, 2459 0}; 2460 SVD.push_back(D); 2461 } 2462 2463 // Minimal header size (left redzone) is 4 pointers, 2464 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 2465 size_t MinHeaderSize = ASan.LongSize / 2; 2466 const ASanStackFrameLayout &L = 2467 ComputeASanStackFrameLayout(SVD, 1ULL << Mapping.Scale, MinHeaderSize); 2468 2469 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 2470 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 2471 for (auto &Desc : SVD) 2472 AllocaToSVDMap[Desc.AI] = &Desc; 2473 2474 // Update SVD with information from lifetime intrinsics. 2475 for (const auto &APC : StaticAllocaPoisonCallVec) { 2476 assert(APC.InsBefore); 2477 assert(APC.AI); 2478 assert(ASan.isInterestingAlloca(*APC.AI)); 2479 assert(APC.AI->isStaticAlloca()); 2480 2481 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 2482 Desc.LifetimeSize = Desc.Size; 2483 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 2484 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 2485 if (LifetimeLoc->getFile() == FnLoc->getFile()) 2486 if (unsigned Line = LifetimeLoc->getLine()) 2487 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 2488 } 2489 } 2490 } 2491 2492 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 2493 DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 2494 uint64_t LocalStackSize = L.FrameSize; 2495 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 2496 LocalStackSize <= kMaxStackMallocSize; 2497 bool DoDynamicAlloca = ClDynamicAllocaStack; 2498 // Don't do dynamic alloca or stack malloc if: 2499 // 1) There is inline asm: too often it makes assumptions on which registers 2500 // are available. 2501 // 2) There is a returns_twice call (typically setjmp), which is 2502 // optimization-hostile, and doesn't play well with introduced indirect 2503 // register-relative calculation of local variable addresses. 2504 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2505 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2506 2507 Value *StaticAlloca = 2508 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 2509 2510 Value *FakeStack; 2511 Value *LocalStackBase; 2512 2513 if (DoStackMalloc) { 2514 // void *FakeStack = __asan_option_detect_stack_use_after_return 2515 // ? __asan_stack_malloc_N(LocalStackSize) 2516 // : nullptr; 2517 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 2518 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 2519 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 2520 Value *UseAfterReturnIsEnabled = 2521 IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn), 2522 Constant::getNullValue(IRB.getInt32Ty())); 2523 Instruction *Term = 2524 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 2525 IRBuilder<> IRBIf(Term); 2526 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2527 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 2528 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 2529 Value *FakeStackValue = 2530 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 2531 ConstantInt::get(IntptrTy, LocalStackSize)); 2532 IRB.SetInsertPoint(InsBefore); 2533 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2534 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 2535 ConstantInt::get(IntptrTy, 0)); 2536 2537 Value *NoFakeStack = 2538 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 2539 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 2540 IRBIf.SetInsertPoint(Term); 2541 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2542 Value *AllocaValue = 2543 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 2544 IRB.SetInsertPoint(InsBefore); 2545 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2546 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 2547 } else { 2548 // void *FakeStack = nullptr; 2549 // void *LocalStackBase = alloca(LocalStackSize); 2550 FakeStack = ConstantInt::get(IntptrTy, 0); 2551 LocalStackBase = 2552 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 2553 } 2554 2555 // Replace Alloca instructions with base+offset. 2556 for (const auto &Desc : SVD) { 2557 AllocaInst *AI = Desc.AI; 2558 Value *NewAllocaPtr = IRB.CreateIntToPtr( 2559 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 2560 AI->getType()); 2561 replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true); 2562 AI->replaceAllUsesWith(NewAllocaPtr); 2563 } 2564 2565 // The left-most redzone has enough space for at least 4 pointers. 2566 // Write the Magic value to redzone[0]. 2567 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 2568 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 2569 BasePlus0); 2570 // Write the frame description constant to redzone[1]. 2571 Value *BasePlus1 = IRB.CreateIntToPtr( 2572 IRB.CreateAdd(LocalStackBase, 2573 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 2574 IntptrPtrTy); 2575 GlobalVariable *StackDescriptionGlobal = 2576 createPrivateGlobalForString(*F.getParent(), DescriptionString, 2577 /*AllowMerging*/ true); 2578 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 2579 IRB.CreateStore(Description, BasePlus1); 2580 // Write the PC to redzone[2]. 2581 Value *BasePlus2 = IRB.CreateIntToPtr( 2582 IRB.CreateAdd(LocalStackBase, 2583 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 2584 IntptrPtrTy); 2585 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 2586 2587 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 2588 2589 // Poison the stack red zones at the entry. 2590 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 2591 // As mask we must use most poisoned case: red zones and after scope. 2592 // As bytes we can use either the same or just red zones only. 2593 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 2594 2595 if (!StaticAllocaPoisonCallVec.empty()) { 2596 const auto &ShadowInScope = GetShadowBytes(SVD, L); 2597 2598 // Poison static allocas near lifetime intrinsics. 2599 for (const auto &APC : StaticAllocaPoisonCallVec) { 2600 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 2601 assert(Desc.Offset % L.Granularity == 0); 2602 size_t Begin = Desc.Offset / L.Granularity; 2603 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 2604 2605 IRBuilder<> IRB(APC.InsBefore); 2606 copyToShadow(ShadowAfterScope, 2607 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 2608 IRB, ShadowBase); 2609 } 2610 } 2611 2612 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 2613 SmallVector<uint8_t, 64> ShadowAfterReturn; 2614 2615 // (Un)poison the stack before all ret instructions. 2616 for (auto Ret : RetVec) { 2617 IRBuilder<> IRBRet(Ret); 2618 // Mark the current frame as retired. 2619 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 2620 BasePlus0); 2621 if (DoStackMalloc) { 2622 assert(StackMallocIdx >= 0); 2623 // if FakeStack != 0 // LocalStackBase == FakeStack 2624 // // In use-after-return mode, poison the whole stack frame. 2625 // if StackMallocIdx <= 4 2626 // // For small sizes inline the whole thing: 2627 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 2628 // **SavedFlagPtr(FakeStack) = 0 2629 // else 2630 // __asan_stack_free_N(FakeStack, LocalStackSize) 2631 // else 2632 // <This is not a fake stack; unpoison the redzones> 2633 Value *Cmp = 2634 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 2635 TerminatorInst *ThenTerm, *ElseTerm; 2636 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 2637 2638 IRBuilder<> IRBPoison(ThenTerm); 2639 if (StackMallocIdx <= 4) { 2640 int ClassSize = kMinStackMallocSize << StackMallocIdx; 2641 ShadowAfterReturn.resize(ClassSize / L.Granularity, 2642 kAsanStackUseAfterReturnMagic); 2643 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 2644 ShadowBase); 2645 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 2646 FakeStack, 2647 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 2648 Value *SavedFlagPtr = IRBPoison.CreateLoad( 2649 IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 2650 IRBPoison.CreateStore( 2651 Constant::getNullValue(IRBPoison.getInt8Ty()), 2652 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 2653 } else { 2654 // For larger frames call __asan_stack_free_*. 2655 IRBPoison.CreateCall( 2656 AsanStackFreeFunc[StackMallocIdx], 2657 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 2658 } 2659 2660 IRBuilder<> IRBElse(ElseTerm); 2661 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 2662 } else { 2663 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 2664 } 2665 } 2666 2667 // We are done. Remove the old unused alloca instructions. 2668 for (auto AI : AllocaVec) AI->eraseFromParent(); 2669 } 2670 2671 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 2672 IRBuilder<> &IRB, bool DoPoison) { 2673 // For now just insert the call to ASan runtime. 2674 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 2675 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 2676 IRB.CreateCall( 2677 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 2678 {AddrArg, SizeArg}); 2679 } 2680 2681 // Handling llvm.lifetime intrinsics for a given %alloca: 2682 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 2683 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 2684 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 2685 // could be poisoned by previous llvm.lifetime.end instruction, as the 2686 // variable may go in and out of scope several times, e.g. in loops). 2687 // (3) if we poisoned at least one %alloca in a function, 2688 // unpoison the whole stack frame at function exit. 2689 2690 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { 2691 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2692 // We're interested only in allocas we can handle. 2693 return ASan.isInterestingAlloca(*AI) ? AI : nullptr; 2694 // See if we've already calculated (or started to calculate) alloca for a 2695 // given value. 2696 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 2697 if (I != AllocaForValue.end()) return I->second; 2698 // Store 0 while we're calculating alloca for value V to avoid 2699 // infinite recursion if the value references itself. 2700 AllocaForValue[V] = nullptr; 2701 AllocaInst *Res = nullptr; 2702 if (CastInst *CI = dyn_cast<CastInst>(V)) 2703 Res = findAllocaForValue(CI->getOperand(0)); 2704 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2705 for (Value *IncValue : PN->incoming_values()) { 2706 // Allow self-referencing phi-nodes. 2707 if (IncValue == PN) continue; 2708 AllocaInst *IncValueAI = findAllocaForValue(IncValue); 2709 // AI for incoming values should exist and should all be equal. 2710 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 2711 return nullptr; 2712 Res = IncValueAI; 2713 } 2714 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 2715 Res = findAllocaForValue(EP->getPointerOperand()); 2716 } else { 2717 DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V << "\n"); 2718 } 2719 if (Res) AllocaForValue[V] = Res; 2720 return Res; 2721 } 2722 2723 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 2724 IRBuilder<> IRB(AI); 2725 2726 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 2727 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 2728 2729 Value *Zero = Constant::getNullValue(IntptrTy); 2730 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 2731 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 2732 2733 // Since we need to extend alloca with additional memory to locate 2734 // redzones, and OldSize is number of allocated blocks with 2735 // ElementSize size, get allocated memory size in bytes by 2736 // OldSize * ElementSize. 2737 const unsigned ElementSize = 2738 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 2739 Value *OldSize = 2740 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 2741 ConstantInt::get(IntptrTy, ElementSize)); 2742 2743 // PartialSize = OldSize % 32 2744 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 2745 2746 // Misalign = kAllocaRzSize - PartialSize; 2747 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 2748 2749 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 2750 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 2751 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 2752 2753 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 2754 // Align is added to locate left redzone, PartialPadding for possible 2755 // partial redzone and kAllocaRzSize for right redzone respectively. 2756 Value *AdditionalChunkSize = IRB.CreateAdd( 2757 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 2758 2759 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 2760 2761 // Insert new alloca with new NewSize and Align params. 2762 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 2763 NewAlloca->setAlignment(Align); 2764 2765 // NewAddress = Address + Align 2766 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 2767 ConstantInt::get(IntptrTy, Align)); 2768 2769 // Insert __asan_alloca_poison call for new created alloca. 2770 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 2771 2772 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 2773 // for unpoisoning stuff. 2774 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 2775 2776 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 2777 2778 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 2779 AI->replaceAllUsesWith(NewAddressPtr); 2780 2781 // We are done. Erase old alloca from parent. 2782 AI->eraseFromParent(); 2783 } 2784 2785 // isSafeAccess returns true if Addr is always inbounds with respect to its 2786 // base object. For example, it is a field access or an array access with 2787 // constant inbounds index. 2788 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 2789 Value *Addr, uint64_t TypeSize) const { 2790 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 2791 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 2792 uint64_t Size = SizeOffset.first.getZExtValue(); 2793 int64_t Offset = SizeOffset.second.getSExtValue(); 2794 // Three checks are required to ensure safety: 2795 // . Offset >= 0 (since the offset is given from the base ptr) 2796 // . Size >= Offset (unsigned) 2797 // . Size - Offset >= NeededSize (unsigned) 2798 return Offset >= 0 && Size >= uint64_t(Offset) && 2799 Size - uint64_t(Offset) >= TypeSize / 8; 2800 } 2801