1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of AddressSanitizer, an address sanity checker. 11 // Details of the algorithm: 12 // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Instrumentation.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/DIBuilder.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/InstVisitor.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/MC/MCSectionMachO.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/DataTypes.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/Endian.h" 49 #include "llvm/Support/SwapByteOrder.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Scalar.h" 52 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/Cloning.h" 55 #include "llvm/Transforms/Utils/Local.h" 56 #include "llvm/Transforms/Utils/ModuleUtils.h" 57 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 58 #include <algorithm> 59 #include <string> 60 #include <system_error> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "asan" 65 66 // VMA size definition for architecture that support multiple sizes. 67 // AArch64 has 3 VMA sizes: 39, 42 and 48. 68 #ifndef SANITIZER_AARCH64_VMA 69 # define SANITIZER_AARCH64_VMA 39 70 #else 71 # if SANITIZER_AARCH64_VMA != 39 && SANITIZER_AARCH64_VMA != 42 72 # error "invalid SANITIZER_AARCH64_VMA size" 73 # endif 74 #endif 75 76 static const uint64_t kDefaultShadowScale = 3; 77 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 78 static const uint64_t kIOSShadowOffset32 = 1ULL << 30; 79 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 80 static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000; // < 2G. 81 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 82 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41; 83 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 84 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 85 #if SANITIZER_AARCH64_VMA == 39 86 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 87 #elif SANITIZER_AARCH64_VMA == 42 88 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 39; 89 #endif 90 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 91 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 92 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 93 94 static const size_t kMinStackMallocSize = 1 << 6; // 64B 95 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 96 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 97 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 98 99 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 100 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 101 static const uint64_t kAsanCtorAndDtorPriority = 1; 102 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 103 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 104 static const char *const kAsanUnregisterGlobalsName = 105 "__asan_unregister_globals"; 106 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 107 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 108 static const char *const kAsanInitName = "__asan_init"; 109 static const char *const kAsanVersionCheckName = 110 "__asan_version_mismatch_check_v6"; 111 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 112 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 113 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 114 static const int kMaxAsanStackMallocSizeClass = 10; 115 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 116 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 117 static const char *const kAsanGenPrefix = "__asan_gen_"; 118 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 119 static const char *const kAsanPoisonStackMemoryName = 120 "__asan_poison_stack_memory"; 121 static const char *const kAsanUnpoisonStackMemoryName = 122 "__asan_unpoison_stack_memory"; 123 124 static const char *const kAsanOptionDetectUAR = 125 "__asan_option_detect_stack_use_after_return"; 126 127 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 128 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 129 130 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 131 static const size_t kNumberOfAccessSizes = 5; 132 133 static const unsigned kAllocaRzSize = 32; 134 135 // Command-line flags. 136 static cl::opt<bool> ClEnableKasan( 137 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 138 cl::Hidden, cl::init(false)); 139 140 // This flag may need to be replaced with -f[no-]asan-reads. 141 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 142 cl::desc("instrument read instructions"), 143 cl::Hidden, cl::init(true)); 144 static cl::opt<bool> ClInstrumentWrites( 145 "asan-instrument-writes", cl::desc("instrument write instructions"), 146 cl::Hidden, cl::init(true)); 147 static cl::opt<bool> ClInstrumentAtomics( 148 "asan-instrument-atomics", 149 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 150 cl::init(true)); 151 static cl::opt<bool> ClAlwaysSlowPath( 152 "asan-always-slow-path", 153 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 154 cl::init(false)); 155 // This flag limits the number of instructions to be instrumented 156 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 157 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 158 // set it to 10000. 159 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 160 "asan-max-ins-per-bb", cl::init(10000), 161 cl::desc("maximal number of instructions to instrument in any given BB"), 162 cl::Hidden); 163 // This flag may need to be replaced with -f[no]asan-stack. 164 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 165 cl::Hidden, cl::init(true)); 166 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 167 cl::desc("Check return-after-free"), 168 cl::Hidden, cl::init(true)); 169 // This flag may need to be replaced with -f[no]asan-globals. 170 static cl::opt<bool> ClGlobals("asan-globals", 171 cl::desc("Handle global objects"), cl::Hidden, 172 cl::init(true)); 173 static cl::opt<bool> ClInitializers("asan-initialization-order", 174 cl::desc("Handle C++ initializer order"), 175 cl::Hidden, cl::init(true)); 176 static cl::opt<bool> ClInvalidPointerPairs( 177 "asan-detect-invalid-pointer-pair", 178 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 179 cl::init(false)); 180 static cl::opt<unsigned> ClRealignStack( 181 "asan-realign-stack", 182 cl::desc("Realign stack to the value of this flag (power of two)"), 183 cl::Hidden, cl::init(32)); 184 static cl::opt<int> ClInstrumentationWithCallsThreshold( 185 "asan-instrumentation-with-call-threshold", 186 cl::desc( 187 "If the function being instrumented contains more than " 188 "this number of memory accesses, use callbacks instead of " 189 "inline checks (-1 means never use callbacks)."), 190 cl::Hidden, cl::init(7000)); 191 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 192 "asan-memory-access-callback-prefix", 193 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 194 cl::init("__asan_")); 195 static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas", 196 cl::desc("instrument dynamic allocas"), 197 cl::Hidden, cl::init(false)); 198 static cl::opt<bool> ClSkipPromotableAllocas( 199 "asan-skip-promotable-allocas", 200 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 201 cl::init(true)); 202 203 // These flags allow to change the shadow mapping. 204 // The shadow mapping looks like 205 // Shadow = (Mem >> scale) + (1 << offset_log) 206 static cl::opt<int> ClMappingScale("asan-mapping-scale", 207 cl::desc("scale of asan shadow mapping"), 208 cl::Hidden, cl::init(0)); 209 210 // Optimization flags. Not user visible, used mostly for testing 211 // and benchmarking the tool. 212 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 213 cl::Hidden, cl::init(true)); 214 static cl::opt<bool> ClOptSameTemp( 215 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 216 cl::Hidden, cl::init(true)); 217 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 218 cl::desc("Don't instrument scalar globals"), 219 cl::Hidden, cl::init(true)); 220 static cl::opt<bool> ClOptStack( 221 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 222 cl::Hidden, cl::init(false)); 223 224 static cl::opt<bool> ClCheckLifetime( 225 "asan-check-lifetime", 226 cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), cl::Hidden, 227 cl::init(false)); 228 229 static cl::opt<bool> ClDynamicAllocaStack( 230 "asan-stack-dynamic-alloca", 231 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 232 cl::init(true)); 233 234 static cl::opt<uint32_t> ClForceExperiment( 235 "asan-force-experiment", 236 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 237 cl::init(0)); 238 239 // Debug flags. 240 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 241 cl::init(0)); 242 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 243 cl::Hidden, cl::init(0)); 244 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 245 cl::desc("Debug func")); 246 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 247 cl::Hidden, cl::init(-1)); 248 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"), 249 cl::Hidden, cl::init(-1)); 250 251 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 252 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 253 STATISTIC(NumOptimizedAccessesToGlobalVar, 254 "Number of optimized accesses to global vars"); 255 STATISTIC(NumOptimizedAccessesToStackVar, 256 "Number of optimized accesses to stack vars"); 257 258 namespace { 259 /// Frontend-provided metadata for source location. 260 struct LocationMetadata { 261 StringRef Filename; 262 int LineNo; 263 int ColumnNo; 264 265 LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {} 266 267 bool empty() const { return Filename.empty(); } 268 269 void parse(MDNode *MDN) { 270 assert(MDN->getNumOperands() == 3); 271 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 272 Filename = DIFilename->getString(); 273 LineNo = 274 mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 275 ColumnNo = 276 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 277 } 278 }; 279 280 /// Frontend-provided metadata for global variables. 281 class GlobalsMetadata { 282 public: 283 struct Entry { 284 Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {} 285 LocationMetadata SourceLoc; 286 StringRef Name; 287 bool IsDynInit; 288 bool IsBlacklisted; 289 }; 290 291 GlobalsMetadata() : inited_(false) {} 292 293 void init(Module &M) { 294 assert(!inited_); 295 inited_ = true; 296 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 297 if (!Globals) return; 298 for (auto MDN : Globals->operands()) { 299 // Metadata node contains the global and the fields of "Entry". 300 assert(MDN->getNumOperands() == 5); 301 auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0)); 302 // The optimizer may optimize away a global entirely. 303 if (!GV) continue; 304 // We can already have an entry for GV if it was merged with another 305 // global. 306 Entry &E = Entries[GV]; 307 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 308 E.SourceLoc.parse(Loc); 309 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 310 E.Name = Name->getString(); 311 ConstantInt *IsDynInit = 312 mdconst::extract<ConstantInt>(MDN->getOperand(3)); 313 E.IsDynInit |= IsDynInit->isOne(); 314 ConstantInt *IsBlacklisted = 315 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 316 E.IsBlacklisted |= IsBlacklisted->isOne(); 317 } 318 } 319 320 /// Returns metadata entry for a given global. 321 Entry get(GlobalVariable *G) const { 322 auto Pos = Entries.find(G); 323 return (Pos != Entries.end()) ? Pos->second : Entry(); 324 } 325 326 private: 327 bool inited_; 328 DenseMap<GlobalVariable *, Entry> Entries; 329 }; 330 331 /// This struct defines the shadow mapping using the rule: 332 /// shadow = (mem >> Scale) ADD-or-OR Offset. 333 struct ShadowMapping { 334 int Scale; 335 uint64_t Offset; 336 bool OrShadowOffset; 337 }; 338 339 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 340 bool IsKasan) { 341 bool IsAndroid = TargetTriple.isAndroid(); 342 bool IsIOS = TargetTriple.isiOS(); 343 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 344 bool IsLinux = TargetTriple.isOSLinux(); 345 bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 || 346 TargetTriple.getArch() == llvm::Triple::ppc64le; 347 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; 348 bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips || 349 TargetTriple.getArch() == llvm::Triple::mipsel; 350 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 || 351 TargetTriple.getArch() == llvm::Triple::mips64el; 352 bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64; 353 bool IsWindows = TargetTriple.isOSWindows(); 354 355 ShadowMapping Mapping; 356 357 if (LongSize == 32) { 358 // Android is always PIE, which means that the beginning of the address 359 // space is always available. 360 if (IsAndroid) 361 Mapping.Offset = 0; 362 else if (IsMIPS32) 363 Mapping.Offset = kMIPS32_ShadowOffset32; 364 else if (IsFreeBSD) 365 Mapping.Offset = kFreeBSD_ShadowOffset32; 366 else if (IsIOS) 367 Mapping.Offset = kIOSShadowOffset32; 368 else if (IsWindows) 369 Mapping.Offset = kWindowsShadowOffset32; 370 else 371 Mapping.Offset = kDefaultShadowOffset32; 372 } else { // LongSize == 64 373 if (IsPPC64) 374 Mapping.Offset = kPPC64_ShadowOffset64; 375 else if (IsFreeBSD) 376 Mapping.Offset = kFreeBSD_ShadowOffset64; 377 else if (IsLinux && IsX86_64) { 378 if (IsKasan) 379 Mapping.Offset = kLinuxKasan_ShadowOffset64; 380 else 381 Mapping.Offset = kSmallX86_64ShadowOffset; 382 } else if (IsMIPS64) 383 Mapping.Offset = kMIPS64_ShadowOffset64; 384 else if (IsAArch64) 385 Mapping.Offset = kAArch64_ShadowOffset64; 386 else 387 Mapping.Offset = kDefaultShadowOffset64; 388 } 389 390 Mapping.Scale = kDefaultShadowScale; 391 if (ClMappingScale) { 392 Mapping.Scale = ClMappingScale; 393 } 394 395 // OR-ing shadow offset if more efficient (at least on x86) if the offset 396 // is a power of two, but on ppc64 we have to use add since the shadow 397 // offset is not necessary 1/8-th of the address space. 398 Mapping.OrShadowOffset = !IsPPC64 && !(Mapping.Offset & (Mapping.Offset - 1)); 399 400 return Mapping; 401 } 402 403 static size_t RedzoneSizeForScale(int MappingScale) { 404 // Redzone used for stack and globals is at least 32 bytes. 405 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 406 return std::max(32U, 1U << MappingScale); 407 } 408 409 /// AddressSanitizer: instrument the code in module to find memory bugs. 410 struct AddressSanitizer : public FunctionPass { 411 explicit AddressSanitizer(bool CompileKernel = false) 412 : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan) { 413 initializeAddressSanitizerPass(*PassRegistry::getPassRegistry()); 414 } 415 const char *getPassName() const override { 416 return "AddressSanitizerFunctionPass"; 417 } 418 void getAnalysisUsage(AnalysisUsage &AU) const override { 419 AU.addRequired<DominatorTreeWrapperPass>(); 420 AU.addRequired<TargetLibraryInfoWrapperPass>(); 421 } 422 uint64_t getAllocaSizeInBytes(AllocaInst *AI) const { 423 Type *Ty = AI->getAllocatedType(); 424 uint64_t SizeInBytes = 425 AI->getModule()->getDataLayout().getTypeAllocSize(Ty); 426 return SizeInBytes; 427 } 428 /// Check if we want (and can) handle this alloca. 429 bool isInterestingAlloca(AllocaInst &AI); 430 431 // Check if we have dynamic alloca. 432 bool isDynamicAlloca(AllocaInst &AI) const { 433 return AI.isArrayAllocation() || !AI.isStaticAlloca(); 434 } 435 436 /// If it is an interesting memory access, return the PointerOperand 437 /// and set IsWrite/Alignment. Otherwise return nullptr. 438 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 439 uint64_t *TypeSize, unsigned *Alignment); 440 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 441 bool UseCalls, const DataLayout &DL); 442 void instrumentPointerComparisonOrSubtraction(Instruction *I); 443 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 444 Value *Addr, uint32_t TypeSize, bool IsWrite, 445 Value *SizeArgument, bool UseCalls, uint32_t Exp); 446 void instrumentUnusualSizeOrAlignment(Instruction *I, Value *Addr, 447 uint32_t TypeSize, bool IsWrite, 448 Value *SizeArgument, bool UseCalls, 449 uint32_t Exp); 450 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 451 Value *ShadowValue, uint32_t TypeSize); 452 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 453 bool IsWrite, size_t AccessSizeIndex, 454 Value *SizeArgument, uint32_t Exp); 455 void instrumentMemIntrinsic(MemIntrinsic *MI); 456 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 457 bool runOnFunction(Function &F) override; 458 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 459 void markEscapedLocalAllocas(Function &F); 460 bool doInitialization(Module &M) override; 461 static char ID; // Pass identification, replacement for typeid 462 463 DominatorTree &getDominatorTree() const { return *DT; } 464 465 private: 466 void initializeCallbacks(Module &M); 467 468 bool LooksLikeCodeInBug11395(Instruction *I); 469 bool GlobalIsLinkerInitialized(GlobalVariable *G); 470 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 471 uint64_t TypeSize) const; 472 473 /// Helper to cleanup per-function state. 474 struct FunctionStateRAII { 475 AddressSanitizer *Pass; 476 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 477 assert(Pass->ProcessedAllocas.empty() && 478 "last pass forgot to clear cache"); 479 } 480 ~FunctionStateRAII() { Pass->ProcessedAllocas.clear(); } 481 }; 482 483 LLVMContext *C; 484 Triple TargetTriple; 485 int LongSize; 486 bool CompileKernel; 487 Type *IntptrTy; 488 ShadowMapping Mapping; 489 DominatorTree *DT; 490 Function *AsanCtorFunction = nullptr; 491 Function *AsanInitFunction = nullptr; 492 Function *AsanHandleNoReturnFunc; 493 Function *AsanPtrCmpFunction, *AsanPtrSubFunction; 494 // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize). 495 Function *AsanErrorCallback[2][2][kNumberOfAccessSizes]; 496 Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 497 // This array is indexed by AccessIsWrite and Experiment. 498 Function *AsanErrorCallbackSized[2][2]; 499 Function *AsanMemoryAccessCallbackSized[2][2]; 500 Function *AsanMemmove, *AsanMemcpy, *AsanMemset; 501 InlineAsm *EmptyAsm; 502 GlobalsMetadata GlobalsMD; 503 DenseMap<AllocaInst *, bool> ProcessedAllocas; 504 505 friend struct FunctionStackPoisoner; 506 }; 507 508 class AddressSanitizerModule : public ModulePass { 509 public: 510 explicit AddressSanitizerModule(bool CompileKernel = false) 511 : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan) {} 512 bool runOnModule(Module &M) override; 513 static char ID; // Pass identification, replacement for typeid 514 const char *getPassName() const override { return "AddressSanitizerModule"; } 515 516 private: 517 void initializeCallbacks(Module &M); 518 519 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M); 520 bool ShouldInstrumentGlobal(GlobalVariable *G); 521 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 522 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 523 size_t MinRedzoneSizeForGlobal() const { 524 return RedzoneSizeForScale(Mapping.Scale); 525 } 526 527 GlobalsMetadata GlobalsMD; 528 bool CompileKernel; 529 Type *IntptrTy; 530 LLVMContext *C; 531 Triple TargetTriple; 532 ShadowMapping Mapping; 533 Function *AsanPoisonGlobals; 534 Function *AsanUnpoisonGlobals; 535 Function *AsanRegisterGlobals; 536 Function *AsanUnregisterGlobals; 537 }; 538 539 // Stack poisoning does not play well with exception handling. 540 // When an exception is thrown, we essentially bypass the code 541 // that unpoisones the stack. This is why the run-time library has 542 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 543 // stack in the interceptor. This however does not work inside the 544 // actual function which catches the exception. Most likely because the 545 // compiler hoists the load of the shadow value somewhere too high. 546 // This causes asan to report a non-existing bug on 453.povray. 547 // It sounds like an LLVM bug. 548 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 549 Function &F; 550 AddressSanitizer &ASan; 551 DIBuilder DIB; 552 LLVMContext *C; 553 Type *IntptrTy; 554 Type *IntptrPtrTy; 555 ShadowMapping Mapping; 556 557 SmallVector<AllocaInst *, 16> AllocaVec; 558 SmallSetVector<AllocaInst *, 16> NonInstrumentedStaticAllocaVec; 559 SmallVector<Instruction *, 8> RetVec; 560 unsigned StackAlignment; 561 562 Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 563 *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 564 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; 565 Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc; 566 567 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 568 struct AllocaPoisonCall { 569 IntrinsicInst *InsBefore; 570 AllocaInst *AI; 571 uint64_t Size; 572 bool DoPoison; 573 }; 574 SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec; 575 576 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 577 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 578 AllocaInst *DynamicAllocaLayout = nullptr; 579 IntrinsicInst *LocalEscapeCall = nullptr; 580 581 // Maps Value to an AllocaInst from which the Value is originated. 582 typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy; 583 AllocaForValueMapTy AllocaForValue; 584 585 bool HasNonEmptyInlineAsm = false; 586 bool HasReturnsTwiceCall = false; 587 std::unique_ptr<CallInst> EmptyInlineAsm; 588 589 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 590 : F(F), 591 ASan(ASan), 592 DIB(*F.getParent(), /*AllowUnresolved*/ false), 593 C(ASan.C), 594 IntptrTy(ASan.IntptrTy), 595 IntptrPtrTy(PointerType::get(IntptrTy, 0)), 596 Mapping(ASan.Mapping), 597 StackAlignment(1 << Mapping.Scale), 598 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 599 600 bool runOnFunction() { 601 if (!ClStack) return false; 602 // Collect alloca, ret, lifetime instructions etc. 603 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 604 605 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 606 607 initializeCallbacks(*F.getParent()); 608 609 poisonStack(); 610 611 if (ClDebugStack) { 612 DEBUG(dbgs() << F); 613 } 614 return true; 615 } 616 617 // Finds all Alloca instructions and puts 618 // poisoned red zones around all of them. 619 // Then unpoison everything back before the function returns. 620 void poisonStack(); 621 622 void createDynamicAllocasInitStorage(); 623 624 // ----------------------- Visitors. 625 /// \brief Collect all Ret instructions. 626 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 627 628 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 629 Value *SavedStack) { 630 IRBuilder<> IRB(InstBefore); 631 IRB.CreateCall(AsanAllocasUnpoisonFunc, 632 {IRB.CreateLoad(DynamicAllocaLayout), 633 IRB.CreatePtrToInt(SavedStack, IntptrTy)}); 634 } 635 636 // Unpoison dynamic allocas redzones. 637 void unpoisonDynamicAllocas() { 638 for (auto &Ret : RetVec) 639 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 640 641 for (auto &StackRestoreInst : StackRestoreVec) 642 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 643 StackRestoreInst->getOperand(0)); 644 } 645 646 // Deploy and poison redzones around dynamic alloca call. To do this, we 647 // should replace this call with another one with changed parameters and 648 // replace all its uses with new address, so 649 // addr = alloca type, old_size, align 650 // is replaced by 651 // new_size = (old_size + additional_size) * sizeof(type) 652 // tmp = alloca i8, new_size, max(align, 32) 653 // addr = tmp + 32 (first 32 bytes are for the left redzone). 654 // Additional_size is added to make new memory allocation contain not only 655 // requested memory, but also left, partial and right redzones. 656 void handleDynamicAllocaCall(AllocaInst *AI); 657 658 /// \brief Collect Alloca instructions we want (and can) handle. 659 void visitAllocaInst(AllocaInst &AI) { 660 if (!ASan.isInterestingAlloca(AI)) { 661 if (AI.isStaticAlloca()) NonInstrumentedStaticAllocaVec.insert(&AI); 662 return; 663 } 664 665 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 666 if (ASan.isDynamicAlloca(AI)) 667 DynamicAllocaVec.push_back(&AI); 668 else 669 AllocaVec.push_back(&AI); 670 } 671 672 /// \brief Collect lifetime intrinsic calls to check for use-after-scope 673 /// errors. 674 void visitIntrinsicInst(IntrinsicInst &II) { 675 Intrinsic::ID ID = II.getIntrinsicID(); 676 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 677 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 678 if (!ClCheckLifetime) return; 679 if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end) 680 return; 681 // Found lifetime intrinsic, add ASan instrumentation if necessary. 682 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 683 // If size argument is undefined, don't do anything. 684 if (Size->isMinusOne()) return; 685 // Check that size doesn't saturate uint64_t and can 686 // be stored in IntptrTy. 687 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 688 if (SizeValue == ~0ULL || 689 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 690 return; 691 // Find alloca instruction that corresponds to llvm.lifetime argument. 692 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); 693 if (!AI) return; 694 bool DoPoison = (ID == Intrinsic::lifetime_end); 695 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 696 AllocaPoisonCallVec.push_back(APC); 697 } 698 699 void visitCallSite(CallSite CS) { 700 Instruction *I = CS.getInstruction(); 701 if (CallInst *CI = dyn_cast<CallInst>(I)) { 702 HasNonEmptyInlineAsm |= 703 CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get()); 704 HasReturnsTwiceCall |= CI->canReturnTwice(); 705 } 706 } 707 708 // ---------------------- Helpers. 709 void initializeCallbacks(Module &M); 710 711 bool doesDominateAllExits(const Instruction *I) const { 712 for (auto Ret : RetVec) { 713 if (!ASan.getDominatorTree().dominates(I, Ret)) return false; 714 } 715 return true; 716 } 717 718 /// Finds alloca where the value comes from. 719 AllocaInst *findAllocaForValue(Value *V); 720 void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB, 721 Value *ShadowBase, bool DoPoison); 722 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 723 724 void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase, 725 int Size); 726 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 727 bool Dynamic); 728 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 729 Instruction *ThenTerm, Value *ValueIfFalse); 730 }; 731 732 } // anonymous namespace 733 734 char AddressSanitizer::ID = 0; 735 INITIALIZE_PASS_BEGIN( 736 AddressSanitizer, "asan", 737 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 738 false) 739 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 740 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 741 INITIALIZE_PASS_END( 742 AddressSanitizer, "asan", 743 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 744 false) 745 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel) { 746 return new AddressSanitizer(CompileKernel); 747 } 748 749 char AddressSanitizerModule::ID = 0; 750 INITIALIZE_PASS( 751 AddressSanitizerModule, "asan-module", 752 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 753 "ModulePass", 754 false, false) 755 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel) { 756 return new AddressSanitizerModule(CompileKernel); 757 } 758 759 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 760 size_t Res = countTrailingZeros(TypeSize / 8); 761 assert(Res < kNumberOfAccessSizes); 762 return Res; 763 } 764 765 // \brief Create a constant for Str so that we can pass it to the run-time lib. 766 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str, 767 bool AllowMerging) { 768 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 769 // We use private linkage for module-local strings. If they can be merged 770 // with another one, we set the unnamed_addr attribute. 771 GlobalVariable *GV = 772 new GlobalVariable(M, StrConst->getType(), true, 773 GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix); 774 if (AllowMerging) GV->setUnnamedAddr(true); 775 GV->setAlignment(1); // Strings may not be merged w/o setting align 1. 776 return GV; 777 } 778 779 /// \brief Create a global describing a source location. 780 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 781 LocationMetadata MD) { 782 Constant *LocData[] = { 783 createPrivateGlobalForString(M, MD.Filename, true), 784 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 785 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 786 }; 787 auto LocStruct = ConstantStruct::getAnon(LocData); 788 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 789 GlobalValue::PrivateLinkage, LocStruct, 790 kAsanGenPrefix); 791 GV->setUnnamedAddr(true); 792 return GV; 793 } 794 795 static bool GlobalWasGeneratedByAsan(GlobalVariable *G) { 796 return G->getName().find(kAsanGenPrefix) == 0 || 797 G->getName().find(kSanCovGenPrefix) == 0; 798 } 799 800 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 801 // Shadow >> scale 802 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 803 if (Mapping.Offset == 0) return Shadow; 804 // (Shadow >> scale) | offset 805 if (Mapping.OrShadowOffset) 806 return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); 807 else 808 return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); 809 } 810 811 // Instrument memset/memmove/memcpy 812 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 813 IRBuilder<> IRB(MI); 814 if (isa<MemTransferInst>(MI)) { 815 IRB.CreateCall( 816 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 817 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 818 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 819 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 820 } else if (isa<MemSetInst>(MI)) { 821 IRB.CreateCall( 822 AsanMemset, 823 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 824 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 825 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 826 } 827 MI->eraseFromParent(); 828 } 829 830 /// Check if we want (and can) handle this alloca. 831 bool AddressSanitizer::isInterestingAlloca(AllocaInst &AI) { 832 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 833 834 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 835 return PreviouslySeenAllocaInfo->getSecond(); 836 837 bool IsInteresting = 838 (AI.getAllocatedType()->isSized() && 839 // alloca() may be called with 0 size, ignore it. 840 getAllocaSizeInBytes(&AI) > 0 && 841 // We are only interested in allocas not promotable to registers. 842 // Promotable allocas are common under -O0. 843 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI))); 844 845 ProcessedAllocas[&AI] = IsInteresting; 846 return IsInteresting; 847 } 848 849 /// If I is an interesting memory access, return the PointerOperand 850 /// and set IsWrite/Alignment. Otherwise return nullptr. 851 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 852 bool *IsWrite, 853 uint64_t *TypeSize, 854 unsigned *Alignment) { 855 // Skip memory accesses inserted by another instrumentation. 856 if (I->getMetadata("nosanitize")) return nullptr; 857 858 Value *PtrOperand = nullptr; 859 const DataLayout &DL = I->getModule()->getDataLayout(); 860 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 861 if (!ClInstrumentReads) return nullptr; 862 *IsWrite = false; 863 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 864 *Alignment = LI->getAlignment(); 865 PtrOperand = LI->getPointerOperand(); 866 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 867 if (!ClInstrumentWrites) return nullptr; 868 *IsWrite = true; 869 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 870 *Alignment = SI->getAlignment(); 871 PtrOperand = SI->getPointerOperand(); 872 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 873 if (!ClInstrumentAtomics) return nullptr; 874 *IsWrite = true; 875 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 876 *Alignment = 0; 877 PtrOperand = RMW->getPointerOperand(); 878 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 879 if (!ClInstrumentAtomics) return nullptr; 880 *IsWrite = true; 881 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 882 *Alignment = 0; 883 PtrOperand = XCHG->getPointerOperand(); 884 } 885 886 // Treat memory accesses to promotable allocas as non-interesting since they 887 // will not cause memory violations. This greatly speeds up the instrumented 888 // executable at -O0. 889 if (ClSkipPromotableAllocas) 890 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 891 return isInterestingAlloca(*AI) ? AI : nullptr; 892 893 return PtrOperand; 894 } 895 896 static bool isPointerOperand(Value *V) { 897 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 898 } 899 900 // This is a rough heuristic; it may cause both false positives and 901 // false negatives. The proper implementation requires cooperation with 902 // the frontend. 903 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { 904 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 905 if (!Cmp->isRelational()) return false; 906 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 907 if (BO->getOpcode() != Instruction::Sub) return false; 908 } else { 909 return false; 910 } 911 if (!isPointerOperand(I->getOperand(0)) || 912 !isPointerOperand(I->getOperand(1))) 913 return false; 914 return true; 915 } 916 917 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 918 // If a global variable does not have dynamic initialization we don't 919 // have to instrument it. However, if a global does not have initializer 920 // at all, we assume it has dynamic initializer (in other TU). 921 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 922 } 923 924 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 925 Instruction *I) { 926 IRBuilder<> IRB(I); 927 Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 928 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 929 for (int i = 0; i < 2; i++) { 930 if (Param[i]->getType()->isPointerTy()) 931 Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy); 932 } 933 IRB.CreateCall(F, Param); 934 } 935 936 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 937 Instruction *I, bool UseCalls, 938 const DataLayout &DL) { 939 bool IsWrite = false; 940 unsigned Alignment = 0; 941 uint64_t TypeSize = 0; 942 Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment); 943 assert(Addr); 944 945 // Optimization experiments. 946 // The experiments can be used to evaluate potential optimizations that remove 947 // instrumentation (assess false negatives). Instead of completely removing 948 // some instrumentation, you set Exp to a non-zero value (mask of optimization 949 // experiments that want to remove instrumentation of this instruction). 950 // If Exp is non-zero, this pass will emit special calls into runtime 951 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 952 // make runtime terminate the program in a special way (with a different 953 // exit status). Then you run the new compiler on a buggy corpus, collect 954 // the special terminations (ideally, you don't see them at all -- no false 955 // negatives) and make the decision on the optimization. 956 uint32_t Exp = ClForceExperiment; 957 958 if (ClOpt && ClOptGlobals) { 959 // If initialization order checking is disabled, a simple access to a 960 // dynamically initialized global is always valid. 961 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 962 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 963 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 964 NumOptimizedAccessesToGlobalVar++; 965 return; 966 } 967 } 968 969 if (ClOpt && ClOptStack) { 970 // A direct inbounds access to a stack variable is always valid. 971 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 972 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 973 NumOptimizedAccessesToStackVar++; 974 return; 975 } 976 } 977 978 if (IsWrite) 979 NumInstrumentedWrites++; 980 else 981 NumInstrumentedReads++; 982 983 unsigned Granularity = 1 << Mapping.Scale; 984 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 985 // if the data is properly aligned. 986 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 987 TypeSize == 128) && 988 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 989 return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls, 990 Exp); 991 instrumentUnusualSizeOrAlignment(I, Addr, TypeSize, IsWrite, nullptr, 992 UseCalls, Exp); 993 } 994 995 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 996 Value *Addr, bool IsWrite, 997 size_t AccessSizeIndex, 998 Value *SizeArgument, 999 uint32_t Exp) { 1000 IRBuilder<> IRB(InsertBefore); 1001 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1002 CallInst *Call = nullptr; 1003 if (SizeArgument) { 1004 if (Exp == 0) 1005 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1006 {Addr, SizeArgument}); 1007 else 1008 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1009 {Addr, SizeArgument, ExpVal}); 1010 } else { 1011 if (Exp == 0) 1012 Call = 1013 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1014 else 1015 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1016 {Addr, ExpVal}); 1017 } 1018 1019 // We don't do Call->setDoesNotReturn() because the BB already has 1020 // UnreachableInst at the end. 1021 // This EmptyAsm is required to avoid callback merge. 1022 IRB.CreateCall(EmptyAsm, {}); 1023 return Call; 1024 } 1025 1026 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1027 Value *ShadowValue, 1028 uint32_t TypeSize) { 1029 size_t Granularity = 1 << Mapping.Scale; 1030 // Addr & (Granularity - 1) 1031 Value *LastAccessedByte = 1032 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1033 // (Addr & (Granularity - 1)) + size - 1 1034 if (TypeSize / 8 > 1) 1035 LastAccessedByte = IRB.CreateAdd( 1036 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1037 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1038 LastAccessedByte = 1039 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1040 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1041 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1042 } 1043 1044 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1045 Instruction *InsertBefore, Value *Addr, 1046 uint32_t TypeSize, bool IsWrite, 1047 Value *SizeArgument, bool UseCalls, 1048 uint32_t Exp) { 1049 IRBuilder<> IRB(InsertBefore); 1050 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1051 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1052 1053 if (UseCalls) { 1054 if (Exp == 0) 1055 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1056 AddrLong); 1057 else 1058 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1059 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1060 return; 1061 } 1062 1063 Type *ShadowTy = 1064 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1065 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1066 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1067 Value *CmpVal = Constant::getNullValue(ShadowTy); 1068 Value *ShadowValue = 1069 IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1070 1071 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1072 size_t Granularity = 1 << Mapping.Scale; 1073 TerminatorInst *CrashTerm = nullptr; 1074 1075 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1076 // We use branch weights for the slow path check, to indicate that the slow 1077 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1078 TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen( 1079 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1080 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1081 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1082 IRB.SetInsertPoint(CheckTerm); 1083 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1084 BasicBlock *CrashBlock = 1085 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1086 CrashTerm = new UnreachableInst(*C, CrashBlock); 1087 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1088 ReplaceInstWithInst(CheckTerm, NewTerm); 1089 } else { 1090 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, true); 1091 } 1092 1093 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1094 AccessSizeIndex, SizeArgument, Exp); 1095 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1096 } 1097 1098 // Instrument unusual size or unusual alignment. 1099 // We can not do it with a single check, so we do 1-byte check for the first 1100 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1101 // to report the actual access size. 1102 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1103 Instruction *I, Value *Addr, uint32_t TypeSize, bool IsWrite, 1104 Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1105 IRBuilder<> IRB(I); 1106 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1107 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1108 if (UseCalls) { 1109 if (Exp == 0) 1110 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1111 {AddrLong, Size}); 1112 else 1113 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1114 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1115 } else { 1116 Value *LastByte = IRB.CreateIntToPtr( 1117 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1118 Addr->getType()); 1119 instrumentAddress(I, I, Addr, 8, IsWrite, Size, false, Exp); 1120 instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false, Exp); 1121 } 1122 } 1123 1124 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit, 1125 GlobalValue *ModuleName) { 1126 // Set up the arguments to our poison/unpoison functions. 1127 IRBuilder<> IRB(&GlobalInit.front(), 1128 GlobalInit.front().getFirstInsertionPt()); 1129 1130 // Add a call to poison all external globals before the given function starts. 1131 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1132 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1133 1134 // Add calls to unpoison all globals before each return instruction. 1135 for (auto &BB : GlobalInit.getBasicBlockList()) 1136 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1137 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1138 } 1139 1140 void AddressSanitizerModule::createInitializerPoisonCalls( 1141 Module &M, GlobalValue *ModuleName) { 1142 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1143 1144 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1145 for (Use &OP : CA->operands()) { 1146 if (isa<ConstantAggregateZero>(OP)) continue; 1147 ConstantStruct *CS = cast<ConstantStruct>(OP); 1148 1149 // Must have a function or null ptr. 1150 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1151 if (F->getName() == kAsanModuleCtorName) continue; 1152 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1153 // Don't instrument CTORs that will run before asan.module_ctor. 1154 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; 1155 poisonOneInitializer(*F, ModuleName); 1156 } 1157 } 1158 } 1159 1160 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { 1161 Type *Ty = cast<PointerType>(G->getType())->getElementType(); 1162 DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1163 1164 if (GlobalsMD.get(G).IsBlacklisted) return false; 1165 if (!Ty->isSized()) return false; 1166 if (!G->hasInitializer()) return false; 1167 if (GlobalWasGeneratedByAsan(G)) return false; // Our own global. 1168 // Touch only those globals that will not be defined in other modules. 1169 // Don't handle ODR linkage types and COMDATs since other modules may be built 1170 // without ASan. 1171 if (G->getLinkage() != GlobalVariable::ExternalLinkage && 1172 G->getLinkage() != GlobalVariable::PrivateLinkage && 1173 G->getLinkage() != GlobalVariable::InternalLinkage) 1174 return false; 1175 if (G->hasComdat()) return false; 1176 // Two problems with thread-locals: 1177 // - The address of the main thread's copy can't be computed at link-time. 1178 // - Need to poison all copies, not just the main thread's one. 1179 if (G->isThreadLocal()) return false; 1180 // For now, just ignore this Global if the alignment is large. 1181 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1182 1183 if (G->hasSection()) { 1184 StringRef Section(G->getSection()); 1185 1186 // Globals from llvm.metadata aren't emitted, do not instrument them. 1187 if (Section == "llvm.metadata") return false; 1188 // Do not instrument globals from special LLVM sections. 1189 if (Section.find("__llvm") != StringRef::npos) return false; 1190 1191 // Do not instrument function pointers to initialization and termination 1192 // routines: dynamic linker will not properly handle redzones. 1193 if (Section.startswith(".preinit_array") || 1194 Section.startswith(".init_array") || 1195 Section.startswith(".fini_array")) { 1196 return false; 1197 } 1198 1199 // Callbacks put into the CRT initializer/terminator sections 1200 // should not be instrumented. 1201 // See https://code.google.com/p/address-sanitizer/issues/detail?id=305 1202 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1203 if (Section.startswith(".CRT")) { 1204 DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n"); 1205 return false; 1206 } 1207 1208 if (TargetTriple.isOSBinFormatMachO()) { 1209 StringRef ParsedSegment, ParsedSection; 1210 unsigned TAA = 0, StubSize = 0; 1211 bool TAAParsed; 1212 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1213 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1214 if (!ErrorCode.empty()) { 1215 assert(false && "Invalid section specifier."); 1216 return false; 1217 } 1218 1219 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1220 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1221 // them. 1222 if (ParsedSegment == "__OBJC" || 1223 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1224 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1225 return false; 1226 } 1227 // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 1228 // Constant CFString instances are compiled in the following way: 1229 // -- the string buffer is emitted into 1230 // __TEXT,__cstring,cstring_literals 1231 // -- the constant NSConstantString structure referencing that buffer 1232 // is placed into __DATA,__cfstring 1233 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1234 // Moreover, it causes the linker to crash on OS X 10.7 1235 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1236 DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1237 return false; 1238 } 1239 // The linker merges the contents of cstring_literals and removes the 1240 // trailing zeroes. 1241 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1242 DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1243 return false; 1244 } 1245 } 1246 } 1247 1248 return true; 1249 } 1250 1251 void AddressSanitizerModule::initializeCallbacks(Module &M) { 1252 IRBuilder<> IRB(*C); 1253 // Declare our poisoning and unpoisoning functions. 1254 AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1255 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr)); 1256 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); 1257 AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1258 kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr)); 1259 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); 1260 // Declare functions that register/unregister globals. 1261 AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1262 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1263 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); 1264 AsanUnregisterGlobals = checkSanitizerInterfaceFunction( 1265 M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(), 1266 IntptrTy, IntptrTy, nullptr)); 1267 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); 1268 } 1269 1270 // This function replaces all global variables with new variables that have 1271 // trailing redzones. It also creates a function that poisons 1272 // redzones and inserts this function into llvm.global_ctors. 1273 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) { 1274 GlobalsMD.init(M); 1275 1276 SmallVector<GlobalVariable *, 16> GlobalsToChange; 1277 1278 for (auto &G : M.globals()) { 1279 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 1280 } 1281 1282 size_t n = GlobalsToChange.size(); 1283 if (n == 0) return false; 1284 1285 // A global is described by a structure 1286 // size_t beg; 1287 // size_t size; 1288 // size_t size_with_redzone; 1289 // const char *name; 1290 // const char *module_name; 1291 // size_t has_dynamic_init; 1292 // void *source_location; 1293 // We initialize an array of such structures and pass it to a run-time call. 1294 StructType *GlobalStructTy = 1295 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 1296 IntptrTy, IntptrTy, nullptr); 1297 SmallVector<Constant *, 16> Initializers(n); 1298 1299 bool HasDynamicallyInitializedGlobals = false; 1300 1301 // We shouldn't merge same module names, as this string serves as unique 1302 // module ID in runtime. 1303 GlobalVariable *ModuleName = createPrivateGlobalForString( 1304 M, M.getModuleIdentifier(), /*AllowMerging*/ false); 1305 1306 auto &DL = M.getDataLayout(); 1307 for (size_t i = 0; i < n; i++) { 1308 static const uint64_t kMaxGlobalRedzone = 1 << 18; 1309 GlobalVariable *G = GlobalsToChange[i]; 1310 1311 auto MD = GlobalsMD.get(G); 1312 // Create string holding the global name (use global name from metadata 1313 // if it's available, otherwise just write the name of global variable). 1314 GlobalVariable *Name = createPrivateGlobalForString( 1315 M, MD.Name.empty() ? G->getName() : MD.Name, 1316 /*AllowMerging*/ true); 1317 1318 PointerType *PtrTy = cast<PointerType>(G->getType()); 1319 Type *Ty = PtrTy->getElementType(); 1320 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 1321 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 1322 // MinRZ <= RZ <= kMaxGlobalRedzone 1323 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 1324 uint64_t RZ = std::max( 1325 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 1326 uint64_t RightRedzoneSize = RZ; 1327 // Round up to MinRZ 1328 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 1329 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 1330 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 1331 1332 StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr); 1333 Constant *NewInitializer = 1334 ConstantStruct::get(NewTy, G->getInitializer(), 1335 Constant::getNullValue(RightRedZoneTy), nullptr); 1336 1337 // Create a new global variable with enough space for a redzone. 1338 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 1339 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 1340 Linkage = GlobalValue::InternalLinkage; 1341 GlobalVariable *NewGlobal = 1342 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 1343 "", G, G->getThreadLocalMode()); 1344 NewGlobal->copyAttributesFrom(G); 1345 NewGlobal->setAlignment(MinRZ); 1346 1347 Value *Indices2[2]; 1348 Indices2[0] = IRB.getInt32(0); 1349 Indices2[1] = IRB.getInt32(0); 1350 1351 G->replaceAllUsesWith( 1352 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 1353 NewGlobal->takeName(G); 1354 G->eraseFromParent(); 1355 1356 Constant *SourceLoc; 1357 if (!MD.SourceLoc.empty()) { 1358 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 1359 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 1360 } else { 1361 SourceLoc = ConstantInt::get(IntptrTy, 0); 1362 } 1363 1364 Initializers[i] = ConstantStruct::get( 1365 GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy), 1366 ConstantInt::get(IntptrTy, SizeInBytes), 1367 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 1368 ConstantExpr::getPointerCast(Name, IntptrTy), 1369 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 1370 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, nullptr); 1371 1372 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 1373 1374 DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 1375 } 1376 1377 ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); 1378 GlobalVariable *AllGlobals = new GlobalVariable( 1379 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 1380 ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); 1381 1382 // Create calls for poisoning before initializers run and unpoisoning after. 1383 if (HasDynamicallyInitializedGlobals) 1384 createInitializerPoisonCalls(M, ModuleName); 1385 IRB.CreateCall(AsanRegisterGlobals, 1386 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1387 ConstantInt::get(IntptrTy, n)}); 1388 1389 // We also need to unregister globals at the end, e.g. when a shared library 1390 // gets closed. 1391 Function *AsanDtorFunction = 1392 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 1393 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 1394 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 1395 IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); 1396 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 1397 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1398 ConstantInt::get(IntptrTy, n)}); 1399 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); 1400 1401 DEBUG(dbgs() << M); 1402 return true; 1403 } 1404 1405 bool AddressSanitizerModule::runOnModule(Module &M) { 1406 C = &(M.getContext()); 1407 int LongSize = M.getDataLayout().getPointerSizeInBits(); 1408 IntptrTy = Type::getIntNTy(*C, LongSize); 1409 TargetTriple = Triple(M.getTargetTriple()); 1410 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 1411 initializeCallbacks(M); 1412 1413 bool Changed = false; 1414 1415 // TODO(glider): temporarily disabled globals instrumentation for KASan. 1416 if (ClGlobals && !CompileKernel) { 1417 Function *CtorFunc = M.getFunction(kAsanModuleCtorName); 1418 assert(CtorFunc); 1419 IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator()); 1420 Changed |= InstrumentGlobals(IRB, M); 1421 } 1422 1423 return Changed; 1424 } 1425 1426 void AddressSanitizer::initializeCallbacks(Module &M) { 1427 IRBuilder<> IRB(*C); 1428 // Create __asan_report* callbacks. 1429 // IsWrite, TypeSize and Exp are encoded in the function name. 1430 for (int Exp = 0; Exp < 2; Exp++) { 1431 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 1432 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 1433 const std::string ExpStr = Exp ? "exp_" : ""; 1434 const std::string SuffixStr = CompileKernel ? "N" : "_n"; 1435 const std::string EndingStr = CompileKernel ? "_noabort" : ""; 1436 Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr; 1437 // TODO(glider): for KASan builds add _noabort to error reporting 1438 // functions and make them actually noabort (remove the UnreachableInst). 1439 AsanErrorCallbackSized[AccessIsWrite][Exp] = 1440 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1441 kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr, 1442 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr)); 1443 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = 1444 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1445 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 1446 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr)); 1447 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 1448 AccessSizeIndex++) { 1449 const std::string Suffix = TypeStr + itostr(1 << AccessSizeIndex); 1450 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 1451 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1452 kAsanReportErrorTemplate + ExpStr + Suffix, 1453 IRB.getVoidTy(), IntptrTy, ExpType, nullptr)); 1454 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 1455 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1456 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 1457 IRB.getVoidTy(), IntptrTy, ExpType, nullptr)); 1458 } 1459 } 1460 } 1461 1462 const std::string MemIntrinCallbackPrefix = 1463 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 1464 AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1465 MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(), 1466 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); 1467 AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1468 MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), 1469 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); 1470 AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1471 MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(), 1472 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr)); 1473 1474 AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction( 1475 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr)); 1476 1477 AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1478 kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1479 AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1480 kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1481 // We insert an empty inline asm after __asan_report* to avoid callback merge. 1482 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 1483 StringRef(""), StringRef(""), 1484 /*hasSideEffects=*/true); 1485 } 1486 1487 // virtual 1488 bool AddressSanitizer::doInitialization(Module &M) { 1489 // Initialize the private fields. No one has accessed them before. 1490 1491 GlobalsMD.init(M); 1492 1493 C = &(M.getContext()); 1494 LongSize = M.getDataLayout().getPointerSizeInBits(); 1495 IntptrTy = Type::getIntNTy(*C, LongSize); 1496 TargetTriple = Triple(M.getTargetTriple()); 1497 1498 if (!CompileKernel) { 1499 std::tie(AsanCtorFunction, AsanInitFunction) = 1500 createSanitizerCtorAndInitFunctions( 1501 M, kAsanModuleCtorName, kAsanInitName, 1502 /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName); 1503 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); 1504 } 1505 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 1506 return true; 1507 } 1508 1509 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 1510 // For each NSObject descendant having a +load method, this method is invoked 1511 // by the ObjC runtime before any of the static constructors is called. 1512 // Therefore we need to instrument such methods with a call to __asan_init 1513 // at the beginning in order to initialize our runtime before any access to 1514 // the shadow memory. 1515 // We cannot just ignore these methods, because they may call other 1516 // instrumented functions. 1517 if (F.getName().find(" load]") != std::string::npos) { 1518 IRBuilder<> IRB(&F.front(), F.front().begin()); 1519 IRB.CreateCall(AsanInitFunction, {}); 1520 return true; 1521 } 1522 return false; 1523 } 1524 1525 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 1526 // Find the one possible call to llvm.localescape and pre-mark allocas passed 1527 // to it as uninteresting. This assumes we haven't started processing allocas 1528 // yet. This check is done up front because iterating the use list in 1529 // isInterestingAlloca would be algorithmically slower. 1530 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 1531 1532 // Try to get the declaration of llvm.localescape. If it's not in the module, 1533 // we can exit early. 1534 if (!F.getParent()->getFunction("llvm.localescape")) return; 1535 1536 // Look for a call to llvm.localescape call in the entry block. It can't be in 1537 // any other block. 1538 for (Instruction &I : F.getEntryBlock()) { 1539 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 1540 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 1541 // We found a call. Mark all the allocas passed in as uninteresting. 1542 for (Value *Arg : II->arg_operands()) { 1543 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 1544 assert(AI && AI->isStaticAlloca() && 1545 "non-static alloca arg to localescape"); 1546 ProcessedAllocas[AI] = false; 1547 } 1548 break; 1549 } 1550 } 1551 } 1552 1553 bool AddressSanitizer::runOnFunction(Function &F) { 1554 if (&F == AsanCtorFunction) return false; 1555 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 1556 DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 1557 initializeCallbacks(*F.getParent()); 1558 1559 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1560 1561 // If needed, insert __asan_init before checking for SanitizeAddress attr. 1562 maybeInsertAsanInitAtFunctionEntry(F); 1563 1564 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false; 1565 1566 if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false; 1567 1568 FunctionStateRAII CleanupObj(this); 1569 1570 // We can't instrument allocas used with llvm.localescape. Only static allocas 1571 // can be passed to that intrinsic. 1572 markEscapedLocalAllocas(F); 1573 1574 // We want to instrument every address only once per basic block (unless there 1575 // are calls between uses). 1576 SmallSet<Value *, 16> TempsToInstrument; 1577 SmallVector<Instruction *, 16> ToInstrument; 1578 SmallVector<Instruction *, 8> NoReturnCalls; 1579 SmallVector<BasicBlock *, 16> AllBlocks; 1580 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 1581 int NumAllocas = 0; 1582 bool IsWrite; 1583 unsigned Alignment; 1584 uint64_t TypeSize; 1585 1586 // Fill the set of memory operations to instrument. 1587 for (auto &BB : F) { 1588 AllBlocks.push_back(&BB); 1589 TempsToInstrument.clear(); 1590 int NumInsnsPerBB = 0; 1591 for (auto &Inst : BB) { 1592 if (LooksLikeCodeInBug11395(&Inst)) return false; 1593 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 1594 &Alignment)) { 1595 if (ClOpt && ClOptSameTemp) { 1596 if (!TempsToInstrument.insert(Addr).second) 1597 continue; // We've seen this temp in the current BB. 1598 } 1599 } else if (ClInvalidPointerPairs && 1600 isInterestingPointerComparisonOrSubtraction(&Inst)) { 1601 PointerComparisonsOrSubtracts.push_back(&Inst); 1602 continue; 1603 } else if (isa<MemIntrinsic>(Inst)) { 1604 // ok, take it. 1605 } else { 1606 if (isa<AllocaInst>(Inst)) NumAllocas++; 1607 CallSite CS(&Inst); 1608 if (CS) { 1609 // A call inside BB. 1610 TempsToInstrument.clear(); 1611 if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction()); 1612 } 1613 continue; 1614 } 1615 ToInstrument.push_back(&Inst); 1616 NumInsnsPerBB++; 1617 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 1618 } 1619 } 1620 1621 bool UseCalls = 1622 CompileKernel || 1623 (ClInstrumentationWithCallsThreshold >= 0 && 1624 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 1625 const TargetLibraryInfo *TLI = 1626 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1627 const DataLayout &DL = F.getParent()->getDataLayout(); 1628 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), 1629 /*RoundToAlign=*/true); 1630 1631 // Instrument. 1632 int NumInstrumented = 0; 1633 for (auto Inst : ToInstrument) { 1634 if (ClDebugMin < 0 || ClDebugMax < 0 || 1635 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 1636 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 1637 instrumentMop(ObjSizeVis, Inst, UseCalls, 1638 F.getParent()->getDataLayout()); 1639 else 1640 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 1641 } 1642 NumInstrumented++; 1643 } 1644 1645 FunctionStackPoisoner FSP(F, *this); 1646 bool ChangedStack = FSP.runOnFunction(); 1647 1648 // We must unpoison the stack before every NoReturn call (throw, _exit, etc). 1649 // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 1650 for (auto CI : NoReturnCalls) { 1651 IRBuilder<> IRB(CI); 1652 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 1653 } 1654 1655 for (auto Inst : PointerComparisonsOrSubtracts) { 1656 instrumentPointerComparisonOrSubtraction(Inst); 1657 NumInstrumented++; 1658 } 1659 1660 bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty(); 1661 1662 DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n"); 1663 1664 return res; 1665 } 1666 1667 // Workaround for bug 11395: we don't want to instrument stack in functions 1668 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 1669 // FIXME: remove once the bug 11395 is fixed. 1670 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 1671 if (LongSize != 32) return false; 1672 CallInst *CI = dyn_cast<CallInst>(I); 1673 if (!CI || !CI->isInlineAsm()) return false; 1674 if (CI->getNumArgOperands() <= 5) return false; 1675 // We have inline assembly with quite a few arguments. 1676 return true; 1677 } 1678 1679 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 1680 IRBuilder<> IRB(*C); 1681 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 1682 std::string Suffix = itostr(i); 1683 AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction( 1684 M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy, 1685 IntptrTy, nullptr)); 1686 AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction( 1687 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 1688 IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1689 } 1690 AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 1691 M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(), 1692 IntptrTy, IntptrTy, nullptr)); 1693 AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 1694 M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), 1695 IntptrTy, IntptrTy, nullptr)); 1696 AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1697 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1698 AsanAllocasUnpoisonFunc = 1699 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1700 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1701 } 1702 1703 void FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes, 1704 IRBuilder<> &IRB, Value *ShadowBase, 1705 bool DoPoison) { 1706 size_t n = ShadowBytes.size(); 1707 size_t i = 0; 1708 // We need to (un)poison n bytes of stack shadow. Poison as many as we can 1709 // using 64-bit stores (if we are on 64-bit arch), then poison the rest 1710 // with 32-bit stores, then with 16-byte stores, then with 8-byte stores. 1711 for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8; 1712 LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) { 1713 for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) { 1714 uint64_t Val = 0; 1715 for (size_t j = 0; j < LargeStoreSizeInBytes; j++) { 1716 if (F.getParent()->getDataLayout().isLittleEndian()) 1717 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 1718 else 1719 Val = (Val << 8) | ShadowBytes[i + j]; 1720 } 1721 if (!Val) continue; 1722 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 1723 Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8); 1724 Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0); 1725 IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo())); 1726 } 1727 } 1728 } 1729 1730 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 1731 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 1732 static int StackMallocSizeClass(uint64_t LocalStackSize) { 1733 assert(LocalStackSize <= kMaxStackMallocSize); 1734 uint64_t MaxSize = kMinStackMallocSize; 1735 for (int i = 0;; i++, MaxSize *= 2) 1736 if (LocalStackSize <= MaxSize) return i; 1737 llvm_unreachable("impossible LocalStackSize"); 1738 } 1739 1740 // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic. 1741 // We can not use MemSet intrinsic because it may end up calling the actual 1742 // memset. Size is a multiple of 8. 1743 // Currently this generates 8-byte stores on x86_64; it may be better to 1744 // generate wider stores. 1745 void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined( 1746 IRBuilder<> &IRB, Value *ShadowBase, int Size) { 1747 assert(!(Size % 8)); 1748 1749 // kAsanStackAfterReturnMagic is 0xf5. 1750 const uint64_t kAsanStackAfterReturnMagic64 = 0xf5f5f5f5f5f5f5f5ULL; 1751 1752 for (int i = 0; i < Size; i += 8) { 1753 Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 1754 IRB.CreateStore( 1755 ConstantInt::get(IRB.getInt64Ty(), kAsanStackAfterReturnMagic64), 1756 IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo())); 1757 } 1758 } 1759 1760 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 1761 Value *ValueIfTrue, 1762 Instruction *ThenTerm, 1763 Value *ValueIfFalse) { 1764 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 1765 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 1766 PHI->addIncoming(ValueIfFalse, CondBlock); 1767 BasicBlock *ThenBlock = ThenTerm->getParent(); 1768 PHI->addIncoming(ValueIfTrue, ThenBlock); 1769 return PHI; 1770 } 1771 1772 Value *FunctionStackPoisoner::createAllocaForLayout( 1773 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 1774 AllocaInst *Alloca; 1775 if (Dynamic) { 1776 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 1777 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 1778 "MyAlloca"); 1779 } else { 1780 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 1781 nullptr, "MyAlloca"); 1782 assert(Alloca->isStaticAlloca()); 1783 } 1784 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 1785 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 1786 Alloca->setAlignment(FrameAlignment); 1787 return IRB.CreatePointerCast(Alloca, IntptrTy); 1788 } 1789 1790 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 1791 BasicBlock &FirstBB = *F.begin(); 1792 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 1793 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 1794 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 1795 DynamicAllocaLayout->setAlignment(32); 1796 } 1797 1798 void FunctionStackPoisoner::poisonStack() { 1799 assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0); 1800 1801 // Insert poison calls for lifetime intrinsics for alloca. 1802 bool HavePoisonedAllocas = false; 1803 for (const auto &APC : AllocaPoisonCallVec) { 1804 assert(APC.InsBefore); 1805 assert(APC.AI); 1806 IRBuilder<> IRB(APC.InsBefore); 1807 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 1808 HavePoisonedAllocas |= APC.DoPoison; 1809 } 1810 1811 if (ClInstrumentAllocas && DynamicAllocaVec.size() > 0) { 1812 // Handle dynamic allocas. 1813 createDynamicAllocasInitStorage(); 1814 for (auto &AI : DynamicAllocaVec) handleDynamicAllocaCall(AI); 1815 1816 unpoisonDynamicAllocas(); 1817 } 1818 1819 if (AllocaVec.empty()) return; 1820 1821 int StackMallocIdx = -1; 1822 DebugLoc EntryDebugLocation; 1823 if (auto SP = getDISubprogram(&F)) 1824 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 1825 1826 Instruction *InsBefore = AllocaVec[0]; 1827 IRBuilder<> IRB(InsBefore); 1828 IRB.SetCurrentDebugLocation(EntryDebugLocation); 1829 1830 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 1831 // debug info is broken, because only entry-block allocas are treated as 1832 // regular stack slots. 1833 auto InsBeforeB = InsBefore->getParent(); 1834 assert(InsBeforeB == &F.getEntryBlock()); 1835 for (BasicBlock::iterator I(InsBefore); I != InsBeforeB->end(); ++I) 1836 if (auto *AI = dyn_cast<AllocaInst>(I)) 1837 if (NonInstrumentedStaticAllocaVec.count(AI) > 0) 1838 AI->moveBefore(InsBefore); 1839 1840 // If we have a call to llvm.localescape, keep it in the entry block. 1841 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 1842 1843 SmallVector<ASanStackVariableDescription, 16> SVD; 1844 SVD.reserve(AllocaVec.size()); 1845 for (AllocaInst *AI : AllocaVec) { 1846 ASanStackVariableDescription D = {AI->getName().data(), 1847 ASan.getAllocaSizeInBytes(AI), 1848 AI->getAlignment(), AI, 0}; 1849 SVD.push_back(D); 1850 } 1851 // Minimal header size (left redzone) is 4 pointers, 1852 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 1853 size_t MinHeaderSize = ASan.LongSize / 2; 1854 ASanStackFrameLayout L; 1855 ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L); 1856 DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n"); 1857 uint64_t LocalStackSize = L.FrameSize; 1858 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 1859 LocalStackSize <= kMaxStackMallocSize; 1860 bool DoDynamicAlloca = ClDynamicAllocaStack; 1861 // Don't do dynamic alloca or stack malloc if: 1862 // 1) There is inline asm: too often it makes assumptions on which registers 1863 // are available. 1864 // 2) There is a returns_twice call (typically setjmp), which is 1865 // optimization-hostile, and doesn't play well with introduced indirect 1866 // register-relative calculation of local variable addresses. 1867 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 1868 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 1869 1870 Value *StaticAlloca = 1871 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 1872 1873 Value *FakeStack; 1874 Value *LocalStackBase; 1875 1876 if (DoStackMalloc) { 1877 // void *FakeStack = __asan_option_detect_stack_use_after_return 1878 // ? __asan_stack_malloc_N(LocalStackSize) 1879 // : nullptr; 1880 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 1881 Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal( 1882 kAsanOptionDetectUAR, IRB.getInt32Ty()); 1883 Value *UARIsEnabled = 1884 IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR), 1885 Constant::getNullValue(IRB.getInt32Ty())); 1886 Instruction *Term = 1887 SplitBlockAndInsertIfThen(UARIsEnabled, InsBefore, false); 1888 IRBuilder<> IRBIf(Term); 1889 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 1890 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 1891 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 1892 Value *FakeStackValue = 1893 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 1894 ConstantInt::get(IntptrTy, LocalStackSize)); 1895 IRB.SetInsertPoint(InsBefore); 1896 IRB.SetCurrentDebugLocation(EntryDebugLocation); 1897 FakeStack = createPHI(IRB, UARIsEnabled, FakeStackValue, Term, 1898 ConstantInt::get(IntptrTy, 0)); 1899 1900 Value *NoFakeStack = 1901 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 1902 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 1903 IRBIf.SetInsertPoint(Term); 1904 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 1905 Value *AllocaValue = 1906 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 1907 IRB.SetInsertPoint(InsBefore); 1908 IRB.SetCurrentDebugLocation(EntryDebugLocation); 1909 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 1910 } else { 1911 // void *FakeStack = nullptr; 1912 // void *LocalStackBase = alloca(LocalStackSize); 1913 FakeStack = ConstantInt::get(IntptrTy, 0); 1914 LocalStackBase = 1915 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 1916 } 1917 1918 // Replace Alloca instructions with base+offset. 1919 for (const auto &Desc : SVD) { 1920 AllocaInst *AI = Desc.AI; 1921 Value *NewAllocaPtr = IRB.CreateIntToPtr( 1922 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 1923 AI->getType()); 1924 replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true); 1925 AI->replaceAllUsesWith(NewAllocaPtr); 1926 } 1927 1928 // The left-most redzone has enough space for at least 4 pointers. 1929 // Write the Magic value to redzone[0]. 1930 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 1931 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 1932 BasePlus0); 1933 // Write the frame description constant to redzone[1]. 1934 Value *BasePlus1 = IRB.CreateIntToPtr( 1935 IRB.CreateAdd(LocalStackBase, 1936 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 1937 IntptrPtrTy); 1938 GlobalVariable *StackDescriptionGlobal = 1939 createPrivateGlobalForString(*F.getParent(), L.DescriptionString, 1940 /*AllowMerging*/ true); 1941 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 1942 IRB.CreateStore(Description, BasePlus1); 1943 // Write the PC to redzone[2]. 1944 Value *BasePlus2 = IRB.CreateIntToPtr( 1945 IRB.CreateAdd(LocalStackBase, 1946 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 1947 IntptrPtrTy); 1948 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 1949 1950 // Poison the stack redzones at the entry. 1951 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 1952 poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true); 1953 1954 // (Un)poison the stack before all ret instructions. 1955 for (auto Ret : RetVec) { 1956 IRBuilder<> IRBRet(Ret); 1957 // Mark the current frame as retired. 1958 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 1959 BasePlus0); 1960 if (DoStackMalloc) { 1961 assert(StackMallocIdx >= 0); 1962 // if FakeStack != 0 // LocalStackBase == FakeStack 1963 // // In use-after-return mode, poison the whole stack frame. 1964 // if StackMallocIdx <= 4 1965 // // For small sizes inline the whole thing: 1966 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 1967 // **SavedFlagPtr(FakeStack) = 0 1968 // else 1969 // __asan_stack_free_N(FakeStack, LocalStackSize) 1970 // else 1971 // <This is not a fake stack; unpoison the redzones> 1972 Value *Cmp = 1973 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 1974 TerminatorInst *ThenTerm, *ElseTerm; 1975 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 1976 1977 IRBuilder<> IRBPoison(ThenTerm); 1978 if (StackMallocIdx <= 4) { 1979 int ClassSize = kMinStackMallocSize << StackMallocIdx; 1980 SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase, 1981 ClassSize >> Mapping.Scale); 1982 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 1983 FakeStack, 1984 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 1985 Value *SavedFlagPtr = IRBPoison.CreateLoad( 1986 IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 1987 IRBPoison.CreateStore( 1988 Constant::getNullValue(IRBPoison.getInt8Ty()), 1989 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 1990 } else { 1991 // For larger frames call __asan_stack_free_*. 1992 IRBPoison.CreateCall( 1993 AsanStackFreeFunc[StackMallocIdx], 1994 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 1995 } 1996 1997 IRBuilder<> IRBElse(ElseTerm); 1998 poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false); 1999 } else if (HavePoisonedAllocas) { 2000 // If we poisoned some allocas in llvm.lifetime analysis, 2001 // unpoison whole stack frame now. 2002 poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false); 2003 } else { 2004 poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false); 2005 } 2006 } 2007 2008 // We are done. Remove the old unused alloca instructions. 2009 for (auto AI : AllocaVec) AI->eraseFromParent(); 2010 } 2011 2012 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 2013 IRBuilder<> &IRB, bool DoPoison) { 2014 // For now just insert the call to ASan runtime. 2015 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 2016 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 2017 IRB.CreateCall( 2018 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 2019 {AddrArg, SizeArg}); 2020 } 2021 2022 // Handling llvm.lifetime intrinsics for a given %alloca: 2023 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 2024 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 2025 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 2026 // could be poisoned by previous llvm.lifetime.end instruction, as the 2027 // variable may go in and out of scope several times, e.g. in loops). 2028 // (3) if we poisoned at least one %alloca in a function, 2029 // unpoison the whole stack frame at function exit. 2030 2031 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { 2032 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2033 // We're intested only in allocas we can handle. 2034 return ASan.isInterestingAlloca(*AI) ? AI : nullptr; 2035 // See if we've already calculated (or started to calculate) alloca for a 2036 // given value. 2037 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 2038 if (I != AllocaForValue.end()) return I->second; 2039 // Store 0 while we're calculating alloca for value V to avoid 2040 // infinite recursion if the value references itself. 2041 AllocaForValue[V] = nullptr; 2042 AllocaInst *Res = nullptr; 2043 if (CastInst *CI = dyn_cast<CastInst>(V)) 2044 Res = findAllocaForValue(CI->getOperand(0)); 2045 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2046 for (Value *IncValue : PN->incoming_values()) { 2047 // Allow self-referencing phi-nodes. 2048 if (IncValue == PN) continue; 2049 AllocaInst *IncValueAI = findAllocaForValue(IncValue); 2050 // AI for incoming values should exist and should all be equal. 2051 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 2052 return nullptr; 2053 Res = IncValueAI; 2054 } 2055 } 2056 if (Res) AllocaForValue[V] = Res; 2057 return Res; 2058 } 2059 2060 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 2061 IRBuilder<> IRB(AI); 2062 2063 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 2064 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 2065 2066 Value *Zero = Constant::getNullValue(IntptrTy); 2067 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 2068 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 2069 2070 // Since we need to extend alloca with additional memory to locate 2071 // redzones, and OldSize is number of allocated blocks with 2072 // ElementSize size, get allocated memory size in bytes by 2073 // OldSize * ElementSize. 2074 const unsigned ElementSize = 2075 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 2076 Value *OldSize = 2077 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 2078 ConstantInt::get(IntptrTy, ElementSize)); 2079 2080 // PartialSize = OldSize % 32 2081 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 2082 2083 // Misalign = kAllocaRzSize - PartialSize; 2084 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 2085 2086 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 2087 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 2088 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 2089 2090 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 2091 // Align is added to locate left redzone, PartialPadding for possible 2092 // partial redzone and kAllocaRzSize for right redzone respectively. 2093 Value *AdditionalChunkSize = IRB.CreateAdd( 2094 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 2095 2096 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 2097 2098 // Insert new alloca with new NewSize and Align params. 2099 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 2100 NewAlloca->setAlignment(Align); 2101 2102 // NewAddress = Address + Align 2103 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 2104 ConstantInt::get(IntptrTy, Align)); 2105 2106 // Insert __asan_alloca_poison call for new created alloca. 2107 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 2108 2109 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 2110 // for unpoisoning stuff. 2111 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 2112 2113 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 2114 2115 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 2116 AI->replaceAllUsesWith(NewAddressPtr); 2117 2118 // We are done. Erase old alloca from parent. 2119 AI->eraseFromParent(); 2120 } 2121 2122 // isSafeAccess returns true if Addr is always inbounds with respect to its 2123 // base object. For example, it is a field access or an array access with 2124 // constant inbounds index. 2125 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 2126 Value *Addr, uint64_t TypeSize) const { 2127 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 2128 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 2129 uint64_t Size = SizeOffset.first.getZExtValue(); 2130 int64_t Offset = SizeOffset.second.getSExtValue(); 2131 // Three checks are required to ensure safety: 2132 // . Offset >= 0 (since the offset is given from the base ptr) 2133 // . Size >= Offset (unsigned) 2134 // . Size - Offset >= NeededSize (unsigned) 2135 return Offset >= 0 && Size >= uint64_t(Offset) && 2136 Size - uint64_t(Offset) >= TypeSize / 8; 2137 } 2138