1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/MachO.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DIBuilder.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/IRBuilder.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstVisitor.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/MCSectionMachO.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 73 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/ModuleUtils.h" 77 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iomanip> 83 #include <limits> 84 #include <memory> 85 #include <sstream> 86 #include <string> 87 #include <tuple> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "asan" 92 93 static const uint64_t kDefaultShadowScale = 3; 94 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 95 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 96 static const uint64_t kDynamicShadowSentinel = 97 std::numeric_limits<uint64_t>::max(); 98 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 99 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 100 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 101 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 102 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 103 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 104 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 105 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 106 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 107 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 108 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 109 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 111 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 112 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 113 static const uint64_t kEmscriptenShadowOffset = 0; 114 115 static const uint64_t kMyriadShadowScale = 5; 116 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 117 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 118 static const uint64_t kMyriadTagShift = 29; 119 static const uint64_t kMyriadDDRTag = 4; 120 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 121 122 // The shadow memory space is dynamically allocated. 123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 124 125 static const size_t kMinStackMallocSize = 1 << 6; // 64B 126 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 129 130 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 131 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 132 static const uint64_t kAsanCtorAndDtorPriority = 1; 133 // On Emscripten, the system needs more than one priorities for constructors. 134 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 135 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 136 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 137 static const char *const kAsanUnregisterGlobalsName = 138 "__asan_unregister_globals"; 139 static const char *const kAsanRegisterImageGlobalsName = 140 "__asan_register_image_globals"; 141 static const char *const kAsanUnregisterImageGlobalsName = 142 "__asan_unregister_image_globals"; 143 static const char *const kAsanRegisterElfGlobalsName = 144 "__asan_register_elf_globals"; 145 static const char *const kAsanUnregisterElfGlobalsName = 146 "__asan_unregister_elf_globals"; 147 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 148 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 149 static const char *const kAsanInitName = "__asan_init"; 150 static const char *const kAsanVersionCheckNamePrefix = 151 "__asan_version_mismatch_check_v"; 152 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 153 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 154 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 155 static const int kMaxAsanStackMallocSizeClass = 10; 156 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 157 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 158 static const char *const kAsanGenPrefix = "___asan_gen_"; 159 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 160 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 161 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 162 static const char *const kAsanPoisonStackMemoryName = 163 "__asan_poison_stack_memory"; 164 static const char *const kAsanUnpoisonStackMemoryName = 165 "__asan_unpoison_stack_memory"; 166 167 // ASan version script has __asan_* wildcard. Triple underscore prevents a 168 // linker (gold) warning about attempting to export a local symbol. 169 static const char *const kAsanGlobalsRegisteredFlagName = 170 "___asan_globals_registered"; 171 172 static const char *const kAsanOptionDetectUseAfterReturn = 173 "__asan_option_detect_stack_use_after_return"; 174 175 static const char *const kAsanShadowMemoryDynamicAddress = 176 "__asan_shadow_memory_dynamic_address"; 177 178 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 179 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 180 181 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 182 static const size_t kNumberOfAccessSizes = 5; 183 184 static const unsigned kAllocaRzSize = 32; 185 186 // Command-line flags. 187 188 static cl::opt<bool> ClEnableKasan( 189 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 190 cl::Hidden, cl::init(false)); 191 192 static cl::opt<bool> ClRecover( 193 "asan-recover", 194 cl::desc("Enable recovery mode (continue-after-error)."), 195 cl::Hidden, cl::init(false)); 196 197 static cl::opt<bool> ClInsertVersionCheck( 198 "asan-guard-against-version-mismatch", 199 cl::desc("Guard against compiler/runtime version mismatch."), 200 cl::Hidden, cl::init(true)); 201 202 // This flag may need to be replaced with -f[no-]asan-reads. 203 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 204 cl::desc("instrument read instructions"), 205 cl::Hidden, cl::init(true)); 206 207 static cl::opt<bool> ClInstrumentWrites( 208 "asan-instrument-writes", cl::desc("instrument write instructions"), 209 cl::Hidden, cl::init(true)); 210 211 static cl::opt<bool> ClInstrumentAtomics( 212 "asan-instrument-atomics", 213 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 214 cl::init(true)); 215 216 static cl::opt<bool> 217 ClInstrumentByval("asan-instrument-byval", 218 cl::desc("instrument byval call arguments"), cl::Hidden, 219 cl::init(true)); 220 221 static cl::opt<bool> ClAlwaysSlowPath( 222 "asan-always-slow-path", 223 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 224 cl::init(false)); 225 226 static cl::opt<bool> ClForceDynamicShadow( 227 "asan-force-dynamic-shadow", 228 cl::desc("Load shadow address into a local variable for each function"), 229 cl::Hidden, cl::init(false)); 230 231 static cl::opt<bool> 232 ClWithIfunc("asan-with-ifunc", 233 cl::desc("Access dynamic shadow through an ifunc global on " 234 "platforms that support this"), 235 cl::Hidden, cl::init(true)); 236 237 static cl::opt<bool> ClWithIfuncSuppressRemat( 238 "asan-with-ifunc-suppress-remat", 239 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 240 "it through inline asm in prologue."), 241 cl::Hidden, cl::init(true)); 242 243 // This flag limits the number of instructions to be instrumented 244 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 245 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 246 // set it to 10000. 247 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 248 "asan-max-ins-per-bb", cl::init(10000), 249 cl::desc("maximal number of instructions to instrument in any given BB"), 250 cl::Hidden); 251 252 // This flag may need to be replaced with -f[no]asan-stack. 253 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 254 cl::Hidden, cl::init(true)); 255 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 256 "asan-max-inline-poisoning-size", 257 cl::desc( 258 "Inline shadow poisoning for blocks up to the given size in bytes."), 259 cl::Hidden, cl::init(64)); 260 261 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 262 cl::desc("Check stack-use-after-return"), 263 cl::Hidden, cl::init(true)); 264 265 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 266 cl::desc("Create redzones for byval " 267 "arguments (extra copy " 268 "required)"), cl::Hidden, 269 cl::init(true)); 270 271 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 272 cl::desc("Check stack-use-after-scope"), 273 cl::Hidden, cl::init(false)); 274 275 // This flag may need to be replaced with -f[no]asan-globals. 276 static cl::opt<bool> ClGlobals("asan-globals", 277 cl::desc("Handle global objects"), cl::Hidden, 278 cl::init(true)); 279 280 static cl::opt<bool> ClInitializers("asan-initialization-order", 281 cl::desc("Handle C++ initializer order"), 282 cl::Hidden, cl::init(true)); 283 284 static cl::opt<bool> ClInvalidPointerPairs( 285 "asan-detect-invalid-pointer-pair", 286 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 287 cl::init(false)); 288 289 static cl::opt<bool> ClInvalidPointerCmp( 290 "asan-detect-invalid-pointer-cmp", 291 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 292 cl::init(false)); 293 294 static cl::opt<bool> ClInvalidPointerSub( 295 "asan-detect-invalid-pointer-sub", 296 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 297 cl::init(false)); 298 299 static cl::opt<unsigned> ClRealignStack( 300 "asan-realign-stack", 301 cl::desc("Realign stack to the value of this flag (power of two)"), 302 cl::Hidden, cl::init(32)); 303 304 static cl::opt<int> ClInstrumentationWithCallsThreshold( 305 "asan-instrumentation-with-call-threshold", 306 cl::desc( 307 "If the function being instrumented contains more than " 308 "this number of memory accesses, use callbacks instead of " 309 "inline checks (-1 means never use callbacks)."), 310 cl::Hidden, cl::init(7000)); 311 312 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 313 "asan-memory-access-callback-prefix", 314 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 315 cl::init("__asan_")); 316 317 static cl::opt<bool> 318 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 319 cl::desc("instrument dynamic allocas"), 320 cl::Hidden, cl::init(true)); 321 322 static cl::opt<bool> ClSkipPromotableAllocas( 323 "asan-skip-promotable-allocas", 324 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 325 cl::init(true)); 326 327 // These flags allow to change the shadow mapping. 328 // The shadow mapping looks like 329 // Shadow = (Mem >> scale) + offset 330 331 static cl::opt<int> ClMappingScale("asan-mapping-scale", 332 cl::desc("scale of asan shadow mapping"), 333 cl::Hidden, cl::init(0)); 334 335 static cl::opt<uint64_t> 336 ClMappingOffset("asan-mapping-offset", 337 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 338 cl::Hidden, cl::init(0)); 339 340 // Optimization flags. Not user visible, used mostly for testing 341 // and benchmarking the tool. 342 343 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 344 cl::Hidden, cl::init(true)); 345 346 static cl::opt<bool> ClOptSameTemp( 347 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 348 cl::Hidden, cl::init(true)); 349 350 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 351 cl::desc("Don't instrument scalar globals"), 352 cl::Hidden, cl::init(true)); 353 354 static cl::opt<bool> ClOptStack( 355 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 356 cl::Hidden, cl::init(false)); 357 358 static cl::opt<bool> ClDynamicAllocaStack( 359 "asan-stack-dynamic-alloca", 360 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 361 cl::init(true)); 362 363 static cl::opt<uint32_t> ClForceExperiment( 364 "asan-force-experiment", 365 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 366 cl::init(0)); 367 368 static cl::opt<bool> 369 ClUsePrivateAlias("asan-use-private-alias", 370 cl::desc("Use private aliases for global variables"), 371 cl::Hidden, cl::init(false)); 372 373 static cl::opt<bool> 374 ClUseOdrIndicator("asan-use-odr-indicator", 375 cl::desc("Use odr indicators to improve ODR reporting"), 376 cl::Hidden, cl::init(false)); 377 378 static cl::opt<bool> 379 ClUseGlobalsGC("asan-globals-live-support", 380 cl::desc("Use linker features to support dead " 381 "code stripping of globals"), 382 cl::Hidden, cl::init(true)); 383 384 // This is on by default even though there is a bug in gold: 385 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 386 static cl::opt<bool> 387 ClWithComdat("asan-with-comdat", 388 cl::desc("Place ASan constructors in comdat sections"), 389 cl::Hidden, cl::init(true)); 390 391 // Debug flags. 392 393 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 394 cl::init(0)); 395 396 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 397 cl::Hidden, cl::init(0)); 398 399 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 400 cl::desc("Debug func")); 401 402 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 403 cl::Hidden, cl::init(-1)); 404 405 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 406 cl::Hidden, cl::init(-1)); 407 408 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 409 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 410 STATISTIC(NumOptimizedAccessesToGlobalVar, 411 "Number of optimized accesses to global vars"); 412 STATISTIC(NumOptimizedAccessesToStackVar, 413 "Number of optimized accesses to stack vars"); 414 415 namespace { 416 417 /// This struct defines the shadow mapping using the rule: 418 /// shadow = (mem >> Scale) ADD-or-OR Offset. 419 /// If InGlobal is true, then 420 /// extern char __asan_shadow[]; 421 /// shadow = (mem >> Scale) + &__asan_shadow 422 struct ShadowMapping { 423 int Scale; 424 uint64_t Offset; 425 bool OrShadowOffset; 426 bool InGlobal; 427 }; 428 429 } // end anonymous namespace 430 431 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 432 bool IsKasan) { 433 bool IsAndroid = TargetTriple.isAndroid(); 434 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 435 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 436 bool IsNetBSD = TargetTriple.isOSNetBSD(); 437 bool IsPS4CPU = TargetTriple.isPS4CPU(); 438 bool IsLinux = TargetTriple.isOSLinux(); 439 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 440 TargetTriple.getArch() == Triple::ppc64le; 441 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 442 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 443 bool IsMIPS32 = TargetTriple.isMIPS32(); 444 bool IsMIPS64 = TargetTriple.isMIPS64(); 445 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 446 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 447 bool IsWindows = TargetTriple.isOSWindows(); 448 bool IsFuchsia = TargetTriple.isOSFuchsia(); 449 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 450 bool IsEmscripten = TargetTriple.isOSEmscripten(); 451 452 ShadowMapping Mapping; 453 454 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 455 if (ClMappingScale.getNumOccurrences() > 0) { 456 Mapping.Scale = ClMappingScale; 457 } 458 459 if (LongSize == 32) { 460 if (IsAndroid) 461 Mapping.Offset = kDynamicShadowSentinel; 462 else if (IsMIPS32) 463 Mapping.Offset = kMIPS32_ShadowOffset32; 464 else if (IsFreeBSD) 465 Mapping.Offset = kFreeBSD_ShadowOffset32; 466 else if (IsNetBSD) 467 Mapping.Offset = kNetBSD_ShadowOffset32; 468 else if (IsIOS) 469 Mapping.Offset = kDynamicShadowSentinel; 470 else if (IsWindows) 471 Mapping.Offset = kWindowsShadowOffset32; 472 else if (IsEmscripten) 473 Mapping.Offset = kEmscriptenShadowOffset; 474 else if (IsMyriad) { 475 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 476 (kMyriadMemorySize32 >> Mapping.Scale)); 477 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 478 } 479 else 480 Mapping.Offset = kDefaultShadowOffset32; 481 } else { // LongSize == 64 482 // Fuchsia is always PIE, which means that the beginning of the address 483 // space is always available. 484 if (IsFuchsia) 485 Mapping.Offset = 0; 486 else if (IsPPC64) 487 Mapping.Offset = kPPC64_ShadowOffset64; 488 else if (IsSystemZ) 489 Mapping.Offset = kSystemZ_ShadowOffset64; 490 else if (IsFreeBSD && !IsMIPS64) 491 Mapping.Offset = kFreeBSD_ShadowOffset64; 492 else if (IsNetBSD) { 493 if (IsKasan) 494 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 495 else 496 Mapping.Offset = kNetBSD_ShadowOffset64; 497 } else if (IsPS4CPU) 498 Mapping.Offset = kPS4CPU_ShadowOffset64; 499 else if (IsLinux && IsX86_64) { 500 if (IsKasan) 501 Mapping.Offset = kLinuxKasan_ShadowOffset64; 502 else 503 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 504 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 505 } else if (IsWindows && IsX86_64) { 506 Mapping.Offset = kWindowsShadowOffset64; 507 } else if (IsMIPS64) 508 Mapping.Offset = kMIPS64_ShadowOffset64; 509 else if (IsIOS) 510 Mapping.Offset = kDynamicShadowSentinel; 511 else if (IsAArch64) 512 Mapping.Offset = kAArch64_ShadowOffset64; 513 else 514 Mapping.Offset = kDefaultShadowOffset64; 515 } 516 517 if (ClForceDynamicShadow) { 518 Mapping.Offset = kDynamicShadowSentinel; 519 } 520 521 if (ClMappingOffset.getNumOccurrences() > 0) { 522 Mapping.Offset = ClMappingOffset; 523 } 524 525 // OR-ing shadow offset if more efficient (at least on x86) if the offset 526 // is a power of two, but on ppc64 we have to use add since the shadow 527 // offset is not necessary 1/8-th of the address space. On SystemZ, 528 // we could OR the constant in a single instruction, but it's more 529 // efficient to load it once and use indexed addressing. 530 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 531 !(Mapping.Offset & (Mapping.Offset - 1)) && 532 Mapping.Offset != kDynamicShadowSentinel; 533 bool IsAndroidWithIfuncSupport = 534 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 535 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 536 537 return Mapping; 538 } 539 540 static uint64_t getRedzoneSizeForScale(int MappingScale) { 541 // Redzone used for stack and globals is at least 32 bytes. 542 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 543 return std::max(32U, 1U << MappingScale); 544 } 545 546 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 547 if (TargetTriple.isOSEmscripten()) { 548 return kAsanEmscriptenCtorAndDtorPriority; 549 } else { 550 return kAsanCtorAndDtorPriority; 551 } 552 } 553 554 namespace { 555 556 /// Module analysis for getting various metadata about the module. 557 class ASanGlobalsMetadataWrapperPass : public ModulePass { 558 public: 559 static char ID; 560 561 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 562 initializeASanGlobalsMetadataWrapperPassPass( 563 *PassRegistry::getPassRegistry()); 564 } 565 566 bool runOnModule(Module &M) override { 567 GlobalsMD = GlobalsMetadata(M); 568 return false; 569 } 570 571 StringRef getPassName() const override { 572 return "ASanGlobalsMetadataWrapperPass"; 573 } 574 575 void getAnalysisUsage(AnalysisUsage &AU) const override { 576 AU.setPreservesAll(); 577 } 578 579 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 580 581 private: 582 GlobalsMetadata GlobalsMD; 583 }; 584 585 char ASanGlobalsMetadataWrapperPass::ID = 0; 586 587 /// AddressSanitizer: instrument the code in module to find memory bugs. 588 struct AddressSanitizer { 589 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 590 bool CompileKernel = false, bool Recover = false, 591 bool UseAfterScope = false) 592 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 593 : CompileKernel), 594 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 595 UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 596 C = &(M.getContext()); 597 LongSize = M.getDataLayout().getPointerSizeInBits(); 598 IntptrTy = Type::getIntNTy(*C, LongSize); 599 TargetTriple = Triple(M.getTargetTriple()); 600 601 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 602 } 603 604 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 605 uint64_t ArraySize = 1; 606 if (AI.isArrayAllocation()) { 607 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 608 assert(CI && "non-constant array size"); 609 ArraySize = CI->getZExtValue(); 610 } 611 Type *Ty = AI.getAllocatedType(); 612 uint64_t SizeInBytes = 613 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 614 return SizeInBytes * ArraySize; 615 } 616 617 /// Check if we want (and can) handle this alloca. 618 bool isInterestingAlloca(const AllocaInst &AI); 619 620 bool ignoreAccess(Value *Ptr); 621 void getInterestingMemoryOperands( 622 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 623 624 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 625 InterestingMemoryOperand &O, bool UseCalls, 626 const DataLayout &DL); 627 void instrumentPointerComparisonOrSubtraction(Instruction *I); 628 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 629 Value *Addr, uint32_t TypeSize, bool IsWrite, 630 Value *SizeArgument, bool UseCalls, uint32_t Exp); 631 void instrumentUnusualSizeOrAlignment(Instruction *I, 632 Instruction *InsertBefore, Value *Addr, 633 uint32_t TypeSize, bool IsWrite, 634 Value *SizeArgument, bool UseCalls, 635 uint32_t Exp); 636 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 637 Value *ShadowValue, uint32_t TypeSize); 638 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 639 bool IsWrite, size_t AccessSizeIndex, 640 Value *SizeArgument, uint32_t Exp); 641 void instrumentMemIntrinsic(MemIntrinsic *MI); 642 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 643 bool suppressInstrumentationSiteForDebug(int &Instrumented); 644 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 645 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 646 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 647 void markEscapedLocalAllocas(Function &F); 648 649 private: 650 friend struct FunctionStackPoisoner; 651 652 void initializeCallbacks(Module &M); 653 654 bool LooksLikeCodeInBug11395(Instruction *I); 655 bool GlobalIsLinkerInitialized(GlobalVariable *G); 656 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 657 uint64_t TypeSize) const; 658 659 /// Helper to cleanup per-function state. 660 struct FunctionStateRAII { 661 AddressSanitizer *Pass; 662 663 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 664 assert(Pass->ProcessedAllocas.empty() && 665 "last pass forgot to clear cache"); 666 assert(!Pass->LocalDynamicShadow); 667 } 668 669 ~FunctionStateRAII() { 670 Pass->LocalDynamicShadow = nullptr; 671 Pass->ProcessedAllocas.clear(); 672 } 673 }; 674 675 LLVMContext *C; 676 Triple TargetTriple; 677 int LongSize; 678 bool CompileKernel; 679 bool Recover; 680 bool UseAfterScope; 681 Type *IntptrTy; 682 ShadowMapping Mapping; 683 FunctionCallee AsanHandleNoReturnFunc; 684 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 685 Constant *AsanShadowGlobal; 686 687 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 688 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 689 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 690 691 // These arrays is indexed by AccessIsWrite and Experiment. 692 FunctionCallee AsanErrorCallbackSized[2][2]; 693 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 694 695 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 696 Value *LocalDynamicShadow = nullptr; 697 const GlobalsMetadata &GlobalsMD; 698 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 699 }; 700 701 class AddressSanitizerLegacyPass : public FunctionPass { 702 public: 703 static char ID; 704 705 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 706 bool Recover = false, 707 bool UseAfterScope = false) 708 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 709 UseAfterScope(UseAfterScope) { 710 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 711 } 712 713 StringRef getPassName() const override { 714 return "AddressSanitizerFunctionPass"; 715 } 716 717 void getAnalysisUsage(AnalysisUsage &AU) const override { 718 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 719 AU.addRequired<TargetLibraryInfoWrapperPass>(); 720 } 721 722 bool runOnFunction(Function &F) override { 723 GlobalsMetadata &GlobalsMD = 724 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 725 const TargetLibraryInfo *TLI = 726 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 727 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 728 UseAfterScope); 729 return ASan.instrumentFunction(F, TLI); 730 } 731 732 private: 733 bool CompileKernel; 734 bool Recover; 735 bool UseAfterScope; 736 }; 737 738 class ModuleAddressSanitizer { 739 public: 740 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 741 bool CompileKernel = false, bool Recover = false, 742 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 743 : GlobalsMD(*GlobalsMD), 744 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 745 : CompileKernel), 746 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 747 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 748 // Enable aliases as they should have no downside with ODR indicators. 749 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 750 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 751 // Not a typo: ClWithComdat is almost completely pointless without 752 // ClUseGlobalsGC (because then it only works on modules without 753 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 754 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 755 // argument is designed as workaround. Therefore, disable both 756 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 757 // do globals-gc. 758 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel) { 759 C = &(M.getContext()); 760 int LongSize = M.getDataLayout().getPointerSizeInBits(); 761 IntptrTy = Type::getIntNTy(*C, LongSize); 762 TargetTriple = Triple(M.getTargetTriple()); 763 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 764 } 765 766 bool instrumentModule(Module &); 767 768 private: 769 void initializeCallbacks(Module &M); 770 771 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 772 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 773 ArrayRef<GlobalVariable *> ExtendedGlobals, 774 ArrayRef<Constant *> MetadataInitializers); 775 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 776 ArrayRef<GlobalVariable *> ExtendedGlobals, 777 ArrayRef<Constant *> MetadataInitializers, 778 const std::string &UniqueModuleId); 779 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 780 ArrayRef<GlobalVariable *> ExtendedGlobals, 781 ArrayRef<Constant *> MetadataInitializers); 782 void 783 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 784 ArrayRef<GlobalVariable *> ExtendedGlobals, 785 ArrayRef<Constant *> MetadataInitializers); 786 787 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 788 StringRef OriginalName); 789 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 790 StringRef InternalSuffix); 791 Instruction *CreateAsanModuleDtor(Module &M); 792 793 bool canInstrumentAliasedGlobal(const GlobalAlias &GA) const; 794 bool shouldInstrumentGlobal(GlobalVariable *G) const; 795 bool ShouldUseMachOGlobalsSection() const; 796 StringRef getGlobalMetadataSection() const; 797 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 798 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 799 uint64_t getMinRedzoneSizeForGlobal() const { 800 return getRedzoneSizeForScale(Mapping.Scale); 801 } 802 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 803 int GetAsanVersion(const Module &M) const; 804 805 const GlobalsMetadata &GlobalsMD; 806 bool CompileKernel; 807 bool Recover; 808 bool UseGlobalsGC; 809 bool UsePrivateAlias; 810 bool UseOdrIndicator; 811 bool UseCtorComdat; 812 Type *IntptrTy; 813 LLVMContext *C; 814 Triple TargetTriple; 815 ShadowMapping Mapping; 816 FunctionCallee AsanPoisonGlobals; 817 FunctionCallee AsanUnpoisonGlobals; 818 FunctionCallee AsanRegisterGlobals; 819 FunctionCallee AsanUnregisterGlobals; 820 FunctionCallee AsanRegisterImageGlobals; 821 FunctionCallee AsanUnregisterImageGlobals; 822 FunctionCallee AsanRegisterElfGlobals; 823 FunctionCallee AsanUnregisterElfGlobals; 824 825 Function *AsanCtorFunction = nullptr; 826 Function *AsanDtorFunction = nullptr; 827 }; 828 829 class ModuleAddressSanitizerLegacyPass : public ModulePass { 830 public: 831 static char ID; 832 833 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 834 bool Recover = false, 835 bool UseGlobalGC = true, 836 bool UseOdrIndicator = false) 837 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 838 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 839 initializeModuleAddressSanitizerLegacyPassPass( 840 *PassRegistry::getPassRegistry()); 841 } 842 843 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 844 845 void getAnalysisUsage(AnalysisUsage &AU) const override { 846 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 847 } 848 849 bool runOnModule(Module &M) override { 850 GlobalsMetadata &GlobalsMD = 851 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 852 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 853 UseGlobalGC, UseOdrIndicator); 854 return ASanModule.instrumentModule(M); 855 } 856 857 private: 858 bool CompileKernel; 859 bool Recover; 860 bool UseGlobalGC; 861 bool UseOdrIndicator; 862 }; 863 864 // Stack poisoning does not play well with exception handling. 865 // When an exception is thrown, we essentially bypass the code 866 // that unpoisones the stack. This is why the run-time library has 867 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 868 // stack in the interceptor. This however does not work inside the 869 // actual function which catches the exception. Most likely because the 870 // compiler hoists the load of the shadow value somewhere too high. 871 // This causes asan to report a non-existing bug on 453.povray. 872 // It sounds like an LLVM bug. 873 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 874 Function &F; 875 AddressSanitizer &ASan; 876 DIBuilder DIB; 877 LLVMContext *C; 878 Type *IntptrTy; 879 Type *IntptrPtrTy; 880 ShadowMapping Mapping; 881 882 SmallVector<AllocaInst *, 16> AllocaVec; 883 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 884 SmallVector<Instruction *, 8> RetVec; 885 unsigned StackAlignment; 886 887 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 888 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 889 FunctionCallee AsanSetShadowFunc[0x100] = {}; 890 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 891 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 892 893 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 894 struct AllocaPoisonCall { 895 IntrinsicInst *InsBefore; 896 AllocaInst *AI; 897 uint64_t Size; 898 bool DoPoison; 899 }; 900 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 901 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 902 bool HasUntracedLifetimeIntrinsic = false; 903 904 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 905 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 906 AllocaInst *DynamicAllocaLayout = nullptr; 907 IntrinsicInst *LocalEscapeCall = nullptr; 908 909 // Maps Value to an AllocaInst from which the Value is originated. 910 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 911 AllocaForValueMapTy AllocaForValue; 912 913 bool HasInlineAsm = false; 914 bool HasReturnsTwiceCall = false; 915 916 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 917 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 918 C(ASan.C), IntptrTy(ASan.IntptrTy), 919 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 920 StackAlignment(1 << Mapping.Scale) {} 921 922 bool runOnFunction() { 923 if (!ClStack) return false; 924 925 if (ClRedzoneByvalArgs) 926 copyArgsPassedByValToAllocas(); 927 928 // Collect alloca, ret, lifetime instructions etc. 929 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 930 931 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 932 933 initializeCallbacks(*F.getParent()); 934 935 if (HasUntracedLifetimeIntrinsic) { 936 // If there are lifetime intrinsics which couldn't be traced back to an 937 // alloca, we may not know exactly when a variable enters scope, and 938 // therefore should "fail safe" by not poisoning them. 939 StaticAllocaPoisonCallVec.clear(); 940 DynamicAllocaPoisonCallVec.clear(); 941 } 942 943 processDynamicAllocas(); 944 processStaticAllocas(); 945 946 if (ClDebugStack) { 947 LLVM_DEBUG(dbgs() << F); 948 } 949 return true; 950 } 951 952 // Arguments marked with the "byval" attribute are implicitly copied without 953 // using an alloca instruction. To produce redzones for those arguments, we 954 // copy them a second time into memory allocated with an alloca instruction. 955 void copyArgsPassedByValToAllocas(); 956 957 // Finds all Alloca instructions and puts 958 // poisoned red zones around all of them. 959 // Then unpoison everything back before the function returns. 960 void processStaticAllocas(); 961 void processDynamicAllocas(); 962 963 void createDynamicAllocasInitStorage(); 964 965 // ----------------------- Visitors. 966 /// Collect all Ret instructions. 967 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 968 969 /// Collect all Resume instructions. 970 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 971 972 /// Collect all CatchReturnInst instructions. 973 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 974 975 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 976 Value *SavedStack) { 977 IRBuilder<> IRB(InstBefore); 978 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 979 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 980 // need to adjust extracted SP to compute the address of the most recent 981 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 982 // this purpose. 983 if (!isa<ReturnInst>(InstBefore)) { 984 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 985 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 986 {IntptrTy}); 987 988 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 989 990 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 991 DynamicAreaOffset); 992 } 993 994 IRB.CreateCall( 995 AsanAllocasUnpoisonFunc, 996 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 997 } 998 999 // Unpoison dynamic allocas redzones. 1000 void unpoisonDynamicAllocas() { 1001 for (auto &Ret : RetVec) 1002 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1003 1004 for (auto &StackRestoreInst : StackRestoreVec) 1005 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1006 StackRestoreInst->getOperand(0)); 1007 } 1008 1009 // Deploy and poison redzones around dynamic alloca call. To do this, we 1010 // should replace this call with another one with changed parameters and 1011 // replace all its uses with new address, so 1012 // addr = alloca type, old_size, align 1013 // is replaced by 1014 // new_size = (old_size + additional_size) * sizeof(type) 1015 // tmp = alloca i8, new_size, max(align, 32) 1016 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1017 // Additional_size is added to make new memory allocation contain not only 1018 // requested memory, but also left, partial and right redzones. 1019 void handleDynamicAllocaCall(AllocaInst *AI); 1020 1021 /// Collect Alloca instructions we want (and can) handle. 1022 void visitAllocaInst(AllocaInst &AI) { 1023 if (!ASan.isInterestingAlloca(AI)) { 1024 if (AI.isStaticAlloca()) { 1025 // Skip over allocas that are present *before* the first instrumented 1026 // alloca, we don't want to move those around. 1027 if (AllocaVec.empty()) 1028 return; 1029 1030 StaticAllocasToMoveUp.push_back(&AI); 1031 } 1032 return; 1033 } 1034 1035 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1036 if (!AI.isStaticAlloca()) 1037 DynamicAllocaVec.push_back(&AI); 1038 else 1039 AllocaVec.push_back(&AI); 1040 } 1041 1042 /// Collect lifetime intrinsic calls to check for use-after-scope 1043 /// errors. 1044 void visitIntrinsicInst(IntrinsicInst &II) { 1045 Intrinsic::ID ID = II.getIntrinsicID(); 1046 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1047 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1048 if (!ASan.UseAfterScope) 1049 return; 1050 if (!II.isLifetimeStartOrEnd()) 1051 return; 1052 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1053 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1054 // If size argument is undefined, don't do anything. 1055 if (Size->isMinusOne()) return; 1056 // Check that size doesn't saturate uint64_t and can 1057 // be stored in IntptrTy. 1058 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1059 if (SizeValue == ~0ULL || 1060 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1061 return; 1062 // Find alloca instruction that corresponds to llvm.lifetime argument. 1063 AllocaInst *AI = 1064 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue); 1065 if (!AI) { 1066 HasUntracedLifetimeIntrinsic = true; 1067 return; 1068 } 1069 // We're interested only in allocas we can handle. 1070 if (!ASan.isInterestingAlloca(*AI)) 1071 return; 1072 bool DoPoison = (ID == Intrinsic::lifetime_end); 1073 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1074 if (AI->isStaticAlloca()) 1075 StaticAllocaPoisonCallVec.push_back(APC); 1076 else if (ClInstrumentDynamicAllocas) 1077 DynamicAllocaPoisonCallVec.push_back(APC); 1078 } 1079 1080 void visitCallBase(CallBase &CB) { 1081 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1082 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1083 HasReturnsTwiceCall |= CI->canReturnTwice(); 1084 } 1085 } 1086 1087 // ---------------------- Helpers. 1088 void initializeCallbacks(Module &M); 1089 1090 // Copies bytes from ShadowBytes into shadow memory for indexes where 1091 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1092 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1093 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1094 IRBuilder<> &IRB, Value *ShadowBase); 1095 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1096 size_t Begin, size_t End, IRBuilder<> &IRB, 1097 Value *ShadowBase); 1098 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1099 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1100 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1101 1102 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1103 1104 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1105 bool Dynamic); 1106 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1107 Instruction *ThenTerm, Value *ValueIfFalse); 1108 }; 1109 1110 } // end anonymous namespace 1111 1112 void LocationMetadata::parse(MDNode *MDN) { 1113 assert(MDN->getNumOperands() == 3); 1114 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1115 Filename = DIFilename->getString(); 1116 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1117 ColumnNo = 1118 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1119 } 1120 1121 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1122 // we want to sanitize instead and reading this metadata on each pass over a 1123 // function instead of reading module level metadata at first. 1124 GlobalsMetadata::GlobalsMetadata(Module &M) { 1125 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1126 if (!Globals) 1127 return; 1128 for (auto MDN : Globals->operands()) { 1129 // Metadata node contains the global and the fields of "Entry". 1130 assert(MDN->getNumOperands() == 5); 1131 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1132 // The optimizer may optimize away a global entirely. 1133 if (!V) 1134 continue; 1135 auto *StrippedV = V->stripPointerCasts(); 1136 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1137 if (!GV) 1138 continue; 1139 // We can already have an entry for GV if it was merged with another 1140 // global. 1141 Entry &E = Entries[GV]; 1142 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1143 E.SourceLoc.parse(Loc); 1144 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1145 E.Name = Name->getString(); 1146 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1147 E.IsDynInit |= IsDynInit->isOne(); 1148 ConstantInt *IsExcluded = 1149 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1150 E.IsExcluded |= IsExcluded->isOne(); 1151 } 1152 } 1153 1154 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1155 1156 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1157 ModuleAnalysisManager &AM) { 1158 return GlobalsMetadata(M); 1159 } 1160 1161 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1162 bool UseAfterScope) 1163 : CompileKernel(CompileKernel), Recover(Recover), 1164 UseAfterScope(UseAfterScope) {} 1165 1166 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1167 AnalysisManager<Function> &AM) { 1168 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1169 Module &M = *F.getParent(); 1170 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1171 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1172 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1173 if (Sanitizer.instrumentFunction(F, TLI)) 1174 return PreservedAnalyses::none(); 1175 return PreservedAnalyses::all(); 1176 } 1177 1178 report_fatal_error( 1179 "The ASanGlobalsMetadataAnalysis is required to run before " 1180 "AddressSanitizer can run"); 1181 return PreservedAnalyses::all(); 1182 } 1183 1184 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1185 bool Recover, 1186 bool UseGlobalGC, 1187 bool UseOdrIndicator) 1188 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1189 UseOdrIndicator(UseOdrIndicator) {} 1190 1191 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1192 AnalysisManager<Module> &AM) { 1193 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1194 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1195 UseGlobalGC, UseOdrIndicator); 1196 if (Sanitizer.instrumentModule(M)) 1197 return PreservedAnalyses::none(); 1198 return PreservedAnalyses::all(); 1199 } 1200 1201 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1202 "Read metadata to mark which globals should be instrumented " 1203 "when running ASan.", 1204 false, true) 1205 1206 char AddressSanitizerLegacyPass::ID = 0; 1207 1208 INITIALIZE_PASS_BEGIN( 1209 AddressSanitizerLegacyPass, "asan", 1210 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1211 false) 1212 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1213 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1214 INITIALIZE_PASS_END( 1215 AddressSanitizerLegacyPass, "asan", 1216 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1217 false) 1218 1219 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1220 bool Recover, 1221 bool UseAfterScope) { 1222 assert(!CompileKernel || Recover); 1223 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1224 } 1225 1226 char ModuleAddressSanitizerLegacyPass::ID = 0; 1227 1228 INITIALIZE_PASS( 1229 ModuleAddressSanitizerLegacyPass, "asan-module", 1230 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1231 "ModulePass", 1232 false, false) 1233 1234 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1235 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1236 assert(!CompileKernel || Recover); 1237 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1238 UseGlobalsGC, UseOdrIndicator); 1239 } 1240 1241 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1242 size_t Res = countTrailingZeros(TypeSize / 8); 1243 assert(Res < kNumberOfAccessSizes); 1244 return Res; 1245 } 1246 1247 /// Create a global describing a source location. 1248 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1249 LocationMetadata MD) { 1250 Constant *LocData[] = { 1251 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1252 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1253 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1254 }; 1255 auto LocStruct = ConstantStruct::getAnon(LocData); 1256 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1257 GlobalValue::PrivateLinkage, LocStruct, 1258 kAsanGenPrefix); 1259 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1260 return GV; 1261 } 1262 1263 /// Check if \p G has been created by a trusted compiler pass. 1264 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1265 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1266 if (G->getName().startswith("llvm.")) 1267 return true; 1268 1269 // Do not instrument asan globals. 1270 if (G->getName().startswith(kAsanGenPrefix) || 1271 G->getName().startswith(kSanCovGenPrefix) || 1272 G->getName().startswith(kODRGenPrefix)) 1273 return true; 1274 1275 // Do not instrument gcov counter arrays. 1276 if (G->getName() == "__llvm_gcov_ctr") 1277 return true; 1278 1279 return false; 1280 } 1281 1282 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1283 // Shadow >> scale 1284 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1285 if (Mapping.Offset == 0) return Shadow; 1286 // (Shadow >> scale) | offset 1287 Value *ShadowBase; 1288 if (LocalDynamicShadow) 1289 ShadowBase = LocalDynamicShadow; 1290 else 1291 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1292 if (Mapping.OrShadowOffset) 1293 return IRB.CreateOr(Shadow, ShadowBase); 1294 else 1295 return IRB.CreateAdd(Shadow, ShadowBase); 1296 } 1297 1298 // Instrument memset/memmove/memcpy 1299 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1300 IRBuilder<> IRB(MI); 1301 if (isa<MemTransferInst>(MI)) { 1302 IRB.CreateCall( 1303 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1304 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1305 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1306 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1307 } else if (isa<MemSetInst>(MI)) { 1308 IRB.CreateCall( 1309 AsanMemset, 1310 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1311 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1312 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1313 } 1314 MI->eraseFromParent(); 1315 } 1316 1317 /// Check if we want (and can) handle this alloca. 1318 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1319 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1320 1321 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1322 return PreviouslySeenAllocaInfo->getSecond(); 1323 1324 bool IsInteresting = 1325 (AI.getAllocatedType()->isSized() && 1326 // alloca() may be called with 0 size, ignore it. 1327 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1328 // We are only interested in allocas not promotable to registers. 1329 // Promotable allocas are common under -O0. 1330 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1331 // inalloca allocas are not treated as static, and we don't want 1332 // dynamic alloca instrumentation for them as well. 1333 !AI.isUsedWithInAlloca() && 1334 // swifterror allocas are register promoted by ISel 1335 !AI.isSwiftError()); 1336 1337 ProcessedAllocas[&AI] = IsInteresting; 1338 return IsInteresting; 1339 } 1340 1341 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1342 // Do not instrument acesses from different address spaces; we cannot deal 1343 // with them. 1344 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1345 if (PtrTy->getPointerAddressSpace() != 0) 1346 return true; 1347 1348 // Ignore swifterror addresses. 1349 // swifterror memory addresses are mem2reg promoted by instruction 1350 // selection. As such they cannot have regular uses like an instrumentation 1351 // function and it makes no sense to track them as memory. 1352 if (Ptr->isSwiftError()) 1353 return true; 1354 1355 // Treat memory accesses to promotable allocas as non-interesting since they 1356 // will not cause memory violations. This greatly speeds up the instrumented 1357 // executable at -O0. 1358 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1359 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1360 return true; 1361 1362 return false; 1363 } 1364 1365 void AddressSanitizer::getInterestingMemoryOperands( 1366 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1367 // Skip memory accesses inserted by another instrumentation. 1368 if (I->hasMetadata("nosanitize")) 1369 return; 1370 1371 // Do not instrument the load fetching the dynamic shadow address. 1372 if (LocalDynamicShadow == I) 1373 return; 1374 1375 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1376 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1377 return; 1378 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1379 LI->getType(), LI->getAlignment()); 1380 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1381 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1382 return; 1383 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1384 SI->getValueOperand()->getType(), 1385 SI->getAlignment()); 1386 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1387 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1388 return; 1389 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1390 RMW->getValOperand()->getType(), 0); 1391 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1392 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1393 return; 1394 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1395 XCHG->getCompareOperand()->getType(), 0); 1396 } else if (auto CI = dyn_cast<CallInst>(I)) { 1397 auto *F = CI->getCalledFunction(); 1398 if (F && (F->getName().startswith("llvm.masked.load.") || 1399 F->getName().startswith("llvm.masked.store."))) { 1400 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1401 // Masked store has an initial operand for the value. 1402 unsigned OpOffset = IsWrite ? 1 : 0; 1403 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1404 return; 1405 1406 auto BasePtr = CI->getOperand(OpOffset); 1407 if (ignoreAccess(BasePtr)) 1408 return; 1409 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1410 unsigned Alignment = 1; 1411 // Otherwise no alignment guarantees. We probably got Undef. 1412 if (auto AlignmentConstant = 1413 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1414 Alignment = (unsigned)AlignmentConstant->getZExtValue(); 1415 Value *Mask = CI->getOperand(2 + OpOffset); 1416 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1417 } else { 1418 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { 1419 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1420 ignoreAccess(CI->getArgOperand(ArgNo))) 1421 continue; 1422 Type *Ty = CI->getParamByValType(ArgNo); 1423 Interesting.emplace_back(I, ArgNo, false, Ty, 1); 1424 } 1425 } 1426 } 1427 } 1428 1429 static bool isPointerOperand(Value *V) { 1430 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1431 } 1432 1433 // This is a rough heuristic; it may cause both false positives and 1434 // false negatives. The proper implementation requires cooperation with 1435 // the frontend. 1436 static bool isInterestingPointerComparison(Instruction *I) { 1437 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1438 if (!Cmp->isRelational()) 1439 return false; 1440 } else { 1441 return false; 1442 } 1443 return isPointerOperand(I->getOperand(0)) && 1444 isPointerOperand(I->getOperand(1)); 1445 } 1446 1447 // This is a rough heuristic; it may cause both false positives and 1448 // false negatives. The proper implementation requires cooperation with 1449 // the frontend. 1450 static bool isInterestingPointerSubtraction(Instruction *I) { 1451 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1452 if (BO->getOpcode() != Instruction::Sub) 1453 return false; 1454 } else { 1455 return false; 1456 } 1457 return isPointerOperand(I->getOperand(0)) && 1458 isPointerOperand(I->getOperand(1)); 1459 } 1460 1461 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1462 // If a global variable does not have dynamic initialization we don't 1463 // have to instrument it. However, if a global does not have initializer 1464 // at all, we assume it has dynamic initializer (in other TU). 1465 // 1466 // FIXME: Metadata should be attched directly to the global directly instead 1467 // of being added to llvm.asan.globals. 1468 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1469 } 1470 1471 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1472 Instruction *I) { 1473 IRBuilder<> IRB(I); 1474 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1475 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1476 for (Value *&i : Param) { 1477 if (i->getType()->isPointerTy()) 1478 i = IRB.CreatePointerCast(i, IntptrTy); 1479 } 1480 IRB.CreateCall(F, Param); 1481 } 1482 1483 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1484 Instruction *InsertBefore, Value *Addr, 1485 unsigned Alignment, unsigned Granularity, 1486 uint32_t TypeSize, bool IsWrite, 1487 Value *SizeArgument, bool UseCalls, 1488 uint32_t Exp) { 1489 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1490 // if the data is properly aligned. 1491 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1492 TypeSize == 128) && 1493 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1494 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1495 nullptr, UseCalls, Exp); 1496 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1497 IsWrite, nullptr, UseCalls, Exp); 1498 } 1499 1500 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1501 const DataLayout &DL, Type *IntptrTy, 1502 Value *Mask, Instruction *I, 1503 Value *Addr, unsigned Alignment, 1504 unsigned Granularity, uint32_t TypeSize, 1505 bool IsWrite, Value *SizeArgument, 1506 bool UseCalls, uint32_t Exp) { 1507 auto *VTy = 1508 cast<VectorType>(cast<PointerType>(Addr->getType())->getElementType()); 1509 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1510 unsigned Num = VTy->getNumElements(); 1511 auto Zero = ConstantInt::get(IntptrTy, 0); 1512 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1513 Value *InstrumentedAddress = nullptr; 1514 Instruction *InsertBefore = I; 1515 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1516 // dyn_cast as we might get UndefValue 1517 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1518 if (Masked->isZero()) 1519 // Mask is constant false, so no instrumentation needed. 1520 continue; 1521 // If we have a true or undef value, fall through to doInstrumentAddress 1522 // with InsertBefore == I 1523 } 1524 } else { 1525 IRBuilder<> IRB(I); 1526 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1527 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1528 InsertBefore = ThenTerm; 1529 } 1530 1531 IRBuilder<> IRB(InsertBefore); 1532 InstrumentedAddress = 1533 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1534 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1535 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1536 UseCalls, Exp); 1537 } 1538 } 1539 1540 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1541 InterestingMemoryOperand &O, bool UseCalls, 1542 const DataLayout &DL) { 1543 Value *Addr = O.getPtr(); 1544 1545 // Optimization experiments. 1546 // The experiments can be used to evaluate potential optimizations that remove 1547 // instrumentation (assess false negatives). Instead of completely removing 1548 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1549 // experiments that want to remove instrumentation of this instruction). 1550 // If Exp is non-zero, this pass will emit special calls into runtime 1551 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1552 // make runtime terminate the program in a special way (with a different 1553 // exit status). Then you run the new compiler on a buggy corpus, collect 1554 // the special terminations (ideally, you don't see them at all -- no false 1555 // negatives) and make the decision on the optimization. 1556 uint32_t Exp = ClForceExperiment; 1557 1558 if (ClOpt && ClOptGlobals) { 1559 // If initialization order checking is disabled, a simple access to a 1560 // dynamically initialized global is always valid. 1561 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1562 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1563 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1564 NumOptimizedAccessesToGlobalVar++; 1565 return; 1566 } 1567 } 1568 1569 if (ClOpt && ClOptStack) { 1570 // A direct inbounds access to a stack variable is always valid. 1571 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1572 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1573 NumOptimizedAccessesToStackVar++; 1574 return; 1575 } 1576 } 1577 1578 if (O.IsWrite) 1579 NumInstrumentedWrites++; 1580 else 1581 NumInstrumentedReads++; 1582 1583 unsigned Granularity = 1 << Mapping.Scale; 1584 if (O.MaybeMask) { 1585 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1586 Addr, O.Alignment, Granularity, O.TypeSize, 1587 O.IsWrite, nullptr, UseCalls, Exp); 1588 } else { 1589 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1590 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1591 Exp); 1592 } 1593 } 1594 1595 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1596 Value *Addr, bool IsWrite, 1597 size_t AccessSizeIndex, 1598 Value *SizeArgument, 1599 uint32_t Exp) { 1600 IRBuilder<> IRB(InsertBefore); 1601 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1602 CallInst *Call = nullptr; 1603 if (SizeArgument) { 1604 if (Exp == 0) 1605 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1606 {Addr, SizeArgument}); 1607 else 1608 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1609 {Addr, SizeArgument, ExpVal}); 1610 } else { 1611 if (Exp == 0) 1612 Call = 1613 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1614 else 1615 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1616 {Addr, ExpVal}); 1617 } 1618 1619 Call->setCannotMerge(); 1620 return Call; 1621 } 1622 1623 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1624 Value *ShadowValue, 1625 uint32_t TypeSize) { 1626 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1627 // Addr & (Granularity - 1) 1628 Value *LastAccessedByte = 1629 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1630 // (Addr & (Granularity - 1)) + size - 1 1631 if (TypeSize / 8 > 1) 1632 LastAccessedByte = IRB.CreateAdd( 1633 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1634 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1635 LastAccessedByte = 1636 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1637 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1638 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1639 } 1640 1641 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1642 Instruction *InsertBefore, Value *Addr, 1643 uint32_t TypeSize, bool IsWrite, 1644 Value *SizeArgument, bool UseCalls, 1645 uint32_t Exp) { 1646 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1647 1648 IRBuilder<> IRB(InsertBefore); 1649 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1650 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1651 1652 if (UseCalls) { 1653 if (Exp == 0) 1654 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1655 AddrLong); 1656 else 1657 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1658 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1659 return; 1660 } 1661 1662 if (IsMyriad) { 1663 // Strip the cache bit and do range check. 1664 // AddrLong &= ~kMyriadCacheBitMask32 1665 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1666 // Tag = AddrLong >> kMyriadTagShift 1667 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1668 // Tag == kMyriadDDRTag 1669 Value *TagCheck = 1670 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1671 1672 Instruction *TagCheckTerm = 1673 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1674 MDBuilder(*C).createBranchWeights(1, 100000)); 1675 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1676 IRB.SetInsertPoint(TagCheckTerm); 1677 InsertBefore = TagCheckTerm; 1678 } 1679 1680 Type *ShadowTy = 1681 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1682 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1683 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1684 Value *CmpVal = Constant::getNullValue(ShadowTy); 1685 Value *ShadowValue = 1686 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1687 1688 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1689 size_t Granularity = 1ULL << Mapping.Scale; 1690 Instruction *CrashTerm = nullptr; 1691 1692 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1693 // We use branch weights for the slow path check, to indicate that the slow 1694 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1695 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1696 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1697 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1698 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1699 IRB.SetInsertPoint(CheckTerm); 1700 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1701 if (Recover) { 1702 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1703 } else { 1704 BasicBlock *CrashBlock = 1705 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1706 CrashTerm = new UnreachableInst(*C, CrashBlock); 1707 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1708 ReplaceInstWithInst(CheckTerm, NewTerm); 1709 } 1710 } else { 1711 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1712 } 1713 1714 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1715 AccessSizeIndex, SizeArgument, Exp); 1716 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1717 } 1718 1719 // Instrument unusual size or unusual alignment. 1720 // We can not do it with a single check, so we do 1-byte check for the first 1721 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1722 // to report the actual access size. 1723 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1724 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1725 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1726 IRBuilder<> IRB(InsertBefore); 1727 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1728 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1729 if (UseCalls) { 1730 if (Exp == 0) 1731 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1732 {AddrLong, Size}); 1733 else 1734 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1735 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1736 } else { 1737 Value *LastByte = IRB.CreateIntToPtr( 1738 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1739 Addr->getType()); 1740 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1741 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1742 } 1743 } 1744 1745 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1746 GlobalValue *ModuleName) { 1747 // Set up the arguments to our poison/unpoison functions. 1748 IRBuilder<> IRB(&GlobalInit.front(), 1749 GlobalInit.front().getFirstInsertionPt()); 1750 1751 // Add a call to poison all external globals before the given function starts. 1752 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1753 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1754 1755 // Add calls to unpoison all globals before each return instruction. 1756 for (auto &BB : GlobalInit.getBasicBlockList()) 1757 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1758 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1759 } 1760 1761 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1762 Module &M, GlobalValue *ModuleName) { 1763 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1764 if (!GV) 1765 return; 1766 1767 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1768 if (!CA) 1769 return; 1770 1771 for (Use &OP : CA->operands()) { 1772 if (isa<ConstantAggregateZero>(OP)) continue; 1773 ConstantStruct *CS = cast<ConstantStruct>(OP); 1774 1775 // Must have a function or null ptr. 1776 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1777 if (F->getName() == kAsanModuleCtorName) continue; 1778 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1779 // Don't instrument CTORs that will run before asan.module_ctor. 1780 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1781 continue; 1782 poisonOneInitializer(*F, ModuleName); 1783 } 1784 } 1785 } 1786 1787 bool ModuleAddressSanitizer::canInstrumentAliasedGlobal( 1788 const GlobalAlias &GA) const { 1789 // In case this function should be expanded to include rules that do not just 1790 // apply when CompileKernel is true, either guard all existing rules with an 1791 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1792 // should also apply to user space. 1793 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1794 1795 // When compiling the kernel, globals that are aliased by symbols prefixed 1796 // by "__" are special and cannot be padded with a redzone. 1797 if (GA.getName().startswith("__")) 1798 return false; 1799 1800 return true; 1801 } 1802 1803 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1804 Type *Ty = G->getValueType(); 1805 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1806 1807 // FIXME: Metadata should be attched directly to the global directly instead 1808 // of being added to llvm.asan.globals. 1809 if (GlobalsMD.get(G).IsExcluded) return false; 1810 if (!Ty->isSized()) return false; 1811 if (!G->hasInitializer()) return false; 1812 // Only instrument globals of default address spaces 1813 if (G->getAddressSpace()) return false; 1814 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1815 // Two problems with thread-locals: 1816 // - The address of the main thread's copy can't be computed at link-time. 1817 // - Need to poison all copies, not just the main thread's one. 1818 if (G->isThreadLocal()) return false; 1819 // For now, just ignore this Global if the alignment is large. 1820 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1821 1822 // For non-COFF targets, only instrument globals known to be defined by this 1823 // TU. 1824 // FIXME: We can instrument comdat globals on ELF if we are using the 1825 // GC-friendly metadata scheme. 1826 if (!TargetTriple.isOSBinFormatCOFF()) { 1827 if (!G->hasExactDefinition() || G->hasComdat()) 1828 return false; 1829 } else { 1830 // On COFF, don't instrument non-ODR linkages. 1831 if (G->isInterposable()) 1832 return false; 1833 } 1834 1835 // If a comdat is present, it must have a selection kind that implies ODR 1836 // semantics: no duplicates, any, or exact match. 1837 if (Comdat *C = G->getComdat()) { 1838 switch (C->getSelectionKind()) { 1839 case Comdat::Any: 1840 case Comdat::ExactMatch: 1841 case Comdat::NoDuplicates: 1842 break; 1843 case Comdat::Largest: 1844 case Comdat::SameSize: 1845 return false; 1846 } 1847 } 1848 1849 if (G->hasSection()) { 1850 // The kernel uses explicit sections for mostly special global variables 1851 // that we should not instrument. E.g. the kernel may rely on their layout 1852 // without redzones, or remove them at link time ("discard.*"), etc. 1853 if (CompileKernel) 1854 return false; 1855 1856 StringRef Section = G->getSection(); 1857 1858 // Globals from llvm.metadata aren't emitted, do not instrument them. 1859 if (Section == "llvm.metadata") return false; 1860 // Do not instrument globals from special LLVM sections. 1861 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1862 1863 // Do not instrument function pointers to initialization and termination 1864 // routines: dynamic linker will not properly handle redzones. 1865 if (Section.startswith(".preinit_array") || 1866 Section.startswith(".init_array") || 1867 Section.startswith(".fini_array")) { 1868 return false; 1869 } 1870 1871 // On COFF, if the section name contains '$', it is highly likely that the 1872 // user is using section sorting to create an array of globals similar to 1873 // the way initialization callbacks are registered in .init_array and 1874 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1875 // to such globals is counterproductive, because the intent is that they 1876 // will form an array, and out-of-bounds accesses are expected. 1877 // See https://github.com/google/sanitizers/issues/305 1878 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1879 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1880 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1881 << *G << "\n"); 1882 return false; 1883 } 1884 1885 if (TargetTriple.isOSBinFormatMachO()) { 1886 StringRef ParsedSegment, ParsedSection; 1887 unsigned TAA = 0, StubSize = 0; 1888 bool TAAParsed; 1889 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1890 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1891 assert(ErrorCode.empty() && "Invalid section specifier."); 1892 1893 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1894 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1895 // them. 1896 if (ParsedSegment == "__OBJC" || 1897 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1898 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1899 return false; 1900 } 1901 // See https://github.com/google/sanitizers/issues/32 1902 // Constant CFString instances are compiled in the following way: 1903 // -- the string buffer is emitted into 1904 // __TEXT,__cstring,cstring_literals 1905 // -- the constant NSConstantString structure referencing that buffer 1906 // is placed into __DATA,__cfstring 1907 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1908 // Moreover, it causes the linker to crash on OS X 10.7 1909 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1910 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1911 return false; 1912 } 1913 // The linker merges the contents of cstring_literals and removes the 1914 // trailing zeroes. 1915 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1916 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1917 return false; 1918 } 1919 } 1920 } 1921 1922 if (CompileKernel) { 1923 // Globals that prefixed by "__" are special and cannot be padded with a 1924 // redzone. 1925 if (G->getName().startswith("__")) 1926 return false; 1927 } 1928 1929 return true; 1930 } 1931 1932 // On Mach-O platforms, we emit global metadata in a separate section of the 1933 // binary in order to allow the linker to properly dead strip. This is only 1934 // supported on recent versions of ld64. 1935 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1936 if (!TargetTriple.isOSBinFormatMachO()) 1937 return false; 1938 1939 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1940 return true; 1941 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1942 return true; 1943 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1944 return true; 1945 1946 return false; 1947 } 1948 1949 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1950 switch (TargetTriple.getObjectFormat()) { 1951 case Triple::COFF: return ".ASAN$GL"; 1952 case Triple::ELF: return "asan_globals"; 1953 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1954 case Triple::Wasm: 1955 case Triple::XCOFF: 1956 report_fatal_error( 1957 "ModuleAddressSanitizer not implemented for object file format."); 1958 case Triple::UnknownObjectFormat: 1959 break; 1960 } 1961 llvm_unreachable("unsupported object format"); 1962 } 1963 1964 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1965 IRBuilder<> IRB(*C); 1966 1967 // Declare our poisoning and unpoisoning functions. 1968 AsanPoisonGlobals = 1969 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1970 AsanUnpoisonGlobals = 1971 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1972 1973 // Declare functions that register/unregister globals. 1974 AsanRegisterGlobals = M.getOrInsertFunction( 1975 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1976 AsanUnregisterGlobals = M.getOrInsertFunction( 1977 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1978 1979 // Declare the functions that find globals in a shared object and then invoke 1980 // the (un)register function on them. 1981 AsanRegisterImageGlobals = M.getOrInsertFunction( 1982 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1983 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1984 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1985 1986 AsanRegisterElfGlobals = 1987 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1988 IntptrTy, IntptrTy, IntptrTy); 1989 AsanUnregisterElfGlobals = 1990 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1991 IntptrTy, IntptrTy, IntptrTy); 1992 } 1993 1994 // Put the metadata and the instrumented global in the same group. This ensures 1995 // that the metadata is discarded if the instrumented global is discarded. 1996 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 1997 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1998 Module &M = *G->getParent(); 1999 Comdat *C = G->getComdat(); 2000 if (!C) { 2001 if (!G->hasName()) { 2002 // If G is unnamed, it must be internal. Give it an artificial name 2003 // so we can put it in a comdat. 2004 assert(G->hasLocalLinkage()); 2005 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2006 } 2007 2008 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2009 std::string Name = std::string(G->getName()); 2010 Name += InternalSuffix; 2011 C = M.getOrInsertComdat(Name); 2012 } else { 2013 C = M.getOrInsertComdat(G->getName()); 2014 } 2015 2016 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2017 // linkage to internal linkage so that a symbol table entry is emitted. This 2018 // is necessary in order to create the comdat group. 2019 if (TargetTriple.isOSBinFormatCOFF()) { 2020 C->setSelectionKind(Comdat::NoDuplicates); 2021 if (G->hasPrivateLinkage()) 2022 G->setLinkage(GlobalValue::InternalLinkage); 2023 } 2024 G->setComdat(C); 2025 } 2026 2027 assert(G->hasComdat()); 2028 Metadata->setComdat(G->getComdat()); 2029 } 2030 2031 // Create a separate metadata global and put it in the appropriate ASan 2032 // global registration section. 2033 GlobalVariable * 2034 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2035 StringRef OriginalName) { 2036 auto Linkage = TargetTriple.isOSBinFormatMachO() 2037 ? GlobalVariable::InternalLinkage 2038 : GlobalVariable::PrivateLinkage; 2039 GlobalVariable *Metadata = new GlobalVariable( 2040 M, Initializer->getType(), false, Linkage, Initializer, 2041 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2042 Metadata->setSection(getGlobalMetadataSection()); 2043 return Metadata; 2044 } 2045 2046 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2047 AsanDtorFunction = 2048 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 2049 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 2050 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2051 2052 return ReturnInst::Create(*C, AsanDtorBB); 2053 } 2054 2055 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2056 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2057 ArrayRef<Constant *> MetadataInitializers) { 2058 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2059 auto &DL = M.getDataLayout(); 2060 2061 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2062 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2063 Constant *Initializer = MetadataInitializers[i]; 2064 GlobalVariable *G = ExtendedGlobals[i]; 2065 GlobalVariable *Metadata = 2066 CreateMetadataGlobal(M, Initializer, G->getName()); 2067 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2068 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2069 MetadataGlobals[i] = Metadata; 2070 2071 // The MSVC linker always inserts padding when linking incrementally. We 2072 // cope with that by aligning each struct to its size, which must be a power 2073 // of two. 2074 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2075 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2076 "global metadata will not be padded appropriately"); 2077 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2078 2079 SetComdatForGlobalMetadata(G, Metadata, ""); 2080 } 2081 2082 // Update llvm.compiler.used, adding the new metadata globals. This is 2083 // needed so that during LTO these variables stay alive. 2084 if (!MetadataGlobals.empty()) 2085 appendToCompilerUsed(M, MetadataGlobals); 2086 } 2087 2088 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2089 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2090 ArrayRef<Constant *> MetadataInitializers, 2091 const std::string &UniqueModuleId) { 2092 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2093 2094 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2095 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2096 GlobalVariable *G = ExtendedGlobals[i]; 2097 GlobalVariable *Metadata = 2098 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2099 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2100 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2101 MetadataGlobals[i] = Metadata; 2102 2103 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2104 } 2105 2106 // This should never be called when there are no globals, by the logic that 2107 // computes the UniqueModuleId string, which is "" when there are no globals. 2108 // It's important that this path is only used when there are actually some 2109 // globals, because that means that there will certainly be a live 2110 // `asan_globals` input section at link time and thus `__start_asan_globals` 2111 // and `__stop_asan_globals` symbols will definitely be defined at link time. 2112 // This means there's no need for the references to them to be weak, which 2113 // enables better code generation because ExternalWeakLinkage implies 2114 // isInterposable() and thus requires GOT indirection for PIC. Since these 2115 // are known-defined hidden/dso_local symbols, direct PIC accesses without 2116 // dynamic relocation are always sufficient. 2117 assert(!MetadataGlobals.empty()); 2118 assert(!UniqueModuleId.empty()); 2119 2120 // Update llvm.compiler.used, adding the new metadata globals. This is 2121 // needed so that during LTO these variables stay alive. 2122 appendToCompilerUsed(M, MetadataGlobals); 2123 2124 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2125 // to look up the loaded image that contains it. Second, we can store in it 2126 // whether registration has already occurred, to prevent duplicate 2127 // registration. 2128 // 2129 // Common linkage ensures that there is only one global per shared library. 2130 GlobalVariable *RegisteredFlag = new GlobalVariable( 2131 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2132 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2133 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2134 2135 // Create start and stop symbols. These are known to be defined by 2136 // the linker, see comment above. 2137 auto MakeStartStopGV = [&](const char *Prefix) { 2138 GlobalVariable *StartStop = 2139 new GlobalVariable(M, IntptrTy, false, GlobalVariable::ExternalLinkage, 2140 nullptr, Prefix + getGlobalMetadataSection()); 2141 StartStop->setVisibility(GlobalVariable::HiddenVisibility); 2142 assert(StartStop->isImplicitDSOLocal()); 2143 return StartStop; 2144 }; 2145 GlobalVariable *StartELFMetadata = MakeStartStopGV("__start_"); 2146 GlobalVariable *StopELFMetadata = MakeStartStopGV("__stop_"); 2147 2148 // Create a call to register the globals with the runtime. 2149 IRB.CreateCall(AsanRegisterElfGlobals, 2150 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2151 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2152 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2153 2154 // We also need to unregister globals at the end, e.g., when a shared library 2155 // gets closed. 2156 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2157 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2158 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2159 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2160 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2161 } 2162 2163 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2164 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2165 ArrayRef<Constant *> MetadataInitializers) { 2166 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2167 2168 // On recent Mach-O platforms, use a structure which binds the liveness of 2169 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2170 // created to be added to llvm.compiler.used 2171 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2172 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2173 2174 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2175 Constant *Initializer = MetadataInitializers[i]; 2176 GlobalVariable *G = ExtendedGlobals[i]; 2177 GlobalVariable *Metadata = 2178 CreateMetadataGlobal(M, Initializer, G->getName()); 2179 2180 // On recent Mach-O platforms, we emit the global metadata in a way that 2181 // allows the linker to properly strip dead globals. 2182 auto LivenessBinder = 2183 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2184 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2185 GlobalVariable *Liveness = new GlobalVariable( 2186 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2187 Twine("__asan_binder_") + G->getName()); 2188 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2189 LivenessGlobals[i] = Liveness; 2190 } 2191 2192 // Update llvm.compiler.used, adding the new liveness globals. This is 2193 // needed so that during LTO these variables stay alive. The alternative 2194 // would be to have the linker handling the LTO symbols, but libLTO 2195 // current API does not expose access to the section for each symbol. 2196 if (!LivenessGlobals.empty()) 2197 appendToCompilerUsed(M, LivenessGlobals); 2198 2199 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2200 // to look up the loaded image that contains it. Second, we can store in it 2201 // whether registration has already occurred, to prevent duplicate 2202 // registration. 2203 // 2204 // common linkage ensures that there is only one global per shared library. 2205 GlobalVariable *RegisteredFlag = new GlobalVariable( 2206 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2207 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2208 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2209 2210 IRB.CreateCall(AsanRegisterImageGlobals, 2211 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2212 2213 // We also need to unregister globals at the end, e.g., when a shared library 2214 // gets closed. 2215 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2216 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2217 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2218 } 2219 2220 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2221 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2222 ArrayRef<Constant *> MetadataInitializers) { 2223 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2224 unsigned N = ExtendedGlobals.size(); 2225 assert(N > 0); 2226 2227 // On platforms that don't have a custom metadata section, we emit an array 2228 // of global metadata structures. 2229 ArrayType *ArrayOfGlobalStructTy = 2230 ArrayType::get(MetadataInitializers[0]->getType(), N); 2231 auto AllGlobals = new GlobalVariable( 2232 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2233 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2234 if (Mapping.Scale > 3) 2235 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2236 2237 IRB.CreateCall(AsanRegisterGlobals, 2238 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2239 ConstantInt::get(IntptrTy, N)}); 2240 2241 // We also need to unregister globals at the end, e.g., when a shared library 2242 // gets closed. 2243 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2244 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2245 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2246 ConstantInt::get(IntptrTy, N)}); 2247 } 2248 2249 // This function replaces all global variables with new variables that have 2250 // trailing redzones. It also creates a function that poisons 2251 // redzones and inserts this function into llvm.global_ctors. 2252 // Sets *CtorComdat to true if the global registration code emitted into the 2253 // asan constructor is comdat-compatible. 2254 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2255 bool *CtorComdat) { 2256 *CtorComdat = false; 2257 2258 // Build set of globals that are aliased by some GA, where 2259 // canInstrumentAliasedGlobal(GA) returns false. 2260 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2261 if (CompileKernel) { 2262 for (auto &GA : M.aliases()) { 2263 if (const auto *GV = dyn_cast<GlobalVariable>(GA.getAliasee())) { 2264 if (!canInstrumentAliasedGlobal(GA)) 2265 AliasedGlobalExclusions.insert(GV); 2266 } 2267 } 2268 } 2269 2270 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2271 for (auto &G : M.globals()) { 2272 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2273 GlobalsToChange.push_back(&G); 2274 } 2275 2276 size_t n = GlobalsToChange.size(); 2277 if (n == 0) { 2278 *CtorComdat = true; 2279 return false; 2280 } 2281 2282 auto &DL = M.getDataLayout(); 2283 2284 // A global is described by a structure 2285 // size_t beg; 2286 // size_t size; 2287 // size_t size_with_redzone; 2288 // const char *name; 2289 // const char *module_name; 2290 // size_t has_dynamic_init; 2291 // void *source_location; 2292 // size_t odr_indicator; 2293 // We initialize an array of such structures and pass it to a run-time call. 2294 StructType *GlobalStructTy = 2295 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2296 IntptrTy, IntptrTy, IntptrTy); 2297 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2298 SmallVector<Constant *, 16> Initializers(n); 2299 2300 bool HasDynamicallyInitializedGlobals = false; 2301 2302 // We shouldn't merge same module names, as this string serves as unique 2303 // module ID in runtime. 2304 GlobalVariable *ModuleName = createPrivateGlobalForString( 2305 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2306 2307 for (size_t i = 0; i < n; i++) { 2308 GlobalVariable *G = GlobalsToChange[i]; 2309 2310 // FIXME: Metadata should be attched directly to the global directly instead 2311 // of being added to llvm.asan.globals. 2312 auto MD = GlobalsMD.get(G); 2313 StringRef NameForGlobal = G->getName(); 2314 // Create string holding the global name (use global name from metadata 2315 // if it's available, otherwise just write the name of global variable). 2316 GlobalVariable *Name = createPrivateGlobalForString( 2317 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2318 /*AllowMerging*/ true, kAsanGenPrefix); 2319 2320 Type *Ty = G->getValueType(); 2321 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2322 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2323 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2324 2325 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2326 Constant *NewInitializer = ConstantStruct::get( 2327 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2328 2329 // Create a new global variable with enough space for a redzone. 2330 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2331 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2332 Linkage = GlobalValue::InternalLinkage; 2333 GlobalVariable *NewGlobal = 2334 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2335 "", G, G->getThreadLocalMode()); 2336 NewGlobal->copyAttributesFrom(G); 2337 NewGlobal->setComdat(G->getComdat()); 2338 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2339 // Don't fold globals with redzones. ODR violation detector and redzone 2340 // poisoning implicitly creates a dependence on the global's address, so it 2341 // is no longer valid for it to be marked unnamed_addr. 2342 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2343 2344 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2345 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2346 G->isConstant()) { 2347 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2348 if (Seq && Seq->isCString()) 2349 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2350 } 2351 2352 // Transfer the debug info. The payload starts at offset zero so we can 2353 // copy the debug info over as is. 2354 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2355 G->getDebugInfo(GVs); 2356 for (auto *GV : GVs) 2357 NewGlobal->addDebugInfo(GV); 2358 2359 Value *Indices2[2]; 2360 Indices2[0] = IRB.getInt32(0); 2361 Indices2[1] = IRB.getInt32(0); 2362 2363 G->replaceAllUsesWith( 2364 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2365 NewGlobal->takeName(G); 2366 G->eraseFromParent(); 2367 NewGlobals[i] = NewGlobal; 2368 2369 Constant *SourceLoc; 2370 if (!MD.SourceLoc.empty()) { 2371 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2372 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2373 } else { 2374 SourceLoc = ConstantInt::get(IntptrTy, 0); 2375 } 2376 2377 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2378 GlobalValue *InstrumentedGlobal = NewGlobal; 2379 2380 bool CanUsePrivateAliases = 2381 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2382 TargetTriple.isOSBinFormatWasm(); 2383 if (CanUsePrivateAliases && UsePrivateAlias) { 2384 // Create local alias for NewGlobal to avoid crash on ODR between 2385 // instrumented and non-instrumented libraries. 2386 InstrumentedGlobal = 2387 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2388 } 2389 2390 // ODR should not happen for local linkage. 2391 if (NewGlobal->hasLocalLinkage()) { 2392 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2393 IRB.getInt8PtrTy()); 2394 } else if (UseOdrIndicator) { 2395 // With local aliases, we need to provide another externally visible 2396 // symbol __odr_asan_XXX to detect ODR violation. 2397 auto *ODRIndicatorSym = 2398 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2399 Constant::getNullValue(IRB.getInt8Ty()), 2400 kODRGenPrefix + NameForGlobal, nullptr, 2401 NewGlobal->getThreadLocalMode()); 2402 2403 // Set meaningful attributes for indicator symbol. 2404 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2405 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2406 ODRIndicatorSym->setAlignment(Align(1)); 2407 ODRIndicator = ODRIndicatorSym; 2408 } 2409 2410 Constant *Initializer = ConstantStruct::get( 2411 GlobalStructTy, 2412 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2413 ConstantInt::get(IntptrTy, SizeInBytes), 2414 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2415 ConstantExpr::getPointerCast(Name, IntptrTy), 2416 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2417 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2418 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2419 2420 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2421 2422 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2423 2424 Initializers[i] = Initializer; 2425 } 2426 2427 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2428 // ConstantMerge'ing them. 2429 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2430 for (size_t i = 0; i < n; i++) { 2431 GlobalVariable *G = NewGlobals[i]; 2432 if (G->getName().empty()) continue; 2433 GlobalsToAddToUsedList.push_back(G); 2434 } 2435 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2436 2437 std::string ELFUniqueModuleId = 2438 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2439 : ""; 2440 2441 if (!ELFUniqueModuleId.empty()) { 2442 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2443 *CtorComdat = true; 2444 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2445 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2446 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2447 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2448 } else { 2449 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2450 } 2451 2452 // Create calls for poisoning before initializers run and unpoisoning after. 2453 if (HasDynamicallyInitializedGlobals) 2454 createInitializerPoisonCalls(M, ModuleName); 2455 2456 LLVM_DEBUG(dbgs() << M); 2457 return true; 2458 } 2459 2460 uint64_t 2461 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2462 constexpr uint64_t kMaxRZ = 1 << 18; 2463 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2464 2465 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2466 uint64_t RZ = 2467 std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2468 2469 // Round up to multiple of MinRZ. 2470 if (SizeInBytes % MinRZ) 2471 RZ += MinRZ - (SizeInBytes % MinRZ); 2472 assert((RZ + SizeInBytes) % MinRZ == 0); 2473 2474 return RZ; 2475 } 2476 2477 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2478 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2479 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2480 int Version = 8; 2481 // 32-bit Android is one version ahead because of the switch to dynamic 2482 // shadow. 2483 Version += (LongSize == 32 && isAndroid); 2484 return Version; 2485 } 2486 2487 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2488 initializeCallbacks(M); 2489 2490 // Create a module constructor. A destructor is created lazily because not all 2491 // platforms, and not all modules need it. 2492 if (CompileKernel) { 2493 // The kernel always builds with its own runtime, and therefore does not 2494 // need the init and version check calls. 2495 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2496 } else { 2497 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2498 std::string VersionCheckName = 2499 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2500 std::tie(AsanCtorFunction, std::ignore) = 2501 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2502 kAsanInitName, /*InitArgTypes=*/{}, 2503 /*InitArgs=*/{}, VersionCheckName); 2504 } 2505 2506 bool CtorComdat = true; 2507 if (ClGlobals) { 2508 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2509 InstrumentGlobals(IRB, M, &CtorComdat); 2510 } 2511 2512 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2513 2514 // Put the constructor and destructor in comdat if both 2515 // (1) global instrumentation is not TU-specific 2516 // (2) target is ELF. 2517 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2518 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2519 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2520 if (AsanDtorFunction) { 2521 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2522 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2523 } 2524 } else { 2525 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2526 if (AsanDtorFunction) 2527 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2528 } 2529 2530 return true; 2531 } 2532 2533 void AddressSanitizer::initializeCallbacks(Module &M) { 2534 IRBuilder<> IRB(*C); 2535 // Create __asan_report* callbacks. 2536 // IsWrite, TypeSize and Exp are encoded in the function name. 2537 for (int Exp = 0; Exp < 2; Exp++) { 2538 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2539 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2540 const std::string ExpStr = Exp ? "exp_" : ""; 2541 const std::string EndingStr = Recover ? "_noabort" : ""; 2542 2543 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2544 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2545 if (Exp) { 2546 Type *ExpType = Type::getInt32Ty(*C); 2547 Args2.push_back(ExpType); 2548 Args1.push_back(ExpType); 2549 } 2550 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2551 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2552 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2553 2554 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2555 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2556 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2557 2558 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2559 AccessSizeIndex++) { 2560 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2561 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2562 M.getOrInsertFunction( 2563 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2564 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2565 2566 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2567 M.getOrInsertFunction( 2568 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2569 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2570 } 2571 } 2572 } 2573 2574 const std::string MemIntrinCallbackPrefix = 2575 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2576 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2577 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2578 IRB.getInt8PtrTy(), IntptrTy); 2579 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2580 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2581 IRB.getInt8PtrTy(), IntptrTy); 2582 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2583 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2584 IRB.getInt32Ty(), IntptrTy); 2585 2586 AsanHandleNoReturnFunc = 2587 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2588 2589 AsanPtrCmpFunction = 2590 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2591 AsanPtrSubFunction = 2592 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2593 if (Mapping.InGlobal) 2594 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2595 ArrayType::get(IRB.getInt8Ty(), 0)); 2596 } 2597 2598 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2599 // For each NSObject descendant having a +load method, this method is invoked 2600 // by the ObjC runtime before any of the static constructors is called. 2601 // Therefore we need to instrument such methods with a call to __asan_init 2602 // at the beginning in order to initialize our runtime before any access to 2603 // the shadow memory. 2604 // We cannot just ignore these methods, because they may call other 2605 // instrumented functions. 2606 if (F.getName().find(" load]") != std::string::npos) { 2607 FunctionCallee AsanInitFunction = 2608 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2609 IRBuilder<> IRB(&F.front(), F.front().begin()); 2610 IRB.CreateCall(AsanInitFunction, {}); 2611 return true; 2612 } 2613 return false; 2614 } 2615 2616 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2617 // Generate code only when dynamic addressing is needed. 2618 if (Mapping.Offset != kDynamicShadowSentinel) 2619 return false; 2620 2621 IRBuilder<> IRB(&F.front().front()); 2622 if (Mapping.InGlobal) { 2623 if (ClWithIfuncSuppressRemat) { 2624 // An empty inline asm with input reg == output reg. 2625 // An opaque pointer-to-int cast, basically. 2626 InlineAsm *Asm = InlineAsm::get( 2627 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2628 StringRef(""), StringRef("=r,0"), 2629 /*hasSideEffects=*/false); 2630 LocalDynamicShadow = 2631 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2632 } else { 2633 LocalDynamicShadow = 2634 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2635 } 2636 } else { 2637 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2638 kAsanShadowMemoryDynamicAddress, IntptrTy); 2639 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2640 } 2641 return true; 2642 } 2643 2644 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2645 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2646 // to it as uninteresting. This assumes we haven't started processing allocas 2647 // yet. This check is done up front because iterating the use list in 2648 // isInterestingAlloca would be algorithmically slower. 2649 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2650 2651 // Try to get the declaration of llvm.localescape. If it's not in the module, 2652 // we can exit early. 2653 if (!F.getParent()->getFunction("llvm.localescape")) return; 2654 2655 // Look for a call to llvm.localescape call in the entry block. It can't be in 2656 // any other block. 2657 for (Instruction &I : F.getEntryBlock()) { 2658 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2659 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2660 // We found a call. Mark all the allocas passed in as uninteresting. 2661 for (Value *Arg : II->arg_operands()) { 2662 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2663 assert(AI && AI->isStaticAlloca() && 2664 "non-static alloca arg to localescape"); 2665 ProcessedAllocas[AI] = false; 2666 } 2667 break; 2668 } 2669 } 2670 } 2671 2672 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2673 bool ShouldInstrument = 2674 ClDebugMin < 0 || ClDebugMax < 0 || 2675 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2676 Instrumented++; 2677 return !ShouldInstrument; 2678 } 2679 2680 bool AddressSanitizer::instrumentFunction(Function &F, 2681 const TargetLibraryInfo *TLI) { 2682 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2683 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2684 if (F.getName().startswith("__asan_")) return false; 2685 2686 bool FunctionModified = false; 2687 2688 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2689 // This function needs to be called even if the function body is not 2690 // instrumented. 2691 if (maybeInsertAsanInitAtFunctionEntry(F)) 2692 FunctionModified = true; 2693 2694 // Leave if the function doesn't need instrumentation. 2695 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2696 2697 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2698 2699 initializeCallbacks(*F.getParent()); 2700 2701 FunctionStateRAII CleanupObj(this); 2702 2703 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2704 2705 // We can't instrument allocas used with llvm.localescape. Only static allocas 2706 // can be passed to that intrinsic. 2707 markEscapedLocalAllocas(F); 2708 2709 // We want to instrument every address only once per basic block (unless there 2710 // are calls between uses). 2711 SmallPtrSet<Value *, 16> TempsToInstrument; 2712 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2713 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2714 SmallVector<Instruction *, 8> NoReturnCalls; 2715 SmallVector<BasicBlock *, 16> AllBlocks; 2716 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2717 int NumAllocas = 0; 2718 2719 // Fill the set of memory operations to instrument. 2720 for (auto &BB : F) { 2721 AllBlocks.push_back(&BB); 2722 TempsToInstrument.clear(); 2723 int NumInsnsPerBB = 0; 2724 for (auto &Inst : BB) { 2725 if (LooksLikeCodeInBug11395(&Inst)) return false; 2726 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2727 getInterestingMemoryOperands(&Inst, InterestingOperands); 2728 2729 if (!InterestingOperands.empty()) { 2730 for (auto &Operand : InterestingOperands) { 2731 if (ClOpt && ClOptSameTemp) { 2732 Value *Ptr = Operand.getPtr(); 2733 // If we have a mask, skip instrumentation if we've already 2734 // instrumented the full object. But don't add to TempsToInstrument 2735 // because we might get another load/store with a different mask. 2736 if (Operand.MaybeMask) { 2737 if (TempsToInstrument.count(Ptr)) 2738 continue; // We've seen this (whole) temp in the current BB. 2739 } else { 2740 if (!TempsToInstrument.insert(Ptr).second) 2741 continue; // We've seen this temp in the current BB. 2742 } 2743 } 2744 OperandsToInstrument.push_back(Operand); 2745 NumInsnsPerBB++; 2746 } 2747 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2748 isInterestingPointerComparison(&Inst)) || 2749 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2750 isInterestingPointerSubtraction(&Inst))) { 2751 PointerComparisonsOrSubtracts.push_back(&Inst); 2752 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2753 // ok, take it. 2754 IntrinToInstrument.push_back(MI); 2755 NumInsnsPerBB++; 2756 } else { 2757 if (isa<AllocaInst>(Inst)) NumAllocas++; 2758 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2759 // A call inside BB. 2760 TempsToInstrument.clear(); 2761 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2762 NoReturnCalls.push_back(CB); 2763 } 2764 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2765 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2766 } 2767 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2768 } 2769 } 2770 2771 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2772 OperandsToInstrument.size() + IntrinToInstrument.size() > 2773 (unsigned)ClInstrumentationWithCallsThreshold); 2774 const DataLayout &DL = F.getParent()->getDataLayout(); 2775 ObjectSizeOpts ObjSizeOpts; 2776 ObjSizeOpts.RoundToAlign = true; 2777 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2778 2779 // Instrument. 2780 int NumInstrumented = 0; 2781 for (auto &Operand : OperandsToInstrument) { 2782 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2783 instrumentMop(ObjSizeVis, Operand, UseCalls, 2784 F.getParent()->getDataLayout()); 2785 FunctionModified = true; 2786 } 2787 for (auto Inst : IntrinToInstrument) { 2788 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2789 instrumentMemIntrinsic(Inst); 2790 FunctionModified = true; 2791 } 2792 2793 FunctionStackPoisoner FSP(F, *this); 2794 bool ChangedStack = FSP.runOnFunction(); 2795 2796 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2797 // See e.g. https://github.com/google/sanitizers/issues/37 2798 for (auto CI : NoReturnCalls) { 2799 IRBuilder<> IRB(CI); 2800 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2801 } 2802 2803 for (auto Inst : PointerComparisonsOrSubtracts) { 2804 instrumentPointerComparisonOrSubtraction(Inst); 2805 FunctionModified = true; 2806 } 2807 2808 if (ChangedStack || !NoReturnCalls.empty()) 2809 FunctionModified = true; 2810 2811 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2812 << F << "\n"); 2813 2814 return FunctionModified; 2815 } 2816 2817 // Workaround for bug 11395: we don't want to instrument stack in functions 2818 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2819 // FIXME: remove once the bug 11395 is fixed. 2820 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2821 if (LongSize != 32) return false; 2822 CallInst *CI = dyn_cast<CallInst>(I); 2823 if (!CI || !CI->isInlineAsm()) return false; 2824 if (CI->getNumArgOperands() <= 5) return false; 2825 // We have inline assembly with quite a few arguments. 2826 return true; 2827 } 2828 2829 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2830 IRBuilder<> IRB(*C); 2831 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2832 std::string Suffix = itostr(i); 2833 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2834 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2835 AsanStackFreeFunc[i] = 2836 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2837 IRB.getVoidTy(), IntptrTy, IntptrTy); 2838 } 2839 if (ASan.UseAfterScope) { 2840 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2841 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2842 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2843 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2844 } 2845 2846 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2847 std::ostringstream Name; 2848 Name << kAsanSetShadowPrefix; 2849 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2850 AsanSetShadowFunc[Val] = 2851 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2852 } 2853 2854 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2855 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2856 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2857 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2858 } 2859 2860 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2861 ArrayRef<uint8_t> ShadowBytes, 2862 size_t Begin, size_t End, 2863 IRBuilder<> &IRB, 2864 Value *ShadowBase) { 2865 if (Begin >= End) 2866 return; 2867 2868 const size_t LargestStoreSizeInBytes = 2869 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2870 2871 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2872 2873 // Poison given range in shadow using larges store size with out leading and 2874 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2875 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2876 // middle of a store. 2877 for (size_t i = Begin; i < End;) { 2878 if (!ShadowMask[i]) { 2879 assert(!ShadowBytes[i]); 2880 ++i; 2881 continue; 2882 } 2883 2884 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2885 // Fit store size into the range. 2886 while (StoreSizeInBytes > End - i) 2887 StoreSizeInBytes /= 2; 2888 2889 // Minimize store size by trimming trailing zeros. 2890 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2891 while (j <= StoreSizeInBytes / 2) 2892 StoreSizeInBytes /= 2; 2893 } 2894 2895 uint64_t Val = 0; 2896 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2897 if (IsLittleEndian) 2898 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2899 else 2900 Val = (Val << 8) | ShadowBytes[i + j]; 2901 } 2902 2903 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2904 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2905 IRB.CreateAlignedStore( 2906 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2907 Align(1)); 2908 2909 i += StoreSizeInBytes; 2910 } 2911 } 2912 2913 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2914 ArrayRef<uint8_t> ShadowBytes, 2915 IRBuilder<> &IRB, Value *ShadowBase) { 2916 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2917 } 2918 2919 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2920 ArrayRef<uint8_t> ShadowBytes, 2921 size_t Begin, size_t End, 2922 IRBuilder<> &IRB, Value *ShadowBase) { 2923 assert(ShadowMask.size() == ShadowBytes.size()); 2924 size_t Done = Begin; 2925 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2926 if (!ShadowMask[i]) { 2927 assert(!ShadowBytes[i]); 2928 continue; 2929 } 2930 uint8_t Val = ShadowBytes[i]; 2931 if (!AsanSetShadowFunc[Val]) 2932 continue; 2933 2934 // Skip same values. 2935 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2936 } 2937 2938 if (j - i >= ClMaxInlinePoisoningSize) { 2939 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2940 IRB.CreateCall(AsanSetShadowFunc[Val], 2941 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2942 ConstantInt::get(IntptrTy, j - i)}); 2943 Done = j; 2944 } 2945 } 2946 2947 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2948 } 2949 2950 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2951 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2952 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2953 assert(LocalStackSize <= kMaxStackMallocSize); 2954 uint64_t MaxSize = kMinStackMallocSize; 2955 for (int i = 0;; i++, MaxSize *= 2) 2956 if (LocalStackSize <= MaxSize) return i; 2957 llvm_unreachable("impossible LocalStackSize"); 2958 } 2959 2960 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2961 Instruction *CopyInsertPoint = &F.front().front(); 2962 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2963 // Insert after the dynamic shadow location is determined 2964 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2965 assert(CopyInsertPoint); 2966 } 2967 IRBuilder<> IRB(CopyInsertPoint); 2968 const DataLayout &DL = F.getParent()->getDataLayout(); 2969 for (Argument &Arg : F.args()) { 2970 if (Arg.hasByValAttr()) { 2971 Type *Ty = Arg.getParamByValType(); 2972 const Align Alignment = 2973 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2974 2975 AllocaInst *AI = IRB.CreateAlloca( 2976 Ty, nullptr, 2977 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2978 ".byval"); 2979 AI->setAlignment(Alignment); 2980 Arg.replaceAllUsesWith(AI); 2981 2982 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2983 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2984 } 2985 } 2986 } 2987 2988 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2989 Value *ValueIfTrue, 2990 Instruction *ThenTerm, 2991 Value *ValueIfFalse) { 2992 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2993 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2994 PHI->addIncoming(ValueIfFalse, CondBlock); 2995 BasicBlock *ThenBlock = ThenTerm->getParent(); 2996 PHI->addIncoming(ValueIfTrue, ThenBlock); 2997 return PHI; 2998 } 2999 3000 Value *FunctionStackPoisoner::createAllocaForLayout( 3001 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3002 AllocaInst *Alloca; 3003 if (Dynamic) { 3004 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3005 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3006 "MyAlloca"); 3007 } else { 3008 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3009 nullptr, "MyAlloca"); 3010 assert(Alloca->isStaticAlloca()); 3011 } 3012 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3013 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 3014 Alloca->setAlignment(Align(FrameAlignment)); 3015 return IRB.CreatePointerCast(Alloca, IntptrTy); 3016 } 3017 3018 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3019 BasicBlock &FirstBB = *F.begin(); 3020 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3021 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3022 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3023 DynamicAllocaLayout->setAlignment(Align(32)); 3024 } 3025 3026 void FunctionStackPoisoner::processDynamicAllocas() { 3027 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3028 assert(DynamicAllocaPoisonCallVec.empty()); 3029 return; 3030 } 3031 3032 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3033 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3034 assert(APC.InsBefore); 3035 assert(APC.AI); 3036 assert(ASan.isInterestingAlloca(*APC.AI)); 3037 assert(!APC.AI->isStaticAlloca()); 3038 3039 IRBuilder<> IRB(APC.InsBefore); 3040 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3041 // Dynamic allocas will be unpoisoned unconditionally below in 3042 // unpoisonDynamicAllocas. 3043 // Flag that we need unpoison static allocas. 3044 } 3045 3046 // Handle dynamic allocas. 3047 createDynamicAllocasInitStorage(); 3048 for (auto &AI : DynamicAllocaVec) 3049 handleDynamicAllocaCall(AI); 3050 unpoisonDynamicAllocas(); 3051 } 3052 3053 /// Collect instructions in the entry block after \p InsBefore which initialize 3054 /// permanent storage for a function argument. These instructions must remain in 3055 /// the entry block so that uninitialized values do not appear in backtraces. An 3056 /// added benefit is that this conserves spill slots. This does not move stores 3057 /// before instrumented / "interesting" allocas. 3058 static void findStoresToUninstrumentedArgAllocas( 3059 AddressSanitizer &ASan, Instruction &InsBefore, 3060 SmallVectorImpl<Instruction *> &InitInsts) { 3061 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3062 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3063 // Argument initialization looks like: 3064 // 1) store <Argument>, <Alloca> OR 3065 // 2) <CastArgument> = cast <Argument> to ... 3066 // store <CastArgument> to <Alloca> 3067 // Do not consider any other kind of instruction. 3068 // 3069 // Note: This covers all known cases, but may not be exhaustive. An 3070 // alternative to pattern-matching stores is to DFS over all Argument uses: 3071 // this might be more general, but is probably much more complicated. 3072 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3073 continue; 3074 if (auto *Store = dyn_cast<StoreInst>(It)) { 3075 // The store destination must be an alloca that isn't interesting for 3076 // ASan to instrument. These are moved up before InsBefore, and they're 3077 // not interesting because allocas for arguments can be mem2reg'd. 3078 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3079 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3080 continue; 3081 3082 Value *Val = Store->getValueOperand(); 3083 bool IsDirectArgInit = isa<Argument>(Val); 3084 bool IsArgInitViaCast = 3085 isa<CastInst>(Val) && 3086 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3087 // Check that the cast appears directly before the store. Otherwise 3088 // moving the cast before InsBefore may break the IR. 3089 Val == It->getPrevNonDebugInstruction(); 3090 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3091 if (!IsArgInit) 3092 continue; 3093 3094 if (IsArgInitViaCast) 3095 InitInsts.push_back(cast<Instruction>(Val)); 3096 InitInsts.push_back(Store); 3097 continue; 3098 } 3099 3100 // Do not reorder past unknown instructions: argument initialization should 3101 // only involve casts and stores. 3102 return; 3103 } 3104 } 3105 3106 void FunctionStackPoisoner::processStaticAllocas() { 3107 if (AllocaVec.empty()) { 3108 assert(StaticAllocaPoisonCallVec.empty()); 3109 return; 3110 } 3111 3112 int StackMallocIdx = -1; 3113 DebugLoc EntryDebugLocation; 3114 if (auto SP = F.getSubprogram()) 3115 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 3116 3117 Instruction *InsBefore = AllocaVec[0]; 3118 IRBuilder<> IRB(InsBefore); 3119 3120 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3121 // debug info is broken, because only entry-block allocas are treated as 3122 // regular stack slots. 3123 auto InsBeforeB = InsBefore->getParent(); 3124 assert(InsBeforeB == &F.getEntryBlock()); 3125 for (auto *AI : StaticAllocasToMoveUp) 3126 if (AI->getParent() == InsBeforeB) 3127 AI->moveBefore(InsBefore); 3128 3129 // Move stores of arguments into entry-block allocas as well. This prevents 3130 // extra stack slots from being generated (to house the argument values until 3131 // they can be stored into the allocas). This also prevents uninitialized 3132 // values from being shown in backtraces. 3133 SmallVector<Instruction *, 8> ArgInitInsts; 3134 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3135 for (Instruction *ArgInitInst : ArgInitInsts) 3136 ArgInitInst->moveBefore(InsBefore); 3137 3138 // If we have a call to llvm.localescape, keep it in the entry block. 3139 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3140 3141 SmallVector<ASanStackVariableDescription, 16> SVD; 3142 SVD.reserve(AllocaVec.size()); 3143 for (AllocaInst *AI : AllocaVec) { 3144 ASanStackVariableDescription D = {AI->getName().data(), 3145 ASan.getAllocaSizeInBytes(*AI), 3146 0, 3147 AI->getAlignment(), 3148 AI, 3149 0, 3150 0}; 3151 SVD.push_back(D); 3152 } 3153 3154 // Minimal header size (left redzone) is 4 pointers, 3155 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3156 size_t Granularity = 1ULL << Mapping.Scale; 3157 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3158 const ASanStackFrameLayout &L = 3159 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3160 3161 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3162 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3163 for (auto &Desc : SVD) 3164 AllocaToSVDMap[Desc.AI] = &Desc; 3165 3166 // Update SVD with information from lifetime intrinsics. 3167 for (const auto &APC : StaticAllocaPoisonCallVec) { 3168 assert(APC.InsBefore); 3169 assert(APC.AI); 3170 assert(ASan.isInterestingAlloca(*APC.AI)); 3171 assert(APC.AI->isStaticAlloca()); 3172 3173 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3174 Desc.LifetimeSize = Desc.Size; 3175 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3176 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3177 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3178 if (unsigned Line = LifetimeLoc->getLine()) 3179 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3180 } 3181 } 3182 } 3183 3184 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3185 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3186 uint64_t LocalStackSize = L.FrameSize; 3187 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3188 LocalStackSize <= kMaxStackMallocSize; 3189 bool DoDynamicAlloca = ClDynamicAllocaStack; 3190 // Don't do dynamic alloca or stack malloc if: 3191 // 1) There is inline asm: too often it makes assumptions on which registers 3192 // are available. 3193 // 2) There is a returns_twice call (typically setjmp), which is 3194 // optimization-hostile, and doesn't play well with introduced indirect 3195 // register-relative calculation of local variable addresses. 3196 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3197 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3198 3199 Value *StaticAlloca = 3200 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3201 3202 Value *FakeStack; 3203 Value *LocalStackBase; 3204 Value *LocalStackBaseAlloca; 3205 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3206 3207 if (DoStackMalloc) { 3208 LocalStackBaseAlloca = 3209 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3210 // void *FakeStack = __asan_option_detect_stack_use_after_return 3211 // ? __asan_stack_malloc_N(LocalStackSize) 3212 // : nullptr; 3213 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3214 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3215 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3216 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3217 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3218 Constant::getNullValue(IRB.getInt32Ty())); 3219 Instruction *Term = 3220 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3221 IRBuilder<> IRBIf(Term); 3222 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3223 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3224 Value *FakeStackValue = 3225 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3226 ConstantInt::get(IntptrTy, LocalStackSize)); 3227 IRB.SetInsertPoint(InsBefore); 3228 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3229 ConstantInt::get(IntptrTy, 0)); 3230 3231 Value *NoFakeStack = 3232 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3233 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3234 IRBIf.SetInsertPoint(Term); 3235 Value *AllocaValue = 3236 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3237 3238 IRB.SetInsertPoint(InsBefore); 3239 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3240 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3241 DIExprFlags |= DIExpression::DerefBefore; 3242 } else { 3243 // void *FakeStack = nullptr; 3244 // void *LocalStackBase = alloca(LocalStackSize); 3245 FakeStack = ConstantInt::get(IntptrTy, 0); 3246 LocalStackBase = 3247 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3248 LocalStackBaseAlloca = LocalStackBase; 3249 } 3250 3251 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3252 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3253 // later passes and can result in dropped variable coverage in debug info. 3254 Value *LocalStackBaseAllocaPtr = 3255 isa<PtrToIntInst>(LocalStackBaseAlloca) 3256 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3257 : LocalStackBaseAlloca; 3258 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3259 "Variable descriptions relative to ASan stack base will be dropped"); 3260 3261 // Replace Alloca instructions with base+offset. 3262 for (const auto &Desc : SVD) { 3263 AllocaInst *AI = Desc.AI; 3264 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3265 Desc.Offset); 3266 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3267 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3268 AI->getType()); 3269 AI->replaceAllUsesWith(NewAllocaPtr); 3270 } 3271 3272 // The left-most redzone has enough space for at least 4 pointers. 3273 // Write the Magic value to redzone[0]. 3274 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3275 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3276 BasePlus0); 3277 // Write the frame description constant to redzone[1]. 3278 Value *BasePlus1 = IRB.CreateIntToPtr( 3279 IRB.CreateAdd(LocalStackBase, 3280 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3281 IntptrPtrTy); 3282 GlobalVariable *StackDescriptionGlobal = 3283 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3284 /*AllowMerging*/ true, kAsanGenPrefix); 3285 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3286 IRB.CreateStore(Description, BasePlus1); 3287 // Write the PC to redzone[2]. 3288 Value *BasePlus2 = IRB.CreateIntToPtr( 3289 IRB.CreateAdd(LocalStackBase, 3290 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3291 IntptrPtrTy); 3292 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3293 3294 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3295 3296 // Poison the stack red zones at the entry. 3297 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3298 // As mask we must use most poisoned case: red zones and after scope. 3299 // As bytes we can use either the same or just red zones only. 3300 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3301 3302 if (!StaticAllocaPoisonCallVec.empty()) { 3303 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3304 3305 // Poison static allocas near lifetime intrinsics. 3306 for (const auto &APC : StaticAllocaPoisonCallVec) { 3307 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3308 assert(Desc.Offset % L.Granularity == 0); 3309 size_t Begin = Desc.Offset / L.Granularity; 3310 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3311 3312 IRBuilder<> IRB(APC.InsBefore); 3313 copyToShadow(ShadowAfterScope, 3314 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3315 IRB, ShadowBase); 3316 } 3317 } 3318 3319 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3320 SmallVector<uint8_t, 64> ShadowAfterReturn; 3321 3322 // (Un)poison the stack before all ret instructions. 3323 for (auto Ret : RetVec) { 3324 IRBuilder<> IRBRet(Ret); 3325 // Mark the current frame as retired. 3326 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3327 BasePlus0); 3328 if (DoStackMalloc) { 3329 assert(StackMallocIdx >= 0); 3330 // if FakeStack != 0 // LocalStackBase == FakeStack 3331 // // In use-after-return mode, poison the whole stack frame. 3332 // if StackMallocIdx <= 4 3333 // // For small sizes inline the whole thing: 3334 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3335 // **SavedFlagPtr(FakeStack) = 0 3336 // else 3337 // __asan_stack_free_N(FakeStack, LocalStackSize) 3338 // else 3339 // <This is not a fake stack; unpoison the redzones> 3340 Value *Cmp = 3341 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3342 Instruction *ThenTerm, *ElseTerm; 3343 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3344 3345 IRBuilder<> IRBPoison(ThenTerm); 3346 if (StackMallocIdx <= 4) { 3347 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3348 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3349 kAsanStackUseAfterReturnMagic); 3350 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3351 ShadowBase); 3352 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3353 FakeStack, 3354 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3355 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3356 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3357 IRBPoison.CreateStore( 3358 Constant::getNullValue(IRBPoison.getInt8Ty()), 3359 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3360 } else { 3361 // For larger frames call __asan_stack_free_*. 3362 IRBPoison.CreateCall( 3363 AsanStackFreeFunc[StackMallocIdx], 3364 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3365 } 3366 3367 IRBuilder<> IRBElse(ElseTerm); 3368 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3369 } else { 3370 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3371 } 3372 } 3373 3374 // We are done. Remove the old unused alloca instructions. 3375 for (auto AI : AllocaVec) AI->eraseFromParent(); 3376 } 3377 3378 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3379 IRBuilder<> &IRB, bool DoPoison) { 3380 // For now just insert the call to ASan runtime. 3381 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3382 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3383 IRB.CreateCall( 3384 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3385 {AddrArg, SizeArg}); 3386 } 3387 3388 // Handling llvm.lifetime intrinsics for a given %alloca: 3389 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3390 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3391 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3392 // could be poisoned by previous llvm.lifetime.end instruction, as the 3393 // variable may go in and out of scope several times, e.g. in loops). 3394 // (3) if we poisoned at least one %alloca in a function, 3395 // unpoison the whole stack frame at function exit. 3396 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3397 IRBuilder<> IRB(AI); 3398 3399 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3400 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3401 3402 Value *Zero = Constant::getNullValue(IntptrTy); 3403 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3404 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3405 3406 // Since we need to extend alloca with additional memory to locate 3407 // redzones, and OldSize is number of allocated blocks with 3408 // ElementSize size, get allocated memory size in bytes by 3409 // OldSize * ElementSize. 3410 const unsigned ElementSize = 3411 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3412 Value *OldSize = 3413 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3414 ConstantInt::get(IntptrTy, ElementSize)); 3415 3416 // PartialSize = OldSize % 32 3417 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3418 3419 // Misalign = kAllocaRzSize - PartialSize; 3420 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3421 3422 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3423 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3424 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3425 3426 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3427 // Alignment is added to locate left redzone, PartialPadding for possible 3428 // partial redzone and kAllocaRzSize for right redzone respectively. 3429 Value *AdditionalChunkSize = IRB.CreateAdd( 3430 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3431 3432 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3433 3434 // Insert new alloca with new NewSize and Alignment params. 3435 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3436 NewAlloca->setAlignment(Align(Alignment)); 3437 3438 // NewAddress = Address + Alignment 3439 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3440 ConstantInt::get(IntptrTy, Alignment)); 3441 3442 // Insert __asan_alloca_poison call for new created alloca. 3443 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3444 3445 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3446 // for unpoisoning stuff. 3447 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3448 3449 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3450 3451 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3452 AI->replaceAllUsesWith(NewAddressPtr); 3453 3454 // We are done. Erase old alloca from parent. 3455 AI->eraseFromParent(); 3456 } 3457 3458 // isSafeAccess returns true if Addr is always inbounds with respect to its 3459 // base object. For example, it is a field access or an array access with 3460 // constant inbounds index. 3461 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3462 Value *Addr, uint64_t TypeSize) const { 3463 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3464 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3465 uint64_t Size = SizeOffset.first.getZExtValue(); 3466 int64_t Offset = SizeOffset.second.getSExtValue(); 3467 // Three checks are required to ensure safety: 3468 // . Offset >= 0 (since the offset is given from the base ptr) 3469 // . Size >= Offset (unsigned) 3470 // . Size - Offset >= NeededSize (unsigned) 3471 return Offset >= 0 && Size >= uint64_t(Offset) && 3472 Size - uint64_t(Offset) >= TypeSize / 8; 3473 } 3474