1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 // FIXME: This sanitizer does not yet handle scalable vectors 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/BinaryFormat/MachO.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DIBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstVisitor.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCSectionMachO.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/ScopedPrinter.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/ModuleUtils.h" 80 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstddef> 84 #include <cstdint> 85 #include <iomanip> 86 #include <limits> 87 #include <memory> 88 #include <sstream> 89 #include <string> 90 #include <tuple> 91 92 using namespace llvm; 93 94 #define DEBUG_TYPE "asan" 95 96 static const uint64_t kDefaultShadowScale = 3; 97 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 98 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 99 static const uint64_t kDynamicShadowSentinel = 100 std::numeric_limits<uint64_t>::max(); 101 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 102 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 103 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 104 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 105 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 106 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 107 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 108 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 109 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 110 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 111 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 112 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 113 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 114 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 115 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 116 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 117 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 118 static const uint64_t kEmscriptenShadowOffset = 0; 119 120 static const uint64_t kMyriadShadowScale = 5; 121 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 122 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 123 static const uint64_t kMyriadTagShift = 29; 124 static const uint64_t kMyriadDDRTag = 4; 125 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 126 127 // The shadow memory space is dynamically allocated. 128 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 129 130 static const size_t kMinStackMallocSize = 1 << 6; // 64B 131 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 132 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 133 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 134 135 const char kAsanModuleCtorName[] = "asan.module_ctor"; 136 const char kAsanModuleDtorName[] = "asan.module_dtor"; 137 static const uint64_t kAsanCtorAndDtorPriority = 1; 138 // On Emscripten, the system needs more than one priorities for constructors. 139 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 140 const char kAsanReportErrorTemplate[] = "__asan_report_"; 141 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 142 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 143 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 144 const char kAsanUnregisterImageGlobalsName[] = 145 "__asan_unregister_image_globals"; 146 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 147 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 148 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 149 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 150 const char kAsanInitName[] = "__asan_init"; 151 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 152 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 153 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 154 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 155 static const int kMaxAsanStackMallocSizeClass = 10; 156 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 157 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 158 const char kAsanGenPrefix[] = "___asan_gen_"; 159 const char kODRGenPrefix[] = "__odr_asan_gen_"; 160 const char kSanCovGenPrefix[] = "__sancov_gen_"; 161 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 162 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 163 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 164 165 // ASan version script has __asan_* wildcard. Triple underscore prevents a 166 // linker (gold) warning about attempting to export a local symbol. 167 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 168 169 const char kAsanOptionDetectUseAfterReturn[] = 170 "__asan_option_detect_stack_use_after_return"; 171 172 const char kAsanShadowMemoryDynamicAddress[] = 173 "__asan_shadow_memory_dynamic_address"; 174 175 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 176 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 177 178 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 179 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 180 181 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 182 static const size_t kNumberOfAccessSizes = 5; 183 184 static const unsigned kAllocaRzSize = 32; 185 186 // Command-line flags. 187 188 static cl::opt<bool> ClEnableKasan( 189 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 190 cl::Hidden, cl::init(false)); 191 192 static cl::opt<bool> ClRecover( 193 "asan-recover", 194 cl::desc("Enable recovery mode (continue-after-error)."), 195 cl::Hidden, cl::init(false)); 196 197 static cl::opt<bool> ClInsertVersionCheck( 198 "asan-guard-against-version-mismatch", 199 cl::desc("Guard against compiler/runtime version mismatch."), 200 cl::Hidden, cl::init(true)); 201 202 // This flag may need to be replaced with -f[no-]asan-reads. 203 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 204 cl::desc("instrument read instructions"), 205 cl::Hidden, cl::init(true)); 206 207 static cl::opt<bool> ClInstrumentWrites( 208 "asan-instrument-writes", cl::desc("instrument write instructions"), 209 cl::Hidden, cl::init(true)); 210 211 static cl::opt<bool> ClInstrumentAtomics( 212 "asan-instrument-atomics", 213 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 214 cl::init(true)); 215 216 static cl::opt<bool> 217 ClInstrumentByval("asan-instrument-byval", 218 cl::desc("instrument byval call arguments"), cl::Hidden, 219 cl::init(true)); 220 221 static cl::opt<bool> ClAlwaysSlowPath( 222 "asan-always-slow-path", 223 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 224 cl::init(false)); 225 226 static cl::opt<bool> ClForceDynamicShadow( 227 "asan-force-dynamic-shadow", 228 cl::desc("Load shadow address into a local variable for each function"), 229 cl::Hidden, cl::init(false)); 230 231 static cl::opt<bool> 232 ClWithIfunc("asan-with-ifunc", 233 cl::desc("Access dynamic shadow through an ifunc global on " 234 "platforms that support this"), 235 cl::Hidden, cl::init(true)); 236 237 static cl::opt<bool> ClWithIfuncSuppressRemat( 238 "asan-with-ifunc-suppress-remat", 239 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 240 "it through inline asm in prologue."), 241 cl::Hidden, cl::init(true)); 242 243 // This flag limits the number of instructions to be instrumented 244 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 245 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 246 // set it to 10000. 247 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 248 "asan-max-ins-per-bb", cl::init(10000), 249 cl::desc("maximal number of instructions to instrument in any given BB"), 250 cl::Hidden); 251 252 // This flag may need to be replaced with -f[no]asan-stack. 253 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 254 cl::Hidden, cl::init(true)); 255 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 256 "asan-max-inline-poisoning-size", 257 cl::desc( 258 "Inline shadow poisoning for blocks up to the given size in bytes."), 259 cl::Hidden, cl::init(64)); 260 261 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 262 "asan-use-after-return", 263 cl::desc("Sets the mode of detection for stack-use-after-return."), 264 cl::values( 265 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 266 "Never detect stack use after return."), 267 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, 268 "0", // only needed to keep unit tests passing 269 "Redundant with 'never'."), 270 clEnumValN( 271 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 272 "Detect stack use after return if " 273 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 274 clEnumValN(AsanDetectStackUseAfterReturnMode::Runtime, 275 "1", // only needed to keep unit tests passing 276 "redundant with 'runtime'."), 277 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 278 "Always detect stack use after return."), 279 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, 280 "2", // only needed to keep unit tests passing 281 "Always detect stack use after return.")), 282 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 283 284 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 285 cl::desc("Create redzones for byval " 286 "arguments (extra copy " 287 "required)"), cl::Hidden, 288 cl::init(true)); 289 290 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 291 cl::desc("Check stack-use-after-scope"), 292 cl::Hidden, cl::init(false)); 293 294 // This flag may need to be replaced with -f[no]asan-globals. 295 static cl::opt<bool> ClGlobals("asan-globals", 296 cl::desc("Handle global objects"), cl::Hidden, 297 cl::init(true)); 298 299 static cl::opt<bool> ClInitializers("asan-initialization-order", 300 cl::desc("Handle C++ initializer order"), 301 cl::Hidden, cl::init(true)); 302 303 static cl::opt<bool> ClInvalidPointerPairs( 304 "asan-detect-invalid-pointer-pair", 305 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 306 cl::init(false)); 307 308 static cl::opt<bool> ClInvalidPointerCmp( 309 "asan-detect-invalid-pointer-cmp", 310 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 311 cl::init(false)); 312 313 static cl::opt<bool> ClInvalidPointerSub( 314 "asan-detect-invalid-pointer-sub", 315 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 316 cl::init(false)); 317 318 static cl::opt<unsigned> ClRealignStack( 319 "asan-realign-stack", 320 cl::desc("Realign stack to the value of this flag (power of two)"), 321 cl::Hidden, cl::init(32)); 322 323 static cl::opt<int> ClInstrumentationWithCallsThreshold( 324 "asan-instrumentation-with-call-threshold", 325 cl::desc( 326 "If the function being instrumented contains more than " 327 "this number of memory accesses, use callbacks instead of " 328 "inline checks (-1 means never use callbacks)."), 329 cl::Hidden, cl::init(7000)); 330 331 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 332 "asan-memory-access-callback-prefix", 333 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 334 cl::init("__asan_")); 335 336 static cl::opt<bool> 337 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 338 cl::desc("instrument dynamic allocas"), 339 cl::Hidden, cl::init(true)); 340 341 static cl::opt<bool> ClSkipPromotableAllocas( 342 "asan-skip-promotable-allocas", 343 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 344 cl::init(true)); 345 346 // These flags allow to change the shadow mapping. 347 // The shadow mapping looks like 348 // Shadow = (Mem >> scale) + offset 349 350 static cl::opt<int> ClMappingScale("asan-mapping-scale", 351 cl::desc("scale of asan shadow mapping"), 352 cl::Hidden, cl::init(0)); 353 354 static cl::opt<uint64_t> 355 ClMappingOffset("asan-mapping-offset", 356 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 357 cl::Hidden, cl::init(0)); 358 359 // Optimization flags. Not user visible, used mostly for testing 360 // and benchmarking the tool. 361 362 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 363 cl::Hidden, cl::init(true)); 364 365 static cl::opt<bool> ClOptSameTemp( 366 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 367 cl::Hidden, cl::init(true)); 368 369 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 370 cl::desc("Don't instrument scalar globals"), 371 cl::Hidden, cl::init(true)); 372 373 static cl::opt<bool> ClOptStack( 374 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 375 cl::Hidden, cl::init(false)); 376 377 static cl::opt<bool> ClDynamicAllocaStack( 378 "asan-stack-dynamic-alloca", 379 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 380 cl::init(true)); 381 382 static cl::opt<uint32_t> ClForceExperiment( 383 "asan-force-experiment", 384 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 385 cl::init(0)); 386 387 static cl::opt<bool> 388 ClUsePrivateAlias("asan-use-private-alias", 389 cl::desc("Use private aliases for global variables"), 390 cl::Hidden, cl::init(false)); 391 392 static cl::opt<bool> 393 ClUseOdrIndicator("asan-use-odr-indicator", 394 cl::desc("Use odr indicators to improve ODR reporting"), 395 cl::Hidden, cl::init(false)); 396 397 static cl::opt<bool> 398 ClUseGlobalsGC("asan-globals-live-support", 399 cl::desc("Use linker features to support dead " 400 "code stripping of globals"), 401 cl::Hidden, cl::init(true)); 402 403 // This is on by default even though there is a bug in gold: 404 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 405 static cl::opt<bool> 406 ClWithComdat("asan-with-comdat", 407 cl::desc("Place ASan constructors in comdat sections"), 408 cl::Hidden, cl::init(true)); 409 410 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 411 "asan-destructor-kind", 412 cl::desc("Sets the ASan destructor kind. The default is to use the value " 413 "provided to the pass constructor"), 414 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 415 clEnumValN(AsanDtorKind::Global, "global", 416 "Use global destructors")), 417 cl::init(AsanDtorKind::Invalid), cl::Hidden); 418 419 // Debug flags. 420 421 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 422 cl::init(0)); 423 424 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 425 cl::Hidden, cl::init(0)); 426 427 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 428 cl::desc("Debug func")); 429 430 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 431 cl::Hidden, cl::init(-1)); 432 433 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 434 cl::Hidden, cl::init(-1)); 435 436 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 437 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 438 STATISTIC(NumOptimizedAccessesToGlobalVar, 439 "Number of optimized accesses to global vars"); 440 STATISTIC(NumOptimizedAccessesToStackVar, 441 "Number of optimized accesses to stack vars"); 442 443 namespace { 444 445 /// This struct defines the shadow mapping using the rule: 446 /// shadow = (mem >> Scale) ADD-or-OR Offset. 447 /// If InGlobal is true, then 448 /// extern char __asan_shadow[]; 449 /// shadow = (mem >> Scale) + &__asan_shadow 450 struct ShadowMapping { 451 int Scale; 452 uint64_t Offset; 453 bool OrShadowOffset; 454 bool InGlobal; 455 }; 456 457 } // end anonymous namespace 458 459 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 460 bool IsKasan) { 461 bool IsAndroid = TargetTriple.isAndroid(); 462 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 463 bool IsMacOS = TargetTriple.isMacOSX(); 464 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 465 bool IsNetBSD = TargetTriple.isOSNetBSD(); 466 bool IsPS4CPU = TargetTriple.isPS4CPU(); 467 bool IsLinux = TargetTriple.isOSLinux(); 468 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 469 TargetTriple.getArch() == Triple::ppc64le; 470 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 471 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 472 bool IsMIPS32 = TargetTriple.isMIPS32(); 473 bool IsMIPS64 = TargetTriple.isMIPS64(); 474 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 475 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 476 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 477 bool IsWindows = TargetTriple.isOSWindows(); 478 bool IsFuchsia = TargetTriple.isOSFuchsia(); 479 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 480 bool IsEmscripten = TargetTriple.isOSEmscripten(); 481 bool IsAMDGPU = TargetTriple.isAMDGPU(); 482 483 // Asan support for AMDGPU assumes X86 as the host right now. 484 if (IsAMDGPU) 485 IsX86_64 = true; 486 487 ShadowMapping Mapping; 488 489 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 490 if (ClMappingScale.getNumOccurrences() > 0) { 491 Mapping.Scale = ClMappingScale; 492 } 493 494 if (LongSize == 32) { 495 if (IsAndroid) 496 Mapping.Offset = kDynamicShadowSentinel; 497 else if (IsMIPS32) 498 Mapping.Offset = kMIPS32_ShadowOffset32; 499 else if (IsFreeBSD) 500 Mapping.Offset = kFreeBSD_ShadowOffset32; 501 else if (IsNetBSD) 502 Mapping.Offset = kNetBSD_ShadowOffset32; 503 else if (IsIOS) 504 Mapping.Offset = kDynamicShadowSentinel; 505 else if (IsWindows) 506 Mapping.Offset = kWindowsShadowOffset32; 507 else if (IsEmscripten) 508 Mapping.Offset = kEmscriptenShadowOffset; 509 else if (IsMyriad) { 510 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 511 (kMyriadMemorySize32 >> Mapping.Scale)); 512 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 513 } 514 else 515 Mapping.Offset = kDefaultShadowOffset32; 516 } else { // LongSize == 64 517 // Fuchsia is always PIE, which means that the beginning of the address 518 // space is always available. 519 if (IsFuchsia) 520 Mapping.Offset = 0; 521 else if (IsPPC64) 522 Mapping.Offset = kPPC64_ShadowOffset64; 523 else if (IsSystemZ) 524 Mapping.Offset = kSystemZ_ShadowOffset64; 525 else if (IsFreeBSD && !IsMIPS64) { 526 if (IsKasan) 527 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 528 else 529 Mapping.Offset = kFreeBSD_ShadowOffset64; 530 } else if (IsNetBSD) { 531 if (IsKasan) 532 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 533 else 534 Mapping.Offset = kNetBSD_ShadowOffset64; 535 } else if (IsPS4CPU) 536 Mapping.Offset = kPS4CPU_ShadowOffset64; 537 else if (IsLinux && IsX86_64) { 538 if (IsKasan) 539 Mapping.Offset = kLinuxKasan_ShadowOffset64; 540 else 541 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 542 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 543 } else if (IsWindows && IsX86_64) { 544 Mapping.Offset = kWindowsShadowOffset64; 545 } else if (IsMIPS64) 546 Mapping.Offset = kMIPS64_ShadowOffset64; 547 else if (IsIOS) 548 Mapping.Offset = kDynamicShadowSentinel; 549 else if (IsMacOS && IsAArch64) 550 Mapping.Offset = kDynamicShadowSentinel; 551 else if (IsAArch64) 552 Mapping.Offset = kAArch64_ShadowOffset64; 553 else if (IsRISCV64) 554 Mapping.Offset = kRISCV64_ShadowOffset64; 555 else 556 Mapping.Offset = kDefaultShadowOffset64; 557 } 558 559 if (ClForceDynamicShadow) { 560 Mapping.Offset = kDynamicShadowSentinel; 561 } 562 563 if (ClMappingOffset.getNumOccurrences() > 0) { 564 Mapping.Offset = ClMappingOffset; 565 } 566 567 // OR-ing shadow offset if more efficient (at least on x86) if the offset 568 // is a power of two, but on ppc64 we have to use add since the shadow 569 // offset is not necessary 1/8-th of the address space. On SystemZ, 570 // we could OR the constant in a single instruction, but it's more 571 // efficient to load it once and use indexed addressing. 572 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 573 !IsRISCV64 && 574 !(Mapping.Offset & (Mapping.Offset - 1)) && 575 Mapping.Offset != kDynamicShadowSentinel; 576 bool IsAndroidWithIfuncSupport = 577 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 578 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 579 580 return Mapping; 581 } 582 583 static uint64_t getRedzoneSizeForScale(int MappingScale) { 584 // Redzone used for stack and globals is at least 32 bytes. 585 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 586 return std::max(32U, 1U << MappingScale); 587 } 588 589 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 590 if (TargetTriple.isOSEmscripten()) { 591 return kAsanEmscriptenCtorAndDtorPriority; 592 } else { 593 return kAsanCtorAndDtorPriority; 594 } 595 } 596 597 namespace { 598 599 /// Module analysis for getting various metadata about the module. 600 class ASanGlobalsMetadataWrapperPass : public ModulePass { 601 public: 602 static char ID; 603 604 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 605 initializeASanGlobalsMetadataWrapperPassPass( 606 *PassRegistry::getPassRegistry()); 607 } 608 609 bool runOnModule(Module &M) override { 610 GlobalsMD = GlobalsMetadata(M); 611 return false; 612 } 613 614 StringRef getPassName() const override { 615 return "ASanGlobalsMetadataWrapperPass"; 616 } 617 618 void getAnalysisUsage(AnalysisUsage &AU) const override { 619 AU.setPreservesAll(); 620 } 621 622 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 623 624 private: 625 GlobalsMetadata GlobalsMD; 626 }; 627 628 char ASanGlobalsMetadataWrapperPass::ID = 0; 629 630 /// AddressSanitizer: instrument the code in module to find memory bugs. 631 struct AddressSanitizer { 632 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 633 bool CompileKernel = false, bool Recover = false, 634 bool UseAfterScope = false) 635 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 636 : CompileKernel), 637 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 638 UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 639 C = &(M.getContext()); 640 LongSize = M.getDataLayout().getPointerSizeInBits(); 641 IntptrTy = Type::getIntNTy(*C, LongSize); 642 TargetTriple = Triple(M.getTargetTriple()); 643 644 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 645 } 646 647 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 648 uint64_t ArraySize = 1; 649 if (AI.isArrayAllocation()) { 650 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 651 assert(CI && "non-constant array size"); 652 ArraySize = CI->getZExtValue(); 653 } 654 Type *Ty = AI.getAllocatedType(); 655 uint64_t SizeInBytes = 656 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 657 return SizeInBytes * ArraySize; 658 } 659 660 /// Check if we want (and can) handle this alloca. 661 bool isInterestingAlloca(const AllocaInst &AI); 662 663 bool ignoreAccess(Value *Ptr); 664 void getInterestingMemoryOperands( 665 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 666 667 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 668 InterestingMemoryOperand &O, bool UseCalls, 669 const DataLayout &DL); 670 void instrumentPointerComparisonOrSubtraction(Instruction *I); 671 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 672 Value *Addr, uint32_t TypeSize, bool IsWrite, 673 Value *SizeArgument, bool UseCalls, uint32_t Exp); 674 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 675 Instruction *InsertBefore, Value *Addr, 676 uint32_t TypeSize, bool IsWrite, 677 Value *SizeArgument); 678 void instrumentUnusualSizeOrAlignment(Instruction *I, 679 Instruction *InsertBefore, Value *Addr, 680 uint32_t TypeSize, bool IsWrite, 681 Value *SizeArgument, bool UseCalls, 682 uint32_t Exp); 683 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 684 Value *ShadowValue, uint32_t TypeSize); 685 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 686 bool IsWrite, size_t AccessSizeIndex, 687 Value *SizeArgument, uint32_t Exp); 688 void instrumentMemIntrinsic(MemIntrinsic *MI); 689 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 690 bool suppressInstrumentationSiteForDebug(int &Instrumented); 691 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 692 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 693 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 694 void markEscapedLocalAllocas(Function &F); 695 696 private: 697 friend struct FunctionStackPoisoner; 698 699 void initializeCallbacks(Module &M); 700 701 bool LooksLikeCodeInBug11395(Instruction *I); 702 bool GlobalIsLinkerInitialized(GlobalVariable *G); 703 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 704 uint64_t TypeSize) const; 705 706 /// Helper to cleanup per-function state. 707 struct FunctionStateRAII { 708 AddressSanitizer *Pass; 709 710 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 711 assert(Pass->ProcessedAllocas.empty() && 712 "last pass forgot to clear cache"); 713 assert(!Pass->LocalDynamicShadow); 714 } 715 716 ~FunctionStateRAII() { 717 Pass->LocalDynamicShadow = nullptr; 718 Pass->ProcessedAllocas.clear(); 719 } 720 }; 721 722 LLVMContext *C; 723 Triple TargetTriple; 724 int LongSize; 725 bool CompileKernel; 726 bool Recover; 727 bool UseAfterScope; 728 Type *IntptrTy; 729 ShadowMapping Mapping; 730 FunctionCallee AsanHandleNoReturnFunc; 731 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 732 Constant *AsanShadowGlobal; 733 734 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 735 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 736 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 737 738 // These arrays is indexed by AccessIsWrite and Experiment. 739 FunctionCallee AsanErrorCallbackSized[2][2]; 740 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 741 742 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 743 Value *LocalDynamicShadow = nullptr; 744 const GlobalsMetadata &GlobalsMD; 745 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 746 747 FunctionCallee AMDGPUAddressShared; 748 FunctionCallee AMDGPUAddressPrivate; 749 }; 750 751 class AddressSanitizerLegacyPass : public FunctionPass { 752 public: 753 static char ID; 754 755 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 756 bool Recover = false, 757 bool UseAfterScope = false) 758 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 759 UseAfterScope(UseAfterScope) { 760 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 761 } 762 763 StringRef getPassName() const override { 764 return "AddressSanitizerFunctionPass"; 765 } 766 767 void getAnalysisUsage(AnalysisUsage &AU) const override { 768 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 769 AU.addRequired<TargetLibraryInfoWrapperPass>(); 770 } 771 772 bool runOnFunction(Function &F) override { 773 GlobalsMetadata &GlobalsMD = 774 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 775 const TargetLibraryInfo *TLI = 776 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 777 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 778 UseAfterScope); 779 return ASan.instrumentFunction(F, TLI); 780 } 781 782 private: 783 bool CompileKernel; 784 bool Recover; 785 bool UseAfterScope; 786 }; 787 788 class ModuleAddressSanitizer { 789 public: 790 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 791 bool CompileKernel = false, bool Recover = false, 792 bool UseGlobalsGC = true, bool UseOdrIndicator = false, 793 AsanDtorKind DestructorKind = AsanDtorKind::Global) 794 : GlobalsMD(*GlobalsMD), 795 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 796 : CompileKernel), 797 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 798 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 799 // Enable aliases as they should have no downside with ODR indicators. 800 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 801 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 802 // Not a typo: ClWithComdat is almost completely pointless without 803 // ClUseGlobalsGC (because then it only works on modules without 804 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 805 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 806 // argument is designed as workaround. Therefore, disable both 807 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 808 // do globals-gc. 809 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 810 DestructorKind(DestructorKind) { 811 C = &(M.getContext()); 812 int LongSize = M.getDataLayout().getPointerSizeInBits(); 813 IntptrTy = Type::getIntNTy(*C, LongSize); 814 TargetTriple = Triple(M.getTargetTriple()); 815 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 816 817 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 818 this->DestructorKind = ClOverrideDestructorKind; 819 assert(this->DestructorKind != AsanDtorKind::Invalid); 820 } 821 822 bool instrumentModule(Module &); 823 824 private: 825 void initializeCallbacks(Module &M); 826 827 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 828 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 829 ArrayRef<GlobalVariable *> ExtendedGlobals, 830 ArrayRef<Constant *> MetadataInitializers); 831 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 832 ArrayRef<GlobalVariable *> ExtendedGlobals, 833 ArrayRef<Constant *> MetadataInitializers, 834 const std::string &UniqueModuleId); 835 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 836 ArrayRef<GlobalVariable *> ExtendedGlobals, 837 ArrayRef<Constant *> MetadataInitializers); 838 void 839 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 840 ArrayRef<GlobalVariable *> ExtendedGlobals, 841 ArrayRef<Constant *> MetadataInitializers); 842 843 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 844 StringRef OriginalName); 845 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 846 StringRef InternalSuffix); 847 Instruction *CreateAsanModuleDtor(Module &M); 848 849 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 850 bool shouldInstrumentGlobal(GlobalVariable *G) const; 851 bool ShouldUseMachOGlobalsSection() const; 852 StringRef getGlobalMetadataSection() const; 853 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 854 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 855 uint64_t getMinRedzoneSizeForGlobal() const { 856 return getRedzoneSizeForScale(Mapping.Scale); 857 } 858 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 859 int GetAsanVersion(const Module &M) const; 860 861 const GlobalsMetadata &GlobalsMD; 862 bool CompileKernel; 863 bool Recover; 864 bool UseGlobalsGC; 865 bool UsePrivateAlias; 866 bool UseOdrIndicator; 867 bool UseCtorComdat; 868 AsanDtorKind DestructorKind; 869 Type *IntptrTy; 870 LLVMContext *C; 871 Triple TargetTriple; 872 ShadowMapping Mapping; 873 FunctionCallee AsanPoisonGlobals; 874 FunctionCallee AsanUnpoisonGlobals; 875 FunctionCallee AsanRegisterGlobals; 876 FunctionCallee AsanUnregisterGlobals; 877 FunctionCallee AsanRegisterImageGlobals; 878 FunctionCallee AsanUnregisterImageGlobals; 879 FunctionCallee AsanRegisterElfGlobals; 880 FunctionCallee AsanUnregisterElfGlobals; 881 882 Function *AsanCtorFunction = nullptr; 883 Function *AsanDtorFunction = nullptr; 884 }; 885 886 class ModuleAddressSanitizerLegacyPass : public ModulePass { 887 public: 888 static char ID; 889 890 explicit ModuleAddressSanitizerLegacyPass( 891 bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true, 892 bool UseOdrIndicator = false, 893 AsanDtorKind DestructorKind = AsanDtorKind::Global) 894 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 895 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), 896 DestructorKind(DestructorKind) { 897 initializeModuleAddressSanitizerLegacyPassPass( 898 *PassRegistry::getPassRegistry()); 899 } 900 901 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 902 903 void getAnalysisUsage(AnalysisUsage &AU) const override { 904 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 905 } 906 907 bool runOnModule(Module &M) override { 908 GlobalsMetadata &GlobalsMD = 909 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 910 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 911 UseGlobalGC, UseOdrIndicator, 912 DestructorKind); 913 return ASanModule.instrumentModule(M); 914 } 915 916 private: 917 bool CompileKernel; 918 bool Recover; 919 bool UseGlobalGC; 920 bool UseOdrIndicator; 921 AsanDtorKind DestructorKind; 922 }; 923 924 // Stack poisoning does not play well with exception handling. 925 // When an exception is thrown, we essentially bypass the code 926 // that unpoisones the stack. This is why the run-time library has 927 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 928 // stack in the interceptor. This however does not work inside the 929 // actual function which catches the exception. Most likely because the 930 // compiler hoists the load of the shadow value somewhere too high. 931 // This causes asan to report a non-existing bug on 453.povray. 932 // It sounds like an LLVM bug. 933 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 934 Function &F; 935 AddressSanitizer &ASan; 936 DIBuilder DIB; 937 LLVMContext *C; 938 Type *IntptrTy; 939 Type *IntptrPtrTy; 940 ShadowMapping Mapping; 941 942 SmallVector<AllocaInst *, 16> AllocaVec; 943 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 944 SmallVector<Instruction *, 8> RetVec; 945 unsigned StackAlignment; 946 947 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 948 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 949 FunctionCallee AsanSetShadowFunc[0x100] = {}; 950 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 951 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 952 953 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 954 struct AllocaPoisonCall { 955 IntrinsicInst *InsBefore; 956 AllocaInst *AI; 957 uint64_t Size; 958 bool DoPoison; 959 }; 960 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 961 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 962 bool HasUntracedLifetimeIntrinsic = false; 963 964 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 965 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 966 AllocaInst *DynamicAllocaLayout = nullptr; 967 IntrinsicInst *LocalEscapeCall = nullptr; 968 969 bool HasInlineAsm = false; 970 bool HasReturnsTwiceCall = false; 971 bool PoisonStack; 972 973 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 974 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 975 C(ASan.C), IntptrTy(ASan.IntptrTy), 976 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 977 StackAlignment(1 << Mapping.Scale), 978 PoisonStack(ClStack && 979 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 980 981 bool runOnFunction() { 982 if (!PoisonStack) 983 return false; 984 985 if (ClRedzoneByvalArgs) 986 copyArgsPassedByValToAllocas(); 987 988 // Collect alloca, ret, lifetime instructions etc. 989 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 990 991 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 992 993 initializeCallbacks(*F.getParent()); 994 995 if (HasUntracedLifetimeIntrinsic) { 996 // If there are lifetime intrinsics which couldn't be traced back to an 997 // alloca, we may not know exactly when a variable enters scope, and 998 // therefore should "fail safe" by not poisoning them. 999 StaticAllocaPoisonCallVec.clear(); 1000 DynamicAllocaPoisonCallVec.clear(); 1001 } 1002 1003 processDynamicAllocas(); 1004 processStaticAllocas(); 1005 1006 if (ClDebugStack) { 1007 LLVM_DEBUG(dbgs() << F); 1008 } 1009 return true; 1010 } 1011 1012 // Arguments marked with the "byval" attribute are implicitly copied without 1013 // using an alloca instruction. To produce redzones for those arguments, we 1014 // copy them a second time into memory allocated with an alloca instruction. 1015 void copyArgsPassedByValToAllocas(); 1016 1017 // Finds all Alloca instructions and puts 1018 // poisoned red zones around all of them. 1019 // Then unpoison everything back before the function returns. 1020 void processStaticAllocas(); 1021 void processDynamicAllocas(); 1022 1023 void createDynamicAllocasInitStorage(); 1024 1025 // ----------------------- Visitors. 1026 /// Collect all Ret instructions, or the musttail call instruction if it 1027 /// precedes the return instruction. 1028 void visitReturnInst(ReturnInst &RI) { 1029 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 1030 RetVec.push_back(CI); 1031 else 1032 RetVec.push_back(&RI); 1033 } 1034 1035 /// Collect all Resume instructions. 1036 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 1037 1038 /// Collect all CatchReturnInst instructions. 1039 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 1040 1041 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 1042 Value *SavedStack) { 1043 IRBuilder<> IRB(InstBefore); 1044 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1045 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1046 // need to adjust extracted SP to compute the address of the most recent 1047 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1048 // this purpose. 1049 if (!isa<ReturnInst>(InstBefore)) { 1050 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1051 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1052 {IntptrTy}); 1053 1054 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1055 1056 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1057 DynamicAreaOffset); 1058 } 1059 1060 IRB.CreateCall( 1061 AsanAllocasUnpoisonFunc, 1062 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1063 } 1064 1065 // Unpoison dynamic allocas redzones. 1066 void unpoisonDynamicAllocas() { 1067 for (Instruction *Ret : RetVec) 1068 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1069 1070 for (Instruction *StackRestoreInst : StackRestoreVec) 1071 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1072 StackRestoreInst->getOperand(0)); 1073 } 1074 1075 // Deploy and poison redzones around dynamic alloca call. To do this, we 1076 // should replace this call with another one with changed parameters and 1077 // replace all its uses with new address, so 1078 // addr = alloca type, old_size, align 1079 // is replaced by 1080 // new_size = (old_size + additional_size) * sizeof(type) 1081 // tmp = alloca i8, new_size, max(align, 32) 1082 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1083 // Additional_size is added to make new memory allocation contain not only 1084 // requested memory, but also left, partial and right redzones. 1085 void handleDynamicAllocaCall(AllocaInst *AI); 1086 1087 /// Collect Alloca instructions we want (and can) handle. 1088 void visitAllocaInst(AllocaInst &AI) { 1089 if (!ASan.isInterestingAlloca(AI)) { 1090 if (AI.isStaticAlloca()) { 1091 // Skip over allocas that are present *before* the first instrumented 1092 // alloca, we don't want to move those around. 1093 if (AllocaVec.empty()) 1094 return; 1095 1096 StaticAllocasToMoveUp.push_back(&AI); 1097 } 1098 return; 1099 } 1100 1101 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1102 if (!AI.isStaticAlloca()) 1103 DynamicAllocaVec.push_back(&AI); 1104 else 1105 AllocaVec.push_back(&AI); 1106 } 1107 1108 /// Collect lifetime intrinsic calls to check for use-after-scope 1109 /// errors. 1110 void visitIntrinsicInst(IntrinsicInst &II) { 1111 Intrinsic::ID ID = II.getIntrinsicID(); 1112 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1113 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1114 if (!ASan.UseAfterScope) 1115 return; 1116 if (!II.isLifetimeStartOrEnd()) 1117 return; 1118 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1119 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1120 // If size argument is undefined, don't do anything. 1121 if (Size->isMinusOne()) return; 1122 // Check that size doesn't saturate uint64_t and can 1123 // be stored in IntptrTy. 1124 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1125 if (SizeValue == ~0ULL || 1126 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1127 return; 1128 // Find alloca instruction that corresponds to llvm.lifetime argument. 1129 // Currently we can only handle lifetime markers pointing to the 1130 // beginning of the alloca. 1131 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1132 if (!AI) { 1133 HasUntracedLifetimeIntrinsic = true; 1134 return; 1135 } 1136 // We're interested only in allocas we can handle. 1137 if (!ASan.isInterestingAlloca(*AI)) 1138 return; 1139 bool DoPoison = (ID == Intrinsic::lifetime_end); 1140 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1141 if (AI->isStaticAlloca()) 1142 StaticAllocaPoisonCallVec.push_back(APC); 1143 else if (ClInstrumentDynamicAllocas) 1144 DynamicAllocaPoisonCallVec.push_back(APC); 1145 } 1146 1147 void visitCallBase(CallBase &CB) { 1148 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1149 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1150 HasReturnsTwiceCall |= CI->canReturnTwice(); 1151 } 1152 } 1153 1154 // ---------------------- Helpers. 1155 void initializeCallbacks(Module &M); 1156 1157 // Copies bytes from ShadowBytes into shadow memory for indexes where 1158 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1159 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1160 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1161 IRBuilder<> &IRB, Value *ShadowBase); 1162 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1163 size_t Begin, size_t End, IRBuilder<> &IRB, 1164 Value *ShadowBase); 1165 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1166 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1167 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1168 1169 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1170 1171 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1172 bool Dynamic); 1173 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1174 Instruction *ThenTerm, Value *ValueIfFalse); 1175 }; 1176 1177 } // end anonymous namespace 1178 1179 void LocationMetadata::parse(MDNode *MDN) { 1180 assert(MDN->getNumOperands() == 3); 1181 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1182 Filename = DIFilename->getString(); 1183 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1184 ColumnNo = 1185 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1186 } 1187 1188 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1189 // we want to sanitize instead and reading this metadata on each pass over a 1190 // function instead of reading module level metadata at first. 1191 GlobalsMetadata::GlobalsMetadata(Module &M) { 1192 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1193 if (!Globals) 1194 return; 1195 for (auto MDN : Globals->operands()) { 1196 // Metadata node contains the global and the fields of "Entry". 1197 assert(MDN->getNumOperands() == 5); 1198 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1199 // The optimizer may optimize away a global entirely. 1200 if (!V) 1201 continue; 1202 auto *StrippedV = V->stripPointerCasts(); 1203 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1204 if (!GV) 1205 continue; 1206 // We can already have an entry for GV if it was merged with another 1207 // global. 1208 Entry &E = Entries[GV]; 1209 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1210 E.SourceLoc.parse(Loc); 1211 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1212 E.Name = Name->getString(); 1213 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1214 E.IsDynInit |= IsDynInit->isOne(); 1215 ConstantInt *IsExcluded = 1216 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1217 E.IsExcluded |= IsExcluded->isOne(); 1218 } 1219 } 1220 1221 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1222 1223 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1224 ModuleAnalysisManager &AM) { 1225 return GlobalsMetadata(M); 1226 } 1227 1228 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1229 bool UseAfterScope) 1230 : CompileKernel(CompileKernel), Recover(Recover), 1231 UseAfterScope(UseAfterScope) {} 1232 1233 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1234 AnalysisManager<Function> &AM) { 1235 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1236 Module &M = *F.getParent(); 1237 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1238 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1239 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1240 if (Sanitizer.instrumentFunction(F, TLI)) 1241 return PreservedAnalyses::none(); 1242 return PreservedAnalyses::all(); 1243 } 1244 1245 report_fatal_error( 1246 "The ASanGlobalsMetadataAnalysis is required to run before " 1247 "AddressSanitizer can run"); 1248 return PreservedAnalyses::all(); 1249 } 1250 1251 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( 1252 bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator, 1253 AsanDtorKind DestructorKind) 1254 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1255 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} 1256 1257 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1258 AnalysisManager<Module> &AM) { 1259 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1260 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1261 UseGlobalGC, UseOdrIndicator, 1262 DestructorKind); 1263 if (Sanitizer.instrumentModule(M)) 1264 return PreservedAnalyses::none(); 1265 return PreservedAnalyses::all(); 1266 } 1267 1268 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1269 "Read metadata to mark which globals should be instrumented " 1270 "when running ASan.", 1271 false, true) 1272 1273 char AddressSanitizerLegacyPass::ID = 0; 1274 1275 INITIALIZE_PASS_BEGIN( 1276 AddressSanitizerLegacyPass, "asan", 1277 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1278 false) 1279 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1280 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1281 INITIALIZE_PASS_END( 1282 AddressSanitizerLegacyPass, "asan", 1283 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1284 false) 1285 1286 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1287 bool Recover, 1288 bool UseAfterScope) { 1289 assert(!CompileKernel || Recover); 1290 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1291 } 1292 1293 char ModuleAddressSanitizerLegacyPass::ID = 0; 1294 1295 INITIALIZE_PASS( 1296 ModuleAddressSanitizerLegacyPass, "asan-module", 1297 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1298 "ModulePass", 1299 false, false) 1300 1301 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1302 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator, 1303 AsanDtorKind Destructor) { 1304 assert(!CompileKernel || Recover); 1305 return new ModuleAddressSanitizerLegacyPass( 1306 CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor); 1307 } 1308 1309 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1310 size_t Res = countTrailingZeros(TypeSize / 8); 1311 assert(Res < kNumberOfAccessSizes); 1312 return Res; 1313 } 1314 1315 /// Create a global describing a source location. 1316 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1317 LocationMetadata MD) { 1318 Constant *LocData[] = { 1319 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1320 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1321 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1322 }; 1323 auto LocStruct = ConstantStruct::getAnon(LocData); 1324 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1325 GlobalValue::PrivateLinkage, LocStruct, 1326 kAsanGenPrefix); 1327 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1328 return GV; 1329 } 1330 1331 /// Check if \p G has been created by a trusted compiler pass. 1332 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1333 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1334 if (G->getName().startswith("llvm.")) 1335 return true; 1336 1337 // Do not instrument asan globals. 1338 if (G->getName().startswith(kAsanGenPrefix) || 1339 G->getName().startswith(kSanCovGenPrefix) || 1340 G->getName().startswith(kODRGenPrefix)) 1341 return true; 1342 1343 // Do not instrument gcov counter arrays. 1344 if (G->getName() == "__llvm_gcov_ctr") 1345 return true; 1346 1347 return false; 1348 } 1349 1350 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1351 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1352 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1353 if (AddrSpace == 3 || AddrSpace == 5) 1354 return true; 1355 return false; 1356 } 1357 1358 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1359 // Shadow >> scale 1360 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1361 if (Mapping.Offset == 0) return Shadow; 1362 // (Shadow >> scale) | offset 1363 Value *ShadowBase; 1364 if (LocalDynamicShadow) 1365 ShadowBase = LocalDynamicShadow; 1366 else 1367 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1368 if (Mapping.OrShadowOffset) 1369 return IRB.CreateOr(Shadow, ShadowBase); 1370 else 1371 return IRB.CreateAdd(Shadow, ShadowBase); 1372 } 1373 1374 // Instrument memset/memmove/memcpy 1375 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1376 IRBuilder<> IRB(MI); 1377 if (isa<MemTransferInst>(MI)) { 1378 IRB.CreateCall( 1379 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1380 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1381 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1382 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1383 } else if (isa<MemSetInst>(MI)) { 1384 IRB.CreateCall( 1385 AsanMemset, 1386 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1387 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1388 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1389 } 1390 MI->eraseFromParent(); 1391 } 1392 1393 /// Check if we want (and can) handle this alloca. 1394 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1395 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1396 1397 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1398 return PreviouslySeenAllocaInfo->getSecond(); 1399 1400 bool IsInteresting = 1401 (AI.getAllocatedType()->isSized() && 1402 // alloca() may be called with 0 size, ignore it. 1403 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1404 // We are only interested in allocas not promotable to registers. 1405 // Promotable allocas are common under -O0. 1406 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1407 // inalloca allocas are not treated as static, and we don't want 1408 // dynamic alloca instrumentation for them as well. 1409 !AI.isUsedWithInAlloca() && 1410 // swifterror allocas are register promoted by ISel 1411 !AI.isSwiftError()); 1412 1413 ProcessedAllocas[&AI] = IsInteresting; 1414 return IsInteresting; 1415 } 1416 1417 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1418 // Instrument acesses from different address spaces only for AMDGPU. 1419 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1420 if (PtrTy->getPointerAddressSpace() != 0 && 1421 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1422 return true; 1423 1424 // Ignore swifterror addresses. 1425 // swifterror memory addresses are mem2reg promoted by instruction 1426 // selection. As such they cannot have regular uses like an instrumentation 1427 // function and it makes no sense to track them as memory. 1428 if (Ptr->isSwiftError()) 1429 return true; 1430 1431 // Treat memory accesses to promotable allocas as non-interesting since they 1432 // will not cause memory violations. This greatly speeds up the instrumented 1433 // executable at -O0. 1434 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1435 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1436 return true; 1437 1438 return false; 1439 } 1440 1441 void AddressSanitizer::getInterestingMemoryOperands( 1442 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1443 // Skip memory accesses inserted by another instrumentation. 1444 if (I->hasMetadata("nosanitize")) 1445 return; 1446 1447 // Do not instrument the load fetching the dynamic shadow address. 1448 if (LocalDynamicShadow == I) 1449 return; 1450 1451 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1452 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1453 return; 1454 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1455 LI->getType(), LI->getAlign()); 1456 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1457 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1458 return; 1459 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1460 SI->getValueOperand()->getType(), SI->getAlign()); 1461 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1462 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1463 return; 1464 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1465 RMW->getValOperand()->getType(), None); 1466 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1467 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1468 return; 1469 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1470 XCHG->getCompareOperand()->getType(), None); 1471 } else if (auto CI = dyn_cast<CallInst>(I)) { 1472 auto *F = CI->getCalledFunction(); 1473 if (F && (F->getName().startswith("llvm.masked.load.") || 1474 F->getName().startswith("llvm.masked.store."))) { 1475 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1476 // Masked store has an initial operand for the value. 1477 unsigned OpOffset = IsWrite ? 1 : 0; 1478 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1479 return; 1480 1481 auto BasePtr = CI->getOperand(OpOffset); 1482 if (ignoreAccess(BasePtr)) 1483 return; 1484 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1485 MaybeAlign Alignment = Align(1); 1486 // Otherwise no alignment guarantees. We probably got Undef. 1487 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1488 Alignment = Op->getMaybeAlignValue(); 1489 Value *Mask = CI->getOperand(2 + OpOffset); 1490 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1491 } else { 1492 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { 1493 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1494 ignoreAccess(CI->getArgOperand(ArgNo))) 1495 continue; 1496 Type *Ty = CI->getParamByValType(ArgNo); 1497 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1498 } 1499 } 1500 } 1501 } 1502 1503 static bool isPointerOperand(Value *V) { 1504 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1505 } 1506 1507 // This is a rough heuristic; it may cause both false positives and 1508 // false negatives. The proper implementation requires cooperation with 1509 // the frontend. 1510 static bool isInterestingPointerComparison(Instruction *I) { 1511 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1512 if (!Cmp->isRelational()) 1513 return false; 1514 } else { 1515 return false; 1516 } 1517 return isPointerOperand(I->getOperand(0)) && 1518 isPointerOperand(I->getOperand(1)); 1519 } 1520 1521 // This is a rough heuristic; it may cause both false positives and 1522 // false negatives. The proper implementation requires cooperation with 1523 // the frontend. 1524 static bool isInterestingPointerSubtraction(Instruction *I) { 1525 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1526 if (BO->getOpcode() != Instruction::Sub) 1527 return false; 1528 } else { 1529 return false; 1530 } 1531 return isPointerOperand(I->getOperand(0)) && 1532 isPointerOperand(I->getOperand(1)); 1533 } 1534 1535 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1536 // If a global variable does not have dynamic initialization we don't 1537 // have to instrument it. However, if a global does not have initializer 1538 // at all, we assume it has dynamic initializer (in other TU). 1539 // 1540 // FIXME: Metadata should be attched directly to the global directly instead 1541 // of being added to llvm.asan.globals. 1542 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1543 } 1544 1545 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1546 Instruction *I) { 1547 IRBuilder<> IRB(I); 1548 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1549 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1550 for (Value *&i : Param) { 1551 if (i->getType()->isPointerTy()) 1552 i = IRB.CreatePointerCast(i, IntptrTy); 1553 } 1554 IRB.CreateCall(F, Param); 1555 } 1556 1557 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1558 Instruction *InsertBefore, Value *Addr, 1559 MaybeAlign Alignment, unsigned Granularity, 1560 uint32_t TypeSize, bool IsWrite, 1561 Value *SizeArgument, bool UseCalls, 1562 uint32_t Exp) { 1563 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1564 // if the data is properly aligned. 1565 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1566 TypeSize == 128) && 1567 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1568 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1569 nullptr, UseCalls, Exp); 1570 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1571 IsWrite, nullptr, UseCalls, Exp); 1572 } 1573 1574 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1575 const DataLayout &DL, Type *IntptrTy, 1576 Value *Mask, Instruction *I, 1577 Value *Addr, MaybeAlign Alignment, 1578 unsigned Granularity, uint32_t TypeSize, 1579 bool IsWrite, Value *SizeArgument, 1580 bool UseCalls, uint32_t Exp) { 1581 auto *VTy = cast<FixedVectorType>( 1582 cast<PointerType>(Addr->getType())->getElementType()); 1583 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1584 unsigned Num = VTy->getNumElements(); 1585 auto Zero = ConstantInt::get(IntptrTy, 0); 1586 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1587 Value *InstrumentedAddress = nullptr; 1588 Instruction *InsertBefore = I; 1589 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1590 // dyn_cast as we might get UndefValue 1591 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1592 if (Masked->isZero()) 1593 // Mask is constant false, so no instrumentation needed. 1594 continue; 1595 // If we have a true or undef value, fall through to doInstrumentAddress 1596 // with InsertBefore == I 1597 } 1598 } else { 1599 IRBuilder<> IRB(I); 1600 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1601 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1602 InsertBefore = ThenTerm; 1603 } 1604 1605 IRBuilder<> IRB(InsertBefore); 1606 InstrumentedAddress = 1607 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1608 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1609 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1610 UseCalls, Exp); 1611 } 1612 } 1613 1614 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1615 InterestingMemoryOperand &O, bool UseCalls, 1616 const DataLayout &DL) { 1617 Value *Addr = O.getPtr(); 1618 1619 // Optimization experiments. 1620 // The experiments can be used to evaluate potential optimizations that remove 1621 // instrumentation (assess false negatives). Instead of completely removing 1622 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1623 // experiments that want to remove instrumentation of this instruction). 1624 // If Exp is non-zero, this pass will emit special calls into runtime 1625 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1626 // make runtime terminate the program in a special way (with a different 1627 // exit status). Then you run the new compiler on a buggy corpus, collect 1628 // the special terminations (ideally, you don't see them at all -- no false 1629 // negatives) and make the decision on the optimization. 1630 uint32_t Exp = ClForceExperiment; 1631 1632 if (ClOpt && ClOptGlobals) { 1633 // If initialization order checking is disabled, a simple access to a 1634 // dynamically initialized global is always valid. 1635 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1636 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1637 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1638 NumOptimizedAccessesToGlobalVar++; 1639 return; 1640 } 1641 } 1642 1643 if (ClOpt && ClOptStack) { 1644 // A direct inbounds access to a stack variable is always valid. 1645 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1646 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1647 NumOptimizedAccessesToStackVar++; 1648 return; 1649 } 1650 } 1651 1652 if (O.IsWrite) 1653 NumInstrumentedWrites++; 1654 else 1655 NumInstrumentedReads++; 1656 1657 unsigned Granularity = 1 << Mapping.Scale; 1658 if (O.MaybeMask) { 1659 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1660 Addr, O.Alignment, Granularity, O.TypeSize, 1661 O.IsWrite, nullptr, UseCalls, Exp); 1662 } else { 1663 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1664 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1665 Exp); 1666 } 1667 } 1668 1669 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1670 Value *Addr, bool IsWrite, 1671 size_t AccessSizeIndex, 1672 Value *SizeArgument, 1673 uint32_t Exp) { 1674 IRBuilder<> IRB(InsertBefore); 1675 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1676 CallInst *Call = nullptr; 1677 if (SizeArgument) { 1678 if (Exp == 0) 1679 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1680 {Addr, SizeArgument}); 1681 else 1682 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1683 {Addr, SizeArgument, ExpVal}); 1684 } else { 1685 if (Exp == 0) 1686 Call = 1687 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1688 else 1689 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1690 {Addr, ExpVal}); 1691 } 1692 1693 Call->setCannotMerge(); 1694 return Call; 1695 } 1696 1697 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1698 Value *ShadowValue, 1699 uint32_t TypeSize) { 1700 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1701 // Addr & (Granularity - 1) 1702 Value *LastAccessedByte = 1703 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1704 // (Addr & (Granularity - 1)) + size - 1 1705 if (TypeSize / 8 > 1) 1706 LastAccessedByte = IRB.CreateAdd( 1707 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1708 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1709 LastAccessedByte = 1710 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1711 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1712 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1713 } 1714 1715 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1716 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1717 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { 1718 // Do not instrument unsupported addrspaces. 1719 if (isUnsupportedAMDGPUAddrspace(Addr)) 1720 return nullptr; 1721 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1722 // Follow host instrumentation for global and constant addresses. 1723 if (PtrTy->getPointerAddressSpace() != 0) 1724 return InsertBefore; 1725 // Instrument generic addresses in supported addressspaces. 1726 IRBuilder<> IRB(InsertBefore); 1727 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); 1728 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); 1729 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); 1730 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1731 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); 1732 Value *AddrSpaceZeroLanding = 1733 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1734 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1735 return InsertBefore; 1736 } 1737 1738 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1739 Instruction *InsertBefore, Value *Addr, 1740 uint32_t TypeSize, bool IsWrite, 1741 Value *SizeArgument, bool UseCalls, 1742 uint32_t Exp) { 1743 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1744 1745 if (TargetTriple.isAMDGPU()) { 1746 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1747 TypeSize, IsWrite, SizeArgument); 1748 if (!InsertBefore) 1749 return; 1750 } 1751 1752 IRBuilder<> IRB(InsertBefore); 1753 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1754 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1755 1756 if (UseCalls) { 1757 if (Exp == 0) 1758 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1759 AddrLong); 1760 else 1761 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1762 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1763 return; 1764 } 1765 1766 if (IsMyriad) { 1767 // Strip the cache bit and do range check. 1768 // AddrLong &= ~kMyriadCacheBitMask32 1769 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1770 // Tag = AddrLong >> kMyriadTagShift 1771 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1772 // Tag == kMyriadDDRTag 1773 Value *TagCheck = 1774 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1775 1776 Instruction *TagCheckTerm = 1777 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1778 MDBuilder(*C).createBranchWeights(1, 100000)); 1779 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1780 IRB.SetInsertPoint(TagCheckTerm); 1781 InsertBefore = TagCheckTerm; 1782 } 1783 1784 Type *ShadowTy = 1785 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1786 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1787 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1788 Value *CmpVal = Constant::getNullValue(ShadowTy); 1789 Value *ShadowValue = 1790 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1791 1792 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1793 size_t Granularity = 1ULL << Mapping.Scale; 1794 Instruction *CrashTerm = nullptr; 1795 1796 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1797 // We use branch weights for the slow path check, to indicate that the slow 1798 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1799 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1800 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1801 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1802 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1803 IRB.SetInsertPoint(CheckTerm); 1804 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1805 if (Recover) { 1806 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1807 } else { 1808 BasicBlock *CrashBlock = 1809 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1810 CrashTerm = new UnreachableInst(*C, CrashBlock); 1811 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1812 ReplaceInstWithInst(CheckTerm, NewTerm); 1813 } 1814 } else { 1815 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1816 } 1817 1818 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1819 AccessSizeIndex, SizeArgument, Exp); 1820 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1821 } 1822 1823 // Instrument unusual size or unusual alignment. 1824 // We can not do it with a single check, so we do 1-byte check for the first 1825 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1826 // to report the actual access size. 1827 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1828 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1829 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1830 IRBuilder<> IRB(InsertBefore); 1831 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1832 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1833 if (UseCalls) { 1834 if (Exp == 0) 1835 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1836 {AddrLong, Size}); 1837 else 1838 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1839 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1840 } else { 1841 Value *LastByte = IRB.CreateIntToPtr( 1842 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1843 Addr->getType()); 1844 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1845 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1846 } 1847 } 1848 1849 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1850 GlobalValue *ModuleName) { 1851 // Set up the arguments to our poison/unpoison functions. 1852 IRBuilder<> IRB(&GlobalInit.front(), 1853 GlobalInit.front().getFirstInsertionPt()); 1854 1855 // Add a call to poison all external globals before the given function starts. 1856 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1857 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1858 1859 // Add calls to unpoison all globals before each return instruction. 1860 for (auto &BB : GlobalInit.getBasicBlockList()) 1861 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1862 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1863 } 1864 1865 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1866 Module &M, GlobalValue *ModuleName) { 1867 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1868 if (!GV) 1869 return; 1870 1871 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1872 if (!CA) 1873 return; 1874 1875 for (Use &OP : CA->operands()) { 1876 if (isa<ConstantAggregateZero>(OP)) continue; 1877 ConstantStruct *CS = cast<ConstantStruct>(OP); 1878 1879 // Must have a function or null ptr. 1880 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1881 if (F->getName() == kAsanModuleCtorName) continue; 1882 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1883 // Don't instrument CTORs that will run before asan.module_ctor. 1884 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1885 continue; 1886 poisonOneInitializer(*F, ModuleName); 1887 } 1888 } 1889 } 1890 1891 const GlobalVariable * 1892 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1893 // In case this function should be expanded to include rules that do not just 1894 // apply when CompileKernel is true, either guard all existing rules with an 1895 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1896 // should also apply to user space. 1897 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1898 1899 const Constant *C = GA.getAliasee(); 1900 1901 // When compiling the kernel, globals that are aliased by symbols prefixed 1902 // by "__" are special and cannot be padded with a redzone. 1903 if (GA.getName().startswith("__")) 1904 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1905 1906 return nullptr; 1907 } 1908 1909 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1910 Type *Ty = G->getValueType(); 1911 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1912 1913 // FIXME: Metadata should be attched directly to the global directly instead 1914 // of being added to llvm.asan.globals. 1915 if (GlobalsMD.get(G).IsExcluded) return false; 1916 if (!Ty->isSized()) return false; 1917 if (!G->hasInitializer()) return false; 1918 // Globals in address space 1 and 4 are supported for AMDGPU. 1919 if (G->getAddressSpace() && 1920 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1921 return false; 1922 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1923 // Two problems with thread-locals: 1924 // - The address of the main thread's copy can't be computed at link-time. 1925 // - Need to poison all copies, not just the main thread's one. 1926 if (G->isThreadLocal()) return false; 1927 // For now, just ignore this Global if the alignment is large. 1928 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1929 1930 // For non-COFF targets, only instrument globals known to be defined by this 1931 // TU. 1932 // FIXME: We can instrument comdat globals on ELF if we are using the 1933 // GC-friendly metadata scheme. 1934 if (!TargetTriple.isOSBinFormatCOFF()) { 1935 if (!G->hasExactDefinition() || G->hasComdat()) 1936 return false; 1937 } else { 1938 // On COFF, don't instrument non-ODR linkages. 1939 if (G->isInterposable()) 1940 return false; 1941 } 1942 1943 // If a comdat is present, it must have a selection kind that implies ODR 1944 // semantics: no duplicates, any, or exact match. 1945 if (Comdat *C = G->getComdat()) { 1946 switch (C->getSelectionKind()) { 1947 case Comdat::Any: 1948 case Comdat::ExactMatch: 1949 case Comdat::NoDuplicates: 1950 break; 1951 case Comdat::Largest: 1952 case Comdat::SameSize: 1953 return false; 1954 } 1955 } 1956 1957 if (G->hasSection()) { 1958 // The kernel uses explicit sections for mostly special global variables 1959 // that we should not instrument. E.g. the kernel may rely on their layout 1960 // without redzones, or remove them at link time ("discard.*"), etc. 1961 if (CompileKernel) 1962 return false; 1963 1964 StringRef Section = G->getSection(); 1965 1966 // Globals from llvm.metadata aren't emitted, do not instrument them. 1967 if (Section == "llvm.metadata") return false; 1968 // Do not instrument globals from special LLVM sections. 1969 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1970 1971 // Do not instrument function pointers to initialization and termination 1972 // routines: dynamic linker will not properly handle redzones. 1973 if (Section.startswith(".preinit_array") || 1974 Section.startswith(".init_array") || 1975 Section.startswith(".fini_array")) { 1976 return false; 1977 } 1978 1979 // Do not instrument user-defined sections (with names resembling 1980 // valid C identifiers) 1981 if (TargetTriple.isOSBinFormatELF()) { 1982 if (llvm::all_of(Section, 1983 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 1984 return false; 1985 } 1986 1987 // On COFF, if the section name contains '$', it is highly likely that the 1988 // user is using section sorting to create an array of globals similar to 1989 // the way initialization callbacks are registered in .init_array and 1990 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1991 // to such globals is counterproductive, because the intent is that they 1992 // will form an array, and out-of-bounds accesses are expected. 1993 // See https://github.com/google/sanitizers/issues/305 1994 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1995 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1996 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1997 << *G << "\n"); 1998 return false; 1999 } 2000 2001 if (TargetTriple.isOSBinFormatMachO()) { 2002 StringRef ParsedSegment, ParsedSection; 2003 unsigned TAA = 0, StubSize = 0; 2004 bool TAAParsed; 2005 cantFail(MCSectionMachO::ParseSectionSpecifier( 2006 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 2007 2008 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 2009 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 2010 // them. 2011 if (ParsedSegment == "__OBJC" || 2012 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 2013 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 2014 return false; 2015 } 2016 // See https://github.com/google/sanitizers/issues/32 2017 // Constant CFString instances are compiled in the following way: 2018 // -- the string buffer is emitted into 2019 // __TEXT,__cstring,cstring_literals 2020 // -- the constant NSConstantString structure referencing that buffer 2021 // is placed into __DATA,__cfstring 2022 // Therefore there's no point in placing redzones into __DATA,__cfstring. 2023 // Moreover, it causes the linker to crash on OS X 10.7 2024 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 2025 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 2026 return false; 2027 } 2028 // The linker merges the contents of cstring_literals and removes the 2029 // trailing zeroes. 2030 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 2031 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 2032 return false; 2033 } 2034 } 2035 } 2036 2037 if (CompileKernel) { 2038 // Globals that prefixed by "__" are special and cannot be padded with a 2039 // redzone. 2040 if (G->getName().startswith("__")) 2041 return false; 2042 } 2043 2044 return true; 2045 } 2046 2047 // On Mach-O platforms, we emit global metadata in a separate section of the 2048 // binary in order to allow the linker to properly dead strip. This is only 2049 // supported on recent versions of ld64. 2050 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 2051 if (!TargetTriple.isOSBinFormatMachO()) 2052 return false; 2053 2054 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 2055 return true; 2056 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 2057 return true; 2058 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 2059 return true; 2060 2061 return false; 2062 } 2063 2064 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 2065 switch (TargetTriple.getObjectFormat()) { 2066 case Triple::COFF: return ".ASAN$GL"; 2067 case Triple::ELF: return "asan_globals"; 2068 case Triple::MachO: return "__DATA,__asan_globals,regular"; 2069 case Triple::Wasm: 2070 case Triple::GOFF: 2071 case Triple::XCOFF: 2072 report_fatal_error( 2073 "ModuleAddressSanitizer not implemented for object file format"); 2074 case Triple::UnknownObjectFormat: 2075 break; 2076 } 2077 llvm_unreachable("unsupported object format"); 2078 } 2079 2080 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 2081 IRBuilder<> IRB(*C); 2082 2083 // Declare our poisoning and unpoisoning functions. 2084 AsanPoisonGlobals = 2085 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2086 AsanUnpoisonGlobals = 2087 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2088 2089 // Declare functions that register/unregister globals. 2090 AsanRegisterGlobals = M.getOrInsertFunction( 2091 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2092 AsanUnregisterGlobals = M.getOrInsertFunction( 2093 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2094 2095 // Declare the functions that find globals in a shared object and then invoke 2096 // the (un)register function on them. 2097 AsanRegisterImageGlobals = M.getOrInsertFunction( 2098 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2099 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2100 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2101 2102 AsanRegisterElfGlobals = 2103 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2104 IntptrTy, IntptrTy, IntptrTy); 2105 AsanUnregisterElfGlobals = 2106 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2107 IntptrTy, IntptrTy, IntptrTy); 2108 } 2109 2110 // Put the metadata and the instrumented global in the same group. This ensures 2111 // that the metadata is discarded if the instrumented global is discarded. 2112 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2113 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2114 Module &M = *G->getParent(); 2115 Comdat *C = G->getComdat(); 2116 if (!C) { 2117 if (!G->hasName()) { 2118 // If G is unnamed, it must be internal. Give it an artificial name 2119 // so we can put it in a comdat. 2120 assert(G->hasLocalLinkage()); 2121 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2122 } 2123 2124 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2125 std::string Name = std::string(G->getName()); 2126 Name += InternalSuffix; 2127 C = M.getOrInsertComdat(Name); 2128 } else { 2129 C = M.getOrInsertComdat(G->getName()); 2130 } 2131 2132 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2133 // linkage to internal linkage so that a symbol table entry is emitted. This 2134 // is necessary in order to create the comdat group. 2135 if (TargetTriple.isOSBinFormatCOFF()) { 2136 C->setSelectionKind(Comdat::NoDuplicates); 2137 if (G->hasPrivateLinkage()) 2138 G->setLinkage(GlobalValue::InternalLinkage); 2139 } 2140 G->setComdat(C); 2141 } 2142 2143 assert(G->hasComdat()); 2144 Metadata->setComdat(G->getComdat()); 2145 } 2146 2147 // Create a separate metadata global and put it in the appropriate ASan 2148 // global registration section. 2149 GlobalVariable * 2150 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2151 StringRef OriginalName) { 2152 auto Linkage = TargetTriple.isOSBinFormatMachO() 2153 ? GlobalVariable::InternalLinkage 2154 : GlobalVariable::PrivateLinkage; 2155 GlobalVariable *Metadata = new GlobalVariable( 2156 M, Initializer->getType(), false, Linkage, Initializer, 2157 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2158 Metadata->setSection(getGlobalMetadataSection()); 2159 return Metadata; 2160 } 2161 2162 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2163 AsanDtorFunction = Function::createWithDefaultAttr( 2164 FunctionType::get(Type::getVoidTy(*C), false), 2165 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2166 AsanDtorFunction->addAttribute(AttributeList::FunctionIndex, 2167 Attribute::NoUnwind); 2168 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2169 2170 return ReturnInst::Create(*C, AsanDtorBB); 2171 } 2172 2173 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2174 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2175 ArrayRef<Constant *> MetadataInitializers) { 2176 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2177 auto &DL = M.getDataLayout(); 2178 2179 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2180 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2181 Constant *Initializer = MetadataInitializers[i]; 2182 GlobalVariable *G = ExtendedGlobals[i]; 2183 GlobalVariable *Metadata = 2184 CreateMetadataGlobal(M, Initializer, G->getName()); 2185 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2186 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2187 MetadataGlobals[i] = Metadata; 2188 2189 // The MSVC linker always inserts padding when linking incrementally. We 2190 // cope with that by aligning each struct to its size, which must be a power 2191 // of two. 2192 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2193 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2194 "global metadata will not be padded appropriately"); 2195 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2196 2197 SetComdatForGlobalMetadata(G, Metadata, ""); 2198 } 2199 2200 // Update llvm.compiler.used, adding the new metadata globals. This is 2201 // needed so that during LTO these variables stay alive. 2202 if (!MetadataGlobals.empty()) 2203 appendToCompilerUsed(M, MetadataGlobals); 2204 } 2205 2206 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2207 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2208 ArrayRef<Constant *> MetadataInitializers, 2209 const std::string &UniqueModuleId) { 2210 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2211 2212 // Putting globals in a comdat changes the semantic and potentially cause 2213 // false negative odr violations at link time. If odr indicators are used, we 2214 // keep the comdat sections, as link time odr violations will be dectected on 2215 // the odr indicator symbols. 2216 bool UseComdatForGlobalsGC = UseOdrIndicator; 2217 2218 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2219 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2220 GlobalVariable *G = ExtendedGlobals[i]; 2221 GlobalVariable *Metadata = 2222 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2223 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2224 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2225 MetadataGlobals[i] = Metadata; 2226 2227 if (UseComdatForGlobalsGC) 2228 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2229 } 2230 2231 // Update llvm.compiler.used, adding the new metadata globals. This is 2232 // needed so that during LTO these variables stay alive. 2233 if (!MetadataGlobals.empty()) 2234 appendToCompilerUsed(M, MetadataGlobals); 2235 2236 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2237 // to look up the loaded image that contains it. Second, we can store in it 2238 // whether registration has already occurred, to prevent duplicate 2239 // registration. 2240 // 2241 // Common linkage ensures that there is only one global per shared library. 2242 GlobalVariable *RegisteredFlag = new GlobalVariable( 2243 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2244 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2245 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2246 2247 // Create start and stop symbols. 2248 GlobalVariable *StartELFMetadata = new GlobalVariable( 2249 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2250 "__start_" + getGlobalMetadataSection()); 2251 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2252 GlobalVariable *StopELFMetadata = new GlobalVariable( 2253 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2254 "__stop_" + getGlobalMetadataSection()); 2255 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2256 2257 // Create a call to register the globals with the runtime. 2258 IRB.CreateCall(AsanRegisterElfGlobals, 2259 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2260 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2261 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2262 2263 // We also need to unregister globals at the end, e.g., when a shared library 2264 // gets closed. 2265 if (DestructorKind != AsanDtorKind::None) { 2266 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2267 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2268 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2269 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2270 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2271 } 2272 } 2273 2274 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2275 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2276 ArrayRef<Constant *> MetadataInitializers) { 2277 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2278 2279 // On recent Mach-O platforms, use a structure which binds the liveness of 2280 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2281 // created to be added to llvm.compiler.used 2282 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2283 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2284 2285 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2286 Constant *Initializer = MetadataInitializers[i]; 2287 GlobalVariable *G = ExtendedGlobals[i]; 2288 GlobalVariable *Metadata = 2289 CreateMetadataGlobal(M, Initializer, G->getName()); 2290 2291 // On recent Mach-O platforms, we emit the global metadata in a way that 2292 // allows the linker to properly strip dead globals. 2293 auto LivenessBinder = 2294 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2295 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2296 GlobalVariable *Liveness = new GlobalVariable( 2297 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2298 Twine("__asan_binder_") + G->getName()); 2299 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2300 LivenessGlobals[i] = Liveness; 2301 } 2302 2303 // Update llvm.compiler.used, adding the new liveness globals. This is 2304 // needed so that during LTO these variables stay alive. The alternative 2305 // would be to have the linker handling the LTO symbols, but libLTO 2306 // current API does not expose access to the section for each symbol. 2307 if (!LivenessGlobals.empty()) 2308 appendToCompilerUsed(M, LivenessGlobals); 2309 2310 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2311 // to look up the loaded image that contains it. Second, we can store in it 2312 // whether registration has already occurred, to prevent duplicate 2313 // registration. 2314 // 2315 // common linkage ensures that there is only one global per shared library. 2316 GlobalVariable *RegisteredFlag = new GlobalVariable( 2317 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2318 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2319 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2320 2321 IRB.CreateCall(AsanRegisterImageGlobals, 2322 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2323 2324 // We also need to unregister globals at the end, e.g., when a shared library 2325 // gets closed. 2326 if (DestructorKind != AsanDtorKind::None) { 2327 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2328 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2329 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2330 } 2331 } 2332 2333 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2334 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2335 ArrayRef<Constant *> MetadataInitializers) { 2336 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2337 unsigned N = ExtendedGlobals.size(); 2338 assert(N > 0); 2339 2340 // On platforms that don't have a custom metadata section, we emit an array 2341 // of global metadata structures. 2342 ArrayType *ArrayOfGlobalStructTy = 2343 ArrayType::get(MetadataInitializers[0]->getType(), N); 2344 auto AllGlobals = new GlobalVariable( 2345 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2346 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2347 if (Mapping.Scale > 3) 2348 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2349 2350 IRB.CreateCall(AsanRegisterGlobals, 2351 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2352 ConstantInt::get(IntptrTy, N)}); 2353 2354 // We also need to unregister globals at the end, e.g., when a shared library 2355 // gets closed. 2356 if (DestructorKind != AsanDtorKind::None) { 2357 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2358 IrbDtor.CreateCall(AsanUnregisterGlobals, 2359 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2360 ConstantInt::get(IntptrTy, N)}); 2361 } 2362 } 2363 2364 // This function replaces all global variables with new variables that have 2365 // trailing redzones. It also creates a function that poisons 2366 // redzones and inserts this function into llvm.global_ctors. 2367 // Sets *CtorComdat to true if the global registration code emitted into the 2368 // asan constructor is comdat-compatible. 2369 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2370 bool *CtorComdat) { 2371 *CtorComdat = false; 2372 2373 // Build set of globals that are aliased by some GA, where 2374 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2375 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2376 if (CompileKernel) { 2377 for (auto &GA : M.aliases()) { 2378 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2379 AliasedGlobalExclusions.insert(GV); 2380 } 2381 } 2382 2383 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2384 for (auto &G : M.globals()) { 2385 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2386 GlobalsToChange.push_back(&G); 2387 } 2388 2389 size_t n = GlobalsToChange.size(); 2390 if (n == 0) { 2391 *CtorComdat = true; 2392 return false; 2393 } 2394 2395 auto &DL = M.getDataLayout(); 2396 2397 // A global is described by a structure 2398 // size_t beg; 2399 // size_t size; 2400 // size_t size_with_redzone; 2401 // const char *name; 2402 // const char *module_name; 2403 // size_t has_dynamic_init; 2404 // void *source_location; 2405 // size_t odr_indicator; 2406 // We initialize an array of such structures and pass it to a run-time call. 2407 StructType *GlobalStructTy = 2408 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2409 IntptrTy, IntptrTy, IntptrTy); 2410 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2411 SmallVector<Constant *, 16> Initializers(n); 2412 2413 bool HasDynamicallyInitializedGlobals = false; 2414 2415 // We shouldn't merge same module names, as this string serves as unique 2416 // module ID in runtime. 2417 GlobalVariable *ModuleName = createPrivateGlobalForString( 2418 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2419 2420 for (size_t i = 0; i < n; i++) { 2421 GlobalVariable *G = GlobalsToChange[i]; 2422 2423 // FIXME: Metadata should be attched directly to the global directly instead 2424 // of being added to llvm.asan.globals. 2425 auto MD = GlobalsMD.get(G); 2426 StringRef NameForGlobal = G->getName(); 2427 // Create string holding the global name (use global name from metadata 2428 // if it's available, otherwise just write the name of global variable). 2429 GlobalVariable *Name = createPrivateGlobalForString( 2430 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2431 /*AllowMerging*/ true, kAsanGenPrefix); 2432 2433 Type *Ty = G->getValueType(); 2434 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2435 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2436 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2437 2438 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2439 Constant *NewInitializer = ConstantStruct::get( 2440 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2441 2442 // Create a new global variable with enough space for a redzone. 2443 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2444 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2445 Linkage = GlobalValue::InternalLinkage; 2446 GlobalVariable *NewGlobal = new GlobalVariable( 2447 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2448 G->getThreadLocalMode(), G->getAddressSpace()); 2449 NewGlobal->copyAttributesFrom(G); 2450 NewGlobal->setComdat(G->getComdat()); 2451 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2452 // Don't fold globals with redzones. ODR violation detector and redzone 2453 // poisoning implicitly creates a dependence on the global's address, so it 2454 // is no longer valid for it to be marked unnamed_addr. 2455 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2456 2457 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2458 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2459 G->isConstant()) { 2460 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2461 if (Seq && Seq->isCString()) 2462 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2463 } 2464 2465 // Transfer the debug info and type metadata. The payload starts at offset 2466 // zero so we can copy the metadata over as is. 2467 NewGlobal->copyMetadata(G, 0); 2468 2469 Value *Indices2[2]; 2470 Indices2[0] = IRB.getInt32(0); 2471 Indices2[1] = IRB.getInt32(0); 2472 2473 G->replaceAllUsesWith( 2474 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2475 NewGlobal->takeName(G); 2476 G->eraseFromParent(); 2477 NewGlobals[i] = NewGlobal; 2478 2479 Constant *SourceLoc; 2480 if (!MD.SourceLoc.empty()) { 2481 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2482 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2483 } else { 2484 SourceLoc = ConstantInt::get(IntptrTy, 0); 2485 } 2486 2487 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2488 GlobalValue *InstrumentedGlobal = NewGlobal; 2489 2490 bool CanUsePrivateAliases = 2491 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2492 TargetTriple.isOSBinFormatWasm(); 2493 if (CanUsePrivateAliases && UsePrivateAlias) { 2494 // Create local alias for NewGlobal to avoid crash on ODR between 2495 // instrumented and non-instrumented libraries. 2496 InstrumentedGlobal = 2497 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2498 } 2499 2500 // ODR should not happen for local linkage. 2501 if (NewGlobal->hasLocalLinkage()) { 2502 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2503 IRB.getInt8PtrTy()); 2504 } else if (UseOdrIndicator) { 2505 // With local aliases, we need to provide another externally visible 2506 // symbol __odr_asan_XXX to detect ODR violation. 2507 auto *ODRIndicatorSym = 2508 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2509 Constant::getNullValue(IRB.getInt8Ty()), 2510 kODRGenPrefix + NameForGlobal, nullptr, 2511 NewGlobal->getThreadLocalMode()); 2512 2513 // Set meaningful attributes for indicator symbol. 2514 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2515 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2516 ODRIndicatorSym->setAlignment(Align(1)); 2517 ODRIndicator = ODRIndicatorSym; 2518 } 2519 2520 Constant *Initializer = ConstantStruct::get( 2521 GlobalStructTy, 2522 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2523 ConstantInt::get(IntptrTy, SizeInBytes), 2524 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2525 ConstantExpr::getPointerCast(Name, IntptrTy), 2526 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2527 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2528 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2529 2530 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2531 2532 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2533 2534 Initializers[i] = Initializer; 2535 } 2536 2537 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2538 // ConstantMerge'ing them. 2539 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2540 for (size_t i = 0; i < n; i++) { 2541 GlobalVariable *G = NewGlobals[i]; 2542 if (G->getName().empty()) continue; 2543 GlobalsToAddToUsedList.push_back(G); 2544 } 2545 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2546 2547 std::string ELFUniqueModuleId = 2548 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2549 : ""; 2550 2551 if (!ELFUniqueModuleId.empty()) { 2552 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2553 *CtorComdat = true; 2554 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2555 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2556 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2557 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2558 } else { 2559 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2560 } 2561 2562 // Create calls for poisoning before initializers run and unpoisoning after. 2563 if (HasDynamicallyInitializedGlobals) 2564 createInitializerPoisonCalls(M, ModuleName); 2565 2566 LLVM_DEBUG(dbgs() << M); 2567 return true; 2568 } 2569 2570 uint64_t 2571 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2572 constexpr uint64_t kMaxRZ = 1 << 18; 2573 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2574 2575 uint64_t RZ = 0; 2576 if (SizeInBytes <= MinRZ / 2) { 2577 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2578 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2579 // half of MinRZ. 2580 RZ = MinRZ - SizeInBytes; 2581 } else { 2582 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2583 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2584 2585 // Round up to multiple of MinRZ. 2586 if (SizeInBytes % MinRZ) 2587 RZ += MinRZ - (SizeInBytes % MinRZ); 2588 } 2589 2590 assert((RZ + SizeInBytes) % MinRZ == 0); 2591 2592 return RZ; 2593 } 2594 2595 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2596 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2597 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2598 int Version = 8; 2599 // 32-bit Android is one version ahead because of the switch to dynamic 2600 // shadow. 2601 Version += (LongSize == 32 && isAndroid); 2602 return Version; 2603 } 2604 2605 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2606 initializeCallbacks(M); 2607 2608 // Create a module constructor. A destructor is created lazily because not all 2609 // platforms, and not all modules need it. 2610 if (CompileKernel) { 2611 // The kernel always builds with its own runtime, and therefore does not 2612 // need the init and version check calls. 2613 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2614 } else { 2615 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2616 std::string VersionCheckName = 2617 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2618 std::tie(AsanCtorFunction, std::ignore) = 2619 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2620 kAsanInitName, /*InitArgTypes=*/{}, 2621 /*InitArgs=*/{}, VersionCheckName); 2622 } 2623 2624 bool CtorComdat = true; 2625 if (ClGlobals) { 2626 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2627 InstrumentGlobals(IRB, M, &CtorComdat); 2628 } 2629 2630 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2631 2632 // Put the constructor and destructor in comdat if both 2633 // (1) global instrumentation is not TU-specific 2634 // (2) target is ELF. 2635 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2636 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2637 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2638 if (AsanDtorFunction) { 2639 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2640 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2641 } 2642 } else { 2643 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2644 if (AsanDtorFunction) 2645 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2646 } 2647 2648 return true; 2649 } 2650 2651 void AddressSanitizer::initializeCallbacks(Module &M) { 2652 IRBuilder<> IRB(*C); 2653 // Create __asan_report* callbacks. 2654 // IsWrite, TypeSize and Exp are encoded in the function name. 2655 for (int Exp = 0; Exp < 2; Exp++) { 2656 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2657 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2658 const std::string ExpStr = Exp ? "exp_" : ""; 2659 const std::string EndingStr = Recover ? "_noabort" : ""; 2660 2661 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2662 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2663 if (Exp) { 2664 Type *ExpType = Type::getInt32Ty(*C); 2665 Args2.push_back(ExpType); 2666 Args1.push_back(ExpType); 2667 } 2668 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2669 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2670 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2671 2672 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2673 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2674 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2675 2676 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2677 AccessSizeIndex++) { 2678 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2679 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2680 M.getOrInsertFunction( 2681 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2682 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2683 2684 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2685 M.getOrInsertFunction( 2686 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2687 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2688 } 2689 } 2690 } 2691 2692 const std::string MemIntrinCallbackPrefix = 2693 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2694 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2695 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2696 IRB.getInt8PtrTy(), IntptrTy); 2697 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2698 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2699 IRB.getInt8PtrTy(), IntptrTy); 2700 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2701 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2702 IRB.getInt32Ty(), IntptrTy); 2703 2704 AsanHandleNoReturnFunc = 2705 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2706 2707 AsanPtrCmpFunction = 2708 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2709 AsanPtrSubFunction = 2710 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2711 if (Mapping.InGlobal) 2712 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2713 ArrayType::get(IRB.getInt8Ty(), 0)); 2714 2715 AMDGPUAddressShared = M.getOrInsertFunction( 2716 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2717 AMDGPUAddressPrivate = M.getOrInsertFunction( 2718 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2719 } 2720 2721 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2722 // For each NSObject descendant having a +load method, this method is invoked 2723 // by the ObjC runtime before any of the static constructors is called. 2724 // Therefore we need to instrument such methods with a call to __asan_init 2725 // at the beginning in order to initialize our runtime before any access to 2726 // the shadow memory. 2727 // We cannot just ignore these methods, because they may call other 2728 // instrumented functions. 2729 if (F.getName().find(" load]") != std::string::npos) { 2730 FunctionCallee AsanInitFunction = 2731 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2732 IRBuilder<> IRB(&F.front(), F.front().begin()); 2733 IRB.CreateCall(AsanInitFunction, {}); 2734 return true; 2735 } 2736 return false; 2737 } 2738 2739 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2740 // Generate code only when dynamic addressing is needed. 2741 if (Mapping.Offset != kDynamicShadowSentinel) 2742 return false; 2743 2744 IRBuilder<> IRB(&F.front().front()); 2745 if (Mapping.InGlobal) { 2746 if (ClWithIfuncSuppressRemat) { 2747 // An empty inline asm with input reg == output reg. 2748 // An opaque pointer-to-int cast, basically. 2749 InlineAsm *Asm = InlineAsm::get( 2750 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2751 StringRef(""), StringRef("=r,0"), 2752 /*hasSideEffects=*/false); 2753 LocalDynamicShadow = 2754 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2755 } else { 2756 LocalDynamicShadow = 2757 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2758 } 2759 } else { 2760 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2761 kAsanShadowMemoryDynamicAddress, IntptrTy); 2762 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2763 } 2764 return true; 2765 } 2766 2767 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2768 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2769 // to it as uninteresting. This assumes we haven't started processing allocas 2770 // yet. This check is done up front because iterating the use list in 2771 // isInterestingAlloca would be algorithmically slower. 2772 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2773 2774 // Try to get the declaration of llvm.localescape. If it's not in the module, 2775 // we can exit early. 2776 if (!F.getParent()->getFunction("llvm.localescape")) return; 2777 2778 // Look for a call to llvm.localescape call in the entry block. It can't be in 2779 // any other block. 2780 for (Instruction &I : F.getEntryBlock()) { 2781 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2782 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2783 // We found a call. Mark all the allocas passed in as uninteresting. 2784 for (Value *Arg : II->arg_operands()) { 2785 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2786 assert(AI && AI->isStaticAlloca() && 2787 "non-static alloca arg to localescape"); 2788 ProcessedAllocas[AI] = false; 2789 } 2790 break; 2791 } 2792 } 2793 } 2794 2795 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2796 bool ShouldInstrument = 2797 ClDebugMin < 0 || ClDebugMax < 0 || 2798 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2799 Instrumented++; 2800 return !ShouldInstrument; 2801 } 2802 2803 bool AddressSanitizer::instrumentFunction(Function &F, 2804 const TargetLibraryInfo *TLI) { 2805 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2806 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2807 if (F.getName().startswith("__asan_")) return false; 2808 2809 bool FunctionModified = false; 2810 2811 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2812 // This function needs to be called even if the function body is not 2813 // instrumented. 2814 if (maybeInsertAsanInitAtFunctionEntry(F)) 2815 FunctionModified = true; 2816 2817 // Leave if the function doesn't need instrumentation. 2818 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2819 2820 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2821 2822 initializeCallbacks(*F.getParent()); 2823 2824 FunctionStateRAII CleanupObj(this); 2825 2826 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2827 2828 // We can't instrument allocas used with llvm.localescape. Only static allocas 2829 // can be passed to that intrinsic. 2830 markEscapedLocalAllocas(F); 2831 2832 // We want to instrument every address only once per basic block (unless there 2833 // are calls between uses). 2834 SmallPtrSet<Value *, 16> TempsToInstrument; 2835 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2836 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2837 SmallVector<Instruction *, 8> NoReturnCalls; 2838 SmallVector<BasicBlock *, 16> AllBlocks; 2839 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2840 int NumAllocas = 0; 2841 2842 // Fill the set of memory operations to instrument. 2843 for (auto &BB : F) { 2844 AllBlocks.push_back(&BB); 2845 TempsToInstrument.clear(); 2846 int NumInsnsPerBB = 0; 2847 for (auto &Inst : BB) { 2848 if (LooksLikeCodeInBug11395(&Inst)) return false; 2849 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2850 getInterestingMemoryOperands(&Inst, InterestingOperands); 2851 2852 if (!InterestingOperands.empty()) { 2853 for (auto &Operand : InterestingOperands) { 2854 if (ClOpt && ClOptSameTemp) { 2855 Value *Ptr = Operand.getPtr(); 2856 // If we have a mask, skip instrumentation if we've already 2857 // instrumented the full object. But don't add to TempsToInstrument 2858 // because we might get another load/store with a different mask. 2859 if (Operand.MaybeMask) { 2860 if (TempsToInstrument.count(Ptr)) 2861 continue; // We've seen this (whole) temp in the current BB. 2862 } else { 2863 if (!TempsToInstrument.insert(Ptr).second) 2864 continue; // We've seen this temp in the current BB. 2865 } 2866 } 2867 OperandsToInstrument.push_back(Operand); 2868 NumInsnsPerBB++; 2869 } 2870 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2871 isInterestingPointerComparison(&Inst)) || 2872 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2873 isInterestingPointerSubtraction(&Inst))) { 2874 PointerComparisonsOrSubtracts.push_back(&Inst); 2875 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2876 // ok, take it. 2877 IntrinToInstrument.push_back(MI); 2878 NumInsnsPerBB++; 2879 } else { 2880 if (isa<AllocaInst>(Inst)) NumAllocas++; 2881 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2882 // A call inside BB. 2883 TempsToInstrument.clear(); 2884 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2885 NoReturnCalls.push_back(CB); 2886 } 2887 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2888 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2889 } 2890 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2891 } 2892 } 2893 2894 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2895 OperandsToInstrument.size() + IntrinToInstrument.size() > 2896 (unsigned)ClInstrumentationWithCallsThreshold); 2897 const DataLayout &DL = F.getParent()->getDataLayout(); 2898 ObjectSizeOpts ObjSizeOpts; 2899 ObjSizeOpts.RoundToAlign = true; 2900 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2901 2902 // Instrument. 2903 int NumInstrumented = 0; 2904 for (auto &Operand : OperandsToInstrument) { 2905 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2906 instrumentMop(ObjSizeVis, Operand, UseCalls, 2907 F.getParent()->getDataLayout()); 2908 FunctionModified = true; 2909 } 2910 for (auto Inst : IntrinToInstrument) { 2911 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2912 instrumentMemIntrinsic(Inst); 2913 FunctionModified = true; 2914 } 2915 2916 FunctionStackPoisoner FSP(F, *this); 2917 bool ChangedStack = FSP.runOnFunction(); 2918 2919 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2920 // See e.g. https://github.com/google/sanitizers/issues/37 2921 for (auto CI : NoReturnCalls) { 2922 IRBuilder<> IRB(CI); 2923 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2924 } 2925 2926 for (auto Inst : PointerComparisonsOrSubtracts) { 2927 instrumentPointerComparisonOrSubtraction(Inst); 2928 FunctionModified = true; 2929 } 2930 2931 if (ChangedStack || !NoReturnCalls.empty()) 2932 FunctionModified = true; 2933 2934 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2935 << F << "\n"); 2936 2937 return FunctionModified; 2938 } 2939 2940 // Workaround for bug 11395: we don't want to instrument stack in functions 2941 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2942 // FIXME: remove once the bug 11395 is fixed. 2943 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2944 if (LongSize != 32) return false; 2945 CallInst *CI = dyn_cast<CallInst>(I); 2946 if (!CI || !CI->isInlineAsm()) return false; 2947 if (CI->getNumArgOperands() <= 5) return false; 2948 // We have inline assembly with quite a few arguments. 2949 return true; 2950 } 2951 2952 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2953 IRBuilder<> IRB(*C); 2954 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2955 std::string Suffix = itostr(i); 2956 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2957 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2958 AsanStackFreeFunc[i] = 2959 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2960 IRB.getVoidTy(), IntptrTy, IntptrTy); 2961 } 2962 if (ASan.UseAfterScope) { 2963 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2964 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2965 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2966 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2967 } 2968 2969 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2970 std::ostringstream Name; 2971 Name << kAsanSetShadowPrefix; 2972 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2973 AsanSetShadowFunc[Val] = 2974 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2975 } 2976 2977 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2978 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2979 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2980 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2981 } 2982 2983 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2984 ArrayRef<uint8_t> ShadowBytes, 2985 size_t Begin, size_t End, 2986 IRBuilder<> &IRB, 2987 Value *ShadowBase) { 2988 if (Begin >= End) 2989 return; 2990 2991 const size_t LargestStoreSizeInBytes = 2992 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2993 2994 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2995 2996 // Poison given range in shadow using larges store size with out leading and 2997 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2998 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2999 // middle of a store. 3000 for (size_t i = Begin; i < End;) { 3001 if (!ShadowMask[i]) { 3002 assert(!ShadowBytes[i]); 3003 ++i; 3004 continue; 3005 } 3006 3007 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 3008 // Fit store size into the range. 3009 while (StoreSizeInBytes > End - i) 3010 StoreSizeInBytes /= 2; 3011 3012 // Minimize store size by trimming trailing zeros. 3013 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 3014 while (j <= StoreSizeInBytes / 2) 3015 StoreSizeInBytes /= 2; 3016 } 3017 3018 uint64_t Val = 0; 3019 for (size_t j = 0; j < StoreSizeInBytes; j++) { 3020 if (IsLittleEndian) 3021 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 3022 else 3023 Val = (Val << 8) | ShadowBytes[i + j]; 3024 } 3025 3026 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 3027 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 3028 IRB.CreateAlignedStore( 3029 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 3030 Align(1)); 3031 3032 i += StoreSizeInBytes; 3033 } 3034 } 3035 3036 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3037 ArrayRef<uint8_t> ShadowBytes, 3038 IRBuilder<> &IRB, Value *ShadowBase) { 3039 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 3040 } 3041 3042 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3043 ArrayRef<uint8_t> ShadowBytes, 3044 size_t Begin, size_t End, 3045 IRBuilder<> &IRB, Value *ShadowBase) { 3046 assert(ShadowMask.size() == ShadowBytes.size()); 3047 size_t Done = Begin; 3048 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 3049 if (!ShadowMask[i]) { 3050 assert(!ShadowBytes[i]); 3051 continue; 3052 } 3053 uint8_t Val = ShadowBytes[i]; 3054 if (!AsanSetShadowFunc[Val]) 3055 continue; 3056 3057 // Skip same values. 3058 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 3059 } 3060 3061 if (j - i >= ClMaxInlinePoisoningSize) { 3062 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 3063 IRB.CreateCall(AsanSetShadowFunc[Val], 3064 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 3065 ConstantInt::get(IntptrTy, j - i)}); 3066 Done = j; 3067 } 3068 } 3069 3070 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 3071 } 3072 3073 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 3074 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 3075 static int StackMallocSizeClass(uint64_t LocalStackSize) { 3076 assert(LocalStackSize <= kMaxStackMallocSize); 3077 uint64_t MaxSize = kMinStackMallocSize; 3078 for (int i = 0;; i++, MaxSize *= 2) 3079 if (LocalStackSize <= MaxSize) return i; 3080 llvm_unreachable("impossible LocalStackSize"); 3081 } 3082 3083 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 3084 Instruction *CopyInsertPoint = &F.front().front(); 3085 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 3086 // Insert after the dynamic shadow location is determined 3087 CopyInsertPoint = CopyInsertPoint->getNextNode(); 3088 assert(CopyInsertPoint); 3089 } 3090 IRBuilder<> IRB(CopyInsertPoint); 3091 const DataLayout &DL = F.getParent()->getDataLayout(); 3092 for (Argument &Arg : F.args()) { 3093 if (Arg.hasByValAttr()) { 3094 Type *Ty = Arg.getParamByValType(); 3095 const Align Alignment = 3096 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 3097 3098 AllocaInst *AI = IRB.CreateAlloca( 3099 Ty, nullptr, 3100 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 3101 ".byval"); 3102 AI->setAlignment(Alignment); 3103 Arg.replaceAllUsesWith(AI); 3104 3105 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3106 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3107 } 3108 } 3109 } 3110 3111 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3112 Value *ValueIfTrue, 3113 Instruction *ThenTerm, 3114 Value *ValueIfFalse) { 3115 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3116 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3117 PHI->addIncoming(ValueIfFalse, CondBlock); 3118 BasicBlock *ThenBlock = ThenTerm->getParent(); 3119 PHI->addIncoming(ValueIfTrue, ThenBlock); 3120 return PHI; 3121 } 3122 3123 Value *FunctionStackPoisoner::createAllocaForLayout( 3124 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3125 AllocaInst *Alloca; 3126 if (Dynamic) { 3127 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3128 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3129 "MyAlloca"); 3130 } else { 3131 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3132 nullptr, "MyAlloca"); 3133 assert(Alloca->isStaticAlloca()); 3134 } 3135 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3136 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 3137 Alloca->setAlignment(Align(FrameAlignment)); 3138 return IRB.CreatePointerCast(Alloca, IntptrTy); 3139 } 3140 3141 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3142 BasicBlock &FirstBB = *F.begin(); 3143 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3144 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3145 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3146 DynamicAllocaLayout->setAlignment(Align(32)); 3147 } 3148 3149 void FunctionStackPoisoner::processDynamicAllocas() { 3150 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3151 assert(DynamicAllocaPoisonCallVec.empty()); 3152 return; 3153 } 3154 3155 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3156 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3157 assert(APC.InsBefore); 3158 assert(APC.AI); 3159 assert(ASan.isInterestingAlloca(*APC.AI)); 3160 assert(!APC.AI->isStaticAlloca()); 3161 3162 IRBuilder<> IRB(APC.InsBefore); 3163 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3164 // Dynamic allocas will be unpoisoned unconditionally below in 3165 // unpoisonDynamicAllocas. 3166 // Flag that we need unpoison static allocas. 3167 } 3168 3169 // Handle dynamic allocas. 3170 createDynamicAllocasInitStorage(); 3171 for (auto &AI : DynamicAllocaVec) 3172 handleDynamicAllocaCall(AI); 3173 unpoisonDynamicAllocas(); 3174 } 3175 3176 /// Collect instructions in the entry block after \p InsBefore which initialize 3177 /// permanent storage for a function argument. These instructions must remain in 3178 /// the entry block so that uninitialized values do not appear in backtraces. An 3179 /// added benefit is that this conserves spill slots. This does not move stores 3180 /// before instrumented / "interesting" allocas. 3181 static void findStoresToUninstrumentedArgAllocas( 3182 AddressSanitizer &ASan, Instruction &InsBefore, 3183 SmallVectorImpl<Instruction *> &InitInsts) { 3184 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3185 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3186 // Argument initialization looks like: 3187 // 1) store <Argument>, <Alloca> OR 3188 // 2) <CastArgument> = cast <Argument> to ... 3189 // store <CastArgument> to <Alloca> 3190 // Do not consider any other kind of instruction. 3191 // 3192 // Note: This covers all known cases, but may not be exhaustive. An 3193 // alternative to pattern-matching stores is to DFS over all Argument uses: 3194 // this might be more general, but is probably much more complicated. 3195 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3196 continue; 3197 if (auto *Store = dyn_cast<StoreInst>(It)) { 3198 // The store destination must be an alloca that isn't interesting for 3199 // ASan to instrument. These are moved up before InsBefore, and they're 3200 // not interesting because allocas for arguments can be mem2reg'd. 3201 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3202 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3203 continue; 3204 3205 Value *Val = Store->getValueOperand(); 3206 bool IsDirectArgInit = isa<Argument>(Val); 3207 bool IsArgInitViaCast = 3208 isa<CastInst>(Val) && 3209 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3210 // Check that the cast appears directly before the store. Otherwise 3211 // moving the cast before InsBefore may break the IR. 3212 Val == It->getPrevNonDebugInstruction(); 3213 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3214 if (!IsArgInit) 3215 continue; 3216 3217 if (IsArgInitViaCast) 3218 InitInsts.push_back(cast<Instruction>(Val)); 3219 InitInsts.push_back(Store); 3220 continue; 3221 } 3222 3223 // Do not reorder past unknown instructions: argument initialization should 3224 // only involve casts and stores. 3225 return; 3226 } 3227 } 3228 3229 void FunctionStackPoisoner::processStaticAllocas() { 3230 if (AllocaVec.empty()) { 3231 assert(StaticAllocaPoisonCallVec.empty()); 3232 return; 3233 } 3234 3235 int StackMallocIdx = -1; 3236 DebugLoc EntryDebugLocation; 3237 if (auto SP = F.getSubprogram()) 3238 EntryDebugLocation = 3239 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3240 3241 Instruction *InsBefore = AllocaVec[0]; 3242 IRBuilder<> IRB(InsBefore); 3243 3244 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3245 // debug info is broken, because only entry-block allocas are treated as 3246 // regular stack slots. 3247 auto InsBeforeB = InsBefore->getParent(); 3248 assert(InsBeforeB == &F.getEntryBlock()); 3249 for (auto *AI : StaticAllocasToMoveUp) 3250 if (AI->getParent() == InsBeforeB) 3251 AI->moveBefore(InsBefore); 3252 3253 // Move stores of arguments into entry-block allocas as well. This prevents 3254 // extra stack slots from being generated (to house the argument values until 3255 // they can be stored into the allocas). This also prevents uninitialized 3256 // values from being shown in backtraces. 3257 SmallVector<Instruction *, 8> ArgInitInsts; 3258 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3259 for (Instruction *ArgInitInst : ArgInitInsts) 3260 ArgInitInst->moveBefore(InsBefore); 3261 3262 // If we have a call to llvm.localescape, keep it in the entry block. 3263 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3264 3265 SmallVector<ASanStackVariableDescription, 16> SVD; 3266 SVD.reserve(AllocaVec.size()); 3267 for (AllocaInst *AI : AllocaVec) { 3268 ASanStackVariableDescription D = {AI->getName().data(), 3269 ASan.getAllocaSizeInBytes(*AI), 3270 0, 3271 AI->getAlignment(), 3272 AI, 3273 0, 3274 0}; 3275 SVD.push_back(D); 3276 } 3277 3278 // Minimal header size (left redzone) is 4 pointers, 3279 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3280 size_t Granularity = 1ULL << Mapping.Scale; 3281 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3282 const ASanStackFrameLayout &L = 3283 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3284 3285 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3286 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3287 for (auto &Desc : SVD) 3288 AllocaToSVDMap[Desc.AI] = &Desc; 3289 3290 // Update SVD with information from lifetime intrinsics. 3291 for (const auto &APC : StaticAllocaPoisonCallVec) { 3292 assert(APC.InsBefore); 3293 assert(APC.AI); 3294 assert(ASan.isInterestingAlloca(*APC.AI)); 3295 assert(APC.AI->isStaticAlloca()); 3296 3297 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3298 Desc.LifetimeSize = Desc.Size; 3299 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3300 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3301 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3302 if (unsigned Line = LifetimeLoc->getLine()) 3303 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3304 } 3305 } 3306 } 3307 3308 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3309 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3310 uint64_t LocalStackSize = L.FrameSize; 3311 bool DoStackMalloc = 3312 ClUseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3313 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3314 bool DoDynamicAlloca = ClDynamicAllocaStack; 3315 // Don't do dynamic alloca or stack malloc if: 3316 // 1) There is inline asm: too often it makes assumptions on which registers 3317 // are available. 3318 // 2) There is a returns_twice call (typically setjmp), which is 3319 // optimization-hostile, and doesn't play well with introduced indirect 3320 // register-relative calculation of local variable addresses. 3321 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3322 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3323 3324 Value *StaticAlloca = 3325 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3326 3327 Value *FakeStack; 3328 Value *LocalStackBase; 3329 Value *LocalStackBaseAlloca; 3330 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3331 3332 if (DoStackMalloc) { 3333 LocalStackBaseAlloca = 3334 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3335 if (ClUseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3336 // void *FakeStack = __asan_option_detect_stack_use_after_return 3337 // ? __asan_stack_malloc_N(LocalStackSize) 3338 // : nullptr; 3339 // void *LocalStackBase = (FakeStack) ? FakeStack : 3340 // alloca(LocalStackSize); 3341 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3342 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3343 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3344 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3345 Constant::getNullValue(IRB.getInt32Ty())); 3346 Instruction *Term = 3347 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3348 IRBuilder<> IRBIf(Term); 3349 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3350 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3351 Value *FakeStackValue = 3352 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3353 ConstantInt::get(IntptrTy, LocalStackSize)); 3354 IRB.SetInsertPoint(InsBefore); 3355 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3356 ConstantInt::get(IntptrTy, 0)); 3357 } else { 3358 // assert(ClUseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3359 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3360 // void *LocalStackBase = (FakeStack) ? FakeStack : 3361 // alloca(LocalStackSize); 3362 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3363 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3364 ConstantInt::get(IntptrTy, LocalStackSize)); 3365 } 3366 Value *NoFakeStack = 3367 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3368 Instruction *Term = 3369 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3370 IRBuilder<> IRBIf(Term); 3371 Value *AllocaValue = 3372 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3373 3374 IRB.SetInsertPoint(InsBefore); 3375 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3376 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3377 DIExprFlags |= DIExpression::DerefBefore; 3378 } else { 3379 // void *FakeStack = nullptr; 3380 // void *LocalStackBase = alloca(LocalStackSize); 3381 FakeStack = ConstantInt::get(IntptrTy, 0); 3382 LocalStackBase = 3383 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3384 LocalStackBaseAlloca = LocalStackBase; 3385 } 3386 3387 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3388 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3389 // later passes and can result in dropped variable coverage in debug info. 3390 Value *LocalStackBaseAllocaPtr = 3391 isa<PtrToIntInst>(LocalStackBaseAlloca) 3392 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3393 : LocalStackBaseAlloca; 3394 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3395 "Variable descriptions relative to ASan stack base will be dropped"); 3396 3397 // Replace Alloca instructions with base+offset. 3398 for (const auto &Desc : SVD) { 3399 AllocaInst *AI = Desc.AI; 3400 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3401 Desc.Offset); 3402 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3403 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3404 AI->getType()); 3405 AI->replaceAllUsesWith(NewAllocaPtr); 3406 } 3407 3408 // The left-most redzone has enough space for at least 4 pointers. 3409 // Write the Magic value to redzone[0]. 3410 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3411 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3412 BasePlus0); 3413 // Write the frame description constant to redzone[1]. 3414 Value *BasePlus1 = IRB.CreateIntToPtr( 3415 IRB.CreateAdd(LocalStackBase, 3416 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3417 IntptrPtrTy); 3418 GlobalVariable *StackDescriptionGlobal = 3419 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3420 /*AllowMerging*/ true, kAsanGenPrefix); 3421 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3422 IRB.CreateStore(Description, BasePlus1); 3423 // Write the PC to redzone[2]. 3424 Value *BasePlus2 = IRB.CreateIntToPtr( 3425 IRB.CreateAdd(LocalStackBase, 3426 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3427 IntptrPtrTy); 3428 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3429 3430 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3431 3432 // Poison the stack red zones at the entry. 3433 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3434 // As mask we must use most poisoned case: red zones and after scope. 3435 // As bytes we can use either the same or just red zones only. 3436 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3437 3438 if (!StaticAllocaPoisonCallVec.empty()) { 3439 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3440 3441 // Poison static allocas near lifetime intrinsics. 3442 for (const auto &APC : StaticAllocaPoisonCallVec) { 3443 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3444 assert(Desc.Offset % L.Granularity == 0); 3445 size_t Begin = Desc.Offset / L.Granularity; 3446 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3447 3448 IRBuilder<> IRB(APC.InsBefore); 3449 copyToShadow(ShadowAfterScope, 3450 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3451 IRB, ShadowBase); 3452 } 3453 } 3454 3455 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3456 SmallVector<uint8_t, 64> ShadowAfterReturn; 3457 3458 // (Un)poison the stack before all ret instructions. 3459 for (Instruction *Ret : RetVec) { 3460 IRBuilder<> IRBRet(Ret); 3461 // Mark the current frame as retired. 3462 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3463 BasePlus0); 3464 if (DoStackMalloc) { 3465 assert(StackMallocIdx >= 0); 3466 // if FakeStack != 0 // LocalStackBase == FakeStack 3467 // // In use-after-return mode, poison the whole stack frame. 3468 // if StackMallocIdx <= 4 3469 // // For small sizes inline the whole thing: 3470 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3471 // **SavedFlagPtr(FakeStack) = 0 3472 // else 3473 // __asan_stack_free_N(FakeStack, LocalStackSize) 3474 // else 3475 // <This is not a fake stack; unpoison the redzones> 3476 Value *Cmp = 3477 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3478 Instruction *ThenTerm, *ElseTerm; 3479 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3480 3481 IRBuilder<> IRBPoison(ThenTerm); 3482 if (StackMallocIdx <= 4) { 3483 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3484 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3485 kAsanStackUseAfterReturnMagic); 3486 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3487 ShadowBase); 3488 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3489 FakeStack, 3490 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3491 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3492 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3493 IRBPoison.CreateStore( 3494 Constant::getNullValue(IRBPoison.getInt8Ty()), 3495 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3496 } else { 3497 // For larger frames call __asan_stack_free_*. 3498 IRBPoison.CreateCall( 3499 AsanStackFreeFunc[StackMallocIdx], 3500 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3501 } 3502 3503 IRBuilder<> IRBElse(ElseTerm); 3504 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3505 } else { 3506 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3507 } 3508 } 3509 3510 // We are done. Remove the old unused alloca instructions. 3511 for (auto AI : AllocaVec) AI->eraseFromParent(); 3512 } 3513 3514 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3515 IRBuilder<> &IRB, bool DoPoison) { 3516 // For now just insert the call to ASan runtime. 3517 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3518 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3519 IRB.CreateCall( 3520 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3521 {AddrArg, SizeArg}); 3522 } 3523 3524 // Handling llvm.lifetime intrinsics for a given %alloca: 3525 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3526 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3527 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3528 // could be poisoned by previous llvm.lifetime.end instruction, as the 3529 // variable may go in and out of scope several times, e.g. in loops). 3530 // (3) if we poisoned at least one %alloca in a function, 3531 // unpoison the whole stack frame at function exit. 3532 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3533 IRBuilder<> IRB(AI); 3534 3535 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3536 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3537 3538 Value *Zero = Constant::getNullValue(IntptrTy); 3539 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3540 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3541 3542 // Since we need to extend alloca with additional memory to locate 3543 // redzones, and OldSize is number of allocated blocks with 3544 // ElementSize size, get allocated memory size in bytes by 3545 // OldSize * ElementSize. 3546 const unsigned ElementSize = 3547 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3548 Value *OldSize = 3549 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3550 ConstantInt::get(IntptrTy, ElementSize)); 3551 3552 // PartialSize = OldSize % 32 3553 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3554 3555 // Misalign = kAllocaRzSize - PartialSize; 3556 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3557 3558 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3559 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3560 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3561 3562 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3563 // Alignment is added to locate left redzone, PartialPadding for possible 3564 // partial redzone and kAllocaRzSize for right redzone respectively. 3565 Value *AdditionalChunkSize = IRB.CreateAdd( 3566 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3567 3568 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3569 3570 // Insert new alloca with new NewSize and Alignment params. 3571 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3572 NewAlloca->setAlignment(Align(Alignment)); 3573 3574 // NewAddress = Address + Alignment 3575 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3576 ConstantInt::get(IntptrTy, Alignment)); 3577 3578 // Insert __asan_alloca_poison call for new created alloca. 3579 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3580 3581 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3582 // for unpoisoning stuff. 3583 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3584 3585 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3586 3587 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3588 AI->replaceAllUsesWith(NewAddressPtr); 3589 3590 // We are done. Erase old alloca from parent. 3591 AI->eraseFromParent(); 3592 } 3593 3594 // isSafeAccess returns true if Addr is always inbounds with respect to its 3595 // base object. For example, it is a field access or an array access with 3596 // constant inbounds index. 3597 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3598 Value *Addr, uint64_t TypeSize) const { 3599 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3600 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3601 uint64_t Size = SizeOffset.first.getZExtValue(); 3602 int64_t Offset = SizeOffset.second.getSExtValue(); 3603 // Three checks are required to ensure safety: 3604 // . Offset >= 0 (since the offset is given from the base ptr) 3605 // . Size >= Offset (unsigned) 3606 // . Size - Offset >= NeededSize (unsigned) 3607 return Offset >= 0 && Size >= uint64_t(Offset) && 3608 Size - uint64_t(Offset) >= TypeSize / 8; 3609 } 3610