1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 // FIXME: This sanitizer does not yet handle scalable vectors 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/BinaryFormat/MachO.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DIBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstVisitor.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCSectionMachO.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/ScopedPrinter.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/ModuleUtils.h" 80 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstddef> 84 #include <cstdint> 85 #include <iomanip> 86 #include <limits> 87 #include <memory> 88 #include <sstream> 89 #include <string> 90 #include <tuple> 91 92 using namespace llvm; 93 94 #define DEBUG_TYPE "asan" 95 96 static const uint64_t kDefaultShadowScale = 3; 97 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 98 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 99 static const uint64_t kDynamicShadowSentinel = 100 std::numeric_limits<uint64_t>::max(); 101 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 102 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 103 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 104 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 105 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 106 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 107 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 108 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 109 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 110 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 111 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 112 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 113 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 114 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 115 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 116 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 117 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 118 static const uint64_t kEmscriptenShadowOffset = 0; 119 120 // The shadow memory space is dynamically allocated. 121 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 122 123 static const size_t kMinStackMallocSize = 1 << 6; // 64B 124 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 125 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 126 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 127 128 const char kAsanModuleCtorName[] = "asan.module_ctor"; 129 const char kAsanModuleDtorName[] = "asan.module_dtor"; 130 static const uint64_t kAsanCtorAndDtorPriority = 1; 131 // On Emscripten, the system needs more than one priorities for constructors. 132 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 133 const char kAsanReportErrorTemplate[] = "__asan_report_"; 134 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 135 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 136 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 137 const char kAsanUnregisterImageGlobalsName[] = 138 "__asan_unregister_image_globals"; 139 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 140 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 141 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 142 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 143 const char kAsanInitName[] = "__asan_init"; 144 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 145 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 146 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 147 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 148 static const int kMaxAsanStackMallocSizeClass = 10; 149 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 150 const char kAsanStackMallocAlwaysNameTemplate[] = 151 "__asan_stack_malloc_always_"; 152 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 153 const char kAsanGenPrefix[] = "___asan_gen_"; 154 const char kODRGenPrefix[] = "__odr_asan_gen_"; 155 const char kSanCovGenPrefix[] = "__sancov_gen_"; 156 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 157 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 158 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 159 160 // ASan version script has __asan_* wildcard. Triple underscore prevents a 161 // linker (gold) warning about attempting to export a local symbol. 162 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 163 164 const char kAsanOptionDetectUseAfterReturn[] = 165 "__asan_option_detect_stack_use_after_return"; 166 167 const char kAsanShadowMemoryDynamicAddress[] = 168 "__asan_shadow_memory_dynamic_address"; 169 170 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 171 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 172 173 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 174 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 175 176 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 177 static const size_t kNumberOfAccessSizes = 5; 178 179 static const uint64_t kAllocaRzSize = 32; 180 181 // ASanAccessInfo implementation constants. 182 constexpr size_t kCompileKernelShift = 0; 183 constexpr size_t kCompileKernelMask = 0x1; 184 constexpr size_t kAccessSizeIndexShift = 1; 185 constexpr size_t kAccessSizeIndexMask = 0xf; 186 constexpr size_t kIsWriteShift = 5; 187 constexpr size_t kIsWriteMask = 0x1; 188 189 // Command-line flags. 190 191 static cl::opt<bool> ClEnableKasan( 192 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 193 cl::Hidden, cl::init(false)); 194 195 static cl::opt<bool> ClRecover( 196 "asan-recover", 197 cl::desc("Enable recovery mode (continue-after-error)."), 198 cl::Hidden, cl::init(false)); 199 200 static cl::opt<bool> ClInsertVersionCheck( 201 "asan-guard-against-version-mismatch", 202 cl::desc("Guard against compiler/runtime version mismatch."), 203 cl::Hidden, cl::init(true)); 204 205 // This flag may need to be replaced with -f[no-]asan-reads. 206 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 207 cl::desc("instrument read instructions"), 208 cl::Hidden, cl::init(true)); 209 210 static cl::opt<bool> ClInstrumentWrites( 211 "asan-instrument-writes", cl::desc("instrument write instructions"), 212 cl::Hidden, cl::init(true)); 213 214 static cl::opt<bool> ClInstrumentAtomics( 215 "asan-instrument-atomics", 216 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 217 cl::init(true)); 218 219 static cl::opt<bool> 220 ClInstrumentByval("asan-instrument-byval", 221 cl::desc("instrument byval call arguments"), cl::Hidden, 222 cl::init(true)); 223 224 static cl::opt<bool> ClAlwaysSlowPath( 225 "asan-always-slow-path", 226 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 227 cl::init(false)); 228 229 static cl::opt<bool> ClForceDynamicShadow( 230 "asan-force-dynamic-shadow", 231 cl::desc("Load shadow address into a local variable for each function"), 232 cl::Hidden, cl::init(false)); 233 234 static cl::opt<bool> 235 ClWithIfunc("asan-with-ifunc", 236 cl::desc("Access dynamic shadow through an ifunc global on " 237 "platforms that support this"), 238 cl::Hidden, cl::init(true)); 239 240 static cl::opt<bool> ClWithIfuncSuppressRemat( 241 "asan-with-ifunc-suppress-remat", 242 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 243 "it through inline asm in prologue."), 244 cl::Hidden, cl::init(true)); 245 246 // This flag limits the number of instructions to be instrumented 247 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 248 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 249 // set it to 10000. 250 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 251 "asan-max-ins-per-bb", cl::init(10000), 252 cl::desc("maximal number of instructions to instrument in any given BB"), 253 cl::Hidden); 254 255 // This flag may need to be replaced with -f[no]asan-stack. 256 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 257 cl::Hidden, cl::init(true)); 258 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 259 "asan-max-inline-poisoning-size", 260 cl::desc( 261 "Inline shadow poisoning for blocks up to the given size in bytes."), 262 cl::Hidden, cl::init(64)); 263 264 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 265 "asan-use-after-return", 266 cl::desc("Sets the mode of detection for stack-use-after-return."), 267 cl::values( 268 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 269 "Never detect stack use after return."), 270 clEnumValN( 271 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 272 "Detect stack use after return if " 273 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 274 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 275 "Always detect stack use after return.")), 276 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 277 278 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 279 cl::desc("Create redzones for byval " 280 "arguments (extra copy " 281 "required)"), cl::Hidden, 282 cl::init(true)); 283 284 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 285 cl::desc("Check stack-use-after-scope"), 286 cl::Hidden, cl::init(false)); 287 288 // This flag may need to be replaced with -f[no]asan-globals. 289 static cl::opt<bool> ClGlobals("asan-globals", 290 cl::desc("Handle global objects"), cl::Hidden, 291 cl::init(true)); 292 293 static cl::opt<bool> ClInitializers("asan-initialization-order", 294 cl::desc("Handle C++ initializer order"), 295 cl::Hidden, cl::init(true)); 296 297 static cl::opt<bool> ClInvalidPointerPairs( 298 "asan-detect-invalid-pointer-pair", 299 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 300 cl::init(false)); 301 302 static cl::opt<bool> ClInvalidPointerCmp( 303 "asan-detect-invalid-pointer-cmp", 304 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 305 cl::init(false)); 306 307 static cl::opt<bool> ClInvalidPointerSub( 308 "asan-detect-invalid-pointer-sub", 309 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 310 cl::init(false)); 311 312 static cl::opt<unsigned> ClRealignStack( 313 "asan-realign-stack", 314 cl::desc("Realign stack to the value of this flag (power of two)"), 315 cl::Hidden, cl::init(32)); 316 317 static cl::opt<int> ClInstrumentationWithCallsThreshold( 318 "asan-instrumentation-with-call-threshold", 319 cl::desc( 320 "If the function being instrumented contains more than " 321 "this number of memory accesses, use callbacks instead of " 322 "inline checks (-1 means never use callbacks)."), 323 cl::Hidden, cl::init(7000)); 324 325 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 326 "asan-memory-access-callback-prefix", 327 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 328 cl::init("__asan_")); 329 330 static cl::opt<bool> 331 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 332 cl::desc("instrument dynamic allocas"), 333 cl::Hidden, cl::init(true)); 334 335 static cl::opt<bool> ClSkipPromotableAllocas( 336 "asan-skip-promotable-allocas", 337 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 338 cl::init(true)); 339 340 // These flags allow to change the shadow mapping. 341 // The shadow mapping looks like 342 // Shadow = (Mem >> scale) + offset 343 344 static cl::opt<int> ClMappingScale("asan-mapping-scale", 345 cl::desc("scale of asan shadow mapping"), 346 cl::Hidden, cl::init(0)); 347 348 static cl::opt<uint64_t> 349 ClMappingOffset("asan-mapping-offset", 350 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 351 cl::Hidden, cl::init(0)); 352 353 // Optimization flags. Not user visible, used mostly for testing 354 // and benchmarking the tool. 355 356 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 357 cl::Hidden, cl::init(true)); 358 359 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 360 cl::desc("Optimize callbacks"), 361 cl::Hidden, cl::init(false)); 362 363 static cl::opt<bool> ClOptSameTemp( 364 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 365 cl::Hidden, cl::init(true)); 366 367 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 368 cl::desc("Don't instrument scalar globals"), 369 cl::Hidden, cl::init(true)); 370 371 static cl::opt<bool> ClOptStack( 372 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 373 cl::Hidden, cl::init(false)); 374 375 static cl::opt<bool> ClDynamicAllocaStack( 376 "asan-stack-dynamic-alloca", 377 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 378 cl::init(true)); 379 380 static cl::opt<uint32_t> ClForceExperiment( 381 "asan-force-experiment", 382 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 383 cl::init(0)); 384 385 static cl::opt<bool> 386 ClUsePrivateAlias("asan-use-private-alias", 387 cl::desc("Use private aliases for global variables"), 388 cl::Hidden, cl::init(false)); 389 390 static cl::opt<bool> 391 ClUseOdrIndicator("asan-use-odr-indicator", 392 cl::desc("Use odr indicators to improve ODR reporting"), 393 cl::Hidden, cl::init(false)); 394 395 static cl::opt<bool> 396 ClUseGlobalsGC("asan-globals-live-support", 397 cl::desc("Use linker features to support dead " 398 "code stripping of globals"), 399 cl::Hidden, cl::init(true)); 400 401 // This is on by default even though there is a bug in gold: 402 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 403 static cl::opt<bool> 404 ClWithComdat("asan-with-comdat", 405 cl::desc("Place ASan constructors in comdat sections"), 406 cl::Hidden, cl::init(true)); 407 408 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 409 "asan-destructor-kind", 410 cl::desc("Sets the ASan destructor kind. The default is to use the value " 411 "provided to the pass constructor"), 412 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 413 clEnumValN(AsanDtorKind::Global, "global", 414 "Use global destructors")), 415 cl::init(AsanDtorKind::Invalid), cl::Hidden); 416 417 // Debug flags. 418 419 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 420 cl::init(0)); 421 422 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 423 cl::Hidden, cl::init(0)); 424 425 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 426 cl::desc("Debug func")); 427 428 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 429 cl::Hidden, cl::init(-1)); 430 431 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 432 cl::Hidden, cl::init(-1)); 433 434 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 435 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 436 STATISTIC(NumOptimizedAccessesToGlobalVar, 437 "Number of optimized accesses to global vars"); 438 STATISTIC(NumOptimizedAccessesToStackVar, 439 "Number of optimized accesses to stack vars"); 440 441 namespace { 442 443 /// This struct defines the shadow mapping using the rule: 444 /// shadow = (mem >> Scale) ADD-or-OR Offset. 445 /// If InGlobal is true, then 446 /// extern char __asan_shadow[]; 447 /// shadow = (mem >> Scale) + &__asan_shadow 448 struct ShadowMapping { 449 int Scale; 450 uint64_t Offset; 451 bool OrShadowOffset; 452 bool InGlobal; 453 }; 454 455 } // end anonymous namespace 456 457 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 458 bool IsKasan) { 459 bool IsAndroid = TargetTriple.isAndroid(); 460 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 461 bool IsMacOS = TargetTriple.isMacOSX(); 462 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 463 bool IsNetBSD = TargetTriple.isOSNetBSD(); 464 bool IsPS4CPU = TargetTriple.isPS4CPU(); 465 bool IsLinux = TargetTriple.isOSLinux(); 466 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 467 TargetTriple.getArch() == Triple::ppc64le; 468 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 469 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 470 bool IsMIPS32 = TargetTriple.isMIPS32(); 471 bool IsMIPS64 = TargetTriple.isMIPS64(); 472 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 473 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 474 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 475 bool IsWindows = TargetTriple.isOSWindows(); 476 bool IsFuchsia = TargetTriple.isOSFuchsia(); 477 bool IsEmscripten = TargetTriple.isOSEmscripten(); 478 bool IsAMDGPU = TargetTriple.isAMDGPU(); 479 480 ShadowMapping Mapping; 481 482 Mapping.Scale = kDefaultShadowScale; 483 if (ClMappingScale.getNumOccurrences() > 0) { 484 Mapping.Scale = ClMappingScale; 485 } 486 487 if (LongSize == 32) { 488 if (IsAndroid) 489 Mapping.Offset = kDynamicShadowSentinel; 490 else if (IsMIPS32) 491 Mapping.Offset = kMIPS32_ShadowOffset32; 492 else if (IsFreeBSD) 493 Mapping.Offset = kFreeBSD_ShadowOffset32; 494 else if (IsNetBSD) 495 Mapping.Offset = kNetBSD_ShadowOffset32; 496 else if (IsIOS) 497 Mapping.Offset = kDynamicShadowSentinel; 498 else if (IsWindows) 499 Mapping.Offset = kWindowsShadowOffset32; 500 else if (IsEmscripten) 501 Mapping.Offset = kEmscriptenShadowOffset; 502 else 503 Mapping.Offset = kDefaultShadowOffset32; 504 } else { // LongSize == 64 505 // Fuchsia is always PIE, which means that the beginning of the address 506 // space is always available. 507 if (IsFuchsia) 508 Mapping.Offset = 0; 509 else if (IsPPC64) 510 Mapping.Offset = kPPC64_ShadowOffset64; 511 else if (IsSystemZ) 512 Mapping.Offset = kSystemZ_ShadowOffset64; 513 else if (IsFreeBSD && !IsMIPS64) { 514 if (IsKasan) 515 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 516 else 517 Mapping.Offset = kFreeBSD_ShadowOffset64; 518 } else if (IsNetBSD) { 519 if (IsKasan) 520 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 521 else 522 Mapping.Offset = kNetBSD_ShadowOffset64; 523 } else if (IsPS4CPU) 524 Mapping.Offset = kPS4CPU_ShadowOffset64; 525 else if (IsLinux && IsX86_64) { 526 if (IsKasan) 527 Mapping.Offset = kLinuxKasan_ShadowOffset64; 528 else 529 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 530 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 531 } else if (IsWindows && IsX86_64) { 532 Mapping.Offset = kWindowsShadowOffset64; 533 } else if (IsMIPS64) 534 Mapping.Offset = kMIPS64_ShadowOffset64; 535 else if (IsIOS) 536 Mapping.Offset = kDynamicShadowSentinel; 537 else if (IsMacOS && IsAArch64) 538 Mapping.Offset = kDynamicShadowSentinel; 539 else if (IsAArch64) 540 Mapping.Offset = kAArch64_ShadowOffset64; 541 else if (IsRISCV64) 542 Mapping.Offset = kRISCV64_ShadowOffset64; 543 else if (IsAMDGPU) 544 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 545 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 546 else 547 Mapping.Offset = kDefaultShadowOffset64; 548 } 549 550 if (ClForceDynamicShadow) { 551 Mapping.Offset = kDynamicShadowSentinel; 552 } 553 554 if (ClMappingOffset.getNumOccurrences() > 0) { 555 Mapping.Offset = ClMappingOffset; 556 } 557 558 // OR-ing shadow offset if more efficient (at least on x86) if the offset 559 // is a power of two, but on ppc64 we have to use add since the shadow 560 // offset is not necessary 1/8-th of the address space. On SystemZ, 561 // we could OR the constant in a single instruction, but it's more 562 // efficient to load it once and use indexed addressing. 563 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 564 !IsRISCV64 && 565 !(Mapping.Offset & (Mapping.Offset - 1)) && 566 Mapping.Offset != kDynamicShadowSentinel; 567 bool IsAndroidWithIfuncSupport = 568 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 569 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 570 571 return Mapping; 572 } 573 574 namespace llvm { 575 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 576 bool IsKasan, uint64_t *ShadowBase, 577 int *MappingScale, bool *OrShadowOffset) { 578 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 579 *ShadowBase = Mapping.Offset; 580 *MappingScale = Mapping.Scale; 581 *OrShadowOffset = Mapping.OrShadowOffset; 582 } 583 584 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 585 : Packed(Packed), 586 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 587 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 588 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 589 590 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 591 uint8_t AccessSizeIndex) 592 : Packed((IsWrite << kIsWriteShift) + 593 (CompileKernel << kCompileKernelShift) + 594 (AccessSizeIndex << kAccessSizeIndexShift)), 595 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 596 CompileKernel(CompileKernel) {} 597 598 } // namespace llvm 599 600 static uint64_t getRedzoneSizeForScale(int MappingScale) { 601 // Redzone used for stack and globals is at least 32 bytes. 602 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 603 return std::max(32U, 1U << MappingScale); 604 } 605 606 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 607 if (TargetTriple.isOSEmscripten()) { 608 return kAsanEmscriptenCtorAndDtorPriority; 609 } else { 610 return kAsanCtorAndDtorPriority; 611 } 612 } 613 614 namespace { 615 616 /// Module analysis for getting various metadata about the module. 617 class ASanGlobalsMetadataWrapperPass : public ModulePass { 618 public: 619 static char ID; 620 621 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 622 initializeASanGlobalsMetadataWrapperPassPass( 623 *PassRegistry::getPassRegistry()); 624 } 625 626 bool runOnModule(Module &M) override { 627 GlobalsMD = GlobalsMetadata(M); 628 return false; 629 } 630 631 StringRef getPassName() const override { 632 return "ASanGlobalsMetadataWrapperPass"; 633 } 634 635 void getAnalysisUsage(AnalysisUsage &AU) const override { 636 AU.setPreservesAll(); 637 } 638 639 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 640 641 private: 642 GlobalsMetadata GlobalsMD; 643 }; 644 645 char ASanGlobalsMetadataWrapperPass::ID = 0; 646 647 /// AddressSanitizer: instrument the code in module to find memory bugs. 648 struct AddressSanitizer { 649 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 650 bool CompileKernel = false, bool Recover = false, 651 bool UseAfterScope = false, 652 AsanDetectStackUseAfterReturnMode UseAfterReturn = 653 AsanDetectStackUseAfterReturnMode::Runtime) 654 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 655 : CompileKernel), 656 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 657 UseAfterScope(UseAfterScope || ClUseAfterScope), 658 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 659 : UseAfterReturn), 660 GlobalsMD(*GlobalsMD) { 661 C = &(M.getContext()); 662 LongSize = M.getDataLayout().getPointerSizeInBits(); 663 IntptrTy = Type::getIntNTy(*C, LongSize); 664 Int8PtrTy = Type::getInt8PtrTy(*C); 665 Int32Ty = Type::getInt32Ty(*C); 666 TargetTriple = Triple(M.getTargetTriple()); 667 668 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 669 670 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 671 } 672 673 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 674 uint64_t ArraySize = 1; 675 if (AI.isArrayAllocation()) { 676 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 677 assert(CI && "non-constant array size"); 678 ArraySize = CI->getZExtValue(); 679 } 680 Type *Ty = AI.getAllocatedType(); 681 uint64_t SizeInBytes = 682 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 683 return SizeInBytes * ArraySize; 684 } 685 686 /// Check if we want (and can) handle this alloca. 687 bool isInterestingAlloca(const AllocaInst &AI); 688 689 bool ignoreAccess(Value *Ptr); 690 void getInterestingMemoryOperands( 691 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 692 693 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 694 InterestingMemoryOperand &O, bool UseCalls, 695 const DataLayout &DL); 696 void instrumentPointerComparisonOrSubtraction(Instruction *I); 697 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 698 Value *Addr, uint32_t TypeSize, bool IsWrite, 699 Value *SizeArgument, bool UseCalls, uint32_t Exp); 700 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 701 Instruction *InsertBefore, Value *Addr, 702 uint32_t TypeSize, bool IsWrite, 703 Value *SizeArgument); 704 void instrumentUnusualSizeOrAlignment(Instruction *I, 705 Instruction *InsertBefore, Value *Addr, 706 uint32_t TypeSize, bool IsWrite, 707 Value *SizeArgument, bool UseCalls, 708 uint32_t Exp); 709 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 710 Value *ShadowValue, uint32_t TypeSize); 711 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 712 bool IsWrite, size_t AccessSizeIndex, 713 Value *SizeArgument, uint32_t Exp); 714 void instrumentMemIntrinsic(MemIntrinsic *MI); 715 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 716 bool suppressInstrumentationSiteForDebug(int &Instrumented); 717 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 718 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 719 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 720 void markEscapedLocalAllocas(Function &F); 721 722 private: 723 friend struct FunctionStackPoisoner; 724 725 void initializeCallbacks(Module &M); 726 727 bool LooksLikeCodeInBug11395(Instruction *I); 728 bool GlobalIsLinkerInitialized(GlobalVariable *G); 729 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 730 uint64_t TypeSize) const; 731 732 /// Helper to cleanup per-function state. 733 struct FunctionStateRAII { 734 AddressSanitizer *Pass; 735 736 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 737 assert(Pass->ProcessedAllocas.empty() && 738 "last pass forgot to clear cache"); 739 assert(!Pass->LocalDynamicShadow); 740 } 741 742 ~FunctionStateRAII() { 743 Pass->LocalDynamicShadow = nullptr; 744 Pass->ProcessedAllocas.clear(); 745 } 746 }; 747 748 LLVMContext *C; 749 Triple TargetTriple; 750 int LongSize; 751 bool CompileKernel; 752 bool Recover; 753 bool UseAfterScope; 754 AsanDetectStackUseAfterReturnMode UseAfterReturn; 755 Type *IntptrTy; 756 Type *Int8PtrTy; 757 Type *Int32Ty; 758 ShadowMapping Mapping; 759 FunctionCallee AsanHandleNoReturnFunc; 760 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 761 Constant *AsanShadowGlobal; 762 763 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 764 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 765 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 766 767 // These arrays is indexed by AccessIsWrite and Experiment. 768 FunctionCallee AsanErrorCallbackSized[2][2]; 769 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 770 771 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 772 Value *LocalDynamicShadow = nullptr; 773 const GlobalsMetadata &GlobalsMD; 774 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 775 776 FunctionCallee AMDGPUAddressShared; 777 FunctionCallee AMDGPUAddressPrivate; 778 }; 779 780 class AddressSanitizerLegacyPass : public FunctionPass { 781 public: 782 static char ID; 783 784 explicit AddressSanitizerLegacyPass( 785 bool CompileKernel = false, bool Recover = false, 786 bool UseAfterScope = false, 787 AsanDetectStackUseAfterReturnMode UseAfterReturn = 788 AsanDetectStackUseAfterReturnMode::Runtime) 789 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 790 UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) { 791 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 792 } 793 794 StringRef getPassName() const override { 795 return "AddressSanitizerFunctionPass"; 796 } 797 798 void getAnalysisUsage(AnalysisUsage &AU) const override { 799 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 800 AU.addRequired<TargetLibraryInfoWrapperPass>(); 801 } 802 803 bool runOnFunction(Function &F) override { 804 GlobalsMetadata &GlobalsMD = 805 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 806 const TargetLibraryInfo *TLI = 807 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 808 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 809 UseAfterScope, UseAfterReturn); 810 return ASan.instrumentFunction(F, TLI); 811 } 812 813 private: 814 bool CompileKernel; 815 bool Recover; 816 bool UseAfterScope; 817 AsanDetectStackUseAfterReturnMode UseAfterReturn; 818 }; 819 820 class ModuleAddressSanitizer { 821 public: 822 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 823 bool CompileKernel = false, bool Recover = false, 824 bool UseGlobalsGC = true, bool UseOdrIndicator = false, 825 AsanDtorKind DestructorKind = AsanDtorKind::Global) 826 : GlobalsMD(*GlobalsMD), 827 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 828 : CompileKernel), 829 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 830 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 831 // Enable aliases as they should have no downside with ODR indicators. 832 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 833 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 834 // Not a typo: ClWithComdat is almost completely pointless without 835 // ClUseGlobalsGC (because then it only works on modules without 836 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 837 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 838 // argument is designed as workaround. Therefore, disable both 839 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 840 // do globals-gc. 841 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 842 DestructorKind(DestructorKind) { 843 C = &(M.getContext()); 844 int LongSize = M.getDataLayout().getPointerSizeInBits(); 845 IntptrTy = Type::getIntNTy(*C, LongSize); 846 TargetTriple = Triple(M.getTargetTriple()); 847 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 848 849 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 850 this->DestructorKind = ClOverrideDestructorKind; 851 assert(this->DestructorKind != AsanDtorKind::Invalid); 852 } 853 854 bool instrumentModule(Module &); 855 856 private: 857 void initializeCallbacks(Module &M); 858 859 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 860 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 861 ArrayRef<GlobalVariable *> ExtendedGlobals, 862 ArrayRef<Constant *> MetadataInitializers); 863 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 864 ArrayRef<GlobalVariable *> ExtendedGlobals, 865 ArrayRef<Constant *> MetadataInitializers, 866 const std::string &UniqueModuleId); 867 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 868 ArrayRef<GlobalVariable *> ExtendedGlobals, 869 ArrayRef<Constant *> MetadataInitializers); 870 void 871 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 872 ArrayRef<GlobalVariable *> ExtendedGlobals, 873 ArrayRef<Constant *> MetadataInitializers); 874 875 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 876 StringRef OriginalName); 877 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 878 StringRef InternalSuffix); 879 Instruction *CreateAsanModuleDtor(Module &M); 880 881 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 882 bool shouldInstrumentGlobal(GlobalVariable *G) const; 883 bool ShouldUseMachOGlobalsSection() const; 884 StringRef getGlobalMetadataSection() const; 885 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 886 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 887 uint64_t getMinRedzoneSizeForGlobal() const { 888 return getRedzoneSizeForScale(Mapping.Scale); 889 } 890 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 891 int GetAsanVersion(const Module &M) const; 892 893 const GlobalsMetadata &GlobalsMD; 894 bool CompileKernel; 895 bool Recover; 896 bool UseGlobalsGC; 897 bool UsePrivateAlias; 898 bool UseOdrIndicator; 899 bool UseCtorComdat; 900 AsanDtorKind DestructorKind; 901 Type *IntptrTy; 902 LLVMContext *C; 903 Triple TargetTriple; 904 ShadowMapping Mapping; 905 FunctionCallee AsanPoisonGlobals; 906 FunctionCallee AsanUnpoisonGlobals; 907 FunctionCallee AsanRegisterGlobals; 908 FunctionCallee AsanUnregisterGlobals; 909 FunctionCallee AsanRegisterImageGlobals; 910 FunctionCallee AsanUnregisterImageGlobals; 911 FunctionCallee AsanRegisterElfGlobals; 912 FunctionCallee AsanUnregisterElfGlobals; 913 914 Function *AsanCtorFunction = nullptr; 915 Function *AsanDtorFunction = nullptr; 916 }; 917 918 class ModuleAddressSanitizerLegacyPass : public ModulePass { 919 public: 920 static char ID; 921 922 explicit ModuleAddressSanitizerLegacyPass( 923 bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true, 924 bool UseOdrIndicator = false, 925 AsanDtorKind DestructorKind = AsanDtorKind::Global) 926 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 927 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), 928 DestructorKind(DestructorKind) { 929 initializeModuleAddressSanitizerLegacyPassPass( 930 *PassRegistry::getPassRegistry()); 931 } 932 933 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 934 935 void getAnalysisUsage(AnalysisUsage &AU) const override { 936 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 937 } 938 939 bool runOnModule(Module &M) override { 940 GlobalsMetadata &GlobalsMD = 941 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 942 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 943 UseGlobalGC, UseOdrIndicator, 944 DestructorKind); 945 return ASanModule.instrumentModule(M); 946 } 947 948 private: 949 bool CompileKernel; 950 bool Recover; 951 bool UseGlobalGC; 952 bool UseOdrIndicator; 953 AsanDtorKind DestructorKind; 954 }; 955 956 // Stack poisoning does not play well with exception handling. 957 // When an exception is thrown, we essentially bypass the code 958 // that unpoisones the stack. This is why the run-time library has 959 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 960 // stack in the interceptor. This however does not work inside the 961 // actual function which catches the exception. Most likely because the 962 // compiler hoists the load of the shadow value somewhere too high. 963 // This causes asan to report a non-existing bug on 453.povray. 964 // It sounds like an LLVM bug. 965 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 966 Function &F; 967 AddressSanitizer &ASan; 968 DIBuilder DIB; 969 LLVMContext *C; 970 Type *IntptrTy; 971 Type *IntptrPtrTy; 972 ShadowMapping Mapping; 973 974 SmallVector<AllocaInst *, 16> AllocaVec; 975 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 976 SmallVector<Instruction *, 8> RetVec; 977 978 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 979 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 980 FunctionCallee AsanSetShadowFunc[0x100] = {}; 981 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 982 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 983 984 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 985 struct AllocaPoisonCall { 986 IntrinsicInst *InsBefore; 987 AllocaInst *AI; 988 uint64_t Size; 989 bool DoPoison; 990 }; 991 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 992 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 993 bool HasUntracedLifetimeIntrinsic = false; 994 995 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 996 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 997 AllocaInst *DynamicAllocaLayout = nullptr; 998 IntrinsicInst *LocalEscapeCall = nullptr; 999 1000 bool HasInlineAsm = false; 1001 bool HasReturnsTwiceCall = false; 1002 bool PoisonStack; 1003 1004 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 1005 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 1006 C(ASan.C), IntptrTy(ASan.IntptrTy), 1007 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 1008 PoisonStack(ClStack && 1009 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 1010 1011 bool runOnFunction() { 1012 if (!PoisonStack) 1013 return false; 1014 1015 if (ClRedzoneByvalArgs) 1016 copyArgsPassedByValToAllocas(); 1017 1018 // Collect alloca, ret, lifetime instructions etc. 1019 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 1020 1021 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 1022 1023 initializeCallbacks(*F.getParent()); 1024 1025 if (HasUntracedLifetimeIntrinsic) { 1026 // If there are lifetime intrinsics which couldn't be traced back to an 1027 // alloca, we may not know exactly when a variable enters scope, and 1028 // therefore should "fail safe" by not poisoning them. 1029 StaticAllocaPoisonCallVec.clear(); 1030 DynamicAllocaPoisonCallVec.clear(); 1031 } 1032 1033 processDynamicAllocas(); 1034 processStaticAllocas(); 1035 1036 if (ClDebugStack) { 1037 LLVM_DEBUG(dbgs() << F); 1038 } 1039 return true; 1040 } 1041 1042 // Arguments marked with the "byval" attribute are implicitly copied without 1043 // using an alloca instruction. To produce redzones for those arguments, we 1044 // copy them a second time into memory allocated with an alloca instruction. 1045 void copyArgsPassedByValToAllocas(); 1046 1047 // Finds all Alloca instructions and puts 1048 // poisoned red zones around all of them. 1049 // Then unpoison everything back before the function returns. 1050 void processStaticAllocas(); 1051 void processDynamicAllocas(); 1052 1053 void createDynamicAllocasInitStorage(); 1054 1055 // ----------------------- Visitors. 1056 /// Collect all Ret instructions, or the musttail call instruction if it 1057 /// precedes the return instruction. 1058 void visitReturnInst(ReturnInst &RI) { 1059 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 1060 RetVec.push_back(CI); 1061 else 1062 RetVec.push_back(&RI); 1063 } 1064 1065 /// Collect all Resume instructions. 1066 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 1067 1068 /// Collect all CatchReturnInst instructions. 1069 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 1070 1071 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 1072 Value *SavedStack) { 1073 IRBuilder<> IRB(InstBefore); 1074 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1075 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1076 // need to adjust extracted SP to compute the address of the most recent 1077 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1078 // this purpose. 1079 if (!isa<ReturnInst>(InstBefore)) { 1080 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1081 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1082 {IntptrTy}); 1083 1084 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1085 1086 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1087 DynamicAreaOffset); 1088 } 1089 1090 IRB.CreateCall( 1091 AsanAllocasUnpoisonFunc, 1092 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1093 } 1094 1095 // Unpoison dynamic allocas redzones. 1096 void unpoisonDynamicAllocas() { 1097 for (Instruction *Ret : RetVec) 1098 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1099 1100 for (Instruction *StackRestoreInst : StackRestoreVec) 1101 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1102 StackRestoreInst->getOperand(0)); 1103 } 1104 1105 // Deploy and poison redzones around dynamic alloca call. To do this, we 1106 // should replace this call with another one with changed parameters and 1107 // replace all its uses with new address, so 1108 // addr = alloca type, old_size, align 1109 // is replaced by 1110 // new_size = (old_size + additional_size) * sizeof(type) 1111 // tmp = alloca i8, new_size, max(align, 32) 1112 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1113 // Additional_size is added to make new memory allocation contain not only 1114 // requested memory, but also left, partial and right redzones. 1115 void handleDynamicAllocaCall(AllocaInst *AI); 1116 1117 /// Collect Alloca instructions we want (and can) handle. 1118 void visitAllocaInst(AllocaInst &AI) { 1119 if (!ASan.isInterestingAlloca(AI)) { 1120 if (AI.isStaticAlloca()) { 1121 // Skip over allocas that are present *before* the first instrumented 1122 // alloca, we don't want to move those around. 1123 if (AllocaVec.empty()) 1124 return; 1125 1126 StaticAllocasToMoveUp.push_back(&AI); 1127 } 1128 return; 1129 } 1130 1131 if (!AI.isStaticAlloca()) 1132 DynamicAllocaVec.push_back(&AI); 1133 else 1134 AllocaVec.push_back(&AI); 1135 } 1136 1137 /// Collect lifetime intrinsic calls to check for use-after-scope 1138 /// errors. 1139 void visitIntrinsicInst(IntrinsicInst &II) { 1140 Intrinsic::ID ID = II.getIntrinsicID(); 1141 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1142 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1143 if (!ASan.UseAfterScope) 1144 return; 1145 if (!II.isLifetimeStartOrEnd()) 1146 return; 1147 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1148 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1149 // If size argument is undefined, don't do anything. 1150 if (Size->isMinusOne()) return; 1151 // Check that size doesn't saturate uint64_t and can 1152 // be stored in IntptrTy. 1153 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1154 if (SizeValue == ~0ULL || 1155 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1156 return; 1157 // Find alloca instruction that corresponds to llvm.lifetime argument. 1158 // Currently we can only handle lifetime markers pointing to the 1159 // beginning of the alloca. 1160 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1161 if (!AI) { 1162 HasUntracedLifetimeIntrinsic = true; 1163 return; 1164 } 1165 // We're interested only in allocas we can handle. 1166 if (!ASan.isInterestingAlloca(*AI)) 1167 return; 1168 bool DoPoison = (ID == Intrinsic::lifetime_end); 1169 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1170 if (AI->isStaticAlloca()) 1171 StaticAllocaPoisonCallVec.push_back(APC); 1172 else if (ClInstrumentDynamicAllocas) 1173 DynamicAllocaPoisonCallVec.push_back(APC); 1174 } 1175 1176 void visitCallBase(CallBase &CB) { 1177 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1178 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1179 HasReturnsTwiceCall |= CI->canReturnTwice(); 1180 } 1181 } 1182 1183 // ---------------------- Helpers. 1184 void initializeCallbacks(Module &M); 1185 1186 // Copies bytes from ShadowBytes into shadow memory for indexes where 1187 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1188 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1189 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1190 IRBuilder<> &IRB, Value *ShadowBase); 1191 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1192 size_t Begin, size_t End, IRBuilder<> &IRB, 1193 Value *ShadowBase); 1194 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1195 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1196 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1197 1198 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1199 1200 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1201 bool Dynamic); 1202 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1203 Instruction *ThenTerm, Value *ValueIfFalse); 1204 }; 1205 1206 } // end anonymous namespace 1207 1208 void LocationMetadata::parse(MDNode *MDN) { 1209 assert(MDN->getNumOperands() == 3); 1210 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1211 Filename = DIFilename->getString(); 1212 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1213 ColumnNo = 1214 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1215 } 1216 1217 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1218 // we want to sanitize instead and reading this metadata on each pass over a 1219 // function instead of reading module level metadata at first. 1220 GlobalsMetadata::GlobalsMetadata(Module &M) { 1221 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1222 if (!Globals) 1223 return; 1224 for (auto MDN : Globals->operands()) { 1225 // Metadata node contains the global and the fields of "Entry". 1226 assert(MDN->getNumOperands() == 5); 1227 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1228 // The optimizer may optimize away a global entirely. 1229 if (!V) 1230 continue; 1231 auto *StrippedV = V->stripPointerCasts(); 1232 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1233 if (!GV) 1234 continue; 1235 // We can already have an entry for GV if it was merged with another 1236 // global. 1237 Entry &E = Entries[GV]; 1238 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1239 E.SourceLoc.parse(Loc); 1240 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1241 E.Name = Name->getString(); 1242 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1243 E.IsDynInit |= IsDynInit->isOne(); 1244 ConstantInt *IsExcluded = 1245 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1246 E.IsExcluded |= IsExcluded->isOne(); 1247 } 1248 } 1249 1250 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1251 1252 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1253 ModuleAnalysisManager &AM) { 1254 return GlobalsMetadata(M); 1255 } 1256 1257 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1258 AnalysisManager<Function> &AM) { 1259 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1260 Module &M = *F.getParent(); 1261 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1262 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1263 AddressSanitizer Sanitizer(M, R, Options.CompileKernel, Options.Recover, 1264 Options.UseAfterScope, Options.UseAfterReturn); 1265 if (Sanitizer.instrumentFunction(F, TLI)) 1266 return PreservedAnalyses::none(); 1267 return PreservedAnalyses::all(); 1268 } 1269 1270 report_fatal_error( 1271 "The ASanGlobalsMetadataAnalysis is required to run before " 1272 "AddressSanitizer can run"); 1273 return PreservedAnalyses::all(); 1274 } 1275 1276 void AddressSanitizerPass::printPipeline( 1277 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1278 static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( 1279 OS, MapClassName2PassName); 1280 OS << "<"; 1281 if (Options.CompileKernel) 1282 OS << "kernel"; 1283 OS << ">"; 1284 } 1285 1286 void ModuleAddressSanitizerPass::printPipeline( 1287 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1288 static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline( 1289 OS, MapClassName2PassName); 1290 OS << "<"; 1291 if (CompileKernel) 1292 OS << "kernel"; 1293 OS << ">"; 1294 } 1295 1296 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( 1297 bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator, 1298 AsanDtorKind DestructorKind) 1299 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1300 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} 1301 1302 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1303 AnalysisManager<Module> &AM) { 1304 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1305 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1306 UseGlobalGC, UseOdrIndicator, 1307 DestructorKind); 1308 if (Sanitizer.instrumentModule(M)) 1309 return PreservedAnalyses::none(); 1310 return PreservedAnalyses::all(); 1311 } 1312 1313 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1314 "Read metadata to mark which globals should be instrumented " 1315 "when running ASan.", 1316 false, true) 1317 1318 char AddressSanitizerLegacyPass::ID = 0; 1319 1320 INITIALIZE_PASS_BEGIN( 1321 AddressSanitizerLegacyPass, "asan", 1322 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1323 false) 1324 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1325 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1326 INITIALIZE_PASS_END( 1327 AddressSanitizerLegacyPass, "asan", 1328 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1329 false) 1330 1331 FunctionPass *llvm::createAddressSanitizerFunctionPass( 1332 bool CompileKernel, bool Recover, bool UseAfterScope, 1333 AsanDetectStackUseAfterReturnMode UseAfterReturn) { 1334 assert(!CompileKernel || Recover); 1335 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope, 1336 UseAfterReturn); 1337 } 1338 1339 char ModuleAddressSanitizerLegacyPass::ID = 0; 1340 1341 INITIALIZE_PASS( 1342 ModuleAddressSanitizerLegacyPass, "asan-module", 1343 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1344 "ModulePass", 1345 false, false) 1346 1347 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1348 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator, 1349 AsanDtorKind Destructor) { 1350 assert(!CompileKernel || Recover); 1351 return new ModuleAddressSanitizerLegacyPass( 1352 CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor); 1353 } 1354 1355 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1356 size_t Res = countTrailingZeros(TypeSize / 8); 1357 assert(Res < kNumberOfAccessSizes); 1358 return Res; 1359 } 1360 1361 /// Create a global describing a source location. 1362 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1363 LocationMetadata MD) { 1364 Constant *LocData[] = { 1365 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1366 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1367 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1368 }; 1369 auto LocStruct = ConstantStruct::getAnon(LocData); 1370 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1371 GlobalValue::PrivateLinkage, LocStruct, 1372 kAsanGenPrefix); 1373 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1374 return GV; 1375 } 1376 1377 /// Check if \p G has been created by a trusted compiler pass. 1378 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1379 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1380 if (G->getName().startswith("llvm.")) 1381 return true; 1382 1383 // Do not instrument asan globals. 1384 if (G->getName().startswith(kAsanGenPrefix) || 1385 G->getName().startswith(kSanCovGenPrefix) || 1386 G->getName().startswith(kODRGenPrefix)) 1387 return true; 1388 1389 // Do not instrument gcov counter arrays. 1390 if (G->getName() == "__llvm_gcov_ctr") 1391 return true; 1392 1393 return false; 1394 } 1395 1396 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1397 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1398 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1399 if (AddrSpace == 3 || AddrSpace == 5) 1400 return true; 1401 return false; 1402 } 1403 1404 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1405 // Shadow >> scale 1406 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1407 if (Mapping.Offset == 0) return Shadow; 1408 // (Shadow >> scale) | offset 1409 Value *ShadowBase; 1410 if (LocalDynamicShadow) 1411 ShadowBase = LocalDynamicShadow; 1412 else 1413 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1414 if (Mapping.OrShadowOffset) 1415 return IRB.CreateOr(Shadow, ShadowBase); 1416 else 1417 return IRB.CreateAdd(Shadow, ShadowBase); 1418 } 1419 1420 // Instrument memset/memmove/memcpy 1421 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1422 IRBuilder<> IRB(MI); 1423 if (isa<MemTransferInst>(MI)) { 1424 IRB.CreateCall( 1425 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1426 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1427 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1428 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1429 } else if (isa<MemSetInst>(MI)) { 1430 IRB.CreateCall( 1431 AsanMemset, 1432 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1433 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1434 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1435 } 1436 MI->eraseFromParent(); 1437 } 1438 1439 /// Check if we want (and can) handle this alloca. 1440 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1441 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1442 1443 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1444 return PreviouslySeenAllocaInfo->getSecond(); 1445 1446 bool IsInteresting = 1447 (AI.getAllocatedType()->isSized() && 1448 // alloca() may be called with 0 size, ignore it. 1449 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1450 // We are only interested in allocas not promotable to registers. 1451 // Promotable allocas are common under -O0. 1452 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1453 // inalloca allocas are not treated as static, and we don't want 1454 // dynamic alloca instrumentation for them as well. 1455 !AI.isUsedWithInAlloca() && 1456 // swifterror allocas are register promoted by ISel 1457 !AI.isSwiftError()); 1458 1459 ProcessedAllocas[&AI] = IsInteresting; 1460 return IsInteresting; 1461 } 1462 1463 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1464 // Instrument acesses from different address spaces only for AMDGPU. 1465 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1466 if (PtrTy->getPointerAddressSpace() != 0 && 1467 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1468 return true; 1469 1470 // Ignore swifterror addresses. 1471 // swifterror memory addresses are mem2reg promoted by instruction 1472 // selection. As such they cannot have regular uses like an instrumentation 1473 // function and it makes no sense to track them as memory. 1474 if (Ptr->isSwiftError()) 1475 return true; 1476 1477 // Treat memory accesses to promotable allocas as non-interesting since they 1478 // will not cause memory violations. This greatly speeds up the instrumented 1479 // executable at -O0. 1480 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1481 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1482 return true; 1483 1484 return false; 1485 } 1486 1487 void AddressSanitizer::getInterestingMemoryOperands( 1488 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1489 // Skip memory accesses inserted by another instrumentation. 1490 if (I->hasMetadata("nosanitize")) 1491 return; 1492 1493 // Do not instrument the load fetching the dynamic shadow address. 1494 if (LocalDynamicShadow == I) 1495 return; 1496 1497 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1498 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1499 return; 1500 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1501 LI->getType(), LI->getAlign()); 1502 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1503 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1504 return; 1505 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1506 SI->getValueOperand()->getType(), SI->getAlign()); 1507 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1508 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1509 return; 1510 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1511 RMW->getValOperand()->getType(), None); 1512 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1513 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1514 return; 1515 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1516 XCHG->getCompareOperand()->getType(), None); 1517 } else if (auto CI = dyn_cast<CallInst>(I)) { 1518 auto *F = CI->getCalledFunction(); 1519 if (F && (F->getName().startswith("llvm.masked.load.") || 1520 F->getName().startswith("llvm.masked.store."))) { 1521 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1522 // Masked store has an initial operand for the value. 1523 unsigned OpOffset = IsWrite ? 1 : 0; 1524 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1525 return; 1526 1527 auto BasePtr = CI->getOperand(OpOffset); 1528 if (ignoreAccess(BasePtr)) 1529 return; 1530 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1531 MaybeAlign Alignment = Align(1); 1532 // Otherwise no alignment guarantees. We probably got Undef. 1533 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1534 Alignment = Op->getMaybeAlignValue(); 1535 Value *Mask = CI->getOperand(2 + OpOffset); 1536 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1537 } else { 1538 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1539 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1540 ignoreAccess(CI->getArgOperand(ArgNo))) 1541 continue; 1542 Type *Ty = CI->getParamByValType(ArgNo); 1543 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1544 } 1545 } 1546 } 1547 } 1548 1549 static bool isPointerOperand(Value *V) { 1550 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1551 } 1552 1553 // This is a rough heuristic; it may cause both false positives and 1554 // false negatives. The proper implementation requires cooperation with 1555 // the frontend. 1556 static bool isInterestingPointerComparison(Instruction *I) { 1557 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1558 if (!Cmp->isRelational()) 1559 return false; 1560 } else { 1561 return false; 1562 } 1563 return isPointerOperand(I->getOperand(0)) && 1564 isPointerOperand(I->getOperand(1)); 1565 } 1566 1567 // This is a rough heuristic; it may cause both false positives and 1568 // false negatives. The proper implementation requires cooperation with 1569 // the frontend. 1570 static bool isInterestingPointerSubtraction(Instruction *I) { 1571 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1572 if (BO->getOpcode() != Instruction::Sub) 1573 return false; 1574 } else { 1575 return false; 1576 } 1577 return isPointerOperand(I->getOperand(0)) && 1578 isPointerOperand(I->getOperand(1)); 1579 } 1580 1581 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1582 // If a global variable does not have dynamic initialization we don't 1583 // have to instrument it. However, if a global does not have initializer 1584 // at all, we assume it has dynamic initializer (in other TU). 1585 // 1586 // FIXME: Metadata should be attched directly to the global directly instead 1587 // of being added to llvm.asan.globals. 1588 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1589 } 1590 1591 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1592 Instruction *I) { 1593 IRBuilder<> IRB(I); 1594 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1595 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1596 for (Value *&i : Param) { 1597 if (i->getType()->isPointerTy()) 1598 i = IRB.CreatePointerCast(i, IntptrTy); 1599 } 1600 IRB.CreateCall(F, Param); 1601 } 1602 1603 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1604 Instruction *InsertBefore, Value *Addr, 1605 MaybeAlign Alignment, unsigned Granularity, 1606 uint32_t TypeSize, bool IsWrite, 1607 Value *SizeArgument, bool UseCalls, 1608 uint32_t Exp) { 1609 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1610 // if the data is properly aligned. 1611 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1612 TypeSize == 128) && 1613 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1614 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1615 nullptr, UseCalls, Exp); 1616 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1617 IsWrite, nullptr, UseCalls, Exp); 1618 } 1619 1620 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1621 const DataLayout &DL, Type *IntptrTy, 1622 Value *Mask, Instruction *I, 1623 Value *Addr, MaybeAlign Alignment, 1624 unsigned Granularity, uint32_t TypeSize, 1625 bool IsWrite, Value *SizeArgument, 1626 bool UseCalls, uint32_t Exp) { 1627 auto *VTy = cast<FixedVectorType>( 1628 cast<PointerType>(Addr->getType())->getElementType()); 1629 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1630 unsigned Num = VTy->getNumElements(); 1631 auto Zero = ConstantInt::get(IntptrTy, 0); 1632 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1633 Value *InstrumentedAddress = nullptr; 1634 Instruction *InsertBefore = I; 1635 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1636 // dyn_cast as we might get UndefValue 1637 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1638 if (Masked->isZero()) 1639 // Mask is constant false, so no instrumentation needed. 1640 continue; 1641 // If we have a true or undef value, fall through to doInstrumentAddress 1642 // with InsertBefore == I 1643 } 1644 } else { 1645 IRBuilder<> IRB(I); 1646 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1647 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1648 InsertBefore = ThenTerm; 1649 } 1650 1651 IRBuilder<> IRB(InsertBefore); 1652 InstrumentedAddress = 1653 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1654 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1655 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1656 UseCalls, Exp); 1657 } 1658 } 1659 1660 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1661 InterestingMemoryOperand &O, bool UseCalls, 1662 const DataLayout &DL) { 1663 Value *Addr = O.getPtr(); 1664 1665 // Optimization experiments. 1666 // The experiments can be used to evaluate potential optimizations that remove 1667 // instrumentation (assess false negatives). Instead of completely removing 1668 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1669 // experiments that want to remove instrumentation of this instruction). 1670 // If Exp is non-zero, this pass will emit special calls into runtime 1671 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1672 // make runtime terminate the program in a special way (with a different 1673 // exit status). Then you run the new compiler on a buggy corpus, collect 1674 // the special terminations (ideally, you don't see them at all -- no false 1675 // negatives) and make the decision on the optimization. 1676 uint32_t Exp = ClForceExperiment; 1677 1678 if (ClOpt && ClOptGlobals) { 1679 // If initialization order checking is disabled, a simple access to a 1680 // dynamically initialized global is always valid. 1681 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1682 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1683 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1684 NumOptimizedAccessesToGlobalVar++; 1685 return; 1686 } 1687 } 1688 1689 if (ClOpt && ClOptStack) { 1690 // A direct inbounds access to a stack variable is always valid. 1691 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1692 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1693 NumOptimizedAccessesToStackVar++; 1694 return; 1695 } 1696 } 1697 1698 if (O.IsWrite) 1699 NumInstrumentedWrites++; 1700 else 1701 NumInstrumentedReads++; 1702 1703 unsigned Granularity = 1 << Mapping.Scale; 1704 if (O.MaybeMask) { 1705 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1706 Addr, O.Alignment, Granularity, O.TypeSize, 1707 O.IsWrite, nullptr, UseCalls, Exp); 1708 } else { 1709 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1710 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1711 Exp); 1712 } 1713 } 1714 1715 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1716 Value *Addr, bool IsWrite, 1717 size_t AccessSizeIndex, 1718 Value *SizeArgument, 1719 uint32_t Exp) { 1720 IRBuilder<> IRB(InsertBefore); 1721 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1722 CallInst *Call = nullptr; 1723 if (SizeArgument) { 1724 if (Exp == 0) 1725 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1726 {Addr, SizeArgument}); 1727 else 1728 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1729 {Addr, SizeArgument, ExpVal}); 1730 } else { 1731 if (Exp == 0) 1732 Call = 1733 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1734 else 1735 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1736 {Addr, ExpVal}); 1737 } 1738 1739 Call->setCannotMerge(); 1740 return Call; 1741 } 1742 1743 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1744 Value *ShadowValue, 1745 uint32_t TypeSize) { 1746 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1747 // Addr & (Granularity - 1) 1748 Value *LastAccessedByte = 1749 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1750 // (Addr & (Granularity - 1)) + size - 1 1751 if (TypeSize / 8 > 1) 1752 LastAccessedByte = IRB.CreateAdd( 1753 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1754 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1755 LastAccessedByte = 1756 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1757 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1758 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1759 } 1760 1761 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1762 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1763 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { 1764 // Do not instrument unsupported addrspaces. 1765 if (isUnsupportedAMDGPUAddrspace(Addr)) 1766 return nullptr; 1767 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1768 // Follow host instrumentation for global and constant addresses. 1769 if (PtrTy->getPointerAddressSpace() != 0) 1770 return InsertBefore; 1771 // Instrument generic addresses in supported addressspaces. 1772 IRBuilder<> IRB(InsertBefore); 1773 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); 1774 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); 1775 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); 1776 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1777 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); 1778 Value *AddrSpaceZeroLanding = 1779 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1780 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1781 return InsertBefore; 1782 } 1783 1784 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1785 Instruction *InsertBefore, Value *Addr, 1786 uint32_t TypeSize, bool IsWrite, 1787 Value *SizeArgument, bool UseCalls, 1788 uint32_t Exp) { 1789 if (TargetTriple.isAMDGPU()) { 1790 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1791 TypeSize, IsWrite, SizeArgument); 1792 if (!InsertBefore) 1793 return; 1794 } 1795 1796 IRBuilder<> IRB(InsertBefore); 1797 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1798 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1799 1800 if (UseCalls && ClOptimizeCallbacks) { 1801 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1802 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1803 IRB.CreateCall( 1804 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), 1805 {IRB.CreatePointerCast(Addr, Int8PtrTy), 1806 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1807 return; 1808 } 1809 1810 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1811 if (UseCalls) { 1812 if (Exp == 0) 1813 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1814 AddrLong); 1815 else 1816 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1817 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1818 return; 1819 } 1820 1821 Type *ShadowTy = 1822 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1823 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1824 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1825 Value *CmpVal = Constant::getNullValue(ShadowTy); 1826 Value *ShadowValue = 1827 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1828 1829 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1830 size_t Granularity = 1ULL << Mapping.Scale; 1831 Instruction *CrashTerm = nullptr; 1832 1833 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1834 // We use branch weights for the slow path check, to indicate that the slow 1835 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1836 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1837 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1838 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1839 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1840 IRB.SetInsertPoint(CheckTerm); 1841 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1842 if (Recover) { 1843 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1844 } else { 1845 BasicBlock *CrashBlock = 1846 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1847 CrashTerm = new UnreachableInst(*C, CrashBlock); 1848 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1849 ReplaceInstWithInst(CheckTerm, NewTerm); 1850 } 1851 } else { 1852 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1853 } 1854 1855 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1856 AccessSizeIndex, SizeArgument, Exp); 1857 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1858 } 1859 1860 // Instrument unusual size or unusual alignment. 1861 // We can not do it with a single check, so we do 1-byte check for the first 1862 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1863 // to report the actual access size. 1864 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1865 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1866 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1867 IRBuilder<> IRB(InsertBefore); 1868 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1869 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1870 if (UseCalls) { 1871 if (Exp == 0) 1872 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1873 {AddrLong, Size}); 1874 else 1875 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1876 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1877 } else { 1878 Value *LastByte = IRB.CreateIntToPtr( 1879 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1880 Addr->getType()); 1881 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1882 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1883 } 1884 } 1885 1886 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1887 GlobalValue *ModuleName) { 1888 // Set up the arguments to our poison/unpoison functions. 1889 IRBuilder<> IRB(&GlobalInit.front(), 1890 GlobalInit.front().getFirstInsertionPt()); 1891 1892 // Add a call to poison all external globals before the given function starts. 1893 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1894 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1895 1896 // Add calls to unpoison all globals before each return instruction. 1897 for (auto &BB : GlobalInit.getBasicBlockList()) 1898 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1899 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1900 } 1901 1902 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1903 Module &M, GlobalValue *ModuleName) { 1904 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1905 if (!GV) 1906 return; 1907 1908 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1909 if (!CA) 1910 return; 1911 1912 for (Use &OP : CA->operands()) { 1913 if (isa<ConstantAggregateZero>(OP)) continue; 1914 ConstantStruct *CS = cast<ConstantStruct>(OP); 1915 1916 // Must have a function or null ptr. 1917 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1918 if (F->getName() == kAsanModuleCtorName) continue; 1919 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1920 // Don't instrument CTORs that will run before asan.module_ctor. 1921 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1922 continue; 1923 poisonOneInitializer(*F, ModuleName); 1924 } 1925 } 1926 } 1927 1928 const GlobalVariable * 1929 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1930 // In case this function should be expanded to include rules that do not just 1931 // apply when CompileKernel is true, either guard all existing rules with an 1932 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1933 // should also apply to user space. 1934 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1935 1936 const Constant *C = GA.getAliasee(); 1937 1938 // When compiling the kernel, globals that are aliased by symbols prefixed 1939 // by "__" are special and cannot be padded with a redzone. 1940 if (GA.getName().startswith("__")) 1941 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1942 1943 return nullptr; 1944 } 1945 1946 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1947 Type *Ty = G->getValueType(); 1948 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1949 1950 // FIXME: Metadata should be attched directly to the global directly instead 1951 // of being added to llvm.asan.globals. 1952 if (GlobalsMD.get(G).IsExcluded) return false; 1953 if (!Ty->isSized()) return false; 1954 if (!G->hasInitializer()) return false; 1955 // Globals in address space 1 and 4 are supported for AMDGPU. 1956 if (G->getAddressSpace() && 1957 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1958 return false; 1959 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1960 // Two problems with thread-locals: 1961 // - The address of the main thread's copy can't be computed at link-time. 1962 // - Need to poison all copies, not just the main thread's one. 1963 if (G->isThreadLocal()) return false; 1964 // For now, just ignore this Global if the alignment is large. 1965 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1966 1967 // For non-COFF targets, only instrument globals known to be defined by this 1968 // TU. 1969 // FIXME: We can instrument comdat globals on ELF if we are using the 1970 // GC-friendly metadata scheme. 1971 if (!TargetTriple.isOSBinFormatCOFF()) { 1972 if (!G->hasExactDefinition() || G->hasComdat()) 1973 return false; 1974 } else { 1975 // On COFF, don't instrument non-ODR linkages. 1976 if (G->isInterposable()) 1977 return false; 1978 } 1979 1980 // If a comdat is present, it must have a selection kind that implies ODR 1981 // semantics: no duplicates, any, or exact match. 1982 if (Comdat *C = G->getComdat()) { 1983 switch (C->getSelectionKind()) { 1984 case Comdat::Any: 1985 case Comdat::ExactMatch: 1986 case Comdat::NoDeduplicate: 1987 break; 1988 case Comdat::Largest: 1989 case Comdat::SameSize: 1990 return false; 1991 } 1992 } 1993 1994 if (G->hasSection()) { 1995 // The kernel uses explicit sections for mostly special global variables 1996 // that we should not instrument. E.g. the kernel may rely on their layout 1997 // without redzones, or remove them at link time ("discard.*"), etc. 1998 if (CompileKernel) 1999 return false; 2000 2001 StringRef Section = G->getSection(); 2002 2003 // Globals from llvm.metadata aren't emitted, do not instrument them. 2004 if (Section == "llvm.metadata") return false; 2005 // Do not instrument globals from special LLVM sections. 2006 if (Section.contains("__llvm") || Section.contains("__LLVM")) 2007 return false; 2008 2009 // Do not instrument function pointers to initialization and termination 2010 // routines: dynamic linker will not properly handle redzones. 2011 if (Section.startswith(".preinit_array") || 2012 Section.startswith(".init_array") || 2013 Section.startswith(".fini_array")) { 2014 return false; 2015 } 2016 2017 // Do not instrument user-defined sections (with names resembling 2018 // valid C identifiers) 2019 if (TargetTriple.isOSBinFormatELF()) { 2020 if (llvm::all_of(Section, 2021 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 2022 return false; 2023 } 2024 2025 // On COFF, if the section name contains '$', it is highly likely that the 2026 // user is using section sorting to create an array of globals similar to 2027 // the way initialization callbacks are registered in .init_array and 2028 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 2029 // to such globals is counterproductive, because the intent is that they 2030 // will form an array, and out-of-bounds accesses are expected. 2031 // See https://github.com/google/sanitizers/issues/305 2032 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 2033 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 2034 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 2035 << *G << "\n"); 2036 return false; 2037 } 2038 2039 if (TargetTriple.isOSBinFormatMachO()) { 2040 StringRef ParsedSegment, ParsedSection; 2041 unsigned TAA = 0, StubSize = 0; 2042 bool TAAParsed; 2043 cantFail(MCSectionMachO::ParseSectionSpecifier( 2044 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 2045 2046 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 2047 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 2048 // them. 2049 if (ParsedSegment == "__OBJC" || 2050 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 2051 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 2052 return false; 2053 } 2054 // See https://github.com/google/sanitizers/issues/32 2055 // Constant CFString instances are compiled in the following way: 2056 // -- the string buffer is emitted into 2057 // __TEXT,__cstring,cstring_literals 2058 // -- the constant NSConstantString structure referencing that buffer 2059 // is placed into __DATA,__cfstring 2060 // Therefore there's no point in placing redzones into __DATA,__cfstring. 2061 // Moreover, it causes the linker to crash on OS X 10.7 2062 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 2063 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 2064 return false; 2065 } 2066 // The linker merges the contents of cstring_literals and removes the 2067 // trailing zeroes. 2068 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 2069 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 2070 return false; 2071 } 2072 } 2073 } 2074 2075 if (CompileKernel) { 2076 // Globals that prefixed by "__" are special and cannot be padded with a 2077 // redzone. 2078 if (G->getName().startswith("__")) 2079 return false; 2080 } 2081 2082 return true; 2083 } 2084 2085 // On Mach-O platforms, we emit global metadata in a separate section of the 2086 // binary in order to allow the linker to properly dead strip. This is only 2087 // supported on recent versions of ld64. 2088 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 2089 if (!TargetTriple.isOSBinFormatMachO()) 2090 return false; 2091 2092 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 2093 return true; 2094 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 2095 return true; 2096 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 2097 return true; 2098 2099 return false; 2100 } 2101 2102 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 2103 switch (TargetTriple.getObjectFormat()) { 2104 case Triple::COFF: return ".ASAN$GL"; 2105 case Triple::ELF: return "asan_globals"; 2106 case Triple::MachO: return "__DATA,__asan_globals,regular"; 2107 case Triple::Wasm: 2108 case Triple::GOFF: 2109 case Triple::XCOFF: 2110 report_fatal_error( 2111 "ModuleAddressSanitizer not implemented for object file format"); 2112 case Triple::UnknownObjectFormat: 2113 break; 2114 } 2115 llvm_unreachable("unsupported object format"); 2116 } 2117 2118 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 2119 IRBuilder<> IRB(*C); 2120 2121 // Declare our poisoning and unpoisoning functions. 2122 AsanPoisonGlobals = 2123 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2124 AsanUnpoisonGlobals = 2125 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2126 2127 // Declare functions that register/unregister globals. 2128 AsanRegisterGlobals = M.getOrInsertFunction( 2129 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2130 AsanUnregisterGlobals = M.getOrInsertFunction( 2131 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2132 2133 // Declare the functions that find globals in a shared object and then invoke 2134 // the (un)register function on them. 2135 AsanRegisterImageGlobals = M.getOrInsertFunction( 2136 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2137 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2138 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2139 2140 AsanRegisterElfGlobals = 2141 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2142 IntptrTy, IntptrTy, IntptrTy); 2143 AsanUnregisterElfGlobals = 2144 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2145 IntptrTy, IntptrTy, IntptrTy); 2146 } 2147 2148 // Put the metadata and the instrumented global in the same group. This ensures 2149 // that the metadata is discarded if the instrumented global is discarded. 2150 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2151 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2152 Module &M = *G->getParent(); 2153 Comdat *C = G->getComdat(); 2154 if (!C) { 2155 if (!G->hasName()) { 2156 // If G is unnamed, it must be internal. Give it an artificial name 2157 // so we can put it in a comdat. 2158 assert(G->hasLocalLinkage()); 2159 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2160 } 2161 2162 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2163 std::string Name = std::string(G->getName()); 2164 Name += InternalSuffix; 2165 C = M.getOrInsertComdat(Name); 2166 } else { 2167 C = M.getOrInsertComdat(G->getName()); 2168 } 2169 2170 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2171 // linkage to internal linkage so that a symbol table entry is emitted. This 2172 // is necessary in order to create the comdat group. 2173 if (TargetTriple.isOSBinFormatCOFF()) { 2174 C->setSelectionKind(Comdat::NoDeduplicate); 2175 if (G->hasPrivateLinkage()) 2176 G->setLinkage(GlobalValue::InternalLinkage); 2177 } 2178 G->setComdat(C); 2179 } 2180 2181 assert(G->hasComdat()); 2182 Metadata->setComdat(G->getComdat()); 2183 } 2184 2185 // Create a separate metadata global and put it in the appropriate ASan 2186 // global registration section. 2187 GlobalVariable * 2188 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2189 StringRef OriginalName) { 2190 auto Linkage = TargetTriple.isOSBinFormatMachO() 2191 ? GlobalVariable::InternalLinkage 2192 : GlobalVariable::PrivateLinkage; 2193 GlobalVariable *Metadata = new GlobalVariable( 2194 M, Initializer->getType(), false, Linkage, Initializer, 2195 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2196 Metadata->setSection(getGlobalMetadataSection()); 2197 return Metadata; 2198 } 2199 2200 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2201 AsanDtorFunction = Function::createWithDefaultAttr( 2202 FunctionType::get(Type::getVoidTy(*C), false), 2203 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2204 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 2205 // Ensure Dtor cannot be discarded, even if in a comdat. 2206 appendToUsed(M, {AsanDtorFunction}); 2207 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2208 2209 return ReturnInst::Create(*C, AsanDtorBB); 2210 } 2211 2212 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2213 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2214 ArrayRef<Constant *> MetadataInitializers) { 2215 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2216 auto &DL = M.getDataLayout(); 2217 2218 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2219 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2220 Constant *Initializer = MetadataInitializers[i]; 2221 GlobalVariable *G = ExtendedGlobals[i]; 2222 GlobalVariable *Metadata = 2223 CreateMetadataGlobal(M, Initializer, G->getName()); 2224 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2225 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2226 MetadataGlobals[i] = Metadata; 2227 2228 // The MSVC linker always inserts padding when linking incrementally. We 2229 // cope with that by aligning each struct to its size, which must be a power 2230 // of two. 2231 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2232 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2233 "global metadata will not be padded appropriately"); 2234 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2235 2236 SetComdatForGlobalMetadata(G, Metadata, ""); 2237 } 2238 2239 // Update llvm.compiler.used, adding the new metadata globals. This is 2240 // needed so that during LTO these variables stay alive. 2241 if (!MetadataGlobals.empty()) 2242 appendToCompilerUsed(M, MetadataGlobals); 2243 } 2244 2245 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2246 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2247 ArrayRef<Constant *> MetadataInitializers, 2248 const std::string &UniqueModuleId) { 2249 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2250 2251 // Putting globals in a comdat changes the semantic and potentially cause 2252 // false negative odr violations at link time. If odr indicators are used, we 2253 // keep the comdat sections, as link time odr violations will be dectected on 2254 // the odr indicator symbols. 2255 bool UseComdatForGlobalsGC = UseOdrIndicator; 2256 2257 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2258 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2259 GlobalVariable *G = ExtendedGlobals[i]; 2260 GlobalVariable *Metadata = 2261 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2262 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2263 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2264 MetadataGlobals[i] = Metadata; 2265 2266 if (UseComdatForGlobalsGC) 2267 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2268 } 2269 2270 // Update llvm.compiler.used, adding the new metadata globals. This is 2271 // needed so that during LTO these variables stay alive. 2272 if (!MetadataGlobals.empty()) 2273 appendToCompilerUsed(M, MetadataGlobals); 2274 2275 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2276 // to look up the loaded image that contains it. Second, we can store in it 2277 // whether registration has already occurred, to prevent duplicate 2278 // registration. 2279 // 2280 // Common linkage ensures that there is only one global per shared library. 2281 GlobalVariable *RegisteredFlag = new GlobalVariable( 2282 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2283 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2284 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2285 2286 // Create start and stop symbols. 2287 GlobalVariable *StartELFMetadata = new GlobalVariable( 2288 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2289 "__start_" + getGlobalMetadataSection()); 2290 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2291 GlobalVariable *StopELFMetadata = new GlobalVariable( 2292 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2293 "__stop_" + getGlobalMetadataSection()); 2294 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2295 2296 // Create a call to register the globals with the runtime. 2297 IRB.CreateCall(AsanRegisterElfGlobals, 2298 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2299 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2300 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2301 2302 // We also need to unregister globals at the end, e.g., when a shared library 2303 // gets closed. 2304 if (DestructorKind != AsanDtorKind::None) { 2305 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2306 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2307 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2308 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2309 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2310 } 2311 } 2312 2313 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2314 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2315 ArrayRef<Constant *> MetadataInitializers) { 2316 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2317 2318 // On recent Mach-O platforms, use a structure which binds the liveness of 2319 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2320 // created to be added to llvm.compiler.used 2321 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2322 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2323 2324 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2325 Constant *Initializer = MetadataInitializers[i]; 2326 GlobalVariable *G = ExtendedGlobals[i]; 2327 GlobalVariable *Metadata = 2328 CreateMetadataGlobal(M, Initializer, G->getName()); 2329 2330 // On recent Mach-O platforms, we emit the global metadata in a way that 2331 // allows the linker to properly strip dead globals. 2332 auto LivenessBinder = 2333 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2334 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2335 GlobalVariable *Liveness = new GlobalVariable( 2336 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2337 Twine("__asan_binder_") + G->getName()); 2338 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2339 LivenessGlobals[i] = Liveness; 2340 } 2341 2342 // Update llvm.compiler.used, adding the new liveness globals. This is 2343 // needed so that during LTO these variables stay alive. The alternative 2344 // would be to have the linker handling the LTO symbols, but libLTO 2345 // current API does not expose access to the section for each symbol. 2346 if (!LivenessGlobals.empty()) 2347 appendToCompilerUsed(M, LivenessGlobals); 2348 2349 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2350 // to look up the loaded image that contains it. Second, we can store in it 2351 // whether registration has already occurred, to prevent duplicate 2352 // registration. 2353 // 2354 // common linkage ensures that there is only one global per shared library. 2355 GlobalVariable *RegisteredFlag = new GlobalVariable( 2356 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2357 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2358 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2359 2360 IRB.CreateCall(AsanRegisterImageGlobals, 2361 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2362 2363 // We also need to unregister globals at the end, e.g., when a shared library 2364 // gets closed. 2365 if (DestructorKind != AsanDtorKind::None) { 2366 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2367 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2368 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2369 } 2370 } 2371 2372 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2373 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2374 ArrayRef<Constant *> MetadataInitializers) { 2375 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2376 unsigned N = ExtendedGlobals.size(); 2377 assert(N > 0); 2378 2379 // On platforms that don't have a custom metadata section, we emit an array 2380 // of global metadata structures. 2381 ArrayType *ArrayOfGlobalStructTy = 2382 ArrayType::get(MetadataInitializers[0]->getType(), N); 2383 auto AllGlobals = new GlobalVariable( 2384 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2385 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2386 if (Mapping.Scale > 3) 2387 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2388 2389 IRB.CreateCall(AsanRegisterGlobals, 2390 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2391 ConstantInt::get(IntptrTy, N)}); 2392 2393 // We also need to unregister globals at the end, e.g., when a shared library 2394 // gets closed. 2395 if (DestructorKind != AsanDtorKind::None) { 2396 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2397 IrbDtor.CreateCall(AsanUnregisterGlobals, 2398 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2399 ConstantInt::get(IntptrTy, N)}); 2400 } 2401 } 2402 2403 // This function replaces all global variables with new variables that have 2404 // trailing redzones. It also creates a function that poisons 2405 // redzones and inserts this function into llvm.global_ctors. 2406 // Sets *CtorComdat to true if the global registration code emitted into the 2407 // asan constructor is comdat-compatible. 2408 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2409 bool *CtorComdat) { 2410 *CtorComdat = false; 2411 2412 // Build set of globals that are aliased by some GA, where 2413 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2414 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2415 if (CompileKernel) { 2416 for (auto &GA : M.aliases()) { 2417 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2418 AliasedGlobalExclusions.insert(GV); 2419 } 2420 } 2421 2422 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2423 for (auto &G : M.globals()) { 2424 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2425 GlobalsToChange.push_back(&G); 2426 } 2427 2428 size_t n = GlobalsToChange.size(); 2429 if (n == 0) { 2430 *CtorComdat = true; 2431 return false; 2432 } 2433 2434 auto &DL = M.getDataLayout(); 2435 2436 // A global is described by a structure 2437 // size_t beg; 2438 // size_t size; 2439 // size_t size_with_redzone; 2440 // const char *name; 2441 // const char *module_name; 2442 // size_t has_dynamic_init; 2443 // void *source_location; 2444 // size_t odr_indicator; 2445 // We initialize an array of such structures and pass it to a run-time call. 2446 StructType *GlobalStructTy = 2447 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2448 IntptrTy, IntptrTy, IntptrTy); 2449 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2450 SmallVector<Constant *, 16> Initializers(n); 2451 2452 bool HasDynamicallyInitializedGlobals = false; 2453 2454 // We shouldn't merge same module names, as this string serves as unique 2455 // module ID in runtime. 2456 GlobalVariable *ModuleName = createPrivateGlobalForString( 2457 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2458 2459 for (size_t i = 0; i < n; i++) { 2460 GlobalVariable *G = GlobalsToChange[i]; 2461 2462 // FIXME: Metadata should be attched directly to the global directly instead 2463 // of being added to llvm.asan.globals. 2464 auto MD = GlobalsMD.get(G); 2465 StringRef NameForGlobal = G->getName(); 2466 // Create string holding the global name (use global name from metadata 2467 // if it's available, otherwise just write the name of global variable). 2468 GlobalVariable *Name = createPrivateGlobalForString( 2469 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2470 /*AllowMerging*/ true, kAsanGenPrefix); 2471 2472 Type *Ty = G->getValueType(); 2473 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2474 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2475 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2476 2477 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2478 Constant *NewInitializer = ConstantStruct::get( 2479 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2480 2481 // Create a new global variable with enough space for a redzone. 2482 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2483 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2484 Linkage = GlobalValue::InternalLinkage; 2485 GlobalVariable *NewGlobal = new GlobalVariable( 2486 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2487 G->getThreadLocalMode(), G->getAddressSpace()); 2488 NewGlobal->copyAttributesFrom(G); 2489 NewGlobal->setComdat(G->getComdat()); 2490 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2491 // Don't fold globals with redzones. ODR violation detector and redzone 2492 // poisoning implicitly creates a dependence on the global's address, so it 2493 // is no longer valid for it to be marked unnamed_addr. 2494 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2495 2496 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2497 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2498 G->isConstant()) { 2499 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2500 if (Seq && Seq->isCString()) 2501 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2502 } 2503 2504 // Transfer the debug info and type metadata. The payload starts at offset 2505 // zero so we can copy the metadata over as is. 2506 NewGlobal->copyMetadata(G, 0); 2507 2508 Value *Indices2[2]; 2509 Indices2[0] = IRB.getInt32(0); 2510 Indices2[1] = IRB.getInt32(0); 2511 2512 G->replaceAllUsesWith( 2513 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2514 NewGlobal->takeName(G); 2515 G->eraseFromParent(); 2516 NewGlobals[i] = NewGlobal; 2517 2518 Constant *SourceLoc; 2519 if (!MD.SourceLoc.empty()) { 2520 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2521 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2522 } else { 2523 SourceLoc = ConstantInt::get(IntptrTy, 0); 2524 } 2525 2526 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2527 GlobalValue *InstrumentedGlobal = NewGlobal; 2528 2529 bool CanUsePrivateAliases = 2530 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2531 TargetTriple.isOSBinFormatWasm(); 2532 if (CanUsePrivateAliases && UsePrivateAlias) { 2533 // Create local alias for NewGlobal to avoid crash on ODR between 2534 // instrumented and non-instrumented libraries. 2535 InstrumentedGlobal = 2536 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2537 } 2538 2539 // ODR should not happen for local linkage. 2540 if (NewGlobal->hasLocalLinkage()) { 2541 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2542 IRB.getInt8PtrTy()); 2543 } else if (UseOdrIndicator) { 2544 // With local aliases, we need to provide another externally visible 2545 // symbol __odr_asan_XXX to detect ODR violation. 2546 auto *ODRIndicatorSym = 2547 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2548 Constant::getNullValue(IRB.getInt8Ty()), 2549 kODRGenPrefix + NameForGlobal, nullptr, 2550 NewGlobal->getThreadLocalMode()); 2551 2552 // Set meaningful attributes for indicator symbol. 2553 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2554 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2555 ODRIndicatorSym->setAlignment(Align(1)); 2556 ODRIndicator = ODRIndicatorSym; 2557 } 2558 2559 Constant *Initializer = ConstantStruct::get( 2560 GlobalStructTy, 2561 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2562 ConstantInt::get(IntptrTy, SizeInBytes), 2563 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2564 ConstantExpr::getPointerCast(Name, IntptrTy), 2565 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2566 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2567 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2568 2569 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2570 2571 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2572 2573 Initializers[i] = Initializer; 2574 } 2575 2576 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2577 // ConstantMerge'ing them. 2578 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2579 for (size_t i = 0; i < n; i++) { 2580 GlobalVariable *G = NewGlobals[i]; 2581 if (G->getName().empty()) continue; 2582 GlobalsToAddToUsedList.push_back(G); 2583 } 2584 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2585 2586 std::string ELFUniqueModuleId = 2587 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2588 : ""; 2589 2590 if (!ELFUniqueModuleId.empty()) { 2591 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2592 *CtorComdat = true; 2593 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2594 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2595 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2596 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2597 } else { 2598 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2599 } 2600 2601 // Create calls for poisoning before initializers run and unpoisoning after. 2602 if (HasDynamicallyInitializedGlobals) 2603 createInitializerPoisonCalls(M, ModuleName); 2604 2605 LLVM_DEBUG(dbgs() << M); 2606 return true; 2607 } 2608 2609 uint64_t 2610 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2611 constexpr uint64_t kMaxRZ = 1 << 18; 2612 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2613 2614 uint64_t RZ = 0; 2615 if (SizeInBytes <= MinRZ / 2) { 2616 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2617 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2618 // half of MinRZ. 2619 RZ = MinRZ - SizeInBytes; 2620 } else { 2621 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2622 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2623 2624 // Round up to multiple of MinRZ. 2625 if (SizeInBytes % MinRZ) 2626 RZ += MinRZ - (SizeInBytes % MinRZ); 2627 } 2628 2629 assert((RZ + SizeInBytes) % MinRZ == 0); 2630 2631 return RZ; 2632 } 2633 2634 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2635 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2636 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2637 int Version = 8; 2638 // 32-bit Android is one version ahead because of the switch to dynamic 2639 // shadow. 2640 Version += (LongSize == 32 && isAndroid); 2641 return Version; 2642 } 2643 2644 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2645 initializeCallbacks(M); 2646 2647 // Create a module constructor. A destructor is created lazily because not all 2648 // platforms, and not all modules need it. 2649 if (CompileKernel) { 2650 // The kernel always builds with its own runtime, and therefore does not 2651 // need the init and version check calls. 2652 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2653 } else { 2654 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2655 std::string VersionCheckName = 2656 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2657 std::tie(AsanCtorFunction, std::ignore) = 2658 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2659 kAsanInitName, /*InitArgTypes=*/{}, 2660 /*InitArgs=*/{}, VersionCheckName); 2661 } 2662 2663 bool CtorComdat = true; 2664 if (ClGlobals) { 2665 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2666 InstrumentGlobals(IRB, M, &CtorComdat); 2667 } 2668 2669 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2670 2671 // Put the constructor and destructor in comdat if both 2672 // (1) global instrumentation is not TU-specific 2673 // (2) target is ELF. 2674 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2675 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2676 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2677 if (AsanDtorFunction) { 2678 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2679 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2680 } 2681 } else { 2682 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2683 if (AsanDtorFunction) 2684 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2685 } 2686 2687 return true; 2688 } 2689 2690 void AddressSanitizer::initializeCallbacks(Module &M) { 2691 IRBuilder<> IRB(*C); 2692 // Create __asan_report* callbacks. 2693 // IsWrite, TypeSize and Exp are encoded in the function name. 2694 for (int Exp = 0; Exp < 2; Exp++) { 2695 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2696 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2697 const std::string ExpStr = Exp ? "exp_" : ""; 2698 const std::string EndingStr = Recover ? "_noabort" : ""; 2699 2700 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2701 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2702 if (Exp) { 2703 Type *ExpType = Type::getInt32Ty(*C); 2704 Args2.push_back(ExpType); 2705 Args1.push_back(ExpType); 2706 } 2707 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2708 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2709 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2710 2711 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2712 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2713 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2714 2715 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2716 AccessSizeIndex++) { 2717 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2718 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2719 M.getOrInsertFunction( 2720 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2721 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2722 2723 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2724 M.getOrInsertFunction( 2725 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2726 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2727 } 2728 } 2729 } 2730 2731 const std::string MemIntrinCallbackPrefix = 2732 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2733 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2734 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2735 IRB.getInt8PtrTy(), IntptrTy); 2736 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2737 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2738 IRB.getInt8PtrTy(), IntptrTy); 2739 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2740 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2741 IRB.getInt32Ty(), IntptrTy); 2742 2743 AsanHandleNoReturnFunc = 2744 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2745 2746 AsanPtrCmpFunction = 2747 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2748 AsanPtrSubFunction = 2749 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2750 if (Mapping.InGlobal) 2751 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2752 ArrayType::get(IRB.getInt8Ty(), 0)); 2753 2754 AMDGPUAddressShared = M.getOrInsertFunction( 2755 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2756 AMDGPUAddressPrivate = M.getOrInsertFunction( 2757 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2758 } 2759 2760 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2761 // For each NSObject descendant having a +load method, this method is invoked 2762 // by the ObjC runtime before any of the static constructors is called. 2763 // Therefore we need to instrument such methods with a call to __asan_init 2764 // at the beginning in order to initialize our runtime before any access to 2765 // the shadow memory. 2766 // We cannot just ignore these methods, because they may call other 2767 // instrumented functions. 2768 if (F.getName().find(" load]") != std::string::npos) { 2769 FunctionCallee AsanInitFunction = 2770 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2771 IRBuilder<> IRB(&F.front(), F.front().begin()); 2772 IRB.CreateCall(AsanInitFunction, {}); 2773 return true; 2774 } 2775 return false; 2776 } 2777 2778 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2779 // Generate code only when dynamic addressing is needed. 2780 if (Mapping.Offset != kDynamicShadowSentinel) 2781 return false; 2782 2783 IRBuilder<> IRB(&F.front().front()); 2784 if (Mapping.InGlobal) { 2785 if (ClWithIfuncSuppressRemat) { 2786 // An empty inline asm with input reg == output reg. 2787 // An opaque pointer-to-int cast, basically. 2788 InlineAsm *Asm = InlineAsm::get( 2789 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2790 StringRef(""), StringRef("=r,0"), 2791 /*hasSideEffects=*/false); 2792 LocalDynamicShadow = 2793 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2794 } else { 2795 LocalDynamicShadow = 2796 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2797 } 2798 } else { 2799 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2800 kAsanShadowMemoryDynamicAddress, IntptrTy); 2801 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2802 } 2803 return true; 2804 } 2805 2806 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2807 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2808 // to it as uninteresting. This assumes we haven't started processing allocas 2809 // yet. This check is done up front because iterating the use list in 2810 // isInterestingAlloca would be algorithmically slower. 2811 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2812 2813 // Try to get the declaration of llvm.localescape. If it's not in the module, 2814 // we can exit early. 2815 if (!F.getParent()->getFunction("llvm.localescape")) return; 2816 2817 // Look for a call to llvm.localescape call in the entry block. It can't be in 2818 // any other block. 2819 for (Instruction &I : F.getEntryBlock()) { 2820 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2821 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2822 // We found a call. Mark all the allocas passed in as uninteresting. 2823 for (Value *Arg : II->args()) { 2824 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2825 assert(AI && AI->isStaticAlloca() && 2826 "non-static alloca arg to localescape"); 2827 ProcessedAllocas[AI] = false; 2828 } 2829 break; 2830 } 2831 } 2832 } 2833 2834 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2835 bool ShouldInstrument = 2836 ClDebugMin < 0 || ClDebugMax < 0 || 2837 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2838 Instrumented++; 2839 return !ShouldInstrument; 2840 } 2841 2842 bool AddressSanitizer::instrumentFunction(Function &F, 2843 const TargetLibraryInfo *TLI) { 2844 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2845 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2846 if (F.getName().startswith("__asan_")) return false; 2847 2848 bool FunctionModified = false; 2849 2850 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2851 // This function needs to be called even if the function body is not 2852 // instrumented. 2853 if (maybeInsertAsanInitAtFunctionEntry(F)) 2854 FunctionModified = true; 2855 2856 // Leave if the function doesn't need instrumentation. 2857 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2858 2859 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2860 2861 initializeCallbacks(*F.getParent()); 2862 2863 FunctionStateRAII CleanupObj(this); 2864 2865 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2866 2867 // We can't instrument allocas used with llvm.localescape. Only static allocas 2868 // can be passed to that intrinsic. 2869 markEscapedLocalAllocas(F); 2870 2871 // We want to instrument every address only once per basic block (unless there 2872 // are calls between uses). 2873 SmallPtrSet<Value *, 16> TempsToInstrument; 2874 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2875 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2876 SmallVector<Instruction *, 8> NoReturnCalls; 2877 SmallVector<BasicBlock *, 16> AllBlocks; 2878 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2879 int NumAllocas = 0; 2880 2881 // Fill the set of memory operations to instrument. 2882 for (auto &BB : F) { 2883 AllBlocks.push_back(&BB); 2884 TempsToInstrument.clear(); 2885 int NumInsnsPerBB = 0; 2886 for (auto &Inst : BB) { 2887 if (LooksLikeCodeInBug11395(&Inst)) return false; 2888 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2889 getInterestingMemoryOperands(&Inst, InterestingOperands); 2890 2891 if (!InterestingOperands.empty()) { 2892 for (auto &Operand : InterestingOperands) { 2893 if (ClOpt && ClOptSameTemp) { 2894 Value *Ptr = Operand.getPtr(); 2895 // If we have a mask, skip instrumentation if we've already 2896 // instrumented the full object. But don't add to TempsToInstrument 2897 // because we might get another load/store with a different mask. 2898 if (Operand.MaybeMask) { 2899 if (TempsToInstrument.count(Ptr)) 2900 continue; // We've seen this (whole) temp in the current BB. 2901 } else { 2902 if (!TempsToInstrument.insert(Ptr).second) 2903 continue; // We've seen this temp in the current BB. 2904 } 2905 } 2906 OperandsToInstrument.push_back(Operand); 2907 NumInsnsPerBB++; 2908 } 2909 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2910 isInterestingPointerComparison(&Inst)) || 2911 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2912 isInterestingPointerSubtraction(&Inst))) { 2913 PointerComparisonsOrSubtracts.push_back(&Inst); 2914 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2915 // ok, take it. 2916 IntrinToInstrument.push_back(MI); 2917 NumInsnsPerBB++; 2918 } else { 2919 if (isa<AllocaInst>(Inst)) NumAllocas++; 2920 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2921 // A call inside BB. 2922 TempsToInstrument.clear(); 2923 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2924 NoReturnCalls.push_back(CB); 2925 } 2926 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2927 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2928 } 2929 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2930 } 2931 } 2932 2933 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2934 OperandsToInstrument.size() + IntrinToInstrument.size() > 2935 (unsigned)ClInstrumentationWithCallsThreshold); 2936 const DataLayout &DL = F.getParent()->getDataLayout(); 2937 ObjectSizeOpts ObjSizeOpts; 2938 ObjSizeOpts.RoundToAlign = true; 2939 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2940 2941 // Instrument. 2942 int NumInstrumented = 0; 2943 for (auto &Operand : OperandsToInstrument) { 2944 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2945 instrumentMop(ObjSizeVis, Operand, UseCalls, 2946 F.getParent()->getDataLayout()); 2947 FunctionModified = true; 2948 } 2949 for (auto Inst : IntrinToInstrument) { 2950 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2951 instrumentMemIntrinsic(Inst); 2952 FunctionModified = true; 2953 } 2954 2955 FunctionStackPoisoner FSP(F, *this); 2956 bool ChangedStack = FSP.runOnFunction(); 2957 2958 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2959 // See e.g. https://github.com/google/sanitizers/issues/37 2960 for (auto CI : NoReturnCalls) { 2961 IRBuilder<> IRB(CI); 2962 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2963 } 2964 2965 for (auto Inst : PointerComparisonsOrSubtracts) { 2966 instrumentPointerComparisonOrSubtraction(Inst); 2967 FunctionModified = true; 2968 } 2969 2970 if (ChangedStack || !NoReturnCalls.empty()) 2971 FunctionModified = true; 2972 2973 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2974 << F << "\n"); 2975 2976 return FunctionModified; 2977 } 2978 2979 // Workaround for bug 11395: we don't want to instrument stack in functions 2980 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2981 // FIXME: remove once the bug 11395 is fixed. 2982 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2983 if (LongSize != 32) return false; 2984 CallInst *CI = dyn_cast<CallInst>(I); 2985 if (!CI || !CI->isInlineAsm()) return false; 2986 if (CI->arg_size() <= 5) 2987 return false; 2988 // We have inline assembly with quite a few arguments. 2989 return true; 2990 } 2991 2992 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2993 IRBuilder<> IRB(*C); 2994 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 2995 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 2996 const char *MallocNameTemplate = 2997 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 2998 ? kAsanStackMallocAlwaysNameTemplate 2999 : kAsanStackMallocNameTemplate; 3000 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 3001 std::string Suffix = itostr(Index); 3002 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 3003 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 3004 AsanStackFreeFunc[Index] = 3005 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 3006 IRB.getVoidTy(), IntptrTy, IntptrTy); 3007 } 3008 } 3009 if (ASan.UseAfterScope) { 3010 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 3011 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3012 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 3013 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3014 } 3015 3016 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 3017 std::ostringstream Name; 3018 Name << kAsanSetShadowPrefix; 3019 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 3020 AsanSetShadowFunc[Val] = 3021 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 3022 } 3023 3024 AsanAllocaPoisonFunc = M.getOrInsertFunction( 3025 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3026 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 3027 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3028 } 3029 3030 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 3031 ArrayRef<uint8_t> ShadowBytes, 3032 size_t Begin, size_t End, 3033 IRBuilder<> &IRB, 3034 Value *ShadowBase) { 3035 if (Begin >= End) 3036 return; 3037 3038 const size_t LargestStoreSizeInBytes = 3039 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 3040 3041 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 3042 3043 // Poison given range in shadow using larges store size with out leading and 3044 // trailing zeros in ShadowMask. Zeros never change, so they need neither 3045 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 3046 // middle of a store. 3047 for (size_t i = Begin; i < End;) { 3048 if (!ShadowMask[i]) { 3049 assert(!ShadowBytes[i]); 3050 ++i; 3051 continue; 3052 } 3053 3054 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 3055 // Fit store size into the range. 3056 while (StoreSizeInBytes > End - i) 3057 StoreSizeInBytes /= 2; 3058 3059 // Minimize store size by trimming trailing zeros. 3060 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 3061 while (j <= StoreSizeInBytes / 2) 3062 StoreSizeInBytes /= 2; 3063 } 3064 3065 uint64_t Val = 0; 3066 for (size_t j = 0; j < StoreSizeInBytes; j++) { 3067 if (IsLittleEndian) 3068 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 3069 else 3070 Val = (Val << 8) | ShadowBytes[i + j]; 3071 } 3072 3073 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 3074 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 3075 IRB.CreateAlignedStore( 3076 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 3077 Align(1)); 3078 3079 i += StoreSizeInBytes; 3080 } 3081 } 3082 3083 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3084 ArrayRef<uint8_t> ShadowBytes, 3085 IRBuilder<> &IRB, Value *ShadowBase) { 3086 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 3087 } 3088 3089 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3090 ArrayRef<uint8_t> ShadowBytes, 3091 size_t Begin, size_t End, 3092 IRBuilder<> &IRB, Value *ShadowBase) { 3093 assert(ShadowMask.size() == ShadowBytes.size()); 3094 size_t Done = Begin; 3095 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 3096 if (!ShadowMask[i]) { 3097 assert(!ShadowBytes[i]); 3098 continue; 3099 } 3100 uint8_t Val = ShadowBytes[i]; 3101 if (!AsanSetShadowFunc[Val]) 3102 continue; 3103 3104 // Skip same values. 3105 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 3106 } 3107 3108 if (j - i >= ClMaxInlinePoisoningSize) { 3109 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 3110 IRB.CreateCall(AsanSetShadowFunc[Val], 3111 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 3112 ConstantInt::get(IntptrTy, j - i)}); 3113 Done = j; 3114 } 3115 } 3116 3117 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 3118 } 3119 3120 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 3121 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 3122 static int StackMallocSizeClass(uint64_t LocalStackSize) { 3123 assert(LocalStackSize <= kMaxStackMallocSize); 3124 uint64_t MaxSize = kMinStackMallocSize; 3125 for (int i = 0;; i++, MaxSize *= 2) 3126 if (LocalStackSize <= MaxSize) return i; 3127 llvm_unreachable("impossible LocalStackSize"); 3128 } 3129 3130 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 3131 Instruction *CopyInsertPoint = &F.front().front(); 3132 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 3133 // Insert after the dynamic shadow location is determined 3134 CopyInsertPoint = CopyInsertPoint->getNextNode(); 3135 assert(CopyInsertPoint); 3136 } 3137 IRBuilder<> IRB(CopyInsertPoint); 3138 const DataLayout &DL = F.getParent()->getDataLayout(); 3139 for (Argument &Arg : F.args()) { 3140 if (Arg.hasByValAttr()) { 3141 Type *Ty = Arg.getParamByValType(); 3142 const Align Alignment = 3143 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 3144 3145 AllocaInst *AI = IRB.CreateAlloca( 3146 Ty, nullptr, 3147 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 3148 ".byval"); 3149 AI->setAlignment(Alignment); 3150 Arg.replaceAllUsesWith(AI); 3151 3152 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3153 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3154 } 3155 } 3156 } 3157 3158 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3159 Value *ValueIfTrue, 3160 Instruction *ThenTerm, 3161 Value *ValueIfFalse) { 3162 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3163 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3164 PHI->addIncoming(ValueIfFalse, CondBlock); 3165 BasicBlock *ThenBlock = ThenTerm->getParent(); 3166 PHI->addIncoming(ValueIfTrue, ThenBlock); 3167 return PHI; 3168 } 3169 3170 Value *FunctionStackPoisoner::createAllocaForLayout( 3171 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3172 AllocaInst *Alloca; 3173 if (Dynamic) { 3174 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3175 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3176 "MyAlloca"); 3177 } else { 3178 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3179 nullptr, "MyAlloca"); 3180 assert(Alloca->isStaticAlloca()); 3181 } 3182 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3183 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); 3184 Alloca->setAlignment(Align(FrameAlignment)); 3185 return IRB.CreatePointerCast(Alloca, IntptrTy); 3186 } 3187 3188 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3189 BasicBlock &FirstBB = *F.begin(); 3190 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3191 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3192 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3193 DynamicAllocaLayout->setAlignment(Align(32)); 3194 } 3195 3196 void FunctionStackPoisoner::processDynamicAllocas() { 3197 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3198 assert(DynamicAllocaPoisonCallVec.empty()); 3199 return; 3200 } 3201 3202 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3203 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3204 assert(APC.InsBefore); 3205 assert(APC.AI); 3206 assert(ASan.isInterestingAlloca(*APC.AI)); 3207 assert(!APC.AI->isStaticAlloca()); 3208 3209 IRBuilder<> IRB(APC.InsBefore); 3210 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3211 // Dynamic allocas will be unpoisoned unconditionally below in 3212 // unpoisonDynamicAllocas. 3213 // Flag that we need unpoison static allocas. 3214 } 3215 3216 // Handle dynamic allocas. 3217 createDynamicAllocasInitStorage(); 3218 for (auto &AI : DynamicAllocaVec) 3219 handleDynamicAllocaCall(AI); 3220 unpoisonDynamicAllocas(); 3221 } 3222 3223 /// Collect instructions in the entry block after \p InsBefore which initialize 3224 /// permanent storage for a function argument. These instructions must remain in 3225 /// the entry block so that uninitialized values do not appear in backtraces. An 3226 /// added benefit is that this conserves spill slots. This does not move stores 3227 /// before instrumented / "interesting" allocas. 3228 static void findStoresToUninstrumentedArgAllocas( 3229 AddressSanitizer &ASan, Instruction &InsBefore, 3230 SmallVectorImpl<Instruction *> &InitInsts) { 3231 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3232 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3233 // Argument initialization looks like: 3234 // 1) store <Argument>, <Alloca> OR 3235 // 2) <CastArgument> = cast <Argument> to ... 3236 // store <CastArgument> to <Alloca> 3237 // Do not consider any other kind of instruction. 3238 // 3239 // Note: This covers all known cases, but may not be exhaustive. An 3240 // alternative to pattern-matching stores is to DFS over all Argument uses: 3241 // this might be more general, but is probably much more complicated. 3242 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3243 continue; 3244 if (auto *Store = dyn_cast<StoreInst>(It)) { 3245 // The store destination must be an alloca that isn't interesting for 3246 // ASan to instrument. These are moved up before InsBefore, and they're 3247 // not interesting because allocas for arguments can be mem2reg'd. 3248 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3249 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3250 continue; 3251 3252 Value *Val = Store->getValueOperand(); 3253 bool IsDirectArgInit = isa<Argument>(Val); 3254 bool IsArgInitViaCast = 3255 isa<CastInst>(Val) && 3256 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3257 // Check that the cast appears directly before the store. Otherwise 3258 // moving the cast before InsBefore may break the IR. 3259 Val == It->getPrevNonDebugInstruction(); 3260 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3261 if (!IsArgInit) 3262 continue; 3263 3264 if (IsArgInitViaCast) 3265 InitInsts.push_back(cast<Instruction>(Val)); 3266 InitInsts.push_back(Store); 3267 continue; 3268 } 3269 3270 // Do not reorder past unknown instructions: argument initialization should 3271 // only involve casts and stores. 3272 return; 3273 } 3274 } 3275 3276 void FunctionStackPoisoner::processStaticAllocas() { 3277 if (AllocaVec.empty()) { 3278 assert(StaticAllocaPoisonCallVec.empty()); 3279 return; 3280 } 3281 3282 int StackMallocIdx = -1; 3283 DebugLoc EntryDebugLocation; 3284 if (auto SP = F.getSubprogram()) 3285 EntryDebugLocation = 3286 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3287 3288 Instruction *InsBefore = AllocaVec[0]; 3289 IRBuilder<> IRB(InsBefore); 3290 3291 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3292 // debug info is broken, because only entry-block allocas are treated as 3293 // regular stack slots. 3294 auto InsBeforeB = InsBefore->getParent(); 3295 assert(InsBeforeB == &F.getEntryBlock()); 3296 for (auto *AI : StaticAllocasToMoveUp) 3297 if (AI->getParent() == InsBeforeB) 3298 AI->moveBefore(InsBefore); 3299 3300 // Move stores of arguments into entry-block allocas as well. This prevents 3301 // extra stack slots from being generated (to house the argument values until 3302 // they can be stored into the allocas). This also prevents uninitialized 3303 // values from being shown in backtraces. 3304 SmallVector<Instruction *, 8> ArgInitInsts; 3305 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3306 for (Instruction *ArgInitInst : ArgInitInsts) 3307 ArgInitInst->moveBefore(InsBefore); 3308 3309 // If we have a call to llvm.localescape, keep it in the entry block. 3310 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3311 3312 SmallVector<ASanStackVariableDescription, 16> SVD; 3313 SVD.reserve(AllocaVec.size()); 3314 for (AllocaInst *AI : AllocaVec) { 3315 ASanStackVariableDescription D = {AI->getName().data(), 3316 ASan.getAllocaSizeInBytes(*AI), 3317 0, 3318 AI->getAlignment(), 3319 AI, 3320 0, 3321 0}; 3322 SVD.push_back(D); 3323 } 3324 3325 // Minimal header size (left redzone) is 4 pointers, 3326 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3327 uint64_t Granularity = 1ULL << Mapping.Scale; 3328 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); 3329 const ASanStackFrameLayout &L = 3330 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3331 3332 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3333 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3334 for (auto &Desc : SVD) 3335 AllocaToSVDMap[Desc.AI] = &Desc; 3336 3337 // Update SVD with information from lifetime intrinsics. 3338 for (const auto &APC : StaticAllocaPoisonCallVec) { 3339 assert(APC.InsBefore); 3340 assert(APC.AI); 3341 assert(ASan.isInterestingAlloca(*APC.AI)); 3342 assert(APC.AI->isStaticAlloca()); 3343 3344 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3345 Desc.LifetimeSize = Desc.Size; 3346 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3347 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3348 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3349 if (unsigned Line = LifetimeLoc->getLine()) 3350 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3351 } 3352 } 3353 } 3354 3355 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3356 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3357 uint64_t LocalStackSize = L.FrameSize; 3358 bool DoStackMalloc = 3359 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3360 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3361 bool DoDynamicAlloca = ClDynamicAllocaStack; 3362 // Don't do dynamic alloca or stack malloc if: 3363 // 1) There is inline asm: too often it makes assumptions on which registers 3364 // are available. 3365 // 2) There is a returns_twice call (typically setjmp), which is 3366 // optimization-hostile, and doesn't play well with introduced indirect 3367 // register-relative calculation of local variable addresses. 3368 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3369 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3370 3371 Value *StaticAlloca = 3372 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3373 3374 Value *FakeStack; 3375 Value *LocalStackBase; 3376 Value *LocalStackBaseAlloca; 3377 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3378 3379 if (DoStackMalloc) { 3380 LocalStackBaseAlloca = 3381 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3382 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3383 // void *FakeStack = __asan_option_detect_stack_use_after_return 3384 // ? __asan_stack_malloc_N(LocalStackSize) 3385 // : nullptr; 3386 // void *LocalStackBase = (FakeStack) ? FakeStack : 3387 // alloca(LocalStackSize); 3388 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3389 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3390 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3391 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3392 Constant::getNullValue(IRB.getInt32Ty())); 3393 Instruction *Term = 3394 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3395 IRBuilder<> IRBIf(Term); 3396 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3397 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3398 Value *FakeStackValue = 3399 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3400 ConstantInt::get(IntptrTy, LocalStackSize)); 3401 IRB.SetInsertPoint(InsBefore); 3402 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3403 ConstantInt::get(IntptrTy, 0)); 3404 } else { 3405 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3406 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3407 // void *LocalStackBase = (FakeStack) ? FakeStack : 3408 // alloca(LocalStackSize); 3409 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3410 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3411 ConstantInt::get(IntptrTy, LocalStackSize)); 3412 } 3413 Value *NoFakeStack = 3414 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3415 Instruction *Term = 3416 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3417 IRBuilder<> IRBIf(Term); 3418 Value *AllocaValue = 3419 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3420 3421 IRB.SetInsertPoint(InsBefore); 3422 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3423 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3424 DIExprFlags |= DIExpression::DerefBefore; 3425 } else { 3426 // void *FakeStack = nullptr; 3427 // void *LocalStackBase = alloca(LocalStackSize); 3428 FakeStack = ConstantInt::get(IntptrTy, 0); 3429 LocalStackBase = 3430 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3431 LocalStackBaseAlloca = LocalStackBase; 3432 } 3433 3434 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3435 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3436 // later passes and can result in dropped variable coverage in debug info. 3437 Value *LocalStackBaseAllocaPtr = 3438 isa<PtrToIntInst>(LocalStackBaseAlloca) 3439 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3440 : LocalStackBaseAlloca; 3441 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3442 "Variable descriptions relative to ASan stack base will be dropped"); 3443 3444 // Replace Alloca instructions with base+offset. 3445 for (const auto &Desc : SVD) { 3446 AllocaInst *AI = Desc.AI; 3447 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3448 Desc.Offset); 3449 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3450 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3451 AI->getType()); 3452 AI->replaceAllUsesWith(NewAllocaPtr); 3453 } 3454 3455 // The left-most redzone has enough space for at least 4 pointers. 3456 // Write the Magic value to redzone[0]. 3457 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3458 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3459 BasePlus0); 3460 // Write the frame description constant to redzone[1]. 3461 Value *BasePlus1 = IRB.CreateIntToPtr( 3462 IRB.CreateAdd(LocalStackBase, 3463 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3464 IntptrPtrTy); 3465 GlobalVariable *StackDescriptionGlobal = 3466 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3467 /*AllowMerging*/ true, kAsanGenPrefix); 3468 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3469 IRB.CreateStore(Description, BasePlus1); 3470 // Write the PC to redzone[2]. 3471 Value *BasePlus2 = IRB.CreateIntToPtr( 3472 IRB.CreateAdd(LocalStackBase, 3473 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3474 IntptrPtrTy); 3475 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3476 3477 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3478 3479 // Poison the stack red zones at the entry. 3480 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3481 // As mask we must use most poisoned case: red zones and after scope. 3482 // As bytes we can use either the same or just red zones only. 3483 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3484 3485 if (!StaticAllocaPoisonCallVec.empty()) { 3486 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3487 3488 // Poison static allocas near lifetime intrinsics. 3489 for (const auto &APC : StaticAllocaPoisonCallVec) { 3490 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3491 assert(Desc.Offset % L.Granularity == 0); 3492 size_t Begin = Desc.Offset / L.Granularity; 3493 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3494 3495 IRBuilder<> IRB(APC.InsBefore); 3496 copyToShadow(ShadowAfterScope, 3497 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3498 IRB, ShadowBase); 3499 } 3500 } 3501 3502 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3503 SmallVector<uint8_t, 64> ShadowAfterReturn; 3504 3505 // (Un)poison the stack before all ret instructions. 3506 for (Instruction *Ret : RetVec) { 3507 IRBuilder<> IRBRet(Ret); 3508 // Mark the current frame as retired. 3509 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3510 BasePlus0); 3511 if (DoStackMalloc) { 3512 assert(StackMallocIdx >= 0); 3513 // if FakeStack != 0 // LocalStackBase == FakeStack 3514 // // In use-after-return mode, poison the whole stack frame. 3515 // if StackMallocIdx <= 4 3516 // // For small sizes inline the whole thing: 3517 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3518 // **SavedFlagPtr(FakeStack) = 0 3519 // else 3520 // __asan_stack_free_N(FakeStack, LocalStackSize) 3521 // else 3522 // <This is not a fake stack; unpoison the redzones> 3523 Value *Cmp = 3524 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3525 Instruction *ThenTerm, *ElseTerm; 3526 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3527 3528 IRBuilder<> IRBPoison(ThenTerm); 3529 if (StackMallocIdx <= 4) { 3530 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3531 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3532 kAsanStackUseAfterReturnMagic); 3533 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3534 ShadowBase); 3535 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3536 FakeStack, 3537 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3538 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3539 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3540 IRBPoison.CreateStore( 3541 Constant::getNullValue(IRBPoison.getInt8Ty()), 3542 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3543 } else { 3544 // For larger frames call __asan_stack_free_*. 3545 IRBPoison.CreateCall( 3546 AsanStackFreeFunc[StackMallocIdx], 3547 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3548 } 3549 3550 IRBuilder<> IRBElse(ElseTerm); 3551 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3552 } else { 3553 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3554 } 3555 } 3556 3557 // We are done. Remove the old unused alloca instructions. 3558 for (auto AI : AllocaVec) AI->eraseFromParent(); 3559 } 3560 3561 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3562 IRBuilder<> &IRB, bool DoPoison) { 3563 // For now just insert the call to ASan runtime. 3564 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3565 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3566 IRB.CreateCall( 3567 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3568 {AddrArg, SizeArg}); 3569 } 3570 3571 // Handling llvm.lifetime intrinsics for a given %alloca: 3572 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3573 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3574 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3575 // could be poisoned by previous llvm.lifetime.end instruction, as the 3576 // variable may go in and out of scope several times, e.g. in loops). 3577 // (3) if we poisoned at least one %alloca in a function, 3578 // unpoison the whole stack frame at function exit. 3579 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3580 IRBuilder<> IRB(AI); 3581 3582 const uint64_t Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3583 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3584 3585 Value *Zero = Constant::getNullValue(IntptrTy); 3586 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3587 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3588 3589 // Since we need to extend alloca with additional memory to locate 3590 // redzones, and OldSize is number of allocated blocks with 3591 // ElementSize size, get allocated memory size in bytes by 3592 // OldSize * ElementSize. 3593 const unsigned ElementSize = 3594 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3595 Value *OldSize = 3596 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3597 ConstantInt::get(IntptrTy, ElementSize)); 3598 3599 // PartialSize = OldSize % 32 3600 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3601 3602 // Misalign = kAllocaRzSize - PartialSize; 3603 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3604 3605 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3606 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3607 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3608 3609 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3610 // Alignment is added to locate left redzone, PartialPadding for possible 3611 // partial redzone and kAllocaRzSize for right redzone respectively. 3612 Value *AdditionalChunkSize = IRB.CreateAdd( 3613 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3614 3615 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3616 3617 // Insert new alloca with new NewSize and Alignment params. 3618 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3619 NewAlloca->setAlignment(Align(Alignment)); 3620 3621 // NewAddress = Address + Alignment 3622 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3623 ConstantInt::get(IntptrTy, Alignment)); 3624 3625 // Insert __asan_alloca_poison call for new created alloca. 3626 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3627 3628 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3629 // for unpoisoning stuff. 3630 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3631 3632 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3633 3634 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3635 AI->replaceAllUsesWith(NewAddressPtr); 3636 3637 // We are done. Erase old alloca from parent. 3638 AI->eraseFromParent(); 3639 } 3640 3641 // isSafeAccess returns true if Addr is always inbounds with respect to its 3642 // base object. For example, it is a field access or an array access with 3643 // constant inbounds index. 3644 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3645 Value *Addr, uint64_t TypeSize) const { 3646 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3647 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3648 uint64_t Size = SizeOffset.first.getZExtValue(); 3649 int64_t Offset = SizeOffset.second.getSExtValue(); 3650 // Three checks are required to ensure safety: 3651 // . Offset >= 0 (since the offset is given from the base ptr) 3652 // . Size >= Offset (unsigned) 3653 // . Size - Offset >= NeededSize (unsigned) 3654 return Offset >= 0 && Size >= uint64_t(Offset) && 3655 Size - uint64_t(Offset) >= TypeSize / 8; 3656 } 3657