1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 // FIXME: This sanitizer does not yet handle scalable vectors 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/BinaryFormat/MachO.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DIBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstVisitor.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCSectionMachO.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/ScopedPrinter.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Transforms/Utils/ModuleUtils.h" 79 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iomanip> 85 #include <limits> 86 #include <memory> 87 #include <sstream> 88 #include <string> 89 #include <tuple> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "asan" 94 95 static const uint64_t kDefaultShadowScale = 3; 96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 98 static const uint64_t kDynamicShadowSentinel = 99 std::numeric_limits<uint64_t>::max(); 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 109 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 110 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 111 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 112 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 113 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 114 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 115 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 116 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 117 static const uint64_t kEmscriptenShadowOffset = 0; 118 119 static const uint64_t kMyriadShadowScale = 5; 120 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 121 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 122 static const uint64_t kMyriadTagShift = 29; 123 static const uint64_t kMyriadDDRTag = 4; 124 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 125 126 // The shadow memory space is dynamically allocated. 127 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 128 129 static const size_t kMinStackMallocSize = 1 << 6; // 64B 130 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 131 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 132 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 133 134 const char kAsanModuleCtorName[] = "asan.module_ctor"; 135 const char kAsanModuleDtorName[] = "asan.module_dtor"; 136 static const uint64_t kAsanCtorAndDtorPriority = 1; 137 // On Emscripten, the system needs more than one priorities for constructors. 138 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 139 const char kAsanReportErrorTemplate[] = "__asan_report_"; 140 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 141 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 142 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 143 const char kAsanUnregisterImageGlobalsName[] = 144 "__asan_unregister_image_globals"; 145 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 146 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 147 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 148 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 149 const char kAsanInitName[] = "__asan_init"; 150 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 151 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 152 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 153 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 154 static const int kMaxAsanStackMallocSizeClass = 10; 155 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 156 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 157 const char kAsanGenPrefix[] = "___asan_gen_"; 158 const char kODRGenPrefix[] = "__odr_asan_gen_"; 159 const char kSanCovGenPrefix[] = "__sancov_gen_"; 160 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 161 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 162 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 163 164 // ASan version script has __asan_* wildcard. Triple underscore prevents a 165 // linker (gold) warning about attempting to export a local symbol. 166 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 167 168 const char kAsanOptionDetectUseAfterReturn[] = 169 "__asan_option_detect_stack_use_after_return"; 170 171 const char kAsanShadowMemoryDynamicAddress[] = 172 "__asan_shadow_memory_dynamic_address"; 173 174 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 175 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 176 177 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 178 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 179 180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 181 static const size_t kNumberOfAccessSizes = 5; 182 183 static const unsigned kAllocaRzSize = 32; 184 185 // Command-line flags. 186 187 static cl::opt<bool> ClEnableKasan( 188 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 189 cl::Hidden, cl::init(false)); 190 191 static cl::opt<bool> ClRecover( 192 "asan-recover", 193 cl::desc("Enable recovery mode (continue-after-error)."), 194 cl::Hidden, cl::init(false)); 195 196 static cl::opt<bool> ClInsertVersionCheck( 197 "asan-guard-against-version-mismatch", 198 cl::desc("Guard against compiler/runtime version mismatch."), 199 cl::Hidden, cl::init(true)); 200 201 // This flag may need to be replaced with -f[no-]asan-reads. 202 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 203 cl::desc("instrument read instructions"), 204 cl::Hidden, cl::init(true)); 205 206 static cl::opt<bool> ClInstrumentWrites( 207 "asan-instrument-writes", cl::desc("instrument write instructions"), 208 cl::Hidden, cl::init(true)); 209 210 static cl::opt<bool> ClInstrumentAtomics( 211 "asan-instrument-atomics", 212 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 213 cl::init(true)); 214 215 static cl::opt<bool> 216 ClInstrumentByval("asan-instrument-byval", 217 cl::desc("instrument byval call arguments"), cl::Hidden, 218 cl::init(true)); 219 220 static cl::opt<bool> ClAlwaysSlowPath( 221 "asan-always-slow-path", 222 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 223 cl::init(false)); 224 225 static cl::opt<bool> ClForceDynamicShadow( 226 "asan-force-dynamic-shadow", 227 cl::desc("Load shadow address into a local variable for each function"), 228 cl::Hidden, cl::init(false)); 229 230 static cl::opt<bool> 231 ClWithIfunc("asan-with-ifunc", 232 cl::desc("Access dynamic shadow through an ifunc global on " 233 "platforms that support this"), 234 cl::Hidden, cl::init(true)); 235 236 static cl::opt<bool> ClWithIfuncSuppressRemat( 237 "asan-with-ifunc-suppress-remat", 238 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 239 "it through inline asm in prologue."), 240 cl::Hidden, cl::init(true)); 241 242 // This flag limits the number of instructions to be instrumented 243 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 244 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 245 // set it to 10000. 246 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 247 "asan-max-ins-per-bb", cl::init(10000), 248 cl::desc("maximal number of instructions to instrument in any given BB"), 249 cl::Hidden); 250 251 // This flag may need to be replaced with -f[no]asan-stack. 252 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 253 cl::Hidden, cl::init(true)); 254 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 255 "asan-max-inline-poisoning-size", 256 cl::desc( 257 "Inline shadow poisoning for blocks up to the given size in bytes."), 258 cl::Hidden, cl::init(64)); 259 260 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 261 cl::desc("Check stack-use-after-return"), 262 cl::Hidden, cl::init(true)); 263 264 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 265 cl::desc("Create redzones for byval " 266 "arguments (extra copy " 267 "required)"), cl::Hidden, 268 cl::init(true)); 269 270 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 271 cl::desc("Check stack-use-after-scope"), 272 cl::Hidden, cl::init(false)); 273 274 // This flag may need to be replaced with -f[no]asan-globals. 275 static cl::opt<bool> ClGlobals("asan-globals", 276 cl::desc("Handle global objects"), cl::Hidden, 277 cl::init(true)); 278 279 static cl::opt<bool> ClInitializers("asan-initialization-order", 280 cl::desc("Handle C++ initializer order"), 281 cl::Hidden, cl::init(true)); 282 283 static cl::opt<bool> ClInvalidPointerPairs( 284 "asan-detect-invalid-pointer-pair", 285 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 286 cl::init(false)); 287 288 static cl::opt<bool> ClInvalidPointerCmp( 289 "asan-detect-invalid-pointer-cmp", 290 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 291 cl::init(false)); 292 293 static cl::opt<bool> ClInvalidPointerSub( 294 "asan-detect-invalid-pointer-sub", 295 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 296 cl::init(false)); 297 298 static cl::opt<unsigned> ClRealignStack( 299 "asan-realign-stack", 300 cl::desc("Realign stack to the value of this flag (power of two)"), 301 cl::Hidden, cl::init(32)); 302 303 static cl::opt<int> ClInstrumentationWithCallsThreshold( 304 "asan-instrumentation-with-call-threshold", 305 cl::desc( 306 "If the function being instrumented contains more than " 307 "this number of memory accesses, use callbacks instead of " 308 "inline checks (-1 means never use callbacks)."), 309 cl::Hidden, cl::init(7000)); 310 311 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 312 "asan-memory-access-callback-prefix", 313 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 314 cl::init("__asan_")); 315 316 static cl::opt<bool> 317 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 318 cl::desc("instrument dynamic allocas"), 319 cl::Hidden, cl::init(true)); 320 321 static cl::opt<bool> ClSkipPromotableAllocas( 322 "asan-skip-promotable-allocas", 323 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 324 cl::init(true)); 325 326 // These flags allow to change the shadow mapping. 327 // The shadow mapping looks like 328 // Shadow = (Mem >> scale) + offset 329 330 static cl::opt<int> ClMappingScale("asan-mapping-scale", 331 cl::desc("scale of asan shadow mapping"), 332 cl::Hidden, cl::init(0)); 333 334 static cl::opt<uint64_t> 335 ClMappingOffset("asan-mapping-offset", 336 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 337 cl::Hidden, cl::init(0)); 338 339 // Optimization flags. Not user visible, used mostly for testing 340 // and benchmarking the tool. 341 342 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 343 cl::Hidden, cl::init(true)); 344 345 static cl::opt<bool> ClOptSameTemp( 346 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 347 cl::Hidden, cl::init(true)); 348 349 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 350 cl::desc("Don't instrument scalar globals"), 351 cl::Hidden, cl::init(true)); 352 353 static cl::opt<bool> ClOptStack( 354 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 355 cl::Hidden, cl::init(false)); 356 357 static cl::opt<bool> ClDynamicAllocaStack( 358 "asan-stack-dynamic-alloca", 359 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 360 cl::init(true)); 361 362 static cl::opt<uint32_t> ClForceExperiment( 363 "asan-force-experiment", 364 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 365 cl::init(0)); 366 367 static cl::opt<bool> 368 ClUsePrivateAlias("asan-use-private-alias", 369 cl::desc("Use private aliases for global variables"), 370 cl::Hidden, cl::init(false)); 371 372 static cl::opt<bool> 373 ClUseOdrIndicator("asan-use-odr-indicator", 374 cl::desc("Use odr indicators to improve ODR reporting"), 375 cl::Hidden, cl::init(false)); 376 377 static cl::opt<bool> 378 ClUseGlobalsGC("asan-globals-live-support", 379 cl::desc("Use linker features to support dead " 380 "code stripping of globals"), 381 cl::Hidden, cl::init(true)); 382 383 // This is on by default even though there is a bug in gold: 384 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 385 static cl::opt<bool> 386 ClWithComdat("asan-with-comdat", 387 cl::desc("Place ASan constructors in comdat sections"), 388 cl::Hidden, cl::init(true)); 389 390 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 391 "asan-destructor-kind", 392 cl::desc("Sets the ASan destructor kind. The default is to use the value " 393 "provided to the pass constructor"), 394 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 395 clEnumValN(AsanDtorKind::Global, "global", 396 "Use global destructors")), 397 cl::init(AsanDtorKind::Invalid), cl::Hidden); 398 399 // Debug flags. 400 401 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 402 cl::init(0)); 403 404 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 405 cl::Hidden, cl::init(0)); 406 407 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 408 cl::desc("Debug func")); 409 410 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 411 cl::Hidden, cl::init(-1)); 412 413 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 414 cl::Hidden, cl::init(-1)); 415 416 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 417 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 418 STATISTIC(NumOptimizedAccessesToGlobalVar, 419 "Number of optimized accesses to global vars"); 420 STATISTIC(NumOptimizedAccessesToStackVar, 421 "Number of optimized accesses to stack vars"); 422 423 namespace { 424 425 /// This struct defines the shadow mapping using the rule: 426 /// shadow = (mem >> Scale) ADD-or-OR Offset. 427 /// If InGlobal is true, then 428 /// extern char __asan_shadow[]; 429 /// shadow = (mem >> Scale) + &__asan_shadow 430 struct ShadowMapping { 431 int Scale; 432 uint64_t Offset; 433 bool OrShadowOffset; 434 bool InGlobal; 435 }; 436 437 } // end anonymous namespace 438 439 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 440 bool IsKasan) { 441 bool IsAndroid = TargetTriple.isAndroid(); 442 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 443 bool IsMacOS = TargetTriple.isMacOSX(); 444 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 445 bool IsNetBSD = TargetTriple.isOSNetBSD(); 446 bool IsPS4CPU = TargetTriple.isPS4CPU(); 447 bool IsLinux = TargetTriple.isOSLinux(); 448 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 449 TargetTriple.getArch() == Triple::ppc64le; 450 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 451 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 452 bool IsMIPS32 = TargetTriple.isMIPS32(); 453 bool IsMIPS64 = TargetTriple.isMIPS64(); 454 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 455 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 456 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 457 bool IsWindows = TargetTriple.isOSWindows(); 458 bool IsFuchsia = TargetTriple.isOSFuchsia(); 459 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 460 bool IsEmscripten = TargetTriple.isOSEmscripten(); 461 bool IsAMDGPU = TargetTriple.isAMDGPU(); 462 463 // Asan support for AMDGPU assumes X86 as the host right now. 464 if (IsAMDGPU) 465 IsX86_64 = true; 466 467 ShadowMapping Mapping; 468 469 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 470 if (ClMappingScale.getNumOccurrences() > 0) { 471 Mapping.Scale = ClMappingScale; 472 } 473 474 if (LongSize == 32) { 475 if (IsAndroid) 476 Mapping.Offset = kDynamicShadowSentinel; 477 else if (IsMIPS32) 478 Mapping.Offset = kMIPS32_ShadowOffset32; 479 else if (IsFreeBSD) 480 Mapping.Offset = kFreeBSD_ShadowOffset32; 481 else if (IsNetBSD) 482 Mapping.Offset = kNetBSD_ShadowOffset32; 483 else if (IsIOS) 484 Mapping.Offset = kDynamicShadowSentinel; 485 else if (IsWindows) 486 Mapping.Offset = kWindowsShadowOffset32; 487 else if (IsEmscripten) 488 Mapping.Offset = kEmscriptenShadowOffset; 489 else if (IsMyriad) { 490 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 491 (kMyriadMemorySize32 >> Mapping.Scale)); 492 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 493 } 494 else 495 Mapping.Offset = kDefaultShadowOffset32; 496 } else { // LongSize == 64 497 // Fuchsia is always PIE, which means that the beginning of the address 498 // space is always available. 499 if (IsFuchsia) 500 Mapping.Offset = 0; 501 else if (IsPPC64) 502 Mapping.Offset = kPPC64_ShadowOffset64; 503 else if (IsSystemZ) 504 Mapping.Offset = kSystemZ_ShadowOffset64; 505 else if (IsFreeBSD && !IsMIPS64) { 506 if (IsKasan) 507 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 508 else 509 Mapping.Offset = kFreeBSD_ShadowOffset64; 510 } else if (IsNetBSD) { 511 if (IsKasan) 512 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 513 else 514 Mapping.Offset = kNetBSD_ShadowOffset64; 515 } else if (IsPS4CPU) 516 Mapping.Offset = kPS4CPU_ShadowOffset64; 517 else if (IsLinux && IsX86_64) { 518 if (IsKasan) 519 Mapping.Offset = kLinuxKasan_ShadowOffset64; 520 else 521 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 522 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 523 } else if (IsWindows && IsX86_64) { 524 Mapping.Offset = kWindowsShadowOffset64; 525 } else if (IsMIPS64) 526 Mapping.Offset = kMIPS64_ShadowOffset64; 527 else if (IsIOS) 528 Mapping.Offset = kDynamicShadowSentinel; 529 else if (IsMacOS && IsAArch64) 530 Mapping.Offset = kDynamicShadowSentinel; 531 else if (IsAArch64) 532 Mapping.Offset = kAArch64_ShadowOffset64; 533 else if (IsRISCV64) 534 Mapping.Offset = kRISCV64_ShadowOffset64; 535 else 536 Mapping.Offset = kDefaultShadowOffset64; 537 } 538 539 if (ClForceDynamicShadow) { 540 Mapping.Offset = kDynamicShadowSentinel; 541 } 542 543 if (ClMappingOffset.getNumOccurrences() > 0) { 544 Mapping.Offset = ClMappingOffset; 545 } 546 547 // OR-ing shadow offset if more efficient (at least on x86) if the offset 548 // is a power of two, but on ppc64 we have to use add since the shadow 549 // offset is not necessary 1/8-th of the address space. On SystemZ, 550 // we could OR the constant in a single instruction, but it's more 551 // efficient to load it once and use indexed addressing. 552 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 553 !IsRISCV64 && 554 !(Mapping.Offset & (Mapping.Offset - 1)) && 555 Mapping.Offset != kDynamicShadowSentinel; 556 bool IsAndroidWithIfuncSupport = 557 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 558 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 559 560 return Mapping; 561 } 562 563 static uint64_t getRedzoneSizeForScale(int MappingScale) { 564 // Redzone used for stack and globals is at least 32 bytes. 565 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 566 return std::max(32U, 1U << MappingScale); 567 } 568 569 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 570 if (TargetTriple.isOSEmscripten()) { 571 return kAsanEmscriptenCtorAndDtorPriority; 572 } else { 573 return kAsanCtorAndDtorPriority; 574 } 575 } 576 577 namespace { 578 579 /// Module analysis for getting various metadata about the module. 580 class ASanGlobalsMetadataWrapperPass : public ModulePass { 581 public: 582 static char ID; 583 584 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 585 initializeASanGlobalsMetadataWrapperPassPass( 586 *PassRegistry::getPassRegistry()); 587 } 588 589 bool runOnModule(Module &M) override { 590 GlobalsMD = GlobalsMetadata(M); 591 return false; 592 } 593 594 StringRef getPassName() const override { 595 return "ASanGlobalsMetadataWrapperPass"; 596 } 597 598 void getAnalysisUsage(AnalysisUsage &AU) const override { 599 AU.setPreservesAll(); 600 } 601 602 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 603 604 private: 605 GlobalsMetadata GlobalsMD; 606 }; 607 608 char ASanGlobalsMetadataWrapperPass::ID = 0; 609 610 /// AddressSanitizer: instrument the code in module to find memory bugs. 611 struct AddressSanitizer { 612 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 613 bool CompileKernel = false, bool Recover = false, 614 bool UseAfterScope = false) 615 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 616 : CompileKernel), 617 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 618 UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 619 C = &(M.getContext()); 620 LongSize = M.getDataLayout().getPointerSizeInBits(); 621 IntptrTy = Type::getIntNTy(*C, LongSize); 622 TargetTriple = Triple(M.getTargetTriple()); 623 624 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 625 } 626 627 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 628 uint64_t ArraySize = 1; 629 if (AI.isArrayAllocation()) { 630 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 631 assert(CI && "non-constant array size"); 632 ArraySize = CI->getZExtValue(); 633 } 634 Type *Ty = AI.getAllocatedType(); 635 uint64_t SizeInBytes = 636 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 637 return SizeInBytes * ArraySize; 638 } 639 640 /// Check if we want (and can) handle this alloca. 641 bool isInterestingAlloca(const AllocaInst &AI); 642 643 bool ignoreAccess(Value *Ptr); 644 void getInterestingMemoryOperands( 645 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 646 647 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 648 InterestingMemoryOperand &O, bool UseCalls, 649 const DataLayout &DL); 650 void instrumentPointerComparisonOrSubtraction(Instruction *I); 651 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 652 Value *Addr, uint32_t TypeSize, bool IsWrite, 653 Value *SizeArgument, bool UseCalls, uint32_t Exp); 654 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 655 Instruction *InsertBefore, Value *Addr, 656 uint32_t TypeSize, bool IsWrite, 657 Value *SizeArgument); 658 void instrumentUnusualSizeOrAlignment(Instruction *I, 659 Instruction *InsertBefore, Value *Addr, 660 uint32_t TypeSize, bool IsWrite, 661 Value *SizeArgument, bool UseCalls, 662 uint32_t Exp); 663 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 664 Value *ShadowValue, uint32_t TypeSize); 665 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 666 bool IsWrite, size_t AccessSizeIndex, 667 Value *SizeArgument, uint32_t Exp); 668 void instrumentMemIntrinsic(MemIntrinsic *MI); 669 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 670 bool suppressInstrumentationSiteForDebug(int &Instrumented); 671 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 672 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 673 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 674 void markEscapedLocalAllocas(Function &F); 675 676 private: 677 friend struct FunctionStackPoisoner; 678 679 void initializeCallbacks(Module &M); 680 681 bool LooksLikeCodeInBug11395(Instruction *I); 682 bool GlobalIsLinkerInitialized(GlobalVariable *G); 683 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 684 uint64_t TypeSize) const; 685 686 /// Helper to cleanup per-function state. 687 struct FunctionStateRAII { 688 AddressSanitizer *Pass; 689 690 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 691 assert(Pass->ProcessedAllocas.empty() && 692 "last pass forgot to clear cache"); 693 assert(!Pass->LocalDynamicShadow); 694 } 695 696 ~FunctionStateRAII() { 697 Pass->LocalDynamicShadow = nullptr; 698 Pass->ProcessedAllocas.clear(); 699 } 700 }; 701 702 LLVMContext *C; 703 Triple TargetTriple; 704 int LongSize; 705 bool CompileKernel; 706 bool Recover; 707 bool UseAfterScope; 708 Type *IntptrTy; 709 ShadowMapping Mapping; 710 FunctionCallee AsanHandleNoReturnFunc; 711 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 712 Constant *AsanShadowGlobal; 713 714 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 715 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 716 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 717 718 // These arrays is indexed by AccessIsWrite and Experiment. 719 FunctionCallee AsanErrorCallbackSized[2][2]; 720 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 721 722 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 723 Value *LocalDynamicShadow = nullptr; 724 const GlobalsMetadata &GlobalsMD; 725 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 726 727 FunctionCallee AMDGPUAddressShared; 728 FunctionCallee AMDGPUAddressPrivate; 729 }; 730 731 class AddressSanitizerLegacyPass : public FunctionPass { 732 public: 733 static char ID; 734 735 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 736 bool Recover = false, 737 bool UseAfterScope = false) 738 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 739 UseAfterScope(UseAfterScope) { 740 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 741 } 742 743 StringRef getPassName() const override { 744 return "AddressSanitizerFunctionPass"; 745 } 746 747 void getAnalysisUsage(AnalysisUsage &AU) const override { 748 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 749 AU.addRequired<TargetLibraryInfoWrapperPass>(); 750 } 751 752 bool runOnFunction(Function &F) override { 753 GlobalsMetadata &GlobalsMD = 754 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 755 const TargetLibraryInfo *TLI = 756 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 757 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 758 UseAfterScope); 759 return ASan.instrumentFunction(F, TLI); 760 } 761 762 private: 763 bool CompileKernel; 764 bool Recover; 765 bool UseAfterScope; 766 }; 767 768 class ModuleAddressSanitizer { 769 public: 770 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 771 bool CompileKernel = false, bool Recover = false, 772 bool UseGlobalsGC = true, bool UseOdrIndicator = false, 773 AsanDtorKind DestructorKind = AsanDtorKind::Global) 774 : GlobalsMD(*GlobalsMD), 775 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 776 : CompileKernel), 777 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 778 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 779 // Enable aliases as they should have no downside with ODR indicators. 780 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 781 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 782 // Not a typo: ClWithComdat is almost completely pointless without 783 // ClUseGlobalsGC (because then it only works on modules without 784 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 785 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 786 // argument is designed as workaround. Therefore, disable both 787 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 788 // do globals-gc. 789 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 790 DestructorKind(DestructorKind) { 791 C = &(M.getContext()); 792 int LongSize = M.getDataLayout().getPointerSizeInBits(); 793 IntptrTy = Type::getIntNTy(*C, LongSize); 794 TargetTriple = Triple(M.getTargetTriple()); 795 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 796 797 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 798 this->DestructorKind = ClOverrideDestructorKind; 799 assert(this->DestructorKind != AsanDtorKind::Invalid); 800 } 801 802 bool instrumentModule(Module &); 803 804 private: 805 void initializeCallbacks(Module &M); 806 807 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 808 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 809 ArrayRef<GlobalVariable *> ExtendedGlobals, 810 ArrayRef<Constant *> MetadataInitializers); 811 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 812 ArrayRef<GlobalVariable *> ExtendedGlobals, 813 ArrayRef<Constant *> MetadataInitializers, 814 const std::string &UniqueModuleId); 815 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 816 ArrayRef<GlobalVariable *> ExtendedGlobals, 817 ArrayRef<Constant *> MetadataInitializers); 818 void 819 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 820 ArrayRef<GlobalVariable *> ExtendedGlobals, 821 ArrayRef<Constant *> MetadataInitializers); 822 823 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 824 StringRef OriginalName); 825 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 826 StringRef InternalSuffix); 827 Instruction *CreateAsanModuleDtor(Module &M); 828 829 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 830 bool shouldInstrumentGlobal(GlobalVariable *G) const; 831 bool ShouldUseMachOGlobalsSection() const; 832 StringRef getGlobalMetadataSection() const; 833 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 834 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 835 uint64_t getMinRedzoneSizeForGlobal() const { 836 return getRedzoneSizeForScale(Mapping.Scale); 837 } 838 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 839 int GetAsanVersion(const Module &M) const; 840 841 const GlobalsMetadata &GlobalsMD; 842 bool CompileKernel; 843 bool Recover; 844 bool UseGlobalsGC; 845 bool UsePrivateAlias; 846 bool UseOdrIndicator; 847 bool UseCtorComdat; 848 AsanDtorKind DestructorKind; 849 Type *IntptrTy; 850 LLVMContext *C; 851 Triple TargetTriple; 852 ShadowMapping Mapping; 853 FunctionCallee AsanPoisonGlobals; 854 FunctionCallee AsanUnpoisonGlobals; 855 FunctionCallee AsanRegisterGlobals; 856 FunctionCallee AsanUnregisterGlobals; 857 FunctionCallee AsanRegisterImageGlobals; 858 FunctionCallee AsanUnregisterImageGlobals; 859 FunctionCallee AsanRegisterElfGlobals; 860 FunctionCallee AsanUnregisterElfGlobals; 861 862 Function *AsanCtorFunction = nullptr; 863 Function *AsanDtorFunction = nullptr; 864 }; 865 866 class ModuleAddressSanitizerLegacyPass : public ModulePass { 867 public: 868 static char ID; 869 870 explicit ModuleAddressSanitizerLegacyPass( 871 bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true, 872 bool UseOdrIndicator = false, 873 AsanDtorKind DestructorKind = AsanDtorKind::Global) 874 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 875 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), 876 DestructorKind(DestructorKind) { 877 initializeModuleAddressSanitizerLegacyPassPass( 878 *PassRegistry::getPassRegistry()); 879 } 880 881 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 882 883 void getAnalysisUsage(AnalysisUsage &AU) const override { 884 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 885 } 886 887 bool runOnModule(Module &M) override { 888 GlobalsMetadata &GlobalsMD = 889 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 890 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 891 UseGlobalGC, UseOdrIndicator, 892 DestructorKind); 893 return ASanModule.instrumentModule(M); 894 } 895 896 private: 897 bool CompileKernel; 898 bool Recover; 899 bool UseGlobalGC; 900 bool UseOdrIndicator; 901 AsanDtorKind DestructorKind; 902 }; 903 904 // Stack poisoning does not play well with exception handling. 905 // When an exception is thrown, we essentially bypass the code 906 // that unpoisones the stack. This is why the run-time library has 907 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 908 // stack in the interceptor. This however does not work inside the 909 // actual function which catches the exception. Most likely because the 910 // compiler hoists the load of the shadow value somewhere too high. 911 // This causes asan to report a non-existing bug on 453.povray. 912 // It sounds like an LLVM bug. 913 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 914 Function &F; 915 AddressSanitizer &ASan; 916 DIBuilder DIB; 917 LLVMContext *C; 918 Type *IntptrTy; 919 Type *IntptrPtrTy; 920 ShadowMapping Mapping; 921 922 SmallVector<AllocaInst *, 16> AllocaVec; 923 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 924 SmallVector<Instruction *, 8> RetVec; 925 unsigned StackAlignment; 926 927 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 928 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 929 FunctionCallee AsanSetShadowFunc[0x100] = {}; 930 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 931 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 932 933 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 934 struct AllocaPoisonCall { 935 IntrinsicInst *InsBefore; 936 AllocaInst *AI; 937 uint64_t Size; 938 bool DoPoison; 939 }; 940 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 941 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 942 bool HasUntracedLifetimeIntrinsic = false; 943 944 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 945 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 946 AllocaInst *DynamicAllocaLayout = nullptr; 947 IntrinsicInst *LocalEscapeCall = nullptr; 948 949 bool HasInlineAsm = false; 950 bool HasReturnsTwiceCall = false; 951 bool PoisonStack; 952 953 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 954 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 955 C(ASan.C), IntptrTy(ASan.IntptrTy), 956 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 957 StackAlignment(1 << Mapping.Scale), 958 PoisonStack(ClStack && 959 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 960 961 bool runOnFunction() { 962 if (!PoisonStack) 963 return false; 964 965 if (ClRedzoneByvalArgs) 966 copyArgsPassedByValToAllocas(); 967 968 // Collect alloca, ret, lifetime instructions etc. 969 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 970 971 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 972 973 initializeCallbacks(*F.getParent()); 974 975 if (HasUntracedLifetimeIntrinsic) { 976 // If there are lifetime intrinsics which couldn't be traced back to an 977 // alloca, we may not know exactly when a variable enters scope, and 978 // therefore should "fail safe" by not poisoning them. 979 StaticAllocaPoisonCallVec.clear(); 980 DynamicAllocaPoisonCallVec.clear(); 981 } 982 983 processDynamicAllocas(); 984 processStaticAllocas(); 985 986 if (ClDebugStack) { 987 LLVM_DEBUG(dbgs() << F); 988 } 989 return true; 990 } 991 992 // Arguments marked with the "byval" attribute are implicitly copied without 993 // using an alloca instruction. To produce redzones for those arguments, we 994 // copy them a second time into memory allocated with an alloca instruction. 995 void copyArgsPassedByValToAllocas(); 996 997 // Finds all Alloca instructions and puts 998 // poisoned red zones around all of them. 999 // Then unpoison everything back before the function returns. 1000 void processStaticAllocas(); 1001 void processDynamicAllocas(); 1002 1003 void createDynamicAllocasInitStorage(); 1004 1005 // ----------------------- Visitors. 1006 /// Collect all Ret instructions, or the musttail call instruction if it 1007 /// precedes the return instruction. 1008 void visitReturnInst(ReturnInst &RI) { 1009 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 1010 RetVec.push_back(CI); 1011 else 1012 RetVec.push_back(&RI); 1013 } 1014 1015 /// Collect all Resume instructions. 1016 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 1017 1018 /// Collect all CatchReturnInst instructions. 1019 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 1020 1021 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 1022 Value *SavedStack) { 1023 IRBuilder<> IRB(InstBefore); 1024 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1025 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1026 // need to adjust extracted SP to compute the address of the most recent 1027 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1028 // this purpose. 1029 if (!isa<ReturnInst>(InstBefore)) { 1030 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1031 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1032 {IntptrTy}); 1033 1034 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1035 1036 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1037 DynamicAreaOffset); 1038 } 1039 1040 IRB.CreateCall( 1041 AsanAllocasUnpoisonFunc, 1042 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1043 } 1044 1045 // Unpoison dynamic allocas redzones. 1046 void unpoisonDynamicAllocas() { 1047 for (Instruction *Ret : RetVec) 1048 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1049 1050 for (Instruction *StackRestoreInst : StackRestoreVec) 1051 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1052 StackRestoreInst->getOperand(0)); 1053 } 1054 1055 // Deploy and poison redzones around dynamic alloca call. To do this, we 1056 // should replace this call with another one with changed parameters and 1057 // replace all its uses with new address, so 1058 // addr = alloca type, old_size, align 1059 // is replaced by 1060 // new_size = (old_size + additional_size) * sizeof(type) 1061 // tmp = alloca i8, new_size, max(align, 32) 1062 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1063 // Additional_size is added to make new memory allocation contain not only 1064 // requested memory, but also left, partial and right redzones. 1065 void handleDynamicAllocaCall(AllocaInst *AI); 1066 1067 /// Collect Alloca instructions we want (and can) handle. 1068 void visitAllocaInst(AllocaInst &AI) { 1069 if (!ASan.isInterestingAlloca(AI)) { 1070 if (AI.isStaticAlloca()) { 1071 // Skip over allocas that are present *before* the first instrumented 1072 // alloca, we don't want to move those around. 1073 if (AllocaVec.empty()) 1074 return; 1075 1076 StaticAllocasToMoveUp.push_back(&AI); 1077 } 1078 return; 1079 } 1080 1081 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1082 if (!AI.isStaticAlloca()) 1083 DynamicAllocaVec.push_back(&AI); 1084 else 1085 AllocaVec.push_back(&AI); 1086 } 1087 1088 /// Collect lifetime intrinsic calls to check for use-after-scope 1089 /// errors. 1090 void visitIntrinsicInst(IntrinsicInst &II) { 1091 Intrinsic::ID ID = II.getIntrinsicID(); 1092 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1093 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1094 if (!ASan.UseAfterScope) 1095 return; 1096 if (!II.isLifetimeStartOrEnd()) 1097 return; 1098 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1099 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1100 // If size argument is undefined, don't do anything. 1101 if (Size->isMinusOne()) return; 1102 // Check that size doesn't saturate uint64_t and can 1103 // be stored in IntptrTy. 1104 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1105 if (SizeValue == ~0ULL || 1106 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1107 return; 1108 // Find alloca instruction that corresponds to llvm.lifetime argument. 1109 // Currently we can only handle lifetime markers pointing to the 1110 // beginning of the alloca. 1111 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1112 if (!AI) { 1113 HasUntracedLifetimeIntrinsic = true; 1114 return; 1115 } 1116 // We're interested only in allocas we can handle. 1117 if (!ASan.isInterestingAlloca(*AI)) 1118 return; 1119 bool DoPoison = (ID == Intrinsic::lifetime_end); 1120 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1121 if (AI->isStaticAlloca()) 1122 StaticAllocaPoisonCallVec.push_back(APC); 1123 else if (ClInstrumentDynamicAllocas) 1124 DynamicAllocaPoisonCallVec.push_back(APC); 1125 } 1126 1127 void visitCallBase(CallBase &CB) { 1128 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1129 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1130 HasReturnsTwiceCall |= CI->canReturnTwice(); 1131 } 1132 } 1133 1134 // ---------------------- Helpers. 1135 void initializeCallbacks(Module &M); 1136 1137 // Copies bytes from ShadowBytes into shadow memory for indexes where 1138 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1139 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1140 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1141 IRBuilder<> &IRB, Value *ShadowBase); 1142 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1143 size_t Begin, size_t End, IRBuilder<> &IRB, 1144 Value *ShadowBase); 1145 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1146 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1147 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1148 1149 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1150 1151 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1152 bool Dynamic); 1153 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1154 Instruction *ThenTerm, Value *ValueIfFalse); 1155 }; 1156 1157 } // end anonymous namespace 1158 1159 void LocationMetadata::parse(MDNode *MDN) { 1160 assert(MDN->getNumOperands() == 3); 1161 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1162 Filename = DIFilename->getString(); 1163 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1164 ColumnNo = 1165 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1166 } 1167 1168 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1169 // we want to sanitize instead and reading this metadata on each pass over a 1170 // function instead of reading module level metadata at first. 1171 GlobalsMetadata::GlobalsMetadata(Module &M) { 1172 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1173 if (!Globals) 1174 return; 1175 for (auto MDN : Globals->operands()) { 1176 // Metadata node contains the global and the fields of "Entry". 1177 assert(MDN->getNumOperands() == 5); 1178 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1179 // The optimizer may optimize away a global entirely. 1180 if (!V) 1181 continue; 1182 auto *StrippedV = V->stripPointerCasts(); 1183 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1184 if (!GV) 1185 continue; 1186 // We can already have an entry for GV if it was merged with another 1187 // global. 1188 Entry &E = Entries[GV]; 1189 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1190 E.SourceLoc.parse(Loc); 1191 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1192 E.Name = Name->getString(); 1193 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1194 E.IsDynInit |= IsDynInit->isOne(); 1195 ConstantInt *IsExcluded = 1196 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1197 E.IsExcluded |= IsExcluded->isOne(); 1198 } 1199 } 1200 1201 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1202 1203 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1204 ModuleAnalysisManager &AM) { 1205 return GlobalsMetadata(M); 1206 } 1207 1208 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1209 bool UseAfterScope) 1210 : CompileKernel(CompileKernel), Recover(Recover), 1211 UseAfterScope(UseAfterScope) {} 1212 1213 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1214 AnalysisManager<Function> &AM) { 1215 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1216 Module &M = *F.getParent(); 1217 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1218 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1219 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1220 if (Sanitizer.instrumentFunction(F, TLI)) 1221 return PreservedAnalyses::none(); 1222 return PreservedAnalyses::all(); 1223 } 1224 1225 report_fatal_error( 1226 "The ASanGlobalsMetadataAnalysis is required to run before " 1227 "AddressSanitizer can run"); 1228 return PreservedAnalyses::all(); 1229 } 1230 1231 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( 1232 bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator, 1233 AsanDtorKind DestructorKind) 1234 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1235 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} 1236 1237 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1238 AnalysisManager<Module> &AM) { 1239 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1240 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1241 UseGlobalGC, UseOdrIndicator, 1242 DestructorKind); 1243 if (Sanitizer.instrumentModule(M)) 1244 return PreservedAnalyses::none(); 1245 return PreservedAnalyses::all(); 1246 } 1247 1248 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1249 "Read metadata to mark which globals should be instrumented " 1250 "when running ASan.", 1251 false, true) 1252 1253 char AddressSanitizerLegacyPass::ID = 0; 1254 1255 INITIALIZE_PASS_BEGIN( 1256 AddressSanitizerLegacyPass, "asan", 1257 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1258 false) 1259 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1260 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1261 INITIALIZE_PASS_END( 1262 AddressSanitizerLegacyPass, "asan", 1263 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1264 false) 1265 1266 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1267 bool Recover, 1268 bool UseAfterScope) { 1269 assert(!CompileKernel || Recover); 1270 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1271 } 1272 1273 char ModuleAddressSanitizerLegacyPass::ID = 0; 1274 1275 INITIALIZE_PASS( 1276 ModuleAddressSanitizerLegacyPass, "asan-module", 1277 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1278 "ModulePass", 1279 false, false) 1280 1281 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1282 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator, 1283 AsanDtorKind Destructor) { 1284 assert(!CompileKernel || Recover); 1285 return new ModuleAddressSanitizerLegacyPass( 1286 CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor); 1287 } 1288 1289 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1290 size_t Res = countTrailingZeros(TypeSize / 8); 1291 assert(Res < kNumberOfAccessSizes); 1292 return Res; 1293 } 1294 1295 /// Create a global describing a source location. 1296 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1297 LocationMetadata MD) { 1298 Constant *LocData[] = { 1299 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1300 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1301 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1302 }; 1303 auto LocStruct = ConstantStruct::getAnon(LocData); 1304 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1305 GlobalValue::PrivateLinkage, LocStruct, 1306 kAsanGenPrefix); 1307 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1308 return GV; 1309 } 1310 1311 /// Check if \p G has been created by a trusted compiler pass. 1312 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1313 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1314 if (G->getName().startswith("llvm.")) 1315 return true; 1316 1317 // Do not instrument asan globals. 1318 if (G->getName().startswith(kAsanGenPrefix) || 1319 G->getName().startswith(kSanCovGenPrefix) || 1320 G->getName().startswith(kODRGenPrefix)) 1321 return true; 1322 1323 // Do not instrument gcov counter arrays. 1324 if (G->getName() == "__llvm_gcov_ctr") 1325 return true; 1326 1327 return false; 1328 } 1329 1330 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1331 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1332 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1333 if (AddrSpace == 3 || AddrSpace == 5) 1334 return true; 1335 return false; 1336 } 1337 1338 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1339 // Shadow >> scale 1340 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1341 if (Mapping.Offset == 0) return Shadow; 1342 // (Shadow >> scale) | offset 1343 Value *ShadowBase; 1344 if (LocalDynamicShadow) 1345 ShadowBase = LocalDynamicShadow; 1346 else 1347 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1348 if (Mapping.OrShadowOffset) 1349 return IRB.CreateOr(Shadow, ShadowBase); 1350 else 1351 return IRB.CreateAdd(Shadow, ShadowBase); 1352 } 1353 1354 // Instrument memset/memmove/memcpy 1355 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1356 IRBuilder<> IRB(MI); 1357 if (isa<MemTransferInst>(MI)) { 1358 IRB.CreateCall( 1359 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1360 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1361 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1362 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1363 } else if (isa<MemSetInst>(MI)) { 1364 IRB.CreateCall( 1365 AsanMemset, 1366 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1367 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1368 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1369 } 1370 MI->eraseFromParent(); 1371 } 1372 1373 /// Check if we want (and can) handle this alloca. 1374 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1375 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1376 1377 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1378 return PreviouslySeenAllocaInfo->getSecond(); 1379 1380 bool IsInteresting = 1381 (AI.getAllocatedType()->isSized() && 1382 // alloca() may be called with 0 size, ignore it. 1383 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1384 // We are only interested in allocas not promotable to registers. 1385 // Promotable allocas are common under -O0. 1386 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1387 // inalloca allocas are not treated as static, and we don't want 1388 // dynamic alloca instrumentation for them as well. 1389 !AI.isUsedWithInAlloca() && 1390 // swifterror allocas are register promoted by ISel 1391 !AI.isSwiftError()); 1392 1393 ProcessedAllocas[&AI] = IsInteresting; 1394 return IsInteresting; 1395 } 1396 1397 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1398 // Instrument acesses from different address spaces only for AMDGPU. 1399 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1400 if (PtrTy->getPointerAddressSpace() != 0 && 1401 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1402 return true; 1403 1404 // Ignore swifterror addresses. 1405 // swifterror memory addresses are mem2reg promoted by instruction 1406 // selection. As such they cannot have regular uses like an instrumentation 1407 // function and it makes no sense to track them as memory. 1408 if (Ptr->isSwiftError()) 1409 return true; 1410 1411 // Treat memory accesses to promotable allocas as non-interesting since they 1412 // will not cause memory violations. This greatly speeds up the instrumented 1413 // executable at -O0. 1414 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1415 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1416 return true; 1417 1418 return false; 1419 } 1420 1421 void AddressSanitizer::getInterestingMemoryOperands( 1422 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1423 // Skip memory accesses inserted by another instrumentation. 1424 if (I->hasMetadata("nosanitize")) 1425 return; 1426 1427 // Do not instrument the load fetching the dynamic shadow address. 1428 if (LocalDynamicShadow == I) 1429 return; 1430 1431 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1432 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1433 return; 1434 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1435 LI->getType(), LI->getAlign()); 1436 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1437 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1438 return; 1439 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1440 SI->getValueOperand()->getType(), SI->getAlign()); 1441 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1442 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1443 return; 1444 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1445 RMW->getValOperand()->getType(), None); 1446 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1447 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1448 return; 1449 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1450 XCHG->getCompareOperand()->getType(), None); 1451 } else if (auto CI = dyn_cast<CallInst>(I)) { 1452 auto *F = CI->getCalledFunction(); 1453 if (F && (F->getName().startswith("llvm.masked.load.") || 1454 F->getName().startswith("llvm.masked.store."))) { 1455 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1456 // Masked store has an initial operand for the value. 1457 unsigned OpOffset = IsWrite ? 1 : 0; 1458 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1459 return; 1460 1461 auto BasePtr = CI->getOperand(OpOffset); 1462 if (ignoreAccess(BasePtr)) 1463 return; 1464 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1465 MaybeAlign Alignment = Align(1); 1466 // Otherwise no alignment guarantees. We probably got Undef. 1467 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1468 Alignment = Op->getMaybeAlignValue(); 1469 Value *Mask = CI->getOperand(2 + OpOffset); 1470 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1471 } else { 1472 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { 1473 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1474 ignoreAccess(CI->getArgOperand(ArgNo))) 1475 continue; 1476 Type *Ty = CI->getParamByValType(ArgNo); 1477 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1478 } 1479 } 1480 } 1481 } 1482 1483 static bool isPointerOperand(Value *V) { 1484 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1485 } 1486 1487 // This is a rough heuristic; it may cause both false positives and 1488 // false negatives. The proper implementation requires cooperation with 1489 // the frontend. 1490 static bool isInterestingPointerComparison(Instruction *I) { 1491 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1492 if (!Cmp->isRelational()) 1493 return false; 1494 } else { 1495 return false; 1496 } 1497 return isPointerOperand(I->getOperand(0)) && 1498 isPointerOperand(I->getOperand(1)); 1499 } 1500 1501 // This is a rough heuristic; it may cause both false positives and 1502 // false negatives. The proper implementation requires cooperation with 1503 // the frontend. 1504 static bool isInterestingPointerSubtraction(Instruction *I) { 1505 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1506 if (BO->getOpcode() != Instruction::Sub) 1507 return false; 1508 } else { 1509 return false; 1510 } 1511 return isPointerOperand(I->getOperand(0)) && 1512 isPointerOperand(I->getOperand(1)); 1513 } 1514 1515 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1516 // If a global variable does not have dynamic initialization we don't 1517 // have to instrument it. However, if a global does not have initializer 1518 // at all, we assume it has dynamic initializer (in other TU). 1519 // 1520 // FIXME: Metadata should be attched directly to the global directly instead 1521 // of being added to llvm.asan.globals. 1522 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1523 } 1524 1525 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1526 Instruction *I) { 1527 IRBuilder<> IRB(I); 1528 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1529 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1530 for (Value *&i : Param) { 1531 if (i->getType()->isPointerTy()) 1532 i = IRB.CreatePointerCast(i, IntptrTy); 1533 } 1534 IRB.CreateCall(F, Param); 1535 } 1536 1537 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1538 Instruction *InsertBefore, Value *Addr, 1539 MaybeAlign Alignment, unsigned Granularity, 1540 uint32_t TypeSize, bool IsWrite, 1541 Value *SizeArgument, bool UseCalls, 1542 uint32_t Exp) { 1543 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1544 // if the data is properly aligned. 1545 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1546 TypeSize == 128) && 1547 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1548 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1549 nullptr, UseCalls, Exp); 1550 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1551 IsWrite, nullptr, UseCalls, Exp); 1552 } 1553 1554 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1555 const DataLayout &DL, Type *IntptrTy, 1556 Value *Mask, Instruction *I, 1557 Value *Addr, MaybeAlign Alignment, 1558 unsigned Granularity, uint32_t TypeSize, 1559 bool IsWrite, Value *SizeArgument, 1560 bool UseCalls, uint32_t Exp) { 1561 auto *VTy = cast<FixedVectorType>( 1562 cast<PointerType>(Addr->getType())->getElementType()); 1563 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1564 unsigned Num = VTy->getNumElements(); 1565 auto Zero = ConstantInt::get(IntptrTy, 0); 1566 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1567 Value *InstrumentedAddress = nullptr; 1568 Instruction *InsertBefore = I; 1569 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1570 // dyn_cast as we might get UndefValue 1571 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1572 if (Masked->isZero()) 1573 // Mask is constant false, so no instrumentation needed. 1574 continue; 1575 // If we have a true or undef value, fall through to doInstrumentAddress 1576 // with InsertBefore == I 1577 } 1578 } else { 1579 IRBuilder<> IRB(I); 1580 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1581 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1582 InsertBefore = ThenTerm; 1583 } 1584 1585 IRBuilder<> IRB(InsertBefore); 1586 InstrumentedAddress = 1587 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1588 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1589 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1590 UseCalls, Exp); 1591 } 1592 } 1593 1594 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1595 InterestingMemoryOperand &O, bool UseCalls, 1596 const DataLayout &DL) { 1597 Value *Addr = O.getPtr(); 1598 1599 // Optimization experiments. 1600 // The experiments can be used to evaluate potential optimizations that remove 1601 // instrumentation (assess false negatives). Instead of completely removing 1602 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1603 // experiments that want to remove instrumentation of this instruction). 1604 // If Exp is non-zero, this pass will emit special calls into runtime 1605 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1606 // make runtime terminate the program in a special way (with a different 1607 // exit status). Then you run the new compiler on a buggy corpus, collect 1608 // the special terminations (ideally, you don't see them at all -- no false 1609 // negatives) and make the decision on the optimization. 1610 uint32_t Exp = ClForceExperiment; 1611 1612 if (ClOpt && ClOptGlobals) { 1613 // If initialization order checking is disabled, a simple access to a 1614 // dynamically initialized global is always valid. 1615 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1616 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1617 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1618 NumOptimizedAccessesToGlobalVar++; 1619 return; 1620 } 1621 } 1622 1623 if (ClOpt && ClOptStack) { 1624 // A direct inbounds access to a stack variable is always valid. 1625 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1626 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1627 NumOptimizedAccessesToStackVar++; 1628 return; 1629 } 1630 } 1631 1632 if (O.IsWrite) 1633 NumInstrumentedWrites++; 1634 else 1635 NumInstrumentedReads++; 1636 1637 unsigned Granularity = 1 << Mapping.Scale; 1638 if (O.MaybeMask) { 1639 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1640 Addr, O.Alignment, Granularity, O.TypeSize, 1641 O.IsWrite, nullptr, UseCalls, Exp); 1642 } else { 1643 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1644 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1645 Exp); 1646 } 1647 } 1648 1649 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1650 Value *Addr, bool IsWrite, 1651 size_t AccessSizeIndex, 1652 Value *SizeArgument, 1653 uint32_t Exp) { 1654 IRBuilder<> IRB(InsertBefore); 1655 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1656 CallInst *Call = nullptr; 1657 if (SizeArgument) { 1658 if (Exp == 0) 1659 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1660 {Addr, SizeArgument}); 1661 else 1662 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1663 {Addr, SizeArgument, ExpVal}); 1664 } else { 1665 if (Exp == 0) 1666 Call = 1667 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1668 else 1669 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1670 {Addr, ExpVal}); 1671 } 1672 1673 Call->setCannotMerge(); 1674 return Call; 1675 } 1676 1677 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1678 Value *ShadowValue, 1679 uint32_t TypeSize) { 1680 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1681 // Addr & (Granularity - 1) 1682 Value *LastAccessedByte = 1683 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1684 // (Addr & (Granularity - 1)) + size - 1 1685 if (TypeSize / 8 > 1) 1686 LastAccessedByte = IRB.CreateAdd( 1687 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1688 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1689 LastAccessedByte = 1690 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1691 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1692 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1693 } 1694 1695 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1696 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1697 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { 1698 // Do not instrument unsupported addrspaces. 1699 if (isUnsupportedAMDGPUAddrspace(Addr)) 1700 return nullptr; 1701 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1702 // Follow host instrumentation for global and constant addresses. 1703 if (PtrTy->getPointerAddressSpace() != 0) 1704 return InsertBefore; 1705 // Instrument generic addresses in supported addressspaces. 1706 IRBuilder<> IRB(InsertBefore); 1707 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); 1708 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); 1709 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); 1710 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1711 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); 1712 Value *AddrSpaceZeroLanding = 1713 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1714 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1715 return InsertBefore; 1716 } 1717 1718 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1719 Instruction *InsertBefore, Value *Addr, 1720 uint32_t TypeSize, bool IsWrite, 1721 Value *SizeArgument, bool UseCalls, 1722 uint32_t Exp) { 1723 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1724 1725 if (TargetTriple.isAMDGPU()) { 1726 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1727 TypeSize, IsWrite, SizeArgument); 1728 if (!InsertBefore) 1729 return; 1730 } 1731 1732 IRBuilder<> IRB(InsertBefore); 1733 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1734 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1735 1736 if (UseCalls) { 1737 if (Exp == 0) 1738 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1739 AddrLong); 1740 else 1741 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1742 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1743 return; 1744 } 1745 1746 if (IsMyriad) { 1747 // Strip the cache bit and do range check. 1748 // AddrLong &= ~kMyriadCacheBitMask32 1749 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1750 // Tag = AddrLong >> kMyriadTagShift 1751 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1752 // Tag == kMyriadDDRTag 1753 Value *TagCheck = 1754 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1755 1756 Instruction *TagCheckTerm = 1757 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1758 MDBuilder(*C).createBranchWeights(1, 100000)); 1759 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1760 IRB.SetInsertPoint(TagCheckTerm); 1761 InsertBefore = TagCheckTerm; 1762 } 1763 1764 Type *ShadowTy = 1765 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1766 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1767 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1768 Value *CmpVal = Constant::getNullValue(ShadowTy); 1769 Value *ShadowValue = 1770 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1771 1772 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1773 size_t Granularity = 1ULL << Mapping.Scale; 1774 Instruction *CrashTerm = nullptr; 1775 1776 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1777 // We use branch weights for the slow path check, to indicate that the slow 1778 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1779 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1780 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1781 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1782 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1783 IRB.SetInsertPoint(CheckTerm); 1784 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1785 if (Recover) { 1786 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1787 } else { 1788 BasicBlock *CrashBlock = 1789 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1790 CrashTerm = new UnreachableInst(*C, CrashBlock); 1791 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1792 ReplaceInstWithInst(CheckTerm, NewTerm); 1793 } 1794 } else { 1795 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1796 } 1797 1798 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1799 AccessSizeIndex, SizeArgument, Exp); 1800 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1801 } 1802 1803 // Instrument unusual size or unusual alignment. 1804 // We can not do it with a single check, so we do 1-byte check for the first 1805 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1806 // to report the actual access size. 1807 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1808 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1809 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1810 IRBuilder<> IRB(InsertBefore); 1811 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1812 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1813 if (UseCalls) { 1814 if (Exp == 0) 1815 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1816 {AddrLong, Size}); 1817 else 1818 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1819 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1820 } else { 1821 Value *LastByte = IRB.CreateIntToPtr( 1822 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1823 Addr->getType()); 1824 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1825 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1826 } 1827 } 1828 1829 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1830 GlobalValue *ModuleName) { 1831 // Set up the arguments to our poison/unpoison functions. 1832 IRBuilder<> IRB(&GlobalInit.front(), 1833 GlobalInit.front().getFirstInsertionPt()); 1834 1835 // Add a call to poison all external globals before the given function starts. 1836 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1837 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1838 1839 // Add calls to unpoison all globals before each return instruction. 1840 for (auto &BB : GlobalInit.getBasicBlockList()) 1841 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1842 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1843 } 1844 1845 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1846 Module &M, GlobalValue *ModuleName) { 1847 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1848 if (!GV) 1849 return; 1850 1851 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1852 if (!CA) 1853 return; 1854 1855 for (Use &OP : CA->operands()) { 1856 if (isa<ConstantAggregateZero>(OP)) continue; 1857 ConstantStruct *CS = cast<ConstantStruct>(OP); 1858 1859 // Must have a function or null ptr. 1860 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1861 if (F->getName() == kAsanModuleCtorName) continue; 1862 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1863 // Don't instrument CTORs that will run before asan.module_ctor. 1864 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1865 continue; 1866 poisonOneInitializer(*F, ModuleName); 1867 } 1868 } 1869 } 1870 1871 const GlobalVariable * 1872 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1873 // In case this function should be expanded to include rules that do not just 1874 // apply when CompileKernel is true, either guard all existing rules with an 1875 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1876 // should also apply to user space. 1877 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1878 1879 const Constant *C = GA.getAliasee(); 1880 1881 // When compiling the kernel, globals that are aliased by symbols prefixed 1882 // by "__" are special and cannot be padded with a redzone. 1883 if (GA.getName().startswith("__")) 1884 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1885 1886 return nullptr; 1887 } 1888 1889 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1890 Type *Ty = G->getValueType(); 1891 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1892 1893 // FIXME: Metadata should be attched directly to the global directly instead 1894 // of being added to llvm.asan.globals. 1895 if (GlobalsMD.get(G).IsExcluded) return false; 1896 if (!Ty->isSized()) return false; 1897 if (!G->hasInitializer()) return false; 1898 // Globals in address space 1 and 4 are supported for AMDGPU. 1899 if (G->getAddressSpace() && 1900 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1901 return false; 1902 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1903 // Two problems with thread-locals: 1904 // - The address of the main thread's copy can't be computed at link-time. 1905 // - Need to poison all copies, not just the main thread's one. 1906 if (G->isThreadLocal()) return false; 1907 // For now, just ignore this Global if the alignment is large. 1908 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1909 1910 // For non-COFF targets, only instrument globals known to be defined by this 1911 // TU. 1912 // FIXME: We can instrument comdat globals on ELF if we are using the 1913 // GC-friendly metadata scheme. 1914 if (!TargetTriple.isOSBinFormatCOFF()) { 1915 if (!G->hasExactDefinition() || G->hasComdat()) 1916 return false; 1917 } else { 1918 // On COFF, don't instrument non-ODR linkages. 1919 if (G->isInterposable()) 1920 return false; 1921 } 1922 1923 // If a comdat is present, it must have a selection kind that implies ODR 1924 // semantics: no duplicates, any, or exact match. 1925 if (Comdat *C = G->getComdat()) { 1926 switch (C->getSelectionKind()) { 1927 case Comdat::Any: 1928 case Comdat::ExactMatch: 1929 case Comdat::NoDuplicates: 1930 break; 1931 case Comdat::Largest: 1932 case Comdat::SameSize: 1933 return false; 1934 } 1935 } 1936 1937 if (G->hasSection()) { 1938 // The kernel uses explicit sections for mostly special global variables 1939 // that we should not instrument. E.g. the kernel may rely on their layout 1940 // without redzones, or remove them at link time ("discard.*"), etc. 1941 if (CompileKernel) 1942 return false; 1943 1944 StringRef Section = G->getSection(); 1945 1946 // Globals from llvm.metadata aren't emitted, do not instrument them. 1947 if (Section == "llvm.metadata") return false; 1948 // Do not instrument globals from special LLVM sections. 1949 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1950 1951 // Do not instrument function pointers to initialization and termination 1952 // routines: dynamic linker will not properly handle redzones. 1953 if (Section.startswith(".preinit_array") || 1954 Section.startswith(".init_array") || 1955 Section.startswith(".fini_array")) { 1956 return false; 1957 } 1958 1959 // Do not instrument user-defined sections (with names resembling 1960 // valid C identifiers) 1961 if (TargetTriple.isOSBinFormatELF()) { 1962 if (llvm::all_of(Section, 1963 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 1964 return false; 1965 } 1966 1967 // On COFF, if the section name contains '$', it is highly likely that the 1968 // user is using section sorting to create an array of globals similar to 1969 // the way initialization callbacks are registered in .init_array and 1970 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1971 // to such globals is counterproductive, because the intent is that they 1972 // will form an array, and out-of-bounds accesses are expected. 1973 // See https://github.com/google/sanitizers/issues/305 1974 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1975 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1976 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1977 << *G << "\n"); 1978 return false; 1979 } 1980 1981 if (TargetTriple.isOSBinFormatMachO()) { 1982 StringRef ParsedSegment, ParsedSection; 1983 unsigned TAA = 0, StubSize = 0; 1984 bool TAAParsed; 1985 cantFail(MCSectionMachO::ParseSectionSpecifier( 1986 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 1987 1988 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1989 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1990 // them. 1991 if (ParsedSegment == "__OBJC" || 1992 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1993 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1994 return false; 1995 } 1996 // See https://github.com/google/sanitizers/issues/32 1997 // Constant CFString instances are compiled in the following way: 1998 // -- the string buffer is emitted into 1999 // __TEXT,__cstring,cstring_literals 2000 // -- the constant NSConstantString structure referencing that buffer 2001 // is placed into __DATA,__cfstring 2002 // Therefore there's no point in placing redzones into __DATA,__cfstring. 2003 // Moreover, it causes the linker to crash on OS X 10.7 2004 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 2005 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 2006 return false; 2007 } 2008 // The linker merges the contents of cstring_literals and removes the 2009 // trailing zeroes. 2010 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 2011 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 2012 return false; 2013 } 2014 } 2015 } 2016 2017 if (CompileKernel) { 2018 // Globals that prefixed by "__" are special and cannot be padded with a 2019 // redzone. 2020 if (G->getName().startswith("__")) 2021 return false; 2022 } 2023 2024 return true; 2025 } 2026 2027 // On Mach-O platforms, we emit global metadata in a separate section of the 2028 // binary in order to allow the linker to properly dead strip. This is only 2029 // supported on recent versions of ld64. 2030 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 2031 if (!TargetTriple.isOSBinFormatMachO()) 2032 return false; 2033 2034 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 2035 return true; 2036 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 2037 return true; 2038 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 2039 return true; 2040 2041 return false; 2042 } 2043 2044 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 2045 switch (TargetTriple.getObjectFormat()) { 2046 case Triple::COFF: return ".ASAN$GL"; 2047 case Triple::ELF: return "asan_globals"; 2048 case Triple::MachO: return "__DATA,__asan_globals,regular"; 2049 case Triple::Wasm: 2050 case Triple::GOFF: 2051 case Triple::XCOFF: 2052 report_fatal_error( 2053 "ModuleAddressSanitizer not implemented for object file format"); 2054 case Triple::UnknownObjectFormat: 2055 break; 2056 } 2057 llvm_unreachable("unsupported object format"); 2058 } 2059 2060 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 2061 IRBuilder<> IRB(*C); 2062 2063 // Declare our poisoning and unpoisoning functions. 2064 AsanPoisonGlobals = 2065 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2066 AsanUnpoisonGlobals = 2067 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2068 2069 // Declare functions that register/unregister globals. 2070 AsanRegisterGlobals = M.getOrInsertFunction( 2071 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2072 AsanUnregisterGlobals = M.getOrInsertFunction( 2073 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2074 2075 // Declare the functions that find globals in a shared object and then invoke 2076 // the (un)register function on them. 2077 AsanRegisterImageGlobals = M.getOrInsertFunction( 2078 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2079 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2080 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2081 2082 AsanRegisterElfGlobals = 2083 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2084 IntptrTy, IntptrTy, IntptrTy); 2085 AsanUnregisterElfGlobals = 2086 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2087 IntptrTy, IntptrTy, IntptrTy); 2088 } 2089 2090 // Put the metadata and the instrumented global in the same group. This ensures 2091 // that the metadata is discarded if the instrumented global is discarded. 2092 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2093 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2094 Module &M = *G->getParent(); 2095 Comdat *C = G->getComdat(); 2096 if (!C) { 2097 if (!G->hasName()) { 2098 // If G is unnamed, it must be internal. Give it an artificial name 2099 // so we can put it in a comdat. 2100 assert(G->hasLocalLinkage()); 2101 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2102 } 2103 2104 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2105 std::string Name = std::string(G->getName()); 2106 Name += InternalSuffix; 2107 C = M.getOrInsertComdat(Name); 2108 } else { 2109 C = M.getOrInsertComdat(G->getName()); 2110 } 2111 2112 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2113 // linkage to internal linkage so that a symbol table entry is emitted. This 2114 // is necessary in order to create the comdat group. 2115 if (TargetTriple.isOSBinFormatCOFF()) { 2116 C->setSelectionKind(Comdat::NoDuplicates); 2117 if (G->hasPrivateLinkage()) 2118 G->setLinkage(GlobalValue::InternalLinkage); 2119 } 2120 G->setComdat(C); 2121 } 2122 2123 assert(G->hasComdat()); 2124 Metadata->setComdat(G->getComdat()); 2125 } 2126 2127 // Create a separate metadata global and put it in the appropriate ASan 2128 // global registration section. 2129 GlobalVariable * 2130 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2131 StringRef OriginalName) { 2132 auto Linkage = TargetTriple.isOSBinFormatMachO() 2133 ? GlobalVariable::InternalLinkage 2134 : GlobalVariable::PrivateLinkage; 2135 GlobalVariable *Metadata = new GlobalVariable( 2136 M, Initializer->getType(), false, Linkage, Initializer, 2137 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2138 Metadata->setSection(getGlobalMetadataSection()); 2139 return Metadata; 2140 } 2141 2142 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2143 AsanDtorFunction = Function::createWithDefaultAttr( 2144 FunctionType::get(Type::getVoidTy(*C), false), 2145 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2146 AsanDtorFunction->addAttribute(AttributeList::FunctionIndex, 2147 Attribute::NoUnwind); 2148 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2149 2150 return ReturnInst::Create(*C, AsanDtorBB); 2151 } 2152 2153 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2154 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2155 ArrayRef<Constant *> MetadataInitializers) { 2156 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2157 auto &DL = M.getDataLayout(); 2158 2159 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2160 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2161 Constant *Initializer = MetadataInitializers[i]; 2162 GlobalVariable *G = ExtendedGlobals[i]; 2163 GlobalVariable *Metadata = 2164 CreateMetadataGlobal(M, Initializer, G->getName()); 2165 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2166 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2167 MetadataGlobals[i] = Metadata; 2168 2169 // The MSVC linker always inserts padding when linking incrementally. We 2170 // cope with that by aligning each struct to its size, which must be a power 2171 // of two. 2172 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2173 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2174 "global metadata will not be padded appropriately"); 2175 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2176 2177 SetComdatForGlobalMetadata(G, Metadata, ""); 2178 } 2179 2180 // Update llvm.compiler.used, adding the new metadata globals. This is 2181 // needed so that during LTO these variables stay alive. 2182 if (!MetadataGlobals.empty()) 2183 appendToCompilerUsed(M, MetadataGlobals); 2184 } 2185 2186 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2187 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2188 ArrayRef<Constant *> MetadataInitializers, 2189 const std::string &UniqueModuleId) { 2190 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2191 2192 // Putting globals in a comdat changes the semantic and potentially cause 2193 // false negative odr violations at link time. If odr indicators are used, we 2194 // keep the comdat sections, as link time odr violations will be dectected on 2195 // the odr indicator symbols. 2196 bool UseComdatForGlobalsGC = UseOdrIndicator; 2197 2198 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2199 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2200 GlobalVariable *G = ExtendedGlobals[i]; 2201 GlobalVariable *Metadata = 2202 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2203 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2204 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2205 MetadataGlobals[i] = Metadata; 2206 2207 if (UseComdatForGlobalsGC) 2208 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2209 } 2210 2211 // Update llvm.compiler.used, adding the new metadata globals. This is 2212 // needed so that during LTO these variables stay alive. 2213 if (!MetadataGlobals.empty()) 2214 appendToCompilerUsed(M, MetadataGlobals); 2215 2216 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2217 // to look up the loaded image that contains it. Second, we can store in it 2218 // whether registration has already occurred, to prevent duplicate 2219 // registration. 2220 // 2221 // Common linkage ensures that there is only one global per shared library. 2222 GlobalVariable *RegisteredFlag = new GlobalVariable( 2223 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2224 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2225 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2226 2227 // Create start and stop symbols. 2228 GlobalVariable *StartELFMetadata = new GlobalVariable( 2229 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2230 "__start_" + getGlobalMetadataSection()); 2231 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2232 GlobalVariable *StopELFMetadata = new GlobalVariable( 2233 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2234 "__stop_" + getGlobalMetadataSection()); 2235 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2236 2237 // Create a call to register the globals with the runtime. 2238 IRB.CreateCall(AsanRegisterElfGlobals, 2239 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2240 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2241 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2242 2243 // We also need to unregister globals at the end, e.g., when a shared library 2244 // gets closed. 2245 if (DestructorKind != AsanDtorKind::None) { 2246 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2247 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2248 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2249 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2250 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2251 } 2252 } 2253 2254 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2255 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2256 ArrayRef<Constant *> MetadataInitializers) { 2257 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2258 2259 // On recent Mach-O platforms, use a structure which binds the liveness of 2260 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2261 // created to be added to llvm.compiler.used 2262 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2263 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2264 2265 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2266 Constant *Initializer = MetadataInitializers[i]; 2267 GlobalVariable *G = ExtendedGlobals[i]; 2268 GlobalVariable *Metadata = 2269 CreateMetadataGlobal(M, Initializer, G->getName()); 2270 2271 // On recent Mach-O platforms, we emit the global metadata in a way that 2272 // allows the linker to properly strip dead globals. 2273 auto LivenessBinder = 2274 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2275 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2276 GlobalVariable *Liveness = new GlobalVariable( 2277 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2278 Twine("__asan_binder_") + G->getName()); 2279 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2280 LivenessGlobals[i] = Liveness; 2281 } 2282 2283 // Update llvm.compiler.used, adding the new liveness globals. This is 2284 // needed so that during LTO these variables stay alive. The alternative 2285 // would be to have the linker handling the LTO symbols, but libLTO 2286 // current API does not expose access to the section for each symbol. 2287 if (!LivenessGlobals.empty()) 2288 appendToCompilerUsed(M, LivenessGlobals); 2289 2290 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2291 // to look up the loaded image that contains it. Second, we can store in it 2292 // whether registration has already occurred, to prevent duplicate 2293 // registration. 2294 // 2295 // common linkage ensures that there is only one global per shared library. 2296 GlobalVariable *RegisteredFlag = new GlobalVariable( 2297 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2298 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2299 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2300 2301 IRB.CreateCall(AsanRegisterImageGlobals, 2302 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2303 2304 // We also need to unregister globals at the end, e.g., when a shared library 2305 // gets closed. 2306 if (DestructorKind != AsanDtorKind::None) { 2307 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2308 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2309 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2310 } 2311 } 2312 2313 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2314 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2315 ArrayRef<Constant *> MetadataInitializers) { 2316 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2317 unsigned N = ExtendedGlobals.size(); 2318 assert(N > 0); 2319 2320 // On platforms that don't have a custom metadata section, we emit an array 2321 // of global metadata structures. 2322 ArrayType *ArrayOfGlobalStructTy = 2323 ArrayType::get(MetadataInitializers[0]->getType(), N); 2324 auto AllGlobals = new GlobalVariable( 2325 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2326 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2327 if (Mapping.Scale > 3) 2328 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2329 2330 IRB.CreateCall(AsanRegisterGlobals, 2331 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2332 ConstantInt::get(IntptrTy, N)}); 2333 2334 // We also need to unregister globals at the end, e.g., when a shared library 2335 // gets closed. 2336 if (DestructorKind != AsanDtorKind::None) { 2337 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2338 IrbDtor.CreateCall(AsanUnregisterGlobals, 2339 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2340 ConstantInt::get(IntptrTy, N)}); 2341 } 2342 } 2343 2344 // This function replaces all global variables with new variables that have 2345 // trailing redzones. It also creates a function that poisons 2346 // redzones and inserts this function into llvm.global_ctors. 2347 // Sets *CtorComdat to true if the global registration code emitted into the 2348 // asan constructor is comdat-compatible. 2349 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2350 bool *CtorComdat) { 2351 *CtorComdat = false; 2352 2353 // Build set of globals that are aliased by some GA, where 2354 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2355 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2356 if (CompileKernel) { 2357 for (auto &GA : M.aliases()) { 2358 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2359 AliasedGlobalExclusions.insert(GV); 2360 } 2361 } 2362 2363 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2364 for (auto &G : M.globals()) { 2365 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2366 GlobalsToChange.push_back(&G); 2367 } 2368 2369 size_t n = GlobalsToChange.size(); 2370 if (n == 0) { 2371 *CtorComdat = true; 2372 return false; 2373 } 2374 2375 auto &DL = M.getDataLayout(); 2376 2377 // A global is described by a structure 2378 // size_t beg; 2379 // size_t size; 2380 // size_t size_with_redzone; 2381 // const char *name; 2382 // const char *module_name; 2383 // size_t has_dynamic_init; 2384 // void *source_location; 2385 // size_t odr_indicator; 2386 // We initialize an array of such structures and pass it to a run-time call. 2387 StructType *GlobalStructTy = 2388 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2389 IntptrTy, IntptrTy, IntptrTy); 2390 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2391 SmallVector<Constant *, 16> Initializers(n); 2392 2393 bool HasDynamicallyInitializedGlobals = false; 2394 2395 // We shouldn't merge same module names, as this string serves as unique 2396 // module ID in runtime. 2397 GlobalVariable *ModuleName = createPrivateGlobalForString( 2398 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2399 2400 for (size_t i = 0; i < n; i++) { 2401 GlobalVariable *G = GlobalsToChange[i]; 2402 2403 // FIXME: Metadata should be attched directly to the global directly instead 2404 // of being added to llvm.asan.globals. 2405 auto MD = GlobalsMD.get(G); 2406 StringRef NameForGlobal = G->getName(); 2407 // Create string holding the global name (use global name from metadata 2408 // if it's available, otherwise just write the name of global variable). 2409 GlobalVariable *Name = createPrivateGlobalForString( 2410 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2411 /*AllowMerging*/ true, kAsanGenPrefix); 2412 2413 Type *Ty = G->getValueType(); 2414 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2415 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2416 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2417 2418 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2419 Constant *NewInitializer = ConstantStruct::get( 2420 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2421 2422 // Create a new global variable with enough space for a redzone. 2423 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2424 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2425 Linkage = GlobalValue::InternalLinkage; 2426 GlobalVariable *NewGlobal = new GlobalVariable( 2427 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2428 G->getThreadLocalMode(), G->getAddressSpace()); 2429 NewGlobal->copyAttributesFrom(G); 2430 NewGlobal->setComdat(G->getComdat()); 2431 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2432 // Don't fold globals with redzones. ODR violation detector and redzone 2433 // poisoning implicitly creates a dependence on the global's address, so it 2434 // is no longer valid for it to be marked unnamed_addr. 2435 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2436 2437 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2438 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2439 G->isConstant()) { 2440 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2441 if (Seq && Seq->isCString()) 2442 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2443 } 2444 2445 // Transfer the debug info and type metadata. The payload starts at offset 2446 // zero so we can copy the metadata over as is. 2447 NewGlobal->copyMetadata(G, 0); 2448 2449 Value *Indices2[2]; 2450 Indices2[0] = IRB.getInt32(0); 2451 Indices2[1] = IRB.getInt32(0); 2452 2453 G->replaceAllUsesWith( 2454 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2455 NewGlobal->takeName(G); 2456 G->eraseFromParent(); 2457 NewGlobals[i] = NewGlobal; 2458 2459 Constant *SourceLoc; 2460 if (!MD.SourceLoc.empty()) { 2461 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2462 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2463 } else { 2464 SourceLoc = ConstantInt::get(IntptrTy, 0); 2465 } 2466 2467 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2468 GlobalValue *InstrumentedGlobal = NewGlobal; 2469 2470 bool CanUsePrivateAliases = 2471 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2472 TargetTriple.isOSBinFormatWasm(); 2473 if (CanUsePrivateAliases && UsePrivateAlias) { 2474 // Create local alias for NewGlobal to avoid crash on ODR between 2475 // instrumented and non-instrumented libraries. 2476 InstrumentedGlobal = 2477 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2478 } 2479 2480 // ODR should not happen for local linkage. 2481 if (NewGlobal->hasLocalLinkage()) { 2482 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2483 IRB.getInt8PtrTy()); 2484 } else if (UseOdrIndicator) { 2485 // With local aliases, we need to provide another externally visible 2486 // symbol __odr_asan_XXX to detect ODR violation. 2487 auto *ODRIndicatorSym = 2488 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2489 Constant::getNullValue(IRB.getInt8Ty()), 2490 kODRGenPrefix + NameForGlobal, nullptr, 2491 NewGlobal->getThreadLocalMode()); 2492 2493 // Set meaningful attributes for indicator symbol. 2494 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2495 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2496 ODRIndicatorSym->setAlignment(Align(1)); 2497 ODRIndicator = ODRIndicatorSym; 2498 } 2499 2500 Constant *Initializer = ConstantStruct::get( 2501 GlobalStructTy, 2502 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2503 ConstantInt::get(IntptrTy, SizeInBytes), 2504 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2505 ConstantExpr::getPointerCast(Name, IntptrTy), 2506 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2507 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2508 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2509 2510 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2511 2512 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2513 2514 Initializers[i] = Initializer; 2515 } 2516 2517 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2518 // ConstantMerge'ing them. 2519 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2520 for (size_t i = 0; i < n; i++) { 2521 GlobalVariable *G = NewGlobals[i]; 2522 if (G->getName().empty()) continue; 2523 GlobalsToAddToUsedList.push_back(G); 2524 } 2525 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2526 2527 std::string ELFUniqueModuleId = 2528 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2529 : ""; 2530 2531 if (!ELFUniqueModuleId.empty()) { 2532 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2533 *CtorComdat = true; 2534 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2535 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2536 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2537 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2538 } else { 2539 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2540 } 2541 2542 // Create calls for poisoning before initializers run and unpoisoning after. 2543 if (HasDynamicallyInitializedGlobals) 2544 createInitializerPoisonCalls(M, ModuleName); 2545 2546 LLVM_DEBUG(dbgs() << M); 2547 return true; 2548 } 2549 2550 uint64_t 2551 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2552 constexpr uint64_t kMaxRZ = 1 << 18; 2553 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2554 2555 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2556 uint64_t RZ = 2557 std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2558 2559 // Round up to multiple of MinRZ. 2560 if (SizeInBytes % MinRZ) 2561 RZ += MinRZ - (SizeInBytes % MinRZ); 2562 assert((RZ + SizeInBytes) % MinRZ == 0); 2563 2564 return RZ; 2565 } 2566 2567 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2568 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2569 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2570 int Version = 8; 2571 // 32-bit Android is one version ahead because of the switch to dynamic 2572 // shadow. 2573 Version += (LongSize == 32 && isAndroid); 2574 return Version; 2575 } 2576 2577 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2578 initializeCallbacks(M); 2579 2580 // Create a module constructor. A destructor is created lazily because not all 2581 // platforms, and not all modules need it. 2582 if (CompileKernel) { 2583 // The kernel always builds with its own runtime, and therefore does not 2584 // need the init and version check calls. 2585 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2586 } else { 2587 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2588 std::string VersionCheckName = 2589 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2590 std::tie(AsanCtorFunction, std::ignore) = 2591 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2592 kAsanInitName, /*InitArgTypes=*/{}, 2593 /*InitArgs=*/{}, VersionCheckName); 2594 } 2595 2596 bool CtorComdat = true; 2597 if (ClGlobals) { 2598 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2599 InstrumentGlobals(IRB, M, &CtorComdat); 2600 } 2601 2602 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2603 2604 // Put the constructor and destructor in comdat if both 2605 // (1) global instrumentation is not TU-specific 2606 // (2) target is ELF. 2607 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2608 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2609 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2610 if (AsanDtorFunction) { 2611 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2612 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2613 } 2614 } else { 2615 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2616 if (AsanDtorFunction) 2617 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2618 } 2619 2620 return true; 2621 } 2622 2623 void AddressSanitizer::initializeCallbacks(Module &M) { 2624 IRBuilder<> IRB(*C); 2625 // Create __asan_report* callbacks. 2626 // IsWrite, TypeSize and Exp are encoded in the function name. 2627 for (int Exp = 0; Exp < 2; Exp++) { 2628 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2629 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2630 const std::string ExpStr = Exp ? "exp_" : ""; 2631 const std::string EndingStr = Recover ? "_noabort" : ""; 2632 2633 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2634 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2635 if (Exp) { 2636 Type *ExpType = Type::getInt32Ty(*C); 2637 Args2.push_back(ExpType); 2638 Args1.push_back(ExpType); 2639 } 2640 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2641 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2642 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2643 2644 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2645 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2646 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2647 2648 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2649 AccessSizeIndex++) { 2650 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2651 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2652 M.getOrInsertFunction( 2653 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2654 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2655 2656 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2657 M.getOrInsertFunction( 2658 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2659 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2660 } 2661 } 2662 } 2663 2664 const std::string MemIntrinCallbackPrefix = 2665 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2666 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2667 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2668 IRB.getInt8PtrTy(), IntptrTy); 2669 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2670 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2671 IRB.getInt8PtrTy(), IntptrTy); 2672 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2673 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2674 IRB.getInt32Ty(), IntptrTy); 2675 2676 AsanHandleNoReturnFunc = 2677 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2678 2679 AsanPtrCmpFunction = 2680 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2681 AsanPtrSubFunction = 2682 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2683 if (Mapping.InGlobal) 2684 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2685 ArrayType::get(IRB.getInt8Ty(), 0)); 2686 2687 AMDGPUAddressShared = M.getOrInsertFunction( 2688 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2689 AMDGPUAddressPrivate = M.getOrInsertFunction( 2690 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2691 } 2692 2693 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2694 // For each NSObject descendant having a +load method, this method is invoked 2695 // by the ObjC runtime before any of the static constructors is called. 2696 // Therefore we need to instrument such methods with a call to __asan_init 2697 // at the beginning in order to initialize our runtime before any access to 2698 // the shadow memory. 2699 // We cannot just ignore these methods, because they may call other 2700 // instrumented functions. 2701 if (F.getName().find(" load]") != std::string::npos) { 2702 FunctionCallee AsanInitFunction = 2703 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2704 IRBuilder<> IRB(&F.front(), F.front().begin()); 2705 IRB.CreateCall(AsanInitFunction, {}); 2706 return true; 2707 } 2708 return false; 2709 } 2710 2711 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2712 // Generate code only when dynamic addressing is needed. 2713 if (Mapping.Offset != kDynamicShadowSentinel) 2714 return false; 2715 2716 IRBuilder<> IRB(&F.front().front()); 2717 if (Mapping.InGlobal) { 2718 if (ClWithIfuncSuppressRemat) { 2719 // An empty inline asm with input reg == output reg. 2720 // An opaque pointer-to-int cast, basically. 2721 InlineAsm *Asm = InlineAsm::get( 2722 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2723 StringRef(""), StringRef("=r,0"), 2724 /*hasSideEffects=*/false); 2725 LocalDynamicShadow = 2726 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2727 } else { 2728 LocalDynamicShadow = 2729 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2730 } 2731 } else { 2732 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2733 kAsanShadowMemoryDynamicAddress, IntptrTy); 2734 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2735 } 2736 return true; 2737 } 2738 2739 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2740 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2741 // to it as uninteresting. This assumes we haven't started processing allocas 2742 // yet. This check is done up front because iterating the use list in 2743 // isInterestingAlloca would be algorithmically slower. 2744 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2745 2746 // Try to get the declaration of llvm.localescape. If it's not in the module, 2747 // we can exit early. 2748 if (!F.getParent()->getFunction("llvm.localescape")) return; 2749 2750 // Look for a call to llvm.localescape call in the entry block. It can't be in 2751 // any other block. 2752 for (Instruction &I : F.getEntryBlock()) { 2753 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2754 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2755 // We found a call. Mark all the allocas passed in as uninteresting. 2756 for (Value *Arg : II->arg_operands()) { 2757 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2758 assert(AI && AI->isStaticAlloca() && 2759 "non-static alloca arg to localescape"); 2760 ProcessedAllocas[AI] = false; 2761 } 2762 break; 2763 } 2764 } 2765 } 2766 2767 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2768 bool ShouldInstrument = 2769 ClDebugMin < 0 || ClDebugMax < 0 || 2770 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2771 Instrumented++; 2772 return !ShouldInstrument; 2773 } 2774 2775 bool AddressSanitizer::instrumentFunction(Function &F, 2776 const TargetLibraryInfo *TLI) { 2777 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2778 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2779 if (F.getName().startswith("__asan_")) return false; 2780 2781 bool FunctionModified = false; 2782 2783 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2784 // This function needs to be called even if the function body is not 2785 // instrumented. 2786 if (maybeInsertAsanInitAtFunctionEntry(F)) 2787 FunctionModified = true; 2788 2789 // Leave if the function doesn't need instrumentation. 2790 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2791 2792 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2793 2794 initializeCallbacks(*F.getParent()); 2795 2796 FunctionStateRAII CleanupObj(this); 2797 2798 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2799 2800 // We can't instrument allocas used with llvm.localescape. Only static allocas 2801 // can be passed to that intrinsic. 2802 markEscapedLocalAllocas(F); 2803 2804 // We want to instrument every address only once per basic block (unless there 2805 // are calls between uses). 2806 SmallPtrSet<Value *, 16> TempsToInstrument; 2807 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2808 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2809 SmallVector<Instruction *, 8> NoReturnCalls; 2810 SmallVector<BasicBlock *, 16> AllBlocks; 2811 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2812 int NumAllocas = 0; 2813 2814 // Fill the set of memory operations to instrument. 2815 for (auto &BB : F) { 2816 AllBlocks.push_back(&BB); 2817 TempsToInstrument.clear(); 2818 int NumInsnsPerBB = 0; 2819 for (auto &Inst : BB) { 2820 if (LooksLikeCodeInBug11395(&Inst)) return false; 2821 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2822 getInterestingMemoryOperands(&Inst, InterestingOperands); 2823 2824 if (!InterestingOperands.empty()) { 2825 for (auto &Operand : InterestingOperands) { 2826 if (ClOpt && ClOptSameTemp) { 2827 Value *Ptr = Operand.getPtr(); 2828 // If we have a mask, skip instrumentation if we've already 2829 // instrumented the full object. But don't add to TempsToInstrument 2830 // because we might get another load/store with a different mask. 2831 if (Operand.MaybeMask) { 2832 if (TempsToInstrument.count(Ptr)) 2833 continue; // We've seen this (whole) temp in the current BB. 2834 } else { 2835 if (!TempsToInstrument.insert(Ptr).second) 2836 continue; // We've seen this temp in the current BB. 2837 } 2838 } 2839 OperandsToInstrument.push_back(Operand); 2840 NumInsnsPerBB++; 2841 } 2842 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2843 isInterestingPointerComparison(&Inst)) || 2844 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2845 isInterestingPointerSubtraction(&Inst))) { 2846 PointerComparisonsOrSubtracts.push_back(&Inst); 2847 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2848 // ok, take it. 2849 IntrinToInstrument.push_back(MI); 2850 NumInsnsPerBB++; 2851 } else { 2852 if (isa<AllocaInst>(Inst)) NumAllocas++; 2853 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2854 // A call inside BB. 2855 TempsToInstrument.clear(); 2856 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2857 NoReturnCalls.push_back(CB); 2858 } 2859 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2860 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2861 } 2862 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2863 } 2864 } 2865 2866 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2867 OperandsToInstrument.size() + IntrinToInstrument.size() > 2868 (unsigned)ClInstrumentationWithCallsThreshold); 2869 const DataLayout &DL = F.getParent()->getDataLayout(); 2870 ObjectSizeOpts ObjSizeOpts; 2871 ObjSizeOpts.RoundToAlign = true; 2872 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2873 2874 // Instrument. 2875 int NumInstrumented = 0; 2876 for (auto &Operand : OperandsToInstrument) { 2877 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2878 instrumentMop(ObjSizeVis, Operand, UseCalls, 2879 F.getParent()->getDataLayout()); 2880 FunctionModified = true; 2881 } 2882 for (auto Inst : IntrinToInstrument) { 2883 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2884 instrumentMemIntrinsic(Inst); 2885 FunctionModified = true; 2886 } 2887 2888 FunctionStackPoisoner FSP(F, *this); 2889 bool ChangedStack = FSP.runOnFunction(); 2890 2891 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2892 // See e.g. https://github.com/google/sanitizers/issues/37 2893 for (auto CI : NoReturnCalls) { 2894 IRBuilder<> IRB(CI); 2895 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2896 } 2897 2898 for (auto Inst : PointerComparisonsOrSubtracts) { 2899 instrumentPointerComparisonOrSubtraction(Inst); 2900 FunctionModified = true; 2901 } 2902 2903 if (ChangedStack || !NoReturnCalls.empty()) 2904 FunctionModified = true; 2905 2906 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2907 << F << "\n"); 2908 2909 return FunctionModified; 2910 } 2911 2912 // Workaround for bug 11395: we don't want to instrument stack in functions 2913 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2914 // FIXME: remove once the bug 11395 is fixed. 2915 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2916 if (LongSize != 32) return false; 2917 CallInst *CI = dyn_cast<CallInst>(I); 2918 if (!CI || !CI->isInlineAsm()) return false; 2919 if (CI->getNumArgOperands() <= 5) return false; 2920 // We have inline assembly with quite a few arguments. 2921 return true; 2922 } 2923 2924 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2925 IRBuilder<> IRB(*C); 2926 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2927 std::string Suffix = itostr(i); 2928 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2929 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2930 AsanStackFreeFunc[i] = 2931 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2932 IRB.getVoidTy(), IntptrTy, IntptrTy); 2933 } 2934 if (ASan.UseAfterScope) { 2935 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2936 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2937 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2938 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2939 } 2940 2941 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2942 std::ostringstream Name; 2943 Name << kAsanSetShadowPrefix; 2944 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2945 AsanSetShadowFunc[Val] = 2946 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2947 } 2948 2949 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2950 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2951 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2952 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2953 } 2954 2955 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2956 ArrayRef<uint8_t> ShadowBytes, 2957 size_t Begin, size_t End, 2958 IRBuilder<> &IRB, 2959 Value *ShadowBase) { 2960 if (Begin >= End) 2961 return; 2962 2963 const size_t LargestStoreSizeInBytes = 2964 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2965 2966 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2967 2968 // Poison given range in shadow using larges store size with out leading and 2969 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2970 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2971 // middle of a store. 2972 for (size_t i = Begin; i < End;) { 2973 if (!ShadowMask[i]) { 2974 assert(!ShadowBytes[i]); 2975 ++i; 2976 continue; 2977 } 2978 2979 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2980 // Fit store size into the range. 2981 while (StoreSizeInBytes > End - i) 2982 StoreSizeInBytes /= 2; 2983 2984 // Minimize store size by trimming trailing zeros. 2985 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2986 while (j <= StoreSizeInBytes / 2) 2987 StoreSizeInBytes /= 2; 2988 } 2989 2990 uint64_t Val = 0; 2991 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2992 if (IsLittleEndian) 2993 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2994 else 2995 Val = (Val << 8) | ShadowBytes[i + j]; 2996 } 2997 2998 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2999 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 3000 IRB.CreateAlignedStore( 3001 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 3002 Align(1)); 3003 3004 i += StoreSizeInBytes; 3005 } 3006 } 3007 3008 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3009 ArrayRef<uint8_t> ShadowBytes, 3010 IRBuilder<> &IRB, Value *ShadowBase) { 3011 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 3012 } 3013 3014 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3015 ArrayRef<uint8_t> ShadowBytes, 3016 size_t Begin, size_t End, 3017 IRBuilder<> &IRB, Value *ShadowBase) { 3018 assert(ShadowMask.size() == ShadowBytes.size()); 3019 size_t Done = Begin; 3020 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 3021 if (!ShadowMask[i]) { 3022 assert(!ShadowBytes[i]); 3023 continue; 3024 } 3025 uint8_t Val = ShadowBytes[i]; 3026 if (!AsanSetShadowFunc[Val]) 3027 continue; 3028 3029 // Skip same values. 3030 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 3031 } 3032 3033 if (j - i >= ClMaxInlinePoisoningSize) { 3034 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 3035 IRB.CreateCall(AsanSetShadowFunc[Val], 3036 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 3037 ConstantInt::get(IntptrTy, j - i)}); 3038 Done = j; 3039 } 3040 } 3041 3042 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 3043 } 3044 3045 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 3046 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 3047 static int StackMallocSizeClass(uint64_t LocalStackSize) { 3048 assert(LocalStackSize <= kMaxStackMallocSize); 3049 uint64_t MaxSize = kMinStackMallocSize; 3050 for (int i = 0;; i++, MaxSize *= 2) 3051 if (LocalStackSize <= MaxSize) return i; 3052 llvm_unreachable("impossible LocalStackSize"); 3053 } 3054 3055 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 3056 Instruction *CopyInsertPoint = &F.front().front(); 3057 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 3058 // Insert after the dynamic shadow location is determined 3059 CopyInsertPoint = CopyInsertPoint->getNextNode(); 3060 assert(CopyInsertPoint); 3061 } 3062 IRBuilder<> IRB(CopyInsertPoint); 3063 const DataLayout &DL = F.getParent()->getDataLayout(); 3064 for (Argument &Arg : F.args()) { 3065 if (Arg.hasByValAttr()) { 3066 Type *Ty = Arg.getParamByValType(); 3067 const Align Alignment = 3068 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 3069 3070 AllocaInst *AI = IRB.CreateAlloca( 3071 Ty, nullptr, 3072 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 3073 ".byval"); 3074 AI->setAlignment(Alignment); 3075 Arg.replaceAllUsesWith(AI); 3076 3077 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3078 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3079 } 3080 } 3081 } 3082 3083 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3084 Value *ValueIfTrue, 3085 Instruction *ThenTerm, 3086 Value *ValueIfFalse) { 3087 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3088 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3089 PHI->addIncoming(ValueIfFalse, CondBlock); 3090 BasicBlock *ThenBlock = ThenTerm->getParent(); 3091 PHI->addIncoming(ValueIfTrue, ThenBlock); 3092 return PHI; 3093 } 3094 3095 Value *FunctionStackPoisoner::createAllocaForLayout( 3096 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3097 AllocaInst *Alloca; 3098 if (Dynamic) { 3099 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3100 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3101 "MyAlloca"); 3102 } else { 3103 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3104 nullptr, "MyAlloca"); 3105 assert(Alloca->isStaticAlloca()); 3106 } 3107 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3108 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 3109 Alloca->setAlignment(Align(FrameAlignment)); 3110 return IRB.CreatePointerCast(Alloca, IntptrTy); 3111 } 3112 3113 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3114 BasicBlock &FirstBB = *F.begin(); 3115 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3116 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3117 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3118 DynamicAllocaLayout->setAlignment(Align(32)); 3119 } 3120 3121 void FunctionStackPoisoner::processDynamicAllocas() { 3122 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3123 assert(DynamicAllocaPoisonCallVec.empty()); 3124 return; 3125 } 3126 3127 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3128 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3129 assert(APC.InsBefore); 3130 assert(APC.AI); 3131 assert(ASan.isInterestingAlloca(*APC.AI)); 3132 assert(!APC.AI->isStaticAlloca()); 3133 3134 IRBuilder<> IRB(APC.InsBefore); 3135 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3136 // Dynamic allocas will be unpoisoned unconditionally below in 3137 // unpoisonDynamicAllocas. 3138 // Flag that we need unpoison static allocas. 3139 } 3140 3141 // Handle dynamic allocas. 3142 createDynamicAllocasInitStorage(); 3143 for (auto &AI : DynamicAllocaVec) 3144 handleDynamicAllocaCall(AI); 3145 unpoisonDynamicAllocas(); 3146 } 3147 3148 /// Collect instructions in the entry block after \p InsBefore which initialize 3149 /// permanent storage for a function argument. These instructions must remain in 3150 /// the entry block so that uninitialized values do not appear in backtraces. An 3151 /// added benefit is that this conserves spill slots. This does not move stores 3152 /// before instrumented / "interesting" allocas. 3153 static void findStoresToUninstrumentedArgAllocas( 3154 AddressSanitizer &ASan, Instruction &InsBefore, 3155 SmallVectorImpl<Instruction *> &InitInsts) { 3156 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3157 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3158 // Argument initialization looks like: 3159 // 1) store <Argument>, <Alloca> OR 3160 // 2) <CastArgument> = cast <Argument> to ... 3161 // store <CastArgument> to <Alloca> 3162 // Do not consider any other kind of instruction. 3163 // 3164 // Note: This covers all known cases, but may not be exhaustive. An 3165 // alternative to pattern-matching stores is to DFS over all Argument uses: 3166 // this might be more general, but is probably much more complicated. 3167 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3168 continue; 3169 if (auto *Store = dyn_cast<StoreInst>(It)) { 3170 // The store destination must be an alloca that isn't interesting for 3171 // ASan to instrument. These are moved up before InsBefore, and they're 3172 // not interesting because allocas for arguments can be mem2reg'd. 3173 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3174 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3175 continue; 3176 3177 Value *Val = Store->getValueOperand(); 3178 bool IsDirectArgInit = isa<Argument>(Val); 3179 bool IsArgInitViaCast = 3180 isa<CastInst>(Val) && 3181 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3182 // Check that the cast appears directly before the store. Otherwise 3183 // moving the cast before InsBefore may break the IR. 3184 Val == It->getPrevNonDebugInstruction(); 3185 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3186 if (!IsArgInit) 3187 continue; 3188 3189 if (IsArgInitViaCast) 3190 InitInsts.push_back(cast<Instruction>(Val)); 3191 InitInsts.push_back(Store); 3192 continue; 3193 } 3194 3195 // Do not reorder past unknown instructions: argument initialization should 3196 // only involve casts and stores. 3197 return; 3198 } 3199 } 3200 3201 void FunctionStackPoisoner::processStaticAllocas() { 3202 if (AllocaVec.empty()) { 3203 assert(StaticAllocaPoisonCallVec.empty()); 3204 return; 3205 } 3206 3207 int StackMallocIdx = -1; 3208 DebugLoc EntryDebugLocation; 3209 if (auto SP = F.getSubprogram()) 3210 EntryDebugLocation = 3211 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3212 3213 Instruction *InsBefore = AllocaVec[0]; 3214 IRBuilder<> IRB(InsBefore); 3215 3216 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3217 // debug info is broken, because only entry-block allocas are treated as 3218 // regular stack slots. 3219 auto InsBeforeB = InsBefore->getParent(); 3220 assert(InsBeforeB == &F.getEntryBlock()); 3221 for (auto *AI : StaticAllocasToMoveUp) 3222 if (AI->getParent() == InsBeforeB) 3223 AI->moveBefore(InsBefore); 3224 3225 // Move stores of arguments into entry-block allocas as well. This prevents 3226 // extra stack slots from being generated (to house the argument values until 3227 // they can be stored into the allocas). This also prevents uninitialized 3228 // values from being shown in backtraces. 3229 SmallVector<Instruction *, 8> ArgInitInsts; 3230 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3231 for (Instruction *ArgInitInst : ArgInitInsts) 3232 ArgInitInst->moveBefore(InsBefore); 3233 3234 // If we have a call to llvm.localescape, keep it in the entry block. 3235 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3236 3237 SmallVector<ASanStackVariableDescription, 16> SVD; 3238 SVD.reserve(AllocaVec.size()); 3239 for (AllocaInst *AI : AllocaVec) { 3240 ASanStackVariableDescription D = {AI->getName().data(), 3241 ASan.getAllocaSizeInBytes(*AI), 3242 0, 3243 AI->getAlignment(), 3244 AI, 3245 0, 3246 0}; 3247 SVD.push_back(D); 3248 } 3249 3250 // Minimal header size (left redzone) is 4 pointers, 3251 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3252 size_t Granularity = 1ULL << Mapping.Scale; 3253 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3254 const ASanStackFrameLayout &L = 3255 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3256 3257 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3258 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3259 for (auto &Desc : SVD) 3260 AllocaToSVDMap[Desc.AI] = &Desc; 3261 3262 // Update SVD with information from lifetime intrinsics. 3263 for (const auto &APC : StaticAllocaPoisonCallVec) { 3264 assert(APC.InsBefore); 3265 assert(APC.AI); 3266 assert(ASan.isInterestingAlloca(*APC.AI)); 3267 assert(APC.AI->isStaticAlloca()); 3268 3269 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3270 Desc.LifetimeSize = Desc.Size; 3271 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3272 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3273 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3274 if (unsigned Line = LifetimeLoc->getLine()) 3275 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3276 } 3277 } 3278 } 3279 3280 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3281 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3282 uint64_t LocalStackSize = L.FrameSize; 3283 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3284 LocalStackSize <= kMaxStackMallocSize; 3285 bool DoDynamicAlloca = ClDynamicAllocaStack; 3286 // Don't do dynamic alloca or stack malloc if: 3287 // 1) There is inline asm: too often it makes assumptions on which registers 3288 // are available. 3289 // 2) There is a returns_twice call (typically setjmp), which is 3290 // optimization-hostile, and doesn't play well with introduced indirect 3291 // register-relative calculation of local variable addresses. 3292 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3293 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3294 3295 Value *StaticAlloca = 3296 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3297 3298 Value *FakeStack; 3299 Value *LocalStackBase; 3300 Value *LocalStackBaseAlloca; 3301 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3302 3303 if (DoStackMalloc) { 3304 LocalStackBaseAlloca = 3305 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3306 // void *FakeStack = __asan_option_detect_stack_use_after_return 3307 // ? __asan_stack_malloc_N(LocalStackSize) 3308 // : nullptr; 3309 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3310 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3311 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3312 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3313 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3314 Constant::getNullValue(IRB.getInt32Ty())); 3315 Instruction *Term = 3316 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3317 IRBuilder<> IRBIf(Term); 3318 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3319 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3320 Value *FakeStackValue = 3321 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3322 ConstantInt::get(IntptrTy, LocalStackSize)); 3323 IRB.SetInsertPoint(InsBefore); 3324 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3325 ConstantInt::get(IntptrTy, 0)); 3326 3327 Value *NoFakeStack = 3328 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3329 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3330 IRBIf.SetInsertPoint(Term); 3331 Value *AllocaValue = 3332 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3333 3334 IRB.SetInsertPoint(InsBefore); 3335 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3336 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3337 DIExprFlags |= DIExpression::DerefBefore; 3338 } else { 3339 // void *FakeStack = nullptr; 3340 // void *LocalStackBase = alloca(LocalStackSize); 3341 FakeStack = ConstantInt::get(IntptrTy, 0); 3342 LocalStackBase = 3343 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3344 LocalStackBaseAlloca = LocalStackBase; 3345 } 3346 3347 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3348 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3349 // later passes and can result in dropped variable coverage in debug info. 3350 Value *LocalStackBaseAllocaPtr = 3351 isa<PtrToIntInst>(LocalStackBaseAlloca) 3352 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3353 : LocalStackBaseAlloca; 3354 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3355 "Variable descriptions relative to ASan stack base will be dropped"); 3356 3357 // Replace Alloca instructions with base+offset. 3358 for (const auto &Desc : SVD) { 3359 AllocaInst *AI = Desc.AI; 3360 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3361 Desc.Offset); 3362 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3363 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3364 AI->getType()); 3365 AI->replaceAllUsesWith(NewAllocaPtr); 3366 } 3367 3368 // The left-most redzone has enough space for at least 4 pointers. 3369 // Write the Magic value to redzone[0]. 3370 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3371 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3372 BasePlus0); 3373 // Write the frame description constant to redzone[1]. 3374 Value *BasePlus1 = IRB.CreateIntToPtr( 3375 IRB.CreateAdd(LocalStackBase, 3376 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3377 IntptrPtrTy); 3378 GlobalVariable *StackDescriptionGlobal = 3379 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3380 /*AllowMerging*/ true, kAsanGenPrefix); 3381 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3382 IRB.CreateStore(Description, BasePlus1); 3383 // Write the PC to redzone[2]. 3384 Value *BasePlus2 = IRB.CreateIntToPtr( 3385 IRB.CreateAdd(LocalStackBase, 3386 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3387 IntptrPtrTy); 3388 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3389 3390 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3391 3392 // Poison the stack red zones at the entry. 3393 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3394 // As mask we must use most poisoned case: red zones and after scope. 3395 // As bytes we can use either the same or just red zones only. 3396 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3397 3398 if (!StaticAllocaPoisonCallVec.empty()) { 3399 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3400 3401 // Poison static allocas near lifetime intrinsics. 3402 for (const auto &APC : StaticAllocaPoisonCallVec) { 3403 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3404 assert(Desc.Offset % L.Granularity == 0); 3405 size_t Begin = Desc.Offset / L.Granularity; 3406 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3407 3408 IRBuilder<> IRB(APC.InsBefore); 3409 copyToShadow(ShadowAfterScope, 3410 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3411 IRB, ShadowBase); 3412 } 3413 } 3414 3415 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3416 SmallVector<uint8_t, 64> ShadowAfterReturn; 3417 3418 // (Un)poison the stack before all ret instructions. 3419 for (Instruction *Ret : RetVec) { 3420 IRBuilder<> IRBRet(Ret); 3421 // Mark the current frame as retired. 3422 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3423 BasePlus0); 3424 if (DoStackMalloc) { 3425 assert(StackMallocIdx >= 0); 3426 // if FakeStack != 0 // LocalStackBase == FakeStack 3427 // // In use-after-return mode, poison the whole stack frame. 3428 // if StackMallocIdx <= 4 3429 // // For small sizes inline the whole thing: 3430 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3431 // **SavedFlagPtr(FakeStack) = 0 3432 // else 3433 // __asan_stack_free_N(FakeStack, LocalStackSize) 3434 // else 3435 // <This is not a fake stack; unpoison the redzones> 3436 Value *Cmp = 3437 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3438 Instruction *ThenTerm, *ElseTerm; 3439 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3440 3441 IRBuilder<> IRBPoison(ThenTerm); 3442 if (StackMallocIdx <= 4) { 3443 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3444 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3445 kAsanStackUseAfterReturnMagic); 3446 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3447 ShadowBase); 3448 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3449 FakeStack, 3450 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3451 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3452 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3453 IRBPoison.CreateStore( 3454 Constant::getNullValue(IRBPoison.getInt8Ty()), 3455 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3456 } else { 3457 // For larger frames call __asan_stack_free_*. 3458 IRBPoison.CreateCall( 3459 AsanStackFreeFunc[StackMallocIdx], 3460 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3461 } 3462 3463 IRBuilder<> IRBElse(ElseTerm); 3464 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3465 } else { 3466 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3467 } 3468 } 3469 3470 // We are done. Remove the old unused alloca instructions. 3471 for (auto AI : AllocaVec) AI->eraseFromParent(); 3472 } 3473 3474 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3475 IRBuilder<> &IRB, bool DoPoison) { 3476 // For now just insert the call to ASan runtime. 3477 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3478 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3479 IRB.CreateCall( 3480 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3481 {AddrArg, SizeArg}); 3482 } 3483 3484 // Handling llvm.lifetime intrinsics for a given %alloca: 3485 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3486 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3487 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3488 // could be poisoned by previous llvm.lifetime.end instruction, as the 3489 // variable may go in and out of scope several times, e.g. in loops). 3490 // (3) if we poisoned at least one %alloca in a function, 3491 // unpoison the whole stack frame at function exit. 3492 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3493 IRBuilder<> IRB(AI); 3494 3495 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3496 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3497 3498 Value *Zero = Constant::getNullValue(IntptrTy); 3499 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3500 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3501 3502 // Since we need to extend alloca with additional memory to locate 3503 // redzones, and OldSize is number of allocated blocks with 3504 // ElementSize size, get allocated memory size in bytes by 3505 // OldSize * ElementSize. 3506 const unsigned ElementSize = 3507 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3508 Value *OldSize = 3509 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3510 ConstantInt::get(IntptrTy, ElementSize)); 3511 3512 // PartialSize = OldSize % 32 3513 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3514 3515 // Misalign = kAllocaRzSize - PartialSize; 3516 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3517 3518 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3519 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3520 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3521 3522 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3523 // Alignment is added to locate left redzone, PartialPadding for possible 3524 // partial redzone and kAllocaRzSize for right redzone respectively. 3525 Value *AdditionalChunkSize = IRB.CreateAdd( 3526 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3527 3528 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3529 3530 // Insert new alloca with new NewSize and Alignment params. 3531 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3532 NewAlloca->setAlignment(Align(Alignment)); 3533 3534 // NewAddress = Address + Alignment 3535 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3536 ConstantInt::get(IntptrTy, Alignment)); 3537 3538 // Insert __asan_alloca_poison call for new created alloca. 3539 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3540 3541 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3542 // for unpoisoning stuff. 3543 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3544 3545 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3546 3547 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3548 AI->replaceAllUsesWith(NewAddressPtr); 3549 3550 // We are done. Erase old alloca from parent. 3551 AI->eraseFromParent(); 3552 } 3553 3554 // isSafeAccess returns true if Addr is always inbounds with respect to its 3555 // base object. For example, it is a field access or an array access with 3556 // constant inbounds index. 3557 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3558 Value *Addr, uint64_t TypeSize) const { 3559 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3560 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3561 uint64_t Size = SizeOffset.first.getZExtValue(); 3562 int64_t Offset = SizeOffset.second.getSExtValue(); 3563 // Three checks are required to ensure safety: 3564 // . Offset >= 0 (since the offset is given from the base ptr) 3565 // . Size >= Offset (unsigned) 3566 // . Size - Offset >= NeededSize (unsigned) 3567 return Offset >= 0 && Size >= uint64_t(Offset) && 3568 Size - uint64_t(Offset) >= TypeSize / 8; 3569 } 3570