1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 // FIXME: This sanitizer does not yet handle scalable vectors 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/BinaryFormat/MachO.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DIBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstVisitor.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCSectionMachO.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/ScopedPrinter.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Transforms/Utils/ModuleUtils.h" 79 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iomanip> 85 #include <limits> 86 #include <memory> 87 #include <sstream> 88 #include <string> 89 #include <tuple> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "asan" 94 95 static const uint64_t kDefaultShadowScale = 3; 96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 98 static const uint64_t kDynamicShadowSentinel = 99 std::numeric_limits<uint64_t>::max(); 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 109 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 110 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 111 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 112 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 113 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 114 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 115 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 116 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 117 static const uint64_t kEmscriptenShadowOffset = 0; 118 119 static const uint64_t kMyriadShadowScale = 5; 120 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 121 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 122 static const uint64_t kMyriadTagShift = 29; 123 static const uint64_t kMyriadDDRTag = 4; 124 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 125 126 // The shadow memory space is dynamically allocated. 127 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 128 129 static const size_t kMinStackMallocSize = 1 << 6; // 64B 130 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 131 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 132 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 133 134 const char kAsanModuleCtorName[] = "asan.module_ctor"; 135 const char kAsanModuleDtorName[] = "asan.module_dtor"; 136 static const uint64_t kAsanCtorAndDtorPriority = 1; 137 // On Emscripten, the system needs more than one priorities for constructors. 138 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 139 const char kAsanReportErrorTemplate[] = "__asan_report_"; 140 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 141 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 142 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 143 const char kAsanUnregisterImageGlobalsName[] = 144 "__asan_unregister_image_globals"; 145 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 146 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 147 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 148 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 149 const char kAsanInitName[] = "__asan_init"; 150 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 151 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 152 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 153 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 154 static const int kMaxAsanStackMallocSizeClass = 10; 155 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 156 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 157 const char kAsanGenPrefix[] = "___asan_gen_"; 158 const char kODRGenPrefix[] = "__odr_asan_gen_"; 159 const char kSanCovGenPrefix[] = "__sancov_gen_"; 160 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 161 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 162 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 163 164 // ASan version script has __asan_* wildcard. Triple underscore prevents a 165 // linker (gold) warning about attempting to export a local symbol. 166 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 167 168 const char kAsanOptionDetectUseAfterReturn[] = 169 "__asan_option_detect_stack_use_after_return"; 170 171 const char kAsanShadowMemoryDynamicAddress[] = 172 "__asan_shadow_memory_dynamic_address"; 173 174 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 175 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 176 177 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 178 static const size_t kNumberOfAccessSizes = 5; 179 180 static const unsigned kAllocaRzSize = 32; 181 182 // Command-line flags. 183 184 static cl::opt<bool> ClEnableKasan( 185 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 186 cl::Hidden, cl::init(false)); 187 188 static cl::opt<bool> ClRecover( 189 "asan-recover", 190 cl::desc("Enable recovery mode (continue-after-error)."), 191 cl::Hidden, cl::init(false)); 192 193 static cl::opt<bool> ClInsertVersionCheck( 194 "asan-guard-against-version-mismatch", 195 cl::desc("Guard against compiler/runtime version mismatch."), 196 cl::Hidden, cl::init(true)); 197 198 // This flag may need to be replaced with -f[no-]asan-reads. 199 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 200 cl::desc("instrument read instructions"), 201 cl::Hidden, cl::init(true)); 202 203 static cl::opt<bool> ClInstrumentWrites( 204 "asan-instrument-writes", cl::desc("instrument write instructions"), 205 cl::Hidden, cl::init(true)); 206 207 static cl::opt<bool> ClInstrumentAtomics( 208 "asan-instrument-atomics", 209 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 210 cl::init(true)); 211 212 static cl::opt<bool> 213 ClInstrumentByval("asan-instrument-byval", 214 cl::desc("instrument byval call arguments"), cl::Hidden, 215 cl::init(true)); 216 217 static cl::opt<bool> ClAlwaysSlowPath( 218 "asan-always-slow-path", 219 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 220 cl::init(false)); 221 222 static cl::opt<bool> ClForceDynamicShadow( 223 "asan-force-dynamic-shadow", 224 cl::desc("Load shadow address into a local variable for each function"), 225 cl::Hidden, cl::init(false)); 226 227 static cl::opt<bool> 228 ClWithIfunc("asan-with-ifunc", 229 cl::desc("Access dynamic shadow through an ifunc global on " 230 "platforms that support this"), 231 cl::Hidden, cl::init(true)); 232 233 static cl::opt<bool> ClWithIfuncSuppressRemat( 234 "asan-with-ifunc-suppress-remat", 235 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 236 "it through inline asm in prologue."), 237 cl::Hidden, cl::init(true)); 238 239 // This flag limits the number of instructions to be instrumented 240 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 241 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 242 // set it to 10000. 243 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 244 "asan-max-ins-per-bb", cl::init(10000), 245 cl::desc("maximal number of instructions to instrument in any given BB"), 246 cl::Hidden); 247 248 // This flag may need to be replaced with -f[no]asan-stack. 249 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 250 cl::Hidden, cl::init(true)); 251 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 252 "asan-max-inline-poisoning-size", 253 cl::desc( 254 "Inline shadow poisoning for blocks up to the given size in bytes."), 255 cl::Hidden, cl::init(64)); 256 257 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 258 cl::desc("Check stack-use-after-return"), 259 cl::Hidden, cl::init(true)); 260 261 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 262 cl::desc("Create redzones for byval " 263 "arguments (extra copy " 264 "required)"), cl::Hidden, 265 cl::init(true)); 266 267 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 268 cl::desc("Check stack-use-after-scope"), 269 cl::Hidden, cl::init(false)); 270 271 // This flag may need to be replaced with -f[no]asan-globals. 272 static cl::opt<bool> ClGlobals("asan-globals", 273 cl::desc("Handle global objects"), cl::Hidden, 274 cl::init(true)); 275 276 static cl::opt<bool> ClInitializers("asan-initialization-order", 277 cl::desc("Handle C++ initializer order"), 278 cl::Hidden, cl::init(true)); 279 280 static cl::opt<bool> ClInvalidPointerPairs( 281 "asan-detect-invalid-pointer-pair", 282 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 283 cl::init(false)); 284 285 static cl::opt<bool> ClInvalidPointerCmp( 286 "asan-detect-invalid-pointer-cmp", 287 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 288 cl::init(false)); 289 290 static cl::opt<bool> ClInvalidPointerSub( 291 "asan-detect-invalid-pointer-sub", 292 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 293 cl::init(false)); 294 295 static cl::opt<unsigned> ClRealignStack( 296 "asan-realign-stack", 297 cl::desc("Realign stack to the value of this flag (power of two)"), 298 cl::Hidden, cl::init(32)); 299 300 static cl::opt<int> ClInstrumentationWithCallsThreshold( 301 "asan-instrumentation-with-call-threshold", 302 cl::desc( 303 "If the function being instrumented contains more than " 304 "this number of memory accesses, use callbacks instead of " 305 "inline checks (-1 means never use callbacks)."), 306 cl::Hidden, cl::init(7000)); 307 308 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 309 "asan-memory-access-callback-prefix", 310 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 311 cl::init("__asan_")); 312 313 static cl::opt<bool> 314 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 315 cl::desc("instrument dynamic allocas"), 316 cl::Hidden, cl::init(true)); 317 318 static cl::opt<bool> ClSkipPromotableAllocas( 319 "asan-skip-promotable-allocas", 320 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 321 cl::init(true)); 322 323 // These flags allow to change the shadow mapping. 324 // The shadow mapping looks like 325 // Shadow = (Mem >> scale) + offset 326 327 static cl::opt<int> ClMappingScale("asan-mapping-scale", 328 cl::desc("scale of asan shadow mapping"), 329 cl::Hidden, cl::init(0)); 330 331 static cl::opt<uint64_t> 332 ClMappingOffset("asan-mapping-offset", 333 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 334 cl::Hidden, cl::init(0)); 335 336 // Optimization flags. Not user visible, used mostly for testing 337 // and benchmarking the tool. 338 339 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 340 cl::Hidden, cl::init(true)); 341 342 static cl::opt<bool> ClOptSameTemp( 343 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 344 cl::Hidden, cl::init(true)); 345 346 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 347 cl::desc("Don't instrument scalar globals"), 348 cl::Hidden, cl::init(true)); 349 350 static cl::opt<bool> ClOptStack( 351 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 352 cl::Hidden, cl::init(false)); 353 354 static cl::opt<bool> ClDynamicAllocaStack( 355 "asan-stack-dynamic-alloca", 356 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 357 cl::init(true)); 358 359 static cl::opt<uint32_t> ClForceExperiment( 360 "asan-force-experiment", 361 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 362 cl::init(0)); 363 364 static cl::opt<bool> 365 ClUsePrivateAlias("asan-use-private-alias", 366 cl::desc("Use private aliases for global variables"), 367 cl::Hidden, cl::init(false)); 368 369 static cl::opt<bool> 370 ClUseOdrIndicator("asan-use-odr-indicator", 371 cl::desc("Use odr indicators to improve ODR reporting"), 372 cl::Hidden, cl::init(false)); 373 374 static cl::opt<bool> 375 ClUseGlobalsGC("asan-globals-live-support", 376 cl::desc("Use linker features to support dead " 377 "code stripping of globals"), 378 cl::Hidden, cl::init(true)); 379 380 // This is on by default even though there is a bug in gold: 381 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 382 static cl::opt<bool> 383 ClWithComdat("asan-with-comdat", 384 cl::desc("Place ASan constructors in comdat sections"), 385 cl::Hidden, cl::init(true)); 386 387 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 388 "asan-destructor-kind", 389 cl::desc("Sets the ASan destructor kind. The default is to use the value " 390 "provided to the pass constructor"), 391 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 392 clEnumValN(AsanDtorKind::Global, "global", 393 "Use global destructors")), 394 cl::init(AsanDtorKind::Invalid), cl::Hidden); 395 396 // Debug flags. 397 398 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 399 cl::init(0)); 400 401 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 402 cl::Hidden, cl::init(0)); 403 404 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 405 cl::desc("Debug func")); 406 407 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 408 cl::Hidden, cl::init(-1)); 409 410 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 411 cl::Hidden, cl::init(-1)); 412 413 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 414 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 415 STATISTIC(NumOptimizedAccessesToGlobalVar, 416 "Number of optimized accesses to global vars"); 417 STATISTIC(NumOptimizedAccessesToStackVar, 418 "Number of optimized accesses to stack vars"); 419 420 namespace { 421 422 /// This struct defines the shadow mapping using the rule: 423 /// shadow = (mem >> Scale) ADD-or-OR Offset. 424 /// If InGlobal is true, then 425 /// extern char __asan_shadow[]; 426 /// shadow = (mem >> Scale) + &__asan_shadow 427 struct ShadowMapping { 428 int Scale; 429 uint64_t Offset; 430 bool OrShadowOffset; 431 bool InGlobal; 432 }; 433 434 } // end anonymous namespace 435 436 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 437 bool IsKasan) { 438 bool IsAndroid = TargetTriple.isAndroid(); 439 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 440 bool IsMacOS = TargetTriple.isMacOSX(); 441 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 442 bool IsNetBSD = TargetTriple.isOSNetBSD(); 443 bool IsPS4CPU = TargetTriple.isPS4CPU(); 444 bool IsLinux = TargetTriple.isOSLinux(); 445 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 446 TargetTriple.getArch() == Triple::ppc64le; 447 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 448 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 449 bool IsMIPS32 = TargetTriple.isMIPS32(); 450 bool IsMIPS64 = TargetTriple.isMIPS64(); 451 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 452 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 453 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 454 bool IsWindows = TargetTriple.isOSWindows(); 455 bool IsFuchsia = TargetTriple.isOSFuchsia(); 456 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 457 bool IsEmscripten = TargetTriple.isOSEmscripten(); 458 459 ShadowMapping Mapping; 460 461 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 462 if (ClMappingScale.getNumOccurrences() > 0) { 463 Mapping.Scale = ClMappingScale; 464 } 465 466 if (LongSize == 32) { 467 if (IsAndroid) 468 Mapping.Offset = kDynamicShadowSentinel; 469 else if (IsMIPS32) 470 Mapping.Offset = kMIPS32_ShadowOffset32; 471 else if (IsFreeBSD) 472 Mapping.Offset = kFreeBSD_ShadowOffset32; 473 else if (IsNetBSD) 474 Mapping.Offset = kNetBSD_ShadowOffset32; 475 else if (IsIOS) 476 Mapping.Offset = kDynamicShadowSentinel; 477 else if (IsWindows) 478 Mapping.Offset = kWindowsShadowOffset32; 479 else if (IsEmscripten) 480 Mapping.Offset = kEmscriptenShadowOffset; 481 else if (IsMyriad) { 482 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 483 (kMyriadMemorySize32 >> Mapping.Scale)); 484 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 485 } 486 else 487 Mapping.Offset = kDefaultShadowOffset32; 488 } else { // LongSize == 64 489 // Fuchsia is always PIE, which means that the beginning of the address 490 // space is always available. 491 if (IsFuchsia) 492 Mapping.Offset = 0; 493 else if (IsPPC64) 494 Mapping.Offset = kPPC64_ShadowOffset64; 495 else if (IsSystemZ) 496 Mapping.Offset = kSystemZ_ShadowOffset64; 497 else if (IsFreeBSD && !IsMIPS64) { 498 if (IsKasan) 499 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 500 else 501 Mapping.Offset = kFreeBSD_ShadowOffset64; 502 } else if (IsNetBSD) { 503 if (IsKasan) 504 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 505 else 506 Mapping.Offset = kNetBSD_ShadowOffset64; 507 } else if (IsPS4CPU) 508 Mapping.Offset = kPS4CPU_ShadowOffset64; 509 else if (IsLinux && IsX86_64) { 510 if (IsKasan) 511 Mapping.Offset = kLinuxKasan_ShadowOffset64; 512 else 513 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 514 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 515 } else if (IsWindows && IsX86_64) { 516 Mapping.Offset = kWindowsShadowOffset64; 517 } else if (IsMIPS64) 518 Mapping.Offset = kMIPS64_ShadowOffset64; 519 else if (IsIOS) 520 Mapping.Offset = kDynamicShadowSentinel; 521 else if (IsMacOS && IsAArch64) 522 Mapping.Offset = kDynamicShadowSentinel; 523 else if (IsAArch64) 524 Mapping.Offset = kAArch64_ShadowOffset64; 525 else if (IsRISCV64) 526 Mapping.Offset = kRISCV64_ShadowOffset64; 527 else 528 Mapping.Offset = kDefaultShadowOffset64; 529 } 530 531 if (ClForceDynamicShadow) { 532 Mapping.Offset = kDynamicShadowSentinel; 533 } 534 535 if (ClMappingOffset.getNumOccurrences() > 0) { 536 Mapping.Offset = ClMappingOffset; 537 } 538 539 // OR-ing shadow offset if more efficient (at least on x86) if the offset 540 // is a power of two, but on ppc64 we have to use add since the shadow 541 // offset is not necessary 1/8-th of the address space. On SystemZ, 542 // we could OR the constant in a single instruction, but it's more 543 // efficient to load it once and use indexed addressing. 544 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 545 !IsRISCV64 && 546 !(Mapping.Offset & (Mapping.Offset - 1)) && 547 Mapping.Offset != kDynamicShadowSentinel; 548 bool IsAndroidWithIfuncSupport = 549 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 550 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 551 552 return Mapping; 553 } 554 555 static uint64_t getRedzoneSizeForScale(int MappingScale) { 556 // Redzone used for stack and globals is at least 32 bytes. 557 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 558 return std::max(32U, 1U << MappingScale); 559 } 560 561 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 562 if (TargetTriple.isOSEmscripten()) { 563 return kAsanEmscriptenCtorAndDtorPriority; 564 } else { 565 return kAsanCtorAndDtorPriority; 566 } 567 } 568 569 namespace { 570 571 /// Module analysis for getting various metadata about the module. 572 class ASanGlobalsMetadataWrapperPass : public ModulePass { 573 public: 574 static char ID; 575 576 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 577 initializeASanGlobalsMetadataWrapperPassPass( 578 *PassRegistry::getPassRegistry()); 579 } 580 581 bool runOnModule(Module &M) override { 582 GlobalsMD = GlobalsMetadata(M); 583 return false; 584 } 585 586 StringRef getPassName() const override { 587 return "ASanGlobalsMetadataWrapperPass"; 588 } 589 590 void getAnalysisUsage(AnalysisUsage &AU) const override { 591 AU.setPreservesAll(); 592 } 593 594 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 595 596 private: 597 GlobalsMetadata GlobalsMD; 598 }; 599 600 char ASanGlobalsMetadataWrapperPass::ID = 0; 601 602 /// AddressSanitizer: instrument the code in module to find memory bugs. 603 struct AddressSanitizer { 604 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 605 bool CompileKernel = false, bool Recover = false, 606 bool UseAfterScope = false) 607 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 608 : CompileKernel), 609 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 610 UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 611 C = &(M.getContext()); 612 LongSize = M.getDataLayout().getPointerSizeInBits(); 613 IntptrTy = Type::getIntNTy(*C, LongSize); 614 TargetTriple = Triple(M.getTargetTriple()); 615 616 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 617 } 618 619 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 620 uint64_t ArraySize = 1; 621 if (AI.isArrayAllocation()) { 622 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 623 assert(CI && "non-constant array size"); 624 ArraySize = CI->getZExtValue(); 625 } 626 Type *Ty = AI.getAllocatedType(); 627 uint64_t SizeInBytes = 628 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 629 return SizeInBytes * ArraySize; 630 } 631 632 /// Check if we want (and can) handle this alloca. 633 bool isInterestingAlloca(const AllocaInst &AI); 634 635 bool ignoreAccess(Value *Ptr); 636 void getInterestingMemoryOperands( 637 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 638 639 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 640 InterestingMemoryOperand &O, bool UseCalls, 641 const DataLayout &DL); 642 void instrumentPointerComparisonOrSubtraction(Instruction *I); 643 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 644 Value *Addr, uint32_t TypeSize, bool IsWrite, 645 Value *SizeArgument, bool UseCalls, uint32_t Exp); 646 void instrumentUnusualSizeOrAlignment(Instruction *I, 647 Instruction *InsertBefore, Value *Addr, 648 uint32_t TypeSize, bool IsWrite, 649 Value *SizeArgument, bool UseCalls, 650 uint32_t Exp); 651 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 652 Value *ShadowValue, uint32_t TypeSize); 653 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 654 bool IsWrite, size_t AccessSizeIndex, 655 Value *SizeArgument, uint32_t Exp); 656 void instrumentMemIntrinsic(MemIntrinsic *MI); 657 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 658 bool suppressInstrumentationSiteForDebug(int &Instrumented); 659 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 660 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 661 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 662 void markEscapedLocalAllocas(Function &F); 663 664 private: 665 friend struct FunctionStackPoisoner; 666 667 void initializeCallbacks(Module &M); 668 669 bool LooksLikeCodeInBug11395(Instruction *I); 670 bool GlobalIsLinkerInitialized(GlobalVariable *G); 671 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 672 uint64_t TypeSize) const; 673 674 /// Helper to cleanup per-function state. 675 struct FunctionStateRAII { 676 AddressSanitizer *Pass; 677 678 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 679 assert(Pass->ProcessedAllocas.empty() && 680 "last pass forgot to clear cache"); 681 assert(!Pass->LocalDynamicShadow); 682 } 683 684 ~FunctionStateRAII() { 685 Pass->LocalDynamicShadow = nullptr; 686 Pass->ProcessedAllocas.clear(); 687 } 688 }; 689 690 LLVMContext *C; 691 Triple TargetTriple; 692 int LongSize; 693 bool CompileKernel; 694 bool Recover; 695 bool UseAfterScope; 696 Type *IntptrTy; 697 ShadowMapping Mapping; 698 FunctionCallee AsanHandleNoReturnFunc; 699 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 700 Constant *AsanShadowGlobal; 701 702 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 703 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 704 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 705 706 // These arrays is indexed by AccessIsWrite and Experiment. 707 FunctionCallee AsanErrorCallbackSized[2][2]; 708 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 709 710 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 711 Value *LocalDynamicShadow = nullptr; 712 const GlobalsMetadata &GlobalsMD; 713 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 714 }; 715 716 class AddressSanitizerLegacyPass : public FunctionPass { 717 public: 718 static char ID; 719 720 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 721 bool Recover = false, 722 bool UseAfterScope = false) 723 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 724 UseAfterScope(UseAfterScope) { 725 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 726 } 727 728 StringRef getPassName() const override { 729 return "AddressSanitizerFunctionPass"; 730 } 731 732 void getAnalysisUsage(AnalysisUsage &AU) const override { 733 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 734 AU.addRequired<TargetLibraryInfoWrapperPass>(); 735 } 736 737 bool runOnFunction(Function &F) override { 738 GlobalsMetadata &GlobalsMD = 739 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 740 const TargetLibraryInfo *TLI = 741 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 742 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 743 UseAfterScope); 744 return ASan.instrumentFunction(F, TLI); 745 } 746 747 private: 748 bool CompileKernel; 749 bool Recover; 750 bool UseAfterScope; 751 }; 752 753 class ModuleAddressSanitizer { 754 public: 755 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 756 bool CompileKernel = false, bool Recover = false, 757 bool UseGlobalsGC = true, bool UseOdrIndicator = false, 758 AsanDtorKind DestructorKind = AsanDtorKind::Global) 759 : GlobalsMD(*GlobalsMD), 760 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 761 : CompileKernel), 762 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 763 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 764 // Enable aliases as they should have no downside with ODR indicators. 765 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 766 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 767 // Not a typo: ClWithComdat is almost completely pointless without 768 // ClUseGlobalsGC (because then it only works on modules without 769 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 770 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 771 // argument is designed as workaround. Therefore, disable both 772 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 773 // do globals-gc. 774 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 775 DestructorKind(DestructorKind) { 776 C = &(M.getContext()); 777 int LongSize = M.getDataLayout().getPointerSizeInBits(); 778 IntptrTy = Type::getIntNTy(*C, LongSize); 779 TargetTriple = Triple(M.getTargetTriple()); 780 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 781 782 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 783 this->DestructorKind = ClOverrideDestructorKind; 784 assert(this->DestructorKind != AsanDtorKind::Invalid); 785 } 786 787 bool instrumentModule(Module &); 788 789 private: 790 void initializeCallbacks(Module &M); 791 792 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 793 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 794 ArrayRef<GlobalVariable *> ExtendedGlobals, 795 ArrayRef<Constant *> MetadataInitializers); 796 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 797 ArrayRef<GlobalVariable *> ExtendedGlobals, 798 ArrayRef<Constant *> MetadataInitializers, 799 const std::string &UniqueModuleId); 800 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 801 ArrayRef<GlobalVariable *> ExtendedGlobals, 802 ArrayRef<Constant *> MetadataInitializers); 803 void 804 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 805 ArrayRef<GlobalVariable *> ExtendedGlobals, 806 ArrayRef<Constant *> MetadataInitializers); 807 808 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 809 StringRef OriginalName); 810 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 811 StringRef InternalSuffix); 812 Instruction *CreateAsanModuleDtor(Module &M); 813 814 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 815 bool shouldInstrumentGlobal(GlobalVariable *G) const; 816 bool ShouldUseMachOGlobalsSection() const; 817 StringRef getGlobalMetadataSection() const; 818 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 819 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 820 uint64_t getMinRedzoneSizeForGlobal() const { 821 return getRedzoneSizeForScale(Mapping.Scale); 822 } 823 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 824 int GetAsanVersion(const Module &M) const; 825 826 const GlobalsMetadata &GlobalsMD; 827 bool CompileKernel; 828 bool Recover; 829 bool UseGlobalsGC; 830 bool UsePrivateAlias; 831 bool UseOdrIndicator; 832 bool UseCtorComdat; 833 AsanDtorKind DestructorKind; 834 Type *IntptrTy; 835 LLVMContext *C; 836 Triple TargetTriple; 837 ShadowMapping Mapping; 838 FunctionCallee AsanPoisonGlobals; 839 FunctionCallee AsanUnpoisonGlobals; 840 FunctionCallee AsanRegisterGlobals; 841 FunctionCallee AsanUnregisterGlobals; 842 FunctionCallee AsanRegisterImageGlobals; 843 FunctionCallee AsanUnregisterImageGlobals; 844 FunctionCallee AsanRegisterElfGlobals; 845 FunctionCallee AsanUnregisterElfGlobals; 846 847 Function *AsanCtorFunction = nullptr; 848 Function *AsanDtorFunction = nullptr; 849 }; 850 851 class ModuleAddressSanitizerLegacyPass : public ModulePass { 852 public: 853 static char ID; 854 855 explicit ModuleAddressSanitizerLegacyPass( 856 bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true, 857 bool UseOdrIndicator = false, 858 AsanDtorKind DestructorKind = AsanDtorKind::Global) 859 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 860 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), 861 DestructorKind(DestructorKind) { 862 initializeModuleAddressSanitizerLegacyPassPass( 863 *PassRegistry::getPassRegistry()); 864 } 865 866 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 867 868 void getAnalysisUsage(AnalysisUsage &AU) const override { 869 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 870 } 871 872 bool runOnModule(Module &M) override { 873 GlobalsMetadata &GlobalsMD = 874 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 875 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 876 UseGlobalGC, UseOdrIndicator, 877 DestructorKind); 878 return ASanModule.instrumentModule(M); 879 } 880 881 private: 882 bool CompileKernel; 883 bool Recover; 884 bool UseGlobalGC; 885 bool UseOdrIndicator; 886 AsanDtorKind DestructorKind; 887 }; 888 889 // Stack poisoning does not play well with exception handling. 890 // When an exception is thrown, we essentially bypass the code 891 // that unpoisones the stack. This is why the run-time library has 892 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 893 // stack in the interceptor. This however does not work inside the 894 // actual function which catches the exception. Most likely because the 895 // compiler hoists the load of the shadow value somewhere too high. 896 // This causes asan to report a non-existing bug on 453.povray. 897 // It sounds like an LLVM bug. 898 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 899 Function &F; 900 AddressSanitizer &ASan; 901 DIBuilder DIB; 902 LLVMContext *C; 903 Type *IntptrTy; 904 Type *IntptrPtrTy; 905 ShadowMapping Mapping; 906 907 SmallVector<AllocaInst *, 16> AllocaVec; 908 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 909 SmallVector<Instruction *, 8> RetVec; 910 unsigned StackAlignment; 911 912 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 913 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 914 FunctionCallee AsanSetShadowFunc[0x100] = {}; 915 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 916 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 917 918 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 919 struct AllocaPoisonCall { 920 IntrinsicInst *InsBefore; 921 AllocaInst *AI; 922 uint64_t Size; 923 bool DoPoison; 924 }; 925 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 926 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 927 bool HasUntracedLifetimeIntrinsic = false; 928 929 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 930 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 931 AllocaInst *DynamicAllocaLayout = nullptr; 932 IntrinsicInst *LocalEscapeCall = nullptr; 933 934 bool HasInlineAsm = false; 935 bool HasReturnsTwiceCall = false; 936 937 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 938 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 939 C(ASan.C), IntptrTy(ASan.IntptrTy), 940 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 941 StackAlignment(1 << Mapping.Scale) {} 942 943 bool runOnFunction() { 944 if (!ClStack) return false; 945 946 if (ClRedzoneByvalArgs) 947 copyArgsPassedByValToAllocas(); 948 949 // Collect alloca, ret, lifetime instructions etc. 950 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 951 952 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 953 954 initializeCallbacks(*F.getParent()); 955 956 if (HasUntracedLifetimeIntrinsic) { 957 // If there are lifetime intrinsics which couldn't be traced back to an 958 // alloca, we may not know exactly when a variable enters scope, and 959 // therefore should "fail safe" by not poisoning them. 960 StaticAllocaPoisonCallVec.clear(); 961 DynamicAllocaPoisonCallVec.clear(); 962 } 963 964 processDynamicAllocas(); 965 processStaticAllocas(); 966 967 if (ClDebugStack) { 968 LLVM_DEBUG(dbgs() << F); 969 } 970 return true; 971 } 972 973 // Arguments marked with the "byval" attribute are implicitly copied without 974 // using an alloca instruction. To produce redzones for those arguments, we 975 // copy them a second time into memory allocated with an alloca instruction. 976 void copyArgsPassedByValToAllocas(); 977 978 // Finds all Alloca instructions and puts 979 // poisoned red zones around all of them. 980 // Then unpoison everything back before the function returns. 981 void processStaticAllocas(); 982 void processDynamicAllocas(); 983 984 void createDynamicAllocasInitStorage(); 985 986 // ----------------------- Visitors. 987 /// Collect all Ret instructions, or the musttail call instruction if it 988 /// precedes the return instruction. 989 void visitReturnInst(ReturnInst &RI) { 990 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 991 RetVec.push_back(CI); 992 else 993 RetVec.push_back(&RI); 994 } 995 996 /// Collect all Resume instructions. 997 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 998 999 /// Collect all CatchReturnInst instructions. 1000 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 1001 1002 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 1003 Value *SavedStack) { 1004 IRBuilder<> IRB(InstBefore); 1005 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1006 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1007 // need to adjust extracted SP to compute the address of the most recent 1008 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1009 // this purpose. 1010 if (!isa<ReturnInst>(InstBefore)) { 1011 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1012 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1013 {IntptrTy}); 1014 1015 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1016 1017 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1018 DynamicAreaOffset); 1019 } 1020 1021 IRB.CreateCall( 1022 AsanAllocasUnpoisonFunc, 1023 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1024 } 1025 1026 // Unpoison dynamic allocas redzones. 1027 void unpoisonDynamicAllocas() { 1028 for (Instruction *Ret : RetVec) 1029 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1030 1031 for (Instruction *StackRestoreInst : StackRestoreVec) 1032 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1033 StackRestoreInst->getOperand(0)); 1034 } 1035 1036 // Deploy and poison redzones around dynamic alloca call. To do this, we 1037 // should replace this call with another one with changed parameters and 1038 // replace all its uses with new address, so 1039 // addr = alloca type, old_size, align 1040 // is replaced by 1041 // new_size = (old_size + additional_size) * sizeof(type) 1042 // tmp = alloca i8, new_size, max(align, 32) 1043 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1044 // Additional_size is added to make new memory allocation contain not only 1045 // requested memory, but also left, partial and right redzones. 1046 void handleDynamicAllocaCall(AllocaInst *AI); 1047 1048 /// Collect Alloca instructions we want (and can) handle. 1049 void visitAllocaInst(AllocaInst &AI) { 1050 if (!ASan.isInterestingAlloca(AI)) { 1051 if (AI.isStaticAlloca()) { 1052 // Skip over allocas that are present *before* the first instrumented 1053 // alloca, we don't want to move those around. 1054 if (AllocaVec.empty()) 1055 return; 1056 1057 StaticAllocasToMoveUp.push_back(&AI); 1058 } 1059 return; 1060 } 1061 1062 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1063 if (!AI.isStaticAlloca()) 1064 DynamicAllocaVec.push_back(&AI); 1065 else 1066 AllocaVec.push_back(&AI); 1067 } 1068 1069 /// Collect lifetime intrinsic calls to check for use-after-scope 1070 /// errors. 1071 void visitIntrinsicInst(IntrinsicInst &II) { 1072 Intrinsic::ID ID = II.getIntrinsicID(); 1073 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1074 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1075 if (!ASan.UseAfterScope) 1076 return; 1077 if (!II.isLifetimeStartOrEnd()) 1078 return; 1079 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1080 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1081 // If size argument is undefined, don't do anything. 1082 if (Size->isMinusOne()) return; 1083 // Check that size doesn't saturate uint64_t and can 1084 // be stored in IntptrTy. 1085 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1086 if (SizeValue == ~0ULL || 1087 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1088 return; 1089 // Find alloca instruction that corresponds to llvm.lifetime argument. 1090 // Currently we can only handle lifetime markers pointing to the 1091 // beginning of the alloca. 1092 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1093 if (!AI) { 1094 HasUntracedLifetimeIntrinsic = true; 1095 return; 1096 } 1097 // We're interested only in allocas we can handle. 1098 if (!ASan.isInterestingAlloca(*AI)) 1099 return; 1100 bool DoPoison = (ID == Intrinsic::lifetime_end); 1101 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1102 if (AI->isStaticAlloca()) 1103 StaticAllocaPoisonCallVec.push_back(APC); 1104 else if (ClInstrumentDynamicAllocas) 1105 DynamicAllocaPoisonCallVec.push_back(APC); 1106 } 1107 1108 void visitCallBase(CallBase &CB) { 1109 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1110 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1111 HasReturnsTwiceCall |= CI->canReturnTwice(); 1112 } 1113 } 1114 1115 // ---------------------- Helpers. 1116 void initializeCallbacks(Module &M); 1117 1118 // Copies bytes from ShadowBytes into shadow memory for indexes where 1119 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1120 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1121 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1122 IRBuilder<> &IRB, Value *ShadowBase); 1123 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1124 size_t Begin, size_t End, IRBuilder<> &IRB, 1125 Value *ShadowBase); 1126 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1127 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1128 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1129 1130 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1131 1132 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1133 bool Dynamic); 1134 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1135 Instruction *ThenTerm, Value *ValueIfFalse); 1136 }; 1137 1138 } // end anonymous namespace 1139 1140 void LocationMetadata::parse(MDNode *MDN) { 1141 assert(MDN->getNumOperands() == 3); 1142 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1143 Filename = DIFilename->getString(); 1144 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1145 ColumnNo = 1146 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1147 } 1148 1149 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1150 // we want to sanitize instead and reading this metadata on each pass over a 1151 // function instead of reading module level metadata at first. 1152 GlobalsMetadata::GlobalsMetadata(Module &M) { 1153 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1154 if (!Globals) 1155 return; 1156 for (auto MDN : Globals->operands()) { 1157 // Metadata node contains the global and the fields of "Entry". 1158 assert(MDN->getNumOperands() == 5); 1159 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1160 // The optimizer may optimize away a global entirely. 1161 if (!V) 1162 continue; 1163 auto *StrippedV = V->stripPointerCasts(); 1164 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1165 if (!GV) 1166 continue; 1167 // We can already have an entry for GV if it was merged with another 1168 // global. 1169 Entry &E = Entries[GV]; 1170 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1171 E.SourceLoc.parse(Loc); 1172 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1173 E.Name = Name->getString(); 1174 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1175 E.IsDynInit |= IsDynInit->isOne(); 1176 ConstantInt *IsExcluded = 1177 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1178 E.IsExcluded |= IsExcluded->isOne(); 1179 } 1180 } 1181 1182 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1183 1184 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1185 ModuleAnalysisManager &AM) { 1186 return GlobalsMetadata(M); 1187 } 1188 1189 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1190 bool UseAfterScope) 1191 : CompileKernel(CompileKernel), Recover(Recover), 1192 UseAfterScope(UseAfterScope) {} 1193 1194 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1195 AnalysisManager<Function> &AM) { 1196 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1197 Module &M = *F.getParent(); 1198 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1199 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1200 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1201 if (Sanitizer.instrumentFunction(F, TLI)) 1202 return PreservedAnalyses::none(); 1203 return PreservedAnalyses::all(); 1204 } 1205 1206 report_fatal_error( 1207 "The ASanGlobalsMetadataAnalysis is required to run before " 1208 "AddressSanitizer can run"); 1209 return PreservedAnalyses::all(); 1210 } 1211 1212 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( 1213 bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator, 1214 AsanDtorKind DestructorKind) 1215 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1216 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} 1217 1218 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1219 AnalysisManager<Module> &AM) { 1220 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1221 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1222 UseGlobalGC, UseOdrIndicator, 1223 DestructorKind); 1224 if (Sanitizer.instrumentModule(M)) 1225 return PreservedAnalyses::none(); 1226 return PreservedAnalyses::all(); 1227 } 1228 1229 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1230 "Read metadata to mark which globals should be instrumented " 1231 "when running ASan.", 1232 false, true) 1233 1234 char AddressSanitizerLegacyPass::ID = 0; 1235 1236 INITIALIZE_PASS_BEGIN( 1237 AddressSanitizerLegacyPass, "asan", 1238 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1239 false) 1240 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1241 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1242 INITIALIZE_PASS_END( 1243 AddressSanitizerLegacyPass, "asan", 1244 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1245 false) 1246 1247 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1248 bool Recover, 1249 bool UseAfterScope) { 1250 assert(!CompileKernel || Recover); 1251 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1252 } 1253 1254 char ModuleAddressSanitizerLegacyPass::ID = 0; 1255 1256 INITIALIZE_PASS( 1257 ModuleAddressSanitizerLegacyPass, "asan-module", 1258 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1259 "ModulePass", 1260 false, false) 1261 1262 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1263 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator, 1264 AsanDtorKind Destructor) { 1265 assert(!CompileKernel || Recover); 1266 return new ModuleAddressSanitizerLegacyPass( 1267 CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor); 1268 } 1269 1270 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1271 size_t Res = countTrailingZeros(TypeSize / 8); 1272 assert(Res < kNumberOfAccessSizes); 1273 return Res; 1274 } 1275 1276 /// Create a global describing a source location. 1277 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1278 LocationMetadata MD) { 1279 Constant *LocData[] = { 1280 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1281 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1282 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1283 }; 1284 auto LocStruct = ConstantStruct::getAnon(LocData); 1285 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1286 GlobalValue::PrivateLinkage, LocStruct, 1287 kAsanGenPrefix); 1288 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1289 return GV; 1290 } 1291 1292 /// Check if \p G has been created by a trusted compiler pass. 1293 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1294 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1295 if (G->getName().startswith("llvm.")) 1296 return true; 1297 1298 // Do not instrument asan globals. 1299 if (G->getName().startswith(kAsanGenPrefix) || 1300 G->getName().startswith(kSanCovGenPrefix) || 1301 G->getName().startswith(kODRGenPrefix)) 1302 return true; 1303 1304 // Do not instrument gcov counter arrays. 1305 if (G->getName() == "__llvm_gcov_ctr") 1306 return true; 1307 1308 return false; 1309 } 1310 1311 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1312 // Shadow >> scale 1313 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1314 if (Mapping.Offset == 0) return Shadow; 1315 // (Shadow >> scale) | offset 1316 Value *ShadowBase; 1317 if (LocalDynamicShadow) 1318 ShadowBase = LocalDynamicShadow; 1319 else 1320 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1321 if (Mapping.OrShadowOffset) 1322 return IRB.CreateOr(Shadow, ShadowBase); 1323 else 1324 return IRB.CreateAdd(Shadow, ShadowBase); 1325 } 1326 1327 // Instrument memset/memmove/memcpy 1328 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1329 IRBuilder<> IRB(MI); 1330 if (isa<MemTransferInst>(MI)) { 1331 IRB.CreateCall( 1332 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1333 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1334 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1335 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1336 } else if (isa<MemSetInst>(MI)) { 1337 IRB.CreateCall( 1338 AsanMemset, 1339 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1340 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1341 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1342 } 1343 MI->eraseFromParent(); 1344 } 1345 1346 /// Check if we want (and can) handle this alloca. 1347 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1348 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1349 1350 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1351 return PreviouslySeenAllocaInfo->getSecond(); 1352 1353 bool IsInteresting = 1354 (AI.getAllocatedType()->isSized() && 1355 // alloca() may be called with 0 size, ignore it. 1356 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1357 // We are only interested in allocas not promotable to registers. 1358 // Promotable allocas are common under -O0. 1359 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1360 // inalloca allocas are not treated as static, and we don't want 1361 // dynamic alloca instrumentation for them as well. 1362 !AI.isUsedWithInAlloca() && 1363 // swifterror allocas are register promoted by ISel 1364 !AI.isSwiftError()); 1365 1366 ProcessedAllocas[&AI] = IsInteresting; 1367 return IsInteresting; 1368 } 1369 1370 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1371 // Do not instrument acesses from different address spaces; we cannot deal 1372 // with them. 1373 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1374 if (PtrTy->getPointerAddressSpace() != 0) 1375 return true; 1376 1377 // Ignore swifterror addresses. 1378 // swifterror memory addresses are mem2reg promoted by instruction 1379 // selection. As such they cannot have regular uses like an instrumentation 1380 // function and it makes no sense to track them as memory. 1381 if (Ptr->isSwiftError()) 1382 return true; 1383 1384 // Treat memory accesses to promotable allocas as non-interesting since they 1385 // will not cause memory violations. This greatly speeds up the instrumented 1386 // executable at -O0. 1387 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1388 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1389 return true; 1390 1391 return false; 1392 } 1393 1394 void AddressSanitizer::getInterestingMemoryOperands( 1395 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1396 // Skip memory accesses inserted by another instrumentation. 1397 if (I->hasMetadata("nosanitize")) 1398 return; 1399 1400 // Do not instrument the load fetching the dynamic shadow address. 1401 if (LocalDynamicShadow == I) 1402 return; 1403 1404 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1405 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1406 return; 1407 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1408 LI->getType(), LI->getAlign()); 1409 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1410 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1411 return; 1412 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1413 SI->getValueOperand()->getType(), SI->getAlign()); 1414 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1415 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1416 return; 1417 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1418 RMW->getValOperand()->getType(), None); 1419 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1420 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1421 return; 1422 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1423 XCHG->getCompareOperand()->getType(), None); 1424 } else if (auto CI = dyn_cast<CallInst>(I)) { 1425 auto *F = CI->getCalledFunction(); 1426 if (F && (F->getName().startswith("llvm.masked.load.") || 1427 F->getName().startswith("llvm.masked.store."))) { 1428 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1429 // Masked store has an initial operand for the value. 1430 unsigned OpOffset = IsWrite ? 1 : 0; 1431 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1432 return; 1433 1434 auto BasePtr = CI->getOperand(OpOffset); 1435 if (ignoreAccess(BasePtr)) 1436 return; 1437 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1438 MaybeAlign Alignment = Align(1); 1439 // Otherwise no alignment guarantees. We probably got Undef. 1440 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1441 Alignment = Op->getMaybeAlignValue(); 1442 Value *Mask = CI->getOperand(2 + OpOffset); 1443 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1444 } else { 1445 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { 1446 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1447 ignoreAccess(CI->getArgOperand(ArgNo))) 1448 continue; 1449 Type *Ty = CI->getParamByValType(ArgNo); 1450 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1451 } 1452 } 1453 } 1454 } 1455 1456 static bool isPointerOperand(Value *V) { 1457 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1458 } 1459 1460 // This is a rough heuristic; it may cause both false positives and 1461 // false negatives. The proper implementation requires cooperation with 1462 // the frontend. 1463 static bool isInterestingPointerComparison(Instruction *I) { 1464 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1465 if (!Cmp->isRelational()) 1466 return false; 1467 } else { 1468 return false; 1469 } 1470 return isPointerOperand(I->getOperand(0)) && 1471 isPointerOperand(I->getOperand(1)); 1472 } 1473 1474 // This is a rough heuristic; it may cause both false positives and 1475 // false negatives. The proper implementation requires cooperation with 1476 // the frontend. 1477 static bool isInterestingPointerSubtraction(Instruction *I) { 1478 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1479 if (BO->getOpcode() != Instruction::Sub) 1480 return false; 1481 } else { 1482 return false; 1483 } 1484 return isPointerOperand(I->getOperand(0)) && 1485 isPointerOperand(I->getOperand(1)); 1486 } 1487 1488 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1489 // If a global variable does not have dynamic initialization we don't 1490 // have to instrument it. However, if a global does not have initializer 1491 // at all, we assume it has dynamic initializer (in other TU). 1492 // 1493 // FIXME: Metadata should be attched directly to the global directly instead 1494 // of being added to llvm.asan.globals. 1495 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1496 } 1497 1498 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1499 Instruction *I) { 1500 IRBuilder<> IRB(I); 1501 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1502 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1503 for (Value *&i : Param) { 1504 if (i->getType()->isPointerTy()) 1505 i = IRB.CreatePointerCast(i, IntptrTy); 1506 } 1507 IRB.CreateCall(F, Param); 1508 } 1509 1510 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1511 Instruction *InsertBefore, Value *Addr, 1512 MaybeAlign Alignment, unsigned Granularity, 1513 uint32_t TypeSize, bool IsWrite, 1514 Value *SizeArgument, bool UseCalls, 1515 uint32_t Exp) { 1516 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1517 // if the data is properly aligned. 1518 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1519 TypeSize == 128) && 1520 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1521 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1522 nullptr, UseCalls, Exp); 1523 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1524 IsWrite, nullptr, UseCalls, Exp); 1525 } 1526 1527 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1528 const DataLayout &DL, Type *IntptrTy, 1529 Value *Mask, Instruction *I, 1530 Value *Addr, MaybeAlign Alignment, 1531 unsigned Granularity, uint32_t TypeSize, 1532 bool IsWrite, Value *SizeArgument, 1533 bool UseCalls, uint32_t Exp) { 1534 auto *VTy = cast<FixedVectorType>( 1535 cast<PointerType>(Addr->getType())->getElementType()); 1536 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1537 unsigned Num = VTy->getNumElements(); 1538 auto Zero = ConstantInt::get(IntptrTy, 0); 1539 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1540 Value *InstrumentedAddress = nullptr; 1541 Instruction *InsertBefore = I; 1542 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1543 // dyn_cast as we might get UndefValue 1544 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1545 if (Masked->isZero()) 1546 // Mask is constant false, so no instrumentation needed. 1547 continue; 1548 // If we have a true or undef value, fall through to doInstrumentAddress 1549 // with InsertBefore == I 1550 } 1551 } else { 1552 IRBuilder<> IRB(I); 1553 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1554 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1555 InsertBefore = ThenTerm; 1556 } 1557 1558 IRBuilder<> IRB(InsertBefore); 1559 InstrumentedAddress = 1560 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1561 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1562 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1563 UseCalls, Exp); 1564 } 1565 } 1566 1567 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1568 InterestingMemoryOperand &O, bool UseCalls, 1569 const DataLayout &DL) { 1570 Value *Addr = O.getPtr(); 1571 1572 // Optimization experiments. 1573 // The experiments can be used to evaluate potential optimizations that remove 1574 // instrumentation (assess false negatives). Instead of completely removing 1575 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1576 // experiments that want to remove instrumentation of this instruction). 1577 // If Exp is non-zero, this pass will emit special calls into runtime 1578 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1579 // make runtime terminate the program in a special way (with a different 1580 // exit status). Then you run the new compiler on a buggy corpus, collect 1581 // the special terminations (ideally, you don't see them at all -- no false 1582 // negatives) and make the decision on the optimization. 1583 uint32_t Exp = ClForceExperiment; 1584 1585 if (ClOpt && ClOptGlobals) { 1586 // If initialization order checking is disabled, a simple access to a 1587 // dynamically initialized global is always valid. 1588 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1589 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1590 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1591 NumOptimizedAccessesToGlobalVar++; 1592 return; 1593 } 1594 } 1595 1596 if (ClOpt && ClOptStack) { 1597 // A direct inbounds access to a stack variable is always valid. 1598 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1599 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1600 NumOptimizedAccessesToStackVar++; 1601 return; 1602 } 1603 } 1604 1605 if (O.IsWrite) 1606 NumInstrumentedWrites++; 1607 else 1608 NumInstrumentedReads++; 1609 1610 unsigned Granularity = 1 << Mapping.Scale; 1611 if (O.MaybeMask) { 1612 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1613 Addr, O.Alignment, Granularity, O.TypeSize, 1614 O.IsWrite, nullptr, UseCalls, Exp); 1615 } else { 1616 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1617 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1618 Exp); 1619 } 1620 } 1621 1622 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1623 Value *Addr, bool IsWrite, 1624 size_t AccessSizeIndex, 1625 Value *SizeArgument, 1626 uint32_t Exp) { 1627 IRBuilder<> IRB(InsertBefore); 1628 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1629 CallInst *Call = nullptr; 1630 if (SizeArgument) { 1631 if (Exp == 0) 1632 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1633 {Addr, SizeArgument}); 1634 else 1635 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1636 {Addr, SizeArgument, ExpVal}); 1637 } else { 1638 if (Exp == 0) 1639 Call = 1640 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1641 else 1642 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1643 {Addr, ExpVal}); 1644 } 1645 1646 Call->setCannotMerge(); 1647 return Call; 1648 } 1649 1650 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1651 Value *ShadowValue, 1652 uint32_t TypeSize) { 1653 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1654 // Addr & (Granularity - 1) 1655 Value *LastAccessedByte = 1656 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1657 // (Addr & (Granularity - 1)) + size - 1 1658 if (TypeSize / 8 > 1) 1659 LastAccessedByte = IRB.CreateAdd( 1660 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1661 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1662 LastAccessedByte = 1663 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1664 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1665 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1666 } 1667 1668 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1669 Instruction *InsertBefore, Value *Addr, 1670 uint32_t TypeSize, bool IsWrite, 1671 Value *SizeArgument, bool UseCalls, 1672 uint32_t Exp) { 1673 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1674 1675 IRBuilder<> IRB(InsertBefore); 1676 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1677 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1678 1679 if (UseCalls) { 1680 if (Exp == 0) 1681 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1682 AddrLong); 1683 else 1684 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1685 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1686 return; 1687 } 1688 1689 if (IsMyriad) { 1690 // Strip the cache bit and do range check. 1691 // AddrLong &= ~kMyriadCacheBitMask32 1692 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1693 // Tag = AddrLong >> kMyriadTagShift 1694 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1695 // Tag == kMyriadDDRTag 1696 Value *TagCheck = 1697 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1698 1699 Instruction *TagCheckTerm = 1700 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1701 MDBuilder(*C).createBranchWeights(1, 100000)); 1702 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1703 IRB.SetInsertPoint(TagCheckTerm); 1704 InsertBefore = TagCheckTerm; 1705 } 1706 1707 Type *ShadowTy = 1708 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1709 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1710 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1711 Value *CmpVal = Constant::getNullValue(ShadowTy); 1712 Value *ShadowValue = 1713 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1714 1715 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1716 size_t Granularity = 1ULL << Mapping.Scale; 1717 Instruction *CrashTerm = nullptr; 1718 1719 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1720 // We use branch weights for the slow path check, to indicate that the slow 1721 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1722 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1723 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1724 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1725 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1726 IRB.SetInsertPoint(CheckTerm); 1727 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1728 if (Recover) { 1729 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1730 } else { 1731 BasicBlock *CrashBlock = 1732 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1733 CrashTerm = new UnreachableInst(*C, CrashBlock); 1734 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1735 ReplaceInstWithInst(CheckTerm, NewTerm); 1736 } 1737 } else { 1738 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1739 } 1740 1741 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1742 AccessSizeIndex, SizeArgument, Exp); 1743 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1744 } 1745 1746 // Instrument unusual size or unusual alignment. 1747 // We can not do it with a single check, so we do 1-byte check for the first 1748 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1749 // to report the actual access size. 1750 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1751 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1752 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1753 IRBuilder<> IRB(InsertBefore); 1754 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1755 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1756 if (UseCalls) { 1757 if (Exp == 0) 1758 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1759 {AddrLong, Size}); 1760 else 1761 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1762 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1763 } else { 1764 Value *LastByte = IRB.CreateIntToPtr( 1765 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1766 Addr->getType()); 1767 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1768 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1769 } 1770 } 1771 1772 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1773 GlobalValue *ModuleName) { 1774 // Set up the arguments to our poison/unpoison functions. 1775 IRBuilder<> IRB(&GlobalInit.front(), 1776 GlobalInit.front().getFirstInsertionPt()); 1777 1778 // Add a call to poison all external globals before the given function starts. 1779 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1780 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1781 1782 // Add calls to unpoison all globals before each return instruction. 1783 for (auto &BB : GlobalInit.getBasicBlockList()) 1784 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1785 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1786 } 1787 1788 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1789 Module &M, GlobalValue *ModuleName) { 1790 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1791 if (!GV) 1792 return; 1793 1794 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1795 if (!CA) 1796 return; 1797 1798 for (Use &OP : CA->operands()) { 1799 if (isa<ConstantAggregateZero>(OP)) continue; 1800 ConstantStruct *CS = cast<ConstantStruct>(OP); 1801 1802 // Must have a function or null ptr. 1803 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1804 if (F->getName() == kAsanModuleCtorName) continue; 1805 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1806 // Don't instrument CTORs that will run before asan.module_ctor. 1807 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1808 continue; 1809 poisonOneInitializer(*F, ModuleName); 1810 } 1811 } 1812 } 1813 1814 const GlobalVariable * 1815 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1816 // In case this function should be expanded to include rules that do not just 1817 // apply when CompileKernel is true, either guard all existing rules with an 1818 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1819 // should also apply to user space. 1820 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1821 1822 const Constant *C = GA.getAliasee(); 1823 1824 // When compiling the kernel, globals that are aliased by symbols prefixed 1825 // by "__" are special and cannot be padded with a redzone. 1826 if (GA.getName().startswith("__")) 1827 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1828 1829 return nullptr; 1830 } 1831 1832 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1833 Type *Ty = G->getValueType(); 1834 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1835 1836 // FIXME: Metadata should be attched directly to the global directly instead 1837 // of being added to llvm.asan.globals. 1838 if (GlobalsMD.get(G).IsExcluded) return false; 1839 if (!Ty->isSized()) return false; 1840 if (!G->hasInitializer()) return false; 1841 // Only instrument globals of default address spaces 1842 if (G->getAddressSpace()) return false; 1843 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1844 // Two problems with thread-locals: 1845 // - The address of the main thread's copy can't be computed at link-time. 1846 // - Need to poison all copies, not just the main thread's one. 1847 if (G->isThreadLocal()) return false; 1848 // For now, just ignore this Global if the alignment is large. 1849 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1850 1851 // For non-COFF targets, only instrument globals known to be defined by this 1852 // TU. 1853 // FIXME: We can instrument comdat globals on ELF if we are using the 1854 // GC-friendly metadata scheme. 1855 if (!TargetTriple.isOSBinFormatCOFF()) { 1856 if (!G->hasExactDefinition() || G->hasComdat()) 1857 return false; 1858 } else { 1859 // On COFF, don't instrument non-ODR linkages. 1860 if (G->isInterposable()) 1861 return false; 1862 } 1863 1864 // If a comdat is present, it must have a selection kind that implies ODR 1865 // semantics: no duplicates, any, or exact match. 1866 if (Comdat *C = G->getComdat()) { 1867 switch (C->getSelectionKind()) { 1868 case Comdat::Any: 1869 case Comdat::ExactMatch: 1870 case Comdat::NoDuplicates: 1871 break; 1872 case Comdat::Largest: 1873 case Comdat::SameSize: 1874 return false; 1875 } 1876 } 1877 1878 if (G->hasSection()) { 1879 // The kernel uses explicit sections for mostly special global variables 1880 // that we should not instrument. E.g. the kernel may rely on their layout 1881 // without redzones, or remove them at link time ("discard.*"), etc. 1882 if (CompileKernel) 1883 return false; 1884 1885 StringRef Section = G->getSection(); 1886 1887 // Globals from llvm.metadata aren't emitted, do not instrument them. 1888 if (Section == "llvm.metadata") return false; 1889 // Do not instrument globals from special LLVM sections. 1890 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1891 1892 // Do not instrument function pointers to initialization and termination 1893 // routines: dynamic linker will not properly handle redzones. 1894 if (Section.startswith(".preinit_array") || 1895 Section.startswith(".init_array") || 1896 Section.startswith(".fini_array")) { 1897 return false; 1898 } 1899 1900 // Do not instrument user-defined sections (with names resembling 1901 // valid C identifiers) 1902 if (TargetTriple.isOSBinFormatELF()) { 1903 if (llvm::all_of(Section, 1904 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 1905 return false; 1906 } 1907 1908 // On COFF, if the section name contains '$', it is highly likely that the 1909 // user is using section sorting to create an array of globals similar to 1910 // the way initialization callbacks are registered in .init_array and 1911 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1912 // to such globals is counterproductive, because the intent is that they 1913 // will form an array, and out-of-bounds accesses are expected. 1914 // See https://github.com/google/sanitizers/issues/305 1915 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1916 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1917 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1918 << *G << "\n"); 1919 return false; 1920 } 1921 1922 if (TargetTriple.isOSBinFormatMachO()) { 1923 StringRef ParsedSegment, ParsedSection; 1924 unsigned TAA = 0, StubSize = 0; 1925 bool TAAParsed; 1926 cantFail(MCSectionMachO::ParseSectionSpecifier( 1927 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 1928 1929 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1930 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1931 // them. 1932 if (ParsedSegment == "__OBJC" || 1933 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1934 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1935 return false; 1936 } 1937 // See https://github.com/google/sanitizers/issues/32 1938 // Constant CFString instances are compiled in the following way: 1939 // -- the string buffer is emitted into 1940 // __TEXT,__cstring,cstring_literals 1941 // -- the constant NSConstantString structure referencing that buffer 1942 // is placed into __DATA,__cfstring 1943 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1944 // Moreover, it causes the linker to crash on OS X 10.7 1945 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1946 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1947 return false; 1948 } 1949 // The linker merges the contents of cstring_literals and removes the 1950 // trailing zeroes. 1951 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1952 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1953 return false; 1954 } 1955 } 1956 } 1957 1958 if (CompileKernel) { 1959 // Globals that prefixed by "__" are special and cannot be padded with a 1960 // redzone. 1961 if (G->getName().startswith("__")) 1962 return false; 1963 } 1964 1965 return true; 1966 } 1967 1968 // On Mach-O platforms, we emit global metadata in a separate section of the 1969 // binary in order to allow the linker to properly dead strip. This is only 1970 // supported on recent versions of ld64. 1971 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1972 if (!TargetTriple.isOSBinFormatMachO()) 1973 return false; 1974 1975 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1976 return true; 1977 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1978 return true; 1979 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1980 return true; 1981 1982 return false; 1983 } 1984 1985 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1986 switch (TargetTriple.getObjectFormat()) { 1987 case Triple::COFF: return ".ASAN$GL"; 1988 case Triple::ELF: return "asan_globals"; 1989 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1990 case Triple::Wasm: 1991 case Triple::GOFF: 1992 case Triple::XCOFF: 1993 report_fatal_error( 1994 "ModuleAddressSanitizer not implemented for object file format"); 1995 case Triple::UnknownObjectFormat: 1996 break; 1997 } 1998 llvm_unreachable("unsupported object format"); 1999 } 2000 2001 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 2002 IRBuilder<> IRB(*C); 2003 2004 // Declare our poisoning and unpoisoning functions. 2005 AsanPoisonGlobals = 2006 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2007 AsanUnpoisonGlobals = 2008 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2009 2010 // Declare functions that register/unregister globals. 2011 AsanRegisterGlobals = M.getOrInsertFunction( 2012 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2013 AsanUnregisterGlobals = M.getOrInsertFunction( 2014 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2015 2016 // Declare the functions that find globals in a shared object and then invoke 2017 // the (un)register function on them. 2018 AsanRegisterImageGlobals = M.getOrInsertFunction( 2019 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2020 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2021 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2022 2023 AsanRegisterElfGlobals = 2024 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2025 IntptrTy, IntptrTy, IntptrTy); 2026 AsanUnregisterElfGlobals = 2027 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2028 IntptrTy, IntptrTy, IntptrTy); 2029 } 2030 2031 // Put the metadata and the instrumented global in the same group. This ensures 2032 // that the metadata is discarded if the instrumented global is discarded. 2033 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2034 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2035 Module &M = *G->getParent(); 2036 Comdat *C = G->getComdat(); 2037 if (!C) { 2038 if (!G->hasName()) { 2039 // If G is unnamed, it must be internal. Give it an artificial name 2040 // so we can put it in a comdat. 2041 assert(G->hasLocalLinkage()); 2042 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2043 } 2044 2045 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2046 std::string Name = std::string(G->getName()); 2047 Name += InternalSuffix; 2048 C = M.getOrInsertComdat(Name); 2049 } else { 2050 C = M.getOrInsertComdat(G->getName()); 2051 } 2052 2053 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2054 // linkage to internal linkage so that a symbol table entry is emitted. This 2055 // is necessary in order to create the comdat group. 2056 if (TargetTriple.isOSBinFormatCOFF()) { 2057 C->setSelectionKind(Comdat::NoDuplicates); 2058 if (G->hasPrivateLinkage()) 2059 G->setLinkage(GlobalValue::InternalLinkage); 2060 } 2061 G->setComdat(C); 2062 } 2063 2064 assert(G->hasComdat()); 2065 Metadata->setComdat(G->getComdat()); 2066 } 2067 2068 // Create a separate metadata global and put it in the appropriate ASan 2069 // global registration section. 2070 GlobalVariable * 2071 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2072 StringRef OriginalName) { 2073 auto Linkage = TargetTriple.isOSBinFormatMachO() 2074 ? GlobalVariable::InternalLinkage 2075 : GlobalVariable::PrivateLinkage; 2076 GlobalVariable *Metadata = new GlobalVariable( 2077 M, Initializer->getType(), false, Linkage, Initializer, 2078 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2079 Metadata->setSection(getGlobalMetadataSection()); 2080 return Metadata; 2081 } 2082 2083 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2084 AsanDtorFunction = Function::createWithDefaultAttr( 2085 FunctionType::get(Type::getVoidTy(*C), false), 2086 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2087 AsanDtorFunction->addAttribute(AttributeList::FunctionIndex, 2088 Attribute::NoUnwind); 2089 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2090 2091 return ReturnInst::Create(*C, AsanDtorBB); 2092 } 2093 2094 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2095 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2096 ArrayRef<Constant *> MetadataInitializers) { 2097 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2098 auto &DL = M.getDataLayout(); 2099 2100 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2101 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2102 Constant *Initializer = MetadataInitializers[i]; 2103 GlobalVariable *G = ExtendedGlobals[i]; 2104 GlobalVariable *Metadata = 2105 CreateMetadataGlobal(M, Initializer, G->getName()); 2106 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2107 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2108 MetadataGlobals[i] = Metadata; 2109 2110 // The MSVC linker always inserts padding when linking incrementally. We 2111 // cope with that by aligning each struct to its size, which must be a power 2112 // of two. 2113 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2114 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2115 "global metadata will not be padded appropriately"); 2116 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2117 2118 SetComdatForGlobalMetadata(G, Metadata, ""); 2119 } 2120 2121 // Update llvm.compiler.used, adding the new metadata globals. This is 2122 // needed so that during LTO these variables stay alive. 2123 if (!MetadataGlobals.empty()) 2124 appendToCompilerUsed(M, MetadataGlobals); 2125 } 2126 2127 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2128 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2129 ArrayRef<Constant *> MetadataInitializers, 2130 const std::string &UniqueModuleId) { 2131 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2132 2133 // Putting globals in a comdat changes the semantic and potentially cause 2134 // false negative odr violations at link time. If odr indicators are used, we 2135 // keep the comdat sections, as link time odr violations will be dectected on 2136 // the odr indicator symbols. 2137 bool UseComdatForGlobalsGC = UseOdrIndicator; 2138 2139 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2140 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2141 GlobalVariable *G = ExtendedGlobals[i]; 2142 GlobalVariable *Metadata = 2143 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2144 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2145 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2146 MetadataGlobals[i] = Metadata; 2147 2148 if (UseComdatForGlobalsGC) 2149 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2150 } 2151 2152 // Update llvm.compiler.used, adding the new metadata globals. This is 2153 // needed so that during LTO these variables stay alive. 2154 if (!MetadataGlobals.empty()) 2155 appendToCompilerUsed(M, MetadataGlobals); 2156 2157 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2158 // to look up the loaded image that contains it. Second, we can store in it 2159 // whether registration has already occurred, to prevent duplicate 2160 // registration. 2161 // 2162 // Common linkage ensures that there is only one global per shared library. 2163 GlobalVariable *RegisteredFlag = new GlobalVariable( 2164 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2165 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2166 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2167 2168 // Create start and stop symbols. 2169 GlobalVariable *StartELFMetadata = new GlobalVariable( 2170 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2171 "__start_" + getGlobalMetadataSection()); 2172 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2173 GlobalVariable *StopELFMetadata = new GlobalVariable( 2174 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2175 "__stop_" + getGlobalMetadataSection()); 2176 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2177 2178 // Create a call to register the globals with the runtime. 2179 IRB.CreateCall(AsanRegisterElfGlobals, 2180 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2181 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2182 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2183 2184 // We also need to unregister globals at the end, e.g., when a shared library 2185 // gets closed. 2186 if (DestructorKind != AsanDtorKind::None) { 2187 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2188 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2189 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2190 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2191 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2192 } 2193 } 2194 2195 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2196 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2197 ArrayRef<Constant *> MetadataInitializers) { 2198 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2199 2200 // On recent Mach-O platforms, use a structure which binds the liveness of 2201 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2202 // created to be added to llvm.compiler.used 2203 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2204 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2205 2206 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2207 Constant *Initializer = MetadataInitializers[i]; 2208 GlobalVariable *G = ExtendedGlobals[i]; 2209 GlobalVariable *Metadata = 2210 CreateMetadataGlobal(M, Initializer, G->getName()); 2211 2212 // On recent Mach-O platforms, we emit the global metadata in a way that 2213 // allows the linker to properly strip dead globals. 2214 auto LivenessBinder = 2215 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2216 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2217 GlobalVariable *Liveness = new GlobalVariable( 2218 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2219 Twine("__asan_binder_") + G->getName()); 2220 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2221 LivenessGlobals[i] = Liveness; 2222 } 2223 2224 // Update llvm.compiler.used, adding the new liveness globals. This is 2225 // needed so that during LTO these variables stay alive. The alternative 2226 // would be to have the linker handling the LTO symbols, but libLTO 2227 // current API does not expose access to the section for each symbol. 2228 if (!LivenessGlobals.empty()) 2229 appendToCompilerUsed(M, LivenessGlobals); 2230 2231 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2232 // to look up the loaded image that contains it. Second, we can store in it 2233 // whether registration has already occurred, to prevent duplicate 2234 // registration. 2235 // 2236 // common linkage ensures that there is only one global per shared library. 2237 GlobalVariable *RegisteredFlag = new GlobalVariable( 2238 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2239 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2240 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2241 2242 IRB.CreateCall(AsanRegisterImageGlobals, 2243 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2244 2245 // We also need to unregister globals at the end, e.g., when a shared library 2246 // gets closed. 2247 if (DestructorKind != AsanDtorKind::None) { 2248 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2249 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2250 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2251 } 2252 } 2253 2254 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2255 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2256 ArrayRef<Constant *> MetadataInitializers) { 2257 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2258 unsigned N = ExtendedGlobals.size(); 2259 assert(N > 0); 2260 2261 // On platforms that don't have a custom metadata section, we emit an array 2262 // of global metadata structures. 2263 ArrayType *ArrayOfGlobalStructTy = 2264 ArrayType::get(MetadataInitializers[0]->getType(), N); 2265 auto AllGlobals = new GlobalVariable( 2266 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2267 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2268 if (Mapping.Scale > 3) 2269 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2270 2271 IRB.CreateCall(AsanRegisterGlobals, 2272 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2273 ConstantInt::get(IntptrTy, N)}); 2274 2275 // We also need to unregister globals at the end, e.g., when a shared library 2276 // gets closed. 2277 if (DestructorKind != AsanDtorKind::None) { 2278 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2279 IrbDtor.CreateCall(AsanUnregisterGlobals, 2280 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2281 ConstantInt::get(IntptrTy, N)}); 2282 } 2283 } 2284 2285 // This function replaces all global variables with new variables that have 2286 // trailing redzones. It also creates a function that poisons 2287 // redzones and inserts this function into llvm.global_ctors. 2288 // Sets *CtorComdat to true if the global registration code emitted into the 2289 // asan constructor is comdat-compatible. 2290 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2291 bool *CtorComdat) { 2292 *CtorComdat = false; 2293 2294 // Build set of globals that are aliased by some GA, where 2295 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2296 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2297 if (CompileKernel) { 2298 for (auto &GA : M.aliases()) { 2299 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2300 AliasedGlobalExclusions.insert(GV); 2301 } 2302 } 2303 2304 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2305 for (auto &G : M.globals()) { 2306 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2307 GlobalsToChange.push_back(&G); 2308 } 2309 2310 size_t n = GlobalsToChange.size(); 2311 if (n == 0) { 2312 *CtorComdat = true; 2313 return false; 2314 } 2315 2316 auto &DL = M.getDataLayout(); 2317 2318 // A global is described by a structure 2319 // size_t beg; 2320 // size_t size; 2321 // size_t size_with_redzone; 2322 // const char *name; 2323 // const char *module_name; 2324 // size_t has_dynamic_init; 2325 // void *source_location; 2326 // size_t odr_indicator; 2327 // We initialize an array of such structures and pass it to a run-time call. 2328 StructType *GlobalStructTy = 2329 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2330 IntptrTy, IntptrTy, IntptrTy); 2331 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2332 SmallVector<Constant *, 16> Initializers(n); 2333 2334 bool HasDynamicallyInitializedGlobals = false; 2335 2336 // We shouldn't merge same module names, as this string serves as unique 2337 // module ID in runtime. 2338 GlobalVariable *ModuleName = createPrivateGlobalForString( 2339 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2340 2341 for (size_t i = 0; i < n; i++) { 2342 GlobalVariable *G = GlobalsToChange[i]; 2343 2344 // FIXME: Metadata should be attched directly to the global directly instead 2345 // of being added to llvm.asan.globals. 2346 auto MD = GlobalsMD.get(G); 2347 StringRef NameForGlobal = G->getName(); 2348 // Create string holding the global name (use global name from metadata 2349 // if it's available, otherwise just write the name of global variable). 2350 GlobalVariable *Name = createPrivateGlobalForString( 2351 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2352 /*AllowMerging*/ true, kAsanGenPrefix); 2353 2354 Type *Ty = G->getValueType(); 2355 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2356 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2357 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2358 2359 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2360 Constant *NewInitializer = ConstantStruct::get( 2361 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2362 2363 // Create a new global variable with enough space for a redzone. 2364 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2365 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2366 Linkage = GlobalValue::InternalLinkage; 2367 GlobalVariable *NewGlobal = 2368 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2369 "", G, G->getThreadLocalMode()); 2370 NewGlobal->copyAttributesFrom(G); 2371 NewGlobal->setComdat(G->getComdat()); 2372 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2373 // Don't fold globals with redzones. ODR violation detector and redzone 2374 // poisoning implicitly creates a dependence on the global's address, so it 2375 // is no longer valid for it to be marked unnamed_addr. 2376 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2377 2378 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2379 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2380 G->isConstant()) { 2381 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2382 if (Seq && Seq->isCString()) 2383 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2384 } 2385 2386 // Transfer the debug info and type metadata. The payload starts at offset 2387 // zero so we can copy the metadata over as is. 2388 NewGlobal->copyMetadata(G, 0); 2389 2390 Value *Indices2[2]; 2391 Indices2[0] = IRB.getInt32(0); 2392 Indices2[1] = IRB.getInt32(0); 2393 2394 G->replaceAllUsesWith( 2395 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2396 NewGlobal->takeName(G); 2397 G->eraseFromParent(); 2398 NewGlobals[i] = NewGlobal; 2399 2400 Constant *SourceLoc; 2401 if (!MD.SourceLoc.empty()) { 2402 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2403 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2404 } else { 2405 SourceLoc = ConstantInt::get(IntptrTy, 0); 2406 } 2407 2408 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2409 GlobalValue *InstrumentedGlobal = NewGlobal; 2410 2411 bool CanUsePrivateAliases = 2412 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2413 TargetTriple.isOSBinFormatWasm(); 2414 if (CanUsePrivateAliases && UsePrivateAlias) { 2415 // Create local alias for NewGlobal to avoid crash on ODR between 2416 // instrumented and non-instrumented libraries. 2417 InstrumentedGlobal = 2418 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2419 } 2420 2421 // ODR should not happen for local linkage. 2422 if (NewGlobal->hasLocalLinkage()) { 2423 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2424 IRB.getInt8PtrTy()); 2425 } else if (UseOdrIndicator) { 2426 // With local aliases, we need to provide another externally visible 2427 // symbol __odr_asan_XXX to detect ODR violation. 2428 auto *ODRIndicatorSym = 2429 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2430 Constant::getNullValue(IRB.getInt8Ty()), 2431 kODRGenPrefix + NameForGlobal, nullptr, 2432 NewGlobal->getThreadLocalMode()); 2433 2434 // Set meaningful attributes for indicator symbol. 2435 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2436 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2437 ODRIndicatorSym->setAlignment(Align(1)); 2438 ODRIndicator = ODRIndicatorSym; 2439 } 2440 2441 Constant *Initializer = ConstantStruct::get( 2442 GlobalStructTy, 2443 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2444 ConstantInt::get(IntptrTy, SizeInBytes), 2445 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2446 ConstantExpr::getPointerCast(Name, IntptrTy), 2447 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2448 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2449 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2450 2451 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2452 2453 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2454 2455 Initializers[i] = Initializer; 2456 } 2457 2458 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2459 // ConstantMerge'ing them. 2460 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2461 for (size_t i = 0; i < n; i++) { 2462 GlobalVariable *G = NewGlobals[i]; 2463 if (G->getName().empty()) continue; 2464 GlobalsToAddToUsedList.push_back(G); 2465 } 2466 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2467 2468 std::string ELFUniqueModuleId = 2469 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2470 : ""; 2471 2472 if (!ELFUniqueModuleId.empty()) { 2473 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2474 *CtorComdat = true; 2475 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2476 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2477 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2478 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2479 } else { 2480 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2481 } 2482 2483 // Create calls for poisoning before initializers run and unpoisoning after. 2484 if (HasDynamicallyInitializedGlobals) 2485 createInitializerPoisonCalls(M, ModuleName); 2486 2487 LLVM_DEBUG(dbgs() << M); 2488 return true; 2489 } 2490 2491 uint64_t 2492 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2493 constexpr uint64_t kMaxRZ = 1 << 18; 2494 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2495 2496 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2497 uint64_t RZ = 2498 std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2499 2500 // Round up to multiple of MinRZ. 2501 if (SizeInBytes % MinRZ) 2502 RZ += MinRZ - (SizeInBytes % MinRZ); 2503 assert((RZ + SizeInBytes) % MinRZ == 0); 2504 2505 return RZ; 2506 } 2507 2508 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2509 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2510 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2511 int Version = 8; 2512 // 32-bit Android is one version ahead because of the switch to dynamic 2513 // shadow. 2514 Version += (LongSize == 32 && isAndroid); 2515 return Version; 2516 } 2517 2518 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2519 initializeCallbacks(M); 2520 2521 // Create a module constructor. A destructor is created lazily because not all 2522 // platforms, and not all modules need it. 2523 if (CompileKernel) { 2524 // The kernel always builds with its own runtime, and therefore does not 2525 // need the init and version check calls. 2526 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2527 } else { 2528 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2529 std::string VersionCheckName = 2530 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2531 std::tie(AsanCtorFunction, std::ignore) = 2532 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2533 kAsanInitName, /*InitArgTypes=*/{}, 2534 /*InitArgs=*/{}, VersionCheckName); 2535 } 2536 2537 bool CtorComdat = true; 2538 if (ClGlobals) { 2539 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2540 InstrumentGlobals(IRB, M, &CtorComdat); 2541 } 2542 2543 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2544 2545 // Put the constructor and destructor in comdat if both 2546 // (1) global instrumentation is not TU-specific 2547 // (2) target is ELF. 2548 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2549 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2550 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2551 if (AsanDtorFunction) { 2552 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2553 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2554 } 2555 } else { 2556 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2557 if (AsanDtorFunction) 2558 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2559 } 2560 2561 return true; 2562 } 2563 2564 void AddressSanitizer::initializeCallbacks(Module &M) { 2565 IRBuilder<> IRB(*C); 2566 // Create __asan_report* callbacks. 2567 // IsWrite, TypeSize and Exp are encoded in the function name. 2568 for (int Exp = 0; Exp < 2; Exp++) { 2569 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2570 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2571 const std::string ExpStr = Exp ? "exp_" : ""; 2572 const std::string EndingStr = Recover ? "_noabort" : ""; 2573 2574 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2575 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2576 if (Exp) { 2577 Type *ExpType = Type::getInt32Ty(*C); 2578 Args2.push_back(ExpType); 2579 Args1.push_back(ExpType); 2580 } 2581 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2582 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2583 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2584 2585 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2586 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2587 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2588 2589 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2590 AccessSizeIndex++) { 2591 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2592 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2593 M.getOrInsertFunction( 2594 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2595 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2596 2597 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2598 M.getOrInsertFunction( 2599 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2600 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2601 } 2602 } 2603 } 2604 2605 const std::string MemIntrinCallbackPrefix = 2606 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2607 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2608 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2609 IRB.getInt8PtrTy(), IntptrTy); 2610 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2611 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2612 IRB.getInt8PtrTy(), IntptrTy); 2613 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2614 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2615 IRB.getInt32Ty(), IntptrTy); 2616 2617 AsanHandleNoReturnFunc = 2618 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2619 2620 AsanPtrCmpFunction = 2621 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2622 AsanPtrSubFunction = 2623 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2624 if (Mapping.InGlobal) 2625 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2626 ArrayType::get(IRB.getInt8Ty(), 0)); 2627 } 2628 2629 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2630 // For each NSObject descendant having a +load method, this method is invoked 2631 // by the ObjC runtime before any of the static constructors is called. 2632 // Therefore we need to instrument such methods with a call to __asan_init 2633 // at the beginning in order to initialize our runtime before any access to 2634 // the shadow memory. 2635 // We cannot just ignore these methods, because they may call other 2636 // instrumented functions. 2637 if (F.getName().find(" load]") != std::string::npos) { 2638 FunctionCallee AsanInitFunction = 2639 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2640 IRBuilder<> IRB(&F.front(), F.front().begin()); 2641 IRB.CreateCall(AsanInitFunction, {}); 2642 return true; 2643 } 2644 return false; 2645 } 2646 2647 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2648 // Generate code only when dynamic addressing is needed. 2649 if (Mapping.Offset != kDynamicShadowSentinel) 2650 return false; 2651 2652 IRBuilder<> IRB(&F.front().front()); 2653 if (Mapping.InGlobal) { 2654 if (ClWithIfuncSuppressRemat) { 2655 // An empty inline asm with input reg == output reg. 2656 // An opaque pointer-to-int cast, basically. 2657 InlineAsm *Asm = InlineAsm::get( 2658 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2659 StringRef(""), StringRef("=r,0"), 2660 /*hasSideEffects=*/false); 2661 LocalDynamicShadow = 2662 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2663 } else { 2664 LocalDynamicShadow = 2665 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2666 } 2667 } else { 2668 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2669 kAsanShadowMemoryDynamicAddress, IntptrTy); 2670 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2671 } 2672 return true; 2673 } 2674 2675 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2676 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2677 // to it as uninteresting. This assumes we haven't started processing allocas 2678 // yet. This check is done up front because iterating the use list in 2679 // isInterestingAlloca would be algorithmically slower. 2680 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2681 2682 // Try to get the declaration of llvm.localescape. If it's not in the module, 2683 // we can exit early. 2684 if (!F.getParent()->getFunction("llvm.localescape")) return; 2685 2686 // Look for a call to llvm.localescape call in the entry block. It can't be in 2687 // any other block. 2688 for (Instruction &I : F.getEntryBlock()) { 2689 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2690 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2691 // We found a call. Mark all the allocas passed in as uninteresting. 2692 for (Value *Arg : II->arg_operands()) { 2693 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2694 assert(AI && AI->isStaticAlloca() && 2695 "non-static alloca arg to localescape"); 2696 ProcessedAllocas[AI] = false; 2697 } 2698 break; 2699 } 2700 } 2701 } 2702 2703 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2704 bool ShouldInstrument = 2705 ClDebugMin < 0 || ClDebugMax < 0 || 2706 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2707 Instrumented++; 2708 return !ShouldInstrument; 2709 } 2710 2711 bool AddressSanitizer::instrumentFunction(Function &F, 2712 const TargetLibraryInfo *TLI) { 2713 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2714 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2715 if (F.getName().startswith("__asan_")) return false; 2716 2717 bool FunctionModified = false; 2718 2719 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2720 // This function needs to be called even if the function body is not 2721 // instrumented. 2722 if (maybeInsertAsanInitAtFunctionEntry(F)) 2723 FunctionModified = true; 2724 2725 // Leave if the function doesn't need instrumentation. 2726 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2727 2728 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2729 2730 initializeCallbacks(*F.getParent()); 2731 2732 FunctionStateRAII CleanupObj(this); 2733 2734 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2735 2736 // We can't instrument allocas used with llvm.localescape. Only static allocas 2737 // can be passed to that intrinsic. 2738 markEscapedLocalAllocas(F); 2739 2740 // We want to instrument every address only once per basic block (unless there 2741 // are calls between uses). 2742 SmallPtrSet<Value *, 16> TempsToInstrument; 2743 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2744 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2745 SmallVector<Instruction *, 8> NoReturnCalls; 2746 SmallVector<BasicBlock *, 16> AllBlocks; 2747 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2748 int NumAllocas = 0; 2749 2750 // Fill the set of memory operations to instrument. 2751 for (auto &BB : F) { 2752 AllBlocks.push_back(&BB); 2753 TempsToInstrument.clear(); 2754 int NumInsnsPerBB = 0; 2755 for (auto &Inst : BB) { 2756 if (LooksLikeCodeInBug11395(&Inst)) return false; 2757 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2758 getInterestingMemoryOperands(&Inst, InterestingOperands); 2759 2760 if (!InterestingOperands.empty()) { 2761 for (auto &Operand : InterestingOperands) { 2762 if (ClOpt && ClOptSameTemp) { 2763 Value *Ptr = Operand.getPtr(); 2764 // If we have a mask, skip instrumentation if we've already 2765 // instrumented the full object. But don't add to TempsToInstrument 2766 // because we might get another load/store with a different mask. 2767 if (Operand.MaybeMask) { 2768 if (TempsToInstrument.count(Ptr)) 2769 continue; // We've seen this (whole) temp in the current BB. 2770 } else { 2771 if (!TempsToInstrument.insert(Ptr).second) 2772 continue; // We've seen this temp in the current BB. 2773 } 2774 } 2775 OperandsToInstrument.push_back(Operand); 2776 NumInsnsPerBB++; 2777 } 2778 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2779 isInterestingPointerComparison(&Inst)) || 2780 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2781 isInterestingPointerSubtraction(&Inst))) { 2782 PointerComparisonsOrSubtracts.push_back(&Inst); 2783 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2784 // ok, take it. 2785 IntrinToInstrument.push_back(MI); 2786 NumInsnsPerBB++; 2787 } else { 2788 if (isa<AllocaInst>(Inst)) NumAllocas++; 2789 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2790 // A call inside BB. 2791 TempsToInstrument.clear(); 2792 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2793 NoReturnCalls.push_back(CB); 2794 } 2795 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2796 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2797 } 2798 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2799 } 2800 } 2801 2802 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2803 OperandsToInstrument.size() + IntrinToInstrument.size() > 2804 (unsigned)ClInstrumentationWithCallsThreshold); 2805 const DataLayout &DL = F.getParent()->getDataLayout(); 2806 ObjectSizeOpts ObjSizeOpts; 2807 ObjSizeOpts.RoundToAlign = true; 2808 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2809 2810 // Instrument. 2811 int NumInstrumented = 0; 2812 for (auto &Operand : OperandsToInstrument) { 2813 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2814 instrumentMop(ObjSizeVis, Operand, UseCalls, 2815 F.getParent()->getDataLayout()); 2816 FunctionModified = true; 2817 } 2818 for (auto Inst : IntrinToInstrument) { 2819 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2820 instrumentMemIntrinsic(Inst); 2821 FunctionModified = true; 2822 } 2823 2824 FunctionStackPoisoner FSP(F, *this); 2825 bool ChangedStack = FSP.runOnFunction(); 2826 2827 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2828 // See e.g. https://github.com/google/sanitizers/issues/37 2829 for (auto CI : NoReturnCalls) { 2830 IRBuilder<> IRB(CI); 2831 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2832 } 2833 2834 for (auto Inst : PointerComparisonsOrSubtracts) { 2835 instrumentPointerComparisonOrSubtraction(Inst); 2836 FunctionModified = true; 2837 } 2838 2839 if (ChangedStack || !NoReturnCalls.empty()) 2840 FunctionModified = true; 2841 2842 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2843 << F << "\n"); 2844 2845 return FunctionModified; 2846 } 2847 2848 // Workaround for bug 11395: we don't want to instrument stack in functions 2849 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2850 // FIXME: remove once the bug 11395 is fixed. 2851 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2852 if (LongSize != 32) return false; 2853 CallInst *CI = dyn_cast<CallInst>(I); 2854 if (!CI || !CI->isInlineAsm()) return false; 2855 if (CI->getNumArgOperands() <= 5) return false; 2856 // We have inline assembly with quite a few arguments. 2857 return true; 2858 } 2859 2860 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2861 IRBuilder<> IRB(*C); 2862 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2863 std::string Suffix = itostr(i); 2864 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2865 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2866 AsanStackFreeFunc[i] = 2867 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2868 IRB.getVoidTy(), IntptrTy, IntptrTy); 2869 } 2870 if (ASan.UseAfterScope) { 2871 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2872 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2873 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2874 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2875 } 2876 2877 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2878 std::ostringstream Name; 2879 Name << kAsanSetShadowPrefix; 2880 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2881 AsanSetShadowFunc[Val] = 2882 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2883 } 2884 2885 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2886 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2887 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2888 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2889 } 2890 2891 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2892 ArrayRef<uint8_t> ShadowBytes, 2893 size_t Begin, size_t End, 2894 IRBuilder<> &IRB, 2895 Value *ShadowBase) { 2896 if (Begin >= End) 2897 return; 2898 2899 const size_t LargestStoreSizeInBytes = 2900 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2901 2902 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2903 2904 // Poison given range in shadow using larges store size with out leading and 2905 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2906 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2907 // middle of a store. 2908 for (size_t i = Begin; i < End;) { 2909 if (!ShadowMask[i]) { 2910 assert(!ShadowBytes[i]); 2911 ++i; 2912 continue; 2913 } 2914 2915 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2916 // Fit store size into the range. 2917 while (StoreSizeInBytes > End - i) 2918 StoreSizeInBytes /= 2; 2919 2920 // Minimize store size by trimming trailing zeros. 2921 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2922 while (j <= StoreSizeInBytes / 2) 2923 StoreSizeInBytes /= 2; 2924 } 2925 2926 uint64_t Val = 0; 2927 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2928 if (IsLittleEndian) 2929 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2930 else 2931 Val = (Val << 8) | ShadowBytes[i + j]; 2932 } 2933 2934 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2935 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2936 IRB.CreateAlignedStore( 2937 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2938 Align(1)); 2939 2940 i += StoreSizeInBytes; 2941 } 2942 } 2943 2944 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2945 ArrayRef<uint8_t> ShadowBytes, 2946 IRBuilder<> &IRB, Value *ShadowBase) { 2947 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2948 } 2949 2950 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2951 ArrayRef<uint8_t> ShadowBytes, 2952 size_t Begin, size_t End, 2953 IRBuilder<> &IRB, Value *ShadowBase) { 2954 assert(ShadowMask.size() == ShadowBytes.size()); 2955 size_t Done = Begin; 2956 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2957 if (!ShadowMask[i]) { 2958 assert(!ShadowBytes[i]); 2959 continue; 2960 } 2961 uint8_t Val = ShadowBytes[i]; 2962 if (!AsanSetShadowFunc[Val]) 2963 continue; 2964 2965 // Skip same values. 2966 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2967 } 2968 2969 if (j - i >= ClMaxInlinePoisoningSize) { 2970 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2971 IRB.CreateCall(AsanSetShadowFunc[Val], 2972 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2973 ConstantInt::get(IntptrTy, j - i)}); 2974 Done = j; 2975 } 2976 } 2977 2978 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2979 } 2980 2981 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2982 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2983 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2984 assert(LocalStackSize <= kMaxStackMallocSize); 2985 uint64_t MaxSize = kMinStackMallocSize; 2986 for (int i = 0;; i++, MaxSize *= 2) 2987 if (LocalStackSize <= MaxSize) return i; 2988 llvm_unreachable("impossible LocalStackSize"); 2989 } 2990 2991 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2992 Instruction *CopyInsertPoint = &F.front().front(); 2993 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2994 // Insert after the dynamic shadow location is determined 2995 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2996 assert(CopyInsertPoint); 2997 } 2998 IRBuilder<> IRB(CopyInsertPoint); 2999 const DataLayout &DL = F.getParent()->getDataLayout(); 3000 for (Argument &Arg : F.args()) { 3001 if (Arg.hasByValAttr()) { 3002 Type *Ty = Arg.getParamByValType(); 3003 const Align Alignment = 3004 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 3005 3006 AllocaInst *AI = IRB.CreateAlloca( 3007 Ty, nullptr, 3008 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 3009 ".byval"); 3010 AI->setAlignment(Alignment); 3011 Arg.replaceAllUsesWith(AI); 3012 3013 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3014 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3015 } 3016 } 3017 } 3018 3019 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3020 Value *ValueIfTrue, 3021 Instruction *ThenTerm, 3022 Value *ValueIfFalse) { 3023 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3024 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3025 PHI->addIncoming(ValueIfFalse, CondBlock); 3026 BasicBlock *ThenBlock = ThenTerm->getParent(); 3027 PHI->addIncoming(ValueIfTrue, ThenBlock); 3028 return PHI; 3029 } 3030 3031 Value *FunctionStackPoisoner::createAllocaForLayout( 3032 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3033 AllocaInst *Alloca; 3034 if (Dynamic) { 3035 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3036 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3037 "MyAlloca"); 3038 } else { 3039 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3040 nullptr, "MyAlloca"); 3041 assert(Alloca->isStaticAlloca()); 3042 } 3043 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3044 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 3045 Alloca->setAlignment(Align(FrameAlignment)); 3046 return IRB.CreatePointerCast(Alloca, IntptrTy); 3047 } 3048 3049 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3050 BasicBlock &FirstBB = *F.begin(); 3051 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3052 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3053 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3054 DynamicAllocaLayout->setAlignment(Align(32)); 3055 } 3056 3057 void FunctionStackPoisoner::processDynamicAllocas() { 3058 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3059 assert(DynamicAllocaPoisonCallVec.empty()); 3060 return; 3061 } 3062 3063 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3064 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3065 assert(APC.InsBefore); 3066 assert(APC.AI); 3067 assert(ASan.isInterestingAlloca(*APC.AI)); 3068 assert(!APC.AI->isStaticAlloca()); 3069 3070 IRBuilder<> IRB(APC.InsBefore); 3071 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3072 // Dynamic allocas will be unpoisoned unconditionally below in 3073 // unpoisonDynamicAllocas. 3074 // Flag that we need unpoison static allocas. 3075 } 3076 3077 // Handle dynamic allocas. 3078 createDynamicAllocasInitStorage(); 3079 for (auto &AI : DynamicAllocaVec) 3080 handleDynamicAllocaCall(AI); 3081 unpoisonDynamicAllocas(); 3082 } 3083 3084 /// Collect instructions in the entry block after \p InsBefore which initialize 3085 /// permanent storage for a function argument. These instructions must remain in 3086 /// the entry block so that uninitialized values do not appear in backtraces. An 3087 /// added benefit is that this conserves spill slots. This does not move stores 3088 /// before instrumented / "interesting" allocas. 3089 static void findStoresToUninstrumentedArgAllocas( 3090 AddressSanitizer &ASan, Instruction &InsBefore, 3091 SmallVectorImpl<Instruction *> &InitInsts) { 3092 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3093 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3094 // Argument initialization looks like: 3095 // 1) store <Argument>, <Alloca> OR 3096 // 2) <CastArgument> = cast <Argument> to ... 3097 // store <CastArgument> to <Alloca> 3098 // Do not consider any other kind of instruction. 3099 // 3100 // Note: This covers all known cases, but may not be exhaustive. An 3101 // alternative to pattern-matching stores is to DFS over all Argument uses: 3102 // this might be more general, but is probably much more complicated. 3103 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3104 continue; 3105 if (auto *Store = dyn_cast<StoreInst>(It)) { 3106 // The store destination must be an alloca that isn't interesting for 3107 // ASan to instrument. These are moved up before InsBefore, and they're 3108 // not interesting because allocas for arguments can be mem2reg'd. 3109 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3110 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3111 continue; 3112 3113 Value *Val = Store->getValueOperand(); 3114 bool IsDirectArgInit = isa<Argument>(Val); 3115 bool IsArgInitViaCast = 3116 isa<CastInst>(Val) && 3117 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3118 // Check that the cast appears directly before the store. Otherwise 3119 // moving the cast before InsBefore may break the IR. 3120 Val == It->getPrevNonDebugInstruction(); 3121 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3122 if (!IsArgInit) 3123 continue; 3124 3125 if (IsArgInitViaCast) 3126 InitInsts.push_back(cast<Instruction>(Val)); 3127 InitInsts.push_back(Store); 3128 continue; 3129 } 3130 3131 // Do not reorder past unknown instructions: argument initialization should 3132 // only involve casts and stores. 3133 return; 3134 } 3135 } 3136 3137 void FunctionStackPoisoner::processStaticAllocas() { 3138 if (AllocaVec.empty()) { 3139 assert(StaticAllocaPoisonCallVec.empty()); 3140 return; 3141 } 3142 3143 int StackMallocIdx = -1; 3144 DebugLoc EntryDebugLocation; 3145 if (auto SP = F.getSubprogram()) 3146 EntryDebugLocation = 3147 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3148 3149 Instruction *InsBefore = AllocaVec[0]; 3150 IRBuilder<> IRB(InsBefore); 3151 3152 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3153 // debug info is broken, because only entry-block allocas are treated as 3154 // regular stack slots. 3155 auto InsBeforeB = InsBefore->getParent(); 3156 assert(InsBeforeB == &F.getEntryBlock()); 3157 for (auto *AI : StaticAllocasToMoveUp) 3158 if (AI->getParent() == InsBeforeB) 3159 AI->moveBefore(InsBefore); 3160 3161 // Move stores of arguments into entry-block allocas as well. This prevents 3162 // extra stack slots from being generated (to house the argument values until 3163 // they can be stored into the allocas). This also prevents uninitialized 3164 // values from being shown in backtraces. 3165 SmallVector<Instruction *, 8> ArgInitInsts; 3166 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3167 for (Instruction *ArgInitInst : ArgInitInsts) 3168 ArgInitInst->moveBefore(InsBefore); 3169 3170 // If we have a call to llvm.localescape, keep it in the entry block. 3171 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3172 3173 SmallVector<ASanStackVariableDescription, 16> SVD; 3174 SVD.reserve(AllocaVec.size()); 3175 for (AllocaInst *AI : AllocaVec) { 3176 ASanStackVariableDescription D = {AI->getName().data(), 3177 ASan.getAllocaSizeInBytes(*AI), 3178 0, 3179 AI->getAlignment(), 3180 AI, 3181 0, 3182 0}; 3183 SVD.push_back(D); 3184 } 3185 3186 // Minimal header size (left redzone) is 4 pointers, 3187 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3188 size_t Granularity = 1ULL << Mapping.Scale; 3189 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3190 const ASanStackFrameLayout &L = 3191 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3192 3193 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3194 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3195 for (auto &Desc : SVD) 3196 AllocaToSVDMap[Desc.AI] = &Desc; 3197 3198 // Update SVD with information from lifetime intrinsics. 3199 for (const auto &APC : StaticAllocaPoisonCallVec) { 3200 assert(APC.InsBefore); 3201 assert(APC.AI); 3202 assert(ASan.isInterestingAlloca(*APC.AI)); 3203 assert(APC.AI->isStaticAlloca()); 3204 3205 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3206 Desc.LifetimeSize = Desc.Size; 3207 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3208 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3209 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3210 if (unsigned Line = LifetimeLoc->getLine()) 3211 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3212 } 3213 } 3214 } 3215 3216 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3217 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3218 uint64_t LocalStackSize = L.FrameSize; 3219 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3220 LocalStackSize <= kMaxStackMallocSize; 3221 bool DoDynamicAlloca = ClDynamicAllocaStack; 3222 // Don't do dynamic alloca or stack malloc if: 3223 // 1) There is inline asm: too often it makes assumptions on which registers 3224 // are available. 3225 // 2) There is a returns_twice call (typically setjmp), which is 3226 // optimization-hostile, and doesn't play well with introduced indirect 3227 // register-relative calculation of local variable addresses. 3228 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3229 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3230 3231 Value *StaticAlloca = 3232 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3233 3234 Value *FakeStack; 3235 Value *LocalStackBase; 3236 Value *LocalStackBaseAlloca; 3237 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3238 3239 if (DoStackMalloc) { 3240 LocalStackBaseAlloca = 3241 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3242 // void *FakeStack = __asan_option_detect_stack_use_after_return 3243 // ? __asan_stack_malloc_N(LocalStackSize) 3244 // : nullptr; 3245 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3246 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3247 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3248 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3249 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3250 Constant::getNullValue(IRB.getInt32Ty())); 3251 Instruction *Term = 3252 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3253 IRBuilder<> IRBIf(Term); 3254 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3255 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3256 Value *FakeStackValue = 3257 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3258 ConstantInt::get(IntptrTy, LocalStackSize)); 3259 IRB.SetInsertPoint(InsBefore); 3260 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3261 ConstantInt::get(IntptrTy, 0)); 3262 3263 Value *NoFakeStack = 3264 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3265 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3266 IRBIf.SetInsertPoint(Term); 3267 Value *AllocaValue = 3268 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3269 3270 IRB.SetInsertPoint(InsBefore); 3271 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3272 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3273 DIExprFlags |= DIExpression::DerefBefore; 3274 } else { 3275 // void *FakeStack = nullptr; 3276 // void *LocalStackBase = alloca(LocalStackSize); 3277 FakeStack = ConstantInt::get(IntptrTy, 0); 3278 LocalStackBase = 3279 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3280 LocalStackBaseAlloca = LocalStackBase; 3281 } 3282 3283 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3284 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3285 // later passes and can result in dropped variable coverage in debug info. 3286 Value *LocalStackBaseAllocaPtr = 3287 isa<PtrToIntInst>(LocalStackBaseAlloca) 3288 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3289 : LocalStackBaseAlloca; 3290 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3291 "Variable descriptions relative to ASan stack base will be dropped"); 3292 3293 // Replace Alloca instructions with base+offset. 3294 for (const auto &Desc : SVD) { 3295 AllocaInst *AI = Desc.AI; 3296 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3297 Desc.Offset); 3298 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3299 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3300 AI->getType()); 3301 AI->replaceAllUsesWith(NewAllocaPtr); 3302 } 3303 3304 // The left-most redzone has enough space for at least 4 pointers. 3305 // Write the Magic value to redzone[0]. 3306 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3307 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3308 BasePlus0); 3309 // Write the frame description constant to redzone[1]. 3310 Value *BasePlus1 = IRB.CreateIntToPtr( 3311 IRB.CreateAdd(LocalStackBase, 3312 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3313 IntptrPtrTy); 3314 GlobalVariable *StackDescriptionGlobal = 3315 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3316 /*AllowMerging*/ true, kAsanGenPrefix); 3317 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3318 IRB.CreateStore(Description, BasePlus1); 3319 // Write the PC to redzone[2]. 3320 Value *BasePlus2 = IRB.CreateIntToPtr( 3321 IRB.CreateAdd(LocalStackBase, 3322 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3323 IntptrPtrTy); 3324 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3325 3326 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3327 3328 // Poison the stack red zones at the entry. 3329 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3330 // As mask we must use most poisoned case: red zones and after scope. 3331 // As bytes we can use either the same or just red zones only. 3332 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3333 3334 if (!StaticAllocaPoisonCallVec.empty()) { 3335 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3336 3337 // Poison static allocas near lifetime intrinsics. 3338 for (const auto &APC : StaticAllocaPoisonCallVec) { 3339 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3340 assert(Desc.Offset % L.Granularity == 0); 3341 size_t Begin = Desc.Offset / L.Granularity; 3342 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3343 3344 IRBuilder<> IRB(APC.InsBefore); 3345 copyToShadow(ShadowAfterScope, 3346 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3347 IRB, ShadowBase); 3348 } 3349 } 3350 3351 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3352 SmallVector<uint8_t, 64> ShadowAfterReturn; 3353 3354 // (Un)poison the stack before all ret instructions. 3355 for (Instruction *Ret : RetVec) { 3356 IRBuilder<> IRBRet(Ret); 3357 // Mark the current frame as retired. 3358 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3359 BasePlus0); 3360 if (DoStackMalloc) { 3361 assert(StackMallocIdx >= 0); 3362 // if FakeStack != 0 // LocalStackBase == FakeStack 3363 // // In use-after-return mode, poison the whole stack frame. 3364 // if StackMallocIdx <= 4 3365 // // For small sizes inline the whole thing: 3366 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3367 // **SavedFlagPtr(FakeStack) = 0 3368 // else 3369 // __asan_stack_free_N(FakeStack, LocalStackSize) 3370 // else 3371 // <This is not a fake stack; unpoison the redzones> 3372 Value *Cmp = 3373 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3374 Instruction *ThenTerm, *ElseTerm; 3375 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3376 3377 IRBuilder<> IRBPoison(ThenTerm); 3378 if (StackMallocIdx <= 4) { 3379 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3380 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3381 kAsanStackUseAfterReturnMagic); 3382 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3383 ShadowBase); 3384 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3385 FakeStack, 3386 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3387 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3388 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3389 IRBPoison.CreateStore( 3390 Constant::getNullValue(IRBPoison.getInt8Ty()), 3391 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3392 } else { 3393 // For larger frames call __asan_stack_free_*. 3394 IRBPoison.CreateCall( 3395 AsanStackFreeFunc[StackMallocIdx], 3396 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3397 } 3398 3399 IRBuilder<> IRBElse(ElseTerm); 3400 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3401 } else { 3402 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3403 } 3404 } 3405 3406 // We are done. Remove the old unused alloca instructions. 3407 for (auto AI : AllocaVec) AI->eraseFromParent(); 3408 } 3409 3410 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3411 IRBuilder<> &IRB, bool DoPoison) { 3412 // For now just insert the call to ASan runtime. 3413 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3414 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3415 IRB.CreateCall( 3416 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3417 {AddrArg, SizeArg}); 3418 } 3419 3420 // Handling llvm.lifetime intrinsics for a given %alloca: 3421 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3422 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3423 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3424 // could be poisoned by previous llvm.lifetime.end instruction, as the 3425 // variable may go in and out of scope several times, e.g. in loops). 3426 // (3) if we poisoned at least one %alloca in a function, 3427 // unpoison the whole stack frame at function exit. 3428 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3429 IRBuilder<> IRB(AI); 3430 3431 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3432 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3433 3434 Value *Zero = Constant::getNullValue(IntptrTy); 3435 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3436 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3437 3438 // Since we need to extend alloca with additional memory to locate 3439 // redzones, and OldSize is number of allocated blocks with 3440 // ElementSize size, get allocated memory size in bytes by 3441 // OldSize * ElementSize. 3442 const unsigned ElementSize = 3443 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3444 Value *OldSize = 3445 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3446 ConstantInt::get(IntptrTy, ElementSize)); 3447 3448 // PartialSize = OldSize % 32 3449 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3450 3451 // Misalign = kAllocaRzSize - PartialSize; 3452 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3453 3454 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3455 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3456 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3457 3458 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3459 // Alignment is added to locate left redzone, PartialPadding for possible 3460 // partial redzone and kAllocaRzSize for right redzone respectively. 3461 Value *AdditionalChunkSize = IRB.CreateAdd( 3462 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3463 3464 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3465 3466 // Insert new alloca with new NewSize and Alignment params. 3467 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3468 NewAlloca->setAlignment(Align(Alignment)); 3469 3470 // NewAddress = Address + Alignment 3471 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3472 ConstantInt::get(IntptrTy, Alignment)); 3473 3474 // Insert __asan_alloca_poison call for new created alloca. 3475 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3476 3477 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3478 // for unpoisoning stuff. 3479 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3480 3481 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3482 3483 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3484 AI->replaceAllUsesWith(NewAddressPtr); 3485 3486 // We are done. Erase old alloca from parent. 3487 AI->eraseFromParent(); 3488 } 3489 3490 // isSafeAccess returns true if Addr is always inbounds with respect to its 3491 // base object. For example, it is a field access or an array access with 3492 // constant inbounds index. 3493 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3494 Value *Addr, uint64_t TypeSize) const { 3495 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3496 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3497 uint64_t Size = SizeOffset.first.getZExtValue(); 3498 int64_t Offset = SizeOffset.second.getSExtValue(); 3499 // Three checks are required to ensure safety: 3500 // . Offset >= 0 (since the offset is given from the base ptr) 3501 // . Size >= Offset (unsigned) 3502 // . Size - Offset >= NeededSize (unsigned) 3503 return Offset >= 0 && Size >= uint64_t(Offset) && 3504 Size - uint64_t(Offset) >= TypeSize / 8; 3505 } 3506