1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 // FIXME: This sanitizer does not yet handle scalable vectors 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/BinaryFormat/MachO.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DIBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstVisitor.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCSectionMachO.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/ScopedPrinter.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/ModuleUtils.h" 80 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstddef> 84 #include <cstdint> 85 #include <iomanip> 86 #include <limits> 87 #include <memory> 88 #include <sstream> 89 #include <string> 90 #include <tuple> 91 92 using namespace llvm; 93 94 #define DEBUG_TYPE "asan" 95 96 static const uint64_t kDefaultShadowScale = 3; 97 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 98 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 99 static const uint64_t kDynamicShadowSentinel = 100 std::numeric_limits<uint64_t>::max(); 101 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 102 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 103 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 104 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 105 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 106 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 107 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 108 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 109 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 110 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 111 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 112 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 113 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 114 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 115 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 116 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 117 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 118 static const uint64_t kEmscriptenShadowOffset = 0; 119 120 // The shadow memory space is dynamically allocated. 121 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 122 123 static const size_t kMinStackMallocSize = 1 << 6; // 64B 124 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 125 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 126 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 127 128 const char kAsanModuleCtorName[] = "asan.module_ctor"; 129 const char kAsanModuleDtorName[] = "asan.module_dtor"; 130 static const uint64_t kAsanCtorAndDtorPriority = 1; 131 // On Emscripten, the system needs more than one priorities for constructors. 132 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 133 const char kAsanReportErrorTemplate[] = "__asan_report_"; 134 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 135 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 136 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 137 const char kAsanUnregisterImageGlobalsName[] = 138 "__asan_unregister_image_globals"; 139 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 140 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 141 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 142 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 143 const char kAsanInitName[] = "__asan_init"; 144 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 145 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 146 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 147 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 148 static const int kMaxAsanStackMallocSizeClass = 10; 149 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 150 const char kAsanStackMallocAlwaysNameTemplate[] = 151 "__asan_stack_malloc_always_"; 152 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 153 const char kAsanGenPrefix[] = "___asan_gen_"; 154 const char kODRGenPrefix[] = "__odr_asan_gen_"; 155 const char kSanCovGenPrefix[] = "__sancov_gen_"; 156 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 157 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 158 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 159 160 // ASan version script has __asan_* wildcard. Triple underscore prevents a 161 // linker (gold) warning about attempting to export a local symbol. 162 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 163 164 const char kAsanOptionDetectUseAfterReturn[] = 165 "__asan_option_detect_stack_use_after_return"; 166 167 const char kAsanShadowMemoryDynamicAddress[] = 168 "__asan_shadow_memory_dynamic_address"; 169 170 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 171 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 172 173 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 174 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 175 176 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 177 static const size_t kNumberOfAccessSizes = 5; 178 179 static const unsigned kAllocaRzSize = 32; 180 181 // ASanAccessInfo implementation constants. 182 constexpr size_t kCompileKernelShift = 0; 183 constexpr size_t kCompileKernelMask = 0x1; 184 constexpr size_t kAccessSizeIndexShift = 1; 185 constexpr size_t kAccessSizeIndexMask = 0xf; 186 constexpr size_t kIsWriteShift = 5; 187 constexpr size_t kIsWriteMask = 0x1; 188 189 // Command-line flags. 190 191 static cl::opt<bool> ClEnableKasan( 192 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 193 cl::Hidden, cl::init(false)); 194 195 static cl::opt<bool> ClRecover( 196 "asan-recover", 197 cl::desc("Enable recovery mode (continue-after-error)."), 198 cl::Hidden, cl::init(false)); 199 200 static cl::opt<bool> ClInsertVersionCheck( 201 "asan-guard-against-version-mismatch", 202 cl::desc("Guard against compiler/runtime version mismatch."), 203 cl::Hidden, cl::init(true)); 204 205 // This flag may need to be replaced with -f[no-]asan-reads. 206 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 207 cl::desc("instrument read instructions"), 208 cl::Hidden, cl::init(true)); 209 210 static cl::opt<bool> ClInstrumentWrites( 211 "asan-instrument-writes", cl::desc("instrument write instructions"), 212 cl::Hidden, cl::init(true)); 213 214 static cl::opt<bool> ClInstrumentAtomics( 215 "asan-instrument-atomics", 216 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 217 cl::init(true)); 218 219 static cl::opt<bool> 220 ClInstrumentByval("asan-instrument-byval", 221 cl::desc("instrument byval call arguments"), cl::Hidden, 222 cl::init(true)); 223 224 static cl::opt<bool> ClAlwaysSlowPath( 225 "asan-always-slow-path", 226 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 227 cl::init(false)); 228 229 static cl::opt<bool> ClForceDynamicShadow( 230 "asan-force-dynamic-shadow", 231 cl::desc("Load shadow address into a local variable for each function"), 232 cl::Hidden, cl::init(false)); 233 234 static cl::opt<bool> 235 ClWithIfunc("asan-with-ifunc", 236 cl::desc("Access dynamic shadow through an ifunc global on " 237 "platforms that support this"), 238 cl::Hidden, cl::init(true)); 239 240 static cl::opt<bool> ClWithIfuncSuppressRemat( 241 "asan-with-ifunc-suppress-remat", 242 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 243 "it through inline asm in prologue."), 244 cl::Hidden, cl::init(true)); 245 246 // This flag limits the number of instructions to be instrumented 247 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 248 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 249 // set it to 10000. 250 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 251 "asan-max-ins-per-bb", cl::init(10000), 252 cl::desc("maximal number of instructions to instrument in any given BB"), 253 cl::Hidden); 254 255 // This flag may need to be replaced with -f[no]asan-stack. 256 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 257 cl::Hidden, cl::init(true)); 258 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 259 "asan-max-inline-poisoning-size", 260 cl::desc( 261 "Inline shadow poisoning for blocks up to the given size in bytes."), 262 cl::Hidden, cl::init(64)); 263 264 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 265 "asan-use-after-return", 266 cl::desc("Sets the mode of detection for stack-use-after-return."), 267 cl::values( 268 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 269 "Never detect stack use after return."), 270 clEnumValN( 271 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 272 "Detect stack use after return if " 273 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 274 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 275 "Always detect stack use after return.")), 276 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 277 278 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 279 cl::desc("Create redzones for byval " 280 "arguments (extra copy " 281 "required)"), cl::Hidden, 282 cl::init(true)); 283 284 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 285 cl::desc("Check stack-use-after-scope"), 286 cl::Hidden, cl::init(false)); 287 288 // This flag may need to be replaced with -f[no]asan-globals. 289 static cl::opt<bool> ClGlobals("asan-globals", 290 cl::desc("Handle global objects"), cl::Hidden, 291 cl::init(true)); 292 293 static cl::opt<bool> ClInitializers("asan-initialization-order", 294 cl::desc("Handle C++ initializer order"), 295 cl::Hidden, cl::init(true)); 296 297 static cl::opt<bool> ClInvalidPointerPairs( 298 "asan-detect-invalid-pointer-pair", 299 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 300 cl::init(false)); 301 302 static cl::opt<bool> ClInvalidPointerCmp( 303 "asan-detect-invalid-pointer-cmp", 304 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 305 cl::init(false)); 306 307 static cl::opt<bool> ClInvalidPointerSub( 308 "asan-detect-invalid-pointer-sub", 309 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 310 cl::init(false)); 311 312 static cl::opt<unsigned> ClRealignStack( 313 "asan-realign-stack", 314 cl::desc("Realign stack to the value of this flag (power of two)"), 315 cl::Hidden, cl::init(32)); 316 317 static cl::opt<int> ClInstrumentationWithCallsThreshold( 318 "asan-instrumentation-with-call-threshold", 319 cl::desc( 320 "If the function being instrumented contains more than " 321 "this number of memory accesses, use callbacks instead of " 322 "inline checks (-1 means never use callbacks)."), 323 cl::Hidden, cl::init(7000)); 324 325 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 326 "asan-memory-access-callback-prefix", 327 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 328 cl::init("__asan_")); 329 330 static cl::opt<bool> 331 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 332 cl::desc("instrument dynamic allocas"), 333 cl::Hidden, cl::init(true)); 334 335 static cl::opt<bool> ClSkipPromotableAllocas( 336 "asan-skip-promotable-allocas", 337 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 338 cl::init(true)); 339 340 // These flags allow to change the shadow mapping. 341 // The shadow mapping looks like 342 // Shadow = (Mem >> scale) + offset 343 344 static cl::opt<int> ClMappingScale("asan-mapping-scale", 345 cl::desc("scale of asan shadow mapping"), 346 cl::Hidden, cl::init(0)); 347 348 static cl::opt<uint64_t> 349 ClMappingOffset("asan-mapping-offset", 350 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 351 cl::Hidden, cl::init(0)); 352 353 // Optimization flags. Not user visible, used mostly for testing 354 // and benchmarking the tool. 355 356 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 357 cl::Hidden, cl::init(true)); 358 359 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 360 cl::desc("Optimize callbacks"), 361 cl::Hidden, cl::init(false)); 362 363 static cl::opt<bool> ClOptSameTemp( 364 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 365 cl::Hidden, cl::init(true)); 366 367 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 368 cl::desc("Don't instrument scalar globals"), 369 cl::Hidden, cl::init(true)); 370 371 static cl::opt<bool> ClOptStack( 372 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 373 cl::Hidden, cl::init(false)); 374 375 static cl::opt<bool> ClDynamicAllocaStack( 376 "asan-stack-dynamic-alloca", 377 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 378 cl::init(true)); 379 380 static cl::opt<uint32_t> ClForceExperiment( 381 "asan-force-experiment", 382 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 383 cl::init(0)); 384 385 static cl::opt<bool> 386 ClUsePrivateAlias("asan-use-private-alias", 387 cl::desc("Use private aliases for global variables"), 388 cl::Hidden, cl::init(false)); 389 390 static cl::opt<bool> 391 ClUseOdrIndicator("asan-use-odr-indicator", 392 cl::desc("Use odr indicators to improve ODR reporting"), 393 cl::Hidden, cl::init(false)); 394 395 static cl::opt<bool> 396 ClUseGlobalsGC("asan-globals-live-support", 397 cl::desc("Use linker features to support dead " 398 "code stripping of globals"), 399 cl::Hidden, cl::init(true)); 400 401 // This is on by default even though there is a bug in gold: 402 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 403 static cl::opt<bool> 404 ClWithComdat("asan-with-comdat", 405 cl::desc("Place ASan constructors in comdat sections"), 406 cl::Hidden, cl::init(true)); 407 408 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 409 "asan-destructor-kind", 410 cl::desc("Sets the ASan destructor kind. The default is to use the value " 411 "provided to the pass constructor"), 412 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 413 clEnumValN(AsanDtorKind::Global, "global", 414 "Use global destructors")), 415 cl::init(AsanDtorKind::Invalid), cl::Hidden); 416 417 // Debug flags. 418 419 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 420 cl::init(0)); 421 422 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 423 cl::Hidden, cl::init(0)); 424 425 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 426 cl::desc("Debug func")); 427 428 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 429 cl::Hidden, cl::init(-1)); 430 431 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 432 cl::Hidden, cl::init(-1)); 433 434 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 435 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 436 STATISTIC(NumOptimizedAccessesToGlobalVar, 437 "Number of optimized accesses to global vars"); 438 STATISTIC(NumOptimizedAccessesToStackVar, 439 "Number of optimized accesses to stack vars"); 440 441 namespace { 442 443 /// This struct defines the shadow mapping using the rule: 444 /// shadow = (mem >> Scale) ADD-or-OR Offset. 445 /// If InGlobal is true, then 446 /// extern char __asan_shadow[]; 447 /// shadow = (mem >> Scale) + &__asan_shadow 448 struct ShadowMapping { 449 int Scale; 450 uint64_t Offset; 451 bool OrShadowOffset; 452 bool InGlobal; 453 }; 454 455 } // end anonymous namespace 456 457 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 458 bool IsKasan) { 459 bool IsAndroid = TargetTriple.isAndroid(); 460 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 461 bool IsMacOS = TargetTriple.isMacOSX(); 462 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 463 bool IsNetBSD = TargetTriple.isOSNetBSD(); 464 bool IsPS4CPU = TargetTriple.isPS4CPU(); 465 bool IsLinux = TargetTriple.isOSLinux(); 466 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 467 TargetTriple.getArch() == Triple::ppc64le; 468 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 469 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 470 bool IsMIPS32 = TargetTriple.isMIPS32(); 471 bool IsMIPS64 = TargetTriple.isMIPS64(); 472 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 473 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 474 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 475 bool IsWindows = TargetTriple.isOSWindows(); 476 bool IsFuchsia = TargetTriple.isOSFuchsia(); 477 bool IsEmscripten = TargetTriple.isOSEmscripten(); 478 bool IsAMDGPU = TargetTriple.isAMDGPU(); 479 480 ShadowMapping Mapping; 481 482 Mapping.Scale = kDefaultShadowScale; 483 if (ClMappingScale.getNumOccurrences() > 0) { 484 Mapping.Scale = ClMappingScale; 485 } 486 487 if (LongSize == 32) { 488 if (IsAndroid) 489 Mapping.Offset = kDynamicShadowSentinel; 490 else if (IsMIPS32) 491 Mapping.Offset = kMIPS32_ShadowOffset32; 492 else if (IsFreeBSD) 493 Mapping.Offset = kFreeBSD_ShadowOffset32; 494 else if (IsNetBSD) 495 Mapping.Offset = kNetBSD_ShadowOffset32; 496 else if (IsIOS) 497 Mapping.Offset = kDynamicShadowSentinel; 498 else if (IsWindows) 499 Mapping.Offset = kWindowsShadowOffset32; 500 else if (IsEmscripten) 501 Mapping.Offset = kEmscriptenShadowOffset; 502 else 503 Mapping.Offset = kDefaultShadowOffset32; 504 } else { // LongSize == 64 505 // Fuchsia is always PIE, which means that the beginning of the address 506 // space is always available. 507 if (IsFuchsia) 508 Mapping.Offset = 0; 509 else if (IsPPC64) 510 Mapping.Offset = kPPC64_ShadowOffset64; 511 else if (IsSystemZ) 512 Mapping.Offset = kSystemZ_ShadowOffset64; 513 else if (IsFreeBSD && !IsMIPS64) { 514 if (IsKasan) 515 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 516 else 517 Mapping.Offset = kFreeBSD_ShadowOffset64; 518 } else if (IsNetBSD) { 519 if (IsKasan) 520 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 521 else 522 Mapping.Offset = kNetBSD_ShadowOffset64; 523 } else if (IsPS4CPU) 524 Mapping.Offset = kPS4CPU_ShadowOffset64; 525 else if (IsLinux && IsX86_64) { 526 if (IsKasan) 527 Mapping.Offset = kLinuxKasan_ShadowOffset64; 528 else 529 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 530 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 531 } else if (IsWindows && IsX86_64) { 532 Mapping.Offset = kWindowsShadowOffset64; 533 } else if (IsMIPS64) 534 Mapping.Offset = kMIPS64_ShadowOffset64; 535 else if (IsIOS) 536 Mapping.Offset = kDynamicShadowSentinel; 537 else if (IsMacOS && IsAArch64) 538 Mapping.Offset = kDynamicShadowSentinel; 539 else if (IsAArch64) 540 Mapping.Offset = kAArch64_ShadowOffset64; 541 else if (IsRISCV64) 542 Mapping.Offset = kRISCV64_ShadowOffset64; 543 else if (IsAMDGPU) 544 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 545 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 546 else 547 Mapping.Offset = kDefaultShadowOffset64; 548 } 549 550 if (ClForceDynamicShadow) { 551 Mapping.Offset = kDynamicShadowSentinel; 552 } 553 554 if (ClMappingOffset.getNumOccurrences() > 0) { 555 Mapping.Offset = ClMappingOffset; 556 } 557 558 // OR-ing shadow offset if more efficient (at least on x86) if the offset 559 // is a power of two, but on ppc64 we have to use add since the shadow 560 // offset is not necessary 1/8-th of the address space. On SystemZ, 561 // we could OR the constant in a single instruction, but it's more 562 // efficient to load it once and use indexed addressing. 563 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 564 !IsRISCV64 && 565 !(Mapping.Offset & (Mapping.Offset - 1)) && 566 Mapping.Offset != kDynamicShadowSentinel; 567 bool IsAndroidWithIfuncSupport = 568 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 569 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 570 571 return Mapping; 572 } 573 574 namespace llvm { 575 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 576 bool IsKasan, uint64_t *ShadowBase, 577 int *MappingScale, bool *OrShadowOffset) { 578 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 579 *ShadowBase = Mapping.Offset; 580 *MappingScale = Mapping.Scale; 581 *OrShadowOffset = Mapping.OrShadowOffset; 582 } 583 584 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 585 : Packed(Packed), 586 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 587 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 588 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 589 590 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 591 uint8_t AccessSizeIndex) 592 : Packed((IsWrite << kIsWriteShift) + 593 (CompileKernel << kCompileKernelShift) + 594 (AccessSizeIndex << kAccessSizeIndexShift)), 595 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 596 CompileKernel(CompileKernel) {} 597 598 } // namespace llvm 599 600 static uint64_t getRedzoneSizeForScale(int MappingScale) { 601 // Redzone used for stack and globals is at least 32 bytes. 602 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 603 return std::max(32U, 1U << MappingScale); 604 } 605 606 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 607 if (TargetTriple.isOSEmscripten()) { 608 return kAsanEmscriptenCtorAndDtorPriority; 609 } else { 610 return kAsanCtorAndDtorPriority; 611 } 612 } 613 614 namespace { 615 616 /// Module analysis for getting various metadata about the module. 617 class ASanGlobalsMetadataWrapperPass : public ModulePass { 618 public: 619 static char ID; 620 621 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 622 initializeASanGlobalsMetadataWrapperPassPass( 623 *PassRegistry::getPassRegistry()); 624 } 625 626 bool runOnModule(Module &M) override { 627 GlobalsMD = GlobalsMetadata(M); 628 return false; 629 } 630 631 StringRef getPassName() const override { 632 return "ASanGlobalsMetadataWrapperPass"; 633 } 634 635 void getAnalysisUsage(AnalysisUsage &AU) const override { 636 AU.setPreservesAll(); 637 } 638 639 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 640 641 private: 642 GlobalsMetadata GlobalsMD; 643 }; 644 645 char ASanGlobalsMetadataWrapperPass::ID = 0; 646 647 /// AddressSanitizer: instrument the code in module to find memory bugs. 648 struct AddressSanitizer { 649 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 650 bool CompileKernel = false, bool Recover = false, 651 bool UseAfterScope = false, 652 AsanDetectStackUseAfterReturnMode UseAfterReturn = 653 AsanDetectStackUseAfterReturnMode::Runtime) 654 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 655 : CompileKernel), 656 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 657 UseAfterScope(UseAfterScope || ClUseAfterScope), 658 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 659 : UseAfterReturn), 660 GlobalsMD(*GlobalsMD) { 661 C = &(M.getContext()); 662 LongSize = M.getDataLayout().getPointerSizeInBits(); 663 IntptrTy = Type::getIntNTy(*C, LongSize); 664 Int8PtrTy = Type::getInt8PtrTy(*C); 665 Int32Ty = Type::getInt32Ty(*C); 666 TargetTriple = Triple(M.getTargetTriple()); 667 668 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 669 670 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 671 } 672 673 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 674 uint64_t ArraySize = 1; 675 if (AI.isArrayAllocation()) { 676 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 677 assert(CI && "non-constant array size"); 678 ArraySize = CI->getZExtValue(); 679 } 680 Type *Ty = AI.getAllocatedType(); 681 uint64_t SizeInBytes = 682 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 683 return SizeInBytes * ArraySize; 684 } 685 686 /// Check if we want (and can) handle this alloca. 687 bool isInterestingAlloca(const AllocaInst &AI); 688 689 bool ignoreAccess(Value *Ptr); 690 void getInterestingMemoryOperands( 691 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 692 693 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 694 InterestingMemoryOperand &O, bool UseCalls, 695 const DataLayout &DL); 696 void instrumentPointerComparisonOrSubtraction(Instruction *I); 697 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 698 Value *Addr, uint32_t TypeSize, bool IsWrite, 699 Value *SizeArgument, bool UseCalls, uint32_t Exp); 700 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 701 Instruction *InsertBefore, Value *Addr, 702 uint32_t TypeSize, bool IsWrite, 703 Value *SizeArgument); 704 void instrumentUnusualSizeOrAlignment(Instruction *I, 705 Instruction *InsertBefore, Value *Addr, 706 uint32_t TypeSize, bool IsWrite, 707 Value *SizeArgument, bool UseCalls, 708 uint32_t Exp); 709 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 710 Value *ShadowValue, uint32_t TypeSize); 711 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 712 bool IsWrite, size_t AccessSizeIndex, 713 Value *SizeArgument, uint32_t Exp); 714 void instrumentMemIntrinsic(MemIntrinsic *MI); 715 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 716 bool suppressInstrumentationSiteForDebug(int &Instrumented); 717 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 718 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 719 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 720 void markEscapedLocalAllocas(Function &F); 721 722 private: 723 friend struct FunctionStackPoisoner; 724 725 void initializeCallbacks(Module &M); 726 727 bool LooksLikeCodeInBug11395(Instruction *I); 728 bool GlobalIsLinkerInitialized(GlobalVariable *G); 729 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 730 uint64_t TypeSize) const; 731 732 /// Helper to cleanup per-function state. 733 struct FunctionStateRAII { 734 AddressSanitizer *Pass; 735 736 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 737 assert(Pass->ProcessedAllocas.empty() && 738 "last pass forgot to clear cache"); 739 assert(!Pass->LocalDynamicShadow); 740 } 741 742 ~FunctionStateRAII() { 743 Pass->LocalDynamicShadow = nullptr; 744 Pass->ProcessedAllocas.clear(); 745 } 746 }; 747 748 LLVMContext *C; 749 Triple TargetTriple; 750 int LongSize; 751 bool CompileKernel; 752 bool Recover; 753 bool UseAfterScope; 754 AsanDetectStackUseAfterReturnMode UseAfterReturn; 755 Type *IntptrTy; 756 Type *Int8PtrTy; 757 Type *Int32Ty; 758 ShadowMapping Mapping; 759 FunctionCallee AsanHandleNoReturnFunc; 760 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 761 Constant *AsanShadowGlobal; 762 763 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 764 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 765 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 766 767 // These arrays is indexed by AccessIsWrite and Experiment. 768 FunctionCallee AsanErrorCallbackSized[2][2]; 769 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 770 771 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 772 Value *LocalDynamicShadow = nullptr; 773 const GlobalsMetadata &GlobalsMD; 774 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 775 776 FunctionCallee AMDGPUAddressShared; 777 FunctionCallee AMDGPUAddressPrivate; 778 }; 779 780 class AddressSanitizerLegacyPass : public FunctionPass { 781 public: 782 static char ID; 783 784 explicit AddressSanitizerLegacyPass( 785 bool CompileKernel = false, bool Recover = false, 786 bool UseAfterScope = false, 787 AsanDetectStackUseAfterReturnMode UseAfterReturn = 788 AsanDetectStackUseAfterReturnMode::Runtime) 789 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 790 UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) { 791 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 792 } 793 794 StringRef getPassName() const override { 795 return "AddressSanitizerFunctionPass"; 796 } 797 798 void getAnalysisUsage(AnalysisUsage &AU) const override { 799 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 800 AU.addRequired<TargetLibraryInfoWrapperPass>(); 801 } 802 803 bool runOnFunction(Function &F) override { 804 GlobalsMetadata &GlobalsMD = 805 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 806 const TargetLibraryInfo *TLI = 807 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 808 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 809 UseAfterScope, UseAfterReturn); 810 return ASan.instrumentFunction(F, TLI); 811 } 812 813 private: 814 bool CompileKernel; 815 bool Recover; 816 bool UseAfterScope; 817 AsanDetectStackUseAfterReturnMode UseAfterReturn; 818 }; 819 820 class ModuleAddressSanitizer { 821 public: 822 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 823 bool CompileKernel = false, bool Recover = false, 824 bool UseGlobalsGC = true, bool UseOdrIndicator = false, 825 AsanDtorKind DestructorKind = AsanDtorKind::Global) 826 : GlobalsMD(*GlobalsMD), 827 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 828 : CompileKernel), 829 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 830 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 831 // Enable aliases as they should have no downside with ODR indicators. 832 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 833 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 834 // Not a typo: ClWithComdat is almost completely pointless without 835 // ClUseGlobalsGC (because then it only works on modules without 836 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 837 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 838 // argument is designed as workaround. Therefore, disable both 839 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 840 // do globals-gc. 841 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 842 DestructorKind(DestructorKind) { 843 C = &(M.getContext()); 844 int LongSize = M.getDataLayout().getPointerSizeInBits(); 845 IntptrTy = Type::getIntNTy(*C, LongSize); 846 TargetTriple = Triple(M.getTargetTriple()); 847 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 848 849 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 850 this->DestructorKind = ClOverrideDestructorKind; 851 assert(this->DestructorKind != AsanDtorKind::Invalid); 852 } 853 854 bool instrumentModule(Module &); 855 856 private: 857 void initializeCallbacks(Module &M); 858 859 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 860 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 861 ArrayRef<GlobalVariable *> ExtendedGlobals, 862 ArrayRef<Constant *> MetadataInitializers); 863 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 864 ArrayRef<GlobalVariable *> ExtendedGlobals, 865 ArrayRef<Constant *> MetadataInitializers, 866 const std::string &UniqueModuleId); 867 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 868 ArrayRef<GlobalVariable *> ExtendedGlobals, 869 ArrayRef<Constant *> MetadataInitializers); 870 void 871 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 872 ArrayRef<GlobalVariable *> ExtendedGlobals, 873 ArrayRef<Constant *> MetadataInitializers); 874 875 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 876 StringRef OriginalName); 877 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 878 StringRef InternalSuffix); 879 Instruction *CreateAsanModuleDtor(Module &M); 880 881 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 882 bool shouldInstrumentGlobal(GlobalVariable *G) const; 883 bool ShouldUseMachOGlobalsSection() const; 884 StringRef getGlobalMetadataSection() const; 885 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 886 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 887 uint64_t getMinRedzoneSizeForGlobal() const { 888 return getRedzoneSizeForScale(Mapping.Scale); 889 } 890 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 891 int GetAsanVersion(const Module &M) const; 892 893 const GlobalsMetadata &GlobalsMD; 894 bool CompileKernel; 895 bool Recover; 896 bool UseGlobalsGC; 897 bool UsePrivateAlias; 898 bool UseOdrIndicator; 899 bool UseCtorComdat; 900 AsanDtorKind DestructorKind; 901 Type *IntptrTy; 902 LLVMContext *C; 903 Triple TargetTriple; 904 ShadowMapping Mapping; 905 FunctionCallee AsanPoisonGlobals; 906 FunctionCallee AsanUnpoisonGlobals; 907 FunctionCallee AsanRegisterGlobals; 908 FunctionCallee AsanUnregisterGlobals; 909 FunctionCallee AsanRegisterImageGlobals; 910 FunctionCallee AsanUnregisterImageGlobals; 911 FunctionCallee AsanRegisterElfGlobals; 912 FunctionCallee AsanUnregisterElfGlobals; 913 914 Function *AsanCtorFunction = nullptr; 915 Function *AsanDtorFunction = nullptr; 916 }; 917 918 class ModuleAddressSanitizerLegacyPass : public ModulePass { 919 public: 920 static char ID; 921 922 explicit ModuleAddressSanitizerLegacyPass( 923 bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true, 924 bool UseOdrIndicator = false, 925 AsanDtorKind DestructorKind = AsanDtorKind::Global) 926 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 927 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), 928 DestructorKind(DestructorKind) { 929 initializeModuleAddressSanitizerLegacyPassPass( 930 *PassRegistry::getPassRegistry()); 931 } 932 933 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 934 935 void getAnalysisUsage(AnalysisUsage &AU) const override { 936 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 937 } 938 939 bool runOnModule(Module &M) override { 940 GlobalsMetadata &GlobalsMD = 941 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 942 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 943 UseGlobalGC, UseOdrIndicator, 944 DestructorKind); 945 return ASanModule.instrumentModule(M); 946 } 947 948 private: 949 bool CompileKernel; 950 bool Recover; 951 bool UseGlobalGC; 952 bool UseOdrIndicator; 953 AsanDtorKind DestructorKind; 954 }; 955 956 // Stack poisoning does not play well with exception handling. 957 // When an exception is thrown, we essentially bypass the code 958 // that unpoisones the stack. This is why the run-time library has 959 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 960 // stack in the interceptor. This however does not work inside the 961 // actual function which catches the exception. Most likely because the 962 // compiler hoists the load of the shadow value somewhere too high. 963 // This causes asan to report a non-existing bug on 453.povray. 964 // It sounds like an LLVM bug. 965 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 966 Function &F; 967 AddressSanitizer &ASan; 968 DIBuilder DIB; 969 LLVMContext *C; 970 Type *IntptrTy; 971 Type *IntptrPtrTy; 972 ShadowMapping Mapping; 973 974 SmallVector<AllocaInst *, 16> AllocaVec; 975 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 976 SmallVector<Instruction *, 8> RetVec; 977 978 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 979 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 980 FunctionCallee AsanSetShadowFunc[0x100] = {}; 981 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 982 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 983 984 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 985 struct AllocaPoisonCall { 986 IntrinsicInst *InsBefore; 987 AllocaInst *AI; 988 uint64_t Size; 989 bool DoPoison; 990 }; 991 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 992 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 993 bool HasUntracedLifetimeIntrinsic = false; 994 995 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 996 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 997 AllocaInst *DynamicAllocaLayout = nullptr; 998 IntrinsicInst *LocalEscapeCall = nullptr; 999 1000 bool HasInlineAsm = false; 1001 bool HasReturnsTwiceCall = false; 1002 bool PoisonStack; 1003 1004 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 1005 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 1006 C(ASan.C), IntptrTy(ASan.IntptrTy), 1007 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 1008 PoisonStack(ClStack && 1009 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 1010 1011 bool runOnFunction() { 1012 if (!PoisonStack) 1013 return false; 1014 1015 if (ClRedzoneByvalArgs) 1016 copyArgsPassedByValToAllocas(); 1017 1018 // Collect alloca, ret, lifetime instructions etc. 1019 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 1020 1021 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 1022 1023 initializeCallbacks(*F.getParent()); 1024 1025 if (HasUntracedLifetimeIntrinsic) { 1026 // If there are lifetime intrinsics which couldn't be traced back to an 1027 // alloca, we may not know exactly when a variable enters scope, and 1028 // therefore should "fail safe" by not poisoning them. 1029 StaticAllocaPoisonCallVec.clear(); 1030 DynamicAllocaPoisonCallVec.clear(); 1031 } 1032 1033 processDynamicAllocas(); 1034 processStaticAllocas(); 1035 1036 if (ClDebugStack) { 1037 LLVM_DEBUG(dbgs() << F); 1038 } 1039 return true; 1040 } 1041 1042 // Arguments marked with the "byval" attribute are implicitly copied without 1043 // using an alloca instruction. To produce redzones for those arguments, we 1044 // copy them a second time into memory allocated with an alloca instruction. 1045 void copyArgsPassedByValToAllocas(); 1046 1047 // Finds all Alloca instructions and puts 1048 // poisoned red zones around all of them. 1049 // Then unpoison everything back before the function returns. 1050 void processStaticAllocas(); 1051 void processDynamicAllocas(); 1052 1053 void createDynamicAllocasInitStorage(); 1054 1055 // ----------------------- Visitors. 1056 /// Collect all Ret instructions, or the musttail call instruction if it 1057 /// precedes the return instruction. 1058 void visitReturnInst(ReturnInst &RI) { 1059 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 1060 RetVec.push_back(CI); 1061 else 1062 RetVec.push_back(&RI); 1063 } 1064 1065 /// Collect all Resume instructions. 1066 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 1067 1068 /// Collect all CatchReturnInst instructions. 1069 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 1070 1071 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 1072 Value *SavedStack) { 1073 IRBuilder<> IRB(InstBefore); 1074 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1075 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1076 // need to adjust extracted SP to compute the address of the most recent 1077 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1078 // this purpose. 1079 if (!isa<ReturnInst>(InstBefore)) { 1080 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1081 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1082 {IntptrTy}); 1083 1084 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1085 1086 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1087 DynamicAreaOffset); 1088 } 1089 1090 IRB.CreateCall( 1091 AsanAllocasUnpoisonFunc, 1092 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1093 } 1094 1095 // Unpoison dynamic allocas redzones. 1096 void unpoisonDynamicAllocas() { 1097 for (Instruction *Ret : RetVec) 1098 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1099 1100 for (Instruction *StackRestoreInst : StackRestoreVec) 1101 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1102 StackRestoreInst->getOperand(0)); 1103 } 1104 1105 // Deploy and poison redzones around dynamic alloca call. To do this, we 1106 // should replace this call with another one with changed parameters and 1107 // replace all its uses with new address, so 1108 // addr = alloca type, old_size, align 1109 // is replaced by 1110 // new_size = (old_size + additional_size) * sizeof(type) 1111 // tmp = alloca i8, new_size, max(align, 32) 1112 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1113 // Additional_size is added to make new memory allocation contain not only 1114 // requested memory, but also left, partial and right redzones. 1115 void handleDynamicAllocaCall(AllocaInst *AI); 1116 1117 /// Collect Alloca instructions we want (and can) handle. 1118 void visitAllocaInst(AllocaInst &AI) { 1119 if (!ASan.isInterestingAlloca(AI)) { 1120 if (AI.isStaticAlloca()) { 1121 // Skip over allocas that are present *before* the first instrumented 1122 // alloca, we don't want to move those around. 1123 if (AllocaVec.empty()) 1124 return; 1125 1126 StaticAllocasToMoveUp.push_back(&AI); 1127 } 1128 return; 1129 } 1130 1131 if (!AI.isStaticAlloca()) 1132 DynamicAllocaVec.push_back(&AI); 1133 else 1134 AllocaVec.push_back(&AI); 1135 } 1136 1137 /// Collect lifetime intrinsic calls to check for use-after-scope 1138 /// errors. 1139 void visitIntrinsicInst(IntrinsicInst &II) { 1140 Intrinsic::ID ID = II.getIntrinsicID(); 1141 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1142 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1143 if (!ASan.UseAfterScope) 1144 return; 1145 if (!II.isLifetimeStartOrEnd()) 1146 return; 1147 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1148 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1149 // If size argument is undefined, don't do anything. 1150 if (Size->isMinusOne()) return; 1151 // Check that size doesn't saturate uint64_t and can 1152 // be stored in IntptrTy. 1153 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1154 if (SizeValue == ~0ULL || 1155 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1156 return; 1157 // Find alloca instruction that corresponds to llvm.lifetime argument. 1158 // Currently we can only handle lifetime markers pointing to the 1159 // beginning of the alloca. 1160 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1161 if (!AI) { 1162 HasUntracedLifetimeIntrinsic = true; 1163 return; 1164 } 1165 // We're interested only in allocas we can handle. 1166 if (!ASan.isInterestingAlloca(*AI)) 1167 return; 1168 bool DoPoison = (ID == Intrinsic::lifetime_end); 1169 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1170 if (AI->isStaticAlloca()) 1171 StaticAllocaPoisonCallVec.push_back(APC); 1172 else if (ClInstrumentDynamicAllocas) 1173 DynamicAllocaPoisonCallVec.push_back(APC); 1174 } 1175 1176 void visitCallBase(CallBase &CB) { 1177 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1178 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1179 HasReturnsTwiceCall |= CI->canReturnTwice(); 1180 } 1181 } 1182 1183 // ---------------------- Helpers. 1184 void initializeCallbacks(Module &M); 1185 1186 // Copies bytes from ShadowBytes into shadow memory for indexes where 1187 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1188 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1189 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1190 IRBuilder<> &IRB, Value *ShadowBase); 1191 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1192 size_t Begin, size_t End, IRBuilder<> &IRB, 1193 Value *ShadowBase); 1194 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1195 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1196 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1197 1198 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1199 1200 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1201 bool Dynamic); 1202 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1203 Instruction *ThenTerm, Value *ValueIfFalse); 1204 }; 1205 1206 } // end anonymous namespace 1207 1208 void LocationMetadata::parse(MDNode *MDN) { 1209 assert(MDN->getNumOperands() == 3); 1210 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1211 Filename = DIFilename->getString(); 1212 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1213 ColumnNo = 1214 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1215 } 1216 1217 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1218 // we want to sanitize instead and reading this metadata on each pass over a 1219 // function instead of reading module level metadata at first. 1220 GlobalsMetadata::GlobalsMetadata(Module &M) { 1221 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1222 if (!Globals) 1223 return; 1224 for (auto MDN : Globals->operands()) { 1225 // Metadata node contains the global and the fields of "Entry". 1226 assert(MDN->getNumOperands() == 5); 1227 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1228 // The optimizer may optimize away a global entirely. 1229 if (!V) 1230 continue; 1231 auto *StrippedV = V->stripPointerCasts(); 1232 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1233 if (!GV) 1234 continue; 1235 // We can already have an entry for GV if it was merged with another 1236 // global. 1237 Entry &E = Entries[GV]; 1238 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1239 E.SourceLoc.parse(Loc); 1240 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1241 E.Name = Name->getString(); 1242 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1243 E.IsDynInit |= IsDynInit->isOne(); 1244 ConstantInt *IsExcluded = 1245 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1246 E.IsExcluded |= IsExcluded->isOne(); 1247 } 1248 } 1249 1250 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1251 1252 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1253 ModuleAnalysisManager &AM) { 1254 return GlobalsMetadata(M); 1255 } 1256 1257 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1258 AnalysisManager<Function> &AM) { 1259 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1260 Module &M = *F.getParent(); 1261 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1262 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1263 AddressSanitizer Sanitizer(M, R, Options.CompileKernel, Options.Recover, 1264 Options.UseAfterScope, Options.UseAfterReturn); 1265 if (Sanitizer.instrumentFunction(F, TLI)) 1266 return PreservedAnalyses::none(); 1267 return PreservedAnalyses::all(); 1268 } 1269 1270 report_fatal_error( 1271 "The ASanGlobalsMetadataAnalysis is required to run before " 1272 "AddressSanitizer can run"); 1273 return PreservedAnalyses::all(); 1274 } 1275 1276 void AddressSanitizerPass::printPipeline( 1277 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1278 static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( 1279 OS, MapClassName2PassName); 1280 OS << "<"; 1281 if (Options.CompileKernel) 1282 OS << "kernel"; 1283 OS << ">"; 1284 } 1285 1286 void ModuleAddressSanitizerPass::printPipeline( 1287 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1288 static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline( 1289 OS, MapClassName2PassName); 1290 OS << "<"; 1291 if (CompileKernel) 1292 OS << "kernel"; 1293 OS << ">"; 1294 } 1295 1296 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( 1297 bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator, 1298 AsanDtorKind DestructorKind) 1299 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1300 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} 1301 1302 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1303 AnalysisManager<Module> &AM) { 1304 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1305 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1306 UseGlobalGC, UseOdrIndicator, 1307 DestructorKind); 1308 if (Sanitizer.instrumentModule(M)) 1309 return PreservedAnalyses::none(); 1310 return PreservedAnalyses::all(); 1311 } 1312 1313 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1314 "Read metadata to mark which globals should be instrumented " 1315 "when running ASan.", 1316 false, true) 1317 1318 char AddressSanitizerLegacyPass::ID = 0; 1319 1320 INITIALIZE_PASS_BEGIN( 1321 AddressSanitizerLegacyPass, "asan", 1322 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1323 false) 1324 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1325 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1326 INITIALIZE_PASS_END( 1327 AddressSanitizerLegacyPass, "asan", 1328 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1329 false) 1330 1331 FunctionPass *llvm::createAddressSanitizerFunctionPass( 1332 bool CompileKernel, bool Recover, bool UseAfterScope, 1333 AsanDetectStackUseAfterReturnMode UseAfterReturn) { 1334 assert(!CompileKernel || Recover); 1335 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope, 1336 UseAfterReturn); 1337 } 1338 1339 char ModuleAddressSanitizerLegacyPass::ID = 0; 1340 1341 INITIALIZE_PASS( 1342 ModuleAddressSanitizerLegacyPass, "asan-module", 1343 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1344 "ModulePass", 1345 false, false) 1346 1347 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1348 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator, 1349 AsanDtorKind Destructor) { 1350 assert(!CompileKernel || Recover); 1351 return new ModuleAddressSanitizerLegacyPass( 1352 CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor); 1353 } 1354 1355 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1356 size_t Res = countTrailingZeros(TypeSize / 8); 1357 assert(Res < kNumberOfAccessSizes); 1358 return Res; 1359 } 1360 1361 /// Create a global describing a source location. 1362 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1363 LocationMetadata MD) { 1364 Constant *LocData[] = { 1365 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1366 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1367 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1368 }; 1369 auto LocStruct = ConstantStruct::getAnon(LocData); 1370 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1371 GlobalValue::PrivateLinkage, LocStruct, 1372 kAsanGenPrefix); 1373 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1374 return GV; 1375 } 1376 1377 /// Check if \p G has been created by a trusted compiler pass. 1378 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1379 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1380 if (G->getName().startswith("llvm.")) 1381 return true; 1382 1383 // Do not instrument asan globals. 1384 if (G->getName().startswith(kAsanGenPrefix) || 1385 G->getName().startswith(kSanCovGenPrefix) || 1386 G->getName().startswith(kODRGenPrefix)) 1387 return true; 1388 1389 // Do not instrument gcov counter arrays. 1390 if (G->getName() == "__llvm_gcov_ctr") 1391 return true; 1392 1393 return false; 1394 } 1395 1396 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1397 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1398 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1399 if (AddrSpace == 3 || AddrSpace == 5) 1400 return true; 1401 return false; 1402 } 1403 1404 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1405 // Shadow >> scale 1406 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1407 if (Mapping.Offset == 0) return Shadow; 1408 // (Shadow >> scale) | offset 1409 Value *ShadowBase; 1410 if (LocalDynamicShadow) 1411 ShadowBase = LocalDynamicShadow; 1412 else 1413 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1414 if (Mapping.OrShadowOffset) 1415 return IRB.CreateOr(Shadow, ShadowBase); 1416 else 1417 return IRB.CreateAdd(Shadow, ShadowBase); 1418 } 1419 1420 // Instrument memset/memmove/memcpy 1421 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1422 IRBuilder<> IRB(MI); 1423 if (isa<MemTransferInst>(MI)) { 1424 IRB.CreateCall( 1425 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1426 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1427 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1428 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1429 } else if (isa<MemSetInst>(MI)) { 1430 IRB.CreateCall( 1431 AsanMemset, 1432 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1433 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1434 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1435 } 1436 MI->eraseFromParent(); 1437 } 1438 1439 /// Check if we want (and can) handle this alloca. 1440 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1441 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1442 1443 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1444 return PreviouslySeenAllocaInfo->getSecond(); 1445 1446 bool IsInteresting = 1447 (AI.getAllocatedType()->isSized() && 1448 // alloca() may be called with 0 size, ignore it. 1449 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1450 // We are only interested in allocas not promotable to registers. 1451 // Promotable allocas are common under -O0. 1452 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1453 // inalloca allocas are not treated as static, and we don't want 1454 // dynamic alloca instrumentation for them as well. 1455 !AI.isUsedWithInAlloca() && 1456 // swifterror allocas are register promoted by ISel 1457 !AI.isSwiftError()); 1458 1459 ProcessedAllocas[&AI] = IsInteresting; 1460 return IsInteresting; 1461 } 1462 1463 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1464 // Instrument acesses from different address spaces only for AMDGPU. 1465 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1466 if (PtrTy->getPointerAddressSpace() != 0 && 1467 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1468 return true; 1469 1470 // Ignore swifterror addresses. 1471 // swifterror memory addresses are mem2reg promoted by instruction 1472 // selection. As such they cannot have regular uses like an instrumentation 1473 // function and it makes no sense to track them as memory. 1474 if (Ptr->isSwiftError()) 1475 return true; 1476 1477 // Treat memory accesses to promotable allocas as non-interesting since they 1478 // will not cause memory violations. This greatly speeds up the instrumented 1479 // executable at -O0. 1480 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1481 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1482 return true; 1483 1484 return false; 1485 } 1486 1487 void AddressSanitizer::getInterestingMemoryOperands( 1488 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1489 // Skip memory accesses inserted by another instrumentation. 1490 if (I->hasMetadata("nosanitize")) 1491 return; 1492 1493 // Do not instrument the load fetching the dynamic shadow address. 1494 if (LocalDynamicShadow == I) 1495 return; 1496 1497 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1498 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1499 return; 1500 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1501 LI->getType(), LI->getAlign()); 1502 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1503 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1504 return; 1505 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1506 SI->getValueOperand()->getType(), SI->getAlign()); 1507 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1508 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1509 return; 1510 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1511 RMW->getValOperand()->getType(), None); 1512 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1513 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1514 return; 1515 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1516 XCHG->getCompareOperand()->getType(), None); 1517 } else if (auto CI = dyn_cast<CallInst>(I)) { 1518 auto *F = CI->getCalledFunction(); 1519 if (F && (F->getName().startswith("llvm.masked.load.") || 1520 F->getName().startswith("llvm.masked.store."))) { 1521 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1522 // Masked store has an initial operand for the value. 1523 unsigned OpOffset = IsWrite ? 1 : 0; 1524 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1525 return; 1526 1527 auto BasePtr = CI->getOperand(OpOffset); 1528 if (ignoreAccess(BasePtr)) 1529 return; 1530 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1531 MaybeAlign Alignment = Align(1); 1532 // Otherwise no alignment guarantees. We probably got Undef. 1533 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1534 Alignment = Op->getMaybeAlignValue(); 1535 Value *Mask = CI->getOperand(2 + OpOffset); 1536 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1537 } else { 1538 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1539 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1540 ignoreAccess(CI->getArgOperand(ArgNo))) 1541 continue; 1542 Type *Ty = CI->getParamByValType(ArgNo); 1543 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1544 } 1545 } 1546 } 1547 } 1548 1549 static bool isPointerOperand(Value *V) { 1550 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1551 } 1552 1553 // This is a rough heuristic; it may cause both false positives and 1554 // false negatives. The proper implementation requires cooperation with 1555 // the frontend. 1556 static bool isInterestingPointerComparison(Instruction *I) { 1557 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1558 if (!Cmp->isRelational()) 1559 return false; 1560 } else { 1561 return false; 1562 } 1563 return isPointerOperand(I->getOperand(0)) && 1564 isPointerOperand(I->getOperand(1)); 1565 } 1566 1567 // This is a rough heuristic; it may cause both false positives and 1568 // false negatives. The proper implementation requires cooperation with 1569 // the frontend. 1570 static bool isInterestingPointerSubtraction(Instruction *I) { 1571 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1572 if (BO->getOpcode() != Instruction::Sub) 1573 return false; 1574 } else { 1575 return false; 1576 } 1577 return isPointerOperand(I->getOperand(0)) && 1578 isPointerOperand(I->getOperand(1)); 1579 } 1580 1581 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1582 // If a global variable does not have dynamic initialization we don't 1583 // have to instrument it. However, if a global does not have initializer 1584 // at all, we assume it has dynamic initializer (in other TU). 1585 // 1586 // FIXME: Metadata should be attched directly to the global directly instead 1587 // of being added to llvm.asan.globals. 1588 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1589 } 1590 1591 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1592 Instruction *I) { 1593 IRBuilder<> IRB(I); 1594 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1595 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1596 for (Value *&i : Param) { 1597 if (i->getType()->isPointerTy()) 1598 i = IRB.CreatePointerCast(i, IntptrTy); 1599 } 1600 IRB.CreateCall(F, Param); 1601 } 1602 1603 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1604 Instruction *InsertBefore, Value *Addr, 1605 MaybeAlign Alignment, unsigned Granularity, 1606 uint32_t TypeSize, bool IsWrite, 1607 Value *SizeArgument, bool UseCalls, 1608 uint32_t Exp) { 1609 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1610 // if the data is properly aligned. 1611 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1612 TypeSize == 128) && 1613 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1614 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1615 nullptr, UseCalls, Exp); 1616 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1617 IsWrite, nullptr, UseCalls, Exp); 1618 } 1619 1620 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1621 const DataLayout &DL, Type *IntptrTy, 1622 Value *Mask, Instruction *I, 1623 Value *Addr, MaybeAlign Alignment, 1624 unsigned Granularity, uint32_t TypeSize, 1625 bool IsWrite, Value *SizeArgument, 1626 bool UseCalls, uint32_t Exp) { 1627 auto *VTy = cast<FixedVectorType>( 1628 cast<PointerType>(Addr->getType())->getElementType()); 1629 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1630 unsigned Num = VTy->getNumElements(); 1631 auto Zero = ConstantInt::get(IntptrTy, 0); 1632 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1633 Value *InstrumentedAddress = nullptr; 1634 Instruction *InsertBefore = I; 1635 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1636 // dyn_cast as we might get UndefValue 1637 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1638 if (Masked->isZero()) 1639 // Mask is constant false, so no instrumentation needed. 1640 continue; 1641 // If we have a true or undef value, fall through to doInstrumentAddress 1642 // with InsertBefore == I 1643 } 1644 } else { 1645 IRBuilder<> IRB(I); 1646 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1647 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1648 InsertBefore = ThenTerm; 1649 } 1650 1651 IRBuilder<> IRB(InsertBefore); 1652 InstrumentedAddress = 1653 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1654 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1655 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1656 UseCalls, Exp); 1657 } 1658 } 1659 1660 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1661 InterestingMemoryOperand &O, bool UseCalls, 1662 const DataLayout &DL) { 1663 Value *Addr = O.getPtr(); 1664 1665 // Optimization experiments. 1666 // The experiments can be used to evaluate potential optimizations that remove 1667 // instrumentation (assess false negatives). Instead of completely removing 1668 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1669 // experiments that want to remove instrumentation of this instruction). 1670 // If Exp is non-zero, this pass will emit special calls into runtime 1671 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1672 // make runtime terminate the program in a special way (with a different 1673 // exit status). Then you run the new compiler on a buggy corpus, collect 1674 // the special terminations (ideally, you don't see them at all -- no false 1675 // negatives) and make the decision on the optimization. 1676 uint32_t Exp = ClForceExperiment; 1677 1678 if (ClOpt && ClOptGlobals) { 1679 // If initialization order checking is disabled, a simple access to a 1680 // dynamically initialized global is always valid. 1681 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1682 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1683 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1684 NumOptimizedAccessesToGlobalVar++; 1685 return; 1686 } 1687 } 1688 1689 if (ClOpt && ClOptStack) { 1690 // A direct inbounds access to a stack variable is always valid. 1691 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1692 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1693 NumOptimizedAccessesToStackVar++; 1694 return; 1695 } 1696 } 1697 1698 if (O.IsWrite) 1699 NumInstrumentedWrites++; 1700 else 1701 NumInstrumentedReads++; 1702 1703 unsigned Granularity = 1 << Mapping.Scale; 1704 if (O.MaybeMask) { 1705 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1706 Addr, O.Alignment, Granularity, O.TypeSize, 1707 O.IsWrite, nullptr, UseCalls, Exp); 1708 } else { 1709 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1710 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1711 Exp); 1712 } 1713 } 1714 1715 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1716 Value *Addr, bool IsWrite, 1717 size_t AccessSizeIndex, 1718 Value *SizeArgument, 1719 uint32_t Exp) { 1720 IRBuilder<> IRB(InsertBefore); 1721 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1722 CallInst *Call = nullptr; 1723 if (SizeArgument) { 1724 if (Exp == 0) 1725 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1726 {Addr, SizeArgument}); 1727 else 1728 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1729 {Addr, SizeArgument, ExpVal}); 1730 } else { 1731 if (Exp == 0) 1732 Call = 1733 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1734 else 1735 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1736 {Addr, ExpVal}); 1737 } 1738 1739 Call->setCannotMerge(); 1740 return Call; 1741 } 1742 1743 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1744 Value *ShadowValue, 1745 uint32_t TypeSize) { 1746 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1747 // Addr & (Granularity - 1) 1748 Value *LastAccessedByte = 1749 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1750 // (Addr & (Granularity - 1)) + size - 1 1751 if (TypeSize / 8 > 1) 1752 LastAccessedByte = IRB.CreateAdd( 1753 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1754 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1755 LastAccessedByte = 1756 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1757 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1758 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1759 } 1760 1761 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1762 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1763 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { 1764 // Do not instrument unsupported addrspaces. 1765 if (isUnsupportedAMDGPUAddrspace(Addr)) 1766 return nullptr; 1767 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1768 // Follow host instrumentation for global and constant addresses. 1769 if (PtrTy->getPointerAddressSpace() != 0) 1770 return InsertBefore; 1771 // Instrument generic addresses in supported addressspaces. 1772 IRBuilder<> IRB(InsertBefore); 1773 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); 1774 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); 1775 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); 1776 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1777 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); 1778 Value *AddrSpaceZeroLanding = 1779 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1780 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1781 return InsertBefore; 1782 } 1783 1784 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1785 Instruction *InsertBefore, Value *Addr, 1786 uint32_t TypeSize, bool IsWrite, 1787 Value *SizeArgument, bool UseCalls, 1788 uint32_t Exp) { 1789 if (TargetTriple.isAMDGPU()) { 1790 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1791 TypeSize, IsWrite, SizeArgument); 1792 if (!InsertBefore) 1793 return; 1794 } 1795 1796 IRBuilder<> IRB(InsertBefore); 1797 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1798 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1799 1800 if (UseCalls && ClOptimizeCallbacks) { 1801 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1802 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1803 IRB.CreateCall( 1804 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), 1805 {IRB.CreatePointerCast(Addr, Int8PtrTy), 1806 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1807 return; 1808 } 1809 1810 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1811 if (UseCalls) { 1812 if (Exp == 0) 1813 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1814 AddrLong); 1815 else 1816 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1817 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1818 return; 1819 } 1820 1821 Type *ShadowTy = 1822 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1823 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1824 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1825 Value *CmpVal = Constant::getNullValue(ShadowTy); 1826 Value *ShadowValue = 1827 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1828 1829 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1830 size_t Granularity = 1ULL << Mapping.Scale; 1831 Instruction *CrashTerm = nullptr; 1832 1833 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1834 // We use branch weights for the slow path check, to indicate that the slow 1835 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1836 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1837 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1838 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1839 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1840 IRB.SetInsertPoint(CheckTerm); 1841 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1842 if (Recover) { 1843 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1844 } else { 1845 BasicBlock *CrashBlock = 1846 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1847 CrashTerm = new UnreachableInst(*C, CrashBlock); 1848 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1849 ReplaceInstWithInst(CheckTerm, NewTerm); 1850 } 1851 } else { 1852 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1853 } 1854 1855 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1856 AccessSizeIndex, SizeArgument, Exp); 1857 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1858 } 1859 1860 // Instrument unusual size or unusual alignment. 1861 // We can not do it with a single check, so we do 1-byte check for the first 1862 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1863 // to report the actual access size. 1864 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1865 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1866 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1867 IRBuilder<> IRB(InsertBefore); 1868 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1869 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1870 if (UseCalls) { 1871 if (Exp == 0) 1872 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1873 {AddrLong, Size}); 1874 else 1875 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1876 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1877 } else { 1878 Value *LastByte = IRB.CreateIntToPtr( 1879 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1880 Addr->getType()); 1881 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1882 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1883 } 1884 } 1885 1886 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1887 GlobalValue *ModuleName) { 1888 // Set up the arguments to our poison/unpoison functions. 1889 IRBuilder<> IRB(&GlobalInit.front(), 1890 GlobalInit.front().getFirstInsertionPt()); 1891 1892 // Add a call to poison all external globals before the given function starts. 1893 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1894 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1895 1896 // Add calls to unpoison all globals before each return instruction. 1897 for (auto &BB : GlobalInit.getBasicBlockList()) 1898 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1899 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1900 } 1901 1902 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1903 Module &M, GlobalValue *ModuleName) { 1904 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1905 if (!GV) 1906 return; 1907 1908 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1909 if (!CA) 1910 return; 1911 1912 for (Use &OP : CA->operands()) { 1913 if (isa<ConstantAggregateZero>(OP)) continue; 1914 ConstantStruct *CS = cast<ConstantStruct>(OP); 1915 1916 // Must have a function or null ptr. 1917 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1918 if (F->getName() == kAsanModuleCtorName) continue; 1919 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1920 // Don't instrument CTORs that will run before asan.module_ctor. 1921 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1922 continue; 1923 poisonOneInitializer(*F, ModuleName); 1924 } 1925 } 1926 } 1927 1928 const GlobalVariable * 1929 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1930 // In case this function should be expanded to include rules that do not just 1931 // apply when CompileKernel is true, either guard all existing rules with an 1932 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1933 // should also apply to user space. 1934 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1935 1936 const Constant *C = GA.getAliasee(); 1937 1938 // When compiling the kernel, globals that are aliased by symbols prefixed 1939 // by "__" are special and cannot be padded with a redzone. 1940 if (GA.getName().startswith("__")) 1941 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1942 1943 return nullptr; 1944 } 1945 1946 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1947 Type *Ty = G->getValueType(); 1948 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1949 1950 // FIXME: Metadata should be attched directly to the global directly instead 1951 // of being added to llvm.asan.globals. 1952 if (GlobalsMD.get(G).IsExcluded) return false; 1953 if (!Ty->isSized()) return false; 1954 if (!G->hasInitializer()) return false; 1955 // Globals in address space 1 and 4 are supported for AMDGPU. 1956 if (G->getAddressSpace() && 1957 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1958 return false; 1959 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1960 // Two problems with thread-locals: 1961 // - The address of the main thread's copy can't be computed at link-time. 1962 // - Need to poison all copies, not just the main thread's one. 1963 if (G->isThreadLocal()) return false; 1964 // For now, just ignore this Global if the alignment is large. 1965 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1966 1967 // For non-COFF targets, only instrument globals known to be defined by this 1968 // TU. 1969 // FIXME: We can instrument comdat globals on ELF if we are using the 1970 // GC-friendly metadata scheme. 1971 if (!TargetTriple.isOSBinFormatCOFF()) { 1972 if (!G->hasExactDefinition() || G->hasComdat()) 1973 return false; 1974 } else { 1975 // On COFF, don't instrument non-ODR linkages. 1976 if (G->isInterposable()) 1977 return false; 1978 } 1979 1980 // If a comdat is present, it must have a selection kind that implies ODR 1981 // semantics: no duplicates, any, or exact match. 1982 if (Comdat *C = G->getComdat()) { 1983 switch (C->getSelectionKind()) { 1984 case Comdat::Any: 1985 case Comdat::ExactMatch: 1986 case Comdat::NoDeduplicate: 1987 break; 1988 case Comdat::Largest: 1989 case Comdat::SameSize: 1990 return false; 1991 } 1992 } 1993 1994 if (G->hasSection()) { 1995 // The kernel uses explicit sections for mostly special global variables 1996 // that we should not instrument. E.g. the kernel may rely on their layout 1997 // without redzones, or remove them at link time ("discard.*"), etc. 1998 if (CompileKernel) 1999 return false; 2000 2001 StringRef Section = G->getSection(); 2002 2003 // Globals from llvm.metadata aren't emitted, do not instrument them. 2004 if (Section == "llvm.metadata") return false; 2005 // Do not instrument globals from special LLVM sections. 2006 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 2007 2008 // Do not instrument function pointers to initialization and termination 2009 // routines: dynamic linker will not properly handle redzones. 2010 if (Section.startswith(".preinit_array") || 2011 Section.startswith(".init_array") || 2012 Section.startswith(".fini_array")) { 2013 return false; 2014 } 2015 2016 // Do not instrument user-defined sections (with names resembling 2017 // valid C identifiers) 2018 if (TargetTriple.isOSBinFormatELF()) { 2019 if (llvm::all_of(Section, 2020 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 2021 return false; 2022 } 2023 2024 // On COFF, if the section name contains '$', it is highly likely that the 2025 // user is using section sorting to create an array of globals similar to 2026 // the way initialization callbacks are registered in .init_array and 2027 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 2028 // to such globals is counterproductive, because the intent is that they 2029 // will form an array, and out-of-bounds accesses are expected. 2030 // See https://github.com/google/sanitizers/issues/305 2031 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 2032 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 2033 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 2034 << *G << "\n"); 2035 return false; 2036 } 2037 2038 if (TargetTriple.isOSBinFormatMachO()) { 2039 StringRef ParsedSegment, ParsedSection; 2040 unsigned TAA = 0, StubSize = 0; 2041 bool TAAParsed; 2042 cantFail(MCSectionMachO::ParseSectionSpecifier( 2043 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 2044 2045 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 2046 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 2047 // them. 2048 if (ParsedSegment == "__OBJC" || 2049 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 2050 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 2051 return false; 2052 } 2053 // See https://github.com/google/sanitizers/issues/32 2054 // Constant CFString instances are compiled in the following way: 2055 // -- the string buffer is emitted into 2056 // __TEXT,__cstring,cstring_literals 2057 // -- the constant NSConstantString structure referencing that buffer 2058 // is placed into __DATA,__cfstring 2059 // Therefore there's no point in placing redzones into __DATA,__cfstring. 2060 // Moreover, it causes the linker to crash on OS X 10.7 2061 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 2062 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 2063 return false; 2064 } 2065 // The linker merges the contents of cstring_literals and removes the 2066 // trailing zeroes. 2067 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 2068 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 2069 return false; 2070 } 2071 } 2072 } 2073 2074 if (CompileKernel) { 2075 // Globals that prefixed by "__" are special and cannot be padded with a 2076 // redzone. 2077 if (G->getName().startswith("__")) 2078 return false; 2079 } 2080 2081 return true; 2082 } 2083 2084 // On Mach-O platforms, we emit global metadata in a separate section of the 2085 // binary in order to allow the linker to properly dead strip. This is only 2086 // supported on recent versions of ld64. 2087 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 2088 if (!TargetTriple.isOSBinFormatMachO()) 2089 return false; 2090 2091 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 2092 return true; 2093 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 2094 return true; 2095 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 2096 return true; 2097 2098 return false; 2099 } 2100 2101 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 2102 switch (TargetTriple.getObjectFormat()) { 2103 case Triple::COFF: return ".ASAN$GL"; 2104 case Triple::ELF: return "asan_globals"; 2105 case Triple::MachO: return "__DATA,__asan_globals,regular"; 2106 case Triple::Wasm: 2107 case Triple::GOFF: 2108 case Triple::XCOFF: 2109 report_fatal_error( 2110 "ModuleAddressSanitizer not implemented for object file format"); 2111 case Triple::UnknownObjectFormat: 2112 break; 2113 } 2114 llvm_unreachable("unsupported object format"); 2115 } 2116 2117 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 2118 IRBuilder<> IRB(*C); 2119 2120 // Declare our poisoning and unpoisoning functions. 2121 AsanPoisonGlobals = 2122 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2123 AsanUnpoisonGlobals = 2124 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2125 2126 // Declare functions that register/unregister globals. 2127 AsanRegisterGlobals = M.getOrInsertFunction( 2128 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2129 AsanUnregisterGlobals = M.getOrInsertFunction( 2130 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2131 2132 // Declare the functions that find globals in a shared object and then invoke 2133 // the (un)register function on them. 2134 AsanRegisterImageGlobals = M.getOrInsertFunction( 2135 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2136 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2137 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2138 2139 AsanRegisterElfGlobals = 2140 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2141 IntptrTy, IntptrTy, IntptrTy); 2142 AsanUnregisterElfGlobals = 2143 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2144 IntptrTy, IntptrTy, IntptrTy); 2145 } 2146 2147 // Put the metadata and the instrumented global in the same group. This ensures 2148 // that the metadata is discarded if the instrumented global is discarded. 2149 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2150 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2151 Module &M = *G->getParent(); 2152 Comdat *C = G->getComdat(); 2153 if (!C) { 2154 if (!G->hasName()) { 2155 // If G is unnamed, it must be internal. Give it an artificial name 2156 // so we can put it in a comdat. 2157 assert(G->hasLocalLinkage()); 2158 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2159 } 2160 2161 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2162 std::string Name = std::string(G->getName()); 2163 Name += InternalSuffix; 2164 C = M.getOrInsertComdat(Name); 2165 } else { 2166 C = M.getOrInsertComdat(G->getName()); 2167 } 2168 2169 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2170 // linkage to internal linkage so that a symbol table entry is emitted. This 2171 // is necessary in order to create the comdat group. 2172 if (TargetTriple.isOSBinFormatCOFF()) { 2173 C->setSelectionKind(Comdat::NoDeduplicate); 2174 if (G->hasPrivateLinkage()) 2175 G->setLinkage(GlobalValue::InternalLinkage); 2176 } 2177 G->setComdat(C); 2178 } 2179 2180 assert(G->hasComdat()); 2181 Metadata->setComdat(G->getComdat()); 2182 } 2183 2184 // Create a separate metadata global and put it in the appropriate ASan 2185 // global registration section. 2186 GlobalVariable * 2187 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2188 StringRef OriginalName) { 2189 auto Linkage = TargetTriple.isOSBinFormatMachO() 2190 ? GlobalVariable::InternalLinkage 2191 : GlobalVariable::PrivateLinkage; 2192 GlobalVariable *Metadata = new GlobalVariable( 2193 M, Initializer->getType(), false, Linkage, Initializer, 2194 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2195 Metadata->setSection(getGlobalMetadataSection()); 2196 return Metadata; 2197 } 2198 2199 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2200 AsanDtorFunction = Function::createWithDefaultAttr( 2201 FunctionType::get(Type::getVoidTy(*C), false), 2202 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2203 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 2204 // Ensure Dtor cannot be discarded, even if in a comdat. 2205 appendToUsed(M, {AsanDtorFunction}); 2206 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2207 2208 return ReturnInst::Create(*C, AsanDtorBB); 2209 } 2210 2211 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2212 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2213 ArrayRef<Constant *> MetadataInitializers) { 2214 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2215 auto &DL = M.getDataLayout(); 2216 2217 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2218 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2219 Constant *Initializer = MetadataInitializers[i]; 2220 GlobalVariable *G = ExtendedGlobals[i]; 2221 GlobalVariable *Metadata = 2222 CreateMetadataGlobal(M, Initializer, G->getName()); 2223 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2224 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2225 MetadataGlobals[i] = Metadata; 2226 2227 // The MSVC linker always inserts padding when linking incrementally. We 2228 // cope with that by aligning each struct to its size, which must be a power 2229 // of two. 2230 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2231 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2232 "global metadata will not be padded appropriately"); 2233 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2234 2235 SetComdatForGlobalMetadata(G, Metadata, ""); 2236 } 2237 2238 // Update llvm.compiler.used, adding the new metadata globals. This is 2239 // needed so that during LTO these variables stay alive. 2240 if (!MetadataGlobals.empty()) 2241 appendToCompilerUsed(M, MetadataGlobals); 2242 } 2243 2244 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2245 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2246 ArrayRef<Constant *> MetadataInitializers, 2247 const std::string &UniqueModuleId) { 2248 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2249 2250 // Putting globals in a comdat changes the semantic and potentially cause 2251 // false negative odr violations at link time. If odr indicators are used, we 2252 // keep the comdat sections, as link time odr violations will be dectected on 2253 // the odr indicator symbols. 2254 bool UseComdatForGlobalsGC = UseOdrIndicator; 2255 2256 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2257 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2258 GlobalVariable *G = ExtendedGlobals[i]; 2259 GlobalVariable *Metadata = 2260 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2261 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2262 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2263 MetadataGlobals[i] = Metadata; 2264 2265 if (UseComdatForGlobalsGC) 2266 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2267 } 2268 2269 // Update llvm.compiler.used, adding the new metadata globals. This is 2270 // needed so that during LTO these variables stay alive. 2271 if (!MetadataGlobals.empty()) 2272 appendToCompilerUsed(M, MetadataGlobals); 2273 2274 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2275 // to look up the loaded image that contains it. Second, we can store in it 2276 // whether registration has already occurred, to prevent duplicate 2277 // registration. 2278 // 2279 // Common linkage ensures that there is only one global per shared library. 2280 GlobalVariable *RegisteredFlag = new GlobalVariable( 2281 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2282 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2283 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2284 2285 // Create start and stop symbols. 2286 GlobalVariable *StartELFMetadata = new GlobalVariable( 2287 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2288 "__start_" + getGlobalMetadataSection()); 2289 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2290 GlobalVariable *StopELFMetadata = new GlobalVariable( 2291 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2292 "__stop_" + getGlobalMetadataSection()); 2293 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2294 2295 // Create a call to register the globals with the runtime. 2296 IRB.CreateCall(AsanRegisterElfGlobals, 2297 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2298 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2299 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2300 2301 // We also need to unregister globals at the end, e.g., when a shared library 2302 // gets closed. 2303 if (DestructorKind != AsanDtorKind::None) { 2304 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2305 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2306 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2307 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2308 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2309 } 2310 } 2311 2312 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2313 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2314 ArrayRef<Constant *> MetadataInitializers) { 2315 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2316 2317 // On recent Mach-O platforms, use a structure which binds the liveness of 2318 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2319 // created to be added to llvm.compiler.used 2320 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2321 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2322 2323 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2324 Constant *Initializer = MetadataInitializers[i]; 2325 GlobalVariable *G = ExtendedGlobals[i]; 2326 GlobalVariable *Metadata = 2327 CreateMetadataGlobal(M, Initializer, G->getName()); 2328 2329 // On recent Mach-O platforms, we emit the global metadata in a way that 2330 // allows the linker to properly strip dead globals. 2331 auto LivenessBinder = 2332 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2333 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2334 GlobalVariable *Liveness = new GlobalVariable( 2335 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2336 Twine("__asan_binder_") + G->getName()); 2337 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2338 LivenessGlobals[i] = Liveness; 2339 } 2340 2341 // Update llvm.compiler.used, adding the new liveness globals. This is 2342 // needed so that during LTO these variables stay alive. The alternative 2343 // would be to have the linker handling the LTO symbols, but libLTO 2344 // current API does not expose access to the section for each symbol. 2345 if (!LivenessGlobals.empty()) 2346 appendToCompilerUsed(M, LivenessGlobals); 2347 2348 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2349 // to look up the loaded image that contains it. Second, we can store in it 2350 // whether registration has already occurred, to prevent duplicate 2351 // registration. 2352 // 2353 // common linkage ensures that there is only one global per shared library. 2354 GlobalVariable *RegisteredFlag = new GlobalVariable( 2355 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2356 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2357 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2358 2359 IRB.CreateCall(AsanRegisterImageGlobals, 2360 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2361 2362 // We also need to unregister globals at the end, e.g., when a shared library 2363 // gets closed. 2364 if (DestructorKind != AsanDtorKind::None) { 2365 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2366 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2367 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2368 } 2369 } 2370 2371 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2372 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2373 ArrayRef<Constant *> MetadataInitializers) { 2374 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2375 unsigned N = ExtendedGlobals.size(); 2376 assert(N > 0); 2377 2378 // On platforms that don't have a custom metadata section, we emit an array 2379 // of global metadata structures. 2380 ArrayType *ArrayOfGlobalStructTy = 2381 ArrayType::get(MetadataInitializers[0]->getType(), N); 2382 auto AllGlobals = new GlobalVariable( 2383 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2384 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2385 if (Mapping.Scale > 3) 2386 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2387 2388 IRB.CreateCall(AsanRegisterGlobals, 2389 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2390 ConstantInt::get(IntptrTy, N)}); 2391 2392 // We also need to unregister globals at the end, e.g., when a shared library 2393 // gets closed. 2394 if (DestructorKind != AsanDtorKind::None) { 2395 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2396 IrbDtor.CreateCall(AsanUnregisterGlobals, 2397 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2398 ConstantInt::get(IntptrTy, N)}); 2399 } 2400 } 2401 2402 // This function replaces all global variables with new variables that have 2403 // trailing redzones. It also creates a function that poisons 2404 // redzones and inserts this function into llvm.global_ctors. 2405 // Sets *CtorComdat to true if the global registration code emitted into the 2406 // asan constructor is comdat-compatible. 2407 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2408 bool *CtorComdat) { 2409 *CtorComdat = false; 2410 2411 // Build set of globals that are aliased by some GA, where 2412 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2413 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2414 if (CompileKernel) { 2415 for (auto &GA : M.aliases()) { 2416 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2417 AliasedGlobalExclusions.insert(GV); 2418 } 2419 } 2420 2421 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2422 for (auto &G : M.globals()) { 2423 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2424 GlobalsToChange.push_back(&G); 2425 } 2426 2427 size_t n = GlobalsToChange.size(); 2428 if (n == 0) { 2429 *CtorComdat = true; 2430 return false; 2431 } 2432 2433 auto &DL = M.getDataLayout(); 2434 2435 // A global is described by a structure 2436 // size_t beg; 2437 // size_t size; 2438 // size_t size_with_redzone; 2439 // const char *name; 2440 // const char *module_name; 2441 // size_t has_dynamic_init; 2442 // void *source_location; 2443 // size_t odr_indicator; 2444 // We initialize an array of such structures and pass it to a run-time call. 2445 StructType *GlobalStructTy = 2446 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2447 IntptrTy, IntptrTy, IntptrTy); 2448 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2449 SmallVector<Constant *, 16> Initializers(n); 2450 2451 bool HasDynamicallyInitializedGlobals = false; 2452 2453 // We shouldn't merge same module names, as this string serves as unique 2454 // module ID in runtime. 2455 GlobalVariable *ModuleName = createPrivateGlobalForString( 2456 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2457 2458 for (size_t i = 0; i < n; i++) { 2459 GlobalVariable *G = GlobalsToChange[i]; 2460 2461 // FIXME: Metadata should be attched directly to the global directly instead 2462 // of being added to llvm.asan.globals. 2463 auto MD = GlobalsMD.get(G); 2464 StringRef NameForGlobal = G->getName(); 2465 // Create string holding the global name (use global name from metadata 2466 // if it's available, otherwise just write the name of global variable). 2467 GlobalVariable *Name = createPrivateGlobalForString( 2468 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2469 /*AllowMerging*/ true, kAsanGenPrefix); 2470 2471 Type *Ty = G->getValueType(); 2472 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2473 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2474 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2475 2476 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2477 Constant *NewInitializer = ConstantStruct::get( 2478 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2479 2480 // Create a new global variable with enough space for a redzone. 2481 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2482 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2483 Linkage = GlobalValue::InternalLinkage; 2484 GlobalVariable *NewGlobal = new GlobalVariable( 2485 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2486 G->getThreadLocalMode(), G->getAddressSpace()); 2487 NewGlobal->copyAttributesFrom(G); 2488 NewGlobal->setComdat(G->getComdat()); 2489 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2490 // Don't fold globals with redzones. ODR violation detector and redzone 2491 // poisoning implicitly creates a dependence on the global's address, so it 2492 // is no longer valid for it to be marked unnamed_addr. 2493 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2494 2495 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2496 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2497 G->isConstant()) { 2498 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2499 if (Seq && Seq->isCString()) 2500 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2501 } 2502 2503 // Transfer the debug info and type metadata. The payload starts at offset 2504 // zero so we can copy the metadata over as is. 2505 NewGlobal->copyMetadata(G, 0); 2506 2507 Value *Indices2[2]; 2508 Indices2[0] = IRB.getInt32(0); 2509 Indices2[1] = IRB.getInt32(0); 2510 2511 G->replaceAllUsesWith( 2512 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2513 NewGlobal->takeName(G); 2514 G->eraseFromParent(); 2515 NewGlobals[i] = NewGlobal; 2516 2517 Constant *SourceLoc; 2518 if (!MD.SourceLoc.empty()) { 2519 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2520 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2521 } else { 2522 SourceLoc = ConstantInt::get(IntptrTy, 0); 2523 } 2524 2525 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2526 GlobalValue *InstrumentedGlobal = NewGlobal; 2527 2528 bool CanUsePrivateAliases = 2529 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2530 TargetTriple.isOSBinFormatWasm(); 2531 if (CanUsePrivateAliases && UsePrivateAlias) { 2532 // Create local alias for NewGlobal to avoid crash on ODR between 2533 // instrumented and non-instrumented libraries. 2534 InstrumentedGlobal = 2535 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2536 } 2537 2538 // ODR should not happen for local linkage. 2539 if (NewGlobal->hasLocalLinkage()) { 2540 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2541 IRB.getInt8PtrTy()); 2542 } else if (UseOdrIndicator) { 2543 // With local aliases, we need to provide another externally visible 2544 // symbol __odr_asan_XXX to detect ODR violation. 2545 auto *ODRIndicatorSym = 2546 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2547 Constant::getNullValue(IRB.getInt8Ty()), 2548 kODRGenPrefix + NameForGlobal, nullptr, 2549 NewGlobal->getThreadLocalMode()); 2550 2551 // Set meaningful attributes for indicator symbol. 2552 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2553 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2554 ODRIndicatorSym->setAlignment(Align(1)); 2555 ODRIndicator = ODRIndicatorSym; 2556 } 2557 2558 Constant *Initializer = ConstantStruct::get( 2559 GlobalStructTy, 2560 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2561 ConstantInt::get(IntptrTy, SizeInBytes), 2562 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2563 ConstantExpr::getPointerCast(Name, IntptrTy), 2564 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2565 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2566 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2567 2568 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2569 2570 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2571 2572 Initializers[i] = Initializer; 2573 } 2574 2575 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2576 // ConstantMerge'ing them. 2577 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2578 for (size_t i = 0; i < n; i++) { 2579 GlobalVariable *G = NewGlobals[i]; 2580 if (G->getName().empty()) continue; 2581 GlobalsToAddToUsedList.push_back(G); 2582 } 2583 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2584 2585 std::string ELFUniqueModuleId = 2586 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2587 : ""; 2588 2589 if (!ELFUniqueModuleId.empty()) { 2590 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2591 *CtorComdat = true; 2592 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2593 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2594 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2595 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2596 } else { 2597 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2598 } 2599 2600 // Create calls for poisoning before initializers run and unpoisoning after. 2601 if (HasDynamicallyInitializedGlobals) 2602 createInitializerPoisonCalls(M, ModuleName); 2603 2604 LLVM_DEBUG(dbgs() << M); 2605 return true; 2606 } 2607 2608 uint64_t 2609 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2610 constexpr uint64_t kMaxRZ = 1 << 18; 2611 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2612 2613 uint64_t RZ = 0; 2614 if (SizeInBytes <= MinRZ / 2) { 2615 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2616 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2617 // half of MinRZ. 2618 RZ = MinRZ - SizeInBytes; 2619 } else { 2620 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2621 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2622 2623 // Round up to multiple of MinRZ. 2624 if (SizeInBytes % MinRZ) 2625 RZ += MinRZ - (SizeInBytes % MinRZ); 2626 } 2627 2628 assert((RZ + SizeInBytes) % MinRZ == 0); 2629 2630 return RZ; 2631 } 2632 2633 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2634 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2635 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2636 int Version = 8; 2637 // 32-bit Android is one version ahead because of the switch to dynamic 2638 // shadow. 2639 Version += (LongSize == 32 && isAndroid); 2640 return Version; 2641 } 2642 2643 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2644 initializeCallbacks(M); 2645 2646 // Create a module constructor. A destructor is created lazily because not all 2647 // platforms, and not all modules need it. 2648 if (CompileKernel) { 2649 // The kernel always builds with its own runtime, and therefore does not 2650 // need the init and version check calls. 2651 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2652 } else { 2653 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2654 std::string VersionCheckName = 2655 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2656 std::tie(AsanCtorFunction, std::ignore) = 2657 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2658 kAsanInitName, /*InitArgTypes=*/{}, 2659 /*InitArgs=*/{}, VersionCheckName); 2660 } 2661 2662 bool CtorComdat = true; 2663 if (ClGlobals) { 2664 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2665 InstrumentGlobals(IRB, M, &CtorComdat); 2666 } 2667 2668 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2669 2670 // Put the constructor and destructor in comdat if both 2671 // (1) global instrumentation is not TU-specific 2672 // (2) target is ELF. 2673 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2674 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2675 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2676 if (AsanDtorFunction) { 2677 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2678 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2679 } 2680 } else { 2681 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2682 if (AsanDtorFunction) 2683 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2684 } 2685 2686 return true; 2687 } 2688 2689 void AddressSanitizer::initializeCallbacks(Module &M) { 2690 IRBuilder<> IRB(*C); 2691 // Create __asan_report* callbacks. 2692 // IsWrite, TypeSize and Exp are encoded in the function name. 2693 for (int Exp = 0; Exp < 2; Exp++) { 2694 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2695 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2696 const std::string ExpStr = Exp ? "exp_" : ""; 2697 const std::string EndingStr = Recover ? "_noabort" : ""; 2698 2699 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2700 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2701 if (Exp) { 2702 Type *ExpType = Type::getInt32Ty(*C); 2703 Args2.push_back(ExpType); 2704 Args1.push_back(ExpType); 2705 } 2706 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2707 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2708 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2709 2710 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2711 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2712 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2713 2714 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2715 AccessSizeIndex++) { 2716 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2717 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2718 M.getOrInsertFunction( 2719 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2720 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2721 2722 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2723 M.getOrInsertFunction( 2724 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2725 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2726 } 2727 } 2728 } 2729 2730 const std::string MemIntrinCallbackPrefix = 2731 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2732 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2733 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2734 IRB.getInt8PtrTy(), IntptrTy); 2735 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2736 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2737 IRB.getInt8PtrTy(), IntptrTy); 2738 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2739 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2740 IRB.getInt32Ty(), IntptrTy); 2741 2742 AsanHandleNoReturnFunc = 2743 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2744 2745 AsanPtrCmpFunction = 2746 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2747 AsanPtrSubFunction = 2748 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2749 if (Mapping.InGlobal) 2750 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2751 ArrayType::get(IRB.getInt8Ty(), 0)); 2752 2753 AMDGPUAddressShared = M.getOrInsertFunction( 2754 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2755 AMDGPUAddressPrivate = M.getOrInsertFunction( 2756 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2757 } 2758 2759 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2760 // For each NSObject descendant having a +load method, this method is invoked 2761 // by the ObjC runtime before any of the static constructors is called. 2762 // Therefore we need to instrument such methods with a call to __asan_init 2763 // at the beginning in order to initialize our runtime before any access to 2764 // the shadow memory. 2765 // We cannot just ignore these methods, because they may call other 2766 // instrumented functions. 2767 if (F.getName().find(" load]") != std::string::npos) { 2768 FunctionCallee AsanInitFunction = 2769 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2770 IRBuilder<> IRB(&F.front(), F.front().begin()); 2771 IRB.CreateCall(AsanInitFunction, {}); 2772 return true; 2773 } 2774 return false; 2775 } 2776 2777 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2778 // Generate code only when dynamic addressing is needed. 2779 if (Mapping.Offset != kDynamicShadowSentinel) 2780 return false; 2781 2782 IRBuilder<> IRB(&F.front().front()); 2783 if (Mapping.InGlobal) { 2784 if (ClWithIfuncSuppressRemat) { 2785 // An empty inline asm with input reg == output reg. 2786 // An opaque pointer-to-int cast, basically. 2787 InlineAsm *Asm = InlineAsm::get( 2788 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2789 StringRef(""), StringRef("=r,0"), 2790 /*hasSideEffects=*/false); 2791 LocalDynamicShadow = 2792 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2793 } else { 2794 LocalDynamicShadow = 2795 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2796 } 2797 } else { 2798 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2799 kAsanShadowMemoryDynamicAddress, IntptrTy); 2800 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2801 } 2802 return true; 2803 } 2804 2805 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2806 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2807 // to it as uninteresting. This assumes we haven't started processing allocas 2808 // yet. This check is done up front because iterating the use list in 2809 // isInterestingAlloca would be algorithmically slower. 2810 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2811 2812 // Try to get the declaration of llvm.localescape. If it's not in the module, 2813 // we can exit early. 2814 if (!F.getParent()->getFunction("llvm.localescape")) return; 2815 2816 // Look for a call to llvm.localescape call in the entry block. It can't be in 2817 // any other block. 2818 for (Instruction &I : F.getEntryBlock()) { 2819 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2820 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2821 // We found a call. Mark all the allocas passed in as uninteresting. 2822 for (Value *Arg : II->args()) { 2823 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2824 assert(AI && AI->isStaticAlloca() && 2825 "non-static alloca arg to localescape"); 2826 ProcessedAllocas[AI] = false; 2827 } 2828 break; 2829 } 2830 } 2831 } 2832 2833 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2834 bool ShouldInstrument = 2835 ClDebugMin < 0 || ClDebugMax < 0 || 2836 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2837 Instrumented++; 2838 return !ShouldInstrument; 2839 } 2840 2841 bool AddressSanitizer::instrumentFunction(Function &F, 2842 const TargetLibraryInfo *TLI) { 2843 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2844 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2845 if (F.getName().startswith("__asan_")) return false; 2846 2847 bool FunctionModified = false; 2848 2849 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2850 // This function needs to be called even if the function body is not 2851 // instrumented. 2852 if (maybeInsertAsanInitAtFunctionEntry(F)) 2853 FunctionModified = true; 2854 2855 // Leave if the function doesn't need instrumentation. 2856 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2857 2858 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2859 2860 initializeCallbacks(*F.getParent()); 2861 2862 FunctionStateRAII CleanupObj(this); 2863 2864 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2865 2866 // We can't instrument allocas used with llvm.localescape. Only static allocas 2867 // can be passed to that intrinsic. 2868 markEscapedLocalAllocas(F); 2869 2870 // We want to instrument every address only once per basic block (unless there 2871 // are calls between uses). 2872 SmallPtrSet<Value *, 16> TempsToInstrument; 2873 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2874 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2875 SmallVector<Instruction *, 8> NoReturnCalls; 2876 SmallVector<BasicBlock *, 16> AllBlocks; 2877 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2878 int NumAllocas = 0; 2879 2880 // Fill the set of memory operations to instrument. 2881 for (auto &BB : F) { 2882 AllBlocks.push_back(&BB); 2883 TempsToInstrument.clear(); 2884 int NumInsnsPerBB = 0; 2885 for (auto &Inst : BB) { 2886 if (LooksLikeCodeInBug11395(&Inst)) return false; 2887 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2888 getInterestingMemoryOperands(&Inst, InterestingOperands); 2889 2890 if (!InterestingOperands.empty()) { 2891 for (auto &Operand : InterestingOperands) { 2892 if (ClOpt && ClOptSameTemp) { 2893 Value *Ptr = Operand.getPtr(); 2894 // If we have a mask, skip instrumentation if we've already 2895 // instrumented the full object. But don't add to TempsToInstrument 2896 // because we might get another load/store with a different mask. 2897 if (Operand.MaybeMask) { 2898 if (TempsToInstrument.count(Ptr)) 2899 continue; // We've seen this (whole) temp in the current BB. 2900 } else { 2901 if (!TempsToInstrument.insert(Ptr).second) 2902 continue; // We've seen this temp in the current BB. 2903 } 2904 } 2905 OperandsToInstrument.push_back(Operand); 2906 NumInsnsPerBB++; 2907 } 2908 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2909 isInterestingPointerComparison(&Inst)) || 2910 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2911 isInterestingPointerSubtraction(&Inst))) { 2912 PointerComparisonsOrSubtracts.push_back(&Inst); 2913 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2914 // ok, take it. 2915 IntrinToInstrument.push_back(MI); 2916 NumInsnsPerBB++; 2917 } else { 2918 if (isa<AllocaInst>(Inst)) NumAllocas++; 2919 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2920 // A call inside BB. 2921 TempsToInstrument.clear(); 2922 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2923 NoReturnCalls.push_back(CB); 2924 } 2925 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2926 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2927 } 2928 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2929 } 2930 } 2931 2932 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2933 OperandsToInstrument.size() + IntrinToInstrument.size() > 2934 (unsigned)ClInstrumentationWithCallsThreshold); 2935 const DataLayout &DL = F.getParent()->getDataLayout(); 2936 ObjectSizeOpts ObjSizeOpts; 2937 ObjSizeOpts.RoundToAlign = true; 2938 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2939 2940 // Instrument. 2941 int NumInstrumented = 0; 2942 for (auto &Operand : OperandsToInstrument) { 2943 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2944 instrumentMop(ObjSizeVis, Operand, UseCalls, 2945 F.getParent()->getDataLayout()); 2946 FunctionModified = true; 2947 } 2948 for (auto Inst : IntrinToInstrument) { 2949 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2950 instrumentMemIntrinsic(Inst); 2951 FunctionModified = true; 2952 } 2953 2954 FunctionStackPoisoner FSP(F, *this); 2955 bool ChangedStack = FSP.runOnFunction(); 2956 2957 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2958 // See e.g. https://github.com/google/sanitizers/issues/37 2959 for (auto CI : NoReturnCalls) { 2960 IRBuilder<> IRB(CI); 2961 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2962 } 2963 2964 for (auto Inst : PointerComparisonsOrSubtracts) { 2965 instrumentPointerComparisonOrSubtraction(Inst); 2966 FunctionModified = true; 2967 } 2968 2969 if (ChangedStack || !NoReturnCalls.empty()) 2970 FunctionModified = true; 2971 2972 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2973 << F << "\n"); 2974 2975 return FunctionModified; 2976 } 2977 2978 // Workaround for bug 11395: we don't want to instrument stack in functions 2979 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2980 // FIXME: remove once the bug 11395 is fixed. 2981 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2982 if (LongSize != 32) return false; 2983 CallInst *CI = dyn_cast<CallInst>(I); 2984 if (!CI || !CI->isInlineAsm()) return false; 2985 if (CI->arg_size() <= 5) 2986 return false; 2987 // We have inline assembly with quite a few arguments. 2988 return true; 2989 } 2990 2991 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2992 IRBuilder<> IRB(*C); 2993 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 2994 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 2995 const char *MallocNameTemplate = 2996 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 2997 ? kAsanStackMallocAlwaysNameTemplate 2998 : kAsanStackMallocNameTemplate; 2999 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 3000 std::string Suffix = itostr(Index); 3001 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 3002 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 3003 AsanStackFreeFunc[Index] = 3004 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 3005 IRB.getVoidTy(), IntptrTy, IntptrTy); 3006 } 3007 } 3008 if (ASan.UseAfterScope) { 3009 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 3010 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3011 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 3012 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3013 } 3014 3015 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 3016 std::ostringstream Name; 3017 Name << kAsanSetShadowPrefix; 3018 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 3019 AsanSetShadowFunc[Val] = 3020 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 3021 } 3022 3023 AsanAllocaPoisonFunc = M.getOrInsertFunction( 3024 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3025 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 3026 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3027 } 3028 3029 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 3030 ArrayRef<uint8_t> ShadowBytes, 3031 size_t Begin, size_t End, 3032 IRBuilder<> &IRB, 3033 Value *ShadowBase) { 3034 if (Begin >= End) 3035 return; 3036 3037 const size_t LargestStoreSizeInBytes = 3038 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 3039 3040 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 3041 3042 // Poison given range in shadow using larges store size with out leading and 3043 // trailing zeros in ShadowMask. Zeros never change, so they need neither 3044 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 3045 // middle of a store. 3046 for (size_t i = Begin; i < End;) { 3047 if (!ShadowMask[i]) { 3048 assert(!ShadowBytes[i]); 3049 ++i; 3050 continue; 3051 } 3052 3053 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 3054 // Fit store size into the range. 3055 while (StoreSizeInBytes > End - i) 3056 StoreSizeInBytes /= 2; 3057 3058 // Minimize store size by trimming trailing zeros. 3059 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 3060 while (j <= StoreSizeInBytes / 2) 3061 StoreSizeInBytes /= 2; 3062 } 3063 3064 uint64_t Val = 0; 3065 for (size_t j = 0; j < StoreSizeInBytes; j++) { 3066 if (IsLittleEndian) 3067 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 3068 else 3069 Val = (Val << 8) | ShadowBytes[i + j]; 3070 } 3071 3072 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 3073 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 3074 IRB.CreateAlignedStore( 3075 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 3076 Align(1)); 3077 3078 i += StoreSizeInBytes; 3079 } 3080 } 3081 3082 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3083 ArrayRef<uint8_t> ShadowBytes, 3084 IRBuilder<> &IRB, Value *ShadowBase) { 3085 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 3086 } 3087 3088 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3089 ArrayRef<uint8_t> ShadowBytes, 3090 size_t Begin, size_t End, 3091 IRBuilder<> &IRB, Value *ShadowBase) { 3092 assert(ShadowMask.size() == ShadowBytes.size()); 3093 size_t Done = Begin; 3094 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 3095 if (!ShadowMask[i]) { 3096 assert(!ShadowBytes[i]); 3097 continue; 3098 } 3099 uint8_t Val = ShadowBytes[i]; 3100 if (!AsanSetShadowFunc[Val]) 3101 continue; 3102 3103 // Skip same values. 3104 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 3105 } 3106 3107 if (j - i >= ClMaxInlinePoisoningSize) { 3108 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 3109 IRB.CreateCall(AsanSetShadowFunc[Val], 3110 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 3111 ConstantInt::get(IntptrTy, j - i)}); 3112 Done = j; 3113 } 3114 } 3115 3116 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 3117 } 3118 3119 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 3120 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 3121 static int StackMallocSizeClass(uint64_t LocalStackSize) { 3122 assert(LocalStackSize <= kMaxStackMallocSize); 3123 uint64_t MaxSize = kMinStackMallocSize; 3124 for (int i = 0;; i++, MaxSize *= 2) 3125 if (LocalStackSize <= MaxSize) return i; 3126 llvm_unreachable("impossible LocalStackSize"); 3127 } 3128 3129 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 3130 Instruction *CopyInsertPoint = &F.front().front(); 3131 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 3132 // Insert after the dynamic shadow location is determined 3133 CopyInsertPoint = CopyInsertPoint->getNextNode(); 3134 assert(CopyInsertPoint); 3135 } 3136 IRBuilder<> IRB(CopyInsertPoint); 3137 const DataLayout &DL = F.getParent()->getDataLayout(); 3138 for (Argument &Arg : F.args()) { 3139 if (Arg.hasByValAttr()) { 3140 Type *Ty = Arg.getParamByValType(); 3141 const Align Alignment = 3142 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 3143 3144 AllocaInst *AI = IRB.CreateAlloca( 3145 Ty, nullptr, 3146 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 3147 ".byval"); 3148 AI->setAlignment(Alignment); 3149 Arg.replaceAllUsesWith(AI); 3150 3151 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3152 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3153 } 3154 } 3155 } 3156 3157 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3158 Value *ValueIfTrue, 3159 Instruction *ThenTerm, 3160 Value *ValueIfFalse) { 3161 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3162 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3163 PHI->addIncoming(ValueIfFalse, CondBlock); 3164 BasicBlock *ThenBlock = ThenTerm->getParent(); 3165 PHI->addIncoming(ValueIfTrue, ThenBlock); 3166 return PHI; 3167 } 3168 3169 Value *FunctionStackPoisoner::createAllocaForLayout( 3170 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3171 AllocaInst *Alloca; 3172 if (Dynamic) { 3173 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3174 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3175 "MyAlloca"); 3176 } else { 3177 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3178 nullptr, "MyAlloca"); 3179 assert(Alloca->isStaticAlloca()); 3180 } 3181 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3182 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 3183 Alloca->setAlignment(Align(FrameAlignment)); 3184 return IRB.CreatePointerCast(Alloca, IntptrTy); 3185 } 3186 3187 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3188 BasicBlock &FirstBB = *F.begin(); 3189 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3190 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3191 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3192 DynamicAllocaLayout->setAlignment(Align(32)); 3193 } 3194 3195 void FunctionStackPoisoner::processDynamicAllocas() { 3196 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3197 assert(DynamicAllocaPoisonCallVec.empty()); 3198 return; 3199 } 3200 3201 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3202 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3203 assert(APC.InsBefore); 3204 assert(APC.AI); 3205 assert(ASan.isInterestingAlloca(*APC.AI)); 3206 assert(!APC.AI->isStaticAlloca()); 3207 3208 IRBuilder<> IRB(APC.InsBefore); 3209 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3210 // Dynamic allocas will be unpoisoned unconditionally below in 3211 // unpoisonDynamicAllocas. 3212 // Flag that we need unpoison static allocas. 3213 } 3214 3215 // Handle dynamic allocas. 3216 createDynamicAllocasInitStorage(); 3217 for (auto &AI : DynamicAllocaVec) 3218 handleDynamicAllocaCall(AI); 3219 unpoisonDynamicAllocas(); 3220 } 3221 3222 /// Collect instructions in the entry block after \p InsBefore which initialize 3223 /// permanent storage for a function argument. These instructions must remain in 3224 /// the entry block so that uninitialized values do not appear in backtraces. An 3225 /// added benefit is that this conserves spill slots. This does not move stores 3226 /// before instrumented / "interesting" allocas. 3227 static void findStoresToUninstrumentedArgAllocas( 3228 AddressSanitizer &ASan, Instruction &InsBefore, 3229 SmallVectorImpl<Instruction *> &InitInsts) { 3230 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3231 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3232 // Argument initialization looks like: 3233 // 1) store <Argument>, <Alloca> OR 3234 // 2) <CastArgument> = cast <Argument> to ... 3235 // store <CastArgument> to <Alloca> 3236 // Do not consider any other kind of instruction. 3237 // 3238 // Note: This covers all known cases, but may not be exhaustive. An 3239 // alternative to pattern-matching stores is to DFS over all Argument uses: 3240 // this might be more general, but is probably much more complicated. 3241 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3242 continue; 3243 if (auto *Store = dyn_cast<StoreInst>(It)) { 3244 // The store destination must be an alloca that isn't interesting for 3245 // ASan to instrument. These are moved up before InsBefore, and they're 3246 // not interesting because allocas for arguments can be mem2reg'd. 3247 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3248 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3249 continue; 3250 3251 Value *Val = Store->getValueOperand(); 3252 bool IsDirectArgInit = isa<Argument>(Val); 3253 bool IsArgInitViaCast = 3254 isa<CastInst>(Val) && 3255 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3256 // Check that the cast appears directly before the store. Otherwise 3257 // moving the cast before InsBefore may break the IR. 3258 Val == It->getPrevNonDebugInstruction(); 3259 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3260 if (!IsArgInit) 3261 continue; 3262 3263 if (IsArgInitViaCast) 3264 InitInsts.push_back(cast<Instruction>(Val)); 3265 InitInsts.push_back(Store); 3266 continue; 3267 } 3268 3269 // Do not reorder past unknown instructions: argument initialization should 3270 // only involve casts and stores. 3271 return; 3272 } 3273 } 3274 3275 void FunctionStackPoisoner::processStaticAllocas() { 3276 if (AllocaVec.empty()) { 3277 assert(StaticAllocaPoisonCallVec.empty()); 3278 return; 3279 } 3280 3281 int StackMallocIdx = -1; 3282 DebugLoc EntryDebugLocation; 3283 if (auto SP = F.getSubprogram()) 3284 EntryDebugLocation = 3285 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3286 3287 Instruction *InsBefore = AllocaVec[0]; 3288 IRBuilder<> IRB(InsBefore); 3289 3290 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3291 // debug info is broken, because only entry-block allocas are treated as 3292 // regular stack slots. 3293 auto InsBeforeB = InsBefore->getParent(); 3294 assert(InsBeforeB == &F.getEntryBlock()); 3295 for (auto *AI : StaticAllocasToMoveUp) 3296 if (AI->getParent() == InsBeforeB) 3297 AI->moveBefore(InsBefore); 3298 3299 // Move stores of arguments into entry-block allocas as well. This prevents 3300 // extra stack slots from being generated (to house the argument values until 3301 // they can be stored into the allocas). This also prevents uninitialized 3302 // values from being shown in backtraces. 3303 SmallVector<Instruction *, 8> ArgInitInsts; 3304 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3305 for (Instruction *ArgInitInst : ArgInitInsts) 3306 ArgInitInst->moveBefore(InsBefore); 3307 3308 // If we have a call to llvm.localescape, keep it in the entry block. 3309 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3310 3311 SmallVector<ASanStackVariableDescription, 16> SVD; 3312 SVD.reserve(AllocaVec.size()); 3313 for (AllocaInst *AI : AllocaVec) { 3314 ASanStackVariableDescription D = {AI->getName().data(), 3315 ASan.getAllocaSizeInBytes(*AI), 3316 0, 3317 AI->getAlignment(), 3318 AI, 3319 0, 3320 0}; 3321 SVD.push_back(D); 3322 } 3323 3324 // Minimal header size (left redzone) is 4 pointers, 3325 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3326 size_t Granularity = 1ULL << Mapping.Scale; 3327 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3328 const ASanStackFrameLayout &L = 3329 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3330 3331 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3332 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3333 for (auto &Desc : SVD) 3334 AllocaToSVDMap[Desc.AI] = &Desc; 3335 3336 // Update SVD with information from lifetime intrinsics. 3337 for (const auto &APC : StaticAllocaPoisonCallVec) { 3338 assert(APC.InsBefore); 3339 assert(APC.AI); 3340 assert(ASan.isInterestingAlloca(*APC.AI)); 3341 assert(APC.AI->isStaticAlloca()); 3342 3343 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3344 Desc.LifetimeSize = Desc.Size; 3345 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3346 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3347 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3348 if (unsigned Line = LifetimeLoc->getLine()) 3349 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3350 } 3351 } 3352 } 3353 3354 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3355 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3356 uint64_t LocalStackSize = L.FrameSize; 3357 bool DoStackMalloc = 3358 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3359 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3360 bool DoDynamicAlloca = ClDynamicAllocaStack; 3361 // Don't do dynamic alloca or stack malloc if: 3362 // 1) There is inline asm: too often it makes assumptions on which registers 3363 // are available. 3364 // 2) There is a returns_twice call (typically setjmp), which is 3365 // optimization-hostile, and doesn't play well with introduced indirect 3366 // register-relative calculation of local variable addresses. 3367 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3368 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3369 3370 Value *StaticAlloca = 3371 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3372 3373 Value *FakeStack; 3374 Value *LocalStackBase; 3375 Value *LocalStackBaseAlloca; 3376 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3377 3378 if (DoStackMalloc) { 3379 LocalStackBaseAlloca = 3380 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3381 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3382 // void *FakeStack = __asan_option_detect_stack_use_after_return 3383 // ? __asan_stack_malloc_N(LocalStackSize) 3384 // : nullptr; 3385 // void *LocalStackBase = (FakeStack) ? FakeStack : 3386 // alloca(LocalStackSize); 3387 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3388 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3389 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3390 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3391 Constant::getNullValue(IRB.getInt32Ty())); 3392 Instruction *Term = 3393 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3394 IRBuilder<> IRBIf(Term); 3395 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3396 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3397 Value *FakeStackValue = 3398 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3399 ConstantInt::get(IntptrTy, LocalStackSize)); 3400 IRB.SetInsertPoint(InsBefore); 3401 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3402 ConstantInt::get(IntptrTy, 0)); 3403 } else { 3404 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3405 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3406 // void *LocalStackBase = (FakeStack) ? FakeStack : 3407 // alloca(LocalStackSize); 3408 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3409 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3410 ConstantInt::get(IntptrTy, LocalStackSize)); 3411 } 3412 Value *NoFakeStack = 3413 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3414 Instruction *Term = 3415 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3416 IRBuilder<> IRBIf(Term); 3417 Value *AllocaValue = 3418 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3419 3420 IRB.SetInsertPoint(InsBefore); 3421 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3422 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3423 DIExprFlags |= DIExpression::DerefBefore; 3424 } else { 3425 // void *FakeStack = nullptr; 3426 // void *LocalStackBase = alloca(LocalStackSize); 3427 FakeStack = ConstantInt::get(IntptrTy, 0); 3428 LocalStackBase = 3429 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3430 LocalStackBaseAlloca = LocalStackBase; 3431 } 3432 3433 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3434 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3435 // later passes and can result in dropped variable coverage in debug info. 3436 Value *LocalStackBaseAllocaPtr = 3437 isa<PtrToIntInst>(LocalStackBaseAlloca) 3438 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3439 : LocalStackBaseAlloca; 3440 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3441 "Variable descriptions relative to ASan stack base will be dropped"); 3442 3443 // Replace Alloca instructions with base+offset. 3444 for (const auto &Desc : SVD) { 3445 AllocaInst *AI = Desc.AI; 3446 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3447 Desc.Offset); 3448 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3449 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3450 AI->getType()); 3451 AI->replaceAllUsesWith(NewAllocaPtr); 3452 } 3453 3454 // The left-most redzone has enough space for at least 4 pointers. 3455 // Write the Magic value to redzone[0]. 3456 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3457 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3458 BasePlus0); 3459 // Write the frame description constant to redzone[1]. 3460 Value *BasePlus1 = IRB.CreateIntToPtr( 3461 IRB.CreateAdd(LocalStackBase, 3462 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3463 IntptrPtrTy); 3464 GlobalVariable *StackDescriptionGlobal = 3465 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3466 /*AllowMerging*/ true, kAsanGenPrefix); 3467 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3468 IRB.CreateStore(Description, BasePlus1); 3469 // Write the PC to redzone[2]. 3470 Value *BasePlus2 = IRB.CreateIntToPtr( 3471 IRB.CreateAdd(LocalStackBase, 3472 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3473 IntptrPtrTy); 3474 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3475 3476 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3477 3478 // Poison the stack red zones at the entry. 3479 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3480 // As mask we must use most poisoned case: red zones and after scope. 3481 // As bytes we can use either the same or just red zones only. 3482 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3483 3484 if (!StaticAllocaPoisonCallVec.empty()) { 3485 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3486 3487 // Poison static allocas near lifetime intrinsics. 3488 for (const auto &APC : StaticAllocaPoisonCallVec) { 3489 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3490 assert(Desc.Offset % L.Granularity == 0); 3491 size_t Begin = Desc.Offset / L.Granularity; 3492 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3493 3494 IRBuilder<> IRB(APC.InsBefore); 3495 copyToShadow(ShadowAfterScope, 3496 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3497 IRB, ShadowBase); 3498 } 3499 } 3500 3501 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3502 SmallVector<uint8_t, 64> ShadowAfterReturn; 3503 3504 // (Un)poison the stack before all ret instructions. 3505 for (Instruction *Ret : RetVec) { 3506 IRBuilder<> IRBRet(Ret); 3507 // Mark the current frame as retired. 3508 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3509 BasePlus0); 3510 if (DoStackMalloc) { 3511 assert(StackMallocIdx >= 0); 3512 // if FakeStack != 0 // LocalStackBase == FakeStack 3513 // // In use-after-return mode, poison the whole stack frame. 3514 // if StackMallocIdx <= 4 3515 // // For small sizes inline the whole thing: 3516 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3517 // **SavedFlagPtr(FakeStack) = 0 3518 // else 3519 // __asan_stack_free_N(FakeStack, LocalStackSize) 3520 // else 3521 // <This is not a fake stack; unpoison the redzones> 3522 Value *Cmp = 3523 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3524 Instruction *ThenTerm, *ElseTerm; 3525 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3526 3527 IRBuilder<> IRBPoison(ThenTerm); 3528 if (StackMallocIdx <= 4) { 3529 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3530 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3531 kAsanStackUseAfterReturnMagic); 3532 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3533 ShadowBase); 3534 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3535 FakeStack, 3536 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3537 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3538 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3539 IRBPoison.CreateStore( 3540 Constant::getNullValue(IRBPoison.getInt8Ty()), 3541 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3542 } else { 3543 // For larger frames call __asan_stack_free_*. 3544 IRBPoison.CreateCall( 3545 AsanStackFreeFunc[StackMallocIdx], 3546 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3547 } 3548 3549 IRBuilder<> IRBElse(ElseTerm); 3550 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3551 } else { 3552 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3553 } 3554 } 3555 3556 // We are done. Remove the old unused alloca instructions. 3557 for (auto AI : AllocaVec) AI->eraseFromParent(); 3558 } 3559 3560 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3561 IRBuilder<> &IRB, bool DoPoison) { 3562 // For now just insert the call to ASan runtime. 3563 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3564 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3565 IRB.CreateCall( 3566 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3567 {AddrArg, SizeArg}); 3568 } 3569 3570 // Handling llvm.lifetime intrinsics for a given %alloca: 3571 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3572 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3573 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3574 // could be poisoned by previous llvm.lifetime.end instruction, as the 3575 // variable may go in and out of scope several times, e.g. in loops). 3576 // (3) if we poisoned at least one %alloca in a function, 3577 // unpoison the whole stack frame at function exit. 3578 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3579 IRBuilder<> IRB(AI); 3580 3581 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3582 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3583 3584 Value *Zero = Constant::getNullValue(IntptrTy); 3585 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3586 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3587 3588 // Since we need to extend alloca with additional memory to locate 3589 // redzones, and OldSize is number of allocated blocks with 3590 // ElementSize size, get allocated memory size in bytes by 3591 // OldSize * ElementSize. 3592 const unsigned ElementSize = 3593 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3594 Value *OldSize = 3595 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3596 ConstantInt::get(IntptrTy, ElementSize)); 3597 3598 // PartialSize = OldSize % 32 3599 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3600 3601 // Misalign = kAllocaRzSize - PartialSize; 3602 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3603 3604 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3605 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3606 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3607 3608 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3609 // Alignment is added to locate left redzone, PartialPadding for possible 3610 // partial redzone and kAllocaRzSize for right redzone respectively. 3611 Value *AdditionalChunkSize = IRB.CreateAdd( 3612 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3613 3614 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3615 3616 // Insert new alloca with new NewSize and Alignment params. 3617 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3618 NewAlloca->setAlignment(Align(Alignment)); 3619 3620 // NewAddress = Address + Alignment 3621 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3622 ConstantInt::get(IntptrTy, Alignment)); 3623 3624 // Insert __asan_alloca_poison call for new created alloca. 3625 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3626 3627 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3628 // for unpoisoning stuff. 3629 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3630 3631 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3632 3633 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3634 AI->replaceAllUsesWith(NewAddressPtr); 3635 3636 // We are done. Erase old alloca from parent. 3637 AI->eraseFromParent(); 3638 } 3639 3640 // isSafeAccess returns true if Addr is always inbounds with respect to its 3641 // base object. For example, it is a field access or an array access with 3642 // constant inbounds index. 3643 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3644 Value *Addr, uint64_t TypeSize) const { 3645 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3646 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3647 uint64_t Size = SizeOffset.first.getZExtValue(); 3648 int64_t Offset = SizeOffset.second.getSExtValue(); 3649 // Three checks are required to ensure safety: 3650 // . Offset >= 0 (since the offset is given from the base ptr) 3651 // . Size >= Offset (unsigned) 3652 // . Size - Offset >= NeededSize (unsigned) 3653 return Offset >= 0 && Size >= uint64_t(Offset) && 3654 Size - uint64_t(Offset) >= TypeSize / 8; 3655 } 3656