1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address basic correctness 10 // checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 // FIXME: This sanitizer does not yet handle scalable vectors 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/BinaryFormat/MachO.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/IRBuilder.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstVisitor.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/MDBuilder.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/MC/MCSectionMachO.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/ModuleUtils.h" 80 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstddef> 84 #include <cstdint> 85 #include <iomanip> 86 #include <limits> 87 #include <sstream> 88 #include <string> 89 #include <tuple> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "asan" 94 95 static const uint64_t kDefaultShadowScale = 3; 96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 98 static const uint64_t kDynamicShadowSentinel = 99 std::numeric_limits<uint64_t>::max(); 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 109 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 110 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 111 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 112 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 113 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 114 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 115 static const uint64_t kPS4_ShadowOffset64 = 1ULL << 40; 116 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 117 static const uint64_t kEmscriptenShadowOffset = 0; 118 119 // The shadow memory space is dynamically allocated. 120 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 121 122 static const size_t kMinStackMallocSize = 1 << 6; // 64B 123 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 124 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 125 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 126 127 const char kAsanModuleCtorName[] = "asan.module_ctor"; 128 const char kAsanModuleDtorName[] = "asan.module_dtor"; 129 static const uint64_t kAsanCtorAndDtorPriority = 1; 130 // On Emscripten, the system needs more than one priorities for constructors. 131 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 132 const char kAsanReportErrorTemplate[] = "__asan_report_"; 133 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 134 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 135 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 136 const char kAsanUnregisterImageGlobalsName[] = 137 "__asan_unregister_image_globals"; 138 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 139 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 140 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 141 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 142 const char kAsanInitName[] = "__asan_init"; 143 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 144 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 145 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 146 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 147 static const int kMaxAsanStackMallocSizeClass = 10; 148 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 149 const char kAsanStackMallocAlwaysNameTemplate[] = 150 "__asan_stack_malloc_always_"; 151 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 152 const char kAsanGenPrefix[] = "___asan_gen_"; 153 const char kODRGenPrefix[] = "__odr_asan_gen_"; 154 const char kSanCovGenPrefix[] = "__sancov_gen_"; 155 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 156 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 157 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 158 159 // ASan version script has __asan_* wildcard. Triple underscore prevents a 160 // linker (gold) warning about attempting to export a local symbol. 161 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 162 163 const char kAsanOptionDetectUseAfterReturn[] = 164 "__asan_option_detect_stack_use_after_return"; 165 166 const char kAsanShadowMemoryDynamicAddress[] = 167 "__asan_shadow_memory_dynamic_address"; 168 169 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 170 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 171 172 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 173 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 174 175 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 176 static const size_t kNumberOfAccessSizes = 5; 177 178 static const uint64_t kAllocaRzSize = 32; 179 180 // ASanAccessInfo implementation constants. 181 constexpr size_t kCompileKernelShift = 0; 182 constexpr size_t kCompileKernelMask = 0x1; 183 constexpr size_t kAccessSizeIndexShift = 1; 184 constexpr size_t kAccessSizeIndexMask = 0xf; 185 constexpr size_t kIsWriteShift = 5; 186 constexpr size_t kIsWriteMask = 0x1; 187 188 // Command-line flags. 189 190 static cl::opt<bool> ClEnableKasan( 191 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 192 cl::Hidden, cl::init(false)); 193 194 static cl::opt<bool> ClRecover( 195 "asan-recover", 196 cl::desc("Enable recovery mode (continue-after-error)."), 197 cl::Hidden, cl::init(false)); 198 199 static cl::opt<bool> ClInsertVersionCheck( 200 "asan-guard-against-version-mismatch", 201 cl::desc("Guard against compiler/runtime version mismatch."), 202 cl::Hidden, cl::init(true)); 203 204 // This flag may need to be replaced with -f[no-]asan-reads. 205 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 206 cl::desc("instrument read instructions"), 207 cl::Hidden, cl::init(true)); 208 209 static cl::opt<bool> ClInstrumentWrites( 210 "asan-instrument-writes", cl::desc("instrument write instructions"), 211 cl::Hidden, cl::init(true)); 212 213 static cl::opt<bool> 214 ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false), 215 cl::Hidden, cl::desc("Use Stack Safety analysis results"), 216 cl::Optional); 217 218 static cl::opt<bool> ClInstrumentAtomics( 219 "asan-instrument-atomics", 220 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 221 cl::init(true)); 222 223 static cl::opt<bool> 224 ClInstrumentByval("asan-instrument-byval", 225 cl::desc("instrument byval call arguments"), cl::Hidden, 226 cl::init(true)); 227 228 static cl::opt<bool> ClAlwaysSlowPath( 229 "asan-always-slow-path", 230 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 231 cl::init(false)); 232 233 static cl::opt<bool> ClForceDynamicShadow( 234 "asan-force-dynamic-shadow", 235 cl::desc("Load shadow address into a local variable for each function"), 236 cl::Hidden, cl::init(false)); 237 238 static cl::opt<bool> 239 ClWithIfunc("asan-with-ifunc", 240 cl::desc("Access dynamic shadow through an ifunc global on " 241 "platforms that support this"), 242 cl::Hidden, cl::init(true)); 243 244 static cl::opt<bool> ClWithIfuncSuppressRemat( 245 "asan-with-ifunc-suppress-remat", 246 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 247 "it through inline asm in prologue."), 248 cl::Hidden, cl::init(true)); 249 250 // This flag limits the number of instructions to be instrumented 251 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 252 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 253 // set it to 10000. 254 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 255 "asan-max-ins-per-bb", cl::init(10000), 256 cl::desc("maximal number of instructions to instrument in any given BB"), 257 cl::Hidden); 258 259 // This flag may need to be replaced with -f[no]asan-stack. 260 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 261 cl::Hidden, cl::init(true)); 262 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 263 "asan-max-inline-poisoning-size", 264 cl::desc( 265 "Inline shadow poisoning for blocks up to the given size in bytes."), 266 cl::Hidden, cl::init(64)); 267 268 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 269 "asan-use-after-return", 270 cl::desc("Sets the mode of detection for stack-use-after-return."), 271 cl::values( 272 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 273 "Never detect stack use after return."), 274 clEnumValN( 275 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 276 "Detect stack use after return if " 277 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 278 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 279 "Always detect stack use after return.")), 280 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 281 282 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 283 cl::desc("Create redzones for byval " 284 "arguments (extra copy " 285 "required)"), cl::Hidden, 286 cl::init(true)); 287 288 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 289 cl::desc("Check stack-use-after-scope"), 290 cl::Hidden, cl::init(false)); 291 292 // This flag may need to be replaced with -f[no]asan-globals. 293 static cl::opt<bool> ClGlobals("asan-globals", 294 cl::desc("Handle global objects"), cl::Hidden, 295 cl::init(true)); 296 297 static cl::opt<bool> ClInitializers("asan-initialization-order", 298 cl::desc("Handle C++ initializer order"), 299 cl::Hidden, cl::init(true)); 300 301 static cl::opt<bool> ClInvalidPointerPairs( 302 "asan-detect-invalid-pointer-pair", 303 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 304 cl::init(false)); 305 306 static cl::opt<bool> ClInvalidPointerCmp( 307 "asan-detect-invalid-pointer-cmp", 308 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 309 cl::init(false)); 310 311 static cl::opt<bool> ClInvalidPointerSub( 312 "asan-detect-invalid-pointer-sub", 313 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 314 cl::init(false)); 315 316 static cl::opt<unsigned> ClRealignStack( 317 "asan-realign-stack", 318 cl::desc("Realign stack to the value of this flag (power of two)"), 319 cl::Hidden, cl::init(32)); 320 321 static cl::opt<int> ClInstrumentationWithCallsThreshold( 322 "asan-instrumentation-with-call-threshold", 323 cl::desc( 324 "If the function being instrumented contains more than " 325 "this number of memory accesses, use callbacks instead of " 326 "inline checks (-1 means never use callbacks)."), 327 cl::Hidden, cl::init(7000)); 328 329 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 330 "asan-memory-access-callback-prefix", 331 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 332 cl::init("__asan_")); 333 334 static cl::opt<bool> 335 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 336 cl::desc("instrument dynamic allocas"), 337 cl::Hidden, cl::init(true)); 338 339 static cl::opt<bool> ClSkipPromotableAllocas( 340 "asan-skip-promotable-allocas", 341 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 342 cl::init(true)); 343 344 // These flags allow to change the shadow mapping. 345 // The shadow mapping looks like 346 // Shadow = (Mem >> scale) + offset 347 348 static cl::opt<int> ClMappingScale("asan-mapping-scale", 349 cl::desc("scale of asan shadow mapping"), 350 cl::Hidden, cl::init(0)); 351 352 static cl::opt<uint64_t> 353 ClMappingOffset("asan-mapping-offset", 354 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 355 cl::Hidden, cl::init(0)); 356 357 // Optimization flags. Not user visible, used mostly for testing 358 // and benchmarking the tool. 359 360 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 361 cl::Hidden, cl::init(true)); 362 363 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 364 cl::desc("Optimize callbacks"), 365 cl::Hidden, cl::init(false)); 366 367 static cl::opt<bool> ClOptSameTemp( 368 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 369 cl::Hidden, cl::init(true)); 370 371 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 372 cl::desc("Don't instrument scalar globals"), 373 cl::Hidden, cl::init(true)); 374 375 static cl::opt<bool> ClOptStack( 376 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 377 cl::Hidden, cl::init(false)); 378 379 static cl::opt<bool> ClDynamicAllocaStack( 380 "asan-stack-dynamic-alloca", 381 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 382 cl::init(true)); 383 384 static cl::opt<uint32_t> ClForceExperiment( 385 "asan-force-experiment", 386 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 387 cl::init(0)); 388 389 static cl::opt<bool> 390 ClUsePrivateAlias("asan-use-private-alias", 391 cl::desc("Use private aliases for global variables"), 392 cl::Hidden, cl::init(false)); 393 394 static cl::opt<bool> 395 ClUseOdrIndicator("asan-use-odr-indicator", 396 cl::desc("Use odr indicators to improve ODR reporting"), 397 cl::Hidden, cl::init(false)); 398 399 static cl::opt<bool> 400 ClUseGlobalsGC("asan-globals-live-support", 401 cl::desc("Use linker features to support dead " 402 "code stripping of globals"), 403 cl::Hidden, cl::init(true)); 404 405 // This is on by default even though there is a bug in gold: 406 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 407 static cl::opt<bool> 408 ClWithComdat("asan-with-comdat", 409 cl::desc("Place ASan constructors in comdat sections"), 410 cl::Hidden, cl::init(true)); 411 412 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 413 "asan-destructor-kind", 414 cl::desc("Sets the ASan destructor kind. The default is to use the value " 415 "provided to the pass constructor"), 416 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 417 clEnumValN(AsanDtorKind::Global, "global", 418 "Use global destructors")), 419 cl::init(AsanDtorKind::Invalid), cl::Hidden); 420 421 // Debug flags. 422 423 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 424 cl::init(0)); 425 426 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 427 cl::Hidden, cl::init(0)); 428 429 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 430 cl::desc("Debug func")); 431 432 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 433 cl::Hidden, cl::init(-1)); 434 435 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 436 cl::Hidden, cl::init(-1)); 437 438 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 439 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 440 STATISTIC(NumOptimizedAccessesToGlobalVar, 441 "Number of optimized accesses to global vars"); 442 STATISTIC(NumOptimizedAccessesToStackVar, 443 "Number of optimized accesses to stack vars"); 444 445 namespace { 446 447 /// This struct defines the shadow mapping using the rule: 448 /// shadow = (mem >> Scale) ADD-or-OR Offset. 449 /// If InGlobal is true, then 450 /// extern char __asan_shadow[]; 451 /// shadow = (mem >> Scale) + &__asan_shadow 452 struct ShadowMapping { 453 int Scale; 454 uint64_t Offset; 455 bool OrShadowOffset; 456 bool InGlobal; 457 }; 458 459 } // end anonymous namespace 460 461 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 462 bool IsKasan) { 463 bool IsAndroid = TargetTriple.isAndroid(); 464 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() || 465 TargetTriple.isDriverKit(); 466 bool IsMacOS = TargetTriple.isMacOSX(); 467 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 468 bool IsNetBSD = TargetTriple.isOSNetBSD(); 469 bool IsPS4 = TargetTriple.isPS4(); 470 bool IsLinux = TargetTriple.isOSLinux(); 471 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 472 TargetTriple.getArch() == Triple::ppc64le; 473 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 474 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 475 bool IsMIPS32 = TargetTriple.isMIPS32(); 476 bool IsMIPS64 = TargetTriple.isMIPS64(); 477 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 478 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 479 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 480 bool IsWindows = TargetTriple.isOSWindows(); 481 bool IsFuchsia = TargetTriple.isOSFuchsia(); 482 bool IsEmscripten = TargetTriple.isOSEmscripten(); 483 bool IsAMDGPU = TargetTriple.isAMDGPU(); 484 485 ShadowMapping Mapping; 486 487 Mapping.Scale = kDefaultShadowScale; 488 if (ClMappingScale.getNumOccurrences() > 0) { 489 Mapping.Scale = ClMappingScale; 490 } 491 492 if (LongSize == 32) { 493 if (IsAndroid) 494 Mapping.Offset = kDynamicShadowSentinel; 495 else if (IsMIPS32) 496 Mapping.Offset = kMIPS32_ShadowOffset32; 497 else if (IsFreeBSD) 498 Mapping.Offset = kFreeBSD_ShadowOffset32; 499 else if (IsNetBSD) 500 Mapping.Offset = kNetBSD_ShadowOffset32; 501 else if (IsIOS) 502 Mapping.Offset = kDynamicShadowSentinel; 503 else if (IsWindows) 504 Mapping.Offset = kWindowsShadowOffset32; 505 else if (IsEmscripten) 506 Mapping.Offset = kEmscriptenShadowOffset; 507 else 508 Mapping.Offset = kDefaultShadowOffset32; 509 } else { // LongSize == 64 510 // Fuchsia is always PIE, which means that the beginning of the address 511 // space is always available. 512 if (IsFuchsia) 513 Mapping.Offset = 0; 514 else if (IsPPC64) 515 Mapping.Offset = kPPC64_ShadowOffset64; 516 else if (IsSystemZ) 517 Mapping.Offset = kSystemZ_ShadowOffset64; 518 else if (IsFreeBSD && !IsMIPS64) { 519 if (IsKasan) 520 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 521 else 522 Mapping.Offset = kFreeBSD_ShadowOffset64; 523 } else if (IsNetBSD) { 524 if (IsKasan) 525 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 526 else 527 Mapping.Offset = kNetBSD_ShadowOffset64; 528 } else if (IsPS4) 529 Mapping.Offset = kPS4_ShadowOffset64; 530 else if (IsLinux && IsX86_64) { 531 if (IsKasan) 532 Mapping.Offset = kLinuxKasan_ShadowOffset64; 533 else 534 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 535 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 536 } else if (IsWindows && IsX86_64) { 537 Mapping.Offset = kWindowsShadowOffset64; 538 } else if (IsMIPS64) 539 Mapping.Offset = kMIPS64_ShadowOffset64; 540 else if (IsIOS) 541 Mapping.Offset = kDynamicShadowSentinel; 542 else if (IsMacOS && IsAArch64) 543 Mapping.Offset = kDynamicShadowSentinel; 544 else if (IsAArch64) 545 Mapping.Offset = kAArch64_ShadowOffset64; 546 else if (IsRISCV64) 547 Mapping.Offset = kRISCV64_ShadowOffset64; 548 else if (IsAMDGPU) 549 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 550 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 551 else 552 Mapping.Offset = kDefaultShadowOffset64; 553 } 554 555 if (ClForceDynamicShadow) { 556 Mapping.Offset = kDynamicShadowSentinel; 557 } 558 559 if (ClMappingOffset.getNumOccurrences() > 0) { 560 Mapping.Offset = ClMappingOffset; 561 } 562 563 // OR-ing shadow offset if more efficient (at least on x86) if the offset 564 // is a power of two, but on ppc64 we have to use add since the shadow 565 // offset is not necessary 1/8-th of the address space. On SystemZ, 566 // we could OR the constant in a single instruction, but it's more 567 // efficient to load it once and use indexed addressing. 568 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4 && 569 !IsRISCV64 && 570 !(Mapping.Offset & (Mapping.Offset - 1)) && 571 Mapping.Offset != kDynamicShadowSentinel; 572 bool IsAndroidWithIfuncSupport = 573 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 574 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 575 576 return Mapping; 577 } 578 579 namespace llvm { 580 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 581 bool IsKasan, uint64_t *ShadowBase, 582 int *MappingScale, bool *OrShadowOffset) { 583 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 584 *ShadowBase = Mapping.Offset; 585 *MappingScale = Mapping.Scale; 586 *OrShadowOffset = Mapping.OrShadowOffset; 587 } 588 589 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 590 : Packed(Packed), 591 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 592 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 593 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 594 595 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 596 uint8_t AccessSizeIndex) 597 : Packed((IsWrite << kIsWriteShift) + 598 (CompileKernel << kCompileKernelShift) + 599 (AccessSizeIndex << kAccessSizeIndexShift)), 600 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 601 CompileKernel(CompileKernel) {} 602 603 } // namespace llvm 604 605 static uint64_t getRedzoneSizeForScale(int MappingScale) { 606 // Redzone used for stack and globals is at least 32 bytes. 607 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 608 return std::max(32U, 1U << MappingScale); 609 } 610 611 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 612 if (TargetTriple.isOSEmscripten()) { 613 return kAsanEmscriptenCtorAndDtorPriority; 614 } else { 615 return kAsanCtorAndDtorPriority; 616 } 617 } 618 619 namespace { 620 621 /// Module analysis for getting various metadata about the module. 622 class ASanGlobalsMetadataWrapperPass : public ModulePass { 623 public: 624 static char ID; 625 626 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 627 initializeASanGlobalsMetadataWrapperPassPass( 628 *PassRegistry::getPassRegistry()); 629 } 630 631 bool runOnModule(Module &M) override { 632 GlobalsMD = GlobalsMetadata(M); 633 return false; 634 } 635 636 StringRef getPassName() const override { 637 return "ASanGlobalsMetadataWrapperPass"; 638 } 639 640 void getAnalysisUsage(AnalysisUsage &AU) const override { 641 AU.setPreservesAll(); 642 } 643 644 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 645 646 private: 647 GlobalsMetadata GlobalsMD; 648 }; 649 650 char ASanGlobalsMetadataWrapperPass::ID = 0; 651 652 /// AddressSanitizer: instrument the code in module to find memory bugs. 653 struct AddressSanitizer { 654 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 655 const StackSafetyGlobalInfo *SSGI, 656 bool CompileKernel = false, bool Recover = false, 657 bool UseAfterScope = false, 658 AsanDetectStackUseAfterReturnMode UseAfterReturn = 659 AsanDetectStackUseAfterReturnMode::Runtime) 660 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 661 : CompileKernel), 662 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 663 UseAfterScope(UseAfterScope || ClUseAfterScope), 664 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 665 : UseAfterReturn), 666 GlobalsMD(*GlobalsMD), SSGI(SSGI) { 667 C = &(M.getContext()); 668 LongSize = M.getDataLayout().getPointerSizeInBits(); 669 IntptrTy = Type::getIntNTy(*C, LongSize); 670 Int8PtrTy = Type::getInt8PtrTy(*C); 671 Int32Ty = Type::getInt32Ty(*C); 672 TargetTriple = Triple(M.getTargetTriple()); 673 674 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 675 676 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 677 } 678 679 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 680 uint64_t ArraySize = 1; 681 if (AI.isArrayAllocation()) { 682 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 683 assert(CI && "non-constant array size"); 684 ArraySize = CI->getZExtValue(); 685 } 686 Type *Ty = AI.getAllocatedType(); 687 uint64_t SizeInBytes = 688 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 689 return SizeInBytes * ArraySize; 690 } 691 692 /// Check if we want (and can) handle this alloca. 693 bool isInterestingAlloca(const AllocaInst &AI); 694 695 bool ignoreAccess(Instruction *Inst, Value *Ptr); 696 void getInterestingMemoryOperands( 697 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 698 699 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 700 InterestingMemoryOperand &O, bool UseCalls, 701 const DataLayout &DL); 702 void instrumentPointerComparisonOrSubtraction(Instruction *I); 703 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 704 Value *Addr, uint32_t TypeSize, bool IsWrite, 705 Value *SizeArgument, bool UseCalls, uint32_t Exp); 706 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 707 Instruction *InsertBefore, Value *Addr, 708 uint32_t TypeSize, bool IsWrite, 709 Value *SizeArgument); 710 void instrumentUnusualSizeOrAlignment(Instruction *I, 711 Instruction *InsertBefore, Value *Addr, 712 uint32_t TypeSize, bool IsWrite, 713 Value *SizeArgument, bool UseCalls, 714 uint32_t Exp); 715 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 716 Value *ShadowValue, uint32_t TypeSize); 717 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 718 bool IsWrite, size_t AccessSizeIndex, 719 Value *SizeArgument, uint32_t Exp); 720 void instrumentMemIntrinsic(MemIntrinsic *MI); 721 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 722 bool suppressInstrumentationSiteForDebug(int &Instrumented); 723 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 724 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 725 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 726 void markEscapedLocalAllocas(Function &F); 727 728 private: 729 friend struct FunctionStackPoisoner; 730 731 void initializeCallbacks(Module &M); 732 733 bool LooksLikeCodeInBug11395(Instruction *I); 734 bool GlobalIsLinkerInitialized(GlobalVariable *G); 735 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 736 uint64_t TypeSize) const; 737 738 /// Helper to cleanup per-function state. 739 struct FunctionStateRAII { 740 AddressSanitizer *Pass; 741 742 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 743 assert(Pass->ProcessedAllocas.empty() && 744 "last pass forgot to clear cache"); 745 assert(!Pass->LocalDynamicShadow); 746 } 747 748 ~FunctionStateRAII() { 749 Pass->LocalDynamicShadow = nullptr; 750 Pass->ProcessedAllocas.clear(); 751 } 752 }; 753 754 LLVMContext *C; 755 Triple TargetTriple; 756 int LongSize; 757 bool CompileKernel; 758 bool Recover; 759 bool UseAfterScope; 760 AsanDetectStackUseAfterReturnMode UseAfterReturn; 761 Type *IntptrTy; 762 Type *Int8PtrTy; 763 Type *Int32Ty; 764 ShadowMapping Mapping; 765 FunctionCallee AsanHandleNoReturnFunc; 766 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 767 Constant *AsanShadowGlobal; 768 769 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 770 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 771 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 772 773 // These arrays is indexed by AccessIsWrite and Experiment. 774 FunctionCallee AsanErrorCallbackSized[2][2]; 775 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 776 777 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 778 Value *LocalDynamicShadow = nullptr; 779 const GlobalsMetadata &GlobalsMD; 780 const StackSafetyGlobalInfo *SSGI; 781 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 782 783 FunctionCallee AMDGPUAddressShared; 784 FunctionCallee AMDGPUAddressPrivate; 785 }; 786 787 class AddressSanitizerLegacyPass : public FunctionPass { 788 public: 789 static char ID; 790 791 explicit AddressSanitizerLegacyPass( 792 bool CompileKernel = false, bool Recover = false, 793 bool UseAfterScope = false, 794 AsanDetectStackUseAfterReturnMode UseAfterReturn = 795 AsanDetectStackUseAfterReturnMode::Runtime) 796 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 797 UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) { 798 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 799 } 800 801 StringRef getPassName() const override { 802 return "AddressSanitizerFunctionPass"; 803 } 804 805 void getAnalysisUsage(AnalysisUsage &AU) const override { 806 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 807 if (ClUseStackSafety) 808 AU.addRequired<StackSafetyGlobalInfoWrapperPass>(); 809 AU.addRequired<TargetLibraryInfoWrapperPass>(); 810 } 811 812 bool runOnFunction(Function &F) override { 813 GlobalsMetadata &GlobalsMD = 814 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 815 const StackSafetyGlobalInfo *const SSGI = 816 ClUseStackSafety 817 ? &getAnalysis<StackSafetyGlobalInfoWrapperPass>().getResult() 818 : nullptr; 819 const TargetLibraryInfo *TLI = 820 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 821 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, SSGI, CompileKernel, 822 Recover, UseAfterScope, UseAfterReturn); 823 return ASan.instrumentFunction(F, TLI); 824 } 825 826 private: 827 bool CompileKernel; 828 bool Recover; 829 bool UseAfterScope; 830 AsanDetectStackUseAfterReturnMode UseAfterReturn; 831 }; 832 833 class ModuleAddressSanitizer { 834 public: 835 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 836 bool CompileKernel = false, bool Recover = false, 837 bool UseGlobalsGC = true, bool UseOdrIndicator = false, 838 AsanDtorKind DestructorKind = AsanDtorKind::Global) 839 : GlobalsMD(*GlobalsMD), 840 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 841 : CompileKernel), 842 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 843 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 844 // Enable aliases as they should have no downside with ODR indicators. 845 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 846 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 847 // Not a typo: ClWithComdat is almost completely pointless without 848 // ClUseGlobalsGC (because then it only works on modules without 849 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 850 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 851 // argument is designed as workaround. Therefore, disable both 852 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 853 // do globals-gc. 854 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 855 DestructorKind(DestructorKind) { 856 C = &(M.getContext()); 857 int LongSize = M.getDataLayout().getPointerSizeInBits(); 858 IntptrTy = Type::getIntNTy(*C, LongSize); 859 TargetTriple = Triple(M.getTargetTriple()); 860 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 861 862 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 863 this->DestructorKind = ClOverrideDestructorKind; 864 assert(this->DestructorKind != AsanDtorKind::Invalid); 865 } 866 867 bool instrumentModule(Module &); 868 869 private: 870 void initializeCallbacks(Module &M); 871 872 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 873 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 874 ArrayRef<GlobalVariable *> ExtendedGlobals, 875 ArrayRef<Constant *> MetadataInitializers); 876 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 877 ArrayRef<GlobalVariable *> ExtendedGlobals, 878 ArrayRef<Constant *> MetadataInitializers, 879 const std::string &UniqueModuleId); 880 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 881 ArrayRef<GlobalVariable *> ExtendedGlobals, 882 ArrayRef<Constant *> MetadataInitializers); 883 void 884 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 885 ArrayRef<GlobalVariable *> ExtendedGlobals, 886 ArrayRef<Constant *> MetadataInitializers); 887 888 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 889 StringRef OriginalName); 890 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 891 StringRef InternalSuffix); 892 Instruction *CreateAsanModuleDtor(Module &M); 893 894 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 895 bool shouldInstrumentGlobal(GlobalVariable *G) const; 896 bool ShouldUseMachOGlobalsSection() const; 897 StringRef getGlobalMetadataSection() const; 898 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 899 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 900 uint64_t getMinRedzoneSizeForGlobal() const { 901 return getRedzoneSizeForScale(Mapping.Scale); 902 } 903 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 904 int GetAsanVersion(const Module &M) const; 905 906 const GlobalsMetadata &GlobalsMD; 907 bool CompileKernel; 908 bool Recover; 909 bool UseGlobalsGC; 910 bool UsePrivateAlias; 911 bool UseOdrIndicator; 912 bool UseCtorComdat; 913 AsanDtorKind DestructorKind; 914 Type *IntptrTy; 915 LLVMContext *C; 916 Triple TargetTriple; 917 ShadowMapping Mapping; 918 FunctionCallee AsanPoisonGlobals; 919 FunctionCallee AsanUnpoisonGlobals; 920 FunctionCallee AsanRegisterGlobals; 921 FunctionCallee AsanUnregisterGlobals; 922 FunctionCallee AsanRegisterImageGlobals; 923 FunctionCallee AsanUnregisterImageGlobals; 924 FunctionCallee AsanRegisterElfGlobals; 925 FunctionCallee AsanUnregisterElfGlobals; 926 927 Function *AsanCtorFunction = nullptr; 928 Function *AsanDtorFunction = nullptr; 929 }; 930 931 class ModuleAddressSanitizerLegacyPass : public ModulePass { 932 public: 933 static char ID; 934 935 explicit ModuleAddressSanitizerLegacyPass( 936 bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true, 937 bool UseOdrIndicator = false, 938 AsanDtorKind DestructorKind = AsanDtorKind::Global) 939 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 940 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), 941 DestructorKind(DestructorKind) { 942 initializeModuleAddressSanitizerLegacyPassPass( 943 *PassRegistry::getPassRegistry()); 944 } 945 946 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 947 948 void getAnalysisUsage(AnalysisUsage &AU) const override { 949 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 950 } 951 952 bool runOnModule(Module &M) override { 953 GlobalsMetadata &GlobalsMD = 954 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 955 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 956 UseGlobalGC, UseOdrIndicator, 957 DestructorKind); 958 return ASanModule.instrumentModule(M); 959 } 960 961 private: 962 bool CompileKernel; 963 bool Recover; 964 bool UseGlobalGC; 965 bool UseOdrIndicator; 966 AsanDtorKind DestructorKind; 967 }; 968 969 // Stack poisoning does not play well with exception handling. 970 // When an exception is thrown, we essentially bypass the code 971 // that unpoisones the stack. This is why the run-time library has 972 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 973 // stack in the interceptor. This however does not work inside the 974 // actual function which catches the exception. Most likely because the 975 // compiler hoists the load of the shadow value somewhere too high. 976 // This causes asan to report a non-existing bug on 453.povray. 977 // It sounds like an LLVM bug. 978 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 979 Function &F; 980 AddressSanitizer &ASan; 981 DIBuilder DIB; 982 LLVMContext *C; 983 Type *IntptrTy; 984 Type *IntptrPtrTy; 985 ShadowMapping Mapping; 986 987 SmallVector<AllocaInst *, 16> AllocaVec; 988 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 989 SmallVector<Instruction *, 8> RetVec; 990 991 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 992 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 993 FunctionCallee AsanSetShadowFunc[0x100] = {}; 994 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 995 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 996 997 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 998 struct AllocaPoisonCall { 999 IntrinsicInst *InsBefore; 1000 AllocaInst *AI; 1001 uint64_t Size; 1002 bool DoPoison; 1003 }; 1004 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 1005 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 1006 bool HasUntracedLifetimeIntrinsic = false; 1007 1008 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 1009 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 1010 AllocaInst *DynamicAllocaLayout = nullptr; 1011 IntrinsicInst *LocalEscapeCall = nullptr; 1012 1013 bool HasInlineAsm = false; 1014 bool HasReturnsTwiceCall = false; 1015 bool PoisonStack; 1016 1017 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 1018 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 1019 C(ASan.C), IntptrTy(ASan.IntptrTy), 1020 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 1021 PoisonStack(ClStack && 1022 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 1023 1024 bool runOnFunction() { 1025 if (!PoisonStack) 1026 return false; 1027 1028 if (ClRedzoneByvalArgs) 1029 copyArgsPassedByValToAllocas(); 1030 1031 // Collect alloca, ret, lifetime instructions etc. 1032 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 1033 1034 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 1035 1036 initializeCallbacks(*F.getParent()); 1037 1038 if (HasUntracedLifetimeIntrinsic) { 1039 // If there are lifetime intrinsics which couldn't be traced back to an 1040 // alloca, we may not know exactly when a variable enters scope, and 1041 // therefore should "fail safe" by not poisoning them. 1042 StaticAllocaPoisonCallVec.clear(); 1043 DynamicAllocaPoisonCallVec.clear(); 1044 } 1045 1046 processDynamicAllocas(); 1047 processStaticAllocas(); 1048 1049 if (ClDebugStack) { 1050 LLVM_DEBUG(dbgs() << F); 1051 } 1052 return true; 1053 } 1054 1055 // Arguments marked with the "byval" attribute are implicitly copied without 1056 // using an alloca instruction. To produce redzones for those arguments, we 1057 // copy them a second time into memory allocated with an alloca instruction. 1058 void copyArgsPassedByValToAllocas(); 1059 1060 // Finds all Alloca instructions and puts 1061 // poisoned red zones around all of them. 1062 // Then unpoison everything back before the function returns. 1063 void processStaticAllocas(); 1064 void processDynamicAllocas(); 1065 1066 void createDynamicAllocasInitStorage(); 1067 1068 // ----------------------- Visitors. 1069 /// Collect all Ret instructions, or the musttail call instruction if it 1070 /// precedes the return instruction. 1071 void visitReturnInst(ReturnInst &RI) { 1072 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 1073 RetVec.push_back(CI); 1074 else 1075 RetVec.push_back(&RI); 1076 } 1077 1078 /// Collect all Resume instructions. 1079 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 1080 1081 /// Collect all CatchReturnInst instructions. 1082 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 1083 1084 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 1085 Value *SavedStack) { 1086 IRBuilder<> IRB(InstBefore); 1087 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1088 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1089 // need to adjust extracted SP to compute the address of the most recent 1090 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1091 // this purpose. 1092 if (!isa<ReturnInst>(InstBefore)) { 1093 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1094 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1095 {IntptrTy}); 1096 1097 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1098 1099 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1100 DynamicAreaOffset); 1101 } 1102 1103 IRB.CreateCall( 1104 AsanAllocasUnpoisonFunc, 1105 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1106 } 1107 1108 // Unpoison dynamic allocas redzones. 1109 void unpoisonDynamicAllocas() { 1110 for (Instruction *Ret : RetVec) 1111 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1112 1113 for (Instruction *StackRestoreInst : StackRestoreVec) 1114 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1115 StackRestoreInst->getOperand(0)); 1116 } 1117 1118 // Deploy and poison redzones around dynamic alloca call. To do this, we 1119 // should replace this call with another one with changed parameters and 1120 // replace all its uses with new address, so 1121 // addr = alloca type, old_size, align 1122 // is replaced by 1123 // new_size = (old_size + additional_size) * sizeof(type) 1124 // tmp = alloca i8, new_size, max(align, 32) 1125 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1126 // Additional_size is added to make new memory allocation contain not only 1127 // requested memory, but also left, partial and right redzones. 1128 void handleDynamicAllocaCall(AllocaInst *AI); 1129 1130 /// Collect Alloca instructions we want (and can) handle. 1131 void visitAllocaInst(AllocaInst &AI) { 1132 if (!ASan.isInterestingAlloca(AI)) { 1133 if (AI.isStaticAlloca()) { 1134 // Skip over allocas that are present *before* the first instrumented 1135 // alloca, we don't want to move those around. 1136 if (AllocaVec.empty()) 1137 return; 1138 1139 StaticAllocasToMoveUp.push_back(&AI); 1140 } 1141 return; 1142 } 1143 1144 if (!AI.isStaticAlloca()) 1145 DynamicAllocaVec.push_back(&AI); 1146 else 1147 AllocaVec.push_back(&AI); 1148 } 1149 1150 /// Collect lifetime intrinsic calls to check for use-after-scope 1151 /// errors. 1152 void visitIntrinsicInst(IntrinsicInst &II) { 1153 Intrinsic::ID ID = II.getIntrinsicID(); 1154 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1155 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1156 if (!ASan.UseAfterScope) 1157 return; 1158 if (!II.isLifetimeStartOrEnd()) 1159 return; 1160 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1161 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1162 // If size argument is undefined, don't do anything. 1163 if (Size->isMinusOne()) return; 1164 // Check that size doesn't saturate uint64_t and can 1165 // be stored in IntptrTy. 1166 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1167 if (SizeValue == ~0ULL || 1168 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1169 return; 1170 // Find alloca instruction that corresponds to llvm.lifetime argument. 1171 // Currently we can only handle lifetime markers pointing to the 1172 // beginning of the alloca. 1173 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1174 if (!AI) { 1175 HasUntracedLifetimeIntrinsic = true; 1176 return; 1177 } 1178 // We're interested only in allocas we can handle. 1179 if (!ASan.isInterestingAlloca(*AI)) 1180 return; 1181 bool DoPoison = (ID == Intrinsic::lifetime_end); 1182 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1183 if (AI->isStaticAlloca()) 1184 StaticAllocaPoisonCallVec.push_back(APC); 1185 else if (ClInstrumentDynamicAllocas) 1186 DynamicAllocaPoisonCallVec.push_back(APC); 1187 } 1188 1189 void visitCallBase(CallBase &CB) { 1190 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1191 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1192 HasReturnsTwiceCall |= CI->canReturnTwice(); 1193 } 1194 } 1195 1196 // ---------------------- Helpers. 1197 void initializeCallbacks(Module &M); 1198 1199 // Copies bytes from ShadowBytes into shadow memory for indexes where 1200 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1201 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1202 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1203 IRBuilder<> &IRB, Value *ShadowBase); 1204 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1205 size_t Begin, size_t End, IRBuilder<> &IRB, 1206 Value *ShadowBase); 1207 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1208 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1209 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1210 1211 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1212 1213 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1214 bool Dynamic); 1215 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1216 Instruction *ThenTerm, Value *ValueIfFalse); 1217 }; 1218 1219 } // end anonymous namespace 1220 1221 void LocationMetadata::parse(MDNode *MDN) { 1222 assert(MDN->getNumOperands() == 3); 1223 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1224 Filename = DIFilename->getString(); 1225 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1226 ColumnNo = 1227 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1228 } 1229 1230 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1231 // we want to sanitize instead and reading this metadata on each pass over a 1232 // function instead of reading module level metadata at first. 1233 GlobalsMetadata::GlobalsMetadata(Module &M) { 1234 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1235 if (!Globals) 1236 return; 1237 for (auto MDN : Globals->operands()) { 1238 // Metadata node contains the global and the fields of "Entry". 1239 assert(MDN->getNumOperands() == 5); 1240 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1241 // The optimizer may optimize away a global entirely. 1242 if (!V) 1243 continue; 1244 auto *StrippedV = V->stripPointerCasts(); 1245 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1246 if (!GV) 1247 continue; 1248 // We can already have an entry for GV if it was merged with another 1249 // global. 1250 Entry &E = Entries[GV]; 1251 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1252 E.SourceLoc.parse(Loc); 1253 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1254 E.Name = Name->getString(); 1255 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1256 E.IsDynInit |= IsDynInit->isOne(); 1257 ConstantInt *IsExcluded = 1258 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1259 E.IsExcluded |= IsExcluded->isOne(); 1260 } 1261 } 1262 1263 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1264 1265 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1266 ModuleAnalysisManager &AM) { 1267 return GlobalsMetadata(M); 1268 } 1269 1270 void ModuleAddressSanitizerPass::printPipeline( 1271 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1272 static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline( 1273 OS, MapClassName2PassName); 1274 OS << "<"; 1275 if (Options.CompileKernel) 1276 OS << "kernel"; 1277 OS << ">"; 1278 } 1279 1280 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( 1281 const AddressSanitizerOptions &Options, bool UseGlobalGC, 1282 bool UseOdrIndicator, AsanDtorKind DestructorKind) 1283 : Options(Options), UseGlobalGC(UseGlobalGC), 1284 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} 1285 1286 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1287 ModuleAnalysisManager &MAM) { 1288 GlobalsMetadata &GlobalsMD = MAM.getResult<ASanGlobalsMetadataAnalysis>(M); 1289 ModuleAddressSanitizer ModuleSanitizer(M, &GlobalsMD, Options.CompileKernel, 1290 Options.Recover, UseGlobalGC, 1291 UseOdrIndicator, DestructorKind); 1292 bool Modified = false; 1293 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1294 const StackSafetyGlobalInfo *const SSGI = 1295 ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; 1296 for (Function &F : M) { 1297 AddressSanitizer FunctionSanitizer( 1298 M, &GlobalsMD, SSGI, Options.CompileKernel, Options.Recover, 1299 Options.UseAfterScope, Options.UseAfterReturn); 1300 const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1301 Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); 1302 } 1303 Modified |= ModuleSanitizer.instrumentModule(M); 1304 return Modified ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1305 } 1306 1307 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1308 "Read metadata to mark which globals should be instrumented " 1309 "when running ASan.", 1310 false, true) 1311 1312 char AddressSanitizerLegacyPass::ID = 0; 1313 1314 INITIALIZE_PASS_BEGIN( 1315 AddressSanitizerLegacyPass, "asan", 1316 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1317 false) 1318 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1319 INITIALIZE_PASS_DEPENDENCY(StackSafetyGlobalInfoWrapperPass) 1320 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1321 INITIALIZE_PASS_END( 1322 AddressSanitizerLegacyPass, "asan", 1323 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1324 false) 1325 1326 FunctionPass *llvm::createAddressSanitizerFunctionPass( 1327 bool CompileKernel, bool Recover, bool UseAfterScope, 1328 AsanDetectStackUseAfterReturnMode UseAfterReturn) { 1329 assert(!CompileKernel || Recover); 1330 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope, 1331 UseAfterReturn); 1332 } 1333 1334 char ModuleAddressSanitizerLegacyPass::ID = 0; 1335 1336 INITIALIZE_PASS( 1337 ModuleAddressSanitizerLegacyPass, "asan-module", 1338 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1339 "ModulePass", 1340 false, false) 1341 1342 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1343 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator, 1344 AsanDtorKind Destructor) { 1345 assert(!CompileKernel || Recover); 1346 return new ModuleAddressSanitizerLegacyPass( 1347 CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor); 1348 } 1349 1350 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1351 size_t Res = countTrailingZeros(TypeSize / 8); 1352 assert(Res < kNumberOfAccessSizes); 1353 return Res; 1354 } 1355 1356 /// Create a global describing a source location. 1357 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1358 LocationMetadata MD) { 1359 Constant *LocData[] = { 1360 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1361 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1362 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1363 }; 1364 auto LocStruct = ConstantStruct::getAnon(LocData); 1365 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1366 GlobalValue::PrivateLinkage, LocStruct, 1367 kAsanGenPrefix); 1368 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1369 return GV; 1370 } 1371 1372 /// Check if \p G has been created by a trusted compiler pass. 1373 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1374 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1375 if (G->getName().startswith("llvm.")) 1376 return true; 1377 1378 // Do not instrument asan globals. 1379 if (G->getName().startswith(kAsanGenPrefix) || 1380 G->getName().startswith(kSanCovGenPrefix) || 1381 G->getName().startswith(kODRGenPrefix)) 1382 return true; 1383 1384 // Do not instrument gcov counter arrays. 1385 if (G->getName() == "__llvm_gcov_ctr") 1386 return true; 1387 1388 return false; 1389 } 1390 1391 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1392 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1393 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1394 if (AddrSpace == 3 || AddrSpace == 5) 1395 return true; 1396 return false; 1397 } 1398 1399 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1400 // Shadow >> scale 1401 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1402 if (Mapping.Offset == 0) return Shadow; 1403 // (Shadow >> scale) | offset 1404 Value *ShadowBase; 1405 if (LocalDynamicShadow) 1406 ShadowBase = LocalDynamicShadow; 1407 else 1408 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1409 if (Mapping.OrShadowOffset) 1410 return IRB.CreateOr(Shadow, ShadowBase); 1411 else 1412 return IRB.CreateAdd(Shadow, ShadowBase); 1413 } 1414 1415 // Instrument memset/memmove/memcpy 1416 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1417 IRBuilder<> IRB(MI); 1418 if (isa<MemTransferInst>(MI)) { 1419 IRB.CreateCall( 1420 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1421 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1422 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1423 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1424 } else if (isa<MemSetInst>(MI)) { 1425 IRB.CreateCall( 1426 AsanMemset, 1427 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1428 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1429 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1430 } 1431 MI->eraseFromParent(); 1432 } 1433 1434 /// Check if we want (and can) handle this alloca. 1435 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1436 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1437 1438 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1439 return PreviouslySeenAllocaInfo->getSecond(); 1440 1441 bool IsInteresting = 1442 (AI.getAllocatedType()->isSized() && 1443 // alloca() may be called with 0 size, ignore it. 1444 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1445 // We are only interested in allocas not promotable to registers. 1446 // Promotable allocas are common under -O0. 1447 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1448 // inalloca allocas are not treated as static, and we don't want 1449 // dynamic alloca instrumentation for them as well. 1450 !AI.isUsedWithInAlloca() && 1451 // swifterror allocas are register promoted by ISel 1452 !AI.isSwiftError()); 1453 1454 ProcessedAllocas[&AI] = IsInteresting; 1455 return IsInteresting; 1456 } 1457 1458 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { 1459 // Instrument acesses from different address spaces only for AMDGPU. 1460 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1461 if (PtrTy->getPointerAddressSpace() != 0 && 1462 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1463 return true; 1464 1465 // Ignore swifterror addresses. 1466 // swifterror memory addresses are mem2reg promoted by instruction 1467 // selection. As such they cannot have regular uses like an instrumentation 1468 // function and it makes no sense to track them as memory. 1469 if (Ptr->isSwiftError()) 1470 return true; 1471 1472 // Treat memory accesses to promotable allocas as non-interesting since they 1473 // will not cause memory violations. This greatly speeds up the instrumented 1474 // executable at -O0. 1475 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1476 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1477 return true; 1478 1479 if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && 1480 findAllocaForValue(Ptr)) 1481 return true; 1482 1483 return false; 1484 } 1485 1486 void AddressSanitizer::getInterestingMemoryOperands( 1487 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1488 // Skip memory accesses inserted by another instrumentation. 1489 if (I->hasMetadata("nosanitize")) 1490 return; 1491 1492 // Do not instrument the load fetching the dynamic shadow address. 1493 if (LocalDynamicShadow == I) 1494 return; 1495 1496 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1497 if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand())) 1498 return; 1499 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1500 LI->getType(), LI->getAlign()); 1501 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1502 if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand())) 1503 return; 1504 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1505 SI->getValueOperand()->getType(), SI->getAlign()); 1506 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1507 if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand())) 1508 return; 1509 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1510 RMW->getValOperand()->getType(), None); 1511 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1512 if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand())) 1513 return; 1514 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1515 XCHG->getCompareOperand()->getType(), None); 1516 } else if (auto CI = dyn_cast<CallInst>(I)) { 1517 if (CI->getIntrinsicID() == Intrinsic::masked_load || 1518 CI->getIntrinsicID() == Intrinsic::masked_store) { 1519 bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_store; 1520 // Masked store has an initial operand for the value. 1521 unsigned OpOffset = IsWrite ? 1 : 0; 1522 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1523 return; 1524 1525 auto BasePtr = CI->getOperand(OpOffset); 1526 if (ignoreAccess(I, BasePtr)) 1527 return; 1528 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1529 MaybeAlign Alignment = Align(1); 1530 // Otherwise no alignment guarantees. We probably got Undef. 1531 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1532 Alignment = Op->getMaybeAlignValue(); 1533 Value *Mask = CI->getOperand(2 + OpOffset); 1534 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1535 } else { 1536 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1537 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1538 ignoreAccess(I, CI->getArgOperand(ArgNo))) 1539 continue; 1540 Type *Ty = CI->getParamByValType(ArgNo); 1541 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1542 } 1543 } 1544 } 1545 } 1546 1547 static bool isPointerOperand(Value *V) { 1548 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1549 } 1550 1551 // This is a rough heuristic; it may cause both false positives and 1552 // false negatives. The proper implementation requires cooperation with 1553 // the frontend. 1554 static bool isInterestingPointerComparison(Instruction *I) { 1555 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1556 if (!Cmp->isRelational()) 1557 return false; 1558 } else { 1559 return false; 1560 } 1561 return isPointerOperand(I->getOperand(0)) && 1562 isPointerOperand(I->getOperand(1)); 1563 } 1564 1565 // This is a rough heuristic; it may cause both false positives and 1566 // false negatives. The proper implementation requires cooperation with 1567 // the frontend. 1568 static bool isInterestingPointerSubtraction(Instruction *I) { 1569 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1570 if (BO->getOpcode() != Instruction::Sub) 1571 return false; 1572 } else { 1573 return false; 1574 } 1575 return isPointerOperand(I->getOperand(0)) && 1576 isPointerOperand(I->getOperand(1)); 1577 } 1578 1579 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1580 // If a global variable does not have dynamic initialization we don't 1581 // have to instrument it. However, if a global does not have initializer 1582 // at all, we assume it has dynamic initializer (in other TU). 1583 // 1584 // FIXME: Metadata should be attched directly to the global directly instead 1585 // of being added to llvm.asan.globals. 1586 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1587 } 1588 1589 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1590 Instruction *I) { 1591 IRBuilder<> IRB(I); 1592 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1593 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1594 for (Value *&i : Param) { 1595 if (i->getType()->isPointerTy()) 1596 i = IRB.CreatePointerCast(i, IntptrTy); 1597 } 1598 IRB.CreateCall(F, Param); 1599 } 1600 1601 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1602 Instruction *InsertBefore, Value *Addr, 1603 MaybeAlign Alignment, unsigned Granularity, 1604 uint32_t TypeSize, bool IsWrite, 1605 Value *SizeArgument, bool UseCalls, 1606 uint32_t Exp) { 1607 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1608 // if the data is properly aligned. 1609 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1610 TypeSize == 128) && 1611 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1612 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1613 nullptr, UseCalls, Exp); 1614 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1615 IsWrite, nullptr, UseCalls, Exp); 1616 } 1617 1618 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1619 const DataLayout &DL, Type *IntptrTy, 1620 Value *Mask, Instruction *I, 1621 Value *Addr, MaybeAlign Alignment, 1622 unsigned Granularity, Type *OpType, 1623 bool IsWrite, Value *SizeArgument, 1624 bool UseCalls, uint32_t Exp) { 1625 auto *VTy = cast<FixedVectorType>(OpType); 1626 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1627 unsigned Num = VTy->getNumElements(); 1628 auto Zero = ConstantInt::get(IntptrTy, 0); 1629 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1630 Value *InstrumentedAddress = nullptr; 1631 Instruction *InsertBefore = I; 1632 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1633 // dyn_cast as we might get UndefValue 1634 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1635 if (Masked->isZero()) 1636 // Mask is constant false, so no instrumentation needed. 1637 continue; 1638 // If we have a true or undef value, fall through to doInstrumentAddress 1639 // with InsertBefore == I 1640 } 1641 } else { 1642 IRBuilder<> IRB(I); 1643 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1644 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1645 InsertBefore = ThenTerm; 1646 } 1647 1648 IRBuilder<> IRB(InsertBefore); 1649 InstrumentedAddress = 1650 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1651 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1652 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1653 UseCalls, Exp); 1654 } 1655 } 1656 1657 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1658 InterestingMemoryOperand &O, bool UseCalls, 1659 const DataLayout &DL) { 1660 Value *Addr = O.getPtr(); 1661 1662 // Optimization experiments. 1663 // The experiments can be used to evaluate potential optimizations that remove 1664 // instrumentation (assess false negatives). Instead of completely removing 1665 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1666 // experiments that want to remove instrumentation of this instruction). 1667 // If Exp is non-zero, this pass will emit special calls into runtime 1668 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1669 // make runtime terminate the program in a special way (with a different 1670 // exit status). Then you run the new compiler on a buggy corpus, collect 1671 // the special terminations (ideally, you don't see them at all -- no false 1672 // negatives) and make the decision on the optimization. 1673 uint32_t Exp = ClForceExperiment; 1674 1675 if (ClOpt && ClOptGlobals) { 1676 // If initialization order checking is disabled, a simple access to a 1677 // dynamically initialized global is always valid. 1678 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1679 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1680 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1681 NumOptimizedAccessesToGlobalVar++; 1682 return; 1683 } 1684 } 1685 1686 if (ClOpt && ClOptStack) { 1687 // A direct inbounds access to a stack variable is always valid. 1688 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1689 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1690 NumOptimizedAccessesToStackVar++; 1691 return; 1692 } 1693 } 1694 1695 if (O.IsWrite) 1696 NumInstrumentedWrites++; 1697 else 1698 NumInstrumentedReads++; 1699 1700 unsigned Granularity = 1 << Mapping.Scale; 1701 if (O.MaybeMask) { 1702 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1703 Addr, O.Alignment, Granularity, O.OpType, 1704 O.IsWrite, nullptr, UseCalls, Exp); 1705 } else { 1706 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1707 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1708 Exp); 1709 } 1710 } 1711 1712 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1713 Value *Addr, bool IsWrite, 1714 size_t AccessSizeIndex, 1715 Value *SizeArgument, 1716 uint32_t Exp) { 1717 IRBuilder<> IRB(InsertBefore); 1718 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1719 CallInst *Call = nullptr; 1720 if (SizeArgument) { 1721 if (Exp == 0) 1722 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1723 {Addr, SizeArgument}); 1724 else 1725 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1726 {Addr, SizeArgument, ExpVal}); 1727 } else { 1728 if (Exp == 0) 1729 Call = 1730 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1731 else 1732 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1733 {Addr, ExpVal}); 1734 } 1735 1736 Call->setCannotMerge(); 1737 return Call; 1738 } 1739 1740 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1741 Value *ShadowValue, 1742 uint32_t TypeSize) { 1743 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1744 // Addr & (Granularity - 1) 1745 Value *LastAccessedByte = 1746 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1747 // (Addr & (Granularity - 1)) + size - 1 1748 if (TypeSize / 8 > 1) 1749 LastAccessedByte = IRB.CreateAdd( 1750 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1751 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1752 LastAccessedByte = 1753 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1754 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1755 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1756 } 1757 1758 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1759 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1760 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { 1761 // Do not instrument unsupported addrspaces. 1762 if (isUnsupportedAMDGPUAddrspace(Addr)) 1763 return nullptr; 1764 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1765 // Follow host instrumentation for global and constant addresses. 1766 if (PtrTy->getPointerAddressSpace() != 0) 1767 return InsertBefore; 1768 // Instrument generic addresses in supported addressspaces. 1769 IRBuilder<> IRB(InsertBefore); 1770 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); 1771 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); 1772 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); 1773 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1774 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); 1775 Value *AddrSpaceZeroLanding = 1776 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1777 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1778 return InsertBefore; 1779 } 1780 1781 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1782 Instruction *InsertBefore, Value *Addr, 1783 uint32_t TypeSize, bool IsWrite, 1784 Value *SizeArgument, bool UseCalls, 1785 uint32_t Exp) { 1786 if (TargetTriple.isAMDGPU()) { 1787 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1788 TypeSize, IsWrite, SizeArgument); 1789 if (!InsertBefore) 1790 return; 1791 } 1792 1793 IRBuilder<> IRB(InsertBefore); 1794 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1795 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1796 1797 if (UseCalls && ClOptimizeCallbacks) { 1798 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1799 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1800 IRB.CreateCall( 1801 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), 1802 {IRB.CreatePointerCast(Addr, Int8PtrTy), 1803 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1804 return; 1805 } 1806 1807 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1808 if (UseCalls) { 1809 if (Exp == 0) 1810 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1811 AddrLong); 1812 else 1813 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1814 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1815 return; 1816 } 1817 1818 Type *ShadowTy = 1819 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1820 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1821 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1822 Value *CmpVal = Constant::getNullValue(ShadowTy); 1823 Value *ShadowValue = 1824 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1825 1826 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1827 size_t Granularity = 1ULL << Mapping.Scale; 1828 Instruction *CrashTerm = nullptr; 1829 1830 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1831 // We use branch weights for the slow path check, to indicate that the slow 1832 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1833 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1834 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1835 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1836 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1837 IRB.SetInsertPoint(CheckTerm); 1838 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1839 if (Recover) { 1840 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1841 } else { 1842 BasicBlock *CrashBlock = 1843 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1844 CrashTerm = new UnreachableInst(*C, CrashBlock); 1845 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1846 ReplaceInstWithInst(CheckTerm, NewTerm); 1847 } 1848 } else { 1849 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1850 } 1851 1852 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1853 AccessSizeIndex, SizeArgument, Exp); 1854 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1855 } 1856 1857 // Instrument unusual size or unusual alignment. 1858 // We can not do it with a single check, so we do 1-byte check for the first 1859 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1860 // to report the actual access size. 1861 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1862 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1863 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1864 IRBuilder<> IRB(InsertBefore); 1865 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1866 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1867 if (UseCalls) { 1868 if (Exp == 0) 1869 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1870 {AddrLong, Size}); 1871 else 1872 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1873 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1874 } else { 1875 Value *LastByte = IRB.CreateIntToPtr( 1876 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1877 Addr->getType()); 1878 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1879 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1880 } 1881 } 1882 1883 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1884 GlobalValue *ModuleName) { 1885 // Set up the arguments to our poison/unpoison functions. 1886 IRBuilder<> IRB(&GlobalInit.front(), 1887 GlobalInit.front().getFirstInsertionPt()); 1888 1889 // Add a call to poison all external globals before the given function starts. 1890 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1891 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1892 1893 // Add calls to unpoison all globals before each return instruction. 1894 for (auto &BB : GlobalInit.getBasicBlockList()) 1895 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1896 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1897 } 1898 1899 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1900 Module &M, GlobalValue *ModuleName) { 1901 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1902 if (!GV) 1903 return; 1904 1905 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1906 if (!CA) 1907 return; 1908 1909 for (Use &OP : CA->operands()) { 1910 if (isa<ConstantAggregateZero>(OP)) continue; 1911 ConstantStruct *CS = cast<ConstantStruct>(OP); 1912 1913 // Must have a function or null ptr. 1914 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1915 if (F->getName() == kAsanModuleCtorName) continue; 1916 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1917 // Don't instrument CTORs that will run before asan.module_ctor. 1918 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1919 continue; 1920 poisonOneInitializer(*F, ModuleName); 1921 } 1922 } 1923 } 1924 1925 const GlobalVariable * 1926 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1927 // In case this function should be expanded to include rules that do not just 1928 // apply when CompileKernel is true, either guard all existing rules with an 1929 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1930 // should also apply to user space. 1931 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1932 1933 const Constant *C = GA.getAliasee(); 1934 1935 // When compiling the kernel, globals that are aliased by symbols prefixed 1936 // by "__" are special and cannot be padded with a redzone. 1937 if (GA.getName().startswith("__")) 1938 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1939 1940 return nullptr; 1941 } 1942 1943 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1944 Type *Ty = G->getValueType(); 1945 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1946 1947 // FIXME: Metadata should be attched directly to the global directly instead 1948 // of being added to llvm.asan.globals. 1949 if (GlobalsMD.get(G).IsExcluded) return false; 1950 if (!Ty->isSized()) return false; 1951 if (!G->hasInitializer()) return false; 1952 // Globals in address space 1 and 4 are supported for AMDGPU. 1953 if (G->getAddressSpace() && 1954 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1955 return false; 1956 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1957 // Two problems with thread-locals: 1958 // - The address of the main thread's copy can't be computed at link-time. 1959 // - Need to poison all copies, not just the main thread's one. 1960 if (G->isThreadLocal()) return false; 1961 // For now, just ignore this Global if the alignment is large. 1962 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1963 1964 // For non-COFF targets, only instrument globals known to be defined by this 1965 // TU. 1966 // FIXME: We can instrument comdat globals on ELF if we are using the 1967 // GC-friendly metadata scheme. 1968 if (!TargetTriple.isOSBinFormatCOFF()) { 1969 if (!G->hasExactDefinition() || G->hasComdat()) 1970 return false; 1971 } else { 1972 // On COFF, don't instrument non-ODR linkages. 1973 if (G->isInterposable()) 1974 return false; 1975 } 1976 1977 // If a comdat is present, it must have a selection kind that implies ODR 1978 // semantics: no duplicates, any, or exact match. 1979 if (Comdat *C = G->getComdat()) { 1980 switch (C->getSelectionKind()) { 1981 case Comdat::Any: 1982 case Comdat::ExactMatch: 1983 case Comdat::NoDeduplicate: 1984 break; 1985 case Comdat::Largest: 1986 case Comdat::SameSize: 1987 return false; 1988 } 1989 } 1990 1991 if (G->hasSection()) { 1992 // The kernel uses explicit sections for mostly special global variables 1993 // that we should not instrument. E.g. the kernel may rely on their layout 1994 // without redzones, or remove them at link time ("discard.*"), etc. 1995 if (CompileKernel) 1996 return false; 1997 1998 StringRef Section = G->getSection(); 1999 2000 // Globals from llvm.metadata aren't emitted, do not instrument them. 2001 if (Section == "llvm.metadata") return false; 2002 // Do not instrument globals from special LLVM sections. 2003 if (Section.contains("__llvm") || Section.contains("__LLVM")) 2004 return false; 2005 2006 // Do not instrument function pointers to initialization and termination 2007 // routines: dynamic linker will not properly handle redzones. 2008 if (Section.startswith(".preinit_array") || 2009 Section.startswith(".init_array") || 2010 Section.startswith(".fini_array")) { 2011 return false; 2012 } 2013 2014 // Do not instrument user-defined sections (with names resembling 2015 // valid C identifiers) 2016 if (TargetTriple.isOSBinFormatELF()) { 2017 if (llvm::all_of(Section, 2018 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 2019 return false; 2020 } 2021 2022 // On COFF, if the section name contains '$', it is highly likely that the 2023 // user is using section sorting to create an array of globals similar to 2024 // the way initialization callbacks are registered in .init_array and 2025 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 2026 // to such globals is counterproductive, because the intent is that they 2027 // will form an array, and out-of-bounds accesses are expected. 2028 // See https://github.com/google/sanitizers/issues/305 2029 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 2030 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 2031 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 2032 << *G << "\n"); 2033 return false; 2034 } 2035 2036 if (TargetTriple.isOSBinFormatMachO()) { 2037 StringRef ParsedSegment, ParsedSection; 2038 unsigned TAA = 0, StubSize = 0; 2039 bool TAAParsed; 2040 cantFail(MCSectionMachO::ParseSectionSpecifier( 2041 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 2042 2043 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 2044 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 2045 // them. 2046 if (ParsedSegment == "__OBJC" || 2047 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 2048 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 2049 return false; 2050 } 2051 // See https://github.com/google/sanitizers/issues/32 2052 // Constant CFString instances are compiled in the following way: 2053 // -- the string buffer is emitted into 2054 // __TEXT,__cstring,cstring_literals 2055 // -- the constant NSConstantString structure referencing that buffer 2056 // is placed into __DATA,__cfstring 2057 // Therefore there's no point in placing redzones into __DATA,__cfstring. 2058 // Moreover, it causes the linker to crash on OS X 10.7 2059 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 2060 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 2061 return false; 2062 } 2063 // The linker merges the contents of cstring_literals and removes the 2064 // trailing zeroes. 2065 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 2066 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 2067 return false; 2068 } 2069 } 2070 } 2071 2072 if (CompileKernel) { 2073 // Globals that prefixed by "__" are special and cannot be padded with a 2074 // redzone. 2075 if (G->getName().startswith("__")) 2076 return false; 2077 } 2078 2079 return true; 2080 } 2081 2082 // On Mach-O platforms, we emit global metadata in a separate section of the 2083 // binary in order to allow the linker to properly dead strip. This is only 2084 // supported on recent versions of ld64. 2085 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 2086 if (!TargetTriple.isOSBinFormatMachO()) 2087 return false; 2088 2089 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 2090 return true; 2091 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 2092 return true; 2093 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 2094 return true; 2095 if (TargetTriple.isDriverKit()) 2096 return true; 2097 2098 return false; 2099 } 2100 2101 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 2102 switch (TargetTriple.getObjectFormat()) { 2103 case Triple::COFF: return ".ASAN$GL"; 2104 case Triple::ELF: return "asan_globals"; 2105 case Triple::MachO: return "__DATA,__asan_globals,regular"; 2106 case Triple::Wasm: 2107 case Triple::GOFF: 2108 case Triple::XCOFF: 2109 report_fatal_error( 2110 "ModuleAddressSanitizer not implemented for object file format"); 2111 case Triple::UnknownObjectFormat: 2112 break; 2113 } 2114 llvm_unreachable("unsupported object format"); 2115 } 2116 2117 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 2118 IRBuilder<> IRB(*C); 2119 2120 // Declare our poisoning and unpoisoning functions. 2121 AsanPoisonGlobals = 2122 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2123 AsanUnpoisonGlobals = 2124 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2125 2126 // Declare functions that register/unregister globals. 2127 AsanRegisterGlobals = M.getOrInsertFunction( 2128 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2129 AsanUnregisterGlobals = M.getOrInsertFunction( 2130 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2131 2132 // Declare the functions that find globals in a shared object and then invoke 2133 // the (un)register function on them. 2134 AsanRegisterImageGlobals = M.getOrInsertFunction( 2135 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2136 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2137 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2138 2139 AsanRegisterElfGlobals = 2140 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2141 IntptrTy, IntptrTy, IntptrTy); 2142 AsanUnregisterElfGlobals = 2143 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2144 IntptrTy, IntptrTy, IntptrTy); 2145 } 2146 2147 // Put the metadata and the instrumented global in the same group. This ensures 2148 // that the metadata is discarded if the instrumented global is discarded. 2149 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2150 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2151 Module &M = *G->getParent(); 2152 Comdat *C = G->getComdat(); 2153 if (!C) { 2154 if (!G->hasName()) { 2155 // If G is unnamed, it must be internal. Give it an artificial name 2156 // so we can put it in a comdat. 2157 assert(G->hasLocalLinkage()); 2158 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2159 } 2160 2161 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2162 std::string Name = std::string(G->getName()); 2163 Name += InternalSuffix; 2164 C = M.getOrInsertComdat(Name); 2165 } else { 2166 C = M.getOrInsertComdat(G->getName()); 2167 } 2168 2169 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2170 // linkage to internal linkage so that a symbol table entry is emitted. This 2171 // is necessary in order to create the comdat group. 2172 if (TargetTriple.isOSBinFormatCOFF()) { 2173 C->setSelectionKind(Comdat::NoDeduplicate); 2174 if (G->hasPrivateLinkage()) 2175 G->setLinkage(GlobalValue::InternalLinkage); 2176 } 2177 G->setComdat(C); 2178 } 2179 2180 assert(G->hasComdat()); 2181 Metadata->setComdat(G->getComdat()); 2182 } 2183 2184 // Create a separate metadata global and put it in the appropriate ASan 2185 // global registration section. 2186 GlobalVariable * 2187 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2188 StringRef OriginalName) { 2189 auto Linkage = TargetTriple.isOSBinFormatMachO() 2190 ? GlobalVariable::InternalLinkage 2191 : GlobalVariable::PrivateLinkage; 2192 GlobalVariable *Metadata = new GlobalVariable( 2193 M, Initializer->getType(), false, Linkage, Initializer, 2194 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2195 Metadata->setSection(getGlobalMetadataSection()); 2196 return Metadata; 2197 } 2198 2199 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2200 AsanDtorFunction = Function::createWithDefaultAttr( 2201 FunctionType::get(Type::getVoidTy(*C), false), 2202 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2203 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 2204 // Ensure Dtor cannot be discarded, even if in a comdat. 2205 appendToUsed(M, {AsanDtorFunction}); 2206 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2207 2208 return ReturnInst::Create(*C, AsanDtorBB); 2209 } 2210 2211 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2212 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2213 ArrayRef<Constant *> MetadataInitializers) { 2214 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2215 auto &DL = M.getDataLayout(); 2216 2217 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2218 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2219 Constant *Initializer = MetadataInitializers[i]; 2220 GlobalVariable *G = ExtendedGlobals[i]; 2221 GlobalVariable *Metadata = 2222 CreateMetadataGlobal(M, Initializer, G->getName()); 2223 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2224 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2225 MetadataGlobals[i] = Metadata; 2226 2227 // The MSVC linker always inserts padding when linking incrementally. We 2228 // cope with that by aligning each struct to its size, which must be a power 2229 // of two. 2230 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2231 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2232 "global metadata will not be padded appropriately"); 2233 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2234 2235 SetComdatForGlobalMetadata(G, Metadata, ""); 2236 } 2237 2238 // Update llvm.compiler.used, adding the new metadata globals. This is 2239 // needed so that during LTO these variables stay alive. 2240 if (!MetadataGlobals.empty()) 2241 appendToCompilerUsed(M, MetadataGlobals); 2242 } 2243 2244 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2245 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2246 ArrayRef<Constant *> MetadataInitializers, 2247 const std::string &UniqueModuleId) { 2248 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2249 2250 // Putting globals in a comdat changes the semantic and potentially cause 2251 // false negative odr violations at link time. If odr indicators are used, we 2252 // keep the comdat sections, as link time odr violations will be dectected on 2253 // the odr indicator symbols. 2254 bool UseComdatForGlobalsGC = UseOdrIndicator; 2255 2256 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2257 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2258 GlobalVariable *G = ExtendedGlobals[i]; 2259 GlobalVariable *Metadata = 2260 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2261 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2262 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2263 MetadataGlobals[i] = Metadata; 2264 2265 if (UseComdatForGlobalsGC) 2266 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2267 } 2268 2269 // Update llvm.compiler.used, adding the new metadata globals. This is 2270 // needed so that during LTO these variables stay alive. 2271 if (!MetadataGlobals.empty()) 2272 appendToCompilerUsed(M, MetadataGlobals); 2273 2274 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2275 // to look up the loaded image that contains it. Second, we can store in it 2276 // whether registration has already occurred, to prevent duplicate 2277 // registration. 2278 // 2279 // Common linkage ensures that there is only one global per shared library. 2280 GlobalVariable *RegisteredFlag = new GlobalVariable( 2281 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2282 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2283 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2284 2285 // Create start and stop symbols. 2286 GlobalVariable *StartELFMetadata = new GlobalVariable( 2287 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2288 "__start_" + getGlobalMetadataSection()); 2289 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2290 GlobalVariable *StopELFMetadata = new GlobalVariable( 2291 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2292 "__stop_" + getGlobalMetadataSection()); 2293 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2294 2295 // Create a call to register the globals with the runtime. 2296 IRB.CreateCall(AsanRegisterElfGlobals, 2297 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2298 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2299 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2300 2301 // We also need to unregister globals at the end, e.g., when a shared library 2302 // gets closed. 2303 if (DestructorKind != AsanDtorKind::None) { 2304 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2305 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2306 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2307 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2308 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2309 } 2310 } 2311 2312 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2313 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2314 ArrayRef<Constant *> MetadataInitializers) { 2315 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2316 2317 // On recent Mach-O platforms, use a structure which binds the liveness of 2318 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2319 // created to be added to llvm.compiler.used 2320 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2321 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2322 2323 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2324 Constant *Initializer = MetadataInitializers[i]; 2325 GlobalVariable *G = ExtendedGlobals[i]; 2326 GlobalVariable *Metadata = 2327 CreateMetadataGlobal(M, Initializer, G->getName()); 2328 2329 // On recent Mach-O platforms, we emit the global metadata in a way that 2330 // allows the linker to properly strip dead globals. 2331 auto LivenessBinder = 2332 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2333 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2334 GlobalVariable *Liveness = new GlobalVariable( 2335 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2336 Twine("__asan_binder_") + G->getName()); 2337 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2338 LivenessGlobals[i] = Liveness; 2339 } 2340 2341 // Update llvm.compiler.used, adding the new liveness globals. This is 2342 // needed so that during LTO these variables stay alive. The alternative 2343 // would be to have the linker handling the LTO symbols, but libLTO 2344 // current API does not expose access to the section for each symbol. 2345 if (!LivenessGlobals.empty()) 2346 appendToCompilerUsed(M, LivenessGlobals); 2347 2348 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2349 // to look up the loaded image that contains it. Second, we can store in it 2350 // whether registration has already occurred, to prevent duplicate 2351 // registration. 2352 // 2353 // common linkage ensures that there is only one global per shared library. 2354 GlobalVariable *RegisteredFlag = new GlobalVariable( 2355 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2356 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2357 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2358 2359 IRB.CreateCall(AsanRegisterImageGlobals, 2360 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2361 2362 // We also need to unregister globals at the end, e.g., when a shared library 2363 // gets closed. 2364 if (DestructorKind != AsanDtorKind::None) { 2365 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2366 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2367 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2368 } 2369 } 2370 2371 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2372 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2373 ArrayRef<Constant *> MetadataInitializers) { 2374 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2375 unsigned N = ExtendedGlobals.size(); 2376 assert(N > 0); 2377 2378 // On platforms that don't have a custom metadata section, we emit an array 2379 // of global metadata structures. 2380 ArrayType *ArrayOfGlobalStructTy = 2381 ArrayType::get(MetadataInitializers[0]->getType(), N); 2382 auto AllGlobals = new GlobalVariable( 2383 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2384 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2385 if (Mapping.Scale > 3) 2386 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2387 2388 IRB.CreateCall(AsanRegisterGlobals, 2389 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2390 ConstantInt::get(IntptrTy, N)}); 2391 2392 // We also need to unregister globals at the end, e.g., when a shared library 2393 // gets closed. 2394 if (DestructorKind != AsanDtorKind::None) { 2395 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2396 IrbDtor.CreateCall(AsanUnregisterGlobals, 2397 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2398 ConstantInt::get(IntptrTy, N)}); 2399 } 2400 } 2401 2402 // This function replaces all global variables with new variables that have 2403 // trailing redzones. It also creates a function that poisons 2404 // redzones and inserts this function into llvm.global_ctors. 2405 // Sets *CtorComdat to true if the global registration code emitted into the 2406 // asan constructor is comdat-compatible. 2407 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2408 bool *CtorComdat) { 2409 *CtorComdat = false; 2410 2411 // Build set of globals that are aliased by some GA, where 2412 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2413 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2414 if (CompileKernel) { 2415 for (auto &GA : M.aliases()) { 2416 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2417 AliasedGlobalExclusions.insert(GV); 2418 } 2419 } 2420 2421 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2422 for (auto &G : M.globals()) { 2423 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2424 GlobalsToChange.push_back(&G); 2425 } 2426 2427 size_t n = GlobalsToChange.size(); 2428 if (n == 0) { 2429 *CtorComdat = true; 2430 return false; 2431 } 2432 2433 auto &DL = M.getDataLayout(); 2434 2435 // A global is described by a structure 2436 // size_t beg; 2437 // size_t size; 2438 // size_t size_with_redzone; 2439 // const char *name; 2440 // const char *module_name; 2441 // size_t has_dynamic_init; 2442 // void *source_location; 2443 // size_t odr_indicator; 2444 // We initialize an array of such structures and pass it to a run-time call. 2445 StructType *GlobalStructTy = 2446 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2447 IntptrTy, IntptrTy, IntptrTy); 2448 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2449 SmallVector<Constant *, 16> Initializers(n); 2450 2451 bool HasDynamicallyInitializedGlobals = false; 2452 2453 // We shouldn't merge same module names, as this string serves as unique 2454 // module ID in runtime. 2455 GlobalVariable *ModuleName = createPrivateGlobalForString( 2456 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2457 2458 for (size_t i = 0; i < n; i++) { 2459 GlobalVariable *G = GlobalsToChange[i]; 2460 2461 // FIXME: Metadata should be attched directly to the global directly instead 2462 // of being added to llvm.asan.globals. 2463 auto MD = GlobalsMD.get(G); 2464 StringRef NameForGlobal = G->getName(); 2465 // Create string holding the global name (use global name from metadata 2466 // if it's available, otherwise just write the name of global variable). 2467 GlobalVariable *Name = createPrivateGlobalForString( 2468 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2469 /*AllowMerging*/ true, kAsanGenPrefix); 2470 2471 Type *Ty = G->getValueType(); 2472 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2473 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2474 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2475 2476 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2477 Constant *NewInitializer = ConstantStruct::get( 2478 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2479 2480 // Create a new global variable with enough space for a redzone. 2481 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2482 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2483 Linkage = GlobalValue::InternalLinkage; 2484 GlobalVariable *NewGlobal = new GlobalVariable( 2485 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2486 G->getThreadLocalMode(), G->getAddressSpace()); 2487 NewGlobal->copyAttributesFrom(G); 2488 NewGlobal->setComdat(G->getComdat()); 2489 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2490 // Don't fold globals with redzones. ODR violation detector and redzone 2491 // poisoning implicitly creates a dependence on the global's address, so it 2492 // is no longer valid for it to be marked unnamed_addr. 2493 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2494 2495 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2496 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2497 G->isConstant()) { 2498 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2499 if (Seq && Seq->isCString()) 2500 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2501 } 2502 2503 // Transfer the debug info and type metadata. The payload starts at offset 2504 // zero so we can copy the metadata over as is. 2505 NewGlobal->copyMetadata(G, 0); 2506 2507 Value *Indices2[2]; 2508 Indices2[0] = IRB.getInt32(0); 2509 Indices2[1] = IRB.getInt32(0); 2510 2511 G->replaceAllUsesWith( 2512 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2513 NewGlobal->takeName(G); 2514 G->eraseFromParent(); 2515 NewGlobals[i] = NewGlobal; 2516 2517 Constant *SourceLoc; 2518 if (!MD.SourceLoc.empty()) { 2519 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2520 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2521 } else { 2522 SourceLoc = ConstantInt::get(IntptrTy, 0); 2523 } 2524 2525 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2526 GlobalValue *InstrumentedGlobal = NewGlobal; 2527 2528 bool CanUsePrivateAliases = 2529 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2530 TargetTriple.isOSBinFormatWasm(); 2531 if (CanUsePrivateAliases && UsePrivateAlias) { 2532 // Create local alias for NewGlobal to avoid crash on ODR between 2533 // instrumented and non-instrumented libraries. 2534 InstrumentedGlobal = 2535 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2536 } 2537 2538 // ODR should not happen for local linkage. 2539 if (NewGlobal->hasLocalLinkage()) { 2540 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2541 IRB.getInt8PtrTy()); 2542 } else if (UseOdrIndicator) { 2543 // With local aliases, we need to provide another externally visible 2544 // symbol __odr_asan_XXX to detect ODR violation. 2545 auto *ODRIndicatorSym = 2546 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2547 Constant::getNullValue(IRB.getInt8Ty()), 2548 kODRGenPrefix + NameForGlobal, nullptr, 2549 NewGlobal->getThreadLocalMode()); 2550 2551 // Set meaningful attributes for indicator symbol. 2552 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2553 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2554 ODRIndicatorSym->setAlignment(Align(1)); 2555 ODRIndicator = ODRIndicatorSym; 2556 } 2557 2558 Constant *Initializer = ConstantStruct::get( 2559 GlobalStructTy, 2560 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2561 ConstantInt::get(IntptrTy, SizeInBytes), 2562 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2563 ConstantExpr::getPointerCast(Name, IntptrTy), 2564 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2565 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2566 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2567 2568 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2569 2570 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2571 2572 Initializers[i] = Initializer; 2573 } 2574 2575 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2576 // ConstantMerge'ing them. 2577 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2578 for (size_t i = 0; i < n; i++) { 2579 GlobalVariable *G = NewGlobals[i]; 2580 if (G->getName().empty()) continue; 2581 GlobalsToAddToUsedList.push_back(G); 2582 } 2583 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2584 2585 std::string ELFUniqueModuleId = 2586 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2587 : ""; 2588 2589 if (!ELFUniqueModuleId.empty()) { 2590 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2591 *CtorComdat = true; 2592 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2593 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2594 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2595 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2596 } else { 2597 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2598 } 2599 2600 // Create calls for poisoning before initializers run and unpoisoning after. 2601 if (HasDynamicallyInitializedGlobals) 2602 createInitializerPoisonCalls(M, ModuleName); 2603 2604 LLVM_DEBUG(dbgs() << M); 2605 return true; 2606 } 2607 2608 uint64_t 2609 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2610 constexpr uint64_t kMaxRZ = 1 << 18; 2611 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2612 2613 uint64_t RZ = 0; 2614 if (SizeInBytes <= MinRZ / 2) { 2615 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2616 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2617 // half of MinRZ. 2618 RZ = MinRZ - SizeInBytes; 2619 } else { 2620 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2621 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2622 2623 // Round up to multiple of MinRZ. 2624 if (SizeInBytes % MinRZ) 2625 RZ += MinRZ - (SizeInBytes % MinRZ); 2626 } 2627 2628 assert((RZ + SizeInBytes) % MinRZ == 0); 2629 2630 return RZ; 2631 } 2632 2633 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2634 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2635 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2636 int Version = 8; 2637 // 32-bit Android is one version ahead because of the switch to dynamic 2638 // shadow. 2639 Version += (LongSize == 32 && isAndroid); 2640 return Version; 2641 } 2642 2643 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2644 initializeCallbacks(M); 2645 2646 // Create a module constructor. A destructor is created lazily because not all 2647 // platforms, and not all modules need it. 2648 if (CompileKernel) { 2649 // The kernel always builds with its own runtime, and therefore does not 2650 // need the init and version check calls. 2651 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2652 } else { 2653 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2654 std::string VersionCheckName = 2655 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2656 std::tie(AsanCtorFunction, std::ignore) = 2657 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2658 kAsanInitName, /*InitArgTypes=*/{}, 2659 /*InitArgs=*/{}, VersionCheckName); 2660 } 2661 2662 bool CtorComdat = true; 2663 if (ClGlobals) { 2664 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2665 InstrumentGlobals(IRB, M, &CtorComdat); 2666 } 2667 2668 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2669 2670 // Put the constructor and destructor in comdat if both 2671 // (1) global instrumentation is not TU-specific 2672 // (2) target is ELF. 2673 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2674 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2675 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2676 if (AsanDtorFunction) { 2677 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2678 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2679 } 2680 } else { 2681 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2682 if (AsanDtorFunction) 2683 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2684 } 2685 2686 return true; 2687 } 2688 2689 void AddressSanitizer::initializeCallbacks(Module &M) { 2690 IRBuilder<> IRB(*C); 2691 // Create __asan_report* callbacks. 2692 // IsWrite, TypeSize and Exp are encoded in the function name. 2693 for (int Exp = 0; Exp < 2; Exp++) { 2694 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2695 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2696 const std::string ExpStr = Exp ? "exp_" : ""; 2697 const std::string EndingStr = Recover ? "_noabort" : ""; 2698 2699 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2700 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2701 if (Exp) { 2702 Type *ExpType = Type::getInt32Ty(*C); 2703 Args2.push_back(ExpType); 2704 Args1.push_back(ExpType); 2705 } 2706 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2707 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2708 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2709 2710 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2711 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2712 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2713 2714 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2715 AccessSizeIndex++) { 2716 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2717 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2718 M.getOrInsertFunction( 2719 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2720 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2721 2722 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2723 M.getOrInsertFunction( 2724 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2725 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2726 } 2727 } 2728 } 2729 2730 const std::string MemIntrinCallbackPrefix = 2731 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2732 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2733 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2734 IRB.getInt8PtrTy(), IntptrTy); 2735 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2736 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2737 IRB.getInt8PtrTy(), IntptrTy); 2738 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2739 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2740 IRB.getInt32Ty(), IntptrTy); 2741 2742 AsanHandleNoReturnFunc = 2743 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2744 2745 AsanPtrCmpFunction = 2746 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2747 AsanPtrSubFunction = 2748 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2749 if (Mapping.InGlobal) 2750 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2751 ArrayType::get(IRB.getInt8Ty(), 0)); 2752 2753 AMDGPUAddressShared = M.getOrInsertFunction( 2754 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2755 AMDGPUAddressPrivate = M.getOrInsertFunction( 2756 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2757 } 2758 2759 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2760 // For each NSObject descendant having a +load method, this method is invoked 2761 // by the ObjC runtime before any of the static constructors is called. 2762 // Therefore we need to instrument such methods with a call to __asan_init 2763 // at the beginning in order to initialize our runtime before any access to 2764 // the shadow memory. 2765 // We cannot just ignore these methods, because they may call other 2766 // instrumented functions. 2767 if (F.getName().find(" load]") != std::string::npos) { 2768 FunctionCallee AsanInitFunction = 2769 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2770 IRBuilder<> IRB(&F.front(), F.front().begin()); 2771 IRB.CreateCall(AsanInitFunction, {}); 2772 return true; 2773 } 2774 return false; 2775 } 2776 2777 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2778 // Generate code only when dynamic addressing is needed. 2779 if (Mapping.Offset != kDynamicShadowSentinel) 2780 return false; 2781 2782 IRBuilder<> IRB(&F.front().front()); 2783 if (Mapping.InGlobal) { 2784 if (ClWithIfuncSuppressRemat) { 2785 // An empty inline asm with input reg == output reg. 2786 // An opaque pointer-to-int cast, basically. 2787 InlineAsm *Asm = InlineAsm::get( 2788 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2789 StringRef(""), StringRef("=r,0"), 2790 /*hasSideEffects=*/false); 2791 LocalDynamicShadow = 2792 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2793 } else { 2794 LocalDynamicShadow = 2795 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2796 } 2797 } else { 2798 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2799 kAsanShadowMemoryDynamicAddress, IntptrTy); 2800 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2801 } 2802 return true; 2803 } 2804 2805 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2806 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2807 // to it as uninteresting. This assumes we haven't started processing allocas 2808 // yet. This check is done up front because iterating the use list in 2809 // isInterestingAlloca would be algorithmically slower. 2810 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2811 2812 // Try to get the declaration of llvm.localescape. If it's not in the module, 2813 // we can exit early. 2814 if (!F.getParent()->getFunction("llvm.localescape")) return; 2815 2816 // Look for a call to llvm.localescape call in the entry block. It can't be in 2817 // any other block. 2818 for (Instruction &I : F.getEntryBlock()) { 2819 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2820 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2821 // We found a call. Mark all the allocas passed in as uninteresting. 2822 for (Value *Arg : II->args()) { 2823 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2824 assert(AI && AI->isStaticAlloca() && 2825 "non-static alloca arg to localescape"); 2826 ProcessedAllocas[AI] = false; 2827 } 2828 break; 2829 } 2830 } 2831 } 2832 2833 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2834 bool ShouldInstrument = 2835 ClDebugMin < 0 || ClDebugMax < 0 || 2836 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2837 Instrumented++; 2838 return !ShouldInstrument; 2839 } 2840 2841 bool AddressSanitizer::instrumentFunction(Function &F, 2842 const TargetLibraryInfo *TLI) { 2843 if (F.empty()) 2844 return false; 2845 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2846 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2847 if (F.getName().startswith("__asan_")) return false; 2848 2849 bool FunctionModified = false; 2850 2851 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2852 // This function needs to be called even if the function body is not 2853 // instrumented. 2854 if (maybeInsertAsanInitAtFunctionEntry(F)) 2855 FunctionModified = true; 2856 2857 // Leave if the function doesn't need instrumentation. 2858 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2859 2860 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 2861 return FunctionModified; 2862 2863 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2864 2865 initializeCallbacks(*F.getParent()); 2866 2867 FunctionStateRAII CleanupObj(this); 2868 2869 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2870 2871 // We can't instrument allocas used with llvm.localescape. Only static allocas 2872 // can be passed to that intrinsic. 2873 markEscapedLocalAllocas(F); 2874 2875 // We want to instrument every address only once per basic block (unless there 2876 // are calls between uses). 2877 SmallPtrSet<Value *, 16> TempsToInstrument; 2878 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2879 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2880 SmallVector<Instruction *, 8> NoReturnCalls; 2881 SmallVector<BasicBlock *, 16> AllBlocks; 2882 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2883 int NumAllocas = 0; 2884 2885 // Fill the set of memory operations to instrument. 2886 for (auto &BB : F) { 2887 AllBlocks.push_back(&BB); 2888 TempsToInstrument.clear(); 2889 int NumInsnsPerBB = 0; 2890 for (auto &Inst : BB) { 2891 if (LooksLikeCodeInBug11395(&Inst)) return false; 2892 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2893 getInterestingMemoryOperands(&Inst, InterestingOperands); 2894 2895 if (!InterestingOperands.empty()) { 2896 for (auto &Operand : InterestingOperands) { 2897 if (ClOpt && ClOptSameTemp) { 2898 Value *Ptr = Operand.getPtr(); 2899 // If we have a mask, skip instrumentation if we've already 2900 // instrumented the full object. But don't add to TempsToInstrument 2901 // because we might get another load/store with a different mask. 2902 if (Operand.MaybeMask) { 2903 if (TempsToInstrument.count(Ptr)) 2904 continue; // We've seen this (whole) temp in the current BB. 2905 } else { 2906 if (!TempsToInstrument.insert(Ptr).second) 2907 continue; // We've seen this temp in the current BB. 2908 } 2909 } 2910 OperandsToInstrument.push_back(Operand); 2911 NumInsnsPerBB++; 2912 } 2913 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2914 isInterestingPointerComparison(&Inst)) || 2915 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2916 isInterestingPointerSubtraction(&Inst))) { 2917 PointerComparisonsOrSubtracts.push_back(&Inst); 2918 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2919 // ok, take it. 2920 IntrinToInstrument.push_back(MI); 2921 NumInsnsPerBB++; 2922 } else { 2923 if (isa<AllocaInst>(Inst)) NumAllocas++; 2924 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2925 // A call inside BB. 2926 TempsToInstrument.clear(); 2927 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2928 NoReturnCalls.push_back(CB); 2929 } 2930 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2931 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2932 } 2933 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2934 } 2935 } 2936 2937 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2938 OperandsToInstrument.size() + IntrinToInstrument.size() > 2939 (unsigned)ClInstrumentationWithCallsThreshold); 2940 const DataLayout &DL = F.getParent()->getDataLayout(); 2941 ObjectSizeOpts ObjSizeOpts; 2942 ObjSizeOpts.RoundToAlign = true; 2943 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2944 2945 // Instrument. 2946 int NumInstrumented = 0; 2947 for (auto &Operand : OperandsToInstrument) { 2948 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2949 instrumentMop(ObjSizeVis, Operand, UseCalls, 2950 F.getParent()->getDataLayout()); 2951 FunctionModified = true; 2952 } 2953 for (auto Inst : IntrinToInstrument) { 2954 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2955 instrumentMemIntrinsic(Inst); 2956 FunctionModified = true; 2957 } 2958 2959 FunctionStackPoisoner FSP(F, *this); 2960 bool ChangedStack = FSP.runOnFunction(); 2961 2962 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2963 // See e.g. https://github.com/google/sanitizers/issues/37 2964 for (auto CI : NoReturnCalls) { 2965 IRBuilder<> IRB(CI); 2966 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2967 } 2968 2969 for (auto Inst : PointerComparisonsOrSubtracts) { 2970 instrumentPointerComparisonOrSubtraction(Inst); 2971 FunctionModified = true; 2972 } 2973 2974 if (ChangedStack || !NoReturnCalls.empty()) 2975 FunctionModified = true; 2976 2977 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2978 << F << "\n"); 2979 2980 return FunctionModified; 2981 } 2982 2983 // Workaround for bug 11395: we don't want to instrument stack in functions 2984 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2985 // FIXME: remove once the bug 11395 is fixed. 2986 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2987 if (LongSize != 32) return false; 2988 CallInst *CI = dyn_cast<CallInst>(I); 2989 if (!CI || !CI->isInlineAsm()) return false; 2990 if (CI->arg_size() <= 5) 2991 return false; 2992 // We have inline assembly with quite a few arguments. 2993 return true; 2994 } 2995 2996 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2997 IRBuilder<> IRB(*C); 2998 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 2999 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3000 const char *MallocNameTemplate = 3001 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 3002 ? kAsanStackMallocAlwaysNameTemplate 3003 : kAsanStackMallocNameTemplate; 3004 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 3005 std::string Suffix = itostr(Index); 3006 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 3007 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 3008 AsanStackFreeFunc[Index] = 3009 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 3010 IRB.getVoidTy(), IntptrTy, IntptrTy); 3011 } 3012 } 3013 if (ASan.UseAfterScope) { 3014 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 3015 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3016 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 3017 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3018 } 3019 3020 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 3021 std::ostringstream Name; 3022 Name << kAsanSetShadowPrefix; 3023 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 3024 AsanSetShadowFunc[Val] = 3025 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 3026 } 3027 3028 AsanAllocaPoisonFunc = M.getOrInsertFunction( 3029 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3030 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 3031 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3032 } 3033 3034 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 3035 ArrayRef<uint8_t> ShadowBytes, 3036 size_t Begin, size_t End, 3037 IRBuilder<> &IRB, 3038 Value *ShadowBase) { 3039 if (Begin >= End) 3040 return; 3041 3042 const size_t LargestStoreSizeInBytes = 3043 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 3044 3045 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 3046 3047 // Poison given range in shadow using larges store size with out leading and 3048 // trailing zeros in ShadowMask. Zeros never change, so they need neither 3049 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 3050 // middle of a store. 3051 for (size_t i = Begin; i < End;) { 3052 if (!ShadowMask[i]) { 3053 assert(!ShadowBytes[i]); 3054 ++i; 3055 continue; 3056 } 3057 3058 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 3059 // Fit store size into the range. 3060 while (StoreSizeInBytes > End - i) 3061 StoreSizeInBytes /= 2; 3062 3063 // Minimize store size by trimming trailing zeros. 3064 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 3065 while (j <= StoreSizeInBytes / 2) 3066 StoreSizeInBytes /= 2; 3067 } 3068 3069 uint64_t Val = 0; 3070 for (size_t j = 0; j < StoreSizeInBytes; j++) { 3071 if (IsLittleEndian) 3072 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 3073 else 3074 Val = (Val << 8) | ShadowBytes[i + j]; 3075 } 3076 3077 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 3078 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 3079 IRB.CreateAlignedStore( 3080 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 3081 Align(1)); 3082 3083 i += StoreSizeInBytes; 3084 } 3085 } 3086 3087 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3088 ArrayRef<uint8_t> ShadowBytes, 3089 IRBuilder<> &IRB, Value *ShadowBase) { 3090 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 3091 } 3092 3093 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3094 ArrayRef<uint8_t> ShadowBytes, 3095 size_t Begin, size_t End, 3096 IRBuilder<> &IRB, Value *ShadowBase) { 3097 assert(ShadowMask.size() == ShadowBytes.size()); 3098 size_t Done = Begin; 3099 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 3100 if (!ShadowMask[i]) { 3101 assert(!ShadowBytes[i]); 3102 continue; 3103 } 3104 uint8_t Val = ShadowBytes[i]; 3105 if (!AsanSetShadowFunc[Val]) 3106 continue; 3107 3108 // Skip same values. 3109 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 3110 } 3111 3112 if (j - i >= ClMaxInlinePoisoningSize) { 3113 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 3114 IRB.CreateCall(AsanSetShadowFunc[Val], 3115 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 3116 ConstantInt::get(IntptrTy, j - i)}); 3117 Done = j; 3118 } 3119 } 3120 3121 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 3122 } 3123 3124 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 3125 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 3126 static int StackMallocSizeClass(uint64_t LocalStackSize) { 3127 assert(LocalStackSize <= kMaxStackMallocSize); 3128 uint64_t MaxSize = kMinStackMallocSize; 3129 for (int i = 0;; i++, MaxSize *= 2) 3130 if (LocalStackSize <= MaxSize) return i; 3131 llvm_unreachable("impossible LocalStackSize"); 3132 } 3133 3134 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 3135 Instruction *CopyInsertPoint = &F.front().front(); 3136 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 3137 // Insert after the dynamic shadow location is determined 3138 CopyInsertPoint = CopyInsertPoint->getNextNode(); 3139 assert(CopyInsertPoint); 3140 } 3141 IRBuilder<> IRB(CopyInsertPoint); 3142 const DataLayout &DL = F.getParent()->getDataLayout(); 3143 for (Argument &Arg : F.args()) { 3144 if (Arg.hasByValAttr()) { 3145 Type *Ty = Arg.getParamByValType(); 3146 const Align Alignment = 3147 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 3148 3149 AllocaInst *AI = IRB.CreateAlloca( 3150 Ty, nullptr, 3151 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 3152 ".byval"); 3153 AI->setAlignment(Alignment); 3154 Arg.replaceAllUsesWith(AI); 3155 3156 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3157 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3158 } 3159 } 3160 } 3161 3162 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3163 Value *ValueIfTrue, 3164 Instruction *ThenTerm, 3165 Value *ValueIfFalse) { 3166 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3167 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3168 PHI->addIncoming(ValueIfFalse, CondBlock); 3169 BasicBlock *ThenBlock = ThenTerm->getParent(); 3170 PHI->addIncoming(ValueIfTrue, ThenBlock); 3171 return PHI; 3172 } 3173 3174 Value *FunctionStackPoisoner::createAllocaForLayout( 3175 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3176 AllocaInst *Alloca; 3177 if (Dynamic) { 3178 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3179 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3180 "MyAlloca"); 3181 } else { 3182 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3183 nullptr, "MyAlloca"); 3184 assert(Alloca->isStaticAlloca()); 3185 } 3186 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3187 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); 3188 Alloca->setAlignment(Align(FrameAlignment)); 3189 return IRB.CreatePointerCast(Alloca, IntptrTy); 3190 } 3191 3192 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3193 BasicBlock &FirstBB = *F.begin(); 3194 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3195 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3196 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3197 DynamicAllocaLayout->setAlignment(Align(32)); 3198 } 3199 3200 void FunctionStackPoisoner::processDynamicAllocas() { 3201 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3202 assert(DynamicAllocaPoisonCallVec.empty()); 3203 return; 3204 } 3205 3206 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3207 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3208 assert(APC.InsBefore); 3209 assert(APC.AI); 3210 assert(ASan.isInterestingAlloca(*APC.AI)); 3211 assert(!APC.AI->isStaticAlloca()); 3212 3213 IRBuilder<> IRB(APC.InsBefore); 3214 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3215 // Dynamic allocas will be unpoisoned unconditionally below in 3216 // unpoisonDynamicAllocas. 3217 // Flag that we need unpoison static allocas. 3218 } 3219 3220 // Handle dynamic allocas. 3221 createDynamicAllocasInitStorage(); 3222 for (auto &AI : DynamicAllocaVec) 3223 handleDynamicAllocaCall(AI); 3224 unpoisonDynamicAllocas(); 3225 } 3226 3227 /// Collect instructions in the entry block after \p InsBefore which initialize 3228 /// permanent storage for a function argument. These instructions must remain in 3229 /// the entry block so that uninitialized values do not appear in backtraces. An 3230 /// added benefit is that this conserves spill slots. This does not move stores 3231 /// before instrumented / "interesting" allocas. 3232 static void findStoresToUninstrumentedArgAllocas( 3233 AddressSanitizer &ASan, Instruction &InsBefore, 3234 SmallVectorImpl<Instruction *> &InitInsts) { 3235 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3236 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3237 // Argument initialization looks like: 3238 // 1) store <Argument>, <Alloca> OR 3239 // 2) <CastArgument> = cast <Argument> to ... 3240 // store <CastArgument> to <Alloca> 3241 // Do not consider any other kind of instruction. 3242 // 3243 // Note: This covers all known cases, but may not be exhaustive. An 3244 // alternative to pattern-matching stores is to DFS over all Argument uses: 3245 // this might be more general, but is probably much more complicated. 3246 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3247 continue; 3248 if (auto *Store = dyn_cast<StoreInst>(It)) { 3249 // The store destination must be an alloca that isn't interesting for 3250 // ASan to instrument. These are moved up before InsBefore, and they're 3251 // not interesting because allocas for arguments can be mem2reg'd. 3252 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3253 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3254 continue; 3255 3256 Value *Val = Store->getValueOperand(); 3257 bool IsDirectArgInit = isa<Argument>(Val); 3258 bool IsArgInitViaCast = 3259 isa<CastInst>(Val) && 3260 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3261 // Check that the cast appears directly before the store. Otherwise 3262 // moving the cast before InsBefore may break the IR. 3263 Val == It->getPrevNonDebugInstruction(); 3264 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3265 if (!IsArgInit) 3266 continue; 3267 3268 if (IsArgInitViaCast) 3269 InitInsts.push_back(cast<Instruction>(Val)); 3270 InitInsts.push_back(Store); 3271 continue; 3272 } 3273 3274 // Do not reorder past unknown instructions: argument initialization should 3275 // only involve casts and stores. 3276 return; 3277 } 3278 } 3279 3280 void FunctionStackPoisoner::processStaticAllocas() { 3281 if (AllocaVec.empty()) { 3282 assert(StaticAllocaPoisonCallVec.empty()); 3283 return; 3284 } 3285 3286 int StackMallocIdx = -1; 3287 DebugLoc EntryDebugLocation; 3288 if (auto SP = F.getSubprogram()) 3289 EntryDebugLocation = 3290 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3291 3292 Instruction *InsBefore = AllocaVec[0]; 3293 IRBuilder<> IRB(InsBefore); 3294 3295 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3296 // debug info is broken, because only entry-block allocas are treated as 3297 // regular stack slots. 3298 auto InsBeforeB = InsBefore->getParent(); 3299 assert(InsBeforeB == &F.getEntryBlock()); 3300 for (auto *AI : StaticAllocasToMoveUp) 3301 if (AI->getParent() == InsBeforeB) 3302 AI->moveBefore(InsBefore); 3303 3304 // Move stores of arguments into entry-block allocas as well. This prevents 3305 // extra stack slots from being generated (to house the argument values until 3306 // they can be stored into the allocas). This also prevents uninitialized 3307 // values from being shown in backtraces. 3308 SmallVector<Instruction *, 8> ArgInitInsts; 3309 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3310 for (Instruction *ArgInitInst : ArgInitInsts) 3311 ArgInitInst->moveBefore(InsBefore); 3312 3313 // If we have a call to llvm.localescape, keep it in the entry block. 3314 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3315 3316 SmallVector<ASanStackVariableDescription, 16> SVD; 3317 SVD.reserve(AllocaVec.size()); 3318 for (AllocaInst *AI : AllocaVec) { 3319 ASanStackVariableDescription D = {AI->getName().data(), 3320 ASan.getAllocaSizeInBytes(*AI), 3321 0, 3322 AI->getAlignment(), 3323 AI, 3324 0, 3325 0}; 3326 SVD.push_back(D); 3327 } 3328 3329 // Minimal header size (left redzone) is 4 pointers, 3330 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3331 uint64_t Granularity = 1ULL << Mapping.Scale; 3332 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); 3333 const ASanStackFrameLayout &L = 3334 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3335 3336 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3337 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3338 for (auto &Desc : SVD) 3339 AllocaToSVDMap[Desc.AI] = &Desc; 3340 3341 // Update SVD with information from lifetime intrinsics. 3342 for (const auto &APC : StaticAllocaPoisonCallVec) { 3343 assert(APC.InsBefore); 3344 assert(APC.AI); 3345 assert(ASan.isInterestingAlloca(*APC.AI)); 3346 assert(APC.AI->isStaticAlloca()); 3347 3348 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3349 Desc.LifetimeSize = Desc.Size; 3350 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3351 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3352 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3353 if (unsigned Line = LifetimeLoc->getLine()) 3354 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3355 } 3356 } 3357 } 3358 3359 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3360 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3361 uint64_t LocalStackSize = L.FrameSize; 3362 bool DoStackMalloc = 3363 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3364 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3365 bool DoDynamicAlloca = ClDynamicAllocaStack; 3366 // Don't do dynamic alloca or stack malloc if: 3367 // 1) There is inline asm: too often it makes assumptions on which registers 3368 // are available. 3369 // 2) There is a returns_twice call (typically setjmp), which is 3370 // optimization-hostile, and doesn't play well with introduced indirect 3371 // register-relative calculation of local variable addresses. 3372 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3373 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3374 3375 Value *StaticAlloca = 3376 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3377 3378 Value *FakeStack; 3379 Value *LocalStackBase; 3380 Value *LocalStackBaseAlloca; 3381 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3382 3383 if (DoStackMalloc) { 3384 LocalStackBaseAlloca = 3385 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3386 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3387 // void *FakeStack = __asan_option_detect_stack_use_after_return 3388 // ? __asan_stack_malloc_N(LocalStackSize) 3389 // : nullptr; 3390 // void *LocalStackBase = (FakeStack) ? FakeStack : 3391 // alloca(LocalStackSize); 3392 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3393 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3394 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3395 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3396 Constant::getNullValue(IRB.getInt32Ty())); 3397 Instruction *Term = 3398 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3399 IRBuilder<> IRBIf(Term); 3400 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3401 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3402 Value *FakeStackValue = 3403 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3404 ConstantInt::get(IntptrTy, LocalStackSize)); 3405 IRB.SetInsertPoint(InsBefore); 3406 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3407 ConstantInt::get(IntptrTy, 0)); 3408 } else { 3409 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3410 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3411 // void *LocalStackBase = (FakeStack) ? FakeStack : 3412 // alloca(LocalStackSize); 3413 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3414 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3415 ConstantInt::get(IntptrTy, LocalStackSize)); 3416 } 3417 Value *NoFakeStack = 3418 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3419 Instruction *Term = 3420 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3421 IRBuilder<> IRBIf(Term); 3422 Value *AllocaValue = 3423 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3424 3425 IRB.SetInsertPoint(InsBefore); 3426 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3427 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3428 DIExprFlags |= DIExpression::DerefBefore; 3429 } else { 3430 // void *FakeStack = nullptr; 3431 // void *LocalStackBase = alloca(LocalStackSize); 3432 FakeStack = ConstantInt::get(IntptrTy, 0); 3433 LocalStackBase = 3434 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3435 LocalStackBaseAlloca = LocalStackBase; 3436 } 3437 3438 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3439 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3440 // later passes and can result in dropped variable coverage in debug info. 3441 Value *LocalStackBaseAllocaPtr = 3442 isa<PtrToIntInst>(LocalStackBaseAlloca) 3443 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3444 : LocalStackBaseAlloca; 3445 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3446 "Variable descriptions relative to ASan stack base will be dropped"); 3447 3448 // Replace Alloca instructions with base+offset. 3449 for (const auto &Desc : SVD) { 3450 AllocaInst *AI = Desc.AI; 3451 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3452 Desc.Offset); 3453 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3454 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3455 AI->getType()); 3456 AI->replaceAllUsesWith(NewAllocaPtr); 3457 } 3458 3459 // The left-most redzone has enough space for at least 4 pointers. 3460 // Write the Magic value to redzone[0]. 3461 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3462 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3463 BasePlus0); 3464 // Write the frame description constant to redzone[1]. 3465 Value *BasePlus1 = IRB.CreateIntToPtr( 3466 IRB.CreateAdd(LocalStackBase, 3467 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3468 IntptrPtrTy); 3469 GlobalVariable *StackDescriptionGlobal = 3470 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3471 /*AllowMerging*/ true, kAsanGenPrefix); 3472 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3473 IRB.CreateStore(Description, BasePlus1); 3474 // Write the PC to redzone[2]. 3475 Value *BasePlus2 = IRB.CreateIntToPtr( 3476 IRB.CreateAdd(LocalStackBase, 3477 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3478 IntptrPtrTy); 3479 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3480 3481 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3482 3483 // Poison the stack red zones at the entry. 3484 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3485 // As mask we must use most poisoned case: red zones and after scope. 3486 // As bytes we can use either the same or just red zones only. 3487 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3488 3489 if (!StaticAllocaPoisonCallVec.empty()) { 3490 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3491 3492 // Poison static allocas near lifetime intrinsics. 3493 for (const auto &APC : StaticAllocaPoisonCallVec) { 3494 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3495 assert(Desc.Offset % L.Granularity == 0); 3496 size_t Begin = Desc.Offset / L.Granularity; 3497 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3498 3499 IRBuilder<> IRB(APC.InsBefore); 3500 copyToShadow(ShadowAfterScope, 3501 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3502 IRB, ShadowBase); 3503 } 3504 } 3505 3506 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3507 SmallVector<uint8_t, 64> ShadowAfterReturn; 3508 3509 // (Un)poison the stack before all ret instructions. 3510 for (Instruction *Ret : RetVec) { 3511 IRBuilder<> IRBRet(Ret); 3512 // Mark the current frame as retired. 3513 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3514 BasePlus0); 3515 if (DoStackMalloc) { 3516 assert(StackMallocIdx >= 0); 3517 // if FakeStack != 0 // LocalStackBase == FakeStack 3518 // // In use-after-return mode, poison the whole stack frame. 3519 // if StackMallocIdx <= 4 3520 // // For small sizes inline the whole thing: 3521 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3522 // **SavedFlagPtr(FakeStack) = 0 3523 // else 3524 // __asan_stack_free_N(FakeStack, LocalStackSize) 3525 // else 3526 // <This is not a fake stack; unpoison the redzones> 3527 Value *Cmp = 3528 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3529 Instruction *ThenTerm, *ElseTerm; 3530 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3531 3532 IRBuilder<> IRBPoison(ThenTerm); 3533 if (StackMallocIdx <= 4) { 3534 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3535 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3536 kAsanStackUseAfterReturnMagic); 3537 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3538 ShadowBase); 3539 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3540 FakeStack, 3541 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3542 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3543 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3544 IRBPoison.CreateStore( 3545 Constant::getNullValue(IRBPoison.getInt8Ty()), 3546 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3547 } else { 3548 // For larger frames call __asan_stack_free_*. 3549 IRBPoison.CreateCall( 3550 AsanStackFreeFunc[StackMallocIdx], 3551 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3552 } 3553 3554 IRBuilder<> IRBElse(ElseTerm); 3555 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3556 } else { 3557 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3558 } 3559 } 3560 3561 // We are done. Remove the old unused alloca instructions. 3562 for (auto AI : AllocaVec) AI->eraseFromParent(); 3563 } 3564 3565 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3566 IRBuilder<> &IRB, bool DoPoison) { 3567 // For now just insert the call to ASan runtime. 3568 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3569 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3570 IRB.CreateCall( 3571 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3572 {AddrArg, SizeArg}); 3573 } 3574 3575 // Handling llvm.lifetime intrinsics for a given %alloca: 3576 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3577 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3578 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3579 // could be poisoned by previous llvm.lifetime.end instruction, as the 3580 // variable may go in and out of scope several times, e.g. in loops). 3581 // (3) if we poisoned at least one %alloca in a function, 3582 // unpoison the whole stack frame at function exit. 3583 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3584 IRBuilder<> IRB(AI); 3585 3586 const uint64_t Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3587 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3588 3589 Value *Zero = Constant::getNullValue(IntptrTy); 3590 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3591 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3592 3593 // Since we need to extend alloca with additional memory to locate 3594 // redzones, and OldSize is number of allocated blocks with 3595 // ElementSize size, get allocated memory size in bytes by 3596 // OldSize * ElementSize. 3597 const unsigned ElementSize = 3598 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3599 Value *OldSize = 3600 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3601 ConstantInt::get(IntptrTy, ElementSize)); 3602 3603 // PartialSize = OldSize % 32 3604 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3605 3606 // Misalign = kAllocaRzSize - PartialSize; 3607 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3608 3609 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3610 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3611 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3612 3613 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3614 // Alignment is added to locate left redzone, PartialPadding for possible 3615 // partial redzone and kAllocaRzSize for right redzone respectively. 3616 Value *AdditionalChunkSize = IRB.CreateAdd( 3617 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3618 3619 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3620 3621 // Insert new alloca with new NewSize and Alignment params. 3622 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3623 NewAlloca->setAlignment(Align(Alignment)); 3624 3625 // NewAddress = Address + Alignment 3626 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3627 ConstantInt::get(IntptrTy, Alignment)); 3628 3629 // Insert __asan_alloca_poison call for new created alloca. 3630 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3631 3632 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3633 // for unpoisoning stuff. 3634 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3635 3636 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3637 3638 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3639 AI->replaceAllUsesWith(NewAddressPtr); 3640 3641 // We are done. Erase old alloca from parent. 3642 AI->eraseFromParent(); 3643 } 3644 3645 // isSafeAccess returns true if Addr is always inbounds with respect to its 3646 // base object. For example, it is a field access or an array access with 3647 // constant inbounds index. 3648 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3649 Value *Addr, uint64_t TypeSize) const { 3650 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3651 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3652 uint64_t Size = SizeOffset.first.getZExtValue(); 3653 int64_t Offset = SizeOffset.second.getSExtValue(); 3654 // Three checks are required to ensure safety: 3655 // . Offset >= 0 (since the offset is given from the base ptr) 3656 // . Size >= Offset (unsigned) 3657 // . Size - Offset >= NeededSize (unsigned) 3658 return Offset >= 0 && Size >= uint64_t(Offset) && 3659 Size - uint64_t(Offset) >= TypeSize / 8; 3660 } 3661