1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/MachO.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstVisitor.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/MDBuilder.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/MC/MCSectionMachO.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/ModuleUtils.h" 76 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iomanip> 82 #include <limits> 83 #include <memory> 84 #include <sstream> 85 #include <string> 86 #include <tuple> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "asan" 91 92 static const uint64_t kDefaultShadowScale = 3; 93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 95 static const uint64_t kDynamicShadowSentinel = 96 std::numeric_limits<uint64_t>::max(); 97 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 98 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 99 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 100 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 101 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 102 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 103 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 104 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 105 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 106 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 107 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 108 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 109 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 110 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 111 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 112 static const uint64_t kEmscriptenShadowOffset = 0; 113 114 static const uint64_t kMyriadShadowScale = 5; 115 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 116 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 117 static const uint64_t kMyriadTagShift = 29; 118 static const uint64_t kMyriadDDRTag = 4; 119 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 120 121 // The shadow memory space is dynamically allocated. 122 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 123 124 static const size_t kMinStackMallocSize = 1 << 6; // 64B 125 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 126 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 127 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 128 129 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 130 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 131 static const uint64_t kAsanCtorAndDtorPriority = 1; 132 // On Emscripten, the system needs more than one priorities for constructors. 133 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 134 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 135 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 136 static const char *const kAsanUnregisterGlobalsName = 137 "__asan_unregister_globals"; 138 static const char *const kAsanRegisterImageGlobalsName = 139 "__asan_register_image_globals"; 140 static const char *const kAsanUnregisterImageGlobalsName = 141 "__asan_unregister_image_globals"; 142 static const char *const kAsanRegisterElfGlobalsName = 143 "__asan_register_elf_globals"; 144 static const char *const kAsanUnregisterElfGlobalsName = 145 "__asan_unregister_elf_globals"; 146 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 147 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 148 static const char *const kAsanInitName = "__asan_init"; 149 static const char *const kAsanVersionCheckNamePrefix = 150 "__asan_version_mismatch_check_v"; 151 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 152 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 153 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 154 static const int kMaxAsanStackMallocSizeClass = 10; 155 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 156 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 157 static const char *const kAsanGenPrefix = "___asan_gen_"; 158 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 159 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 160 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 161 static const char *const kAsanPoisonStackMemoryName = 162 "__asan_poison_stack_memory"; 163 static const char *const kAsanUnpoisonStackMemoryName = 164 "__asan_unpoison_stack_memory"; 165 166 // ASan version script has __asan_* wildcard. Triple underscore prevents a 167 // linker (gold) warning about attempting to export a local symbol. 168 static const char *const kAsanGlobalsRegisteredFlagName = 169 "___asan_globals_registered"; 170 171 static const char *const kAsanOptionDetectUseAfterReturn = 172 "__asan_option_detect_stack_use_after_return"; 173 174 static const char *const kAsanShadowMemoryDynamicAddress = 175 "__asan_shadow_memory_dynamic_address"; 176 177 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 178 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 179 180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 181 static const size_t kNumberOfAccessSizes = 5; 182 183 static const unsigned kAllocaRzSize = 32; 184 185 // Command-line flags. 186 187 static cl::opt<bool> ClEnableKasan( 188 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 189 cl::Hidden, cl::init(false)); 190 191 static cl::opt<bool> ClRecover( 192 "asan-recover", 193 cl::desc("Enable recovery mode (continue-after-error)."), 194 cl::Hidden, cl::init(false)); 195 196 static cl::opt<bool> ClInsertVersionCheck( 197 "asan-guard-against-version-mismatch", 198 cl::desc("Guard against compiler/runtime version mismatch."), 199 cl::Hidden, cl::init(true)); 200 201 // This flag may need to be replaced with -f[no-]asan-reads. 202 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 203 cl::desc("instrument read instructions"), 204 cl::Hidden, cl::init(true)); 205 206 static cl::opt<bool> ClInstrumentWrites( 207 "asan-instrument-writes", cl::desc("instrument write instructions"), 208 cl::Hidden, cl::init(true)); 209 210 static cl::opt<bool> ClInstrumentAtomics( 211 "asan-instrument-atomics", 212 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 213 cl::init(true)); 214 215 static cl::opt<bool> ClAlwaysSlowPath( 216 "asan-always-slow-path", 217 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 218 cl::init(false)); 219 220 static cl::opt<bool> ClForceDynamicShadow( 221 "asan-force-dynamic-shadow", 222 cl::desc("Load shadow address into a local variable for each function"), 223 cl::Hidden, cl::init(false)); 224 225 static cl::opt<bool> 226 ClWithIfunc("asan-with-ifunc", 227 cl::desc("Access dynamic shadow through an ifunc global on " 228 "platforms that support this"), 229 cl::Hidden, cl::init(true)); 230 231 static cl::opt<bool> ClWithIfuncSuppressRemat( 232 "asan-with-ifunc-suppress-remat", 233 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 234 "it through inline asm in prologue."), 235 cl::Hidden, cl::init(true)); 236 237 // This flag limits the number of instructions to be instrumented 238 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 239 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 240 // set it to 10000. 241 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 242 "asan-max-ins-per-bb", cl::init(10000), 243 cl::desc("maximal number of instructions to instrument in any given BB"), 244 cl::Hidden); 245 246 // This flag may need to be replaced with -f[no]asan-stack. 247 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 248 cl::Hidden, cl::init(true)); 249 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 250 "asan-max-inline-poisoning-size", 251 cl::desc( 252 "Inline shadow poisoning for blocks up to the given size in bytes."), 253 cl::Hidden, cl::init(64)); 254 255 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 256 cl::desc("Check stack-use-after-return"), 257 cl::Hidden, cl::init(true)); 258 259 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 260 cl::desc("Create redzones for byval " 261 "arguments (extra copy " 262 "required)"), cl::Hidden, 263 cl::init(true)); 264 265 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 266 cl::desc("Check stack-use-after-scope"), 267 cl::Hidden, cl::init(false)); 268 269 // This flag may need to be replaced with -f[no]asan-globals. 270 static cl::opt<bool> ClGlobals("asan-globals", 271 cl::desc("Handle global objects"), cl::Hidden, 272 cl::init(true)); 273 274 static cl::opt<bool> ClInitializers("asan-initialization-order", 275 cl::desc("Handle C++ initializer order"), 276 cl::Hidden, cl::init(true)); 277 278 static cl::opt<bool> ClInvalidPointerPairs( 279 "asan-detect-invalid-pointer-pair", 280 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 281 cl::init(false)); 282 283 static cl::opt<bool> ClInvalidPointerCmp( 284 "asan-detect-invalid-pointer-cmp", 285 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 286 cl::init(false)); 287 288 static cl::opt<bool> ClInvalidPointerSub( 289 "asan-detect-invalid-pointer-sub", 290 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 291 cl::init(false)); 292 293 static cl::opt<unsigned> ClRealignStack( 294 "asan-realign-stack", 295 cl::desc("Realign stack to the value of this flag (power of two)"), 296 cl::Hidden, cl::init(32)); 297 298 static cl::opt<int> ClInstrumentationWithCallsThreshold( 299 "asan-instrumentation-with-call-threshold", 300 cl::desc( 301 "If the function being instrumented contains more than " 302 "this number of memory accesses, use callbacks instead of " 303 "inline checks (-1 means never use callbacks)."), 304 cl::Hidden, cl::init(7000)); 305 306 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 307 "asan-memory-access-callback-prefix", 308 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 309 cl::init("__asan_")); 310 311 static cl::opt<bool> 312 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 313 cl::desc("instrument dynamic allocas"), 314 cl::Hidden, cl::init(true)); 315 316 static cl::opt<bool> ClSkipPromotableAllocas( 317 "asan-skip-promotable-allocas", 318 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 319 cl::init(true)); 320 321 // These flags allow to change the shadow mapping. 322 // The shadow mapping looks like 323 // Shadow = (Mem >> scale) + offset 324 325 static cl::opt<int> ClMappingScale("asan-mapping-scale", 326 cl::desc("scale of asan shadow mapping"), 327 cl::Hidden, cl::init(0)); 328 329 static cl::opt<uint64_t> 330 ClMappingOffset("asan-mapping-offset", 331 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 332 cl::Hidden, cl::init(0)); 333 334 // Optimization flags. Not user visible, used mostly for testing 335 // and benchmarking the tool. 336 337 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 338 cl::Hidden, cl::init(true)); 339 340 static cl::opt<bool> ClOptSameTemp( 341 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 342 cl::Hidden, cl::init(true)); 343 344 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 345 cl::desc("Don't instrument scalar globals"), 346 cl::Hidden, cl::init(true)); 347 348 static cl::opt<bool> ClOptStack( 349 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 350 cl::Hidden, cl::init(false)); 351 352 static cl::opt<bool> ClDynamicAllocaStack( 353 "asan-stack-dynamic-alloca", 354 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 355 cl::init(true)); 356 357 static cl::opt<uint32_t> ClForceExperiment( 358 "asan-force-experiment", 359 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 360 cl::init(0)); 361 362 static cl::opt<bool> 363 ClUsePrivateAlias("asan-use-private-alias", 364 cl::desc("Use private aliases for global variables"), 365 cl::Hidden, cl::init(false)); 366 367 static cl::opt<bool> 368 ClUseOdrIndicator("asan-use-odr-indicator", 369 cl::desc("Use odr indicators to improve ODR reporting"), 370 cl::Hidden, cl::init(false)); 371 372 static cl::opt<bool> 373 ClUseGlobalsGC("asan-globals-live-support", 374 cl::desc("Use linker features to support dead " 375 "code stripping of globals"), 376 cl::Hidden, cl::init(true)); 377 378 // This is on by default even though there is a bug in gold: 379 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 380 static cl::opt<bool> 381 ClWithComdat("asan-with-comdat", 382 cl::desc("Place ASan constructors in comdat sections"), 383 cl::Hidden, cl::init(true)); 384 385 // Debug flags. 386 387 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 388 cl::init(0)); 389 390 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 391 cl::Hidden, cl::init(0)); 392 393 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 394 cl::desc("Debug func")); 395 396 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 397 cl::Hidden, cl::init(-1)); 398 399 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 400 cl::Hidden, cl::init(-1)); 401 402 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 403 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 404 STATISTIC(NumOptimizedAccessesToGlobalVar, 405 "Number of optimized accesses to global vars"); 406 STATISTIC(NumOptimizedAccessesToStackVar, 407 "Number of optimized accesses to stack vars"); 408 409 namespace { 410 411 /// This struct defines the shadow mapping using the rule: 412 /// shadow = (mem >> Scale) ADD-or-OR Offset. 413 /// If InGlobal is true, then 414 /// extern char __asan_shadow[]; 415 /// shadow = (mem >> Scale) + &__asan_shadow 416 struct ShadowMapping { 417 int Scale; 418 uint64_t Offset; 419 bool OrShadowOffset; 420 bool InGlobal; 421 }; 422 423 } // end anonymous namespace 424 425 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 426 bool IsKasan) { 427 bool IsAndroid = TargetTriple.isAndroid(); 428 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 429 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 430 bool IsNetBSD = TargetTriple.isOSNetBSD(); 431 bool IsPS4CPU = TargetTriple.isPS4CPU(); 432 bool IsLinux = TargetTriple.isOSLinux(); 433 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 434 TargetTriple.getArch() == Triple::ppc64le; 435 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 436 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 437 bool IsMIPS32 = TargetTriple.isMIPS32(); 438 bool IsMIPS64 = TargetTriple.isMIPS64(); 439 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 440 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 441 bool IsWindows = TargetTriple.isOSWindows(); 442 bool IsFuchsia = TargetTriple.isOSFuchsia(); 443 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 444 bool IsEmscripten = TargetTriple.isOSEmscripten(); 445 446 ShadowMapping Mapping; 447 448 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 449 if (ClMappingScale.getNumOccurrences() > 0) { 450 Mapping.Scale = ClMappingScale; 451 } 452 453 if (LongSize == 32) { 454 if (IsAndroid) 455 Mapping.Offset = kDynamicShadowSentinel; 456 else if (IsMIPS32) 457 Mapping.Offset = kMIPS32_ShadowOffset32; 458 else if (IsFreeBSD) 459 Mapping.Offset = kFreeBSD_ShadowOffset32; 460 else if (IsNetBSD) 461 Mapping.Offset = kNetBSD_ShadowOffset32; 462 else if (IsIOS) 463 Mapping.Offset = kDynamicShadowSentinel; 464 else if (IsWindows) 465 Mapping.Offset = kWindowsShadowOffset32; 466 else if (IsEmscripten) 467 Mapping.Offset = kEmscriptenShadowOffset; 468 else if (IsMyriad) { 469 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 470 (kMyriadMemorySize32 >> Mapping.Scale)); 471 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 472 } 473 else 474 Mapping.Offset = kDefaultShadowOffset32; 475 } else { // LongSize == 64 476 // Fuchsia is always PIE, which means that the beginning of the address 477 // space is always available. 478 if (IsFuchsia) 479 Mapping.Offset = 0; 480 else if (IsPPC64) 481 Mapping.Offset = kPPC64_ShadowOffset64; 482 else if (IsSystemZ) 483 Mapping.Offset = kSystemZ_ShadowOffset64; 484 else if (IsFreeBSD && !IsMIPS64) 485 Mapping.Offset = kFreeBSD_ShadowOffset64; 486 else if (IsNetBSD) { 487 if (IsKasan) 488 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 489 else 490 Mapping.Offset = kNetBSD_ShadowOffset64; 491 } else if (IsPS4CPU) 492 Mapping.Offset = kPS4CPU_ShadowOffset64; 493 else if (IsLinux && IsX86_64) { 494 if (IsKasan) 495 Mapping.Offset = kLinuxKasan_ShadowOffset64; 496 else 497 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 498 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 499 } else if (IsWindows && IsX86_64) { 500 Mapping.Offset = kWindowsShadowOffset64; 501 } else if (IsMIPS64) 502 Mapping.Offset = kMIPS64_ShadowOffset64; 503 else if (IsIOS) 504 Mapping.Offset = kDynamicShadowSentinel; 505 else if (IsAArch64) 506 Mapping.Offset = kAArch64_ShadowOffset64; 507 else 508 Mapping.Offset = kDefaultShadowOffset64; 509 } 510 511 if (ClForceDynamicShadow) { 512 Mapping.Offset = kDynamicShadowSentinel; 513 } 514 515 if (ClMappingOffset.getNumOccurrences() > 0) { 516 Mapping.Offset = ClMappingOffset; 517 } 518 519 // OR-ing shadow offset if more efficient (at least on x86) if the offset 520 // is a power of two, but on ppc64 we have to use add since the shadow 521 // offset is not necessary 1/8-th of the address space. On SystemZ, 522 // we could OR the constant in a single instruction, but it's more 523 // efficient to load it once and use indexed addressing. 524 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 525 !(Mapping.Offset & (Mapping.Offset - 1)) && 526 Mapping.Offset != kDynamicShadowSentinel; 527 bool IsAndroidWithIfuncSupport = 528 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 529 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 530 531 return Mapping; 532 } 533 534 static size_t RedzoneSizeForScale(int MappingScale) { 535 // Redzone used for stack and globals is at least 32 bytes. 536 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 537 return std::max(32U, 1U << MappingScale); 538 } 539 540 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 541 if (TargetTriple.isOSEmscripten()) { 542 return kAsanEmscriptenCtorAndDtorPriority; 543 } else { 544 return kAsanCtorAndDtorPriority; 545 } 546 } 547 548 namespace { 549 550 /// Module analysis for getting various metadata about the module. 551 class ASanGlobalsMetadataWrapperPass : public ModulePass { 552 public: 553 static char ID; 554 555 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 556 initializeASanGlobalsMetadataWrapperPassPass( 557 *PassRegistry::getPassRegistry()); 558 } 559 560 bool runOnModule(Module &M) override { 561 GlobalsMD = GlobalsMetadata(M); 562 return false; 563 } 564 565 StringRef getPassName() const override { 566 return "ASanGlobalsMetadataWrapperPass"; 567 } 568 569 void getAnalysisUsage(AnalysisUsage &AU) const override { 570 AU.setPreservesAll(); 571 } 572 573 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 574 575 private: 576 GlobalsMetadata GlobalsMD; 577 }; 578 579 char ASanGlobalsMetadataWrapperPass::ID = 0; 580 581 /// AddressSanitizer: instrument the code in module to find memory bugs. 582 struct AddressSanitizer { 583 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 584 bool CompileKernel = false, bool Recover = false, 585 bool UseAfterScope = false) 586 : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 587 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 588 this->CompileKernel = 589 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 590 591 C = &(M.getContext()); 592 LongSize = M.getDataLayout().getPointerSizeInBits(); 593 IntptrTy = Type::getIntNTy(*C, LongSize); 594 TargetTriple = Triple(M.getTargetTriple()); 595 596 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 597 } 598 599 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 600 uint64_t ArraySize = 1; 601 if (AI.isArrayAllocation()) { 602 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 603 assert(CI && "non-constant array size"); 604 ArraySize = CI->getZExtValue(); 605 } 606 Type *Ty = AI.getAllocatedType(); 607 uint64_t SizeInBytes = 608 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 609 return SizeInBytes * ArraySize; 610 } 611 612 /// Check if we want (and can) handle this alloca. 613 bool isInterestingAlloca(const AllocaInst &AI); 614 615 /// If it is an interesting memory access, return the PointerOperand 616 /// and set IsWrite/Alignment. Otherwise return nullptr. 617 /// MaybeMask is an output parameter for the mask Value, if we're looking at a 618 /// masked load/store. 619 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 620 uint64_t *TypeSize, unsigned *Alignment, 621 Value **MaybeMask = nullptr); 622 623 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 624 bool UseCalls, const DataLayout &DL); 625 void instrumentPointerComparisonOrSubtraction(Instruction *I); 626 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 627 Value *Addr, uint32_t TypeSize, bool IsWrite, 628 Value *SizeArgument, bool UseCalls, uint32_t Exp); 629 void instrumentUnusualSizeOrAlignment(Instruction *I, 630 Instruction *InsertBefore, Value *Addr, 631 uint32_t TypeSize, bool IsWrite, 632 Value *SizeArgument, bool UseCalls, 633 uint32_t Exp); 634 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 635 Value *ShadowValue, uint32_t TypeSize); 636 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 637 bool IsWrite, size_t AccessSizeIndex, 638 Value *SizeArgument, uint32_t Exp); 639 void instrumentMemIntrinsic(MemIntrinsic *MI); 640 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 641 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 642 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 643 void maybeInsertDynamicShadowAtFunctionEntry(Function &F); 644 void markEscapedLocalAllocas(Function &F); 645 646 private: 647 friend struct FunctionStackPoisoner; 648 649 void initializeCallbacks(Module &M); 650 651 bool LooksLikeCodeInBug11395(Instruction *I); 652 bool GlobalIsLinkerInitialized(GlobalVariable *G); 653 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 654 uint64_t TypeSize) const; 655 656 /// Helper to cleanup per-function state. 657 struct FunctionStateRAII { 658 AddressSanitizer *Pass; 659 660 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 661 assert(Pass->ProcessedAllocas.empty() && 662 "last pass forgot to clear cache"); 663 assert(!Pass->LocalDynamicShadow); 664 } 665 666 ~FunctionStateRAII() { 667 Pass->LocalDynamicShadow = nullptr; 668 Pass->ProcessedAllocas.clear(); 669 } 670 }; 671 672 LLVMContext *C; 673 Triple TargetTriple; 674 int LongSize; 675 bool CompileKernel; 676 bool Recover; 677 bool UseAfterScope; 678 Type *IntptrTy; 679 ShadowMapping Mapping; 680 FunctionCallee AsanHandleNoReturnFunc; 681 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 682 Constant *AsanShadowGlobal; 683 684 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 685 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 686 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 687 688 // These arrays is indexed by AccessIsWrite and Experiment. 689 FunctionCallee AsanErrorCallbackSized[2][2]; 690 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 691 692 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 693 InlineAsm *EmptyAsm; 694 Value *LocalDynamicShadow = nullptr; 695 const GlobalsMetadata &GlobalsMD; 696 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 697 }; 698 699 class AddressSanitizerLegacyPass : public FunctionPass { 700 public: 701 static char ID; 702 703 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 704 bool Recover = false, 705 bool UseAfterScope = false) 706 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 707 UseAfterScope(UseAfterScope) { 708 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 709 } 710 711 StringRef getPassName() const override { 712 return "AddressSanitizerFunctionPass"; 713 } 714 715 void getAnalysisUsage(AnalysisUsage &AU) const override { 716 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 717 AU.addRequired<TargetLibraryInfoWrapperPass>(); 718 } 719 720 bool runOnFunction(Function &F) override { 721 GlobalsMetadata &GlobalsMD = 722 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 723 const TargetLibraryInfo *TLI = 724 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 725 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 726 UseAfterScope); 727 return ASan.instrumentFunction(F, TLI); 728 } 729 730 private: 731 bool CompileKernel; 732 bool Recover; 733 bool UseAfterScope; 734 }; 735 736 class ModuleAddressSanitizer { 737 public: 738 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 739 bool CompileKernel = false, bool Recover = false, 740 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 741 : GlobalsMD(*GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC), 742 // Enable aliases as they should have no downside with ODR indicators. 743 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 744 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 745 // Not a typo: ClWithComdat is almost completely pointless without 746 // ClUseGlobalsGC (because then it only works on modules without 747 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 748 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 749 // argument is designed as workaround. Therefore, disable both 750 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 751 // do globals-gc. 752 UseCtorComdat(UseGlobalsGC && ClWithComdat) { 753 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 754 this->CompileKernel = 755 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 756 757 C = &(M.getContext()); 758 int LongSize = M.getDataLayout().getPointerSizeInBits(); 759 IntptrTy = Type::getIntNTy(*C, LongSize); 760 TargetTriple = Triple(M.getTargetTriple()); 761 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 762 } 763 764 bool instrumentModule(Module &); 765 766 private: 767 void initializeCallbacks(Module &M); 768 769 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 770 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 771 ArrayRef<GlobalVariable *> ExtendedGlobals, 772 ArrayRef<Constant *> MetadataInitializers); 773 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 774 ArrayRef<GlobalVariable *> ExtendedGlobals, 775 ArrayRef<Constant *> MetadataInitializers, 776 const std::string &UniqueModuleId); 777 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 778 ArrayRef<GlobalVariable *> ExtendedGlobals, 779 ArrayRef<Constant *> MetadataInitializers); 780 void 781 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 782 ArrayRef<GlobalVariable *> ExtendedGlobals, 783 ArrayRef<Constant *> MetadataInitializers); 784 785 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 786 StringRef OriginalName); 787 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 788 StringRef InternalSuffix); 789 IRBuilder<> CreateAsanModuleDtor(Module &M); 790 791 bool ShouldInstrumentGlobal(GlobalVariable *G); 792 bool ShouldUseMachOGlobalsSection() const; 793 StringRef getGlobalMetadataSection() const; 794 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 795 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 796 size_t MinRedzoneSizeForGlobal() const { 797 return RedzoneSizeForScale(Mapping.Scale); 798 } 799 int GetAsanVersion(const Module &M) const; 800 801 const GlobalsMetadata &GlobalsMD; 802 bool CompileKernel; 803 bool Recover; 804 bool UseGlobalsGC; 805 bool UsePrivateAlias; 806 bool UseOdrIndicator; 807 bool UseCtorComdat; 808 Type *IntptrTy; 809 LLVMContext *C; 810 Triple TargetTriple; 811 ShadowMapping Mapping; 812 FunctionCallee AsanPoisonGlobals; 813 FunctionCallee AsanUnpoisonGlobals; 814 FunctionCallee AsanRegisterGlobals; 815 FunctionCallee AsanUnregisterGlobals; 816 FunctionCallee AsanRegisterImageGlobals; 817 FunctionCallee AsanUnregisterImageGlobals; 818 FunctionCallee AsanRegisterElfGlobals; 819 FunctionCallee AsanUnregisterElfGlobals; 820 821 Function *AsanCtorFunction = nullptr; 822 Function *AsanDtorFunction = nullptr; 823 }; 824 825 class ModuleAddressSanitizerLegacyPass : public ModulePass { 826 public: 827 static char ID; 828 829 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 830 bool Recover = false, 831 bool UseGlobalGC = true, 832 bool UseOdrIndicator = false) 833 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 834 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 835 initializeModuleAddressSanitizerLegacyPassPass( 836 *PassRegistry::getPassRegistry()); 837 } 838 839 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 840 841 void getAnalysisUsage(AnalysisUsage &AU) const override { 842 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 843 } 844 845 bool runOnModule(Module &M) override { 846 GlobalsMetadata &GlobalsMD = 847 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 848 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 849 UseGlobalGC, UseOdrIndicator); 850 return ASanModule.instrumentModule(M); 851 } 852 853 private: 854 bool CompileKernel; 855 bool Recover; 856 bool UseGlobalGC; 857 bool UseOdrIndicator; 858 }; 859 860 // Stack poisoning does not play well with exception handling. 861 // When an exception is thrown, we essentially bypass the code 862 // that unpoisones the stack. This is why the run-time library has 863 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 864 // stack in the interceptor. This however does not work inside the 865 // actual function which catches the exception. Most likely because the 866 // compiler hoists the load of the shadow value somewhere too high. 867 // This causes asan to report a non-existing bug on 453.povray. 868 // It sounds like an LLVM bug. 869 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 870 Function &F; 871 AddressSanitizer &ASan; 872 DIBuilder DIB; 873 LLVMContext *C; 874 Type *IntptrTy; 875 Type *IntptrPtrTy; 876 ShadowMapping Mapping; 877 878 SmallVector<AllocaInst *, 16> AllocaVec; 879 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 880 SmallVector<Instruction *, 8> RetVec; 881 unsigned StackAlignment; 882 883 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 884 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 885 FunctionCallee AsanSetShadowFunc[0x100] = {}; 886 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 887 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 888 889 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 890 struct AllocaPoisonCall { 891 IntrinsicInst *InsBefore; 892 AllocaInst *AI; 893 uint64_t Size; 894 bool DoPoison; 895 }; 896 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 897 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 898 bool HasUntracedLifetimeIntrinsic = false; 899 900 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 901 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 902 AllocaInst *DynamicAllocaLayout = nullptr; 903 IntrinsicInst *LocalEscapeCall = nullptr; 904 905 // Maps Value to an AllocaInst from which the Value is originated. 906 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 907 AllocaForValueMapTy AllocaForValue; 908 909 bool HasNonEmptyInlineAsm = false; 910 bool HasReturnsTwiceCall = false; 911 std::unique_ptr<CallInst> EmptyInlineAsm; 912 913 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 914 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 915 C(ASan.C), IntptrTy(ASan.IntptrTy), 916 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 917 StackAlignment(1 << Mapping.Scale), 918 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 919 920 bool runOnFunction() { 921 if (!ClStack) return false; 922 923 if (ClRedzoneByvalArgs) 924 copyArgsPassedByValToAllocas(); 925 926 // Collect alloca, ret, lifetime instructions etc. 927 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 928 929 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 930 931 initializeCallbacks(*F.getParent()); 932 933 if (HasUntracedLifetimeIntrinsic) { 934 // If there are lifetime intrinsics which couldn't be traced back to an 935 // alloca, we may not know exactly when a variable enters scope, and 936 // therefore should "fail safe" by not poisoning them. 937 StaticAllocaPoisonCallVec.clear(); 938 DynamicAllocaPoisonCallVec.clear(); 939 } 940 941 processDynamicAllocas(); 942 processStaticAllocas(); 943 944 if (ClDebugStack) { 945 LLVM_DEBUG(dbgs() << F); 946 } 947 return true; 948 } 949 950 // Arguments marked with the "byval" attribute are implicitly copied without 951 // using an alloca instruction. To produce redzones for those arguments, we 952 // copy them a second time into memory allocated with an alloca instruction. 953 void copyArgsPassedByValToAllocas(); 954 955 // Finds all Alloca instructions and puts 956 // poisoned red zones around all of them. 957 // Then unpoison everything back before the function returns. 958 void processStaticAllocas(); 959 void processDynamicAllocas(); 960 961 void createDynamicAllocasInitStorage(); 962 963 // ----------------------- Visitors. 964 /// Collect all Ret instructions. 965 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 966 967 /// Collect all Resume instructions. 968 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 969 970 /// Collect all CatchReturnInst instructions. 971 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 972 973 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 974 Value *SavedStack) { 975 IRBuilder<> IRB(InstBefore); 976 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 977 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 978 // need to adjust extracted SP to compute the address of the most recent 979 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 980 // this purpose. 981 if (!isa<ReturnInst>(InstBefore)) { 982 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 983 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 984 {IntptrTy}); 985 986 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 987 988 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 989 DynamicAreaOffset); 990 } 991 992 IRB.CreateCall( 993 AsanAllocasUnpoisonFunc, 994 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 995 } 996 997 // Unpoison dynamic allocas redzones. 998 void unpoisonDynamicAllocas() { 999 for (auto &Ret : RetVec) 1000 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1001 1002 for (auto &StackRestoreInst : StackRestoreVec) 1003 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1004 StackRestoreInst->getOperand(0)); 1005 } 1006 1007 // Deploy and poison redzones around dynamic alloca call. To do this, we 1008 // should replace this call with another one with changed parameters and 1009 // replace all its uses with new address, so 1010 // addr = alloca type, old_size, align 1011 // is replaced by 1012 // new_size = (old_size + additional_size) * sizeof(type) 1013 // tmp = alloca i8, new_size, max(align, 32) 1014 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1015 // Additional_size is added to make new memory allocation contain not only 1016 // requested memory, but also left, partial and right redzones. 1017 void handleDynamicAllocaCall(AllocaInst *AI); 1018 1019 /// Collect Alloca instructions we want (and can) handle. 1020 void visitAllocaInst(AllocaInst &AI) { 1021 if (!ASan.isInterestingAlloca(AI)) { 1022 if (AI.isStaticAlloca()) { 1023 // Skip over allocas that are present *before* the first instrumented 1024 // alloca, we don't want to move those around. 1025 if (AllocaVec.empty()) 1026 return; 1027 1028 StaticAllocasToMoveUp.push_back(&AI); 1029 } 1030 return; 1031 } 1032 1033 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1034 if (!AI.isStaticAlloca()) 1035 DynamicAllocaVec.push_back(&AI); 1036 else 1037 AllocaVec.push_back(&AI); 1038 } 1039 1040 /// Collect lifetime intrinsic calls to check for use-after-scope 1041 /// errors. 1042 void visitIntrinsicInst(IntrinsicInst &II) { 1043 Intrinsic::ID ID = II.getIntrinsicID(); 1044 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1045 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1046 if (!ASan.UseAfterScope) 1047 return; 1048 if (!II.isLifetimeStartOrEnd()) 1049 return; 1050 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1051 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1052 // If size argument is undefined, don't do anything. 1053 if (Size->isMinusOne()) return; 1054 // Check that size doesn't saturate uint64_t and can 1055 // be stored in IntptrTy. 1056 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1057 if (SizeValue == ~0ULL || 1058 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1059 return; 1060 // Find alloca instruction that corresponds to llvm.lifetime argument. 1061 AllocaInst *AI = 1062 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue); 1063 if (!AI) { 1064 HasUntracedLifetimeIntrinsic = true; 1065 return; 1066 } 1067 // We're interested only in allocas we can handle. 1068 if (!ASan.isInterestingAlloca(*AI)) 1069 return; 1070 bool DoPoison = (ID == Intrinsic::lifetime_end); 1071 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1072 if (AI->isStaticAlloca()) 1073 StaticAllocaPoisonCallVec.push_back(APC); 1074 else if (ClInstrumentDynamicAllocas) 1075 DynamicAllocaPoisonCallVec.push_back(APC); 1076 } 1077 1078 void visitCallSite(CallSite CS) { 1079 Instruction *I = CS.getInstruction(); 1080 if (CallInst *CI = dyn_cast<CallInst>(I)) { 1081 HasNonEmptyInlineAsm |= CI->isInlineAsm() && 1082 !CI->isIdenticalTo(EmptyInlineAsm.get()) && 1083 I != ASan.LocalDynamicShadow; 1084 HasReturnsTwiceCall |= CI->canReturnTwice(); 1085 } 1086 } 1087 1088 // ---------------------- Helpers. 1089 void initializeCallbacks(Module &M); 1090 1091 // Copies bytes from ShadowBytes into shadow memory for indexes where 1092 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1093 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1094 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1095 IRBuilder<> &IRB, Value *ShadowBase); 1096 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1097 size_t Begin, size_t End, IRBuilder<> &IRB, 1098 Value *ShadowBase); 1099 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1100 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1101 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1102 1103 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1104 1105 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1106 bool Dynamic); 1107 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1108 Instruction *ThenTerm, Value *ValueIfFalse); 1109 }; 1110 1111 } // end anonymous namespace 1112 1113 void LocationMetadata::parse(MDNode *MDN) { 1114 assert(MDN->getNumOperands() == 3); 1115 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1116 Filename = DIFilename->getString(); 1117 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1118 ColumnNo = 1119 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1120 } 1121 1122 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1123 // we want to sanitize instead and reading this metadata on each pass over a 1124 // function instead of reading module level metadata at first. 1125 GlobalsMetadata::GlobalsMetadata(Module &M) { 1126 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1127 if (!Globals) 1128 return; 1129 for (auto MDN : Globals->operands()) { 1130 // Metadata node contains the global and the fields of "Entry". 1131 assert(MDN->getNumOperands() == 5); 1132 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1133 // The optimizer may optimize away a global entirely. 1134 if (!V) 1135 continue; 1136 auto *StrippedV = V->stripPointerCasts(); 1137 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1138 if (!GV) 1139 continue; 1140 // We can already have an entry for GV if it was merged with another 1141 // global. 1142 Entry &E = Entries[GV]; 1143 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1144 E.SourceLoc.parse(Loc); 1145 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1146 E.Name = Name->getString(); 1147 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1148 E.IsDynInit |= IsDynInit->isOne(); 1149 ConstantInt *IsBlacklisted = 1150 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1151 E.IsBlacklisted |= IsBlacklisted->isOne(); 1152 } 1153 } 1154 1155 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1156 1157 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1158 ModuleAnalysisManager &AM) { 1159 return GlobalsMetadata(M); 1160 } 1161 1162 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1163 bool UseAfterScope) 1164 : CompileKernel(CompileKernel), Recover(Recover), 1165 UseAfterScope(UseAfterScope) {} 1166 1167 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1168 AnalysisManager<Function> &AM) { 1169 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1170 auto &MAM = MAMProxy.getManager(); 1171 Module &M = *F.getParent(); 1172 if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1173 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1174 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1175 if (Sanitizer.instrumentFunction(F, TLI)) 1176 return PreservedAnalyses::none(); 1177 return PreservedAnalyses::all(); 1178 } 1179 1180 report_fatal_error( 1181 "The ASanGlobalsMetadataAnalysis is required to run before " 1182 "AddressSanitizer can run"); 1183 return PreservedAnalyses::all(); 1184 } 1185 1186 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1187 bool Recover, 1188 bool UseGlobalGC, 1189 bool UseOdrIndicator) 1190 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1191 UseOdrIndicator(UseOdrIndicator) {} 1192 1193 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1194 AnalysisManager<Module> &AM) { 1195 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1196 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1197 UseGlobalGC, UseOdrIndicator); 1198 if (Sanitizer.instrumentModule(M)) 1199 return PreservedAnalyses::none(); 1200 return PreservedAnalyses::all(); 1201 } 1202 1203 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1204 "Read metadata to mark which globals should be instrumented " 1205 "when running ASan.", 1206 false, true) 1207 1208 char AddressSanitizerLegacyPass::ID = 0; 1209 1210 INITIALIZE_PASS_BEGIN( 1211 AddressSanitizerLegacyPass, "asan", 1212 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1213 false) 1214 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1215 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1216 INITIALIZE_PASS_END( 1217 AddressSanitizerLegacyPass, "asan", 1218 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1219 false) 1220 1221 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1222 bool Recover, 1223 bool UseAfterScope) { 1224 assert(!CompileKernel || Recover); 1225 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1226 } 1227 1228 char ModuleAddressSanitizerLegacyPass::ID = 0; 1229 1230 INITIALIZE_PASS( 1231 ModuleAddressSanitizerLegacyPass, "asan-module", 1232 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1233 "ModulePass", 1234 false, false) 1235 1236 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1237 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1238 assert(!CompileKernel || Recover); 1239 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1240 UseGlobalsGC, UseOdrIndicator); 1241 } 1242 1243 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1244 size_t Res = countTrailingZeros(TypeSize / 8); 1245 assert(Res < kNumberOfAccessSizes); 1246 return Res; 1247 } 1248 1249 /// Create a global describing a source location. 1250 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1251 LocationMetadata MD) { 1252 Constant *LocData[] = { 1253 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1254 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1255 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1256 }; 1257 auto LocStruct = ConstantStruct::getAnon(LocData); 1258 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1259 GlobalValue::PrivateLinkage, LocStruct, 1260 kAsanGenPrefix); 1261 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1262 return GV; 1263 } 1264 1265 /// Check if \p G has been created by a trusted compiler pass. 1266 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1267 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1268 if (G->getName().startswith("llvm.")) 1269 return true; 1270 1271 // Do not instrument asan globals. 1272 if (G->getName().startswith(kAsanGenPrefix) || 1273 G->getName().startswith(kSanCovGenPrefix) || 1274 G->getName().startswith(kODRGenPrefix)) 1275 return true; 1276 1277 // Do not instrument gcov counter arrays. 1278 if (G->getName() == "__llvm_gcov_ctr") 1279 return true; 1280 1281 return false; 1282 } 1283 1284 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1285 // Shadow >> scale 1286 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1287 if (Mapping.Offset == 0) return Shadow; 1288 // (Shadow >> scale) | offset 1289 Value *ShadowBase; 1290 if (LocalDynamicShadow) 1291 ShadowBase = LocalDynamicShadow; 1292 else 1293 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1294 if (Mapping.OrShadowOffset) 1295 return IRB.CreateOr(Shadow, ShadowBase); 1296 else 1297 return IRB.CreateAdd(Shadow, ShadowBase); 1298 } 1299 1300 // Instrument memset/memmove/memcpy 1301 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1302 IRBuilder<> IRB(MI); 1303 if (isa<MemTransferInst>(MI)) { 1304 IRB.CreateCall( 1305 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1306 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1307 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1308 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1309 } else if (isa<MemSetInst>(MI)) { 1310 IRB.CreateCall( 1311 AsanMemset, 1312 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1313 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1314 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1315 } 1316 MI->eraseFromParent(); 1317 } 1318 1319 /// Check if we want (and can) handle this alloca. 1320 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1321 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1322 1323 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1324 return PreviouslySeenAllocaInfo->getSecond(); 1325 1326 bool IsInteresting = 1327 (AI.getAllocatedType()->isSized() && 1328 // alloca() may be called with 0 size, ignore it. 1329 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1330 // We are only interested in allocas not promotable to registers. 1331 // Promotable allocas are common under -O0. 1332 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1333 // inalloca allocas are not treated as static, and we don't want 1334 // dynamic alloca instrumentation for them as well. 1335 !AI.isUsedWithInAlloca() && 1336 // swifterror allocas are register promoted by ISel 1337 !AI.isSwiftError()); 1338 1339 ProcessedAllocas[&AI] = IsInteresting; 1340 return IsInteresting; 1341 } 1342 1343 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 1344 bool *IsWrite, 1345 uint64_t *TypeSize, 1346 unsigned *Alignment, 1347 Value **MaybeMask) { 1348 // Skip memory accesses inserted by another instrumentation. 1349 if (I->hasMetadata("nosanitize")) return nullptr; 1350 1351 // Do not instrument the load fetching the dynamic shadow address. 1352 if (LocalDynamicShadow == I) 1353 return nullptr; 1354 1355 Value *PtrOperand = nullptr; 1356 const DataLayout &DL = I->getModule()->getDataLayout(); 1357 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1358 if (!ClInstrumentReads) return nullptr; 1359 *IsWrite = false; 1360 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 1361 *Alignment = LI->getAlignment(); 1362 PtrOperand = LI->getPointerOperand(); 1363 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1364 if (!ClInstrumentWrites) return nullptr; 1365 *IsWrite = true; 1366 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 1367 *Alignment = SI->getAlignment(); 1368 PtrOperand = SI->getPointerOperand(); 1369 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1370 if (!ClInstrumentAtomics) return nullptr; 1371 *IsWrite = true; 1372 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 1373 *Alignment = 0; 1374 PtrOperand = RMW->getPointerOperand(); 1375 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1376 if (!ClInstrumentAtomics) return nullptr; 1377 *IsWrite = true; 1378 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 1379 *Alignment = 0; 1380 PtrOperand = XCHG->getPointerOperand(); 1381 } else if (auto CI = dyn_cast<CallInst>(I)) { 1382 auto *F = dyn_cast<Function>(CI->getCalledValue()); 1383 if (F && (F->getName().startswith("llvm.masked.load.") || 1384 F->getName().startswith("llvm.masked.store."))) { 1385 unsigned OpOffset = 0; 1386 if (F->getName().startswith("llvm.masked.store.")) { 1387 if (!ClInstrumentWrites) 1388 return nullptr; 1389 // Masked store has an initial operand for the value. 1390 OpOffset = 1; 1391 *IsWrite = true; 1392 } else { 1393 if (!ClInstrumentReads) 1394 return nullptr; 1395 *IsWrite = false; 1396 } 1397 1398 auto BasePtr = CI->getOperand(0 + OpOffset); 1399 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1400 *TypeSize = DL.getTypeStoreSizeInBits(Ty); 1401 if (auto AlignmentConstant = 1402 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1403 *Alignment = (unsigned)AlignmentConstant->getZExtValue(); 1404 else 1405 *Alignment = 1; // No alignment guarantees. We probably got Undef 1406 if (MaybeMask) 1407 *MaybeMask = CI->getOperand(2 + OpOffset); 1408 PtrOperand = BasePtr; 1409 } 1410 } 1411 1412 if (PtrOperand) { 1413 // Do not instrument acesses from different address spaces; we cannot deal 1414 // with them. 1415 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); 1416 if (PtrTy->getPointerAddressSpace() != 0) 1417 return nullptr; 1418 1419 // Ignore swifterror addresses. 1420 // swifterror memory addresses are mem2reg promoted by instruction 1421 // selection. As such they cannot have regular uses like an instrumentation 1422 // function and it makes no sense to track them as memory. 1423 if (PtrOperand->isSwiftError()) 1424 return nullptr; 1425 } 1426 1427 // Treat memory accesses to promotable allocas as non-interesting since they 1428 // will not cause memory violations. This greatly speeds up the instrumented 1429 // executable at -O0. 1430 if (ClSkipPromotableAllocas) 1431 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 1432 return isInterestingAlloca(*AI) ? AI : nullptr; 1433 1434 return PtrOperand; 1435 } 1436 1437 static bool isPointerOperand(Value *V) { 1438 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1439 } 1440 1441 // This is a rough heuristic; it may cause both false positives and 1442 // false negatives. The proper implementation requires cooperation with 1443 // the frontend. 1444 static bool isInterestingPointerComparison(Instruction *I) { 1445 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1446 if (!Cmp->isRelational()) 1447 return false; 1448 } else { 1449 return false; 1450 } 1451 return isPointerOperand(I->getOperand(0)) && 1452 isPointerOperand(I->getOperand(1)); 1453 } 1454 1455 // This is a rough heuristic; it may cause both false positives and 1456 // false negatives. The proper implementation requires cooperation with 1457 // the frontend. 1458 static bool isInterestingPointerSubtraction(Instruction *I) { 1459 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1460 if (BO->getOpcode() != Instruction::Sub) 1461 return false; 1462 } else { 1463 return false; 1464 } 1465 return isPointerOperand(I->getOperand(0)) && 1466 isPointerOperand(I->getOperand(1)); 1467 } 1468 1469 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1470 // If a global variable does not have dynamic initialization we don't 1471 // have to instrument it. However, if a global does not have initializer 1472 // at all, we assume it has dynamic initializer (in other TU). 1473 // 1474 // FIXME: Metadata should be attched directly to the global directly instead 1475 // of being added to llvm.asan.globals. 1476 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1477 } 1478 1479 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1480 Instruction *I) { 1481 IRBuilder<> IRB(I); 1482 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1483 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1484 for (Value *&i : Param) { 1485 if (i->getType()->isPointerTy()) 1486 i = IRB.CreatePointerCast(i, IntptrTy); 1487 } 1488 IRB.CreateCall(F, Param); 1489 } 1490 1491 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1492 Instruction *InsertBefore, Value *Addr, 1493 unsigned Alignment, unsigned Granularity, 1494 uint32_t TypeSize, bool IsWrite, 1495 Value *SizeArgument, bool UseCalls, 1496 uint32_t Exp) { 1497 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1498 // if the data is properly aligned. 1499 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1500 TypeSize == 128) && 1501 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1502 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1503 nullptr, UseCalls, Exp); 1504 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1505 IsWrite, nullptr, UseCalls, Exp); 1506 } 1507 1508 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1509 const DataLayout &DL, Type *IntptrTy, 1510 Value *Mask, Instruction *I, 1511 Value *Addr, unsigned Alignment, 1512 unsigned Granularity, uint32_t TypeSize, 1513 bool IsWrite, Value *SizeArgument, 1514 bool UseCalls, uint32_t Exp) { 1515 auto *VTy = cast<PointerType>(Addr->getType())->getElementType(); 1516 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1517 unsigned Num = VTy->getVectorNumElements(); 1518 auto Zero = ConstantInt::get(IntptrTy, 0); 1519 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1520 Value *InstrumentedAddress = nullptr; 1521 Instruction *InsertBefore = I; 1522 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1523 // dyn_cast as we might get UndefValue 1524 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1525 if (Masked->isZero()) 1526 // Mask is constant false, so no instrumentation needed. 1527 continue; 1528 // If we have a true or undef value, fall through to doInstrumentAddress 1529 // with InsertBefore == I 1530 } 1531 } else { 1532 IRBuilder<> IRB(I); 1533 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1534 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1535 InsertBefore = ThenTerm; 1536 } 1537 1538 IRBuilder<> IRB(InsertBefore); 1539 InstrumentedAddress = 1540 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1541 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1542 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1543 UseCalls, Exp); 1544 } 1545 } 1546 1547 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1548 Instruction *I, bool UseCalls, 1549 const DataLayout &DL) { 1550 bool IsWrite = false; 1551 unsigned Alignment = 0; 1552 uint64_t TypeSize = 0; 1553 Value *MaybeMask = nullptr; 1554 Value *Addr = 1555 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); 1556 assert(Addr); 1557 1558 // Optimization experiments. 1559 // The experiments can be used to evaluate potential optimizations that remove 1560 // instrumentation (assess false negatives). Instead of completely removing 1561 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1562 // experiments that want to remove instrumentation of this instruction). 1563 // If Exp is non-zero, this pass will emit special calls into runtime 1564 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1565 // make runtime terminate the program in a special way (with a different 1566 // exit status). Then you run the new compiler on a buggy corpus, collect 1567 // the special terminations (ideally, you don't see them at all -- no false 1568 // negatives) and make the decision on the optimization. 1569 uint32_t Exp = ClForceExperiment; 1570 1571 if (ClOpt && ClOptGlobals) { 1572 // If initialization order checking is disabled, a simple access to a 1573 // dynamically initialized global is always valid. 1574 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1575 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1576 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1577 NumOptimizedAccessesToGlobalVar++; 1578 return; 1579 } 1580 } 1581 1582 if (ClOpt && ClOptStack) { 1583 // A direct inbounds access to a stack variable is always valid. 1584 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1585 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1586 NumOptimizedAccessesToStackVar++; 1587 return; 1588 } 1589 } 1590 1591 if (IsWrite) 1592 NumInstrumentedWrites++; 1593 else 1594 NumInstrumentedReads++; 1595 1596 unsigned Granularity = 1 << Mapping.Scale; 1597 if (MaybeMask) { 1598 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr, 1599 Alignment, Granularity, TypeSize, IsWrite, 1600 nullptr, UseCalls, Exp); 1601 } else { 1602 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize, 1603 IsWrite, nullptr, UseCalls, Exp); 1604 } 1605 } 1606 1607 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1608 Value *Addr, bool IsWrite, 1609 size_t AccessSizeIndex, 1610 Value *SizeArgument, 1611 uint32_t Exp) { 1612 IRBuilder<> IRB(InsertBefore); 1613 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1614 CallInst *Call = nullptr; 1615 if (SizeArgument) { 1616 if (Exp == 0) 1617 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1618 {Addr, SizeArgument}); 1619 else 1620 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1621 {Addr, SizeArgument, ExpVal}); 1622 } else { 1623 if (Exp == 0) 1624 Call = 1625 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1626 else 1627 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1628 {Addr, ExpVal}); 1629 } 1630 1631 // We don't do Call->setDoesNotReturn() because the BB already has 1632 // UnreachableInst at the end. 1633 // This EmptyAsm is required to avoid callback merge. 1634 IRB.CreateCall(EmptyAsm, {}); 1635 return Call; 1636 } 1637 1638 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1639 Value *ShadowValue, 1640 uint32_t TypeSize) { 1641 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1642 // Addr & (Granularity - 1) 1643 Value *LastAccessedByte = 1644 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1645 // (Addr & (Granularity - 1)) + size - 1 1646 if (TypeSize / 8 > 1) 1647 LastAccessedByte = IRB.CreateAdd( 1648 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1649 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1650 LastAccessedByte = 1651 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1652 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1653 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1654 } 1655 1656 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1657 Instruction *InsertBefore, Value *Addr, 1658 uint32_t TypeSize, bool IsWrite, 1659 Value *SizeArgument, bool UseCalls, 1660 uint32_t Exp) { 1661 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1662 1663 IRBuilder<> IRB(InsertBefore); 1664 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1665 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1666 1667 if (UseCalls) { 1668 if (Exp == 0) 1669 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1670 AddrLong); 1671 else 1672 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1673 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1674 return; 1675 } 1676 1677 if (IsMyriad) { 1678 // Strip the cache bit and do range check. 1679 // AddrLong &= ~kMyriadCacheBitMask32 1680 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1681 // Tag = AddrLong >> kMyriadTagShift 1682 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1683 // Tag == kMyriadDDRTag 1684 Value *TagCheck = 1685 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1686 1687 Instruction *TagCheckTerm = 1688 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1689 MDBuilder(*C).createBranchWeights(1, 100000)); 1690 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1691 IRB.SetInsertPoint(TagCheckTerm); 1692 InsertBefore = TagCheckTerm; 1693 } 1694 1695 Type *ShadowTy = 1696 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1697 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1698 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1699 Value *CmpVal = Constant::getNullValue(ShadowTy); 1700 Value *ShadowValue = 1701 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1702 1703 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1704 size_t Granularity = 1ULL << Mapping.Scale; 1705 Instruction *CrashTerm = nullptr; 1706 1707 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1708 // We use branch weights for the slow path check, to indicate that the slow 1709 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1710 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1711 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1712 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1713 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1714 IRB.SetInsertPoint(CheckTerm); 1715 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1716 if (Recover) { 1717 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1718 } else { 1719 BasicBlock *CrashBlock = 1720 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1721 CrashTerm = new UnreachableInst(*C, CrashBlock); 1722 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1723 ReplaceInstWithInst(CheckTerm, NewTerm); 1724 } 1725 } else { 1726 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1727 } 1728 1729 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1730 AccessSizeIndex, SizeArgument, Exp); 1731 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1732 } 1733 1734 // Instrument unusual size or unusual alignment. 1735 // We can not do it with a single check, so we do 1-byte check for the first 1736 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1737 // to report the actual access size. 1738 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1739 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1740 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1741 IRBuilder<> IRB(InsertBefore); 1742 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1743 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1744 if (UseCalls) { 1745 if (Exp == 0) 1746 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1747 {AddrLong, Size}); 1748 else 1749 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1750 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1751 } else { 1752 Value *LastByte = IRB.CreateIntToPtr( 1753 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1754 Addr->getType()); 1755 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1756 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1757 } 1758 } 1759 1760 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1761 GlobalValue *ModuleName) { 1762 // Set up the arguments to our poison/unpoison functions. 1763 IRBuilder<> IRB(&GlobalInit.front(), 1764 GlobalInit.front().getFirstInsertionPt()); 1765 1766 // Add a call to poison all external globals before the given function starts. 1767 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1768 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1769 1770 // Add calls to unpoison all globals before each return instruction. 1771 for (auto &BB : GlobalInit.getBasicBlockList()) 1772 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1773 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1774 } 1775 1776 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1777 Module &M, GlobalValue *ModuleName) { 1778 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1779 if (!GV) 1780 return; 1781 1782 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1783 if (!CA) 1784 return; 1785 1786 for (Use &OP : CA->operands()) { 1787 if (isa<ConstantAggregateZero>(OP)) continue; 1788 ConstantStruct *CS = cast<ConstantStruct>(OP); 1789 1790 // Must have a function or null ptr. 1791 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1792 if (F->getName() == kAsanModuleCtorName) continue; 1793 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1794 // Don't instrument CTORs that will run before asan.module_ctor. 1795 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1796 continue; 1797 poisonOneInitializer(*F, ModuleName); 1798 } 1799 } 1800 } 1801 1802 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) { 1803 Type *Ty = G->getValueType(); 1804 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1805 1806 // FIXME: Metadata should be attched directly to the global directly instead 1807 // of being added to llvm.asan.globals. 1808 if (GlobalsMD.get(G).IsBlacklisted) return false; 1809 if (!Ty->isSized()) return false; 1810 if (!G->hasInitializer()) return false; 1811 // Only instrument globals of default address spaces 1812 if (G->getAddressSpace()) return false; 1813 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1814 // Two problems with thread-locals: 1815 // - The address of the main thread's copy can't be computed at link-time. 1816 // - Need to poison all copies, not just the main thread's one. 1817 if (G->isThreadLocal()) return false; 1818 // For now, just ignore this Global if the alignment is large. 1819 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1820 1821 // For non-COFF targets, only instrument globals known to be defined by this 1822 // TU. 1823 // FIXME: We can instrument comdat globals on ELF if we are using the 1824 // GC-friendly metadata scheme. 1825 if (!TargetTriple.isOSBinFormatCOFF()) { 1826 if (!G->hasExactDefinition() || G->hasComdat()) 1827 return false; 1828 } else { 1829 // On COFF, don't instrument non-ODR linkages. 1830 if (G->isInterposable()) 1831 return false; 1832 } 1833 1834 // If a comdat is present, it must have a selection kind that implies ODR 1835 // semantics: no duplicates, any, or exact match. 1836 if (Comdat *C = G->getComdat()) { 1837 switch (C->getSelectionKind()) { 1838 case Comdat::Any: 1839 case Comdat::ExactMatch: 1840 case Comdat::NoDuplicates: 1841 break; 1842 case Comdat::Largest: 1843 case Comdat::SameSize: 1844 return false; 1845 } 1846 } 1847 1848 if (G->hasSection()) { 1849 StringRef Section = G->getSection(); 1850 1851 // Globals from llvm.metadata aren't emitted, do not instrument them. 1852 if (Section == "llvm.metadata") return false; 1853 // Do not instrument globals from special LLVM sections. 1854 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1855 1856 // Do not instrument function pointers to initialization and termination 1857 // routines: dynamic linker will not properly handle redzones. 1858 if (Section.startswith(".preinit_array") || 1859 Section.startswith(".init_array") || 1860 Section.startswith(".fini_array")) { 1861 return false; 1862 } 1863 1864 // On COFF, if the section name contains '$', it is highly likely that the 1865 // user is using section sorting to create an array of globals similar to 1866 // the way initialization callbacks are registered in .init_array and 1867 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1868 // to such globals is counterproductive, because the intent is that they 1869 // will form an array, and out-of-bounds accesses are expected. 1870 // See https://github.com/google/sanitizers/issues/305 1871 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1872 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1873 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1874 << *G << "\n"); 1875 return false; 1876 } 1877 1878 if (TargetTriple.isOSBinFormatMachO()) { 1879 StringRef ParsedSegment, ParsedSection; 1880 unsigned TAA = 0, StubSize = 0; 1881 bool TAAParsed; 1882 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1883 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1884 assert(ErrorCode.empty() && "Invalid section specifier."); 1885 1886 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1887 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1888 // them. 1889 if (ParsedSegment == "__OBJC" || 1890 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1891 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1892 return false; 1893 } 1894 // See https://github.com/google/sanitizers/issues/32 1895 // Constant CFString instances are compiled in the following way: 1896 // -- the string buffer is emitted into 1897 // __TEXT,__cstring,cstring_literals 1898 // -- the constant NSConstantString structure referencing that buffer 1899 // is placed into __DATA,__cfstring 1900 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1901 // Moreover, it causes the linker to crash on OS X 10.7 1902 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1903 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1904 return false; 1905 } 1906 // The linker merges the contents of cstring_literals and removes the 1907 // trailing zeroes. 1908 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1909 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1910 return false; 1911 } 1912 } 1913 } 1914 1915 return true; 1916 } 1917 1918 // On Mach-O platforms, we emit global metadata in a separate section of the 1919 // binary in order to allow the linker to properly dead strip. This is only 1920 // supported on recent versions of ld64. 1921 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1922 if (!TargetTriple.isOSBinFormatMachO()) 1923 return false; 1924 1925 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1926 return true; 1927 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1928 return true; 1929 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1930 return true; 1931 1932 return false; 1933 } 1934 1935 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1936 switch (TargetTriple.getObjectFormat()) { 1937 case Triple::COFF: return ".ASAN$GL"; 1938 case Triple::ELF: return "asan_globals"; 1939 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1940 case Triple::Wasm: 1941 case Triple::XCOFF: 1942 report_fatal_error( 1943 "ModuleAddressSanitizer not implemented for object file format."); 1944 case Triple::UnknownObjectFormat: 1945 break; 1946 } 1947 llvm_unreachable("unsupported object format"); 1948 } 1949 1950 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1951 IRBuilder<> IRB(*C); 1952 1953 // Declare our poisoning and unpoisoning functions. 1954 AsanPoisonGlobals = 1955 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1956 AsanUnpoisonGlobals = 1957 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1958 1959 // Declare functions that register/unregister globals. 1960 AsanRegisterGlobals = M.getOrInsertFunction( 1961 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1962 AsanUnregisterGlobals = M.getOrInsertFunction( 1963 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1964 1965 // Declare the functions that find globals in a shared object and then invoke 1966 // the (un)register function on them. 1967 AsanRegisterImageGlobals = M.getOrInsertFunction( 1968 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1969 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1970 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1971 1972 AsanRegisterElfGlobals = 1973 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1974 IntptrTy, IntptrTy, IntptrTy); 1975 AsanUnregisterElfGlobals = 1976 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1977 IntptrTy, IntptrTy, IntptrTy); 1978 } 1979 1980 // Put the metadata and the instrumented global in the same group. This ensures 1981 // that the metadata is discarded if the instrumented global is discarded. 1982 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 1983 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1984 Module &M = *G->getParent(); 1985 Comdat *C = G->getComdat(); 1986 if (!C) { 1987 if (!G->hasName()) { 1988 // If G is unnamed, it must be internal. Give it an artificial name 1989 // so we can put it in a comdat. 1990 assert(G->hasLocalLinkage()); 1991 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1992 } 1993 1994 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 1995 std::string Name = G->getName(); 1996 Name += InternalSuffix; 1997 C = M.getOrInsertComdat(Name); 1998 } else { 1999 C = M.getOrInsertComdat(G->getName()); 2000 } 2001 2002 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2003 // linkage to internal linkage so that a symbol table entry is emitted. This 2004 // is necessary in order to create the comdat group. 2005 if (TargetTriple.isOSBinFormatCOFF()) { 2006 C->setSelectionKind(Comdat::NoDuplicates); 2007 if (G->hasPrivateLinkage()) 2008 G->setLinkage(GlobalValue::InternalLinkage); 2009 } 2010 G->setComdat(C); 2011 } 2012 2013 assert(G->hasComdat()); 2014 Metadata->setComdat(G->getComdat()); 2015 } 2016 2017 // Create a separate metadata global and put it in the appropriate ASan 2018 // global registration section. 2019 GlobalVariable * 2020 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2021 StringRef OriginalName) { 2022 auto Linkage = TargetTriple.isOSBinFormatMachO() 2023 ? GlobalVariable::InternalLinkage 2024 : GlobalVariable::PrivateLinkage; 2025 GlobalVariable *Metadata = new GlobalVariable( 2026 M, Initializer->getType(), false, Linkage, Initializer, 2027 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2028 Metadata->setSection(getGlobalMetadataSection()); 2029 return Metadata; 2030 } 2031 2032 IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2033 AsanDtorFunction = 2034 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 2035 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 2036 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2037 2038 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB)); 2039 } 2040 2041 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2042 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2043 ArrayRef<Constant *> MetadataInitializers) { 2044 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2045 auto &DL = M.getDataLayout(); 2046 2047 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2048 Constant *Initializer = MetadataInitializers[i]; 2049 GlobalVariable *G = ExtendedGlobals[i]; 2050 GlobalVariable *Metadata = 2051 CreateMetadataGlobal(M, Initializer, G->getName()); 2052 2053 // The MSVC linker always inserts padding when linking incrementally. We 2054 // cope with that by aligning each struct to its size, which must be a power 2055 // of two. 2056 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2057 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2058 "global metadata will not be padded appropriately"); 2059 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2060 2061 SetComdatForGlobalMetadata(G, Metadata, ""); 2062 } 2063 } 2064 2065 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2066 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2067 ArrayRef<Constant *> MetadataInitializers, 2068 const std::string &UniqueModuleId) { 2069 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2070 2071 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2072 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2073 GlobalVariable *G = ExtendedGlobals[i]; 2074 GlobalVariable *Metadata = 2075 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2076 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2077 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2078 MetadataGlobals[i] = Metadata; 2079 2080 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2081 } 2082 2083 // Update llvm.compiler.used, adding the new metadata globals. This is 2084 // needed so that during LTO these variables stay alive. 2085 if (!MetadataGlobals.empty()) 2086 appendToCompilerUsed(M, MetadataGlobals); 2087 2088 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2089 // to look up the loaded image that contains it. Second, we can store in it 2090 // whether registration has already occurred, to prevent duplicate 2091 // registration. 2092 // 2093 // Common linkage ensures that there is only one global per shared library. 2094 GlobalVariable *RegisteredFlag = new GlobalVariable( 2095 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2096 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2097 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2098 2099 // Create start and stop symbols. 2100 GlobalVariable *StartELFMetadata = new GlobalVariable( 2101 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2102 "__start_" + getGlobalMetadataSection()); 2103 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2104 GlobalVariable *StopELFMetadata = new GlobalVariable( 2105 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2106 "__stop_" + getGlobalMetadataSection()); 2107 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2108 2109 // Create a call to register the globals with the runtime. 2110 IRB.CreateCall(AsanRegisterElfGlobals, 2111 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2112 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2113 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2114 2115 // We also need to unregister globals at the end, e.g., when a shared library 2116 // gets closed. 2117 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2118 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2119 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2120 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2121 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2122 } 2123 2124 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2125 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2126 ArrayRef<Constant *> MetadataInitializers) { 2127 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2128 2129 // On recent Mach-O platforms, use a structure which binds the liveness of 2130 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2131 // created to be added to llvm.compiler.used 2132 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2133 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2134 2135 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2136 Constant *Initializer = MetadataInitializers[i]; 2137 GlobalVariable *G = ExtendedGlobals[i]; 2138 GlobalVariable *Metadata = 2139 CreateMetadataGlobal(M, Initializer, G->getName()); 2140 2141 // On recent Mach-O platforms, we emit the global metadata in a way that 2142 // allows the linker to properly strip dead globals. 2143 auto LivenessBinder = 2144 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2145 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2146 GlobalVariable *Liveness = new GlobalVariable( 2147 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2148 Twine("__asan_binder_") + G->getName()); 2149 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2150 LivenessGlobals[i] = Liveness; 2151 } 2152 2153 // Update llvm.compiler.used, adding the new liveness globals. This is 2154 // needed so that during LTO these variables stay alive. The alternative 2155 // would be to have the linker handling the LTO symbols, but libLTO 2156 // current API does not expose access to the section for each symbol. 2157 if (!LivenessGlobals.empty()) 2158 appendToCompilerUsed(M, LivenessGlobals); 2159 2160 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2161 // to look up the loaded image that contains it. Second, we can store in it 2162 // whether registration has already occurred, to prevent duplicate 2163 // registration. 2164 // 2165 // common linkage ensures that there is only one global per shared library. 2166 GlobalVariable *RegisteredFlag = new GlobalVariable( 2167 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2168 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2169 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2170 2171 IRB.CreateCall(AsanRegisterImageGlobals, 2172 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2173 2174 // We also need to unregister globals at the end, e.g., when a shared library 2175 // gets closed. 2176 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2177 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2178 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2179 } 2180 2181 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2182 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2183 ArrayRef<Constant *> MetadataInitializers) { 2184 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2185 unsigned N = ExtendedGlobals.size(); 2186 assert(N > 0); 2187 2188 // On platforms that don't have a custom metadata section, we emit an array 2189 // of global metadata structures. 2190 ArrayType *ArrayOfGlobalStructTy = 2191 ArrayType::get(MetadataInitializers[0]->getType(), N); 2192 auto AllGlobals = new GlobalVariable( 2193 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2194 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2195 if (Mapping.Scale > 3) 2196 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2197 2198 IRB.CreateCall(AsanRegisterGlobals, 2199 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2200 ConstantInt::get(IntptrTy, N)}); 2201 2202 // We also need to unregister globals at the end, e.g., when a shared library 2203 // gets closed. 2204 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2205 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2206 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2207 ConstantInt::get(IntptrTy, N)}); 2208 } 2209 2210 // This function replaces all global variables with new variables that have 2211 // trailing redzones. It also creates a function that poisons 2212 // redzones and inserts this function into llvm.global_ctors. 2213 // Sets *CtorComdat to true if the global registration code emitted into the 2214 // asan constructor is comdat-compatible. 2215 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2216 bool *CtorComdat) { 2217 *CtorComdat = false; 2218 2219 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2220 2221 for (auto &G : M.globals()) { 2222 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 2223 } 2224 2225 size_t n = GlobalsToChange.size(); 2226 if (n == 0) { 2227 *CtorComdat = true; 2228 return false; 2229 } 2230 2231 auto &DL = M.getDataLayout(); 2232 2233 // A global is described by a structure 2234 // size_t beg; 2235 // size_t size; 2236 // size_t size_with_redzone; 2237 // const char *name; 2238 // const char *module_name; 2239 // size_t has_dynamic_init; 2240 // void *source_location; 2241 // size_t odr_indicator; 2242 // We initialize an array of such structures and pass it to a run-time call. 2243 StructType *GlobalStructTy = 2244 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2245 IntptrTy, IntptrTy, IntptrTy); 2246 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2247 SmallVector<Constant *, 16> Initializers(n); 2248 2249 bool HasDynamicallyInitializedGlobals = false; 2250 2251 // We shouldn't merge same module names, as this string serves as unique 2252 // module ID in runtime. 2253 GlobalVariable *ModuleName = createPrivateGlobalForString( 2254 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2255 2256 for (size_t i = 0; i < n; i++) { 2257 static const uint64_t kMaxGlobalRedzone = 1 << 18; 2258 GlobalVariable *G = GlobalsToChange[i]; 2259 2260 // FIXME: Metadata should be attched directly to the global directly instead 2261 // of being added to llvm.asan.globals. 2262 auto MD = GlobalsMD.get(G); 2263 StringRef NameForGlobal = G->getName(); 2264 // Create string holding the global name (use global name from metadata 2265 // if it's available, otherwise just write the name of global variable). 2266 GlobalVariable *Name = createPrivateGlobalForString( 2267 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2268 /*AllowMerging*/ true, kAsanGenPrefix); 2269 2270 Type *Ty = G->getValueType(); 2271 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2272 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 2273 // MinRZ <= RZ <= kMaxGlobalRedzone 2274 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 2275 uint64_t RZ = std::max( 2276 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 2277 uint64_t RightRedzoneSize = RZ; 2278 // Round up to MinRZ 2279 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 2280 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 2281 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2282 2283 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2284 Constant *NewInitializer = ConstantStruct::get( 2285 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2286 2287 // Create a new global variable with enough space for a redzone. 2288 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2289 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2290 Linkage = GlobalValue::InternalLinkage; 2291 GlobalVariable *NewGlobal = 2292 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2293 "", G, G->getThreadLocalMode()); 2294 NewGlobal->copyAttributesFrom(G); 2295 NewGlobal->setComdat(G->getComdat()); 2296 NewGlobal->setAlignment(MaybeAlign(MinRZ)); 2297 // Don't fold globals with redzones. ODR violation detector and redzone 2298 // poisoning implicitly creates a dependence on the global's address, so it 2299 // is no longer valid for it to be marked unnamed_addr. 2300 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2301 2302 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2303 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2304 G->isConstant()) { 2305 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2306 if (Seq && Seq->isCString()) 2307 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2308 } 2309 2310 // Transfer the debug info. The payload starts at offset zero so we can 2311 // copy the debug info over as is. 2312 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2313 G->getDebugInfo(GVs); 2314 for (auto *GV : GVs) 2315 NewGlobal->addDebugInfo(GV); 2316 2317 Value *Indices2[2]; 2318 Indices2[0] = IRB.getInt32(0); 2319 Indices2[1] = IRB.getInt32(0); 2320 2321 G->replaceAllUsesWith( 2322 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2323 NewGlobal->takeName(G); 2324 G->eraseFromParent(); 2325 NewGlobals[i] = NewGlobal; 2326 2327 Constant *SourceLoc; 2328 if (!MD.SourceLoc.empty()) { 2329 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2330 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2331 } else { 2332 SourceLoc = ConstantInt::get(IntptrTy, 0); 2333 } 2334 2335 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2336 GlobalValue *InstrumentedGlobal = NewGlobal; 2337 2338 bool CanUsePrivateAliases = 2339 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2340 TargetTriple.isOSBinFormatWasm(); 2341 if (CanUsePrivateAliases && UsePrivateAlias) { 2342 // Create local alias for NewGlobal to avoid crash on ODR between 2343 // instrumented and non-instrumented libraries. 2344 InstrumentedGlobal = 2345 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2346 } 2347 2348 // ODR should not happen for local linkage. 2349 if (NewGlobal->hasLocalLinkage()) { 2350 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2351 IRB.getInt8PtrTy()); 2352 } else if (UseOdrIndicator) { 2353 // With local aliases, we need to provide another externally visible 2354 // symbol __odr_asan_XXX to detect ODR violation. 2355 auto *ODRIndicatorSym = 2356 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2357 Constant::getNullValue(IRB.getInt8Ty()), 2358 kODRGenPrefix + NameForGlobal, nullptr, 2359 NewGlobal->getThreadLocalMode()); 2360 2361 // Set meaningful attributes for indicator symbol. 2362 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2363 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2364 ODRIndicatorSym->setAlignment(Align::None()); 2365 ODRIndicator = ODRIndicatorSym; 2366 } 2367 2368 Constant *Initializer = ConstantStruct::get( 2369 GlobalStructTy, 2370 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2371 ConstantInt::get(IntptrTy, SizeInBytes), 2372 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2373 ConstantExpr::getPointerCast(Name, IntptrTy), 2374 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2375 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2376 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2377 2378 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2379 2380 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2381 2382 Initializers[i] = Initializer; 2383 } 2384 2385 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2386 // ConstantMerge'ing them. 2387 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2388 for (size_t i = 0; i < n; i++) { 2389 GlobalVariable *G = NewGlobals[i]; 2390 if (G->getName().empty()) continue; 2391 GlobalsToAddToUsedList.push_back(G); 2392 } 2393 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2394 2395 std::string ELFUniqueModuleId = 2396 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2397 : ""; 2398 2399 if (!ELFUniqueModuleId.empty()) { 2400 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2401 *CtorComdat = true; 2402 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2403 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2404 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2405 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2406 } else { 2407 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2408 } 2409 2410 // Create calls for poisoning before initializers run and unpoisoning after. 2411 if (HasDynamicallyInitializedGlobals) 2412 createInitializerPoisonCalls(M, ModuleName); 2413 2414 LLVM_DEBUG(dbgs() << M); 2415 return true; 2416 } 2417 2418 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2419 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2420 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2421 int Version = 8; 2422 // 32-bit Android is one version ahead because of the switch to dynamic 2423 // shadow. 2424 Version += (LongSize == 32 && isAndroid); 2425 return Version; 2426 } 2427 2428 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2429 initializeCallbacks(M); 2430 2431 if (CompileKernel) 2432 return false; 2433 2434 // Create a module constructor. A destructor is created lazily because not all 2435 // platforms, and not all modules need it. 2436 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2437 std::string VersionCheckName = 2438 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2439 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 2440 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, 2441 /*InitArgs=*/{}, VersionCheckName); 2442 2443 bool CtorComdat = true; 2444 // TODO(glider): temporarily disabled globals instrumentation for KASan. 2445 if (ClGlobals) { 2446 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2447 InstrumentGlobals(IRB, M, &CtorComdat); 2448 } 2449 2450 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2451 2452 // Put the constructor and destructor in comdat if both 2453 // (1) global instrumentation is not TU-specific 2454 // (2) target is ELF. 2455 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2456 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2457 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2458 if (AsanDtorFunction) { 2459 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2460 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2461 } 2462 } else { 2463 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2464 if (AsanDtorFunction) 2465 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2466 } 2467 2468 return true; 2469 } 2470 2471 void AddressSanitizer::initializeCallbacks(Module &M) { 2472 IRBuilder<> IRB(*C); 2473 // Create __asan_report* callbacks. 2474 // IsWrite, TypeSize and Exp are encoded in the function name. 2475 for (int Exp = 0; Exp < 2; Exp++) { 2476 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2477 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2478 const std::string ExpStr = Exp ? "exp_" : ""; 2479 const std::string EndingStr = Recover ? "_noabort" : ""; 2480 2481 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2482 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2483 if (Exp) { 2484 Type *ExpType = Type::getInt32Ty(*C); 2485 Args2.push_back(ExpType); 2486 Args1.push_back(ExpType); 2487 } 2488 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2489 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2490 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2491 2492 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2493 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2494 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2495 2496 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2497 AccessSizeIndex++) { 2498 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2499 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2500 M.getOrInsertFunction( 2501 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2502 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2503 2504 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2505 M.getOrInsertFunction( 2506 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2507 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2508 } 2509 } 2510 } 2511 2512 const std::string MemIntrinCallbackPrefix = 2513 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2514 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2515 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2516 IRB.getInt8PtrTy(), IntptrTy); 2517 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2518 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2519 IRB.getInt8PtrTy(), IntptrTy); 2520 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2521 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2522 IRB.getInt32Ty(), IntptrTy); 2523 2524 AsanHandleNoReturnFunc = 2525 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2526 2527 AsanPtrCmpFunction = 2528 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2529 AsanPtrSubFunction = 2530 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2531 // We insert an empty inline asm after __asan_report* to avoid callback merge. 2532 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 2533 StringRef(""), StringRef(""), 2534 /*hasSideEffects=*/true); 2535 if (Mapping.InGlobal) 2536 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2537 ArrayType::get(IRB.getInt8Ty(), 0)); 2538 } 2539 2540 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2541 // For each NSObject descendant having a +load method, this method is invoked 2542 // by the ObjC runtime before any of the static constructors is called. 2543 // Therefore we need to instrument such methods with a call to __asan_init 2544 // at the beginning in order to initialize our runtime before any access to 2545 // the shadow memory. 2546 // We cannot just ignore these methods, because they may call other 2547 // instrumented functions. 2548 if (F.getName().find(" load]") != std::string::npos) { 2549 FunctionCallee AsanInitFunction = 2550 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2551 IRBuilder<> IRB(&F.front(), F.front().begin()); 2552 IRB.CreateCall(AsanInitFunction, {}); 2553 return true; 2554 } 2555 return false; 2556 } 2557 2558 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2559 // Generate code only when dynamic addressing is needed. 2560 if (Mapping.Offset != kDynamicShadowSentinel) 2561 return; 2562 2563 IRBuilder<> IRB(&F.front().front()); 2564 if (Mapping.InGlobal) { 2565 if (ClWithIfuncSuppressRemat) { 2566 // An empty inline asm with input reg == output reg. 2567 // An opaque pointer-to-int cast, basically. 2568 InlineAsm *Asm = InlineAsm::get( 2569 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2570 StringRef(""), StringRef("=r,0"), 2571 /*hasSideEffects=*/false); 2572 LocalDynamicShadow = 2573 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2574 } else { 2575 LocalDynamicShadow = 2576 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2577 } 2578 } else { 2579 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2580 kAsanShadowMemoryDynamicAddress, IntptrTy); 2581 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2582 } 2583 } 2584 2585 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2586 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2587 // to it as uninteresting. This assumes we haven't started processing allocas 2588 // yet. This check is done up front because iterating the use list in 2589 // isInterestingAlloca would be algorithmically slower. 2590 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2591 2592 // Try to get the declaration of llvm.localescape. If it's not in the module, 2593 // we can exit early. 2594 if (!F.getParent()->getFunction("llvm.localescape")) return; 2595 2596 // Look for a call to llvm.localescape call in the entry block. It can't be in 2597 // any other block. 2598 for (Instruction &I : F.getEntryBlock()) { 2599 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2600 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2601 // We found a call. Mark all the allocas passed in as uninteresting. 2602 for (Value *Arg : II->arg_operands()) { 2603 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2604 assert(AI && AI->isStaticAlloca() && 2605 "non-static alloca arg to localescape"); 2606 ProcessedAllocas[AI] = false; 2607 } 2608 break; 2609 } 2610 } 2611 } 2612 2613 bool AddressSanitizer::instrumentFunction(Function &F, 2614 const TargetLibraryInfo *TLI) { 2615 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2616 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2617 if (F.getName().startswith("__asan_")) return false; 2618 2619 bool FunctionModified = false; 2620 2621 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2622 // This function needs to be called even if the function body is not 2623 // instrumented. 2624 if (maybeInsertAsanInitAtFunctionEntry(F)) 2625 FunctionModified = true; 2626 2627 // Leave if the function doesn't need instrumentation. 2628 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2629 2630 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2631 2632 initializeCallbacks(*F.getParent()); 2633 2634 FunctionStateRAII CleanupObj(this); 2635 2636 maybeInsertDynamicShadowAtFunctionEntry(F); 2637 2638 // We can't instrument allocas used with llvm.localescape. Only static allocas 2639 // can be passed to that intrinsic. 2640 markEscapedLocalAllocas(F); 2641 2642 // We want to instrument every address only once per basic block (unless there 2643 // are calls between uses). 2644 SmallPtrSet<Value *, 16> TempsToInstrument; 2645 SmallVector<Instruction *, 16> ToInstrument; 2646 SmallVector<Instruction *, 8> NoReturnCalls; 2647 SmallVector<BasicBlock *, 16> AllBlocks; 2648 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2649 int NumAllocas = 0; 2650 bool IsWrite; 2651 unsigned Alignment; 2652 uint64_t TypeSize; 2653 2654 // Fill the set of memory operations to instrument. 2655 for (auto &BB : F) { 2656 AllBlocks.push_back(&BB); 2657 TempsToInstrument.clear(); 2658 int NumInsnsPerBB = 0; 2659 for (auto &Inst : BB) { 2660 if (LooksLikeCodeInBug11395(&Inst)) return false; 2661 Value *MaybeMask = nullptr; 2662 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 2663 &Alignment, &MaybeMask)) { 2664 if (ClOpt && ClOptSameTemp) { 2665 // If we have a mask, skip instrumentation if we've already 2666 // instrumented the full object. But don't add to TempsToInstrument 2667 // because we might get another load/store with a different mask. 2668 if (MaybeMask) { 2669 if (TempsToInstrument.count(Addr)) 2670 continue; // We've seen this (whole) temp in the current BB. 2671 } else { 2672 if (!TempsToInstrument.insert(Addr).second) 2673 continue; // We've seen this temp in the current BB. 2674 } 2675 } 2676 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2677 isInterestingPointerComparison(&Inst)) || 2678 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2679 isInterestingPointerSubtraction(&Inst))) { 2680 PointerComparisonsOrSubtracts.push_back(&Inst); 2681 continue; 2682 } else if (isa<MemIntrinsic>(Inst)) { 2683 // ok, take it. 2684 } else { 2685 if (isa<AllocaInst>(Inst)) NumAllocas++; 2686 CallSite CS(&Inst); 2687 if (CS) { 2688 // A call inside BB. 2689 TempsToInstrument.clear(); 2690 if (CS.doesNotReturn() && !CS->hasMetadata("nosanitize")) 2691 NoReturnCalls.push_back(CS.getInstruction()); 2692 } 2693 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2694 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2695 continue; 2696 } 2697 ToInstrument.push_back(&Inst); 2698 NumInsnsPerBB++; 2699 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2700 } 2701 } 2702 2703 bool UseCalls = 2704 (ClInstrumentationWithCallsThreshold >= 0 && 2705 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 2706 const DataLayout &DL = F.getParent()->getDataLayout(); 2707 ObjectSizeOpts ObjSizeOpts; 2708 ObjSizeOpts.RoundToAlign = true; 2709 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2710 2711 // Instrument. 2712 int NumInstrumented = 0; 2713 for (auto Inst : ToInstrument) { 2714 if (ClDebugMin < 0 || ClDebugMax < 0 || 2715 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 2716 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 2717 instrumentMop(ObjSizeVis, Inst, UseCalls, 2718 F.getParent()->getDataLayout()); 2719 else 2720 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 2721 } 2722 NumInstrumented++; 2723 } 2724 2725 FunctionStackPoisoner FSP(F, *this); 2726 bool ChangedStack = FSP.runOnFunction(); 2727 2728 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2729 // See e.g. https://github.com/google/sanitizers/issues/37 2730 for (auto CI : NoReturnCalls) { 2731 IRBuilder<> IRB(CI); 2732 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2733 } 2734 2735 for (auto Inst : PointerComparisonsOrSubtracts) { 2736 instrumentPointerComparisonOrSubtraction(Inst); 2737 NumInstrumented++; 2738 } 2739 2740 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) 2741 FunctionModified = true; 2742 2743 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2744 << F << "\n"); 2745 2746 return FunctionModified; 2747 } 2748 2749 // Workaround for bug 11395: we don't want to instrument stack in functions 2750 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2751 // FIXME: remove once the bug 11395 is fixed. 2752 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2753 if (LongSize != 32) return false; 2754 CallInst *CI = dyn_cast<CallInst>(I); 2755 if (!CI || !CI->isInlineAsm()) return false; 2756 if (CI->getNumArgOperands() <= 5) return false; 2757 // We have inline assembly with quite a few arguments. 2758 return true; 2759 } 2760 2761 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2762 IRBuilder<> IRB(*C); 2763 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2764 std::string Suffix = itostr(i); 2765 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2766 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2767 AsanStackFreeFunc[i] = 2768 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2769 IRB.getVoidTy(), IntptrTy, IntptrTy); 2770 } 2771 if (ASan.UseAfterScope) { 2772 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2773 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2774 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2775 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2776 } 2777 2778 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2779 std::ostringstream Name; 2780 Name << kAsanSetShadowPrefix; 2781 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2782 AsanSetShadowFunc[Val] = 2783 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2784 } 2785 2786 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2787 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2788 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2789 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2790 } 2791 2792 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2793 ArrayRef<uint8_t> ShadowBytes, 2794 size_t Begin, size_t End, 2795 IRBuilder<> &IRB, 2796 Value *ShadowBase) { 2797 if (Begin >= End) 2798 return; 2799 2800 const size_t LargestStoreSizeInBytes = 2801 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2802 2803 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2804 2805 // Poison given range in shadow using larges store size with out leading and 2806 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2807 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2808 // middle of a store. 2809 for (size_t i = Begin; i < End;) { 2810 if (!ShadowMask[i]) { 2811 assert(!ShadowBytes[i]); 2812 ++i; 2813 continue; 2814 } 2815 2816 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2817 // Fit store size into the range. 2818 while (StoreSizeInBytes > End - i) 2819 StoreSizeInBytes /= 2; 2820 2821 // Minimize store size by trimming trailing zeros. 2822 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2823 while (j <= StoreSizeInBytes / 2) 2824 StoreSizeInBytes /= 2; 2825 } 2826 2827 uint64_t Val = 0; 2828 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2829 if (IsLittleEndian) 2830 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2831 else 2832 Val = (Val << 8) | ShadowBytes[i + j]; 2833 } 2834 2835 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2836 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2837 IRB.CreateAlignedStore( 2838 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); 2839 2840 i += StoreSizeInBytes; 2841 } 2842 } 2843 2844 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2845 ArrayRef<uint8_t> ShadowBytes, 2846 IRBuilder<> &IRB, Value *ShadowBase) { 2847 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2848 } 2849 2850 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2851 ArrayRef<uint8_t> ShadowBytes, 2852 size_t Begin, size_t End, 2853 IRBuilder<> &IRB, Value *ShadowBase) { 2854 assert(ShadowMask.size() == ShadowBytes.size()); 2855 size_t Done = Begin; 2856 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2857 if (!ShadowMask[i]) { 2858 assert(!ShadowBytes[i]); 2859 continue; 2860 } 2861 uint8_t Val = ShadowBytes[i]; 2862 if (!AsanSetShadowFunc[Val]) 2863 continue; 2864 2865 // Skip same values. 2866 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2867 } 2868 2869 if (j - i >= ClMaxInlinePoisoningSize) { 2870 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2871 IRB.CreateCall(AsanSetShadowFunc[Val], 2872 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2873 ConstantInt::get(IntptrTy, j - i)}); 2874 Done = j; 2875 } 2876 } 2877 2878 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2879 } 2880 2881 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2882 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2883 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2884 assert(LocalStackSize <= kMaxStackMallocSize); 2885 uint64_t MaxSize = kMinStackMallocSize; 2886 for (int i = 0;; i++, MaxSize *= 2) 2887 if (LocalStackSize <= MaxSize) return i; 2888 llvm_unreachable("impossible LocalStackSize"); 2889 } 2890 2891 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2892 Instruction *CopyInsertPoint = &F.front().front(); 2893 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2894 // Insert after the dynamic shadow location is determined 2895 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2896 assert(CopyInsertPoint); 2897 } 2898 IRBuilder<> IRB(CopyInsertPoint); 2899 const DataLayout &DL = F.getParent()->getDataLayout(); 2900 for (Argument &Arg : F.args()) { 2901 if (Arg.hasByValAttr()) { 2902 Type *Ty = Arg.getType()->getPointerElementType(); 2903 unsigned Alignment = Arg.getParamAlignment(); 2904 if (Alignment == 0) 2905 Alignment = DL.getABITypeAlignment(Ty); 2906 2907 AllocaInst *AI = IRB.CreateAlloca( 2908 Ty, nullptr, 2909 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2910 ".byval"); 2911 AI->setAlignment(Align(Alignment)); 2912 Arg.replaceAllUsesWith(AI); 2913 2914 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2915 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2916 } 2917 } 2918 } 2919 2920 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2921 Value *ValueIfTrue, 2922 Instruction *ThenTerm, 2923 Value *ValueIfFalse) { 2924 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2925 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2926 PHI->addIncoming(ValueIfFalse, CondBlock); 2927 BasicBlock *ThenBlock = ThenTerm->getParent(); 2928 PHI->addIncoming(ValueIfTrue, ThenBlock); 2929 return PHI; 2930 } 2931 2932 Value *FunctionStackPoisoner::createAllocaForLayout( 2933 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2934 AllocaInst *Alloca; 2935 if (Dynamic) { 2936 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2937 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2938 "MyAlloca"); 2939 } else { 2940 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2941 nullptr, "MyAlloca"); 2942 assert(Alloca->isStaticAlloca()); 2943 } 2944 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2945 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 2946 Alloca->setAlignment(MaybeAlign(FrameAlignment)); 2947 return IRB.CreatePointerCast(Alloca, IntptrTy); 2948 } 2949 2950 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2951 BasicBlock &FirstBB = *F.begin(); 2952 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2953 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2954 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2955 DynamicAllocaLayout->setAlignment(Align(32)); 2956 } 2957 2958 void FunctionStackPoisoner::processDynamicAllocas() { 2959 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2960 assert(DynamicAllocaPoisonCallVec.empty()); 2961 return; 2962 } 2963 2964 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2965 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2966 assert(APC.InsBefore); 2967 assert(APC.AI); 2968 assert(ASan.isInterestingAlloca(*APC.AI)); 2969 assert(!APC.AI->isStaticAlloca()); 2970 2971 IRBuilder<> IRB(APC.InsBefore); 2972 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2973 // Dynamic allocas will be unpoisoned unconditionally below in 2974 // unpoisonDynamicAllocas. 2975 // Flag that we need unpoison static allocas. 2976 } 2977 2978 // Handle dynamic allocas. 2979 createDynamicAllocasInitStorage(); 2980 for (auto &AI : DynamicAllocaVec) 2981 handleDynamicAllocaCall(AI); 2982 unpoisonDynamicAllocas(); 2983 } 2984 2985 void FunctionStackPoisoner::processStaticAllocas() { 2986 if (AllocaVec.empty()) { 2987 assert(StaticAllocaPoisonCallVec.empty()); 2988 return; 2989 } 2990 2991 int StackMallocIdx = -1; 2992 DebugLoc EntryDebugLocation; 2993 if (auto SP = F.getSubprogram()) 2994 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 2995 2996 Instruction *InsBefore = AllocaVec[0]; 2997 IRBuilder<> IRB(InsBefore); 2998 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2999 3000 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3001 // debug info is broken, because only entry-block allocas are treated as 3002 // regular stack slots. 3003 auto InsBeforeB = InsBefore->getParent(); 3004 assert(InsBeforeB == &F.getEntryBlock()); 3005 for (auto *AI : StaticAllocasToMoveUp) 3006 if (AI->getParent() == InsBeforeB) 3007 AI->moveBefore(InsBefore); 3008 3009 // If we have a call to llvm.localescape, keep it in the entry block. 3010 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3011 3012 SmallVector<ASanStackVariableDescription, 16> SVD; 3013 SVD.reserve(AllocaVec.size()); 3014 for (AllocaInst *AI : AllocaVec) { 3015 ASanStackVariableDescription D = {AI->getName().data(), 3016 ASan.getAllocaSizeInBytes(*AI), 3017 0, 3018 AI->getAlignment(), 3019 AI, 3020 0, 3021 0}; 3022 SVD.push_back(D); 3023 } 3024 3025 // Minimal header size (left redzone) is 4 pointers, 3026 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3027 size_t Granularity = 1ULL << Mapping.Scale; 3028 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3029 const ASanStackFrameLayout &L = 3030 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3031 3032 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3033 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3034 for (auto &Desc : SVD) 3035 AllocaToSVDMap[Desc.AI] = &Desc; 3036 3037 // Update SVD with information from lifetime intrinsics. 3038 for (const auto &APC : StaticAllocaPoisonCallVec) { 3039 assert(APC.InsBefore); 3040 assert(APC.AI); 3041 assert(ASan.isInterestingAlloca(*APC.AI)); 3042 assert(APC.AI->isStaticAlloca()); 3043 3044 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3045 Desc.LifetimeSize = Desc.Size; 3046 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3047 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3048 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3049 if (unsigned Line = LifetimeLoc->getLine()) 3050 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3051 } 3052 } 3053 } 3054 3055 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3056 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3057 uint64_t LocalStackSize = L.FrameSize; 3058 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3059 LocalStackSize <= kMaxStackMallocSize; 3060 bool DoDynamicAlloca = ClDynamicAllocaStack; 3061 // Don't do dynamic alloca or stack malloc if: 3062 // 1) There is inline asm: too often it makes assumptions on which registers 3063 // are available. 3064 // 2) There is a returns_twice call (typically setjmp), which is 3065 // optimization-hostile, and doesn't play well with introduced indirect 3066 // register-relative calculation of local variable addresses. 3067 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3068 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3069 3070 Value *StaticAlloca = 3071 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3072 3073 Value *FakeStack; 3074 Value *LocalStackBase; 3075 Value *LocalStackBaseAlloca; 3076 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3077 3078 if (DoStackMalloc) { 3079 LocalStackBaseAlloca = 3080 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3081 // void *FakeStack = __asan_option_detect_stack_use_after_return 3082 // ? __asan_stack_malloc_N(LocalStackSize) 3083 // : nullptr; 3084 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3085 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3086 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3087 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3088 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3089 Constant::getNullValue(IRB.getInt32Ty())); 3090 Instruction *Term = 3091 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3092 IRBuilder<> IRBIf(Term); 3093 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 3094 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3095 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3096 Value *FakeStackValue = 3097 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3098 ConstantInt::get(IntptrTy, LocalStackSize)); 3099 IRB.SetInsertPoint(InsBefore); 3100 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3101 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3102 ConstantInt::get(IntptrTy, 0)); 3103 3104 Value *NoFakeStack = 3105 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3106 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3107 IRBIf.SetInsertPoint(Term); 3108 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 3109 Value *AllocaValue = 3110 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3111 3112 IRB.SetInsertPoint(InsBefore); 3113 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3114 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3115 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3116 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3117 DIExprFlags |= DIExpression::DerefBefore; 3118 } else { 3119 // void *FakeStack = nullptr; 3120 // void *LocalStackBase = alloca(LocalStackSize); 3121 FakeStack = ConstantInt::get(IntptrTy, 0); 3122 LocalStackBase = 3123 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3124 LocalStackBaseAlloca = LocalStackBase; 3125 } 3126 3127 // Replace Alloca instructions with base+offset. 3128 for (const auto &Desc : SVD) { 3129 AllocaInst *AI = Desc.AI; 3130 replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, DIExprFlags, 3131 Desc.Offset); 3132 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3133 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3134 AI->getType()); 3135 AI->replaceAllUsesWith(NewAllocaPtr); 3136 } 3137 3138 // The left-most redzone has enough space for at least 4 pointers. 3139 // Write the Magic value to redzone[0]. 3140 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3141 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3142 BasePlus0); 3143 // Write the frame description constant to redzone[1]. 3144 Value *BasePlus1 = IRB.CreateIntToPtr( 3145 IRB.CreateAdd(LocalStackBase, 3146 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3147 IntptrPtrTy); 3148 GlobalVariable *StackDescriptionGlobal = 3149 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3150 /*AllowMerging*/ true, kAsanGenPrefix); 3151 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3152 IRB.CreateStore(Description, BasePlus1); 3153 // Write the PC to redzone[2]. 3154 Value *BasePlus2 = IRB.CreateIntToPtr( 3155 IRB.CreateAdd(LocalStackBase, 3156 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3157 IntptrPtrTy); 3158 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3159 3160 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3161 3162 // Poison the stack red zones at the entry. 3163 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3164 // As mask we must use most poisoned case: red zones and after scope. 3165 // As bytes we can use either the same or just red zones only. 3166 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3167 3168 if (!StaticAllocaPoisonCallVec.empty()) { 3169 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3170 3171 // Poison static allocas near lifetime intrinsics. 3172 for (const auto &APC : StaticAllocaPoisonCallVec) { 3173 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3174 assert(Desc.Offset % L.Granularity == 0); 3175 size_t Begin = Desc.Offset / L.Granularity; 3176 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3177 3178 IRBuilder<> IRB(APC.InsBefore); 3179 copyToShadow(ShadowAfterScope, 3180 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3181 IRB, ShadowBase); 3182 } 3183 } 3184 3185 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3186 SmallVector<uint8_t, 64> ShadowAfterReturn; 3187 3188 // (Un)poison the stack before all ret instructions. 3189 for (auto Ret : RetVec) { 3190 IRBuilder<> IRBRet(Ret); 3191 // Mark the current frame as retired. 3192 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3193 BasePlus0); 3194 if (DoStackMalloc) { 3195 assert(StackMallocIdx >= 0); 3196 // if FakeStack != 0 // LocalStackBase == FakeStack 3197 // // In use-after-return mode, poison the whole stack frame. 3198 // if StackMallocIdx <= 4 3199 // // For small sizes inline the whole thing: 3200 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3201 // **SavedFlagPtr(FakeStack) = 0 3202 // else 3203 // __asan_stack_free_N(FakeStack, LocalStackSize) 3204 // else 3205 // <This is not a fake stack; unpoison the redzones> 3206 Value *Cmp = 3207 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3208 Instruction *ThenTerm, *ElseTerm; 3209 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3210 3211 IRBuilder<> IRBPoison(ThenTerm); 3212 if (StackMallocIdx <= 4) { 3213 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3214 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3215 kAsanStackUseAfterReturnMagic); 3216 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3217 ShadowBase); 3218 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3219 FakeStack, 3220 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3221 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3222 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3223 IRBPoison.CreateStore( 3224 Constant::getNullValue(IRBPoison.getInt8Ty()), 3225 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3226 } else { 3227 // For larger frames call __asan_stack_free_*. 3228 IRBPoison.CreateCall( 3229 AsanStackFreeFunc[StackMallocIdx], 3230 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3231 } 3232 3233 IRBuilder<> IRBElse(ElseTerm); 3234 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3235 } else { 3236 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3237 } 3238 } 3239 3240 // We are done. Remove the old unused alloca instructions. 3241 for (auto AI : AllocaVec) AI->eraseFromParent(); 3242 } 3243 3244 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3245 IRBuilder<> &IRB, bool DoPoison) { 3246 // For now just insert the call to ASan runtime. 3247 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3248 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3249 IRB.CreateCall( 3250 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3251 {AddrArg, SizeArg}); 3252 } 3253 3254 // Handling llvm.lifetime intrinsics for a given %alloca: 3255 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3256 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3257 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3258 // could be poisoned by previous llvm.lifetime.end instruction, as the 3259 // variable may go in and out of scope several times, e.g. in loops). 3260 // (3) if we poisoned at least one %alloca in a function, 3261 // unpoison the whole stack frame at function exit. 3262 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3263 IRBuilder<> IRB(AI); 3264 3265 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 3266 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3267 3268 Value *Zero = Constant::getNullValue(IntptrTy); 3269 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3270 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3271 3272 // Since we need to extend alloca with additional memory to locate 3273 // redzones, and OldSize is number of allocated blocks with 3274 // ElementSize size, get allocated memory size in bytes by 3275 // OldSize * ElementSize. 3276 const unsigned ElementSize = 3277 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3278 Value *OldSize = 3279 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3280 ConstantInt::get(IntptrTy, ElementSize)); 3281 3282 // PartialSize = OldSize % 32 3283 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3284 3285 // Misalign = kAllocaRzSize - PartialSize; 3286 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3287 3288 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3289 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3290 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3291 3292 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 3293 // Align is added to locate left redzone, PartialPadding for possible 3294 // partial redzone and kAllocaRzSize for right redzone respectively. 3295 Value *AdditionalChunkSize = IRB.CreateAdd( 3296 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 3297 3298 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3299 3300 // Insert new alloca with new NewSize and Align params. 3301 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3302 NewAlloca->setAlignment(MaybeAlign(Align)); 3303 3304 // NewAddress = Address + Align 3305 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3306 ConstantInt::get(IntptrTy, Align)); 3307 3308 // Insert __asan_alloca_poison call for new created alloca. 3309 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3310 3311 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3312 // for unpoisoning stuff. 3313 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3314 3315 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3316 3317 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3318 AI->replaceAllUsesWith(NewAddressPtr); 3319 3320 // We are done. Erase old alloca from parent. 3321 AI->eraseFromParent(); 3322 } 3323 3324 // isSafeAccess returns true if Addr is always inbounds with respect to its 3325 // base object. For example, it is a field access or an array access with 3326 // constant inbounds index. 3327 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3328 Value *Addr, uint64_t TypeSize) const { 3329 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3330 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3331 uint64_t Size = SizeOffset.first.getZExtValue(); 3332 int64_t Offset = SizeOffset.second.getSExtValue(); 3333 // Three checks are required to ensure safety: 3334 // . Offset >= 0 (since the offset is given from the base ptr) 3335 // . Size >= Offset (unsigned) 3336 // . Size - Offset >= NeededSize (unsigned) 3337 return Offset >= 0 && Size >= uint64_t(Offset) && 3338 Size - uint64_t(Offset) >= TypeSize / 8; 3339 } 3340