1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/OverflowInstAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 42 #include "llvm/Transforms/InstCombine/InstCombiner.h" 43 #include <cassert> 44 #include <utility> 45 46 using namespace llvm; 47 using namespace PatternMatch; 48 49 #define DEBUG_TYPE "instcombine" 50 51 /// FIXME: Enabled by default until the pattern is supported well. 52 static cl::opt<bool> EnableUnsafeSelectTransform( 53 "instcombine-unsafe-select-transform", cl::init(true), 54 cl::desc("Enable poison-unsafe select to and/or transform")); 55 56 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 57 SelectPatternFlavor SPF, Value *A, Value *B) { 58 CmpInst::Predicate Pred = getMinMaxPred(SPF); 59 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 60 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 61 } 62 63 /// Replace a select operand based on an equality comparison with the identity 64 /// constant of a binop. 65 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 66 const TargetLibraryInfo &TLI, 67 InstCombinerImpl &IC) { 68 // The select condition must be an equality compare with a constant operand. 69 Value *X; 70 Constant *C; 71 CmpInst::Predicate Pred; 72 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 73 return nullptr; 74 75 bool IsEq; 76 if (ICmpInst::isEquality(Pred)) 77 IsEq = Pred == ICmpInst::ICMP_EQ; 78 else if (Pred == FCmpInst::FCMP_OEQ) 79 IsEq = true; 80 else if (Pred == FCmpInst::FCMP_UNE) 81 IsEq = false; 82 else 83 return nullptr; 84 85 // A select operand must be a binop. 86 BinaryOperator *BO; 87 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 88 return nullptr; 89 90 // The compare constant must be the identity constant for that binop. 91 // If this a floating-point compare with 0.0, any zero constant will do. 92 Type *Ty = BO->getType(); 93 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 94 if (IdC != C) { 95 if (!IdC || !CmpInst::isFPPredicate(Pred)) 96 return nullptr; 97 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 98 return nullptr; 99 } 100 101 // Last, match the compare variable operand with a binop operand. 102 Value *Y; 103 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 104 return nullptr; 105 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 106 return nullptr; 107 108 // +0.0 compares equal to -0.0, and so it does not behave as required for this 109 // transform. Bail out if we can not exclude that possibility. 110 if (isa<FPMathOperator>(BO)) 111 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 112 return nullptr; 113 114 // BO = binop Y, X 115 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 116 // => 117 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 118 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 119 } 120 121 /// This folds: 122 /// select (icmp eq (and X, C1)), TC, FC 123 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 124 /// To something like: 125 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 126 /// Or: 127 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 128 /// With some variations depending if FC is larger than TC, or the shift 129 /// isn't needed, or the bit widths don't match. 130 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 131 InstCombiner::BuilderTy &Builder) { 132 const APInt *SelTC, *SelFC; 133 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 134 !match(Sel.getFalseValue(), m_APInt(SelFC))) 135 return nullptr; 136 137 // If this is a vector select, we need a vector compare. 138 Type *SelType = Sel.getType(); 139 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 140 return nullptr; 141 142 Value *V; 143 APInt AndMask; 144 bool CreateAnd = false; 145 ICmpInst::Predicate Pred = Cmp->getPredicate(); 146 if (ICmpInst::isEquality(Pred)) { 147 if (!match(Cmp->getOperand(1), m_Zero())) 148 return nullptr; 149 150 V = Cmp->getOperand(0); 151 const APInt *AndRHS; 152 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 153 return nullptr; 154 155 AndMask = *AndRHS; 156 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 157 Pred, V, AndMask)) { 158 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 159 if (!AndMask.isPowerOf2()) 160 return nullptr; 161 162 CreateAnd = true; 163 } else { 164 return nullptr; 165 } 166 167 // In general, when both constants are non-zero, we would need an offset to 168 // replace the select. This would require more instructions than we started 169 // with. But there's one special-case that we handle here because it can 170 // simplify/reduce the instructions. 171 APInt TC = *SelTC; 172 APInt FC = *SelFC; 173 if (!TC.isNullValue() && !FC.isNullValue()) { 174 // If the select constants differ by exactly one bit and that's the same 175 // bit that is masked and checked by the select condition, the select can 176 // be replaced by bitwise logic to set/clear one bit of the constant result. 177 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 178 return nullptr; 179 if (CreateAnd) { 180 // If we have to create an 'and', then we must kill the cmp to not 181 // increase the instruction count. 182 if (!Cmp->hasOneUse()) 183 return nullptr; 184 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 185 } 186 bool ExtraBitInTC = TC.ugt(FC); 187 if (Pred == ICmpInst::ICMP_EQ) { 188 // If the masked bit in V is clear, clear or set the bit in the result: 189 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 190 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 191 Constant *C = ConstantInt::get(SelType, TC); 192 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 193 } 194 if (Pred == ICmpInst::ICMP_NE) { 195 // If the masked bit in V is set, set or clear the bit in the result: 196 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 197 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 198 Constant *C = ConstantInt::get(SelType, FC); 199 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 200 } 201 llvm_unreachable("Only expecting equality predicates"); 202 } 203 204 // Make sure one of the select arms is a power-of-2. 205 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 206 return nullptr; 207 208 // Determine which shift is needed to transform result of the 'and' into the 209 // desired result. 210 const APInt &ValC = !TC.isNullValue() ? TC : FC; 211 unsigned ValZeros = ValC.logBase2(); 212 unsigned AndZeros = AndMask.logBase2(); 213 214 // Insert the 'and' instruction on the input to the truncate. 215 if (CreateAnd) 216 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 217 218 // If types don't match, we can still convert the select by introducing a zext 219 // or a trunc of the 'and'. 220 if (ValZeros > AndZeros) { 221 V = Builder.CreateZExtOrTrunc(V, SelType); 222 V = Builder.CreateShl(V, ValZeros - AndZeros); 223 } else if (ValZeros < AndZeros) { 224 V = Builder.CreateLShr(V, AndZeros - ValZeros); 225 V = Builder.CreateZExtOrTrunc(V, SelType); 226 } else { 227 V = Builder.CreateZExtOrTrunc(V, SelType); 228 } 229 230 // Okay, now we know that everything is set up, we just don't know whether we 231 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 232 bool ShouldNotVal = !TC.isNullValue(); 233 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 234 if (ShouldNotVal) 235 V = Builder.CreateXor(V, ValC); 236 237 return V; 238 } 239 240 /// We want to turn code that looks like this: 241 /// %C = or %A, %B 242 /// %D = select %cond, %C, %A 243 /// into: 244 /// %C = select %cond, %B, 0 245 /// %D = or %A, %C 246 /// 247 /// Assuming that the specified instruction is an operand to the select, return 248 /// a bitmask indicating which operands of this instruction are foldable if they 249 /// equal the other incoming value of the select. 250 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 251 switch (I->getOpcode()) { 252 case Instruction::Add: 253 case Instruction::Mul: 254 case Instruction::And: 255 case Instruction::Or: 256 case Instruction::Xor: 257 return 3; // Can fold through either operand. 258 case Instruction::Sub: // Can only fold on the amount subtracted. 259 case Instruction::Shl: // Can only fold on the shift amount. 260 case Instruction::LShr: 261 case Instruction::AShr: 262 return 1; 263 default: 264 return 0; // Cannot fold 265 } 266 } 267 268 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 269 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 270 Instruction *FI) { 271 // Don't break up min/max patterns. The hasOneUse checks below prevent that 272 // for most cases, but vector min/max with bitcasts can be transformed. If the 273 // one-use restrictions are eased for other patterns, we still don't want to 274 // obfuscate min/max. 275 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 276 match(&SI, m_SMax(m_Value(), m_Value())) || 277 match(&SI, m_UMin(m_Value(), m_Value())) || 278 match(&SI, m_UMax(m_Value(), m_Value())))) 279 return nullptr; 280 281 // If this is a cast from the same type, merge. 282 Value *Cond = SI.getCondition(); 283 Type *CondTy = Cond->getType(); 284 if (TI->getNumOperands() == 1 && TI->isCast()) { 285 Type *FIOpndTy = FI->getOperand(0)->getType(); 286 if (TI->getOperand(0)->getType() != FIOpndTy) 287 return nullptr; 288 289 // The select condition may be a vector. We may only change the operand 290 // type if the vector width remains the same (and matches the condition). 291 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 292 if (!FIOpndTy->isVectorTy() || 293 CondVTy->getElementCount() != 294 cast<VectorType>(FIOpndTy)->getElementCount()) 295 return nullptr; 296 297 // TODO: If the backend knew how to deal with casts better, we could 298 // remove this limitation. For now, there's too much potential to create 299 // worse codegen by promoting the select ahead of size-altering casts 300 // (PR28160). 301 // 302 // Note that ValueTracking's matchSelectPattern() looks through casts 303 // without checking 'hasOneUse' when it matches min/max patterns, so this 304 // transform may end up happening anyway. 305 if (TI->getOpcode() != Instruction::BitCast && 306 (!TI->hasOneUse() || !FI->hasOneUse())) 307 return nullptr; 308 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 309 // TODO: The one-use restrictions for a scalar select could be eased if 310 // the fold of a select in visitLoadInst() was enhanced to match a pattern 311 // that includes a cast. 312 return nullptr; 313 } 314 315 // Fold this by inserting a select from the input values. 316 Value *NewSI = 317 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 318 SI.getName() + ".v", &SI); 319 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 320 TI->getType()); 321 } 322 323 // Cond ? -X : -Y --> -(Cond ? X : Y) 324 Value *X, *Y; 325 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 326 (TI->hasOneUse() || FI->hasOneUse())) { 327 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 328 return UnaryOperator::CreateFNegFMF(NewSel, TI); 329 } 330 331 // Min/max intrinsic with a common operand can have the common operand pulled 332 // after the select. This is the same transform as below for binops, but 333 // specialized for intrinsic matching and without the restrictive uses clause. 334 auto *TII = dyn_cast<IntrinsicInst>(TI); 335 auto *FII = dyn_cast<IntrinsicInst>(FI); 336 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() && 337 (TII->hasOneUse() || FII->hasOneUse())) { 338 Value *T0, *T1, *F0, *F1; 339 if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) && 340 match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) { 341 if (T0 == F0) { 342 Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI); 343 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 344 } 345 if (T0 == F1) { 346 Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI); 347 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 348 } 349 if (T1 == F0) { 350 Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI); 351 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 352 } 353 if (T1 == F1) { 354 Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI); 355 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 356 } 357 } 358 } 359 360 // Only handle binary operators (including two-operand getelementptr) with 361 // one-use here. As with the cast case above, it may be possible to relax the 362 // one-use constraint, but that needs be examined carefully since it may not 363 // reduce the total number of instructions. 364 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 365 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 366 !TI->hasOneUse() || !FI->hasOneUse()) 367 return nullptr; 368 369 // Figure out if the operations have any operands in common. 370 Value *MatchOp, *OtherOpT, *OtherOpF; 371 bool MatchIsOpZero; 372 if (TI->getOperand(0) == FI->getOperand(0)) { 373 MatchOp = TI->getOperand(0); 374 OtherOpT = TI->getOperand(1); 375 OtherOpF = FI->getOperand(1); 376 MatchIsOpZero = true; 377 } else if (TI->getOperand(1) == FI->getOperand(1)) { 378 MatchOp = TI->getOperand(1); 379 OtherOpT = TI->getOperand(0); 380 OtherOpF = FI->getOperand(0); 381 MatchIsOpZero = false; 382 } else if (!TI->isCommutative()) { 383 return nullptr; 384 } else if (TI->getOperand(0) == FI->getOperand(1)) { 385 MatchOp = TI->getOperand(0); 386 OtherOpT = TI->getOperand(1); 387 OtherOpF = FI->getOperand(0); 388 MatchIsOpZero = true; 389 } else if (TI->getOperand(1) == FI->getOperand(0)) { 390 MatchOp = TI->getOperand(1); 391 OtherOpT = TI->getOperand(0); 392 OtherOpF = FI->getOperand(1); 393 MatchIsOpZero = true; 394 } else { 395 return nullptr; 396 } 397 398 // If the select condition is a vector, the operands of the original select's 399 // operands also must be vectors. This may not be the case for getelementptr 400 // for example. 401 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 402 !OtherOpF->getType()->isVectorTy())) 403 return nullptr; 404 405 // If we reach here, they do have operations in common. 406 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 407 SI.getName() + ".v", &SI); 408 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 409 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 410 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 411 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 412 NewBO->copyIRFlags(TI); 413 NewBO->andIRFlags(FI); 414 return NewBO; 415 } 416 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 417 auto *FGEP = cast<GetElementPtrInst>(FI); 418 Type *ElementType = TGEP->getResultElementType(); 419 return TGEP->isInBounds() && FGEP->isInBounds() 420 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 421 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 422 } 423 llvm_unreachable("Expected BinaryOperator or GEP"); 424 return nullptr; 425 } 426 427 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 428 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 429 return false; 430 return C1I.isOneValue() || C1I.isAllOnesValue() || 431 C2I.isOneValue() || C2I.isAllOnesValue(); 432 } 433 434 /// Try to fold the select into one of the operands to allow further 435 /// optimization. 436 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 437 Value *FalseVal) { 438 // See the comment above GetSelectFoldableOperands for a description of the 439 // transformation we are doing here. 440 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 441 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 442 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 443 unsigned OpToFold = 0; 444 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 445 OpToFold = 1; 446 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 447 OpToFold = 2; 448 } 449 450 if (OpToFold) { 451 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(), 452 TVI->getType(), true); 453 Value *OOp = TVI->getOperand(2-OpToFold); 454 // Avoid creating select between 2 constants unless it's selecting 455 // between 0, 1 and -1. 456 const APInt *OOpC; 457 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 458 if (!isa<Constant>(OOp) || 459 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 460 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 461 NewSel->takeName(TVI); 462 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 463 FalseVal, NewSel); 464 BO->copyIRFlags(TVI); 465 return BO; 466 } 467 } 468 } 469 } 470 } 471 472 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 473 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 474 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 475 unsigned OpToFold = 0; 476 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 477 OpToFold = 1; 478 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 479 OpToFold = 2; 480 } 481 482 if (OpToFold) { 483 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(), 484 FVI->getType(), true); 485 Value *OOp = FVI->getOperand(2-OpToFold); 486 // Avoid creating select between 2 constants unless it's selecting 487 // between 0, 1 and -1. 488 const APInt *OOpC; 489 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 490 if (!isa<Constant>(OOp) || 491 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 492 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 493 NewSel->takeName(FVI); 494 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 495 TrueVal, NewSel); 496 BO->copyIRFlags(FVI); 497 return BO; 498 } 499 } 500 } 501 } 502 } 503 504 return nullptr; 505 } 506 507 /// We want to turn: 508 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 509 /// into: 510 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 511 /// Note: 512 /// Z may be 0 if lshr is missing. 513 /// Worst-case scenario is that we will replace 5 instructions with 5 different 514 /// instructions, but we got rid of select. 515 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 516 Value *TVal, Value *FVal, 517 InstCombiner::BuilderTy &Builder) { 518 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 519 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 520 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 521 return nullptr; 522 523 // The TrueVal has general form of: and %B, 1 524 Value *B; 525 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 526 return nullptr; 527 528 // Where %B may be optionally shifted: lshr %X, %Z. 529 Value *X, *Z; 530 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 531 if (!HasShift) 532 X = B; 533 534 Value *Y; 535 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 536 return nullptr; 537 538 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 539 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 540 Constant *One = ConstantInt::get(SelType, 1); 541 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 542 Value *FullMask = Builder.CreateOr(Y, MaskB); 543 Value *MaskedX = Builder.CreateAnd(X, FullMask); 544 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 545 return new ZExtInst(ICmpNeZero, SelType); 546 } 547 548 /// We want to turn: 549 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 550 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 551 /// into: 552 /// ashr (X, Y) 553 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 554 Value *FalseVal, 555 InstCombiner::BuilderTy &Builder) { 556 ICmpInst::Predicate Pred = IC->getPredicate(); 557 Value *CmpLHS = IC->getOperand(0); 558 Value *CmpRHS = IC->getOperand(1); 559 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 560 return nullptr; 561 562 Value *X, *Y; 563 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 564 if ((Pred != ICmpInst::ICMP_SGT || 565 !match(CmpRHS, 566 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 567 (Pred != ICmpInst::ICMP_SLT || 568 !match(CmpRHS, 569 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 570 return nullptr; 571 572 // Canonicalize so that ashr is in FalseVal. 573 if (Pred == ICmpInst::ICMP_SLT) 574 std::swap(TrueVal, FalseVal); 575 576 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 577 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 578 match(CmpLHS, m_Specific(X))) { 579 const auto *Ashr = cast<Instruction>(FalseVal); 580 // if lshr is not exact and ashr is, this new ashr must not be exact. 581 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 582 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 583 } 584 585 return nullptr; 586 } 587 588 /// We want to turn: 589 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 590 /// into: 591 /// (or (shl (and X, C1), C3), Y) 592 /// iff: 593 /// C1 and C2 are both powers of 2 594 /// where: 595 /// C3 = Log(C2) - Log(C1) 596 /// 597 /// This transform handles cases where: 598 /// 1. The icmp predicate is inverted 599 /// 2. The select operands are reversed 600 /// 3. The magnitude of C2 and C1 are flipped 601 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 602 Value *FalseVal, 603 InstCombiner::BuilderTy &Builder) { 604 // Only handle integer compares. Also, if this is a vector select, we need a 605 // vector compare. 606 if (!TrueVal->getType()->isIntOrIntVectorTy() || 607 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 608 return nullptr; 609 610 Value *CmpLHS = IC->getOperand(0); 611 Value *CmpRHS = IC->getOperand(1); 612 613 Value *V; 614 unsigned C1Log; 615 bool IsEqualZero; 616 bool NeedAnd = false; 617 if (IC->isEquality()) { 618 if (!match(CmpRHS, m_Zero())) 619 return nullptr; 620 621 const APInt *C1; 622 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 623 return nullptr; 624 625 V = CmpLHS; 626 C1Log = C1->logBase2(); 627 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 628 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 629 IC->getPredicate() == ICmpInst::ICMP_SGT) { 630 // We also need to recognize (icmp slt (trunc (X)), 0) and 631 // (icmp sgt (trunc (X)), -1). 632 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 633 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 634 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 635 return nullptr; 636 637 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 638 return nullptr; 639 640 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 641 NeedAnd = true; 642 } else { 643 return nullptr; 644 } 645 646 const APInt *C2; 647 bool OrOnTrueVal = false; 648 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 649 if (!OrOnFalseVal) 650 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 651 652 if (!OrOnFalseVal && !OrOnTrueVal) 653 return nullptr; 654 655 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 656 657 unsigned C2Log = C2->logBase2(); 658 659 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 660 bool NeedShift = C1Log != C2Log; 661 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 662 V->getType()->getScalarSizeInBits(); 663 664 // Make sure we don't create more instructions than we save. 665 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 666 if ((NeedShift + NeedXor + NeedZExtTrunc) > 667 (IC->hasOneUse() + Or->hasOneUse())) 668 return nullptr; 669 670 if (NeedAnd) { 671 // Insert the AND instruction on the input to the truncate. 672 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 673 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 674 } 675 676 if (C2Log > C1Log) { 677 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 678 V = Builder.CreateShl(V, C2Log - C1Log); 679 } else if (C1Log > C2Log) { 680 V = Builder.CreateLShr(V, C1Log - C2Log); 681 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 682 } else 683 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 684 685 if (NeedXor) 686 V = Builder.CreateXor(V, *C2); 687 688 return Builder.CreateOr(V, Y); 689 } 690 691 /// Canonicalize a set or clear of a masked set of constant bits to 692 /// select-of-constants form. 693 static Instruction *foldSetClearBits(SelectInst &Sel, 694 InstCombiner::BuilderTy &Builder) { 695 Value *Cond = Sel.getCondition(); 696 Value *T = Sel.getTrueValue(); 697 Value *F = Sel.getFalseValue(); 698 Type *Ty = Sel.getType(); 699 Value *X; 700 const APInt *NotC, *C; 701 702 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 703 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 704 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 705 Constant *Zero = ConstantInt::getNullValue(Ty); 706 Constant *OrC = ConstantInt::get(Ty, *C); 707 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 708 return BinaryOperator::CreateOr(T, NewSel); 709 } 710 711 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 712 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 713 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 714 Constant *Zero = ConstantInt::getNullValue(Ty); 715 Constant *OrC = ConstantInt::get(Ty, *C); 716 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 717 return BinaryOperator::CreateOr(F, NewSel); 718 } 719 720 return nullptr; 721 } 722 723 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 724 /// There are 8 commuted/swapped variants of this pattern. 725 /// TODO: Also support a - UMIN(a,b) patterns. 726 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 727 const Value *TrueVal, 728 const Value *FalseVal, 729 InstCombiner::BuilderTy &Builder) { 730 ICmpInst::Predicate Pred = ICI->getPredicate(); 731 if (!ICmpInst::isUnsigned(Pred)) 732 return nullptr; 733 734 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 735 if (match(TrueVal, m_Zero())) { 736 Pred = ICmpInst::getInversePredicate(Pred); 737 std::swap(TrueVal, FalseVal); 738 } 739 if (!match(FalseVal, m_Zero())) 740 return nullptr; 741 742 Value *A = ICI->getOperand(0); 743 Value *B = ICI->getOperand(1); 744 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 745 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 746 std::swap(A, B); 747 Pred = ICmpInst::getSwappedPredicate(Pred); 748 } 749 750 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 751 "Unexpected isUnsigned predicate!"); 752 753 // Ensure the sub is of the form: 754 // (a > b) ? a - b : 0 -> usub.sat(a, b) 755 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 756 // Checking for both a-b and a+(-b) as a constant. 757 bool IsNegative = false; 758 const APInt *C; 759 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 760 (match(A, m_APInt(C)) && 761 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 762 IsNegative = true; 763 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 764 !(match(B, m_APInt(C)) && 765 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 766 return nullptr; 767 768 // If we are adding a negate and the sub and icmp are used anywhere else, we 769 // would end up with more instructions. 770 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 771 return nullptr; 772 773 // (a > b) ? a - b : 0 -> usub.sat(a, b) 774 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 775 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 776 if (IsNegative) 777 Result = Builder.CreateNeg(Result); 778 return Result; 779 } 780 781 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 782 InstCombiner::BuilderTy &Builder) { 783 if (!Cmp->hasOneUse()) 784 return nullptr; 785 786 // Match unsigned saturated add with constant. 787 Value *Cmp0 = Cmp->getOperand(0); 788 Value *Cmp1 = Cmp->getOperand(1); 789 ICmpInst::Predicate Pred = Cmp->getPredicate(); 790 Value *X; 791 const APInt *C, *CmpC; 792 if (Pred == ICmpInst::ICMP_ULT && 793 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 794 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 795 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 796 return Builder.CreateBinaryIntrinsic( 797 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 798 } 799 800 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 801 // There are 8 commuted variants. 802 // Canonicalize -1 (saturated result) to true value of the select. 803 if (match(FVal, m_AllOnes())) { 804 std::swap(TVal, FVal); 805 Pred = CmpInst::getInversePredicate(Pred); 806 } 807 if (!match(TVal, m_AllOnes())) 808 return nullptr; 809 810 // Canonicalize predicate to less-than or less-or-equal-than. 811 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 812 std::swap(Cmp0, Cmp1); 813 Pred = CmpInst::getSwappedPredicate(Pred); 814 } 815 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 816 return nullptr; 817 818 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 819 // Strictness of the comparison is irrelevant. 820 Value *Y; 821 if (match(Cmp0, m_Not(m_Value(X))) && 822 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 823 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 824 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 825 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 826 } 827 // The 'not' op may be included in the sum but not the compare. 828 // Strictness of the comparison is irrelevant. 829 X = Cmp0; 830 Y = Cmp1; 831 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 832 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 833 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 834 BinaryOperator *BO = cast<BinaryOperator>(FVal); 835 return Builder.CreateBinaryIntrinsic( 836 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 837 } 838 // The overflow may be detected via the add wrapping round. 839 // This is only valid for strict comparison! 840 if (Pred == ICmpInst::ICMP_ULT && 841 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 842 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 843 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 844 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 845 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 846 } 847 848 return nullptr; 849 } 850 851 /// Fold the following code sequence: 852 /// \code 853 /// int a = ctlz(x & -x); 854 // x ? 31 - a : a; 855 /// \code 856 /// 857 /// into: 858 /// cttz(x) 859 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 860 Value *FalseVal, 861 InstCombiner::BuilderTy &Builder) { 862 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 863 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 864 return nullptr; 865 866 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 867 std::swap(TrueVal, FalseVal); 868 869 if (!match(FalseVal, 870 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 871 return nullptr; 872 873 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 874 return nullptr; 875 876 Value *X = ICI->getOperand(0); 877 auto *II = cast<IntrinsicInst>(TrueVal); 878 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 879 return nullptr; 880 881 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 882 II->getType()); 883 return CallInst::Create(F, {X, II->getArgOperand(1)}); 884 } 885 886 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 887 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 888 /// 889 /// For example, we can fold the following code sequence: 890 /// \code 891 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 892 /// %1 = icmp ne i32 %x, 0 893 /// %2 = select i1 %1, i32 %0, i32 32 894 /// \code 895 /// 896 /// into: 897 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 898 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 899 InstCombiner::BuilderTy &Builder) { 900 ICmpInst::Predicate Pred = ICI->getPredicate(); 901 Value *CmpLHS = ICI->getOperand(0); 902 Value *CmpRHS = ICI->getOperand(1); 903 904 // Check if the condition value compares a value for equality against zero. 905 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 906 return nullptr; 907 908 Value *SelectArg = FalseVal; 909 Value *ValueOnZero = TrueVal; 910 if (Pred == ICmpInst::ICMP_NE) 911 std::swap(SelectArg, ValueOnZero); 912 913 // Skip zero extend/truncate. 914 Value *Count = nullptr; 915 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 916 !match(SelectArg, m_Trunc(m_Value(Count)))) 917 Count = SelectArg; 918 919 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 920 // input to the cttz/ctlz is used as LHS for the compare instruction. 921 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 922 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 923 return nullptr; 924 925 IntrinsicInst *II = cast<IntrinsicInst>(Count); 926 927 // Check if the value propagated on zero is a constant number equal to the 928 // sizeof in bits of 'Count'. 929 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 930 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 931 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from 932 // true to false on this flag, so we can replace it for all users. 933 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 934 return SelectArg; 935 } 936 937 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 938 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 939 // not be used if the input is zero. Relax to 'undef_on_zero' for that case. 940 if (II->hasOneUse() && SelectArg->hasOneUse() && 941 !match(II->getArgOperand(1), m_One())) 942 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 943 944 return nullptr; 945 } 946 947 /// Return true if we find and adjust an icmp+select pattern where the compare 948 /// is with a constant that can be incremented or decremented to match the 949 /// minimum or maximum idiom. 950 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 951 ICmpInst::Predicate Pred = Cmp.getPredicate(); 952 Value *CmpLHS = Cmp.getOperand(0); 953 Value *CmpRHS = Cmp.getOperand(1); 954 Value *TrueVal = Sel.getTrueValue(); 955 Value *FalseVal = Sel.getFalseValue(); 956 957 // We may move or edit the compare, so make sure the select is the only user. 958 const APInt *CmpC; 959 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 960 return false; 961 962 // These transforms only work for selects of integers or vector selects of 963 // integer vectors. 964 Type *SelTy = Sel.getType(); 965 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 966 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 967 return false; 968 969 Constant *AdjustedRHS; 970 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 971 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 972 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 973 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 974 else 975 return false; 976 977 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 978 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 979 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 980 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 981 ; // Nothing to do here. Values match without any sign/zero extension. 982 } 983 // Types do not match. Instead of calculating this with mixed types, promote 984 // all to the larger type. This enables scalar evolution to analyze this 985 // expression. 986 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 987 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 988 989 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 990 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 991 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 992 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 993 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 994 CmpLHS = TrueVal; 995 AdjustedRHS = SextRHS; 996 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 997 SextRHS == TrueVal) { 998 CmpLHS = FalseVal; 999 AdjustedRHS = SextRHS; 1000 } else if (Cmp.isUnsigned()) { 1001 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 1002 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 1003 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 1004 // zext + signed compare cannot be changed: 1005 // 0xff <s 0x00, but 0x00ff >s 0x0000 1006 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 1007 CmpLHS = TrueVal; 1008 AdjustedRHS = ZextRHS; 1009 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 1010 ZextRHS == TrueVal) { 1011 CmpLHS = FalseVal; 1012 AdjustedRHS = ZextRHS; 1013 } else { 1014 return false; 1015 } 1016 } else { 1017 return false; 1018 } 1019 } else { 1020 return false; 1021 } 1022 1023 Pred = ICmpInst::getSwappedPredicate(Pred); 1024 CmpRHS = AdjustedRHS; 1025 std::swap(FalseVal, TrueVal); 1026 Cmp.setPredicate(Pred); 1027 Cmp.setOperand(0, CmpLHS); 1028 Cmp.setOperand(1, CmpRHS); 1029 Sel.setOperand(1, TrueVal); 1030 Sel.setOperand(2, FalseVal); 1031 Sel.swapProfMetadata(); 1032 1033 // Move the compare instruction right before the select instruction. Otherwise 1034 // the sext/zext value may be defined after the compare instruction uses it. 1035 Cmp.moveBefore(&Sel); 1036 1037 return true; 1038 } 1039 1040 /// If this is an integer min/max (icmp + select) with a constant operand, 1041 /// create the canonical icmp for the min/max operation and canonicalize the 1042 /// constant to the 'false' operand of the select: 1043 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1044 /// Note: if C1 != C2, this will change the icmp constant to the existing 1045 /// constant operand of the select. 1046 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1047 ICmpInst &Cmp, 1048 InstCombinerImpl &IC) { 1049 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1050 return nullptr; 1051 1052 // Canonicalize the compare predicate based on whether we have min or max. 1053 Value *LHS, *RHS; 1054 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1055 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1056 return nullptr; 1057 1058 // Is this already canonical? 1059 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1060 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1061 Cmp.getPredicate() == CanonicalPred) 1062 return nullptr; 1063 1064 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1065 // as this may cause an infinite combine loop. Let the sub be folded first. 1066 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1067 match(RHS, m_Sub(m_Value(), m_Zero()))) 1068 return nullptr; 1069 1070 // Create the canonical compare and plug it into the select. 1071 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1072 1073 // If the select operands did not change, we're done. 1074 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1075 return &Sel; 1076 1077 // If we are swapping the select operands, swap the metadata too. 1078 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1079 "Unexpected results from matchSelectPattern"); 1080 Sel.swapValues(); 1081 Sel.swapProfMetadata(); 1082 return &Sel; 1083 } 1084 1085 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1086 InstCombinerImpl &IC) { 1087 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1088 return nullptr; 1089 1090 Value *LHS, *RHS; 1091 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1092 if (SPF != SelectPatternFlavor::SPF_ABS && 1093 SPF != SelectPatternFlavor::SPF_NABS) 1094 return nullptr; 1095 1096 // Note that NSW flag can only be propagated for normal, non-negated abs! 1097 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1098 match(RHS, m_NSWNeg(m_Specific(LHS))); 1099 Constant *IntMinIsPoisonC = 1100 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1101 Instruction *Abs = 1102 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1103 1104 if (SPF == SelectPatternFlavor::SPF_NABS) 1105 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1106 1107 return IC.replaceInstUsesWith(Sel, Abs); 1108 } 1109 1110 /// If we have a select with an equality comparison, then we know the value in 1111 /// one of the arms of the select. See if substituting this value into an arm 1112 /// and simplifying the result yields the same value as the other arm. 1113 /// 1114 /// To make this transform safe, we must drop poison-generating flags 1115 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1116 /// that poison from propagating. If the existing binop already had no 1117 /// poison-generating flags, then this transform can be done by instsimplify. 1118 /// 1119 /// Consider: 1120 /// %cmp = icmp eq i32 %x, 2147483647 1121 /// %add = add nsw i32 %x, 1 1122 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1123 /// 1124 /// We can't replace %sel with %add unless we strip away the flags. 1125 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1126 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1127 ICmpInst &Cmp) { 1128 // Value equivalence substitution requires an all-or-nothing replacement. 1129 // It does not make sense for a vector compare where each lane is chosen 1130 // independently. 1131 if (!Cmp.isEquality() || Cmp.getType()->isVectorTy()) 1132 return nullptr; 1133 1134 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1135 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1136 bool Swapped = false; 1137 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1138 std::swap(TrueVal, FalseVal); 1139 Swapped = true; 1140 } 1141 1142 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1143 // Make sure Y cannot be undef though, as we might pick different values for 1144 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1145 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1146 // replacement cycle. 1147 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1148 if (TrueVal != CmpLHS && 1149 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1150 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1151 /* AllowRefinement */ true)) 1152 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1153 1154 // Even if TrueVal does not simplify, we can directly replace a use of 1155 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1156 // else and is safe to speculatively execute (we may end up executing it 1157 // with different operands, which should not cause side-effects or trigger 1158 // undefined behavior). Only do this if CmpRHS is a constant, as 1159 // profitability is not clear for other cases. 1160 // FIXME: The replacement could be performed recursively. 1161 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant())) 1162 if (auto *I = dyn_cast<Instruction>(TrueVal)) 1163 if (I->hasOneUse() && isSafeToSpeculativelyExecute(I)) 1164 for (Use &U : I->operands()) 1165 if (U == CmpLHS) { 1166 replaceUse(U, CmpRHS); 1167 return &Sel; 1168 } 1169 } 1170 if (TrueVal != CmpRHS && 1171 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1172 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1173 /* AllowRefinement */ true)) 1174 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1175 1176 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1177 if (!FalseInst) 1178 return nullptr; 1179 1180 // InstSimplify already performed this fold if it was possible subject to 1181 // current poison-generating flags. Try the transform again with 1182 // poison-generating flags temporarily dropped. 1183 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1184 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1185 WasNUW = OBO->hasNoUnsignedWrap(); 1186 WasNSW = OBO->hasNoSignedWrap(); 1187 FalseInst->setHasNoUnsignedWrap(false); 1188 FalseInst->setHasNoSignedWrap(false); 1189 } 1190 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1191 WasExact = PEO->isExact(); 1192 FalseInst->setIsExact(false); 1193 } 1194 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1195 WasInBounds = GEP->isInBounds(); 1196 GEP->setIsInBounds(false); 1197 } 1198 1199 // Try each equivalence substitution possibility. 1200 // We have an 'EQ' comparison, so the select's false value will propagate. 1201 // Example: 1202 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1203 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1204 /* AllowRefinement */ false) == TrueVal || 1205 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1206 /* AllowRefinement */ false) == TrueVal) { 1207 return replaceInstUsesWith(Sel, FalseVal); 1208 } 1209 1210 // Restore poison-generating flags if the transform did not apply. 1211 if (WasNUW) 1212 FalseInst->setHasNoUnsignedWrap(); 1213 if (WasNSW) 1214 FalseInst->setHasNoSignedWrap(); 1215 if (WasExact) 1216 FalseInst->setIsExact(); 1217 if (WasInBounds) 1218 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1219 1220 return nullptr; 1221 } 1222 1223 // See if this is a pattern like: 1224 // %old_cmp1 = icmp slt i32 %x, C2 1225 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1226 // %old_x_offseted = add i32 %x, C1 1227 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1228 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1229 // This can be rewritten as more canonical pattern: 1230 // %new_cmp1 = icmp slt i32 %x, -C1 1231 // %new_cmp2 = icmp sge i32 %x, C0-C1 1232 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1233 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1234 // Iff -C1 s<= C2 s<= C0-C1 1235 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1236 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1237 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1238 InstCombiner::BuilderTy &Builder) { 1239 Value *X = Sel0.getTrueValue(); 1240 Value *Sel1 = Sel0.getFalseValue(); 1241 1242 // First match the condition of the outermost select. 1243 // Said condition must be one-use. 1244 if (!Cmp0.hasOneUse()) 1245 return nullptr; 1246 Value *Cmp00 = Cmp0.getOperand(0); 1247 Constant *C0; 1248 if (!match(Cmp0.getOperand(1), 1249 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1250 return nullptr; 1251 // Canonicalize Cmp0 into the form we expect. 1252 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1253 switch (Cmp0.getPredicate()) { 1254 case ICmpInst::Predicate::ICMP_ULT: 1255 break; // Great! 1256 case ICmpInst::Predicate::ICMP_ULE: 1257 // We'd have to increment C0 by one, and for that it must not have all-ones 1258 // element, but then it would have been canonicalized to 'ult' before 1259 // we get here. So we can't do anything useful with 'ule'. 1260 return nullptr; 1261 case ICmpInst::Predicate::ICMP_UGT: 1262 // We want to canonicalize it to 'ult', so we'll need to increment C0, 1263 // which again means it must not have any all-ones elements. 1264 if (!match(C0, 1265 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1266 APInt::getAllOnesValue( 1267 C0->getType()->getScalarSizeInBits())))) 1268 return nullptr; // Can't do, have all-ones element[s]. 1269 C0 = InstCombiner::AddOne(C0); 1270 std::swap(X, Sel1); 1271 break; 1272 case ICmpInst::Predicate::ICMP_UGE: 1273 // The only way we'd get this predicate if this `icmp` has extra uses, 1274 // but then we won't be able to do this fold. 1275 return nullptr; 1276 default: 1277 return nullptr; // Unknown predicate. 1278 } 1279 1280 // Now that we've canonicalized the ICmp, we know the X we expect; 1281 // the select in other hand should be one-use. 1282 if (!Sel1->hasOneUse()) 1283 return nullptr; 1284 1285 // We now can finish matching the condition of the outermost select: 1286 // it should either be the X itself, or an addition of some constant to X. 1287 Constant *C1; 1288 if (Cmp00 == X) 1289 C1 = ConstantInt::getNullValue(Sel0.getType()); 1290 else if (!match(Cmp00, 1291 m_Add(m_Specific(X), 1292 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1293 return nullptr; 1294 1295 Value *Cmp1; 1296 ICmpInst::Predicate Pred1; 1297 Constant *C2; 1298 Value *ReplacementLow, *ReplacementHigh; 1299 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1300 m_Value(ReplacementHigh))) || 1301 !match(Cmp1, 1302 m_ICmp(Pred1, m_Specific(X), 1303 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1304 return nullptr; 1305 1306 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1307 return nullptr; // Not enough one-use instructions for the fold. 1308 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1309 // two comparisons we'll need to build. 1310 1311 // Canonicalize Cmp1 into the form we expect. 1312 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1313 switch (Pred1) { 1314 case ICmpInst::Predicate::ICMP_SLT: 1315 break; 1316 case ICmpInst::Predicate::ICMP_SLE: 1317 // We'd have to increment C2 by one, and for that it must not have signed 1318 // max element, but then it would have been canonicalized to 'slt' before 1319 // we get here. So we can't do anything useful with 'sle'. 1320 return nullptr; 1321 case ICmpInst::Predicate::ICMP_SGT: 1322 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1323 // which again means it must not have any signed max elements. 1324 if (!match(C2, 1325 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1326 APInt::getSignedMaxValue( 1327 C2->getType()->getScalarSizeInBits())))) 1328 return nullptr; // Can't do, have signed max element[s]. 1329 C2 = InstCombiner::AddOne(C2); 1330 LLVM_FALLTHROUGH; 1331 case ICmpInst::Predicate::ICMP_SGE: 1332 // Also non-canonical, but here we don't need to change C2, 1333 // so we don't have any restrictions on C2, so we can just handle it. 1334 std::swap(ReplacementLow, ReplacementHigh); 1335 break; 1336 default: 1337 return nullptr; // Unknown predicate. 1338 } 1339 1340 // The thresholds of this clamp-like pattern. 1341 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1342 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1343 1344 // The fold has a precondition 1: C2 s>= ThresholdLow 1345 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1346 ThresholdLowIncl); 1347 if (!match(Precond1, m_One())) 1348 return nullptr; 1349 // The fold has a precondition 2: C2 s<= ThresholdHigh 1350 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1351 ThresholdHighExcl); 1352 if (!match(Precond2, m_One())) 1353 return nullptr; 1354 1355 // All good, finally emit the new pattern. 1356 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1357 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1358 Value *MaybeReplacedLow = 1359 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1360 Instruction *MaybeReplacedHigh = 1361 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1362 1363 return MaybeReplacedHigh; 1364 } 1365 1366 // If we have 1367 // %cmp = icmp [canonical predicate] i32 %x, C0 1368 // %r = select i1 %cmp, i32 %y, i32 C1 1369 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1370 // will have if we flip the strictness of the predicate (i.e. without changing 1371 // the result) is identical to the C1 in select. If it matches we can change 1372 // original comparison to one with swapped predicate, reuse the constant, 1373 // and swap the hands of select. 1374 static Instruction * 1375 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1376 InstCombinerImpl &IC) { 1377 ICmpInst::Predicate Pred; 1378 Value *X; 1379 Constant *C0; 1380 if (!match(&Cmp, m_OneUse(m_ICmp( 1381 Pred, m_Value(X), 1382 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1383 return nullptr; 1384 1385 // If comparison predicate is non-relational, we won't be able to do anything. 1386 if (ICmpInst::isEquality(Pred)) 1387 return nullptr; 1388 1389 // If comparison predicate is non-canonical, then we certainly won't be able 1390 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1391 if (!InstCombiner::isCanonicalPredicate(Pred)) 1392 return nullptr; 1393 1394 // If the [input] type of comparison and select type are different, lets abort 1395 // for now. We could try to compare constants with trunc/[zs]ext though. 1396 if (C0->getType() != Sel.getType()) 1397 return nullptr; 1398 1399 // FIXME: are there any magic icmp predicate+constant pairs we must not touch? 1400 1401 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1402 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1403 // At least one of these values we are selecting between must be a constant 1404 // else we'll never succeed. 1405 if (!match(SelVal0, m_AnyIntegralConstant()) && 1406 !match(SelVal1, m_AnyIntegralConstant())) 1407 return nullptr; 1408 1409 // Does this constant C match any of the `select` values? 1410 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1411 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1412 }; 1413 1414 // If C0 *already* matches true/false value of select, we are done. 1415 if (MatchesSelectValue(C0)) 1416 return nullptr; 1417 1418 // Check the constant we'd have with flipped-strictness predicate. 1419 auto FlippedStrictness = 1420 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1421 if (!FlippedStrictness) 1422 return nullptr; 1423 1424 // If said constant doesn't match either, then there is no hope, 1425 if (!MatchesSelectValue(FlippedStrictness->second)) 1426 return nullptr; 1427 1428 // It matched! Lets insert the new comparison just before select. 1429 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1430 IC.Builder.SetInsertPoint(&Sel); 1431 1432 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1433 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1434 Cmp.getName() + ".inv"); 1435 IC.replaceOperand(Sel, 0, NewCmp); 1436 Sel.swapValues(); 1437 Sel.swapProfMetadata(); 1438 1439 return &Sel; 1440 } 1441 1442 /// Visit a SelectInst that has an ICmpInst as its first operand. 1443 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1444 ICmpInst *ICI) { 1445 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1446 return NewSel; 1447 1448 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1449 return NewSel; 1450 1451 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1452 return NewAbs; 1453 1454 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) 1455 return NewAbs; 1456 1457 if (Instruction *NewSel = 1458 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1459 return NewSel; 1460 1461 bool Changed = adjustMinMax(SI, *ICI); 1462 1463 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1464 return replaceInstUsesWith(SI, V); 1465 1466 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1467 Value *TrueVal = SI.getTrueValue(); 1468 Value *FalseVal = SI.getFalseValue(); 1469 ICmpInst::Predicate Pred = ICI->getPredicate(); 1470 Value *CmpLHS = ICI->getOperand(0); 1471 Value *CmpRHS = ICI->getOperand(1); 1472 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1473 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1474 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1475 SI.setOperand(1, CmpRHS); 1476 Changed = true; 1477 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1478 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1479 SI.setOperand(2, CmpRHS); 1480 Changed = true; 1481 } 1482 } 1483 1484 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1485 // decomposeBitTestICmp() might help. 1486 { 1487 unsigned BitWidth = 1488 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1489 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1490 Value *X; 1491 const APInt *Y, *C; 1492 bool TrueWhenUnset; 1493 bool IsBitTest = false; 1494 if (ICmpInst::isEquality(Pred) && 1495 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1496 match(CmpRHS, m_Zero())) { 1497 IsBitTest = true; 1498 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1499 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1500 X = CmpLHS; 1501 Y = &MinSignedValue; 1502 IsBitTest = true; 1503 TrueWhenUnset = false; 1504 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1505 X = CmpLHS; 1506 Y = &MinSignedValue; 1507 IsBitTest = true; 1508 TrueWhenUnset = true; 1509 } 1510 if (IsBitTest) { 1511 Value *V = nullptr; 1512 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1513 if (TrueWhenUnset && TrueVal == X && 1514 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1515 V = Builder.CreateAnd(X, ~(*Y)); 1516 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1517 else if (!TrueWhenUnset && FalseVal == X && 1518 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1519 V = Builder.CreateAnd(X, ~(*Y)); 1520 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1521 else if (TrueWhenUnset && FalseVal == X && 1522 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1523 V = Builder.CreateOr(X, *Y); 1524 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1525 else if (!TrueWhenUnset && TrueVal == X && 1526 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1527 V = Builder.CreateOr(X, *Y); 1528 1529 if (V) 1530 return replaceInstUsesWith(SI, V); 1531 } 1532 } 1533 1534 if (Instruction *V = 1535 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1536 return V; 1537 1538 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1539 return V; 1540 1541 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1542 return replaceInstUsesWith(SI, V); 1543 1544 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1545 return replaceInstUsesWith(SI, V); 1546 1547 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1548 return replaceInstUsesWith(SI, V); 1549 1550 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1551 return replaceInstUsesWith(SI, V); 1552 1553 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1554 return replaceInstUsesWith(SI, V); 1555 1556 return Changed ? &SI : nullptr; 1557 } 1558 1559 /// SI is a select whose condition is a PHI node (but the two may be in 1560 /// different blocks). See if the true/false values (V) are live in all of the 1561 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1562 /// 1563 /// X = phi [ C1, BB1], [C2, BB2] 1564 /// Y = add 1565 /// Z = select X, Y, 0 1566 /// 1567 /// because Y is not live in BB1/BB2. 1568 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1569 const SelectInst &SI) { 1570 // If the value is a non-instruction value like a constant or argument, it 1571 // can always be mapped. 1572 const Instruction *I = dyn_cast<Instruction>(V); 1573 if (!I) return true; 1574 1575 // If V is a PHI node defined in the same block as the condition PHI, we can 1576 // map the arguments. 1577 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1578 1579 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1580 if (VP->getParent() == CondPHI->getParent()) 1581 return true; 1582 1583 // Otherwise, if the PHI and select are defined in the same block and if V is 1584 // defined in a different block, then we can transform it. 1585 if (SI.getParent() == CondPHI->getParent() && 1586 I->getParent() != CondPHI->getParent()) 1587 return true; 1588 1589 // Otherwise we have a 'hard' case and we can't tell without doing more 1590 // detailed dominator based analysis, punt. 1591 return false; 1592 } 1593 1594 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1595 /// SPF2(SPF1(A, B), C) 1596 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1597 SelectPatternFlavor SPF1, Value *A, 1598 Value *B, Instruction &Outer, 1599 SelectPatternFlavor SPF2, 1600 Value *C) { 1601 if (Outer.getType() != Inner->getType()) 1602 return nullptr; 1603 1604 if (C == A || C == B) { 1605 // MAX(MAX(A, B), B) -> MAX(A, B) 1606 // MIN(MIN(a, b), a) -> MIN(a, b) 1607 // TODO: This could be done in instsimplify. 1608 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1609 return replaceInstUsesWith(Outer, Inner); 1610 1611 // MAX(MIN(a, b), a) -> a 1612 // MIN(MAX(a, b), a) -> a 1613 // TODO: This could be done in instsimplify. 1614 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1615 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1616 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1617 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1618 return replaceInstUsesWith(Outer, C); 1619 } 1620 1621 if (SPF1 == SPF2) { 1622 const APInt *CB, *CC; 1623 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1624 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1625 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1626 // TODO: This could be done in instsimplify. 1627 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1628 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1629 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1630 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1631 return replaceInstUsesWith(Outer, Inner); 1632 1633 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1634 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1635 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1636 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1637 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1638 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1639 Outer.replaceUsesOfWith(Inner, A); 1640 return &Outer; 1641 } 1642 } 1643 } 1644 1645 // max(max(A, B), min(A, B)) --> max(A, B) 1646 // min(min(A, B), max(A, B)) --> min(A, B) 1647 // TODO: This could be done in instsimplify. 1648 if (SPF1 == SPF2 && 1649 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1650 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1651 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1652 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1653 return replaceInstUsesWith(Outer, Inner); 1654 1655 // ABS(ABS(X)) -> ABS(X) 1656 // NABS(NABS(X)) -> NABS(X) 1657 // TODO: This could be done in instsimplify. 1658 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1659 return replaceInstUsesWith(Outer, Inner); 1660 } 1661 1662 // ABS(NABS(X)) -> ABS(X) 1663 // NABS(ABS(X)) -> NABS(X) 1664 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1665 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1666 SelectInst *SI = cast<SelectInst>(Inner); 1667 Value *NewSI = 1668 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1669 SI->getTrueValue(), SI->getName(), SI); 1670 return replaceInstUsesWith(Outer, NewSI); 1671 } 1672 1673 auto IsFreeOrProfitableToInvert = 1674 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1675 if (match(V, m_Not(m_Value(NotV)))) { 1676 // If V has at most 2 uses then we can get rid of the xor operation 1677 // entirely. 1678 ElidesXor |= !V->hasNUsesOrMore(3); 1679 return true; 1680 } 1681 1682 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1683 NotV = nullptr; 1684 return true; 1685 } 1686 1687 return false; 1688 }; 1689 1690 Value *NotA, *NotB, *NotC; 1691 bool ElidesXor = false; 1692 1693 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1694 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1695 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1696 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1697 // 1698 // This transform is performance neutral if we can elide at least one xor from 1699 // the set of three operands, since we'll be tacking on an xor at the very 1700 // end. 1701 if (SelectPatternResult::isMinOrMax(SPF1) && 1702 SelectPatternResult::isMinOrMax(SPF2) && 1703 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1704 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1705 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1706 if (!NotA) 1707 NotA = Builder.CreateNot(A); 1708 if (!NotB) 1709 NotB = Builder.CreateNot(B); 1710 if (!NotC) 1711 NotC = Builder.CreateNot(C); 1712 1713 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1714 NotB); 1715 Value *NewOuter = Builder.CreateNot( 1716 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1717 return replaceInstUsesWith(Outer, NewOuter); 1718 } 1719 1720 return nullptr; 1721 } 1722 1723 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1724 /// This is even legal for FP. 1725 static Instruction *foldAddSubSelect(SelectInst &SI, 1726 InstCombiner::BuilderTy &Builder) { 1727 Value *CondVal = SI.getCondition(); 1728 Value *TrueVal = SI.getTrueValue(); 1729 Value *FalseVal = SI.getFalseValue(); 1730 auto *TI = dyn_cast<Instruction>(TrueVal); 1731 auto *FI = dyn_cast<Instruction>(FalseVal); 1732 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1733 return nullptr; 1734 1735 Instruction *AddOp = nullptr, *SubOp = nullptr; 1736 if ((TI->getOpcode() == Instruction::Sub && 1737 FI->getOpcode() == Instruction::Add) || 1738 (TI->getOpcode() == Instruction::FSub && 1739 FI->getOpcode() == Instruction::FAdd)) { 1740 AddOp = FI; 1741 SubOp = TI; 1742 } else if ((FI->getOpcode() == Instruction::Sub && 1743 TI->getOpcode() == Instruction::Add) || 1744 (FI->getOpcode() == Instruction::FSub && 1745 TI->getOpcode() == Instruction::FAdd)) { 1746 AddOp = TI; 1747 SubOp = FI; 1748 } 1749 1750 if (AddOp) { 1751 Value *OtherAddOp = nullptr; 1752 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1753 OtherAddOp = AddOp->getOperand(1); 1754 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1755 OtherAddOp = AddOp->getOperand(0); 1756 } 1757 1758 if (OtherAddOp) { 1759 // So at this point we know we have (Y -> OtherAddOp): 1760 // select C, (add X, Y), (sub X, Z) 1761 Value *NegVal; // Compute -Z 1762 if (SI.getType()->isFPOrFPVectorTy()) { 1763 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1764 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1765 FastMathFlags Flags = AddOp->getFastMathFlags(); 1766 Flags &= SubOp->getFastMathFlags(); 1767 NegInst->setFastMathFlags(Flags); 1768 } 1769 } else { 1770 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1771 } 1772 1773 Value *NewTrueOp = OtherAddOp; 1774 Value *NewFalseOp = NegVal; 1775 if (AddOp != TI) 1776 std::swap(NewTrueOp, NewFalseOp); 1777 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1778 SI.getName() + ".p", &SI); 1779 1780 if (SI.getType()->isFPOrFPVectorTy()) { 1781 Instruction *RI = 1782 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1783 1784 FastMathFlags Flags = AddOp->getFastMathFlags(); 1785 Flags &= SubOp->getFastMathFlags(); 1786 RI->setFastMathFlags(Flags); 1787 return RI; 1788 } else 1789 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1790 } 1791 } 1792 return nullptr; 1793 } 1794 1795 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1796 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1797 /// Along with a number of patterns similar to: 1798 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1799 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1800 static Instruction * 1801 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1802 Value *CondVal = SI.getCondition(); 1803 Value *TrueVal = SI.getTrueValue(); 1804 Value *FalseVal = SI.getFalseValue(); 1805 1806 WithOverflowInst *II; 1807 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1808 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1809 return nullptr; 1810 1811 Value *X = II->getLHS(); 1812 Value *Y = II->getRHS(); 1813 1814 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1815 Type *Ty = Limit->getType(); 1816 1817 ICmpInst::Predicate Pred; 1818 Value *TrueVal, *FalseVal, *Op; 1819 const APInt *C; 1820 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1821 m_Value(TrueVal), m_Value(FalseVal)))) 1822 return false; 1823 1824 auto IsZeroOrOne = [](const APInt &C) { 1825 return C.isNullValue() || C.isOneValue(); 1826 }; 1827 auto IsMinMax = [&](Value *Min, Value *Max) { 1828 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1829 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1830 return match(Min, m_SpecificInt(MinVal)) && 1831 match(Max, m_SpecificInt(MaxVal)); 1832 }; 1833 1834 if (Op != X && Op != Y) 1835 return false; 1836 1837 if (IsAdd) { 1838 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1839 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1840 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1841 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1842 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1843 IsMinMax(TrueVal, FalseVal)) 1844 return true; 1845 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1846 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1847 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1848 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1849 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1850 IsMinMax(FalseVal, TrueVal)) 1851 return true; 1852 } else { 1853 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1854 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1855 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1856 IsMinMax(TrueVal, FalseVal)) 1857 return true; 1858 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1859 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1860 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1861 IsMinMax(FalseVal, TrueVal)) 1862 return true; 1863 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1864 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1865 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1866 IsMinMax(FalseVal, TrueVal)) 1867 return true; 1868 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1869 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1870 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1871 IsMinMax(TrueVal, FalseVal)) 1872 return true; 1873 } 1874 1875 return false; 1876 }; 1877 1878 Intrinsic::ID NewIntrinsicID; 1879 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1880 match(TrueVal, m_AllOnes())) 1881 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1882 NewIntrinsicID = Intrinsic::uadd_sat; 1883 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1884 match(TrueVal, m_Zero())) 1885 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1886 NewIntrinsicID = Intrinsic::usub_sat; 1887 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1888 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1889 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1890 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1891 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1892 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1893 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1894 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1895 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1896 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1897 NewIntrinsicID = Intrinsic::sadd_sat; 1898 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1899 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1900 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1901 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1902 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1903 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1904 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1905 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1906 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1907 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1908 NewIntrinsicID = Intrinsic::ssub_sat; 1909 else 1910 return nullptr; 1911 1912 Function *F = 1913 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1914 return CallInst::Create(F, {X, Y}); 1915 } 1916 1917 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 1918 Constant *C; 1919 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1920 !match(Sel.getFalseValue(), m_Constant(C))) 1921 return nullptr; 1922 1923 Instruction *ExtInst; 1924 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1925 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1926 return nullptr; 1927 1928 auto ExtOpcode = ExtInst->getOpcode(); 1929 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1930 return nullptr; 1931 1932 // If we are extending from a boolean type or if we can create a select that 1933 // has the same size operands as its condition, try to narrow the select. 1934 Value *X = ExtInst->getOperand(0); 1935 Type *SmallType = X->getType(); 1936 Value *Cond = Sel.getCondition(); 1937 auto *Cmp = dyn_cast<CmpInst>(Cond); 1938 if (!SmallType->isIntOrIntVectorTy(1) && 1939 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1940 return nullptr; 1941 1942 // If the constant is the same after truncation to the smaller type and 1943 // extension to the original type, we can narrow the select. 1944 Type *SelType = Sel.getType(); 1945 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1946 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1947 if (ExtC == C && ExtInst->hasOneUse()) { 1948 Value *TruncCVal = cast<Value>(TruncC); 1949 if (ExtInst == Sel.getFalseValue()) 1950 std::swap(X, TruncCVal); 1951 1952 // select Cond, (ext X), C --> ext(select Cond, X, C') 1953 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1954 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1955 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1956 } 1957 1958 // If one arm of the select is the extend of the condition, replace that arm 1959 // with the extension of the appropriate known bool value. 1960 if (Cond == X) { 1961 if (ExtInst == Sel.getTrueValue()) { 1962 // select X, (sext X), C --> select X, -1, C 1963 // select X, (zext X), C --> select X, 1, C 1964 Constant *One = ConstantInt::getTrue(SmallType); 1965 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1966 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1967 } else { 1968 // select X, C, (sext X) --> select X, C, 0 1969 // select X, C, (zext X) --> select X, C, 0 1970 Constant *Zero = ConstantInt::getNullValue(SelType); 1971 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1972 } 1973 } 1974 1975 return nullptr; 1976 } 1977 1978 /// Try to transform a vector select with a constant condition vector into a 1979 /// shuffle for easier combining with other shuffles and insert/extract. 1980 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1981 Value *CondVal = SI.getCondition(); 1982 Constant *CondC; 1983 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 1984 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 1985 return nullptr; 1986 1987 unsigned NumElts = CondValTy->getNumElements(); 1988 SmallVector<int, 16> Mask; 1989 Mask.reserve(NumElts); 1990 for (unsigned i = 0; i != NumElts; ++i) { 1991 Constant *Elt = CondC->getAggregateElement(i); 1992 if (!Elt) 1993 return nullptr; 1994 1995 if (Elt->isOneValue()) { 1996 // If the select condition element is true, choose from the 1st vector. 1997 Mask.push_back(i); 1998 } else if (Elt->isNullValue()) { 1999 // If the select condition element is false, choose from the 2nd vector. 2000 Mask.push_back(i + NumElts); 2001 } else if (isa<UndefValue>(Elt)) { 2002 // Undef in a select condition (choose one of the operands) does not mean 2003 // the same thing as undef in a shuffle mask (any value is acceptable), so 2004 // give up. 2005 return nullptr; 2006 } else { 2007 // Bail out on a constant expression. 2008 return nullptr; 2009 } 2010 } 2011 2012 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2013 } 2014 2015 /// If we have a select of vectors with a scalar condition, try to convert that 2016 /// to a vector select by splatting the condition. A splat may get folded with 2017 /// other operations in IR and having all operands of a select be vector types 2018 /// is likely better for vector codegen. 2019 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2020 InstCombinerImpl &IC) { 2021 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2022 if (!Ty) 2023 return nullptr; 2024 2025 // We can replace a single-use extract with constant index. 2026 Value *Cond = Sel.getCondition(); 2027 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2028 return nullptr; 2029 2030 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2031 // Splatting the extracted condition reduces code (we could directly create a 2032 // splat shuffle of the source vector to eliminate the intermediate step). 2033 return IC.replaceOperand( 2034 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2035 } 2036 2037 /// Reuse bitcasted operands between a compare and select: 2038 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2039 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2040 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2041 InstCombiner::BuilderTy &Builder) { 2042 Value *Cond = Sel.getCondition(); 2043 Value *TVal = Sel.getTrueValue(); 2044 Value *FVal = Sel.getFalseValue(); 2045 2046 CmpInst::Predicate Pred; 2047 Value *A, *B; 2048 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2049 return nullptr; 2050 2051 // The select condition is a compare instruction. If the select's true/false 2052 // values are already the same as the compare operands, there's nothing to do. 2053 if (TVal == A || TVal == B || FVal == A || FVal == B) 2054 return nullptr; 2055 2056 Value *C, *D; 2057 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2058 return nullptr; 2059 2060 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2061 Value *TSrc, *FSrc; 2062 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2063 !match(FVal, m_BitCast(m_Value(FSrc)))) 2064 return nullptr; 2065 2066 // If the select true/false values are *different bitcasts* of the same source 2067 // operands, make the select operands the same as the compare operands and 2068 // cast the result. This is the canonical select form for min/max. 2069 Value *NewSel; 2070 if (TSrc == C && FSrc == D) { 2071 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2072 // bitcast (select (cmp A, B), A, B) 2073 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2074 } else if (TSrc == D && FSrc == C) { 2075 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2076 // bitcast (select (cmp A, B), B, A) 2077 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2078 } else { 2079 return nullptr; 2080 } 2081 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2082 } 2083 2084 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2085 /// instructions. 2086 /// 2087 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2088 /// selects between the returned value of the cmpxchg instruction its compare 2089 /// operand, the result of the select will always be equal to its false value. 2090 /// For example: 2091 /// 2092 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2093 /// %1 = extractvalue { i64, i1 } %0, 1 2094 /// %2 = extractvalue { i64, i1 } %0, 0 2095 /// %3 = select i1 %1, i64 %compare, i64 %2 2096 /// ret i64 %3 2097 /// 2098 /// The returned value of the cmpxchg instruction (%2) is the original value 2099 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2100 /// must have been equal to %compare. Thus, the result of the select is always 2101 /// equal to %2, and the code can be simplified to: 2102 /// 2103 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2104 /// %1 = extractvalue { i64, i1 } %0, 0 2105 /// ret i64 %1 2106 /// 2107 static Value *foldSelectCmpXchg(SelectInst &SI) { 2108 // A helper that determines if V is an extractvalue instruction whose 2109 // aggregate operand is a cmpxchg instruction and whose single index is equal 2110 // to I. If such conditions are true, the helper returns the cmpxchg 2111 // instruction; otherwise, a nullptr is returned. 2112 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2113 auto *Extract = dyn_cast<ExtractValueInst>(V); 2114 if (!Extract) 2115 return nullptr; 2116 if (Extract->getIndices()[0] != I) 2117 return nullptr; 2118 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2119 }; 2120 2121 // If the select has a single user, and this user is a select instruction that 2122 // we can simplify, skip the cmpxchg simplification for now. 2123 if (SI.hasOneUse()) 2124 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2125 if (Select->getCondition() == SI.getCondition()) 2126 if (Select->getFalseValue() == SI.getTrueValue() || 2127 Select->getTrueValue() == SI.getFalseValue()) 2128 return nullptr; 2129 2130 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2131 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2132 if (!CmpXchg) 2133 return nullptr; 2134 2135 // Check the true value case: The true value of the select is the returned 2136 // value of the same cmpxchg used by the condition, and the false value is the 2137 // cmpxchg instruction's compare operand. 2138 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2139 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2140 return SI.getFalseValue(); 2141 2142 // Check the false value case: The false value of the select is the returned 2143 // value of the same cmpxchg used by the condition, and the true value is the 2144 // cmpxchg instruction's compare operand. 2145 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2146 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2147 return SI.getFalseValue(); 2148 2149 return nullptr; 2150 } 2151 2152 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2153 Value *Y, 2154 InstCombiner::BuilderTy &Builder) { 2155 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2156 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2157 SPF == SelectPatternFlavor::SPF_UMAX; 2158 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2159 // the constant value check to an assert. 2160 Value *A; 2161 const APInt *C1, *C2; 2162 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2163 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2164 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2165 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2166 Value *NewMinMax = createMinMax(Builder, SPF, A, 2167 ConstantInt::get(X->getType(), *C2 - *C1)); 2168 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2169 ConstantInt::get(X->getType(), *C1)); 2170 } 2171 2172 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2173 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2174 bool Overflow; 2175 APInt Diff = C2->ssub_ov(*C1, Overflow); 2176 if (!Overflow) { 2177 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2178 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2179 Value *NewMinMax = createMinMax(Builder, SPF, A, 2180 ConstantInt::get(X->getType(), Diff)); 2181 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2182 ConstantInt::get(X->getType(), *C1)); 2183 } 2184 } 2185 2186 return nullptr; 2187 } 2188 2189 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2190 Instruction *InstCombinerImpl::matchSAddSubSat(SelectInst &MinMax1) { 2191 Type *Ty = MinMax1.getType(); 2192 2193 // We are looking for a tree of: 2194 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2195 // Where the min and max could be reversed 2196 Instruction *MinMax2; 2197 BinaryOperator *AddSub; 2198 const APInt *MinValue, *MaxValue; 2199 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2200 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2201 return nullptr; 2202 } else if (match(&MinMax1, 2203 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2204 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2205 return nullptr; 2206 } else 2207 return nullptr; 2208 2209 // Check that the constants clamp a saturate, and that the new type would be 2210 // sensible to convert to. 2211 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2212 return nullptr; 2213 // In what bitwidth can this be treated as saturating arithmetics? 2214 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2215 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2216 // good first approximation for what should be done there. 2217 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2218 return nullptr; 2219 2220 // Also make sure that the number of uses is as expected. The "3"s are for the 2221 // the two items of min/max (the compare and the select). 2222 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3)) 2223 return nullptr; 2224 2225 // Create the new type (which can be a vector type) 2226 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2227 // Match the two extends from the add/sub 2228 Value *A, *B; 2229 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B))))) 2230 return nullptr; 2231 // And check the incoming values are of a type smaller than or equal to the 2232 // size of the saturation. Otherwise the higher bits can cause different 2233 // results. 2234 if (A->getType()->getScalarSizeInBits() > NewBitWidth || 2235 B->getType()->getScalarSizeInBits() > NewBitWidth) 2236 return nullptr; 2237 2238 Intrinsic::ID IntrinsicID; 2239 if (AddSub->getOpcode() == Instruction::Add) 2240 IntrinsicID = Intrinsic::sadd_sat; 2241 else if (AddSub->getOpcode() == Instruction::Sub) 2242 IntrinsicID = Intrinsic::ssub_sat; 2243 else 2244 return nullptr; 2245 2246 // Finally create and return the sat intrinsic, truncated to the new type 2247 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2248 Value *AT = Builder.CreateSExt(A, NewTy); 2249 Value *BT = Builder.CreateSExt(B, NewTy); 2250 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2251 return CastInst::Create(Instruction::SExt, Sat, Ty); 2252 } 2253 2254 /// Reduce a sequence of min/max with a common operand. 2255 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2256 Value *RHS, 2257 InstCombiner::BuilderTy &Builder) { 2258 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2259 // TODO: Allow FP min/max with nnan/nsz. 2260 if (!LHS->getType()->isIntOrIntVectorTy()) 2261 return nullptr; 2262 2263 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2264 Value *A, *B, *C, *D; 2265 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2266 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2267 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2268 return nullptr; 2269 2270 // Look for a common operand. The use checks are different than usual because 2271 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2272 // the select. 2273 Value *MinMaxOp = nullptr; 2274 Value *ThirdOp = nullptr; 2275 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2276 // If the LHS is only used in this chain and the RHS is used outside of it, 2277 // reuse the RHS min/max because that will eliminate the LHS. 2278 if (D == A || C == A) { 2279 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2280 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2281 MinMaxOp = RHS; 2282 ThirdOp = B; 2283 } else if (D == B || C == B) { 2284 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2285 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2286 MinMaxOp = RHS; 2287 ThirdOp = A; 2288 } 2289 } else if (!RHS->hasNUsesOrMore(3)) { 2290 // Reuse the LHS. This will eliminate the RHS. 2291 if (D == A || D == B) { 2292 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2293 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2294 MinMaxOp = LHS; 2295 ThirdOp = C; 2296 } else if (C == A || C == B) { 2297 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2298 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2299 MinMaxOp = LHS; 2300 ThirdOp = D; 2301 } 2302 } 2303 if (!MinMaxOp || !ThirdOp) 2304 return nullptr; 2305 2306 CmpInst::Predicate P = getMinMaxPred(SPF); 2307 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2308 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2309 } 2310 2311 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2312 /// into a funnel shift intrinsic. Example: 2313 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2314 /// --> call llvm.fshl.i32(a, a, b) 2315 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2316 /// --> call llvm.fshl.i32(a, b, c) 2317 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2318 /// --> call llvm.fshr.i32(a, b, c) 2319 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2320 InstCombiner::BuilderTy &Builder) { 2321 // This must be a power-of-2 type for a bitmasking transform to be valid. 2322 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2323 if (!isPowerOf2_32(Width)) 2324 return nullptr; 2325 2326 BinaryOperator *Or0, *Or1; 2327 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2328 return nullptr; 2329 2330 Value *SV0, *SV1, *SA0, *SA1; 2331 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2332 m_ZExtOrSelf(m_Value(SA0))))) || 2333 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2334 m_ZExtOrSelf(m_Value(SA1))))) || 2335 Or0->getOpcode() == Or1->getOpcode()) 2336 return nullptr; 2337 2338 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2339 if (Or0->getOpcode() == BinaryOperator::LShr) { 2340 std::swap(Or0, Or1); 2341 std::swap(SV0, SV1); 2342 std::swap(SA0, SA1); 2343 } 2344 assert(Or0->getOpcode() == BinaryOperator::Shl && 2345 Or1->getOpcode() == BinaryOperator::LShr && 2346 "Illegal or(shift,shift) pair"); 2347 2348 // Check the shift amounts to see if they are an opposite pair. 2349 Value *ShAmt; 2350 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2351 ShAmt = SA0; 2352 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2353 ShAmt = SA1; 2354 else 2355 return nullptr; 2356 2357 // We should now have this pattern: 2358 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2359 // The false value of the select must be a funnel-shift of the true value: 2360 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2361 bool IsFshl = (ShAmt == SA0); 2362 Value *TVal = Sel.getTrueValue(); 2363 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2364 return nullptr; 2365 2366 // Finally, see if the select is filtering out a shift-by-zero. 2367 Value *Cond = Sel.getCondition(); 2368 ICmpInst::Predicate Pred; 2369 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2370 Pred != ICmpInst::ICMP_EQ) 2371 return nullptr; 2372 2373 // If this is not a rotate then the select was blocking poison from the 2374 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2375 if (SV0 != SV1) { 2376 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2377 SV1 = Builder.CreateFreeze(SV1); 2378 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2379 SV0 = Builder.CreateFreeze(SV0); 2380 } 2381 2382 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2383 // Convert to funnel shift intrinsic. 2384 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2385 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2386 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2387 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2388 } 2389 2390 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2391 InstCombiner::BuilderTy &Builder) { 2392 Value *Cond = Sel.getCondition(); 2393 Value *TVal = Sel.getTrueValue(); 2394 Value *FVal = Sel.getFalseValue(); 2395 Type *SelType = Sel.getType(); 2396 2397 // Match select ?, TC, FC where the constants are equal but negated. 2398 // TODO: Generalize to handle a negated variable operand? 2399 const APFloat *TC, *FC; 2400 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2401 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2402 return nullptr; 2403 2404 assert(TC != FC && "Expected equal select arms to simplify"); 2405 2406 Value *X; 2407 const APInt *C; 2408 bool IsTrueIfSignSet; 2409 ICmpInst::Predicate Pred; 2410 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2411 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2412 X->getType() != SelType) 2413 return nullptr; 2414 2415 // If needed, negate the value that will be the sign argument of the copysign: 2416 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2417 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2418 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2419 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2420 if (IsTrueIfSignSet ^ TC->isNegative()) 2421 X = Builder.CreateFNegFMF(X, &Sel); 2422 2423 // Canonicalize the magnitude argument as the positive constant since we do 2424 // not care about its sign. 2425 Value *MagArg = TC->isNegative() ? FVal : TVal; 2426 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2427 Sel.getType()); 2428 Instruction *CopySign = CallInst::Create(F, { MagArg, X }); 2429 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2430 return CopySign; 2431 } 2432 2433 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2434 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2435 if (!VecTy) 2436 return nullptr; 2437 2438 unsigned NumElts = VecTy->getNumElements(); 2439 APInt UndefElts(NumElts, 0); 2440 APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts)); 2441 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2442 if (V != &Sel) 2443 return replaceInstUsesWith(Sel, V); 2444 return &Sel; 2445 } 2446 2447 // A select of a "select shuffle" with a common operand can be rearranged 2448 // to select followed by "select shuffle". Because of poison, this only works 2449 // in the case of a shuffle with no undefined mask elements. 2450 Value *Cond = Sel.getCondition(); 2451 Value *TVal = Sel.getTrueValue(); 2452 Value *FVal = Sel.getFalseValue(); 2453 Value *X, *Y; 2454 ArrayRef<int> Mask; 2455 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2456 !is_contained(Mask, UndefMaskElem) && 2457 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2458 if (X == FVal) { 2459 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2460 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2461 return new ShuffleVectorInst(X, NewSel, Mask); 2462 } 2463 if (Y == FVal) { 2464 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2465 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2466 return new ShuffleVectorInst(NewSel, Y, Mask); 2467 } 2468 } 2469 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2470 !is_contained(Mask, UndefMaskElem) && 2471 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2472 if (X == TVal) { 2473 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2474 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2475 return new ShuffleVectorInst(X, NewSel, Mask); 2476 } 2477 if (Y == TVal) { 2478 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2479 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2480 return new ShuffleVectorInst(NewSel, Y, Mask); 2481 } 2482 } 2483 2484 return nullptr; 2485 } 2486 2487 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2488 const DominatorTree &DT, 2489 InstCombiner::BuilderTy &Builder) { 2490 // Find the block's immediate dominator that ends with a conditional branch 2491 // that matches select's condition (maybe inverted). 2492 auto *IDomNode = DT[BB]->getIDom(); 2493 if (!IDomNode) 2494 return nullptr; 2495 BasicBlock *IDom = IDomNode->getBlock(); 2496 2497 Value *Cond = Sel.getCondition(); 2498 Value *IfTrue, *IfFalse; 2499 BasicBlock *TrueSucc, *FalseSucc; 2500 if (match(IDom->getTerminator(), 2501 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2502 m_BasicBlock(FalseSucc)))) { 2503 IfTrue = Sel.getTrueValue(); 2504 IfFalse = Sel.getFalseValue(); 2505 } else if (match(IDom->getTerminator(), 2506 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2507 m_BasicBlock(FalseSucc)))) { 2508 IfTrue = Sel.getFalseValue(); 2509 IfFalse = Sel.getTrueValue(); 2510 } else 2511 return nullptr; 2512 2513 // Make sure the branches are actually different. 2514 if (TrueSucc == FalseSucc) 2515 return nullptr; 2516 2517 // We want to replace select %cond, %a, %b with a phi that takes value %a 2518 // for all incoming edges that are dominated by condition `%cond == true`, 2519 // and value %b for edges dominated by condition `%cond == false`. If %a 2520 // or %b are also phis from the same basic block, we can go further and take 2521 // their incoming values from the corresponding blocks. 2522 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2523 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2524 DenseMap<BasicBlock *, Value *> Inputs; 2525 for (auto *Pred : predecessors(BB)) { 2526 // Check implication. 2527 BasicBlockEdge Incoming(Pred, BB); 2528 if (DT.dominates(TrueEdge, Incoming)) 2529 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2530 else if (DT.dominates(FalseEdge, Incoming)) 2531 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2532 else 2533 return nullptr; 2534 // Check availability. 2535 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2536 if (!DT.dominates(Insn, Pred->getTerminator())) 2537 return nullptr; 2538 } 2539 2540 Builder.SetInsertPoint(&*BB->begin()); 2541 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2542 for (auto *Pred : predecessors(BB)) 2543 PN->addIncoming(Inputs[Pred], Pred); 2544 PN->takeName(&Sel); 2545 return PN; 2546 } 2547 2548 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2549 InstCombiner::BuilderTy &Builder) { 2550 // Try to replace this select with Phi in one of these blocks. 2551 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2552 CandidateBlocks.insert(Sel.getParent()); 2553 for (Value *V : Sel.operands()) 2554 if (auto *I = dyn_cast<Instruction>(V)) 2555 CandidateBlocks.insert(I->getParent()); 2556 2557 for (BasicBlock *BB : CandidateBlocks) 2558 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2559 return PN; 2560 return nullptr; 2561 } 2562 2563 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2564 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2565 if (!FI) 2566 return nullptr; 2567 2568 Value *Cond = FI->getOperand(0); 2569 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2570 2571 // select (freeze(x == y)), x, y --> y 2572 // select (freeze(x != y)), x, y --> x 2573 // The freeze should be only used by this select. Otherwise, remaining uses of 2574 // the freeze can observe a contradictory value. 2575 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2576 // a = select c, x, y ; 2577 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2578 // ; to y, this can happen. 2579 CmpInst::Predicate Pred; 2580 if (FI->hasOneUse() && 2581 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2582 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2583 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2584 } 2585 2586 return nullptr; 2587 } 2588 2589 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2590 Value *CondVal = SI.getCondition(); 2591 Value *TrueVal = SI.getTrueValue(); 2592 Value *FalseVal = SI.getFalseValue(); 2593 Type *SelType = SI.getType(); 2594 2595 // FIXME: Remove this workaround when freeze related patches are done. 2596 // For select with undef operand which feeds into an equality comparison, 2597 // don't simplify it so loop unswitch can know the equality comparison 2598 // may have an undef operand. This is a workaround for PR31652 caused by 2599 // descrepancy about branch on undef between LoopUnswitch and GVN. 2600 if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) { 2601 if (llvm::any_of(SI.users(), [&](User *U) { 2602 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2603 if (CI && CI->isEquality()) 2604 return true; 2605 return false; 2606 })) { 2607 return nullptr; 2608 } 2609 } 2610 2611 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2612 SQ.getWithInstruction(&SI))) 2613 return replaceInstUsesWith(SI, V); 2614 2615 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2616 return I; 2617 2618 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2619 return I; 2620 2621 CmpInst::Predicate Pred; 2622 2623 if (SelType->isIntOrIntVectorTy(1) && 2624 TrueVal->getType() == CondVal->getType()) { 2625 auto IsSafeToConvert = [&](Value *OtherVal) { 2626 if (impliesPoison(OtherVal, CondVal)) 2627 return true; 2628 2629 if (!EnableUnsafeSelectTransform) 2630 return false; 2631 2632 // We block this transformation if OtherVal or its operand can create 2633 // poison. See PR49688 2634 if (auto *Op = dyn_cast<Operator>(OtherVal)) { 2635 if (canCreatePoison(Op)) 2636 return false; 2637 if (propagatesPoison(Op) && 2638 llvm::any_of(Op->operand_values(), [](Value *V) { 2639 return isa<Operator>(V) ? canCreatePoison(cast<Operator>(V)) 2640 : false; 2641 })) 2642 return false; 2643 } 2644 return true; 2645 }; 2646 if (match(TrueVal, m_One()) && IsSafeToConvert(FalseVal)) { 2647 // Change: A = select B, true, C --> A = or B, C 2648 return BinaryOperator::CreateOr(CondVal, FalseVal); 2649 } 2650 if (match(FalseVal, m_Zero()) && IsSafeToConvert(TrueVal)) { 2651 // Change: A = select B, C, false --> A = and B, C 2652 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2653 } 2654 2655 auto *One = ConstantInt::getTrue(SelType); 2656 auto *Zero = ConstantInt::getFalse(SelType); 2657 2658 // We match the "full" 0 or 1 constant here to avoid a potential infinite 2659 // loop with vectors that may have undefined/poison elements. 2660 // select a, false, b -> select !a, b, false 2661 if (match(TrueVal, m_Specific(Zero))) { 2662 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2663 return SelectInst::Create(NotCond, FalseVal, Zero); 2664 } 2665 // select a, b, true -> select !a, true, b 2666 if (match(FalseVal, m_Specific(One))) { 2667 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2668 return SelectInst::Create(NotCond, One, TrueVal); 2669 } 2670 2671 // select a, a, b -> select a, true, b 2672 if (CondVal == TrueVal) 2673 return replaceOperand(SI, 1, One); 2674 // select a, b, a -> select a, b, false 2675 if (CondVal == FalseVal) 2676 return replaceOperand(SI, 2, Zero); 2677 2678 // select a, !a, b -> select !a, b, false 2679 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2680 return SelectInst::Create(TrueVal, FalseVal, Zero); 2681 // select a, b, !a -> select !a, true, b 2682 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2683 return SelectInst::Create(FalseVal, One, TrueVal); 2684 2685 Value *A, *B; 2686 // select (select a, true, b), true, b -> select a, true, b 2687 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2688 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 2689 return replaceOperand(SI, 0, A); 2690 // select (select a, b, false), b, false -> select a, b, false 2691 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2692 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 2693 return replaceOperand(SI, 0, A); 2694 2695 if (Value *S = SimplifyWithOpReplaced(TrueVal, CondVal, One, SQ, 2696 /* AllowRefinement */ true)) 2697 return replaceOperand(SI, 1, S); 2698 if (Value *S = SimplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ, 2699 /* AllowRefinement */ true)) 2700 return replaceOperand(SI, 2, S); 2701 2702 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 2703 Use *Y = nullptr; 2704 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 2705 Value *Op1 = IsAnd ? TrueVal : FalseVal; 2706 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 2707 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 2708 InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser())); 2709 replaceUse(*Y, FI); 2710 return replaceInstUsesWith(SI, Op1); 2711 } 2712 } 2713 2714 // select (select a, true, b), c, false -> select a, c, false 2715 // select c, (select a, true, b), false -> select c, a, false 2716 // if c implies that b is false. 2717 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2718 match(FalseVal, m_Zero())) { 2719 Optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 2720 if (Res && *Res == false) 2721 return replaceOperand(SI, 0, A); 2722 } 2723 if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2724 match(FalseVal, m_Zero())) { 2725 Optional<bool> Res = isImpliedCondition(CondVal, B, DL); 2726 if (Res && *Res == false) 2727 return replaceOperand(SI, 1, A); 2728 } 2729 2730 // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b 2731 // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a 2732 Value *C1, *C2; 2733 if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) && 2734 match(TrueVal, m_One()) && 2735 match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) { 2736 if (match(C2, m_Not(m_Specific(C1)))) // first case 2737 return SelectInst::Create(C1, A, B); 2738 else if (match(C1, m_Not(m_Specific(C2)))) // second case 2739 return SelectInst::Create(C2, B, A); 2740 } 2741 } 2742 2743 // Selecting between two integer or vector splat integer constants? 2744 // 2745 // Note that we don't handle a scalar select of vectors: 2746 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2747 // because that may need 3 instructions to splat the condition value: 2748 // extend, insertelement, shufflevector. 2749 // 2750 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2751 // zext/sext i1 to i1. 2752 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2753 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2754 // select C, 1, 0 -> zext C to int 2755 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2756 return new ZExtInst(CondVal, SelType); 2757 2758 // select C, -1, 0 -> sext C to int 2759 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2760 return new SExtInst(CondVal, SelType); 2761 2762 // select C, 0, 1 -> zext !C to int 2763 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2764 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2765 return new ZExtInst(NotCond, SelType); 2766 } 2767 2768 // select C, 0, -1 -> sext !C to int 2769 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2770 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2771 return new SExtInst(NotCond, SelType); 2772 } 2773 } 2774 2775 // See if we are selecting two values based on a comparison of the two values. 2776 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 2777 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1); 2778 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2779 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2780 // Canonicalize to use ordered comparisons by swapping the select 2781 // operands. 2782 // 2783 // e.g. 2784 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2785 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 2786 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 2787 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2788 // FIXME: The FMF should propagate from the select, not the fcmp. 2789 Builder.setFastMathFlags(FCI->getFastMathFlags()); 2790 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2791 FCI->getName() + ".inv"); 2792 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2793 return replaceInstUsesWith(SI, NewSel); 2794 } 2795 2796 // NOTE: if we wanted to, this is where to detect MIN/MAX 2797 } 2798 } 2799 2800 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2801 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 2802 // also require nnan because we do not want to unintentionally change the 2803 // sign of a NaN value. 2804 // FIXME: These folds should test/propagate FMF from the select, not the 2805 // fsub or fneg. 2806 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2807 Instruction *FSub; 2808 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2809 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2810 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2811 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2812 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub); 2813 return replaceInstUsesWith(SI, Fabs); 2814 } 2815 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2816 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2817 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2818 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2819 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2820 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub); 2821 return replaceInstUsesWith(SI, Fabs); 2822 } 2823 // With nnan and nsz: 2824 // (X < +/-0.0) ? -X : X --> fabs(X) 2825 // (X <= +/-0.0) ? -X : X --> fabs(X) 2826 Instruction *FNeg; 2827 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2828 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && 2829 match(TrueVal, m_Instruction(FNeg)) && 2830 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2831 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2832 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2833 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg); 2834 return replaceInstUsesWith(SI, Fabs); 2835 } 2836 // With nnan and nsz: 2837 // (X > +/-0.0) ? X : -X --> fabs(X) 2838 // (X >= +/-0.0) ? X : -X --> fabs(X) 2839 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2840 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && 2841 match(FalseVal, m_Instruction(FNeg)) && 2842 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2843 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2844 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2845 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg); 2846 return replaceInstUsesWith(SI, Fabs); 2847 } 2848 2849 // See if we are selecting two values based on a comparison of the two values. 2850 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2851 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2852 return Result; 2853 2854 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2855 return Add; 2856 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2857 return Add; 2858 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2859 return Or; 2860 2861 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2862 auto *TI = dyn_cast<Instruction>(TrueVal); 2863 auto *FI = dyn_cast<Instruction>(FalseVal); 2864 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2865 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2866 return IV; 2867 2868 if (Instruction *I = foldSelectExtConst(SI)) 2869 return I; 2870 2871 // See if we can fold the select into one of our operands. 2872 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2873 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2874 return FoldI; 2875 2876 Value *LHS, *RHS; 2877 Instruction::CastOps CastOp; 2878 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2879 auto SPF = SPR.Flavor; 2880 if (SPF) { 2881 Value *LHS2, *RHS2; 2882 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2883 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2884 RHS2, SI, SPF, RHS)) 2885 return R; 2886 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2887 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2888 RHS2, SI, SPF, LHS)) 2889 return R; 2890 // TODO. 2891 // ABS(-X) -> ABS(X) 2892 } 2893 2894 if (SelectPatternResult::isMinOrMax(SPF)) { 2895 // Canonicalize so that 2896 // - type casts are outside select patterns. 2897 // - float clamp is transformed to min/max pattern 2898 2899 bool IsCastNeeded = LHS->getType() != SelType; 2900 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2901 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2902 if (IsCastNeeded || 2903 (LHS->getType()->isFPOrFPVectorTy() && 2904 ((CmpLHS != LHS && CmpLHS != RHS) || 2905 (CmpRHS != LHS && CmpRHS != RHS)))) { 2906 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2907 2908 Value *Cmp; 2909 if (CmpInst::isIntPredicate(MinMaxPred)) { 2910 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2911 } else { 2912 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2913 auto FMF = 2914 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2915 Builder.setFastMathFlags(FMF); 2916 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2917 } 2918 2919 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2920 if (!IsCastNeeded) 2921 return replaceInstUsesWith(SI, NewSI); 2922 2923 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2924 return replaceInstUsesWith(SI, NewCast); 2925 } 2926 2927 // MAX(~a, ~b) -> ~MIN(a, b) 2928 // MAX(~a, C) -> ~MIN(a, ~C) 2929 // MIN(~a, ~b) -> ~MAX(a, b) 2930 // MIN(~a, C) -> ~MAX(a, ~C) 2931 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 2932 Value *A; 2933 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 2934 !isFreeToInvert(A, A->hasOneUse()) && 2935 // Passing false to only consider m_Not and constants. 2936 isFreeToInvert(Y, false)) { 2937 Value *B = Builder.CreateNot(Y); 2938 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 2939 A, B); 2940 // Copy the profile metadata. 2941 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 2942 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 2943 // Swap the metadata if the operands are swapped. 2944 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 2945 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 2946 } 2947 2948 return BinaryOperator::CreateNot(NewMinMax); 2949 } 2950 2951 return nullptr; 2952 }; 2953 2954 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 2955 return I; 2956 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2957 return I; 2958 2959 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2960 return I; 2961 2962 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2963 return I; 2964 if (Instruction *I = matchSAddSubSat(SI)) 2965 return I; 2966 } 2967 } 2968 2969 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2970 // minnum/maxnum intrinsics. 2971 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2972 Value *X, *Y; 2973 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2974 return replaceInstUsesWith( 2975 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2976 2977 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2978 return replaceInstUsesWith( 2979 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 2980 } 2981 2982 // See if we can fold the select into a phi node if the condition is a select. 2983 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2984 // The true/false values have to be live in the PHI predecessor's blocks. 2985 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2986 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2987 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2988 return NV; 2989 2990 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2991 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2992 // select(C, select(C, a, b), c) -> select(C, a, c) 2993 if (TrueSI->getCondition() == CondVal) { 2994 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2995 return nullptr; 2996 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 2997 } 2998 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2999 // We choose this as normal form to enable folding on the And and 3000 // shortening paths for the values (this helps getUnderlyingObjects() for 3001 // example). 3002 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 3003 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 3004 replaceOperand(SI, 0, And); 3005 replaceOperand(SI, 1, TrueSI->getTrueValue()); 3006 return &SI; 3007 } 3008 } 3009 } 3010 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 3011 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 3012 // select(C, a, select(C, b, c)) -> select(C, a, c) 3013 if (FalseSI->getCondition() == CondVal) { 3014 if (SI.getFalseValue() == FalseSI->getFalseValue()) 3015 return nullptr; 3016 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 3017 } 3018 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3019 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3020 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3021 replaceOperand(SI, 0, Or); 3022 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3023 return &SI; 3024 } 3025 } 3026 } 3027 3028 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 3029 // The select might be preventing a division by 0. 3030 switch (BO->getOpcode()) { 3031 default: 3032 return true; 3033 case Instruction::SRem: 3034 case Instruction::URem: 3035 case Instruction::SDiv: 3036 case Instruction::UDiv: 3037 return false; 3038 } 3039 }; 3040 3041 // Try to simplify a binop sandwiched between 2 selects with the same 3042 // condition. 3043 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3044 BinaryOperator *TrueBO; 3045 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 3046 canMergeSelectThroughBinop(TrueBO)) { 3047 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3048 if (TrueBOSI->getCondition() == CondVal) { 3049 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3050 Worklist.push(TrueBO); 3051 return &SI; 3052 } 3053 } 3054 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3055 if (TrueBOSI->getCondition() == CondVal) { 3056 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3057 Worklist.push(TrueBO); 3058 return &SI; 3059 } 3060 } 3061 } 3062 3063 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3064 BinaryOperator *FalseBO; 3065 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 3066 canMergeSelectThroughBinop(FalseBO)) { 3067 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3068 if (FalseBOSI->getCondition() == CondVal) { 3069 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3070 Worklist.push(FalseBO); 3071 return &SI; 3072 } 3073 } 3074 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3075 if (FalseBOSI->getCondition() == CondVal) { 3076 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3077 Worklist.push(FalseBO); 3078 return &SI; 3079 } 3080 } 3081 } 3082 3083 Value *NotCond; 3084 if (match(CondVal, m_Not(m_Value(NotCond))) && 3085 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3086 replaceOperand(SI, 0, NotCond); 3087 SI.swapValues(); 3088 SI.swapProfMetadata(); 3089 return &SI; 3090 } 3091 3092 if (Instruction *I = foldVectorSelect(SI)) 3093 return I; 3094 3095 // If we can compute the condition, there's no need for a select. 3096 // Like the above fold, we are attempting to reduce compile-time cost by 3097 // putting this fold here with limitations rather than in InstSimplify. 3098 // The motivation for this call into value tracking is to take advantage of 3099 // the assumption cache, so make sure that is populated. 3100 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3101 KnownBits Known(1); 3102 computeKnownBits(CondVal, Known, 0, &SI); 3103 if (Known.One.isOneValue()) 3104 return replaceInstUsesWith(SI, TrueVal); 3105 if (Known.Zero.isOneValue()) 3106 return replaceInstUsesWith(SI, FalseVal); 3107 } 3108 3109 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3110 return BitCastSel; 3111 3112 // Simplify selects that test the returned flag of cmpxchg instructions. 3113 if (Value *V = foldSelectCmpXchg(SI)) 3114 return replaceInstUsesWith(SI, V); 3115 3116 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3117 return Select; 3118 3119 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3120 return Funnel; 3121 3122 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3123 return Copysign; 3124 3125 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3126 return replaceInstUsesWith(SI, PN); 3127 3128 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3129 return replaceInstUsesWith(SI, Fr); 3130 3131 return nullptr; 3132 } 3133