1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/MDBuilder.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 static SelectPatternFlavor
26 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
27   switch (SPF) {
28   default:
29     llvm_unreachable("unhandled!");
30 
31   case SPF_SMIN:
32     return SPF_SMAX;
33   case SPF_UMIN:
34     return SPF_UMAX;
35   case SPF_SMAX:
36     return SPF_SMIN;
37   case SPF_UMAX:
38     return SPF_UMIN;
39   }
40 }
41 
42 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
43                                                    bool Ordered=false) {
44   switch (SPF) {
45   default:
46     llvm_unreachable("unhandled!");
47 
48   case SPF_SMIN:
49     return ICmpInst::ICMP_SLT;
50   case SPF_UMIN:
51     return ICmpInst::ICMP_ULT;
52   case SPF_SMAX:
53     return ICmpInst::ICMP_SGT;
54   case SPF_UMAX:
55     return ICmpInst::ICMP_UGT;
56   case SPF_FMINNUM:
57     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
58   case SPF_FMAXNUM:
59     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
60   }
61 }
62 
63 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder,
64                                           SelectPatternFlavor SPF, Value *A,
65                                           Value *B) {
66   CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
67   assert(CmpInst::isIntPredicate(Pred));
68   return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B);
69 }
70 
71 /// We want to turn code that looks like this:
72 ///   %C = or %A, %B
73 ///   %D = select %cond, %C, %A
74 /// into:
75 ///   %C = select %cond, %B, 0
76 ///   %D = or %A, %C
77 ///
78 /// Assuming that the specified instruction is an operand to the select, return
79 /// a bitmask indicating which operands of this instruction are foldable if they
80 /// equal the other incoming value of the select.
81 ///
82 static unsigned getSelectFoldableOperands(Instruction *I) {
83   switch (I->getOpcode()) {
84   case Instruction::Add:
85   case Instruction::Mul:
86   case Instruction::And:
87   case Instruction::Or:
88   case Instruction::Xor:
89     return 3;              // Can fold through either operand.
90   case Instruction::Sub:   // Can only fold on the amount subtracted.
91   case Instruction::Shl:   // Can only fold on the shift amount.
92   case Instruction::LShr:
93   case Instruction::AShr:
94     return 1;
95   default:
96     return 0;              // Cannot fold
97   }
98 }
99 
100 /// For the same transformation as the previous function, return the identity
101 /// constant that goes into the select.
102 static Constant *getSelectFoldableConstant(Instruction *I) {
103   switch (I->getOpcode()) {
104   default: llvm_unreachable("This cannot happen!");
105   case Instruction::Add:
106   case Instruction::Sub:
107   case Instruction::Or:
108   case Instruction::Xor:
109   case Instruction::Shl:
110   case Instruction::LShr:
111   case Instruction::AShr:
112     return Constant::getNullValue(I->getType());
113   case Instruction::And:
114     return Constant::getAllOnesValue(I->getType());
115   case Instruction::Mul:
116     return ConstantInt::get(I->getType(), 1);
117   }
118 }
119 
120 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
121 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
122                                           Instruction *FI) {
123   // If this is a cast from the same type, merge.
124   if (TI->getNumOperands() == 1 && TI->isCast()) {
125     Type *FIOpndTy = FI->getOperand(0)->getType();
126     if (TI->getOperand(0)->getType() != FIOpndTy)
127       return nullptr;
128 
129     // The select condition may be a vector. We may only change the operand
130     // type if the vector width remains the same (and matches the condition).
131     Type *CondTy = SI.getCondition()->getType();
132     if (CondTy->isVectorTy()) {
133       if (!FIOpndTy->isVectorTy())
134         return nullptr;
135       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
136         return nullptr;
137 
138       // TODO: If the backend knew how to deal with casts better, we could
139       // remove this limitation. For now, there's too much potential to create
140       // worse codegen by promoting the select ahead of size-altering casts
141       // (PR28160).
142       //
143       // Note that ValueTracking's matchSelectPattern() looks through casts
144       // without checking 'hasOneUse' when it matches min/max patterns, so this
145       // transform may end up happening anyway.
146       if (TI->getOpcode() != Instruction::BitCast &&
147           (!TI->hasOneUse() || !FI->hasOneUse()))
148         return nullptr;
149 
150     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
151       // TODO: The one-use restrictions for a scalar select could be eased if
152       // the fold of a select in visitLoadInst() was enhanced to match a pattern
153       // that includes a cast.
154       return nullptr;
155     }
156 
157     // Fold this by inserting a select from the input values.
158     Value *NewSI =
159         Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
160                               FI->getOperand(0), SI.getName() + ".v", &SI);
161     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
162                             TI->getType());
163   }
164 
165   // Only handle binary operators with one-use here. As with the cast case
166   // above, it may be possible to relax the one-use constraint, but that needs
167   // be examined carefully since it may not reduce the total number of
168   // instructions.
169   BinaryOperator *BO = dyn_cast<BinaryOperator>(TI);
170   if (!BO || !TI->hasOneUse() || !FI->hasOneUse())
171     return nullptr;
172 
173   // Figure out if the operations have any operands in common.
174   Value *MatchOp, *OtherOpT, *OtherOpF;
175   bool MatchIsOpZero;
176   if (TI->getOperand(0) == FI->getOperand(0)) {
177     MatchOp  = TI->getOperand(0);
178     OtherOpT = TI->getOperand(1);
179     OtherOpF = FI->getOperand(1);
180     MatchIsOpZero = true;
181   } else if (TI->getOperand(1) == FI->getOperand(1)) {
182     MatchOp  = TI->getOperand(1);
183     OtherOpT = TI->getOperand(0);
184     OtherOpF = FI->getOperand(0);
185     MatchIsOpZero = false;
186   } else if (!TI->isCommutative()) {
187     return nullptr;
188   } else if (TI->getOperand(0) == FI->getOperand(1)) {
189     MatchOp  = TI->getOperand(0);
190     OtherOpT = TI->getOperand(1);
191     OtherOpF = FI->getOperand(0);
192     MatchIsOpZero = true;
193   } else if (TI->getOperand(1) == FI->getOperand(0)) {
194     MatchOp  = TI->getOperand(1);
195     OtherOpT = TI->getOperand(0);
196     OtherOpF = FI->getOperand(1);
197     MatchIsOpZero = true;
198   } else {
199     return nullptr;
200   }
201 
202   // If we reach here, they do have operations in common.
203   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
204                                        SI.getName() + ".v", &SI);
205   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
206   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
207   return BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
208 }
209 
210 static bool isSelect01(Constant *C1, Constant *C2) {
211   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
212   if (!C1I)
213     return false;
214   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
215   if (!C2I)
216     return false;
217   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
218     return false;
219   return C1I->isOne() || C1I->isAllOnesValue() ||
220          C2I->isOne() || C2I->isAllOnesValue();
221 }
222 
223 /// Try to fold the select into one of the operands to allow further
224 /// optimization.
225 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
226                                             Value *FalseVal) {
227   // See the comment above GetSelectFoldableOperands for a description of the
228   // transformation we are doing here.
229   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
230     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
231         !isa<Constant>(FalseVal)) {
232       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
233         unsigned OpToFold = 0;
234         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
235           OpToFold = 1;
236         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
237           OpToFold = 2;
238         }
239 
240         if (OpToFold) {
241           Constant *C = getSelectFoldableConstant(TVI);
242           Value *OOp = TVI->getOperand(2-OpToFold);
243           // Avoid creating select between 2 constants unless it's selecting
244           // between 0, 1 and -1.
245           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
246             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
247             NewSel->takeName(TVI);
248             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
249             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
250                                                         FalseVal, NewSel);
251             BO->copyIRFlags(TVI_BO);
252             return BO;
253           }
254         }
255       }
256     }
257   }
258 
259   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
260     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
261         !isa<Constant>(TrueVal)) {
262       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
263         unsigned OpToFold = 0;
264         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
265           OpToFold = 1;
266         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
267           OpToFold = 2;
268         }
269 
270         if (OpToFold) {
271           Constant *C = getSelectFoldableConstant(FVI);
272           Value *OOp = FVI->getOperand(2-OpToFold);
273           // Avoid creating select between 2 constants unless it's selecting
274           // between 0, 1 and -1.
275           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
276             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
277             NewSel->takeName(FVI);
278             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
279             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
280                                                         TrueVal, NewSel);
281             BO->copyIRFlags(FVI_BO);
282             return BO;
283           }
284         }
285       }
286     }
287   }
288 
289   return nullptr;
290 }
291 
292 /// We want to turn:
293 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
294 /// into:
295 ///   (or (shl (and X, C1), C3), y)
296 /// iff:
297 ///   C1 and C2 are both powers of 2
298 /// where:
299 ///   C3 = Log(C2) - Log(C1)
300 ///
301 /// This transform handles cases where:
302 /// 1. The icmp predicate is inverted
303 /// 2. The select operands are reversed
304 /// 3. The magnitude of C2 and C1 are flipped
305 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
306                                   Value *FalseVal,
307                                   InstCombiner::BuilderTy *Builder) {
308   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
309   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
310     return nullptr;
311 
312   Value *CmpLHS = IC->getOperand(0);
313   Value *CmpRHS = IC->getOperand(1);
314 
315   if (!match(CmpRHS, m_Zero()))
316     return nullptr;
317 
318   Value *X;
319   const APInt *C1;
320   if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
321     return nullptr;
322 
323   const APInt *C2;
324   bool OrOnTrueVal = false;
325   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
326   if (!OrOnFalseVal)
327     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
328 
329   if (!OrOnFalseVal && !OrOnTrueVal)
330     return nullptr;
331 
332   Value *V = CmpLHS;
333   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
334 
335   unsigned C1Log = C1->logBase2();
336   unsigned C2Log = C2->logBase2();
337   if (C2Log > C1Log) {
338     V = Builder->CreateZExtOrTrunc(V, Y->getType());
339     V = Builder->CreateShl(V, C2Log - C1Log);
340   } else if (C1Log > C2Log) {
341     V = Builder->CreateLShr(V, C1Log - C2Log);
342     V = Builder->CreateZExtOrTrunc(V, Y->getType());
343   } else
344     V = Builder->CreateZExtOrTrunc(V, Y->getType());
345 
346   ICmpInst::Predicate Pred = IC->getPredicate();
347   if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
348       (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
349     V = Builder->CreateXor(V, *C2);
350 
351   return Builder->CreateOr(V, Y);
352 }
353 
354 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
355 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
356 ///
357 /// For example, we can fold the following code sequence:
358 /// \code
359 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
360 ///   %1 = icmp ne i32 %x, 0
361 ///   %2 = select i1 %1, i32 %0, i32 32
362 /// \code
363 ///
364 /// into:
365 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
366 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
367                                  InstCombiner::BuilderTy *Builder) {
368   ICmpInst::Predicate Pred = ICI->getPredicate();
369   Value *CmpLHS = ICI->getOperand(0);
370   Value *CmpRHS = ICI->getOperand(1);
371 
372   // Check if the condition value compares a value for equality against zero.
373   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
374     return nullptr;
375 
376   Value *Count = FalseVal;
377   Value *ValueOnZero = TrueVal;
378   if (Pred == ICmpInst::ICMP_NE)
379     std::swap(Count, ValueOnZero);
380 
381   // Skip zero extend/truncate.
382   Value *V = nullptr;
383   if (match(Count, m_ZExt(m_Value(V))) ||
384       match(Count, m_Trunc(m_Value(V))))
385     Count = V;
386 
387   // Check if the value propagated on zero is a constant number equal to the
388   // sizeof in bits of 'Count'.
389   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
390   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
391     return nullptr;
392 
393   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
394   // input to the cttz/ctlz is used as LHS for the compare instruction.
395   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
396       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
397     IntrinsicInst *II = cast<IntrinsicInst>(Count);
398     // Explicitly clear the 'undef_on_zero' flag.
399     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
400     Type *Ty = NewI->getArgOperand(1)->getType();
401     NewI->setArgOperand(1, Constant::getNullValue(Ty));
402     Builder->Insert(NewI);
403     return Builder->CreateZExtOrTrunc(NewI, ValueOnZero->getType());
404   }
405 
406   return nullptr;
407 }
408 
409 /// Return true if we find and adjust an icmp+select pattern where the compare
410 /// is with a constant that can be incremented or decremented to match the
411 /// minimum or maximum idiom.
412 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
413   ICmpInst::Predicate Pred = Cmp.getPredicate();
414   Value *CmpLHS = Cmp.getOperand(0);
415   Value *CmpRHS = Cmp.getOperand(1);
416   Value *TrueVal = Sel.getTrueValue();
417   Value *FalseVal = Sel.getFalseValue();
418 
419   // We may move or edit the compare, so make sure the select is the only user.
420   const APInt *CmpC;
421   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
422     return false;
423 
424   // These transforms only work for selects of integers or vector selects of
425   // integer vectors.
426   Type *SelTy = Sel.getType();
427   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
428   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
429     return false;
430 
431   Constant *AdjustedRHS;
432   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
433     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
434   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
435     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
436   else
437     return false;
438 
439   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
440   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
441   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
442       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
443     ; // Nothing to do here. Values match without any sign/zero extension.
444   }
445   // Types do not match. Instead of calculating this with mixed types, promote
446   // all to the larger type. This enables scalar evolution to analyze this
447   // expression.
448   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
449     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
450 
451     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
452     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
453     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
454     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
455     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
456       CmpLHS = TrueVal;
457       AdjustedRHS = SextRHS;
458     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
459                SextRHS == TrueVal) {
460       CmpLHS = FalseVal;
461       AdjustedRHS = SextRHS;
462     } else if (Cmp.isUnsigned()) {
463       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
464       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
465       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
466       // zext + signed compare cannot be changed:
467       //    0xff <s 0x00, but 0x00ff >s 0x0000
468       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
469         CmpLHS = TrueVal;
470         AdjustedRHS = ZextRHS;
471       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
472                  ZextRHS == TrueVal) {
473         CmpLHS = FalseVal;
474         AdjustedRHS = ZextRHS;
475       } else {
476         return false;
477       }
478     } else {
479       return false;
480     }
481   } else {
482     return false;
483   }
484 
485   Pred = ICmpInst::getSwappedPredicate(Pred);
486   CmpRHS = AdjustedRHS;
487   std::swap(FalseVal, TrueVal);
488   Cmp.setPredicate(Pred);
489   Cmp.setOperand(0, CmpLHS);
490   Cmp.setOperand(1, CmpRHS);
491   Sel.setOperand(1, TrueVal);
492   Sel.setOperand(2, FalseVal);
493   Sel.swapProfMetadata();
494 
495   // Move the compare instruction right before the select instruction. Otherwise
496   // the sext/zext value may be defined after the compare instruction uses it.
497   Cmp.moveBefore(&Sel);
498 
499   return true;
500 }
501 
502 /// If this is an integer min/max (icmp + select) with a constant operand,
503 /// create the canonical icmp for the min/max operation and canonicalize the
504 /// constant to the 'false' operand of the select:
505 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
506 /// Note: if C1 != C2, this will change the icmp constant to the existing
507 /// constant operand of the select.
508 static Instruction *
509 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
510                                InstCombiner::BuilderTy &Builder) {
511   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
512     return nullptr;
513 
514   // Canonicalize the compare predicate based on whether we have min or max.
515   Value *LHS, *RHS;
516   ICmpInst::Predicate NewPred;
517   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
518   switch (SPR.Flavor) {
519   case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break;
520   case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break;
521   case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break;
522   case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break;
523   default: return nullptr;
524   }
525 
526   // Is this already canonical?
527   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
528       Cmp.getPredicate() == NewPred)
529     return nullptr;
530 
531   // Create the canonical compare and plug it into the select.
532   Sel.setCondition(Builder.CreateICmp(NewPred, LHS, RHS));
533 
534   // If the select operands did not change, we're done.
535   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
536     return &Sel;
537 
538   // If we are swapping the select operands, swap the metadata too.
539   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
540          "Unexpected results from matchSelectPattern");
541   Sel.setTrueValue(LHS);
542   Sel.setFalseValue(RHS);
543   Sel.swapProfMetadata();
544   return &Sel;
545 }
546 
547 /// Visit a SelectInst that has an ICmpInst as its first operand.
548 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
549                                                   ICmpInst *ICI) {
550   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *Builder))
551     return NewSel;
552 
553   bool Changed = adjustMinMax(SI, *ICI);
554 
555   ICmpInst::Predicate Pred = ICI->getPredicate();
556   Value *CmpLHS = ICI->getOperand(0);
557   Value *CmpRHS = ICI->getOperand(1);
558   Value *TrueVal = SI.getTrueValue();
559   Value *FalseVal = SI.getFalseValue();
560 
561   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
562   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
563   // FIXME: Type and constness constraints could be lifted, but we have to
564   //        watch code size carefully. We should consider xor instead of
565   //        sub/add when we decide to do that.
566   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
567     if (TrueVal->getType() == Ty) {
568       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
569         ConstantInt *C1 = nullptr, *C2 = nullptr;
570         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
571           C1 = dyn_cast<ConstantInt>(TrueVal);
572           C2 = dyn_cast<ConstantInt>(FalseVal);
573         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
574           C1 = dyn_cast<ConstantInt>(FalseVal);
575           C2 = dyn_cast<ConstantInt>(TrueVal);
576         }
577         if (C1 && C2) {
578           // This shift results in either -1 or 0.
579           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
580 
581           // Check if we can express the operation with a single or.
582           if (C2->isAllOnesValue())
583             return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
584 
585           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
586           return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
587         }
588       }
589     }
590   }
591 
592   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
593 
594   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
595     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
596       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
597       SI.setOperand(1, CmpRHS);
598       Changed = true;
599     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
600       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
601       SI.setOperand(2, CmpRHS);
602       Changed = true;
603     }
604   }
605 
606   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
607   // decomposeBitTestICmp() might help.
608   {
609     unsigned BitWidth =
610         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
611     APInt MinSignedValue = APInt::getSignBit(BitWidth);
612     Value *X;
613     const APInt *Y, *C;
614     bool TrueWhenUnset;
615     bool IsBitTest = false;
616     if (ICmpInst::isEquality(Pred) &&
617         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
618         match(CmpRHS, m_Zero())) {
619       IsBitTest = true;
620       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
621     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
622       X = CmpLHS;
623       Y = &MinSignedValue;
624       IsBitTest = true;
625       TrueWhenUnset = false;
626     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
627       X = CmpLHS;
628       Y = &MinSignedValue;
629       IsBitTest = true;
630       TrueWhenUnset = true;
631     }
632     if (IsBitTest) {
633       Value *V = nullptr;
634       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
635       if (TrueWhenUnset && TrueVal == X &&
636           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
637         V = Builder->CreateAnd(X, ~(*Y));
638       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
639       else if (!TrueWhenUnset && FalseVal == X &&
640                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
641         V = Builder->CreateAnd(X, ~(*Y));
642       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
643       else if (TrueWhenUnset && FalseVal == X &&
644                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
645         V = Builder->CreateOr(X, *Y);
646       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
647       else if (!TrueWhenUnset && TrueVal == X &&
648                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
649         V = Builder->CreateOr(X, *Y);
650 
651       if (V)
652         return replaceInstUsesWith(SI, V);
653     }
654   }
655 
656   if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
657     return replaceInstUsesWith(SI, V);
658 
659   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
660     return replaceInstUsesWith(SI, V);
661 
662   return Changed ? &SI : nullptr;
663 }
664 
665 
666 /// SI is a select whose condition is a PHI node (but the two may be in
667 /// different blocks). See if the true/false values (V) are live in all of the
668 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
669 ///
670 ///   X = phi [ C1, BB1], [C2, BB2]
671 ///   Y = add
672 ///   Z = select X, Y, 0
673 ///
674 /// because Y is not live in BB1/BB2.
675 ///
676 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
677                                                    const SelectInst &SI) {
678   // If the value is a non-instruction value like a constant or argument, it
679   // can always be mapped.
680   const Instruction *I = dyn_cast<Instruction>(V);
681   if (!I) return true;
682 
683   // If V is a PHI node defined in the same block as the condition PHI, we can
684   // map the arguments.
685   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
686 
687   if (const PHINode *VP = dyn_cast<PHINode>(I))
688     if (VP->getParent() == CondPHI->getParent())
689       return true;
690 
691   // Otherwise, if the PHI and select are defined in the same block and if V is
692   // defined in a different block, then we can transform it.
693   if (SI.getParent() == CondPHI->getParent() &&
694       I->getParent() != CondPHI->getParent())
695     return true;
696 
697   // Otherwise we have a 'hard' case and we can't tell without doing more
698   // detailed dominator based analysis, punt.
699   return false;
700 }
701 
702 /// We have an SPF (e.g. a min or max) of an SPF of the form:
703 ///   SPF2(SPF1(A, B), C)
704 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
705                                         SelectPatternFlavor SPF1,
706                                         Value *A, Value *B,
707                                         Instruction &Outer,
708                                         SelectPatternFlavor SPF2, Value *C) {
709   if (Outer.getType() != Inner->getType())
710     return nullptr;
711 
712   if (C == A || C == B) {
713     // MAX(MAX(A, B), B) -> MAX(A, B)
714     // MIN(MIN(a, b), a) -> MIN(a, b)
715     if (SPF1 == SPF2)
716       return replaceInstUsesWith(Outer, Inner);
717 
718     // MAX(MIN(a, b), a) -> a
719     // MIN(MAX(a, b), a) -> a
720     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
721         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
722         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
723         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
724       return replaceInstUsesWith(Outer, C);
725   }
726 
727   if (SPF1 == SPF2) {
728     const APInt *CB, *CC;
729     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
730       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
731       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
732       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
733           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
734           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
735           (SPF1 == SPF_SMAX && CB->sge(*CC)))
736         return replaceInstUsesWith(Outer, Inner);
737 
738       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
739       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
740       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
741           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
742           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
743           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
744         Outer.replaceUsesOfWith(Inner, A);
745         return &Outer;
746       }
747     }
748   }
749 
750   // ABS(ABS(X)) -> ABS(X)
751   // NABS(NABS(X)) -> NABS(X)
752   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
753     return replaceInstUsesWith(Outer, Inner);
754   }
755 
756   // ABS(NABS(X)) -> ABS(X)
757   // NABS(ABS(X)) -> NABS(X)
758   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
759       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
760     SelectInst *SI = cast<SelectInst>(Inner);
761     Value *NewSI =
762         Builder->CreateSelect(SI->getCondition(), SI->getFalseValue(),
763                               SI->getTrueValue(), SI->getName(), SI);
764     return replaceInstUsesWith(Outer, NewSI);
765   }
766 
767   auto IsFreeOrProfitableToInvert =
768       [&](Value *V, Value *&NotV, bool &ElidesXor) {
769     if (match(V, m_Not(m_Value(NotV)))) {
770       // If V has at most 2 uses then we can get rid of the xor operation
771       // entirely.
772       ElidesXor |= !V->hasNUsesOrMore(3);
773       return true;
774     }
775 
776     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
777       NotV = nullptr;
778       return true;
779     }
780 
781     return false;
782   };
783 
784   Value *NotA, *NotB, *NotC;
785   bool ElidesXor = false;
786 
787   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
788   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
789   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
790   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
791   //
792   // This transform is performance neutral if we can elide at least one xor from
793   // the set of three operands, since we'll be tacking on an xor at the very
794   // end.
795   if (SelectPatternResult::isMinOrMax(SPF1) &&
796       SelectPatternResult::isMinOrMax(SPF2) &&
797       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
798       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
799       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
800     if (!NotA)
801       NotA = Builder->CreateNot(A);
802     if (!NotB)
803       NotB = Builder->CreateNot(B);
804     if (!NotC)
805       NotC = Builder->CreateNot(C);
806 
807     Value *NewInner = generateMinMaxSelectPattern(
808         Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
809     Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern(
810         Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
811     return replaceInstUsesWith(Outer, NewOuter);
812   }
813 
814   return nullptr;
815 }
816 
817 /// If one of the constants is zero (we know they can't both be) and we have an
818 /// icmp instruction with zero, and we have an 'and' with the non-constant value
819 /// and a power of two we can turn the select into a shift on the result of the
820 /// 'and'.
821 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
822                                 ConstantInt *FalseVal,
823                                 InstCombiner::BuilderTy *Builder) {
824   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
825   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
826     return nullptr;
827 
828   if (!match(IC->getOperand(1), m_Zero()))
829     return nullptr;
830 
831   ConstantInt *AndRHS;
832   Value *LHS = IC->getOperand(0);
833   if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
834     return nullptr;
835 
836   // If both select arms are non-zero see if we have a select of the form
837   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
838   // for 'x ? 2^n : 0' and fix the thing up at the end.
839   ConstantInt *Offset = nullptr;
840   if (!TrueVal->isZero() && !FalseVal->isZero()) {
841     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
842       Offset = FalseVal;
843     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
844       Offset = TrueVal;
845     else
846       return nullptr;
847 
848     // Adjust TrueVal and FalseVal to the offset.
849     TrueVal = ConstantInt::get(Builder->getContext(),
850                                TrueVal->getValue() - Offset->getValue());
851     FalseVal = ConstantInt::get(Builder->getContext(),
852                                 FalseVal->getValue() - Offset->getValue());
853   }
854 
855   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
856   if (!AndRHS->getValue().isPowerOf2() ||
857       (!TrueVal->getValue().isPowerOf2() &&
858        !FalseVal->getValue().isPowerOf2()))
859     return nullptr;
860 
861   // Determine which shift is needed to transform result of the 'and' into the
862   // desired result.
863   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
864   unsigned ValZeros = ValC->getValue().logBase2();
865   unsigned AndZeros = AndRHS->getValue().logBase2();
866 
867   // If types don't match we can still convert the select by introducing a zext
868   // or a trunc of the 'and'. The trunc case requires that all of the truncated
869   // bits are zero, we can figure that out by looking at the 'and' mask.
870   if (AndZeros >= ValC->getBitWidth())
871     return nullptr;
872 
873   Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
874   if (ValZeros > AndZeros)
875     V = Builder->CreateShl(V, ValZeros - AndZeros);
876   else if (ValZeros < AndZeros)
877     V = Builder->CreateLShr(V, AndZeros - ValZeros);
878 
879   // Okay, now we know that everything is set up, we just don't know whether we
880   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
881   bool ShouldNotVal = !TrueVal->isZero();
882   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
883   if (ShouldNotVal)
884     V = Builder->CreateXor(V, ValC);
885 
886   // Apply an offset if needed.
887   if (Offset)
888     V = Builder->CreateAdd(V, Offset);
889   return V;
890 }
891 
892 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
893 /// This is even legal for FP.
894 static Instruction *foldAddSubSelect(SelectInst &SI,
895                                      InstCombiner::BuilderTy &Builder) {
896   Value *CondVal = SI.getCondition();
897   Value *TrueVal = SI.getTrueValue();
898   Value *FalseVal = SI.getFalseValue();
899   auto *TI = dyn_cast<Instruction>(TrueVal);
900   auto *FI = dyn_cast<Instruction>(FalseVal);
901   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
902     return nullptr;
903 
904   Instruction *AddOp = nullptr, *SubOp = nullptr;
905   if ((TI->getOpcode() == Instruction::Sub &&
906        FI->getOpcode() == Instruction::Add) ||
907       (TI->getOpcode() == Instruction::FSub &&
908        FI->getOpcode() == Instruction::FAdd)) {
909     AddOp = FI;
910     SubOp = TI;
911   } else if ((FI->getOpcode() == Instruction::Sub &&
912               TI->getOpcode() == Instruction::Add) ||
913              (FI->getOpcode() == Instruction::FSub &&
914               TI->getOpcode() == Instruction::FAdd)) {
915     AddOp = TI;
916     SubOp = FI;
917   }
918 
919   if (AddOp) {
920     Value *OtherAddOp = nullptr;
921     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
922       OtherAddOp = AddOp->getOperand(1);
923     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
924       OtherAddOp = AddOp->getOperand(0);
925     }
926 
927     if (OtherAddOp) {
928       // So at this point we know we have (Y -> OtherAddOp):
929       //        select C, (add X, Y), (sub X, Z)
930       Value *NegVal; // Compute -Z
931       if (SI.getType()->isFPOrFPVectorTy()) {
932         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
933         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
934           FastMathFlags Flags = AddOp->getFastMathFlags();
935           Flags &= SubOp->getFastMathFlags();
936           NegInst->setFastMathFlags(Flags);
937         }
938       } else {
939         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
940       }
941 
942       Value *NewTrueOp = OtherAddOp;
943       Value *NewFalseOp = NegVal;
944       if (AddOp != TI)
945         std::swap(NewTrueOp, NewFalseOp);
946       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
947                                            SI.getName() + ".p", &SI);
948 
949       if (SI.getType()->isFPOrFPVectorTy()) {
950         Instruction *RI =
951             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
952 
953         FastMathFlags Flags = AddOp->getFastMathFlags();
954         Flags &= SubOp->getFastMathFlags();
955         RI->setFastMathFlags(Flags);
956         return RI;
957       } else
958         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
959     }
960   }
961   return nullptr;
962 }
963 
964 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
965   Instruction *ExtInst;
966   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
967       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
968     return nullptr;
969 
970   auto ExtOpcode = ExtInst->getOpcode();
971   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
972     return nullptr;
973 
974   // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too.
975   Value *X = ExtInst->getOperand(0);
976   Type *SmallType = X->getType();
977   if (!SmallType->getScalarType()->isIntegerTy(1))
978     return nullptr;
979 
980   Constant *C;
981   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
982       !match(Sel.getFalseValue(), m_Constant(C)))
983     return nullptr;
984 
985   // If the constant is the same after truncation to the smaller type and
986   // extension to the original type, we can narrow the select.
987   Value *Cond = Sel.getCondition();
988   Type *SelType = Sel.getType();
989   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
990   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
991   if (ExtC == C) {
992     Value *TruncCVal = cast<Value>(TruncC);
993     if (ExtInst == Sel.getFalseValue())
994       std::swap(X, TruncCVal);
995 
996     // select Cond, (ext X), C --> ext(select Cond, X, C')
997     // select Cond, C, (ext X) --> ext(select Cond, C', X)
998     Value *NewSel = Builder->CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
999     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1000   }
1001 
1002   // If one arm of the select is the extend of the condition, replace that arm
1003   // with the extension of the appropriate known bool value.
1004   if (Cond == X) {
1005     if (ExtInst == Sel.getTrueValue()) {
1006       // select X, (sext X), C --> select X, -1, C
1007       // select X, (zext X), C --> select X,  1, C
1008       Constant *One = ConstantInt::getTrue(SmallType);
1009       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1010       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1011     } else {
1012       // select X, C, (sext X) --> select X, C, 0
1013       // select X, C, (zext X) --> select X, C, 0
1014       Constant *Zero = ConstantInt::getNullValue(SelType);
1015       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1016     }
1017   }
1018 
1019   return nullptr;
1020 }
1021 
1022 /// Try to transform a vector select with a constant condition vector into a
1023 /// shuffle for easier combining with other shuffles and insert/extract.
1024 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1025   Value *CondVal = SI.getCondition();
1026   Constant *CondC;
1027   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1028     return nullptr;
1029 
1030   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1031   SmallVector<Constant *, 16> Mask;
1032   Mask.reserve(NumElts);
1033   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1034   for (unsigned i = 0; i != NumElts; ++i) {
1035     Constant *Elt = CondC->getAggregateElement(i);
1036     if (!Elt)
1037       return nullptr;
1038 
1039     if (Elt->isOneValue()) {
1040       // If the select condition element is true, choose from the 1st vector.
1041       Mask.push_back(ConstantInt::get(Int32Ty, i));
1042     } else if (Elt->isNullValue()) {
1043       // If the select condition element is false, choose from the 2nd vector.
1044       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1045     } else if (isa<UndefValue>(Elt)) {
1046       // If the select condition element is undef, the shuffle mask is undef.
1047       Mask.push_back(UndefValue::get(Int32Ty));
1048     } else {
1049       // Bail out on a constant expression.
1050       return nullptr;
1051     }
1052   }
1053 
1054   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1055                                ConstantVector::get(Mask));
1056 }
1057 
1058 /// Reuse bitcasted operands between a compare and select:
1059 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1060 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1061 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1062                                           InstCombiner::BuilderTy &Builder) {
1063   Value *Cond = Sel.getCondition();
1064   Value *TVal = Sel.getTrueValue();
1065   Value *FVal = Sel.getFalseValue();
1066 
1067   CmpInst::Predicate Pred;
1068   Value *A, *B;
1069   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1070     return nullptr;
1071 
1072   // The select condition is a compare instruction. If the select's true/false
1073   // values are already the same as the compare operands, there's nothing to do.
1074   if (TVal == A || TVal == B || FVal == A || FVal == B)
1075     return nullptr;
1076 
1077   Value *C, *D;
1078   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1079     return nullptr;
1080 
1081   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1082   Value *TSrc, *FSrc;
1083   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1084       !match(FVal, m_BitCast(m_Value(FSrc))))
1085     return nullptr;
1086 
1087   // If the select true/false values are *different bitcasts* of the same source
1088   // operands, make the select operands the same as the compare operands and
1089   // cast the result. This is the canonical select form for min/max.
1090   Value *NewSel;
1091   if (TSrc == C && FSrc == D) {
1092     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1093     // bitcast (select (cmp A, B), A, B)
1094     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1095   } else if (TSrc == D && FSrc == C) {
1096     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1097     // bitcast (select (cmp A, B), B, A)
1098     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1099   } else {
1100     return nullptr;
1101   }
1102   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1103 }
1104 
1105 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
1106   Value *CondVal = SI.getCondition();
1107   Value *TrueVal = SI.getTrueValue();
1108   Value *FalseVal = SI.getFalseValue();
1109   Type *SelType = SI.getType();
1110 
1111   if (Value *V =
1112           SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, &TLI, &DT, &AC))
1113     return replaceInstUsesWith(SI, V);
1114 
1115   if (Instruction *I = canonicalizeSelectToShuffle(SI))
1116     return I;
1117 
1118   if (SelType->getScalarType()->isIntegerTy(1) &&
1119       TrueVal->getType() == CondVal->getType()) {
1120     if (match(TrueVal, m_One())) {
1121       // Change: A = select B, true, C --> A = or B, C
1122       return BinaryOperator::CreateOr(CondVal, FalseVal);
1123     }
1124     if (match(TrueVal, m_Zero())) {
1125       // Change: A = select B, false, C --> A = and !B, C
1126       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1127       return BinaryOperator::CreateAnd(NotCond, FalseVal);
1128     }
1129     if (match(FalseVal, m_Zero())) {
1130       // Change: A = select B, C, false --> A = and B, C
1131       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1132     }
1133     if (match(FalseVal, m_One())) {
1134       // Change: A = select B, C, true --> A = or !B, C
1135       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1136       return BinaryOperator::CreateOr(NotCond, TrueVal);
1137     }
1138 
1139     // select a, a, b  -> a | b
1140     // select a, b, a  -> a & b
1141     if (CondVal == TrueVal)
1142       return BinaryOperator::CreateOr(CondVal, FalseVal);
1143     if (CondVal == FalseVal)
1144       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1145 
1146     // select a, ~a, b -> (~a) & b
1147     // select a, b, ~a -> (~a) | b
1148     if (match(TrueVal, m_Not(m_Specific(CondVal))))
1149       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
1150     if (match(FalseVal, m_Not(m_Specific(CondVal))))
1151       return BinaryOperator::CreateOr(TrueVal, FalseVal);
1152   }
1153 
1154   // Selecting between two integer or vector splat integer constants?
1155   //
1156   // Note that we don't handle a scalar select of vectors:
1157   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
1158   // because that may need 3 instructions to splat the condition value:
1159   // extend, insertelement, shufflevector.
1160   if (CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
1161     // select C, 1, 0 -> zext C to int
1162     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
1163       return new ZExtInst(CondVal, SelType);
1164 
1165     // select C, -1, 0 -> sext C to int
1166     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
1167       return new SExtInst(CondVal, SelType);
1168 
1169     // select C, 0, 1 -> zext !C to int
1170     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
1171       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1172       return new ZExtInst(NotCond, SelType);
1173     }
1174 
1175     // select C, 0, -1 -> sext !C to int
1176     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
1177       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1178       return new SExtInst(NotCond, SelType);
1179     }
1180   }
1181 
1182   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
1183     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal))
1184       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
1185         return replaceInstUsesWith(SI, V);
1186 
1187   // See if we are selecting two values based on a comparison of the two values.
1188   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
1189     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
1190       // Transform (X == Y) ? X : Y  -> Y
1191       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1192         // This is not safe in general for floating point:
1193         // consider X== -0, Y== +0.
1194         // It becomes safe if either operand is a nonzero constant.
1195         ConstantFP *CFPt, *CFPf;
1196         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1197               !CFPt->getValueAPF().isZero()) ||
1198             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1199              !CFPf->getValueAPF().isZero()))
1200         return replaceInstUsesWith(SI, FalseVal);
1201       }
1202       // Transform (X une Y) ? X : Y  -> X
1203       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1204         // This is not safe in general for floating point:
1205         // consider X== -0, Y== +0.
1206         // It becomes safe if either operand is a nonzero constant.
1207         ConstantFP *CFPt, *CFPf;
1208         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1209               !CFPt->getValueAPF().isZero()) ||
1210             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1211              !CFPf->getValueAPF().isZero()))
1212         return replaceInstUsesWith(SI, TrueVal);
1213       }
1214 
1215       // Canonicalize to use ordered comparisons by swapping the select
1216       // operands.
1217       //
1218       // e.g.
1219       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1220       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1221         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1222         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1223         Builder->setFastMathFlags(FCI->getFastMathFlags());
1224         Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal,
1225                                              FCI->getName() + ".inv");
1226 
1227         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1228                                   SI.getName() + ".p");
1229       }
1230 
1231       // NOTE: if we wanted to, this is where to detect MIN/MAX
1232     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1233       // Transform (X == Y) ? Y : X  -> X
1234       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1235         // This is not safe in general for floating point:
1236         // consider X== -0, Y== +0.
1237         // It becomes safe if either operand is a nonzero constant.
1238         ConstantFP *CFPt, *CFPf;
1239         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1240               !CFPt->getValueAPF().isZero()) ||
1241             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1242              !CFPf->getValueAPF().isZero()))
1243           return replaceInstUsesWith(SI, FalseVal);
1244       }
1245       // Transform (X une Y) ? Y : X  -> Y
1246       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1247         // This is not safe in general for floating point:
1248         // consider X== -0, Y== +0.
1249         // It becomes safe if either operand is a nonzero constant.
1250         ConstantFP *CFPt, *CFPf;
1251         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1252               !CFPt->getValueAPF().isZero()) ||
1253             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1254              !CFPf->getValueAPF().isZero()))
1255           return replaceInstUsesWith(SI, TrueVal);
1256       }
1257 
1258       // Canonicalize to use ordered comparisons by swapping the select
1259       // operands.
1260       //
1261       // e.g.
1262       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1263       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1264         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1265         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1266         Builder->setFastMathFlags(FCI->getFastMathFlags());
1267         Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal,
1268                                              FCI->getName() + ".inv");
1269 
1270         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1271                                   SI.getName() + ".p");
1272       }
1273 
1274       // NOTE: if we wanted to, this is where to detect MIN/MAX
1275     }
1276     // NOTE: if we wanted to, this is where to detect ABS
1277   }
1278 
1279   // See if we are selecting two values based on a comparison of the two values.
1280   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1281     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
1282       return Result;
1283 
1284   if (Instruction *Add = foldAddSubSelect(SI, *Builder))
1285     return Add;
1286 
1287   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1288   auto *TI = dyn_cast<Instruction>(TrueVal);
1289   auto *FI = dyn_cast<Instruction>(FalseVal);
1290   if (TI && FI && TI->getOpcode() == FI->getOpcode())
1291     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
1292       return IV;
1293 
1294   if (Instruction *I = foldSelectExtConst(SI))
1295     return I;
1296 
1297   // See if we can fold the select into one of our operands.
1298   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1299     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
1300       return FoldI;
1301 
1302     Value *LHS, *RHS, *LHS2, *RHS2;
1303     Instruction::CastOps CastOp;
1304     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1305     auto SPF = SPR.Flavor;
1306 
1307     if (SelectPatternResult::isMinOrMax(SPF)) {
1308       // Canonicalize so that type casts are outside select patterns.
1309       if (LHS->getType()->getPrimitiveSizeInBits() !=
1310           SelType->getPrimitiveSizeInBits()) {
1311         CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
1312 
1313         Value *Cmp;
1314         if (CmpInst::isIntPredicate(Pred)) {
1315           Cmp = Builder->CreateICmp(Pred, LHS, RHS);
1316         } else {
1317           IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1318           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1319           Builder->setFastMathFlags(FMF);
1320           Cmp = Builder->CreateFCmp(Pred, LHS, RHS);
1321         }
1322 
1323         Value *NewSI = Builder->CreateCast(
1324             CastOp, Builder->CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI),
1325             SelType);
1326         return replaceInstUsesWith(SI, NewSI);
1327       }
1328     }
1329 
1330     if (SPF) {
1331       // MAX(MAX(a, b), a) -> MAX(a, b)
1332       // MIN(MIN(a, b), a) -> MIN(a, b)
1333       // MAX(MIN(a, b), a) -> a
1334       // MIN(MAX(a, b), a) -> a
1335       // ABS(ABS(a)) -> ABS(a)
1336       // NABS(NABS(a)) -> NABS(a)
1337       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1338         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
1339                                           SI, SPF, RHS))
1340           return R;
1341       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1342         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
1343                                           SI, SPF, LHS))
1344           return R;
1345     }
1346 
1347     // MAX(~a, ~b) -> ~MIN(a, b)
1348     if ((SPF == SPF_SMAX || SPF == SPF_UMAX) &&
1349         IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
1350         IsFreeToInvert(RHS, RHS->hasNUses(2))) {
1351       // For this transform to be profitable, we need to eliminate at least two
1352       // 'not' instructions if we're going to add one 'not' instruction.
1353       int NumberOfNots =
1354           (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) +
1355           (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) +
1356           (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
1357 
1358       if (NumberOfNots >= 2) {
1359         Value *NewLHS = Builder->CreateNot(LHS);
1360         Value *NewRHS = Builder->CreateNot(RHS);
1361         Value *NewCmp = SPF == SPF_SMAX
1362                             ? Builder->CreateICmpSLT(NewLHS, NewRHS)
1363                             : Builder->CreateICmpULT(NewLHS, NewRHS);
1364         Value *NewSI =
1365             Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS));
1366         return replaceInstUsesWith(SI, NewSI);
1367       }
1368     }
1369 
1370     // TODO.
1371     // ABS(-X) -> ABS(X)
1372   }
1373 
1374   // See if we can fold the select into a phi node if the condition is a select.
1375   if (isa<PHINode>(SI.getCondition()))
1376     // The true/false values have to be live in the PHI predecessor's blocks.
1377     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1378         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1379       if (Instruction *NV = FoldOpIntoPhi(SI))
1380         return NV;
1381 
1382   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1383     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1384       // select(C, select(C, a, b), c) -> select(C, a, c)
1385       if (TrueSI->getCondition() == CondVal) {
1386         if (SI.getTrueValue() == TrueSI->getTrueValue())
1387           return nullptr;
1388         SI.setOperand(1, TrueSI->getTrueValue());
1389         return &SI;
1390       }
1391       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1392       // We choose this as normal form to enable folding on the And and shortening
1393       // paths for the values (this helps GetUnderlyingObjects() for example).
1394       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1395         Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition());
1396         SI.setOperand(0, And);
1397         SI.setOperand(1, TrueSI->getTrueValue());
1398         return &SI;
1399       }
1400     }
1401   }
1402   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1403     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1404       // select(C, a, select(C, b, c)) -> select(C, a, c)
1405       if (FalseSI->getCondition() == CondVal) {
1406         if (SI.getFalseValue() == FalseSI->getFalseValue())
1407           return nullptr;
1408         SI.setOperand(2, FalseSI->getFalseValue());
1409         return &SI;
1410       }
1411       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1412       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1413         Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition());
1414         SI.setOperand(0, Or);
1415         SI.setOperand(2, FalseSI->getFalseValue());
1416         return &SI;
1417       }
1418     }
1419   }
1420 
1421   if (BinaryOperator::isNot(CondVal)) {
1422     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
1423     SI.setOperand(1, FalseVal);
1424     SI.setOperand(2, TrueVal);
1425     return &SI;
1426   }
1427 
1428   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
1429     unsigned VWidth = VecTy->getNumElements();
1430     APInt UndefElts(VWidth, 0);
1431     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1432     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
1433       if (V != &SI)
1434         return replaceInstUsesWith(SI, V);
1435       return &SI;
1436     }
1437 
1438     if (isa<ConstantAggregateZero>(CondVal)) {
1439       return replaceInstUsesWith(SI, FalseVal);
1440     }
1441   }
1442 
1443   // See if we can determine the result of this select based on a dominating
1444   // condition.
1445   BasicBlock *Parent = SI.getParent();
1446   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
1447     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
1448     if (PBI && PBI->isConditional() &&
1449         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
1450         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
1451       bool CondIsFalse = PBI->getSuccessor(1) == Parent;
1452       Optional<bool> Implication = isImpliedCondition(
1453         PBI->getCondition(), SI.getCondition(), DL, CondIsFalse);
1454       if (Implication) {
1455         Value *V = *Implication ? TrueVal : FalseVal;
1456         return replaceInstUsesWith(SI, V);
1457       }
1458     }
1459   }
1460 
1461   // If we can compute the condition, there's no need for a select.
1462   // Like the above fold, we are attempting to reduce compile-time cost by
1463   // putting this fold here with limitations rather than in InstSimplify.
1464   // The motivation for this call into value tracking is to take advantage of
1465   // the assumption cache, so make sure that is populated.
1466   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
1467     APInt KnownOne(1, 0), KnownZero(1, 0);
1468     computeKnownBits(CondVal, KnownZero, KnownOne, 0, &SI);
1469     if (KnownOne == 1)
1470       return replaceInstUsesWith(SI, TrueVal);
1471     if (KnownZero == 1)
1472       return replaceInstUsesWith(SI, FalseVal);
1473   }
1474 
1475   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, *Builder))
1476     return BitCastSel;
1477 
1478   return nullptr;
1479 }
1480