1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/OverflowInstAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/InstCombine/InstCombiner.h" 42 #include <cassert> 43 #include <utility> 44 45 #define DEBUG_TYPE "instcombine" 46 #include "llvm/Transforms/Utils/InstructionWorklist.h" 47 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 52 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 53 SelectPatternFlavor SPF, Value *A, Value *B) { 54 CmpInst::Predicate Pred = getMinMaxPred(SPF); 55 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 56 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 57 } 58 59 /// Replace a select operand based on an equality comparison with the identity 60 /// constant of a binop. 61 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 62 const TargetLibraryInfo &TLI, 63 InstCombinerImpl &IC) { 64 // The select condition must be an equality compare with a constant operand. 65 Value *X; 66 Constant *C; 67 CmpInst::Predicate Pred; 68 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 69 return nullptr; 70 71 bool IsEq; 72 if (ICmpInst::isEquality(Pred)) 73 IsEq = Pred == ICmpInst::ICMP_EQ; 74 else if (Pred == FCmpInst::FCMP_OEQ) 75 IsEq = true; 76 else if (Pred == FCmpInst::FCMP_UNE) 77 IsEq = false; 78 else 79 return nullptr; 80 81 // A select operand must be a binop. 82 BinaryOperator *BO; 83 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 84 return nullptr; 85 86 // The compare constant must be the identity constant for that binop. 87 // If this a floating-point compare with 0.0, any zero constant will do. 88 Type *Ty = BO->getType(); 89 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 90 if (IdC != C) { 91 if (!IdC || !CmpInst::isFPPredicate(Pred)) 92 return nullptr; 93 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 94 return nullptr; 95 } 96 97 // Last, match the compare variable operand with a binop operand. 98 Value *Y; 99 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 100 return nullptr; 101 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 102 return nullptr; 103 104 // +0.0 compares equal to -0.0, and so it does not behave as required for this 105 // transform. Bail out if we can not exclude that possibility. 106 if (isa<FPMathOperator>(BO)) 107 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 108 return nullptr; 109 110 // BO = binop Y, X 111 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 112 // => 113 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 114 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 115 } 116 117 /// This folds: 118 /// select (icmp eq (and X, C1)), TC, FC 119 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 120 /// To something like: 121 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 122 /// Or: 123 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 124 /// With some variations depending if FC is larger than TC, or the shift 125 /// isn't needed, or the bit widths don't match. 126 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 127 InstCombiner::BuilderTy &Builder) { 128 const APInt *SelTC, *SelFC; 129 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 130 !match(Sel.getFalseValue(), m_APInt(SelFC))) 131 return nullptr; 132 133 // If this is a vector select, we need a vector compare. 134 Type *SelType = Sel.getType(); 135 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 136 return nullptr; 137 138 Value *V; 139 APInt AndMask; 140 bool CreateAnd = false; 141 ICmpInst::Predicate Pred = Cmp->getPredicate(); 142 if (ICmpInst::isEquality(Pred)) { 143 if (!match(Cmp->getOperand(1), m_Zero())) 144 return nullptr; 145 146 V = Cmp->getOperand(0); 147 const APInt *AndRHS; 148 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 149 return nullptr; 150 151 AndMask = *AndRHS; 152 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 153 Pred, V, AndMask)) { 154 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 155 if (!AndMask.isPowerOf2()) 156 return nullptr; 157 158 CreateAnd = true; 159 } else { 160 return nullptr; 161 } 162 163 // In general, when both constants are non-zero, we would need an offset to 164 // replace the select. This would require more instructions than we started 165 // with. But there's one special-case that we handle here because it can 166 // simplify/reduce the instructions. 167 APInt TC = *SelTC; 168 APInt FC = *SelFC; 169 if (!TC.isZero() && !FC.isZero()) { 170 // If the select constants differ by exactly one bit and that's the same 171 // bit that is masked and checked by the select condition, the select can 172 // be replaced by bitwise logic to set/clear one bit of the constant result. 173 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 174 return nullptr; 175 if (CreateAnd) { 176 // If we have to create an 'and', then we must kill the cmp to not 177 // increase the instruction count. 178 if (!Cmp->hasOneUse()) 179 return nullptr; 180 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 181 } 182 bool ExtraBitInTC = TC.ugt(FC); 183 if (Pred == ICmpInst::ICMP_EQ) { 184 // If the masked bit in V is clear, clear or set the bit in the result: 185 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 186 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 187 Constant *C = ConstantInt::get(SelType, TC); 188 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 189 } 190 if (Pred == ICmpInst::ICMP_NE) { 191 // If the masked bit in V is set, set or clear the bit in the result: 192 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 193 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 194 Constant *C = ConstantInt::get(SelType, FC); 195 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 196 } 197 llvm_unreachable("Only expecting equality predicates"); 198 } 199 200 // Make sure one of the select arms is a power-of-2. 201 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 202 return nullptr; 203 204 // Determine which shift is needed to transform result of the 'and' into the 205 // desired result. 206 const APInt &ValC = !TC.isZero() ? TC : FC; 207 unsigned ValZeros = ValC.logBase2(); 208 unsigned AndZeros = AndMask.logBase2(); 209 210 // Insert the 'and' instruction on the input to the truncate. 211 if (CreateAnd) 212 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 213 214 // If types don't match, we can still convert the select by introducing a zext 215 // or a trunc of the 'and'. 216 if (ValZeros > AndZeros) { 217 V = Builder.CreateZExtOrTrunc(V, SelType); 218 V = Builder.CreateShl(V, ValZeros - AndZeros); 219 } else if (ValZeros < AndZeros) { 220 V = Builder.CreateLShr(V, AndZeros - ValZeros); 221 V = Builder.CreateZExtOrTrunc(V, SelType); 222 } else { 223 V = Builder.CreateZExtOrTrunc(V, SelType); 224 } 225 226 // Okay, now we know that everything is set up, we just don't know whether we 227 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 228 bool ShouldNotVal = !TC.isZero(); 229 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 230 if (ShouldNotVal) 231 V = Builder.CreateXor(V, ValC); 232 233 return V; 234 } 235 236 /// We want to turn code that looks like this: 237 /// %C = or %A, %B 238 /// %D = select %cond, %C, %A 239 /// into: 240 /// %C = select %cond, %B, 0 241 /// %D = or %A, %C 242 /// 243 /// Assuming that the specified instruction is an operand to the select, return 244 /// a bitmask indicating which operands of this instruction are foldable if they 245 /// equal the other incoming value of the select. 246 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 247 switch (I->getOpcode()) { 248 case Instruction::Add: 249 case Instruction::FAdd: 250 case Instruction::Mul: 251 case Instruction::FMul: 252 case Instruction::And: 253 case Instruction::Or: 254 case Instruction::Xor: 255 return 3; // Can fold through either operand. 256 case Instruction::Sub: // Can only fold on the amount subtracted. 257 case Instruction::FSub: 258 case Instruction::FDiv: // Can only fold on the divisor amount. 259 case Instruction::Shl: // Can only fold on the shift amount. 260 case Instruction::LShr: 261 case Instruction::AShr: 262 return 1; 263 default: 264 return 0; // Cannot fold 265 } 266 } 267 268 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 269 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 270 Instruction *FI) { 271 // Don't break up min/max patterns. The hasOneUse checks below prevent that 272 // for most cases, but vector min/max with bitcasts can be transformed. If the 273 // one-use restrictions are eased for other patterns, we still don't want to 274 // obfuscate min/max. 275 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 276 match(&SI, m_SMax(m_Value(), m_Value())) || 277 match(&SI, m_UMin(m_Value(), m_Value())) || 278 match(&SI, m_UMax(m_Value(), m_Value())))) 279 return nullptr; 280 281 // If this is a cast from the same type, merge. 282 Value *Cond = SI.getCondition(); 283 Type *CondTy = Cond->getType(); 284 if (TI->getNumOperands() == 1 && TI->isCast()) { 285 Type *FIOpndTy = FI->getOperand(0)->getType(); 286 if (TI->getOperand(0)->getType() != FIOpndTy) 287 return nullptr; 288 289 // The select condition may be a vector. We may only change the operand 290 // type if the vector width remains the same (and matches the condition). 291 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 292 if (!FIOpndTy->isVectorTy() || 293 CondVTy->getElementCount() != 294 cast<VectorType>(FIOpndTy)->getElementCount()) 295 return nullptr; 296 297 // TODO: If the backend knew how to deal with casts better, we could 298 // remove this limitation. For now, there's too much potential to create 299 // worse codegen by promoting the select ahead of size-altering casts 300 // (PR28160). 301 // 302 // Note that ValueTracking's matchSelectPattern() looks through casts 303 // without checking 'hasOneUse' when it matches min/max patterns, so this 304 // transform may end up happening anyway. 305 if (TI->getOpcode() != Instruction::BitCast && 306 (!TI->hasOneUse() || !FI->hasOneUse())) 307 return nullptr; 308 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 309 // TODO: The one-use restrictions for a scalar select could be eased if 310 // the fold of a select in visitLoadInst() was enhanced to match a pattern 311 // that includes a cast. 312 return nullptr; 313 } 314 315 // Fold this by inserting a select from the input values. 316 Value *NewSI = 317 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 318 SI.getName() + ".v", &SI); 319 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 320 TI->getType()); 321 } 322 323 // Cond ? -X : -Y --> -(Cond ? X : Y) 324 Value *X, *Y; 325 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 326 (TI->hasOneUse() || FI->hasOneUse())) { 327 // Intersect FMF from the fneg instructions and union those with the select. 328 FastMathFlags FMF = TI->getFastMathFlags(); 329 FMF &= FI->getFastMathFlags(); 330 FMF |= SI.getFastMathFlags(); 331 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 332 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 333 NewSelI->setFastMathFlags(FMF); 334 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 335 NewFNeg->setFastMathFlags(FMF); 336 return NewFNeg; 337 } 338 339 // Min/max intrinsic with a common operand can have the common operand pulled 340 // after the select. This is the same transform as below for binops, but 341 // specialized for intrinsic matching and without the restrictive uses clause. 342 auto *TII = dyn_cast<IntrinsicInst>(TI); 343 auto *FII = dyn_cast<IntrinsicInst>(FI); 344 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() && 345 (TII->hasOneUse() || FII->hasOneUse())) { 346 Value *T0, *T1, *F0, *F1; 347 if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) && 348 match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) { 349 if (T0 == F0) { 350 Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI); 351 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 352 } 353 if (T0 == F1) { 354 Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI); 355 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 356 } 357 if (T1 == F0) { 358 Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI); 359 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 360 } 361 if (T1 == F1) { 362 Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI); 363 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 364 } 365 } 366 } 367 368 // Only handle binary operators (including two-operand getelementptr) with 369 // one-use here. As with the cast case above, it may be possible to relax the 370 // one-use constraint, but that needs be examined carefully since it may not 371 // reduce the total number of instructions. 372 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 373 !TI->isSameOperationAs(FI) || 374 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 375 !TI->hasOneUse() || !FI->hasOneUse()) 376 return nullptr; 377 378 // Figure out if the operations have any operands in common. 379 Value *MatchOp, *OtherOpT, *OtherOpF; 380 bool MatchIsOpZero; 381 if (TI->getOperand(0) == FI->getOperand(0)) { 382 MatchOp = TI->getOperand(0); 383 OtherOpT = TI->getOperand(1); 384 OtherOpF = FI->getOperand(1); 385 MatchIsOpZero = true; 386 } else if (TI->getOperand(1) == FI->getOperand(1)) { 387 MatchOp = TI->getOperand(1); 388 OtherOpT = TI->getOperand(0); 389 OtherOpF = FI->getOperand(0); 390 MatchIsOpZero = false; 391 } else if (!TI->isCommutative()) { 392 return nullptr; 393 } else if (TI->getOperand(0) == FI->getOperand(1)) { 394 MatchOp = TI->getOperand(0); 395 OtherOpT = TI->getOperand(1); 396 OtherOpF = FI->getOperand(0); 397 MatchIsOpZero = true; 398 } else if (TI->getOperand(1) == FI->getOperand(0)) { 399 MatchOp = TI->getOperand(1); 400 OtherOpT = TI->getOperand(0); 401 OtherOpF = FI->getOperand(1); 402 MatchIsOpZero = true; 403 } else { 404 return nullptr; 405 } 406 407 // If the select condition is a vector, the operands of the original select's 408 // operands also must be vectors. This may not be the case for getelementptr 409 // for example. 410 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 411 !OtherOpF->getType()->isVectorTy())) 412 return nullptr; 413 414 // If we reach here, they do have operations in common. 415 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 416 SI.getName() + ".v", &SI); 417 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 418 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 419 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 420 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 421 NewBO->copyIRFlags(TI); 422 NewBO->andIRFlags(FI); 423 return NewBO; 424 } 425 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 426 auto *FGEP = cast<GetElementPtrInst>(FI); 427 Type *ElementType = TGEP->getResultElementType(); 428 return TGEP->isInBounds() && FGEP->isInBounds() 429 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 430 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 431 } 432 llvm_unreachable("Expected BinaryOperator or GEP"); 433 return nullptr; 434 } 435 436 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 437 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. 438 return false; 439 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); 440 } 441 442 /// Try to fold the select into one of the operands to allow further 443 /// optimization. 444 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 445 Value *FalseVal) { 446 // See the comment above GetSelectFoldableOperands for a description of the 447 // transformation we are doing here. 448 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 449 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 450 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 451 unsigned OpToFold = 0; 452 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 453 OpToFold = 1; 454 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 455 OpToFold = 2; 456 } 457 458 if (OpToFold) { 459 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(), 460 TVI->getType(), true); 461 Value *OOp = TVI->getOperand(2-OpToFold); 462 // Avoid creating select between 2 constants unless it's selecting 463 // between 0, 1 and -1. 464 const APInt *OOpC; 465 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 466 if (!isa<Constant>(OOp) || 467 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 468 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 469 NewSel->takeName(TVI); 470 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 471 FalseVal, NewSel); 472 BO->copyIRFlags(TVI); 473 return BO; 474 } 475 } 476 } 477 } 478 } 479 480 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 481 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 482 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 483 unsigned OpToFold = 0; 484 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 485 OpToFold = 1; 486 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 487 OpToFold = 2; 488 } 489 490 if (OpToFold) { 491 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(), 492 FVI->getType(), true); 493 Value *OOp = FVI->getOperand(2-OpToFold); 494 // Avoid creating select between 2 constants unless it's selecting 495 // between 0, 1 and -1. 496 const APInt *OOpC; 497 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 498 if (!isa<Constant>(OOp) || 499 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 500 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 501 NewSel->takeName(FVI); 502 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 503 TrueVal, NewSel); 504 BO->copyIRFlags(FVI); 505 return BO; 506 } 507 } 508 } 509 } 510 } 511 512 return nullptr; 513 } 514 515 /// We want to turn: 516 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 517 /// into: 518 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 519 /// Note: 520 /// Z may be 0 if lshr is missing. 521 /// Worst-case scenario is that we will replace 5 instructions with 5 different 522 /// instructions, but we got rid of select. 523 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 524 Value *TVal, Value *FVal, 525 InstCombiner::BuilderTy &Builder) { 526 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 527 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 528 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 529 return nullptr; 530 531 // The TrueVal has general form of: and %B, 1 532 Value *B; 533 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 534 return nullptr; 535 536 // Where %B may be optionally shifted: lshr %X, %Z. 537 Value *X, *Z; 538 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 539 if (!HasShift) 540 X = B; 541 542 Value *Y; 543 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 544 return nullptr; 545 546 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 547 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 548 Constant *One = ConstantInt::get(SelType, 1); 549 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 550 Value *FullMask = Builder.CreateOr(Y, MaskB); 551 Value *MaskedX = Builder.CreateAnd(X, FullMask); 552 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 553 return new ZExtInst(ICmpNeZero, SelType); 554 } 555 556 /// We want to turn: 557 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 558 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 559 /// into: 560 /// ashr (X, Y) 561 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 562 Value *FalseVal, 563 InstCombiner::BuilderTy &Builder) { 564 ICmpInst::Predicate Pred = IC->getPredicate(); 565 Value *CmpLHS = IC->getOperand(0); 566 Value *CmpRHS = IC->getOperand(1); 567 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 568 return nullptr; 569 570 Value *X, *Y; 571 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 572 if ((Pred != ICmpInst::ICMP_SGT || 573 !match(CmpRHS, 574 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 575 (Pred != ICmpInst::ICMP_SLT || 576 !match(CmpRHS, 577 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 578 return nullptr; 579 580 // Canonicalize so that ashr is in FalseVal. 581 if (Pred == ICmpInst::ICMP_SLT) 582 std::swap(TrueVal, FalseVal); 583 584 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 585 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 586 match(CmpLHS, m_Specific(X))) { 587 const auto *Ashr = cast<Instruction>(FalseVal); 588 // if lshr is not exact and ashr is, this new ashr must not be exact. 589 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 590 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 591 } 592 593 return nullptr; 594 } 595 596 /// We want to turn: 597 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 598 /// into: 599 /// (or (shl (and X, C1), C3), Y) 600 /// iff: 601 /// C1 and C2 are both powers of 2 602 /// where: 603 /// C3 = Log(C2) - Log(C1) 604 /// 605 /// This transform handles cases where: 606 /// 1. The icmp predicate is inverted 607 /// 2. The select operands are reversed 608 /// 3. The magnitude of C2 and C1 are flipped 609 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 610 Value *FalseVal, 611 InstCombiner::BuilderTy &Builder) { 612 // Only handle integer compares. Also, if this is a vector select, we need a 613 // vector compare. 614 if (!TrueVal->getType()->isIntOrIntVectorTy() || 615 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 616 return nullptr; 617 618 Value *CmpLHS = IC->getOperand(0); 619 Value *CmpRHS = IC->getOperand(1); 620 621 Value *V; 622 unsigned C1Log; 623 bool IsEqualZero; 624 bool NeedAnd = false; 625 if (IC->isEquality()) { 626 if (!match(CmpRHS, m_Zero())) 627 return nullptr; 628 629 const APInt *C1; 630 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 631 return nullptr; 632 633 V = CmpLHS; 634 C1Log = C1->logBase2(); 635 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 636 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 637 IC->getPredicate() == ICmpInst::ICMP_SGT) { 638 // We also need to recognize (icmp slt (trunc (X)), 0) and 639 // (icmp sgt (trunc (X)), -1). 640 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 641 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 642 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 643 return nullptr; 644 645 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 646 return nullptr; 647 648 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 649 NeedAnd = true; 650 } else { 651 return nullptr; 652 } 653 654 const APInt *C2; 655 bool OrOnTrueVal = false; 656 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 657 if (!OrOnFalseVal) 658 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 659 660 if (!OrOnFalseVal && !OrOnTrueVal) 661 return nullptr; 662 663 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 664 665 unsigned C2Log = C2->logBase2(); 666 667 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 668 bool NeedShift = C1Log != C2Log; 669 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 670 V->getType()->getScalarSizeInBits(); 671 672 // Make sure we don't create more instructions than we save. 673 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 674 if ((NeedShift + NeedXor + NeedZExtTrunc) > 675 (IC->hasOneUse() + Or->hasOneUse())) 676 return nullptr; 677 678 if (NeedAnd) { 679 // Insert the AND instruction on the input to the truncate. 680 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 681 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 682 } 683 684 if (C2Log > C1Log) { 685 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 686 V = Builder.CreateShl(V, C2Log - C1Log); 687 } else if (C1Log > C2Log) { 688 V = Builder.CreateLShr(V, C1Log - C2Log); 689 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 690 } else 691 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 692 693 if (NeedXor) 694 V = Builder.CreateXor(V, *C2); 695 696 return Builder.CreateOr(V, Y); 697 } 698 699 /// Canonicalize a set or clear of a masked set of constant bits to 700 /// select-of-constants form. 701 static Instruction *foldSetClearBits(SelectInst &Sel, 702 InstCombiner::BuilderTy &Builder) { 703 Value *Cond = Sel.getCondition(); 704 Value *T = Sel.getTrueValue(); 705 Value *F = Sel.getFalseValue(); 706 Type *Ty = Sel.getType(); 707 Value *X; 708 const APInt *NotC, *C; 709 710 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 711 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 712 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 713 Constant *Zero = ConstantInt::getNullValue(Ty); 714 Constant *OrC = ConstantInt::get(Ty, *C); 715 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 716 return BinaryOperator::CreateOr(T, NewSel); 717 } 718 719 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 720 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 721 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 722 Constant *Zero = ConstantInt::getNullValue(Ty); 723 Constant *OrC = ConstantInt::get(Ty, *C); 724 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 725 return BinaryOperator::CreateOr(F, NewSel); 726 } 727 728 return nullptr; 729 } 730 731 // select (x == 0), 0, x * y --> freeze(y) * x 732 // select (y == 0), 0, x * y --> freeze(x) * y 733 // select (x == 0), undef, x * y --> freeze(y) * x 734 // select (x == undef), 0, x * y --> freeze(y) * x 735 // Usage of mul instead of 0 will make the result more poisonous, 736 // so the operand that was not checked in the condition should be frozen. 737 // The latter folding is applied only when a constant compared with x is 738 // is a vector consisting of 0 and undefs. If a constant compared with x 739 // is a scalar undefined value or undefined vector then an expression 740 // should be already folded into a constant. 741 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { 742 auto *CondVal = SI.getCondition(); 743 auto *TrueVal = SI.getTrueValue(); 744 auto *FalseVal = SI.getFalseValue(); 745 Value *X, *Y; 746 ICmpInst::Predicate Predicate; 747 748 // Assuming that constant compared with zero is not undef (but it may be 749 // a vector with some undef elements). Otherwise (when a constant is undef) 750 // the select expression should be already simplified. 751 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || 752 !ICmpInst::isEquality(Predicate)) 753 return nullptr; 754 755 if (Predicate == ICmpInst::ICMP_NE) 756 std::swap(TrueVal, FalseVal); 757 758 // Check that TrueVal is a constant instead of matching it with m_Zero() 759 // to handle the case when it is a scalar undef value or a vector containing 760 // non-zero elements that are masked by undef elements in the compare 761 // constant. 762 auto *TrueValC = dyn_cast<Constant>(TrueVal); 763 if (TrueValC == nullptr || 764 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || 765 !isa<Instruction>(FalseVal)) 766 return nullptr; 767 768 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); 769 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); 770 // If X is compared with 0 then TrueVal could be either zero or undef. 771 // m_Zero match vectors containing some undef elements, but for scalars 772 // m_Undef should be used explicitly. 773 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) 774 return nullptr; 775 776 auto *FalseValI = cast<Instruction>(FalseVal); 777 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), 778 *FalseValI); 779 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); 780 return IC.replaceInstUsesWith(SI, FalseValI); 781 } 782 783 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 784 /// There are 8 commuted/swapped variants of this pattern. 785 /// TODO: Also support a - UMIN(a,b) patterns. 786 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 787 const Value *TrueVal, 788 const Value *FalseVal, 789 InstCombiner::BuilderTy &Builder) { 790 ICmpInst::Predicate Pred = ICI->getPredicate(); 791 if (!ICmpInst::isUnsigned(Pred)) 792 return nullptr; 793 794 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 795 if (match(TrueVal, m_Zero())) { 796 Pred = ICmpInst::getInversePredicate(Pred); 797 std::swap(TrueVal, FalseVal); 798 } 799 if (!match(FalseVal, m_Zero())) 800 return nullptr; 801 802 Value *A = ICI->getOperand(0); 803 Value *B = ICI->getOperand(1); 804 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 805 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 806 std::swap(A, B); 807 Pred = ICmpInst::getSwappedPredicate(Pred); 808 } 809 810 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 811 "Unexpected isUnsigned predicate!"); 812 813 // Ensure the sub is of the form: 814 // (a > b) ? a - b : 0 -> usub.sat(a, b) 815 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 816 // Checking for both a-b and a+(-b) as a constant. 817 bool IsNegative = false; 818 const APInt *C; 819 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 820 (match(A, m_APInt(C)) && 821 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 822 IsNegative = true; 823 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 824 !(match(B, m_APInt(C)) && 825 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 826 return nullptr; 827 828 // If we are adding a negate and the sub and icmp are used anywhere else, we 829 // would end up with more instructions. 830 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 831 return nullptr; 832 833 // (a > b) ? a - b : 0 -> usub.sat(a, b) 834 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 835 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 836 if (IsNegative) 837 Result = Builder.CreateNeg(Result); 838 return Result; 839 } 840 841 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 842 InstCombiner::BuilderTy &Builder) { 843 if (!Cmp->hasOneUse()) 844 return nullptr; 845 846 // Match unsigned saturated add with constant. 847 Value *Cmp0 = Cmp->getOperand(0); 848 Value *Cmp1 = Cmp->getOperand(1); 849 ICmpInst::Predicate Pred = Cmp->getPredicate(); 850 Value *X; 851 const APInt *C, *CmpC; 852 if (Pred == ICmpInst::ICMP_ULT && 853 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 854 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 855 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 856 return Builder.CreateBinaryIntrinsic( 857 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 858 } 859 860 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 861 // There are 8 commuted variants. 862 // Canonicalize -1 (saturated result) to true value of the select. 863 if (match(FVal, m_AllOnes())) { 864 std::swap(TVal, FVal); 865 Pred = CmpInst::getInversePredicate(Pred); 866 } 867 if (!match(TVal, m_AllOnes())) 868 return nullptr; 869 870 // Canonicalize predicate to less-than or less-or-equal-than. 871 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 872 std::swap(Cmp0, Cmp1); 873 Pred = CmpInst::getSwappedPredicate(Pred); 874 } 875 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 876 return nullptr; 877 878 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 879 // Strictness of the comparison is irrelevant. 880 Value *Y; 881 if (match(Cmp0, m_Not(m_Value(X))) && 882 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 883 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 884 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 885 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 886 } 887 // The 'not' op may be included in the sum but not the compare. 888 // Strictness of the comparison is irrelevant. 889 X = Cmp0; 890 Y = Cmp1; 891 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 892 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 893 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 894 BinaryOperator *BO = cast<BinaryOperator>(FVal); 895 return Builder.CreateBinaryIntrinsic( 896 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 897 } 898 // The overflow may be detected via the add wrapping round. 899 // This is only valid for strict comparison! 900 if (Pred == ICmpInst::ICMP_ULT && 901 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 902 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 903 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 904 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 905 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 906 } 907 908 return nullptr; 909 } 910 911 /// Fold the following code sequence: 912 /// \code 913 /// int a = ctlz(x & -x); 914 // x ? 31 - a : a; 915 /// \code 916 /// 917 /// into: 918 /// cttz(x) 919 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 920 Value *FalseVal, 921 InstCombiner::BuilderTy &Builder) { 922 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 923 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 924 return nullptr; 925 926 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 927 std::swap(TrueVal, FalseVal); 928 929 if (!match(FalseVal, 930 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 931 return nullptr; 932 933 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 934 return nullptr; 935 936 Value *X = ICI->getOperand(0); 937 auto *II = cast<IntrinsicInst>(TrueVal); 938 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 939 return nullptr; 940 941 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 942 II->getType()); 943 return CallInst::Create(F, {X, II->getArgOperand(1)}); 944 } 945 946 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 947 /// call to cttz/ctlz with flag 'is_zero_poison' cleared. 948 /// 949 /// For example, we can fold the following code sequence: 950 /// \code 951 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 952 /// %1 = icmp ne i32 %x, 0 953 /// %2 = select i1 %1, i32 %0, i32 32 954 /// \code 955 /// 956 /// into: 957 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 958 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 959 InstCombiner::BuilderTy &Builder) { 960 ICmpInst::Predicate Pred = ICI->getPredicate(); 961 Value *CmpLHS = ICI->getOperand(0); 962 Value *CmpRHS = ICI->getOperand(1); 963 964 // Check if the condition value compares a value for equality against zero. 965 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 966 return nullptr; 967 968 Value *SelectArg = FalseVal; 969 Value *ValueOnZero = TrueVal; 970 if (Pred == ICmpInst::ICMP_NE) 971 std::swap(SelectArg, ValueOnZero); 972 973 // Skip zero extend/truncate. 974 Value *Count = nullptr; 975 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 976 !match(SelectArg, m_Trunc(m_Value(Count)))) 977 Count = SelectArg; 978 979 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 980 // input to the cttz/ctlz is used as LHS for the compare instruction. 981 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 982 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 983 return nullptr; 984 985 IntrinsicInst *II = cast<IntrinsicInst>(Count); 986 987 // Check if the value propagated on zero is a constant number equal to the 988 // sizeof in bits of 'Count'. 989 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 990 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 991 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from 992 // true to false on this flag, so we can replace it for all users. 993 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 994 return SelectArg; 995 } 996 997 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 998 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 999 // not be used if the input is zero. Relax to 'zero is poison' for that case. 1000 if (II->hasOneUse() && SelectArg->hasOneUse() && 1001 !match(II->getArgOperand(1), m_One())) 1002 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 1003 1004 return nullptr; 1005 } 1006 1007 /// Return true if we find and adjust an icmp+select pattern where the compare 1008 /// is with a constant that can be incremented or decremented to match the 1009 /// minimum or maximum idiom. 1010 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 1011 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1012 Value *CmpLHS = Cmp.getOperand(0); 1013 Value *CmpRHS = Cmp.getOperand(1); 1014 Value *TrueVal = Sel.getTrueValue(); 1015 Value *FalseVal = Sel.getFalseValue(); 1016 1017 // We may move or edit the compare, so make sure the select is the only user. 1018 const APInt *CmpC; 1019 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 1020 return false; 1021 1022 // These transforms only work for selects of integers or vector selects of 1023 // integer vectors. 1024 Type *SelTy = Sel.getType(); 1025 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 1026 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 1027 return false; 1028 1029 Constant *AdjustedRHS; 1030 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 1031 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 1032 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 1033 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 1034 else 1035 return false; 1036 1037 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 1038 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 1039 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 1040 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 1041 ; // Nothing to do here. Values match without any sign/zero extension. 1042 } 1043 // Types do not match. Instead of calculating this with mixed types, promote 1044 // all to the larger type. This enables scalar evolution to analyze this 1045 // expression. 1046 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 1047 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 1048 1049 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 1050 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 1051 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 1052 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 1053 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 1054 CmpLHS = TrueVal; 1055 AdjustedRHS = SextRHS; 1056 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 1057 SextRHS == TrueVal) { 1058 CmpLHS = FalseVal; 1059 AdjustedRHS = SextRHS; 1060 } else if (Cmp.isUnsigned()) { 1061 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 1062 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 1063 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 1064 // zext + signed compare cannot be changed: 1065 // 0xff <s 0x00, but 0x00ff >s 0x0000 1066 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 1067 CmpLHS = TrueVal; 1068 AdjustedRHS = ZextRHS; 1069 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 1070 ZextRHS == TrueVal) { 1071 CmpLHS = FalseVal; 1072 AdjustedRHS = ZextRHS; 1073 } else { 1074 return false; 1075 } 1076 } else { 1077 return false; 1078 } 1079 } else { 1080 return false; 1081 } 1082 1083 Pred = ICmpInst::getSwappedPredicate(Pred); 1084 CmpRHS = AdjustedRHS; 1085 std::swap(FalseVal, TrueVal); 1086 Cmp.setPredicate(Pred); 1087 Cmp.setOperand(0, CmpLHS); 1088 Cmp.setOperand(1, CmpRHS); 1089 Sel.setOperand(1, TrueVal); 1090 Sel.setOperand(2, FalseVal); 1091 Sel.swapProfMetadata(); 1092 1093 // Move the compare instruction right before the select instruction. Otherwise 1094 // the sext/zext value may be defined after the compare instruction uses it. 1095 Cmp.moveBefore(&Sel); 1096 1097 return true; 1098 } 1099 1100 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp, 1101 InstCombinerImpl &IC) { 1102 Value *LHS, *RHS; 1103 // TODO: What to do with pointer min/max patterns? 1104 if (!Sel.getType()->isIntOrIntVectorTy()) 1105 return nullptr; 1106 1107 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1108 if (SPF == SelectPatternFlavor::SPF_ABS || 1109 SPF == SelectPatternFlavor::SPF_NABS) { 1110 if (!Cmp.hasOneUse() && !RHS->hasOneUse()) 1111 return nullptr; // TODO: Relax this restriction. 1112 1113 // Note that NSW flag can only be propagated for normal, non-negated abs! 1114 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1115 match(RHS, m_NSWNeg(m_Specific(LHS))); 1116 Constant *IntMinIsPoisonC = 1117 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1118 Instruction *Abs = 1119 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1120 1121 if (SPF == SelectPatternFlavor::SPF_NABS) 1122 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1123 return IC.replaceInstUsesWith(Sel, Abs); 1124 } 1125 1126 if (SelectPatternResult::isMinOrMax(SPF)) { 1127 Intrinsic::ID IntrinsicID; 1128 switch (SPF) { 1129 case SelectPatternFlavor::SPF_UMIN: 1130 IntrinsicID = Intrinsic::umin; 1131 break; 1132 case SelectPatternFlavor::SPF_UMAX: 1133 IntrinsicID = Intrinsic::umax; 1134 break; 1135 case SelectPatternFlavor::SPF_SMIN: 1136 IntrinsicID = Intrinsic::smin; 1137 break; 1138 case SelectPatternFlavor::SPF_SMAX: 1139 IntrinsicID = Intrinsic::smax; 1140 break; 1141 default: 1142 llvm_unreachable("Unexpected SPF"); 1143 } 1144 return IC.replaceInstUsesWith( 1145 Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS)); 1146 } 1147 1148 return nullptr; 1149 } 1150 1151 /// If we have a select with an equality comparison, then we know the value in 1152 /// one of the arms of the select. See if substituting this value into an arm 1153 /// and simplifying the result yields the same value as the other arm. 1154 /// 1155 /// To make this transform safe, we must drop poison-generating flags 1156 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1157 /// that poison from propagating. If the existing binop already had no 1158 /// poison-generating flags, then this transform can be done by instsimplify. 1159 /// 1160 /// Consider: 1161 /// %cmp = icmp eq i32 %x, 2147483647 1162 /// %add = add nsw i32 %x, 1 1163 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1164 /// 1165 /// We can't replace %sel with %add unless we strip away the flags. 1166 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1167 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1168 ICmpInst &Cmp) { 1169 // Value equivalence substitution requires an all-or-nothing replacement. 1170 // It does not make sense for a vector compare where each lane is chosen 1171 // independently. 1172 if (!Cmp.isEquality() || Cmp.getType()->isVectorTy()) 1173 return nullptr; 1174 1175 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1176 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1177 bool Swapped = false; 1178 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1179 std::swap(TrueVal, FalseVal); 1180 Swapped = true; 1181 } 1182 1183 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1184 // Make sure Y cannot be undef though, as we might pick different values for 1185 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1186 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1187 // replacement cycle. 1188 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1189 if (TrueVal != CmpLHS && 1190 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1191 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1192 /* AllowRefinement */ true)) 1193 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1194 1195 // Even if TrueVal does not simplify, we can directly replace a use of 1196 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1197 // else and is safe to speculatively execute (we may end up executing it 1198 // with different operands, which should not cause side-effects or trigger 1199 // undefined behavior). Only do this if CmpRHS is a constant, as 1200 // profitability is not clear for other cases. 1201 // FIXME: The replacement could be performed recursively. 1202 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant())) 1203 if (auto *I = dyn_cast<Instruction>(TrueVal)) 1204 if (I->hasOneUse() && isSafeToSpeculativelyExecute(I)) 1205 for (Use &U : I->operands()) 1206 if (U == CmpLHS) { 1207 replaceUse(U, CmpRHS); 1208 return &Sel; 1209 } 1210 } 1211 if (TrueVal != CmpRHS && 1212 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1213 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1214 /* AllowRefinement */ true)) 1215 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1216 1217 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1218 if (!FalseInst) 1219 return nullptr; 1220 1221 // InstSimplify already performed this fold if it was possible subject to 1222 // current poison-generating flags. Try the transform again with 1223 // poison-generating flags temporarily dropped. 1224 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1225 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1226 WasNUW = OBO->hasNoUnsignedWrap(); 1227 WasNSW = OBO->hasNoSignedWrap(); 1228 FalseInst->setHasNoUnsignedWrap(false); 1229 FalseInst->setHasNoSignedWrap(false); 1230 } 1231 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1232 WasExact = PEO->isExact(); 1233 FalseInst->setIsExact(false); 1234 } 1235 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1236 WasInBounds = GEP->isInBounds(); 1237 GEP->setIsInBounds(false); 1238 } 1239 1240 // Try each equivalence substitution possibility. 1241 // We have an 'EQ' comparison, so the select's false value will propagate. 1242 // Example: 1243 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1244 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1245 /* AllowRefinement */ false) == TrueVal || 1246 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1247 /* AllowRefinement */ false) == TrueVal) { 1248 return replaceInstUsesWith(Sel, FalseVal); 1249 } 1250 1251 // Restore poison-generating flags if the transform did not apply. 1252 if (WasNUW) 1253 FalseInst->setHasNoUnsignedWrap(); 1254 if (WasNSW) 1255 FalseInst->setHasNoSignedWrap(); 1256 if (WasExact) 1257 FalseInst->setIsExact(); 1258 if (WasInBounds) 1259 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1260 1261 return nullptr; 1262 } 1263 1264 // See if this is a pattern like: 1265 // %old_cmp1 = icmp slt i32 %x, C2 1266 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1267 // %old_x_offseted = add i32 %x, C1 1268 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1269 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1270 // This can be rewritten as more canonical pattern: 1271 // %new_cmp1 = icmp slt i32 %x, -C1 1272 // %new_cmp2 = icmp sge i32 %x, C0-C1 1273 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1274 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1275 // Iff -C1 s<= C2 s<= C0-C1 1276 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1277 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1278 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1279 InstCombiner::BuilderTy &Builder) { 1280 Value *X = Sel0.getTrueValue(); 1281 Value *Sel1 = Sel0.getFalseValue(); 1282 1283 // First match the condition of the outermost select. 1284 // Said condition must be one-use. 1285 if (!Cmp0.hasOneUse()) 1286 return nullptr; 1287 ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); 1288 Value *Cmp00 = Cmp0.getOperand(0); 1289 Constant *C0; 1290 if (!match(Cmp0.getOperand(1), 1291 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1292 return nullptr; 1293 1294 if (!isa<SelectInst>(Sel1)) { 1295 Pred0 = ICmpInst::getInversePredicate(Pred0); 1296 std::swap(X, Sel1); 1297 } 1298 1299 // Canonicalize Cmp0 into ult or uge. 1300 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1301 switch (Pred0) { 1302 case ICmpInst::Predicate::ICMP_ULT: 1303 case ICmpInst::Predicate::ICMP_UGE: 1304 // Although icmp ult %x, 0 is an unusual thing to try and should generally 1305 // have been simplified, it does not verify with undef inputs so ensure we 1306 // are not in a strange state. 1307 if (!match(C0, m_SpecificInt_ICMP( 1308 ICmpInst::Predicate::ICMP_NE, 1309 APInt::getZero(C0->getType()->getScalarSizeInBits())))) 1310 return nullptr; 1311 break; // Great! 1312 case ICmpInst::Predicate::ICMP_ULE: 1313 case ICmpInst::Predicate::ICMP_UGT: 1314 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment 1315 // C0, which again means it must not have any all-ones elements. 1316 if (!match(C0, 1317 m_SpecificInt_ICMP( 1318 ICmpInst::Predicate::ICMP_NE, 1319 APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) 1320 return nullptr; // Can't do, have all-ones element[s]. 1321 C0 = InstCombiner::AddOne(C0); 1322 break; 1323 default: 1324 return nullptr; // Unknown predicate. 1325 } 1326 1327 // Now that we've canonicalized the ICmp, we know the X we expect; 1328 // the select in other hand should be one-use. 1329 if (!Sel1->hasOneUse()) 1330 return nullptr; 1331 1332 // If the types do not match, look through any truncs to the underlying 1333 // instruction. 1334 if (Cmp00->getType() != X->getType() && X->hasOneUse()) 1335 match(X, m_TruncOrSelf(m_Value(X))); 1336 1337 // We now can finish matching the condition of the outermost select: 1338 // it should either be the X itself, or an addition of some constant to X. 1339 Constant *C1; 1340 if (Cmp00 == X) 1341 C1 = ConstantInt::getNullValue(X->getType()); 1342 else if (!match(Cmp00, 1343 m_Add(m_Specific(X), 1344 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1345 return nullptr; 1346 1347 Value *Cmp1; 1348 ICmpInst::Predicate Pred1; 1349 Constant *C2; 1350 Value *ReplacementLow, *ReplacementHigh; 1351 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1352 m_Value(ReplacementHigh))) || 1353 !match(Cmp1, 1354 m_ICmp(Pred1, m_Specific(X), 1355 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1356 return nullptr; 1357 1358 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1359 return nullptr; // Not enough one-use instructions for the fold. 1360 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1361 // two comparisons we'll need to build. 1362 1363 // Canonicalize Cmp1 into the form we expect. 1364 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1365 switch (Pred1) { 1366 case ICmpInst::Predicate::ICMP_SLT: 1367 break; 1368 case ICmpInst::Predicate::ICMP_SLE: 1369 // We'd have to increment C2 by one, and for that it must not have signed 1370 // max element, but then it would have been canonicalized to 'slt' before 1371 // we get here. So we can't do anything useful with 'sle'. 1372 return nullptr; 1373 case ICmpInst::Predicate::ICMP_SGT: 1374 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1375 // which again means it must not have any signed max elements. 1376 if (!match(C2, 1377 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1378 APInt::getSignedMaxValue( 1379 C2->getType()->getScalarSizeInBits())))) 1380 return nullptr; // Can't do, have signed max element[s]. 1381 C2 = InstCombiner::AddOne(C2); 1382 LLVM_FALLTHROUGH; 1383 case ICmpInst::Predicate::ICMP_SGE: 1384 // Also non-canonical, but here we don't need to change C2, 1385 // so we don't have any restrictions on C2, so we can just handle it. 1386 std::swap(ReplacementLow, ReplacementHigh); 1387 break; 1388 default: 1389 return nullptr; // Unknown predicate. 1390 } 1391 1392 // The thresholds of this clamp-like pattern. 1393 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1394 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1395 if (Pred0 == ICmpInst::Predicate::ICMP_UGE) 1396 std::swap(ThresholdLowIncl, ThresholdHighExcl); 1397 1398 // The fold has a precondition 1: C2 s>= ThresholdLow 1399 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1400 ThresholdLowIncl); 1401 if (!match(Precond1, m_One())) 1402 return nullptr; 1403 // The fold has a precondition 2: C2 s<= ThresholdHigh 1404 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1405 ThresholdHighExcl); 1406 if (!match(Precond2, m_One())) 1407 return nullptr; 1408 1409 // If we are matching from a truncated input, we need to sext the 1410 // ReplacementLow and ReplacementHigh values. Only do the transform if they 1411 // are free to extend due to being constants. 1412 if (X->getType() != Sel0.getType()) { 1413 Constant *LowC, *HighC; 1414 if (!match(ReplacementLow, m_ImmConstant(LowC)) || 1415 !match(ReplacementHigh, m_ImmConstant(HighC))) 1416 return nullptr; 1417 ReplacementLow = ConstantExpr::getSExt(LowC, X->getType()); 1418 ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType()); 1419 } 1420 1421 // All good, finally emit the new pattern. 1422 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1423 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1424 Value *MaybeReplacedLow = 1425 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1426 1427 // Create the final select. If we looked through a truncate above, we will 1428 // need to retruncate the result. 1429 Value *MaybeReplacedHigh = Builder.CreateSelect( 1430 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1431 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); 1432 } 1433 1434 // If we have 1435 // %cmp = icmp [canonical predicate] i32 %x, C0 1436 // %r = select i1 %cmp, i32 %y, i32 C1 1437 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1438 // will have if we flip the strictness of the predicate (i.e. without changing 1439 // the result) is identical to the C1 in select. If it matches we can change 1440 // original comparison to one with swapped predicate, reuse the constant, 1441 // and swap the hands of select. 1442 static Instruction * 1443 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1444 InstCombinerImpl &IC) { 1445 ICmpInst::Predicate Pred; 1446 Value *X; 1447 Constant *C0; 1448 if (!match(&Cmp, m_OneUse(m_ICmp( 1449 Pred, m_Value(X), 1450 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1451 return nullptr; 1452 1453 // If comparison predicate is non-relational, we won't be able to do anything. 1454 if (ICmpInst::isEquality(Pred)) 1455 return nullptr; 1456 1457 // If comparison predicate is non-canonical, then we certainly won't be able 1458 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1459 if (!InstCombiner::isCanonicalPredicate(Pred)) 1460 return nullptr; 1461 1462 // If the [input] type of comparison and select type are different, lets abort 1463 // for now. We could try to compare constants with trunc/[zs]ext though. 1464 if (C0->getType() != Sel.getType()) 1465 return nullptr; 1466 1467 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). 1468 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? 1469 // Or should we just abandon this transform entirely? 1470 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) 1471 return nullptr; 1472 1473 1474 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1475 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1476 // At least one of these values we are selecting between must be a constant 1477 // else we'll never succeed. 1478 if (!match(SelVal0, m_AnyIntegralConstant()) && 1479 !match(SelVal1, m_AnyIntegralConstant())) 1480 return nullptr; 1481 1482 // Does this constant C match any of the `select` values? 1483 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1484 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1485 }; 1486 1487 // If C0 *already* matches true/false value of select, we are done. 1488 if (MatchesSelectValue(C0)) 1489 return nullptr; 1490 1491 // Check the constant we'd have with flipped-strictness predicate. 1492 auto FlippedStrictness = 1493 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1494 if (!FlippedStrictness) 1495 return nullptr; 1496 1497 // If said constant doesn't match either, then there is no hope, 1498 if (!MatchesSelectValue(FlippedStrictness->second)) 1499 return nullptr; 1500 1501 // It matched! Lets insert the new comparison just before select. 1502 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1503 IC.Builder.SetInsertPoint(&Sel); 1504 1505 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1506 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1507 Cmp.getName() + ".inv"); 1508 IC.replaceOperand(Sel, 0, NewCmp); 1509 Sel.swapValues(); 1510 Sel.swapProfMetadata(); 1511 1512 return &Sel; 1513 } 1514 1515 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal, 1516 Value *FVal, 1517 InstCombiner::BuilderTy &Builder) { 1518 if (!Cmp->hasOneUse()) 1519 return nullptr; 1520 1521 const APInt *CmpC; 1522 if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC))) 1523 return nullptr; 1524 1525 // (X u< 2) ? -X : -1 --> sext (X != 0) 1526 Value *X = Cmp->getOperand(0); 1527 if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 && 1528 match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes())) 1529 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1530 1531 // (X u> 1) ? -1 : -X --> sext (X != 0) 1532 if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 && 1533 match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes())) 1534 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1535 1536 return nullptr; 1537 } 1538 1539 /// Visit a SelectInst that has an ICmpInst as its first operand. 1540 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1541 ICmpInst *ICI) { 1542 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1543 return NewSel; 1544 1545 if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this)) 1546 return NewSPF; 1547 1548 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder)) 1549 return replaceInstUsesWith(SI, V); 1550 1551 if (Instruction *NewSel = 1552 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1553 return NewSel; 1554 1555 bool Changed = adjustMinMax(SI, *ICI); 1556 1557 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1558 return replaceInstUsesWith(SI, V); 1559 1560 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1561 Value *TrueVal = SI.getTrueValue(); 1562 Value *FalseVal = SI.getFalseValue(); 1563 ICmpInst::Predicate Pred = ICI->getPredicate(); 1564 Value *CmpLHS = ICI->getOperand(0); 1565 Value *CmpRHS = ICI->getOperand(1); 1566 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1567 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1568 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1569 SI.setOperand(1, CmpRHS); 1570 Changed = true; 1571 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1572 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1573 SI.setOperand(2, CmpRHS); 1574 Changed = true; 1575 } 1576 } 1577 1578 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1579 // decomposeBitTestICmp() might help. 1580 { 1581 unsigned BitWidth = 1582 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1583 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1584 Value *X; 1585 const APInt *Y, *C; 1586 bool TrueWhenUnset; 1587 bool IsBitTest = false; 1588 if (ICmpInst::isEquality(Pred) && 1589 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1590 match(CmpRHS, m_Zero())) { 1591 IsBitTest = true; 1592 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1593 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1594 X = CmpLHS; 1595 Y = &MinSignedValue; 1596 IsBitTest = true; 1597 TrueWhenUnset = false; 1598 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1599 X = CmpLHS; 1600 Y = &MinSignedValue; 1601 IsBitTest = true; 1602 TrueWhenUnset = true; 1603 } 1604 if (IsBitTest) { 1605 Value *V = nullptr; 1606 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1607 if (TrueWhenUnset && TrueVal == X && 1608 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1609 V = Builder.CreateAnd(X, ~(*Y)); 1610 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1611 else if (!TrueWhenUnset && FalseVal == X && 1612 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1613 V = Builder.CreateAnd(X, ~(*Y)); 1614 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1615 else if (TrueWhenUnset && FalseVal == X && 1616 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1617 V = Builder.CreateOr(X, *Y); 1618 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1619 else if (!TrueWhenUnset && TrueVal == X && 1620 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1621 V = Builder.CreateOr(X, *Y); 1622 1623 if (V) 1624 return replaceInstUsesWith(SI, V); 1625 } 1626 } 1627 1628 if (Instruction *V = 1629 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1630 return V; 1631 1632 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1633 return V; 1634 1635 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder)) 1636 return V; 1637 1638 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1639 return replaceInstUsesWith(SI, V); 1640 1641 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1642 return replaceInstUsesWith(SI, V); 1643 1644 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1645 return replaceInstUsesWith(SI, V); 1646 1647 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1648 return replaceInstUsesWith(SI, V); 1649 1650 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1651 return replaceInstUsesWith(SI, V); 1652 1653 return Changed ? &SI : nullptr; 1654 } 1655 1656 /// SI is a select whose condition is a PHI node (but the two may be in 1657 /// different blocks). See if the true/false values (V) are live in all of the 1658 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1659 /// 1660 /// X = phi [ C1, BB1], [C2, BB2] 1661 /// Y = add 1662 /// Z = select X, Y, 0 1663 /// 1664 /// because Y is not live in BB1/BB2. 1665 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1666 const SelectInst &SI) { 1667 // If the value is a non-instruction value like a constant or argument, it 1668 // can always be mapped. 1669 const Instruction *I = dyn_cast<Instruction>(V); 1670 if (!I) return true; 1671 1672 // If V is a PHI node defined in the same block as the condition PHI, we can 1673 // map the arguments. 1674 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1675 1676 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1677 if (VP->getParent() == CondPHI->getParent()) 1678 return true; 1679 1680 // Otherwise, if the PHI and select are defined in the same block and if V is 1681 // defined in a different block, then we can transform it. 1682 if (SI.getParent() == CondPHI->getParent() && 1683 I->getParent() != CondPHI->getParent()) 1684 return true; 1685 1686 // Otherwise we have a 'hard' case and we can't tell without doing more 1687 // detailed dominator based analysis, punt. 1688 return false; 1689 } 1690 1691 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1692 /// SPF2(SPF1(A, B), C) 1693 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1694 SelectPatternFlavor SPF1, Value *A, 1695 Value *B, Instruction &Outer, 1696 SelectPatternFlavor SPF2, 1697 Value *C) { 1698 if (Outer.getType() != Inner->getType()) 1699 return nullptr; 1700 1701 if (C == A || C == B) { 1702 // MAX(MAX(A, B), B) -> MAX(A, B) 1703 // MIN(MIN(a, b), a) -> MIN(a, b) 1704 // TODO: This could be done in instsimplify. 1705 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1706 return replaceInstUsesWith(Outer, Inner); 1707 1708 // MAX(MIN(a, b), a) -> a 1709 // MIN(MAX(a, b), a) -> a 1710 // TODO: This could be done in instsimplify. 1711 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1712 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1713 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1714 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1715 return replaceInstUsesWith(Outer, C); 1716 } 1717 1718 if (SPF1 == SPF2) { 1719 const APInt *CB, *CC; 1720 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1721 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1722 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1723 // TODO: This could be done in instsimplify. 1724 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1725 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1726 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1727 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1728 return replaceInstUsesWith(Outer, Inner); 1729 1730 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1731 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1732 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1733 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1734 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1735 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1736 Outer.replaceUsesOfWith(Inner, A); 1737 return &Outer; 1738 } 1739 } 1740 } 1741 1742 // max(max(A, B), min(A, B)) --> max(A, B) 1743 // min(min(A, B), max(A, B)) --> min(A, B) 1744 // TODO: This could be done in instsimplify. 1745 if (SPF1 == SPF2 && 1746 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1747 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1748 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1749 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1750 return replaceInstUsesWith(Outer, Inner); 1751 1752 // ABS(ABS(X)) -> ABS(X) 1753 // NABS(NABS(X)) -> NABS(X) 1754 // TODO: This could be done in instsimplify. 1755 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1756 return replaceInstUsesWith(Outer, Inner); 1757 } 1758 1759 // ABS(NABS(X)) -> ABS(X) 1760 // NABS(ABS(X)) -> NABS(X) 1761 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1762 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1763 SelectInst *SI = cast<SelectInst>(Inner); 1764 Value *NewSI = 1765 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1766 SI->getTrueValue(), SI->getName(), SI); 1767 return replaceInstUsesWith(Outer, NewSI); 1768 } 1769 1770 auto IsFreeOrProfitableToInvert = 1771 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1772 if (match(V, m_Not(m_Value(NotV)))) { 1773 // If V has at most 2 uses then we can get rid of the xor operation 1774 // entirely. 1775 ElidesXor |= !V->hasNUsesOrMore(3); 1776 return true; 1777 } 1778 1779 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1780 NotV = nullptr; 1781 return true; 1782 } 1783 1784 return false; 1785 }; 1786 1787 Value *NotA, *NotB, *NotC; 1788 bool ElidesXor = false; 1789 1790 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1791 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1792 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1793 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1794 // 1795 // This transform is performance neutral if we can elide at least one xor from 1796 // the set of three operands, since we'll be tacking on an xor at the very 1797 // end. 1798 if (SelectPatternResult::isMinOrMax(SPF1) && 1799 SelectPatternResult::isMinOrMax(SPF2) && 1800 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1801 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1802 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1803 if (!NotA) 1804 NotA = Builder.CreateNot(A); 1805 if (!NotB) 1806 NotB = Builder.CreateNot(B); 1807 if (!NotC) 1808 NotC = Builder.CreateNot(C); 1809 1810 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1811 NotB); 1812 Value *NewOuter = Builder.CreateNot( 1813 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1814 return replaceInstUsesWith(Outer, NewOuter); 1815 } 1816 1817 return nullptr; 1818 } 1819 1820 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1821 /// This is even legal for FP. 1822 static Instruction *foldAddSubSelect(SelectInst &SI, 1823 InstCombiner::BuilderTy &Builder) { 1824 Value *CondVal = SI.getCondition(); 1825 Value *TrueVal = SI.getTrueValue(); 1826 Value *FalseVal = SI.getFalseValue(); 1827 auto *TI = dyn_cast<Instruction>(TrueVal); 1828 auto *FI = dyn_cast<Instruction>(FalseVal); 1829 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1830 return nullptr; 1831 1832 Instruction *AddOp = nullptr, *SubOp = nullptr; 1833 if ((TI->getOpcode() == Instruction::Sub && 1834 FI->getOpcode() == Instruction::Add) || 1835 (TI->getOpcode() == Instruction::FSub && 1836 FI->getOpcode() == Instruction::FAdd)) { 1837 AddOp = FI; 1838 SubOp = TI; 1839 } else if ((FI->getOpcode() == Instruction::Sub && 1840 TI->getOpcode() == Instruction::Add) || 1841 (FI->getOpcode() == Instruction::FSub && 1842 TI->getOpcode() == Instruction::FAdd)) { 1843 AddOp = TI; 1844 SubOp = FI; 1845 } 1846 1847 if (AddOp) { 1848 Value *OtherAddOp = nullptr; 1849 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1850 OtherAddOp = AddOp->getOperand(1); 1851 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1852 OtherAddOp = AddOp->getOperand(0); 1853 } 1854 1855 if (OtherAddOp) { 1856 // So at this point we know we have (Y -> OtherAddOp): 1857 // select C, (add X, Y), (sub X, Z) 1858 Value *NegVal; // Compute -Z 1859 if (SI.getType()->isFPOrFPVectorTy()) { 1860 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1861 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1862 FastMathFlags Flags = AddOp->getFastMathFlags(); 1863 Flags &= SubOp->getFastMathFlags(); 1864 NegInst->setFastMathFlags(Flags); 1865 } 1866 } else { 1867 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1868 } 1869 1870 Value *NewTrueOp = OtherAddOp; 1871 Value *NewFalseOp = NegVal; 1872 if (AddOp != TI) 1873 std::swap(NewTrueOp, NewFalseOp); 1874 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1875 SI.getName() + ".p", &SI); 1876 1877 if (SI.getType()->isFPOrFPVectorTy()) { 1878 Instruction *RI = 1879 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1880 1881 FastMathFlags Flags = AddOp->getFastMathFlags(); 1882 Flags &= SubOp->getFastMathFlags(); 1883 RI->setFastMathFlags(Flags); 1884 return RI; 1885 } else 1886 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1887 } 1888 } 1889 return nullptr; 1890 } 1891 1892 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1893 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1894 /// Along with a number of patterns similar to: 1895 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1896 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1897 static Instruction * 1898 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1899 Value *CondVal = SI.getCondition(); 1900 Value *TrueVal = SI.getTrueValue(); 1901 Value *FalseVal = SI.getFalseValue(); 1902 1903 WithOverflowInst *II; 1904 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1905 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1906 return nullptr; 1907 1908 Value *X = II->getLHS(); 1909 Value *Y = II->getRHS(); 1910 1911 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1912 Type *Ty = Limit->getType(); 1913 1914 ICmpInst::Predicate Pred; 1915 Value *TrueVal, *FalseVal, *Op; 1916 const APInt *C; 1917 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1918 m_Value(TrueVal), m_Value(FalseVal)))) 1919 return false; 1920 1921 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; 1922 auto IsMinMax = [&](Value *Min, Value *Max) { 1923 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1924 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1925 return match(Min, m_SpecificInt(MinVal)) && 1926 match(Max, m_SpecificInt(MaxVal)); 1927 }; 1928 1929 if (Op != X && Op != Y) 1930 return false; 1931 1932 if (IsAdd) { 1933 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1934 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1935 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1936 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1937 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1938 IsMinMax(TrueVal, FalseVal)) 1939 return true; 1940 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1941 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1942 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1943 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1944 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1945 IsMinMax(FalseVal, TrueVal)) 1946 return true; 1947 } else { 1948 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1949 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1950 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1951 IsMinMax(TrueVal, FalseVal)) 1952 return true; 1953 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1954 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1955 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1956 IsMinMax(FalseVal, TrueVal)) 1957 return true; 1958 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1959 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1960 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1961 IsMinMax(FalseVal, TrueVal)) 1962 return true; 1963 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1964 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1965 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1966 IsMinMax(TrueVal, FalseVal)) 1967 return true; 1968 } 1969 1970 return false; 1971 }; 1972 1973 Intrinsic::ID NewIntrinsicID; 1974 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1975 match(TrueVal, m_AllOnes())) 1976 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1977 NewIntrinsicID = Intrinsic::uadd_sat; 1978 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1979 match(TrueVal, m_Zero())) 1980 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1981 NewIntrinsicID = Intrinsic::usub_sat; 1982 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1983 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1984 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1985 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1986 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1987 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1988 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1989 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1990 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1991 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1992 NewIntrinsicID = Intrinsic::sadd_sat; 1993 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1994 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1995 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1996 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1997 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1998 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1999 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2000 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2001 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2002 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2003 NewIntrinsicID = Intrinsic::ssub_sat; 2004 else 2005 return nullptr; 2006 2007 Function *F = 2008 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 2009 return CallInst::Create(F, {X, Y}); 2010 } 2011 2012 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 2013 Constant *C; 2014 if (!match(Sel.getTrueValue(), m_Constant(C)) && 2015 !match(Sel.getFalseValue(), m_Constant(C))) 2016 return nullptr; 2017 2018 Instruction *ExtInst; 2019 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 2020 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 2021 return nullptr; 2022 2023 auto ExtOpcode = ExtInst->getOpcode(); 2024 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 2025 return nullptr; 2026 2027 // If we are extending from a boolean type or if we can create a select that 2028 // has the same size operands as its condition, try to narrow the select. 2029 Value *X = ExtInst->getOperand(0); 2030 Type *SmallType = X->getType(); 2031 Value *Cond = Sel.getCondition(); 2032 auto *Cmp = dyn_cast<CmpInst>(Cond); 2033 if (!SmallType->isIntOrIntVectorTy(1) && 2034 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 2035 return nullptr; 2036 2037 // If the constant is the same after truncation to the smaller type and 2038 // extension to the original type, we can narrow the select. 2039 Type *SelType = Sel.getType(); 2040 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 2041 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 2042 if (ExtC == C && ExtInst->hasOneUse()) { 2043 Value *TruncCVal = cast<Value>(TruncC); 2044 if (ExtInst == Sel.getFalseValue()) 2045 std::swap(X, TruncCVal); 2046 2047 // select Cond, (ext X), C --> ext(select Cond, X, C') 2048 // select Cond, C, (ext X) --> ext(select Cond, C', X) 2049 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 2050 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 2051 } 2052 2053 // If one arm of the select is the extend of the condition, replace that arm 2054 // with the extension of the appropriate known bool value. 2055 if (Cond == X) { 2056 if (ExtInst == Sel.getTrueValue()) { 2057 // select X, (sext X), C --> select X, -1, C 2058 // select X, (zext X), C --> select X, 1, C 2059 Constant *One = ConstantInt::getTrue(SmallType); 2060 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 2061 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 2062 } else { 2063 // select X, C, (sext X) --> select X, C, 0 2064 // select X, C, (zext X) --> select X, C, 0 2065 Constant *Zero = ConstantInt::getNullValue(SelType); 2066 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 2067 } 2068 } 2069 2070 return nullptr; 2071 } 2072 2073 /// Try to transform a vector select with a constant condition vector into a 2074 /// shuffle for easier combining with other shuffles and insert/extract. 2075 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 2076 Value *CondVal = SI.getCondition(); 2077 Constant *CondC; 2078 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 2079 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 2080 return nullptr; 2081 2082 unsigned NumElts = CondValTy->getNumElements(); 2083 SmallVector<int, 16> Mask; 2084 Mask.reserve(NumElts); 2085 for (unsigned i = 0; i != NumElts; ++i) { 2086 Constant *Elt = CondC->getAggregateElement(i); 2087 if (!Elt) 2088 return nullptr; 2089 2090 if (Elt->isOneValue()) { 2091 // If the select condition element is true, choose from the 1st vector. 2092 Mask.push_back(i); 2093 } else if (Elt->isNullValue()) { 2094 // If the select condition element is false, choose from the 2nd vector. 2095 Mask.push_back(i + NumElts); 2096 } else if (isa<UndefValue>(Elt)) { 2097 // Undef in a select condition (choose one of the operands) does not mean 2098 // the same thing as undef in a shuffle mask (any value is acceptable), so 2099 // give up. 2100 return nullptr; 2101 } else { 2102 // Bail out on a constant expression. 2103 return nullptr; 2104 } 2105 } 2106 2107 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2108 } 2109 2110 /// If we have a select of vectors with a scalar condition, try to convert that 2111 /// to a vector select by splatting the condition. A splat may get folded with 2112 /// other operations in IR and having all operands of a select be vector types 2113 /// is likely better for vector codegen. 2114 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2115 InstCombinerImpl &IC) { 2116 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2117 if (!Ty) 2118 return nullptr; 2119 2120 // We can replace a single-use extract with constant index. 2121 Value *Cond = Sel.getCondition(); 2122 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2123 return nullptr; 2124 2125 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2126 // Splatting the extracted condition reduces code (we could directly create a 2127 // splat shuffle of the source vector to eliminate the intermediate step). 2128 return IC.replaceOperand( 2129 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2130 } 2131 2132 /// Reuse bitcasted operands between a compare and select: 2133 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2134 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2135 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2136 InstCombiner::BuilderTy &Builder) { 2137 Value *Cond = Sel.getCondition(); 2138 Value *TVal = Sel.getTrueValue(); 2139 Value *FVal = Sel.getFalseValue(); 2140 2141 CmpInst::Predicate Pred; 2142 Value *A, *B; 2143 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2144 return nullptr; 2145 2146 // The select condition is a compare instruction. If the select's true/false 2147 // values are already the same as the compare operands, there's nothing to do. 2148 if (TVal == A || TVal == B || FVal == A || FVal == B) 2149 return nullptr; 2150 2151 Value *C, *D; 2152 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2153 return nullptr; 2154 2155 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2156 Value *TSrc, *FSrc; 2157 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2158 !match(FVal, m_BitCast(m_Value(FSrc)))) 2159 return nullptr; 2160 2161 // If the select true/false values are *different bitcasts* of the same source 2162 // operands, make the select operands the same as the compare operands and 2163 // cast the result. This is the canonical select form for min/max. 2164 Value *NewSel; 2165 if (TSrc == C && FSrc == D) { 2166 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2167 // bitcast (select (cmp A, B), A, B) 2168 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2169 } else if (TSrc == D && FSrc == C) { 2170 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2171 // bitcast (select (cmp A, B), B, A) 2172 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2173 } else { 2174 return nullptr; 2175 } 2176 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2177 } 2178 2179 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2180 /// instructions. 2181 /// 2182 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2183 /// selects between the returned value of the cmpxchg instruction its compare 2184 /// operand, the result of the select will always be equal to its false value. 2185 /// For example: 2186 /// 2187 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2188 /// %1 = extractvalue { i64, i1 } %0, 1 2189 /// %2 = extractvalue { i64, i1 } %0, 0 2190 /// %3 = select i1 %1, i64 %compare, i64 %2 2191 /// ret i64 %3 2192 /// 2193 /// The returned value of the cmpxchg instruction (%2) is the original value 2194 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2195 /// must have been equal to %compare. Thus, the result of the select is always 2196 /// equal to %2, and the code can be simplified to: 2197 /// 2198 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2199 /// %1 = extractvalue { i64, i1 } %0, 0 2200 /// ret i64 %1 2201 /// 2202 static Value *foldSelectCmpXchg(SelectInst &SI) { 2203 // A helper that determines if V is an extractvalue instruction whose 2204 // aggregate operand is a cmpxchg instruction and whose single index is equal 2205 // to I. If such conditions are true, the helper returns the cmpxchg 2206 // instruction; otherwise, a nullptr is returned. 2207 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2208 auto *Extract = dyn_cast<ExtractValueInst>(V); 2209 if (!Extract) 2210 return nullptr; 2211 if (Extract->getIndices()[0] != I) 2212 return nullptr; 2213 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2214 }; 2215 2216 // If the select has a single user, and this user is a select instruction that 2217 // we can simplify, skip the cmpxchg simplification for now. 2218 if (SI.hasOneUse()) 2219 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2220 if (Select->getCondition() == SI.getCondition()) 2221 if (Select->getFalseValue() == SI.getTrueValue() || 2222 Select->getTrueValue() == SI.getFalseValue()) 2223 return nullptr; 2224 2225 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2226 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2227 if (!CmpXchg) 2228 return nullptr; 2229 2230 // Check the true value case: The true value of the select is the returned 2231 // value of the same cmpxchg used by the condition, and the false value is the 2232 // cmpxchg instruction's compare operand. 2233 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2234 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2235 return SI.getFalseValue(); 2236 2237 // Check the false value case: The false value of the select is the returned 2238 // value of the same cmpxchg used by the condition, and the true value is the 2239 // cmpxchg instruction's compare operand. 2240 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2241 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2242 return SI.getFalseValue(); 2243 2244 return nullptr; 2245 } 2246 2247 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2248 /// into a funnel shift intrinsic. Example: 2249 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2250 /// --> call llvm.fshl.i32(a, a, b) 2251 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2252 /// --> call llvm.fshl.i32(a, b, c) 2253 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2254 /// --> call llvm.fshr.i32(a, b, c) 2255 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2256 InstCombiner::BuilderTy &Builder) { 2257 // This must be a power-of-2 type for a bitmasking transform to be valid. 2258 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2259 if (!isPowerOf2_32(Width)) 2260 return nullptr; 2261 2262 BinaryOperator *Or0, *Or1; 2263 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2264 return nullptr; 2265 2266 Value *SV0, *SV1, *SA0, *SA1; 2267 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2268 m_ZExtOrSelf(m_Value(SA0))))) || 2269 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2270 m_ZExtOrSelf(m_Value(SA1))))) || 2271 Or0->getOpcode() == Or1->getOpcode()) 2272 return nullptr; 2273 2274 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2275 if (Or0->getOpcode() == BinaryOperator::LShr) { 2276 std::swap(Or0, Or1); 2277 std::swap(SV0, SV1); 2278 std::swap(SA0, SA1); 2279 } 2280 assert(Or0->getOpcode() == BinaryOperator::Shl && 2281 Or1->getOpcode() == BinaryOperator::LShr && 2282 "Illegal or(shift,shift) pair"); 2283 2284 // Check the shift amounts to see if they are an opposite pair. 2285 Value *ShAmt; 2286 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2287 ShAmt = SA0; 2288 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2289 ShAmt = SA1; 2290 else 2291 return nullptr; 2292 2293 // We should now have this pattern: 2294 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2295 // The false value of the select must be a funnel-shift of the true value: 2296 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2297 bool IsFshl = (ShAmt == SA0); 2298 Value *TVal = Sel.getTrueValue(); 2299 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2300 return nullptr; 2301 2302 // Finally, see if the select is filtering out a shift-by-zero. 2303 Value *Cond = Sel.getCondition(); 2304 ICmpInst::Predicate Pred; 2305 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2306 Pred != ICmpInst::ICMP_EQ) 2307 return nullptr; 2308 2309 // If this is not a rotate then the select was blocking poison from the 2310 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2311 if (SV0 != SV1) { 2312 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2313 SV1 = Builder.CreateFreeze(SV1); 2314 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2315 SV0 = Builder.CreateFreeze(SV0); 2316 } 2317 2318 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2319 // Convert to funnel shift intrinsic. 2320 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2321 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2322 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2323 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2324 } 2325 2326 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2327 InstCombiner::BuilderTy &Builder) { 2328 Value *Cond = Sel.getCondition(); 2329 Value *TVal = Sel.getTrueValue(); 2330 Value *FVal = Sel.getFalseValue(); 2331 Type *SelType = Sel.getType(); 2332 2333 // Match select ?, TC, FC where the constants are equal but negated. 2334 // TODO: Generalize to handle a negated variable operand? 2335 const APFloat *TC, *FC; 2336 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2337 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2338 return nullptr; 2339 2340 assert(TC != FC && "Expected equal select arms to simplify"); 2341 2342 Value *X; 2343 const APInt *C; 2344 bool IsTrueIfSignSet; 2345 ICmpInst::Predicate Pred; 2346 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2347 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2348 X->getType() != SelType) 2349 return nullptr; 2350 2351 // If needed, negate the value that will be the sign argument of the copysign: 2352 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2353 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2354 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2355 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2356 // Note: FMF from the select can not be propagated to the new instructions. 2357 if (IsTrueIfSignSet ^ TC->isNegative()) 2358 X = Builder.CreateFNeg(X); 2359 2360 // Canonicalize the magnitude argument as the positive constant since we do 2361 // not care about its sign. 2362 Value *MagArg = TC->isNegative() ? FVal : TVal; 2363 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2364 Sel.getType()); 2365 return CallInst::Create(F, { MagArg, X }); 2366 } 2367 2368 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2369 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2370 if (!VecTy) 2371 return nullptr; 2372 2373 unsigned NumElts = VecTy->getNumElements(); 2374 APInt UndefElts(NumElts, 0); 2375 APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); 2376 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2377 if (V != &Sel) 2378 return replaceInstUsesWith(Sel, V); 2379 return &Sel; 2380 } 2381 2382 // A select of a "select shuffle" with a common operand can be rearranged 2383 // to select followed by "select shuffle". Because of poison, this only works 2384 // in the case of a shuffle with no undefined mask elements. 2385 Value *Cond = Sel.getCondition(); 2386 Value *TVal = Sel.getTrueValue(); 2387 Value *FVal = Sel.getFalseValue(); 2388 Value *X, *Y; 2389 ArrayRef<int> Mask; 2390 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2391 !is_contained(Mask, UndefMaskElem) && 2392 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2393 if (X == FVal) { 2394 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2395 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2396 return new ShuffleVectorInst(X, NewSel, Mask); 2397 } 2398 if (Y == FVal) { 2399 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2400 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2401 return new ShuffleVectorInst(NewSel, Y, Mask); 2402 } 2403 } 2404 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2405 !is_contained(Mask, UndefMaskElem) && 2406 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2407 if (X == TVal) { 2408 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2409 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2410 return new ShuffleVectorInst(X, NewSel, Mask); 2411 } 2412 if (Y == TVal) { 2413 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2414 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2415 return new ShuffleVectorInst(NewSel, Y, Mask); 2416 } 2417 } 2418 2419 return nullptr; 2420 } 2421 2422 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2423 const DominatorTree &DT, 2424 InstCombiner::BuilderTy &Builder) { 2425 // Find the block's immediate dominator that ends with a conditional branch 2426 // that matches select's condition (maybe inverted). 2427 auto *IDomNode = DT[BB]->getIDom(); 2428 if (!IDomNode) 2429 return nullptr; 2430 BasicBlock *IDom = IDomNode->getBlock(); 2431 2432 Value *Cond = Sel.getCondition(); 2433 Value *IfTrue, *IfFalse; 2434 BasicBlock *TrueSucc, *FalseSucc; 2435 if (match(IDom->getTerminator(), 2436 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2437 m_BasicBlock(FalseSucc)))) { 2438 IfTrue = Sel.getTrueValue(); 2439 IfFalse = Sel.getFalseValue(); 2440 } else if (match(IDom->getTerminator(), 2441 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2442 m_BasicBlock(FalseSucc)))) { 2443 IfTrue = Sel.getFalseValue(); 2444 IfFalse = Sel.getTrueValue(); 2445 } else 2446 return nullptr; 2447 2448 // Make sure the branches are actually different. 2449 if (TrueSucc == FalseSucc) 2450 return nullptr; 2451 2452 // We want to replace select %cond, %a, %b with a phi that takes value %a 2453 // for all incoming edges that are dominated by condition `%cond == true`, 2454 // and value %b for edges dominated by condition `%cond == false`. If %a 2455 // or %b are also phis from the same basic block, we can go further and take 2456 // their incoming values from the corresponding blocks. 2457 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2458 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2459 DenseMap<BasicBlock *, Value *> Inputs; 2460 for (auto *Pred : predecessors(BB)) { 2461 // Check implication. 2462 BasicBlockEdge Incoming(Pred, BB); 2463 if (DT.dominates(TrueEdge, Incoming)) 2464 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2465 else if (DT.dominates(FalseEdge, Incoming)) 2466 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2467 else 2468 return nullptr; 2469 // Check availability. 2470 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2471 if (!DT.dominates(Insn, Pred->getTerminator())) 2472 return nullptr; 2473 } 2474 2475 Builder.SetInsertPoint(&*BB->begin()); 2476 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2477 for (auto *Pred : predecessors(BB)) 2478 PN->addIncoming(Inputs[Pred], Pred); 2479 PN->takeName(&Sel); 2480 return PN; 2481 } 2482 2483 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2484 InstCombiner::BuilderTy &Builder) { 2485 // Try to replace this select with Phi in one of these blocks. 2486 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2487 CandidateBlocks.insert(Sel.getParent()); 2488 for (Value *V : Sel.operands()) 2489 if (auto *I = dyn_cast<Instruction>(V)) 2490 CandidateBlocks.insert(I->getParent()); 2491 2492 for (BasicBlock *BB : CandidateBlocks) 2493 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2494 return PN; 2495 return nullptr; 2496 } 2497 2498 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2499 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2500 if (!FI) 2501 return nullptr; 2502 2503 Value *Cond = FI->getOperand(0); 2504 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2505 2506 // select (freeze(x == y)), x, y --> y 2507 // select (freeze(x != y)), x, y --> x 2508 // The freeze should be only used by this select. Otherwise, remaining uses of 2509 // the freeze can observe a contradictory value. 2510 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2511 // a = select c, x, y ; 2512 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2513 // ; to y, this can happen. 2514 CmpInst::Predicate Pred; 2515 if (FI->hasOneUse() && 2516 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2517 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2518 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2519 } 2520 2521 return nullptr; 2522 } 2523 2524 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2525 SelectInst &SI, 2526 bool IsAnd) { 2527 Value *CondVal = SI.getCondition(); 2528 Value *A = SI.getTrueValue(); 2529 Value *B = SI.getFalseValue(); 2530 2531 assert(Op->getType()->isIntOrIntVectorTy(1) && 2532 "Op must be either i1 or vector of i1."); 2533 2534 Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd); 2535 if (!Res) 2536 return nullptr; 2537 2538 Value *Zero = Constant::getNullValue(A->getType()); 2539 Value *One = Constant::getAllOnesValue(A->getType()); 2540 2541 if (*Res == true) { 2542 if (IsAnd) 2543 // select op, (select cond, A, B), false => select op, A, false 2544 // and op, (select cond, A, B) => select op, A, false 2545 // if op = true implies condval = true. 2546 return SelectInst::Create(Op, A, Zero); 2547 else 2548 // select op, true, (select cond, A, B) => select op, true, A 2549 // or op, (select cond, A, B) => select op, true, A 2550 // if op = false implies condval = true. 2551 return SelectInst::Create(Op, One, A); 2552 } else { 2553 if (IsAnd) 2554 // select op, (select cond, A, B), false => select op, B, false 2555 // and op, (select cond, A, B) => select op, B, false 2556 // if op = true implies condval = false. 2557 return SelectInst::Create(Op, B, Zero); 2558 else 2559 // select op, true, (select cond, A, B) => select op, true, B 2560 // or op, (select cond, A, B) => select op, true, B 2561 // if op = false implies condval = false. 2562 return SelectInst::Create(Op, One, B); 2563 } 2564 } 2565 2566 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2567 Value *CondVal = SI.getCondition(); 2568 Value *TrueVal = SI.getTrueValue(); 2569 Value *FalseVal = SI.getFalseValue(); 2570 Type *SelType = SI.getType(); 2571 2572 // FIXME: Remove this workaround when freeze related patches are done. 2573 // For select with undef operand which feeds into an equality comparison, 2574 // don't simplify it so loop unswitch can know the equality comparison 2575 // may have an undef operand. This is a workaround for PR31652 caused by 2576 // descrepancy about branch on undef between LoopUnswitch and GVN. 2577 if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) { 2578 if (llvm::any_of(SI.users(), [&](User *U) { 2579 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2580 if (CI && CI->isEquality()) 2581 return true; 2582 return false; 2583 })) { 2584 return nullptr; 2585 } 2586 } 2587 2588 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2589 SQ.getWithInstruction(&SI))) 2590 return replaceInstUsesWith(SI, V); 2591 2592 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2593 return I; 2594 2595 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2596 return I; 2597 2598 CmpInst::Predicate Pred; 2599 2600 // Avoid potential infinite loops by checking for non-constant condition. 2601 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 2602 // Scalar select must have simplified? 2603 if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) && 2604 TrueVal->getType() == CondVal->getType()) { 2605 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 2606 // checks whether folding it does not convert a well-defined value into 2607 // poison. 2608 if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) { 2609 // Change: A = select B, true, C --> A = or B, C 2610 return BinaryOperator::CreateOr(CondVal, FalseVal); 2611 } 2612 if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) { 2613 // Change: A = select B, C, false --> A = and B, C 2614 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2615 } 2616 2617 auto *One = ConstantInt::getTrue(SelType); 2618 auto *Zero = ConstantInt::getFalse(SelType); 2619 2620 // We match the "full" 0 or 1 constant here to avoid a potential infinite 2621 // loop with vectors that may have undefined/poison elements. 2622 // select a, false, b -> select !a, b, false 2623 if (match(TrueVal, m_Specific(Zero))) { 2624 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2625 return SelectInst::Create(NotCond, FalseVal, Zero); 2626 } 2627 // select a, b, true -> select !a, true, b 2628 if (match(FalseVal, m_Specific(One))) { 2629 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2630 return SelectInst::Create(NotCond, One, TrueVal); 2631 } 2632 2633 // select a, a, b -> select a, true, b 2634 if (CondVal == TrueVal) 2635 return replaceOperand(SI, 1, One); 2636 // select a, b, a -> select a, b, false 2637 if (CondVal == FalseVal) 2638 return replaceOperand(SI, 2, Zero); 2639 2640 // select a, !a, b -> select !a, b, false 2641 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2642 return SelectInst::Create(TrueVal, FalseVal, Zero); 2643 // select a, b, !a -> select !a, true, b 2644 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2645 return SelectInst::Create(FalseVal, One, TrueVal); 2646 2647 Value *A, *B; 2648 2649 // DeMorgan in select form: !a && !b --> !(a || b) 2650 // select !a, !b, false --> not (select a, true, b) 2651 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2652 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 2653 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2654 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 2655 2656 // DeMorgan in select form: !a || !b --> !(a && b) 2657 // select !a, true, !b --> not (select a, b, false) 2658 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2659 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 2660 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2661 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 2662 2663 // select (select a, true, b), true, b -> select a, true, b 2664 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2665 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 2666 return replaceOperand(SI, 0, A); 2667 // select (select a, b, false), b, false -> select a, b, false 2668 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2669 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 2670 return replaceOperand(SI, 0, A); 2671 2672 if (!SelType->isVectorTy()) { 2673 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ, 2674 /* AllowRefinement */ true)) 2675 return replaceOperand(SI, 1, S); 2676 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ, 2677 /* AllowRefinement */ true)) 2678 return replaceOperand(SI, 2, S); 2679 } 2680 2681 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 2682 Use *Y = nullptr; 2683 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 2684 Value *Op1 = IsAnd ? TrueVal : FalseVal; 2685 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 2686 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 2687 InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser())); 2688 replaceUse(*Y, FI); 2689 return replaceInstUsesWith(SI, Op1); 2690 } 2691 2692 if (auto *Op1SI = dyn_cast<SelectInst>(Op1)) 2693 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI, 2694 /* IsAnd */ IsAnd)) 2695 return I; 2696 2697 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) { 2698 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) { 2699 if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd, 2700 /* IsLogical */ true)) 2701 return replaceInstUsesWith(SI, V); 2702 2703 if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd)) 2704 return replaceInstUsesWith(SI, V); 2705 } 2706 } 2707 } 2708 2709 // select (select a, true, b), c, false -> select a, c, false 2710 // select c, (select a, true, b), false -> select c, a, false 2711 // if c implies that b is false. 2712 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2713 match(FalseVal, m_Zero())) { 2714 Optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 2715 if (Res && *Res == false) 2716 return replaceOperand(SI, 0, A); 2717 } 2718 if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2719 match(FalseVal, m_Zero())) { 2720 Optional<bool> Res = isImpliedCondition(CondVal, B, DL); 2721 if (Res && *Res == false) 2722 return replaceOperand(SI, 1, A); 2723 } 2724 // select c, true, (select a, b, false) -> select c, true, a 2725 // select (select a, b, false), true, c -> select a, true, c 2726 // if c = false implies that b = true 2727 if (match(TrueVal, m_One()) && 2728 match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) { 2729 Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 2730 if (Res && *Res == true) 2731 return replaceOperand(SI, 2, A); 2732 } 2733 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2734 match(TrueVal, m_One())) { 2735 Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 2736 if (Res && *Res == true) 2737 return replaceOperand(SI, 0, A); 2738 } 2739 2740 // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b 2741 // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a 2742 Value *C1, *C2; 2743 if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) && 2744 match(TrueVal, m_One()) && 2745 match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) { 2746 if (match(C2, m_Not(m_Specific(C1)))) // first case 2747 return SelectInst::Create(C1, A, B); 2748 else if (match(C1, m_Not(m_Specific(C2)))) // second case 2749 return SelectInst::Create(C2, B, A); 2750 } 2751 } 2752 2753 // Selecting between two integer or vector splat integer constants? 2754 // 2755 // Note that we don't handle a scalar select of vectors: 2756 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2757 // because that may need 3 instructions to splat the condition value: 2758 // extend, insertelement, shufflevector. 2759 // 2760 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2761 // zext/sext i1 to i1. 2762 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2763 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2764 // select C, 1, 0 -> zext C to int 2765 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2766 return new ZExtInst(CondVal, SelType); 2767 2768 // select C, -1, 0 -> sext C to int 2769 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2770 return new SExtInst(CondVal, SelType); 2771 2772 // select C, 0, 1 -> zext !C to int 2773 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2774 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2775 return new ZExtInst(NotCond, SelType); 2776 } 2777 2778 // select C, 0, -1 -> sext !C to int 2779 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2780 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2781 return new SExtInst(NotCond, SelType); 2782 } 2783 } 2784 2785 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 2786 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 2787 // Are we selecting a value based on a comparison of the two values? 2788 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2789 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2790 // Canonicalize to use ordered comparisons by swapping the select 2791 // operands. 2792 // 2793 // e.g. 2794 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2795 if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) { 2796 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 2797 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2798 // FIXME: The FMF should propagate from the select, not the fcmp. 2799 Builder.setFastMathFlags(FCmp->getFastMathFlags()); 2800 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2801 FCmp->getName() + ".inv"); 2802 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2803 return replaceInstUsesWith(SI, NewSel); 2804 } 2805 2806 // NOTE: if we wanted to, this is where to detect MIN/MAX 2807 } 2808 } 2809 2810 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2811 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2812 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2813 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2814 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2815 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2816 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 2817 return replaceInstUsesWith(SI, Fabs); 2818 } 2819 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2820 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2821 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2822 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2823 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 2824 return replaceInstUsesWith(SI, Fabs); 2825 } 2826 // With nnan and nsz: 2827 // (X < +/-0.0) ? -X : X --> fabs(X) 2828 // (X <= +/-0.0) ? -X : X --> fabs(X) 2829 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2830 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() && 2831 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2832 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2833 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 2834 return replaceInstUsesWith(SI, Fabs); 2835 } 2836 // With nnan and nsz: 2837 // (X > +/-0.0) ? X : -X --> fabs(X) 2838 // (X >= +/-0.0) ? X : -X --> fabs(X) 2839 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2840 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() && 2841 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2842 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2843 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 2844 return replaceInstUsesWith(SI, Fabs); 2845 } 2846 2847 // See if we are selecting two values based on a comparison of the two values. 2848 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2849 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2850 return Result; 2851 2852 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2853 return Add; 2854 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2855 return Add; 2856 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2857 return Or; 2858 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) 2859 return Mul; 2860 2861 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2862 auto *TI = dyn_cast<Instruction>(TrueVal); 2863 auto *FI = dyn_cast<Instruction>(FalseVal); 2864 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2865 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2866 return IV; 2867 2868 if (Instruction *I = foldSelectExtConst(SI)) 2869 return I; 2870 2871 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 2872 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 2873 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 2874 bool Swap) -> GetElementPtrInst * { 2875 Value *Ptr = Gep->getPointerOperand(); 2876 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 2877 !Gep->hasOneUse()) 2878 return nullptr; 2879 Value *Idx = Gep->getOperand(1); 2880 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType())) 2881 return nullptr; 2882 Type *ElementType = Gep->getResultElementType(); 2883 Value *NewT = Idx; 2884 Value *NewF = Constant::getNullValue(Idx->getType()); 2885 if (Swap) 2886 std::swap(NewT, NewF); 2887 Value *NewSI = 2888 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 2889 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI}); 2890 }; 2891 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 2892 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 2893 return NewGep; 2894 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 2895 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 2896 return NewGep; 2897 2898 // See if we can fold the select into one of our operands. 2899 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2900 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2901 return FoldI; 2902 2903 Value *LHS, *RHS; 2904 Instruction::CastOps CastOp; 2905 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2906 auto SPF = SPR.Flavor; 2907 if (SPF) { 2908 Value *LHS2, *RHS2; 2909 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2910 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2911 RHS2, SI, SPF, RHS)) 2912 return R; 2913 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2914 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2915 RHS2, SI, SPF, LHS)) 2916 return R; 2917 } 2918 2919 if (SelectPatternResult::isMinOrMax(SPF)) { 2920 // Canonicalize so that 2921 // - type casts are outside select patterns. 2922 // - float clamp is transformed to min/max pattern 2923 2924 bool IsCastNeeded = LHS->getType() != SelType; 2925 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2926 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2927 if (IsCastNeeded || 2928 (LHS->getType()->isFPOrFPVectorTy() && 2929 ((CmpLHS != LHS && CmpLHS != RHS) || 2930 (CmpRHS != LHS && CmpRHS != RHS)))) { 2931 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2932 2933 Value *Cmp; 2934 if (CmpInst::isIntPredicate(MinMaxPred)) { 2935 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2936 } else { 2937 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2938 auto FMF = 2939 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2940 Builder.setFastMathFlags(FMF); 2941 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2942 } 2943 2944 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2945 if (!IsCastNeeded) 2946 return replaceInstUsesWith(SI, NewSI); 2947 2948 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2949 return replaceInstUsesWith(SI, NewCast); 2950 } 2951 } 2952 } 2953 2954 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2955 // minnum/maxnum intrinsics. 2956 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2957 Value *X, *Y; 2958 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2959 return replaceInstUsesWith( 2960 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2961 2962 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2963 return replaceInstUsesWith( 2964 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 2965 } 2966 2967 // See if we can fold the select into a phi node if the condition is a select. 2968 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2969 // The true/false values have to be live in the PHI predecessor's blocks. 2970 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2971 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2972 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2973 return NV; 2974 2975 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2976 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2977 // select(C, select(C, a, b), c) -> select(C, a, c) 2978 if (TrueSI->getCondition() == CondVal) { 2979 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2980 return nullptr; 2981 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 2982 } 2983 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2984 // We choose this as normal form to enable folding on the And and 2985 // shortening paths for the values (this helps getUnderlyingObjects() for 2986 // example). 2987 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2988 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 2989 replaceOperand(SI, 0, And); 2990 replaceOperand(SI, 1, TrueSI->getTrueValue()); 2991 return &SI; 2992 } 2993 } 2994 } 2995 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2996 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2997 // select(C, a, select(C, b, c)) -> select(C, a, c) 2998 if (FalseSI->getCondition() == CondVal) { 2999 if (SI.getFalseValue() == FalseSI->getFalseValue()) 3000 return nullptr; 3001 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 3002 } 3003 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3004 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3005 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3006 replaceOperand(SI, 0, Or); 3007 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3008 return &SI; 3009 } 3010 } 3011 } 3012 3013 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 3014 // The select might be preventing a division by 0. 3015 switch (BO->getOpcode()) { 3016 default: 3017 return true; 3018 case Instruction::SRem: 3019 case Instruction::URem: 3020 case Instruction::SDiv: 3021 case Instruction::UDiv: 3022 return false; 3023 } 3024 }; 3025 3026 // Try to simplify a binop sandwiched between 2 selects with the same 3027 // condition. 3028 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3029 BinaryOperator *TrueBO; 3030 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 3031 canMergeSelectThroughBinop(TrueBO)) { 3032 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3033 if (TrueBOSI->getCondition() == CondVal) { 3034 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3035 Worklist.push(TrueBO); 3036 return &SI; 3037 } 3038 } 3039 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3040 if (TrueBOSI->getCondition() == CondVal) { 3041 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3042 Worklist.push(TrueBO); 3043 return &SI; 3044 } 3045 } 3046 } 3047 3048 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3049 BinaryOperator *FalseBO; 3050 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 3051 canMergeSelectThroughBinop(FalseBO)) { 3052 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3053 if (FalseBOSI->getCondition() == CondVal) { 3054 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3055 Worklist.push(FalseBO); 3056 return &SI; 3057 } 3058 } 3059 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3060 if (FalseBOSI->getCondition() == CondVal) { 3061 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3062 Worklist.push(FalseBO); 3063 return &SI; 3064 } 3065 } 3066 } 3067 3068 Value *NotCond; 3069 if (match(CondVal, m_Not(m_Value(NotCond))) && 3070 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3071 replaceOperand(SI, 0, NotCond); 3072 SI.swapValues(); 3073 SI.swapProfMetadata(); 3074 return &SI; 3075 } 3076 3077 if (Instruction *I = foldVectorSelect(SI)) 3078 return I; 3079 3080 // If we can compute the condition, there's no need for a select. 3081 // Like the above fold, we are attempting to reduce compile-time cost by 3082 // putting this fold here with limitations rather than in InstSimplify. 3083 // The motivation for this call into value tracking is to take advantage of 3084 // the assumption cache, so make sure that is populated. 3085 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3086 KnownBits Known(1); 3087 computeKnownBits(CondVal, Known, 0, &SI); 3088 if (Known.One.isOne()) 3089 return replaceInstUsesWith(SI, TrueVal); 3090 if (Known.Zero.isOne()) 3091 return replaceInstUsesWith(SI, FalseVal); 3092 } 3093 3094 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3095 return BitCastSel; 3096 3097 // Simplify selects that test the returned flag of cmpxchg instructions. 3098 if (Value *V = foldSelectCmpXchg(SI)) 3099 return replaceInstUsesWith(SI, V); 3100 3101 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3102 return Select; 3103 3104 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3105 return Funnel; 3106 3107 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3108 return Copysign; 3109 3110 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3111 return replaceInstUsesWith(SI, PN); 3112 3113 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3114 return replaceInstUsesWith(SI, Fr); 3115 3116 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 3117 // Load inst is intentionally not checked for hasOneUse() 3118 if (match(FalseVal, m_Zero()) && 3119 match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 3120 m_CombineOr(m_Undef(), m_Zero())))) { 3121 auto *MaskedLoad = cast<IntrinsicInst>(TrueVal); 3122 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3123 MaskedLoad->setArgOperand(3, FalseVal /* Zero */); 3124 return replaceInstUsesWith(SI, MaskedLoad); 3125 } 3126 3127 Value *Mask; 3128 if (match(TrueVal, m_Zero()) && 3129 match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 3130 m_CombineOr(m_Undef(), m_Zero()))) && 3131 (CondVal->getType() == Mask->getType())) { 3132 // We can remove the select by ensuring the load zeros all lanes the 3133 // select would have. We determine this by proving there is no overlap 3134 // between the load and select masks. 3135 // (i.e (load_mask & select_mask) == 0 == no overlap) 3136 bool CanMergeSelectIntoLoad = false; 3137 if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 3138 CanMergeSelectIntoLoad = match(V, m_Zero()); 3139 3140 if (CanMergeSelectIntoLoad) { 3141 auto *MaskedLoad = cast<IntrinsicInst>(FalseVal); 3142 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3143 MaskedLoad->setArgOperand(3, TrueVal /* Zero */); 3144 return replaceInstUsesWith(SI, MaskedLoad); 3145 } 3146 } 3147 3148 return nullptr; 3149 } 3150