1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/OverflowInstAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombiner.h"
42 #include <cassert>
43 #include <utility>
44 
45 #define DEBUG_TYPE "instcombine"
46 #include "llvm/Transforms/Utils/InstructionWorklist.h"
47 
48 using namespace llvm;
49 using namespace PatternMatch;
50 
51 
52 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
53                            SelectPatternFlavor SPF, Value *A, Value *B) {
54   CmpInst::Predicate Pred = getMinMaxPred(SPF);
55   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
56   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
57 }
58 
59 /// Replace a select operand based on an equality comparison with the identity
60 /// constant of a binop.
61 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
62                                             const TargetLibraryInfo &TLI,
63                                             InstCombinerImpl &IC) {
64   // The select condition must be an equality compare with a constant operand.
65   Value *X;
66   Constant *C;
67   CmpInst::Predicate Pred;
68   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
69     return nullptr;
70 
71   bool IsEq;
72   if (ICmpInst::isEquality(Pred))
73     IsEq = Pred == ICmpInst::ICMP_EQ;
74   else if (Pred == FCmpInst::FCMP_OEQ)
75     IsEq = true;
76   else if (Pred == FCmpInst::FCMP_UNE)
77     IsEq = false;
78   else
79     return nullptr;
80 
81   // A select operand must be a binop.
82   BinaryOperator *BO;
83   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
84     return nullptr;
85 
86   // The compare constant must be the identity constant for that binop.
87   // If this a floating-point compare with 0.0, any zero constant will do.
88   Type *Ty = BO->getType();
89   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
90   if (IdC != C) {
91     if (!IdC || !CmpInst::isFPPredicate(Pred))
92       return nullptr;
93     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
94       return nullptr;
95   }
96 
97   // Last, match the compare variable operand with a binop operand.
98   Value *Y;
99   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
100     return nullptr;
101   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
102     return nullptr;
103 
104   // +0.0 compares equal to -0.0, and so it does not behave as required for this
105   // transform. Bail out if we can not exclude that possibility.
106   if (isa<FPMathOperator>(BO))
107     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
108       return nullptr;
109 
110   // BO = binop Y, X
111   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
112   // =>
113   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
114   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
115 }
116 
117 /// This folds:
118 ///  select (icmp eq (and X, C1)), TC, FC
119 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
120 /// To something like:
121 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
122 /// Or:
123 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
124 /// With some variations depending if FC is larger than TC, or the shift
125 /// isn't needed, or the bit widths don't match.
126 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
127                                 InstCombiner::BuilderTy &Builder) {
128   const APInt *SelTC, *SelFC;
129   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
130       !match(Sel.getFalseValue(), m_APInt(SelFC)))
131     return nullptr;
132 
133   // If this is a vector select, we need a vector compare.
134   Type *SelType = Sel.getType();
135   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
136     return nullptr;
137 
138   Value *V;
139   APInt AndMask;
140   bool CreateAnd = false;
141   ICmpInst::Predicate Pred = Cmp->getPredicate();
142   if (ICmpInst::isEquality(Pred)) {
143     if (!match(Cmp->getOperand(1), m_Zero()))
144       return nullptr;
145 
146     V = Cmp->getOperand(0);
147     const APInt *AndRHS;
148     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
149       return nullptr;
150 
151     AndMask = *AndRHS;
152   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
153                                   Pred, V, AndMask)) {
154     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
155     if (!AndMask.isPowerOf2())
156       return nullptr;
157 
158     CreateAnd = true;
159   } else {
160     return nullptr;
161   }
162 
163   // In general, when both constants are non-zero, we would need an offset to
164   // replace the select. This would require more instructions than we started
165   // with. But there's one special-case that we handle here because it can
166   // simplify/reduce the instructions.
167   APInt TC = *SelTC;
168   APInt FC = *SelFC;
169   if (!TC.isZero() && !FC.isZero()) {
170     // If the select constants differ by exactly one bit and that's the same
171     // bit that is masked and checked by the select condition, the select can
172     // be replaced by bitwise logic to set/clear one bit of the constant result.
173     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
174       return nullptr;
175     if (CreateAnd) {
176       // If we have to create an 'and', then we must kill the cmp to not
177       // increase the instruction count.
178       if (!Cmp->hasOneUse())
179         return nullptr;
180       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
181     }
182     bool ExtraBitInTC = TC.ugt(FC);
183     if (Pred == ICmpInst::ICMP_EQ) {
184       // If the masked bit in V is clear, clear or set the bit in the result:
185       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
186       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
187       Constant *C = ConstantInt::get(SelType, TC);
188       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
189     }
190     if (Pred == ICmpInst::ICMP_NE) {
191       // If the masked bit in V is set, set or clear the bit in the result:
192       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
193       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
194       Constant *C = ConstantInt::get(SelType, FC);
195       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
196     }
197     llvm_unreachable("Only expecting equality predicates");
198   }
199 
200   // Make sure one of the select arms is a power-of-2.
201   if (!TC.isPowerOf2() && !FC.isPowerOf2())
202     return nullptr;
203 
204   // Determine which shift is needed to transform result of the 'and' into the
205   // desired result.
206   const APInt &ValC = !TC.isZero() ? TC : FC;
207   unsigned ValZeros = ValC.logBase2();
208   unsigned AndZeros = AndMask.logBase2();
209 
210   // Insert the 'and' instruction on the input to the truncate.
211   if (CreateAnd)
212     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
213 
214   // If types don't match, we can still convert the select by introducing a zext
215   // or a trunc of the 'and'.
216   if (ValZeros > AndZeros) {
217     V = Builder.CreateZExtOrTrunc(V, SelType);
218     V = Builder.CreateShl(V, ValZeros - AndZeros);
219   } else if (ValZeros < AndZeros) {
220     V = Builder.CreateLShr(V, AndZeros - ValZeros);
221     V = Builder.CreateZExtOrTrunc(V, SelType);
222   } else {
223     V = Builder.CreateZExtOrTrunc(V, SelType);
224   }
225 
226   // Okay, now we know that everything is set up, we just don't know whether we
227   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
228   bool ShouldNotVal = !TC.isZero();
229   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
230   if (ShouldNotVal)
231     V = Builder.CreateXor(V, ValC);
232 
233   return V;
234 }
235 
236 /// We want to turn code that looks like this:
237 ///   %C = or %A, %B
238 ///   %D = select %cond, %C, %A
239 /// into:
240 ///   %C = select %cond, %B, 0
241 ///   %D = or %A, %C
242 ///
243 /// Assuming that the specified instruction is an operand to the select, return
244 /// a bitmask indicating which operands of this instruction are foldable if they
245 /// equal the other incoming value of the select.
246 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
247   switch (I->getOpcode()) {
248   case Instruction::Add:
249   case Instruction::FAdd:
250   case Instruction::Mul:
251   case Instruction::FMul:
252   case Instruction::And:
253   case Instruction::Or:
254   case Instruction::Xor:
255     return 3;              // Can fold through either operand.
256   case Instruction::Sub:   // Can only fold on the amount subtracted.
257   case Instruction::FSub:
258   case Instruction::FDiv:  // Can only fold on the divisor amount.
259   case Instruction::Shl:   // Can only fold on the shift amount.
260   case Instruction::LShr:
261   case Instruction::AShr:
262     return 1;
263   default:
264     return 0;              // Cannot fold
265   }
266 }
267 
268 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
269 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
270                                               Instruction *FI) {
271   // Don't break up min/max patterns. The hasOneUse checks below prevent that
272   // for most cases, but vector min/max with bitcasts can be transformed. If the
273   // one-use restrictions are eased for other patterns, we still don't want to
274   // obfuscate min/max.
275   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
276        match(&SI, m_SMax(m_Value(), m_Value())) ||
277        match(&SI, m_UMin(m_Value(), m_Value())) ||
278        match(&SI, m_UMax(m_Value(), m_Value()))))
279     return nullptr;
280 
281   // If this is a cast from the same type, merge.
282   Value *Cond = SI.getCondition();
283   Type *CondTy = Cond->getType();
284   if (TI->getNumOperands() == 1 && TI->isCast()) {
285     Type *FIOpndTy = FI->getOperand(0)->getType();
286     if (TI->getOperand(0)->getType() != FIOpndTy)
287       return nullptr;
288 
289     // The select condition may be a vector. We may only change the operand
290     // type if the vector width remains the same (and matches the condition).
291     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
292       if (!FIOpndTy->isVectorTy() ||
293           CondVTy->getElementCount() !=
294               cast<VectorType>(FIOpndTy)->getElementCount())
295         return nullptr;
296 
297       // TODO: If the backend knew how to deal with casts better, we could
298       // remove this limitation. For now, there's too much potential to create
299       // worse codegen by promoting the select ahead of size-altering casts
300       // (PR28160).
301       //
302       // Note that ValueTracking's matchSelectPattern() looks through casts
303       // without checking 'hasOneUse' when it matches min/max patterns, so this
304       // transform may end up happening anyway.
305       if (TI->getOpcode() != Instruction::BitCast &&
306           (!TI->hasOneUse() || !FI->hasOneUse()))
307         return nullptr;
308     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
309       // TODO: The one-use restrictions for a scalar select could be eased if
310       // the fold of a select in visitLoadInst() was enhanced to match a pattern
311       // that includes a cast.
312       return nullptr;
313     }
314 
315     // Fold this by inserting a select from the input values.
316     Value *NewSI =
317         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
318                              SI.getName() + ".v", &SI);
319     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
320                             TI->getType());
321   }
322 
323   // Cond ? -X : -Y --> -(Cond ? X : Y)
324   Value *X, *Y;
325   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
326       (TI->hasOneUse() || FI->hasOneUse())) {
327     // Intersect FMF from the fneg instructions and union those with the select.
328     FastMathFlags FMF = TI->getFastMathFlags();
329     FMF &= FI->getFastMathFlags();
330     FMF |= SI.getFastMathFlags();
331     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
332     if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
333       NewSelI->setFastMathFlags(FMF);
334     Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
335     NewFNeg->setFastMathFlags(FMF);
336     return NewFNeg;
337   }
338 
339   // Min/max intrinsic with a common operand can have the common operand pulled
340   // after the select. This is the same transform as below for binops, but
341   // specialized for intrinsic matching and without the restrictive uses clause.
342   auto *TII = dyn_cast<IntrinsicInst>(TI);
343   auto *FII = dyn_cast<IntrinsicInst>(FI);
344   if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() &&
345       (TII->hasOneUse() || FII->hasOneUse())) {
346     Value *T0, *T1, *F0, *F1;
347     if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) &&
348         match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) {
349       if (T0 == F0) {
350         Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI);
351         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
352       }
353       if (T0 == F1) {
354         Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI);
355         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
356       }
357       if (T1 == F0) {
358         Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI);
359         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
360       }
361       if (T1 == F1) {
362         Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI);
363         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
364       }
365     }
366   }
367 
368   // Only handle binary operators (including two-operand getelementptr) with
369   // one-use here. As with the cast case above, it may be possible to relax the
370   // one-use constraint, but that needs be examined carefully since it may not
371   // reduce the total number of instructions.
372   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
373       !TI->isSameOperationAs(FI) ||
374       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
375       !TI->hasOneUse() || !FI->hasOneUse())
376     return nullptr;
377 
378   // Figure out if the operations have any operands in common.
379   Value *MatchOp, *OtherOpT, *OtherOpF;
380   bool MatchIsOpZero;
381   if (TI->getOperand(0) == FI->getOperand(0)) {
382     MatchOp  = TI->getOperand(0);
383     OtherOpT = TI->getOperand(1);
384     OtherOpF = FI->getOperand(1);
385     MatchIsOpZero = true;
386   } else if (TI->getOperand(1) == FI->getOperand(1)) {
387     MatchOp  = TI->getOperand(1);
388     OtherOpT = TI->getOperand(0);
389     OtherOpF = FI->getOperand(0);
390     MatchIsOpZero = false;
391   } else if (!TI->isCommutative()) {
392     return nullptr;
393   } else if (TI->getOperand(0) == FI->getOperand(1)) {
394     MatchOp  = TI->getOperand(0);
395     OtherOpT = TI->getOperand(1);
396     OtherOpF = FI->getOperand(0);
397     MatchIsOpZero = true;
398   } else if (TI->getOperand(1) == FI->getOperand(0)) {
399     MatchOp  = TI->getOperand(1);
400     OtherOpT = TI->getOperand(0);
401     OtherOpF = FI->getOperand(1);
402     MatchIsOpZero = true;
403   } else {
404     return nullptr;
405   }
406 
407   // If the select condition is a vector, the operands of the original select's
408   // operands also must be vectors. This may not be the case for getelementptr
409   // for example.
410   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
411                                !OtherOpF->getType()->isVectorTy()))
412     return nullptr;
413 
414   // If we reach here, they do have operations in common.
415   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
416                                       SI.getName() + ".v", &SI);
417   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
418   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
419   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
420     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
421     NewBO->copyIRFlags(TI);
422     NewBO->andIRFlags(FI);
423     return NewBO;
424   }
425   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
426     auto *FGEP = cast<GetElementPtrInst>(FI);
427     Type *ElementType = TGEP->getResultElementType();
428     return TGEP->isInBounds() && FGEP->isInBounds()
429                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
430                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
431   }
432   llvm_unreachable("Expected BinaryOperator or GEP");
433   return nullptr;
434 }
435 
436 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
437   if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
438     return false;
439   return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
440 }
441 
442 /// Try to fold the select into one of the operands to allow further
443 /// optimization.
444 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
445                                                 Value *FalseVal) {
446   // See the comment above GetSelectFoldableOperands for a description of the
447   // transformation we are doing here.
448   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
449     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
450       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
451         unsigned OpToFold = 0;
452         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
453           OpToFold = 1;
454         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
455           OpToFold = 2;
456         }
457 
458         if (OpToFold) {
459           Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
460                                                        TVI->getType(), true);
461           Value *OOp = TVI->getOperand(2-OpToFold);
462           // Avoid creating select between 2 constants unless it's selecting
463           // between 0, 1 and -1.
464           const APInt *OOpC;
465           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
466           if (!isa<Constant>(OOp) ||
467               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
468             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
469             NewSel->takeName(TVI);
470             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
471                                                         FalseVal, NewSel);
472             BO->copyIRFlags(TVI);
473             return BO;
474           }
475         }
476       }
477     }
478   }
479 
480   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
481     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
482       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
483         unsigned OpToFold = 0;
484         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
485           OpToFold = 1;
486         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
487           OpToFold = 2;
488         }
489 
490         if (OpToFold) {
491           Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
492                                                        FVI->getType(), true);
493           Value *OOp = FVI->getOperand(2-OpToFold);
494           // Avoid creating select between 2 constants unless it's selecting
495           // between 0, 1 and -1.
496           const APInt *OOpC;
497           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
498           if (!isa<Constant>(OOp) ||
499               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
500             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
501             NewSel->takeName(FVI);
502             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
503                                                         TrueVal, NewSel);
504             BO->copyIRFlags(FVI);
505             return BO;
506           }
507         }
508       }
509     }
510   }
511 
512   return nullptr;
513 }
514 
515 /// We want to turn:
516 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
517 /// into:
518 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
519 /// Note:
520 ///   Z may be 0 if lshr is missing.
521 /// Worst-case scenario is that we will replace 5 instructions with 5 different
522 /// instructions, but we got rid of select.
523 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
524                                          Value *TVal, Value *FVal,
525                                          InstCombiner::BuilderTy &Builder) {
526   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
527         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
528         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
529     return nullptr;
530 
531   // The TrueVal has general form of:  and %B, 1
532   Value *B;
533   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
534     return nullptr;
535 
536   // Where %B may be optionally shifted:  lshr %X, %Z.
537   Value *X, *Z;
538   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
539   if (!HasShift)
540     X = B;
541 
542   Value *Y;
543   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
544     return nullptr;
545 
546   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
547   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
548   Constant *One = ConstantInt::get(SelType, 1);
549   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
550   Value *FullMask = Builder.CreateOr(Y, MaskB);
551   Value *MaskedX = Builder.CreateAnd(X, FullMask);
552   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
553   return new ZExtInst(ICmpNeZero, SelType);
554 }
555 
556 /// We want to turn:
557 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
558 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
559 /// into:
560 ///   ashr (X, Y)
561 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
562                                      Value *FalseVal,
563                                      InstCombiner::BuilderTy &Builder) {
564   ICmpInst::Predicate Pred = IC->getPredicate();
565   Value *CmpLHS = IC->getOperand(0);
566   Value *CmpRHS = IC->getOperand(1);
567   if (!CmpRHS->getType()->isIntOrIntVectorTy())
568     return nullptr;
569 
570   Value *X, *Y;
571   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
572   if ((Pred != ICmpInst::ICMP_SGT ||
573        !match(CmpRHS,
574               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
575       (Pred != ICmpInst::ICMP_SLT ||
576        !match(CmpRHS,
577               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
578     return nullptr;
579 
580   // Canonicalize so that ashr is in FalseVal.
581   if (Pred == ICmpInst::ICMP_SLT)
582     std::swap(TrueVal, FalseVal);
583 
584   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
585       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
586       match(CmpLHS, m_Specific(X))) {
587     const auto *Ashr = cast<Instruction>(FalseVal);
588     // if lshr is not exact and ashr is, this new ashr must not be exact.
589     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
590     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
591   }
592 
593   return nullptr;
594 }
595 
596 /// We want to turn:
597 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
598 /// into:
599 ///   (or (shl (and X, C1), C3), Y)
600 /// iff:
601 ///   C1 and C2 are both powers of 2
602 /// where:
603 ///   C3 = Log(C2) - Log(C1)
604 ///
605 /// This transform handles cases where:
606 /// 1. The icmp predicate is inverted
607 /// 2. The select operands are reversed
608 /// 3. The magnitude of C2 and C1 are flipped
609 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
610                                   Value *FalseVal,
611                                   InstCombiner::BuilderTy &Builder) {
612   // Only handle integer compares. Also, if this is a vector select, we need a
613   // vector compare.
614   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
615       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
616     return nullptr;
617 
618   Value *CmpLHS = IC->getOperand(0);
619   Value *CmpRHS = IC->getOperand(1);
620 
621   Value *V;
622   unsigned C1Log;
623   bool IsEqualZero;
624   bool NeedAnd = false;
625   if (IC->isEquality()) {
626     if (!match(CmpRHS, m_Zero()))
627       return nullptr;
628 
629     const APInt *C1;
630     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
631       return nullptr;
632 
633     V = CmpLHS;
634     C1Log = C1->logBase2();
635     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
636   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
637              IC->getPredicate() == ICmpInst::ICMP_SGT) {
638     // We also need to recognize (icmp slt (trunc (X)), 0) and
639     // (icmp sgt (trunc (X)), -1).
640     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
641     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
642         (!IsEqualZero && !match(CmpRHS, m_Zero())))
643       return nullptr;
644 
645     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
646       return nullptr;
647 
648     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
649     NeedAnd = true;
650   } else {
651     return nullptr;
652   }
653 
654   const APInt *C2;
655   bool OrOnTrueVal = false;
656   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
657   if (!OrOnFalseVal)
658     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
659 
660   if (!OrOnFalseVal && !OrOnTrueVal)
661     return nullptr;
662 
663   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
664 
665   unsigned C2Log = C2->logBase2();
666 
667   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
668   bool NeedShift = C1Log != C2Log;
669   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
670                        V->getType()->getScalarSizeInBits();
671 
672   // Make sure we don't create more instructions than we save.
673   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
674   if ((NeedShift + NeedXor + NeedZExtTrunc) >
675       (IC->hasOneUse() + Or->hasOneUse()))
676     return nullptr;
677 
678   if (NeedAnd) {
679     // Insert the AND instruction on the input to the truncate.
680     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
681     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
682   }
683 
684   if (C2Log > C1Log) {
685     V = Builder.CreateZExtOrTrunc(V, Y->getType());
686     V = Builder.CreateShl(V, C2Log - C1Log);
687   } else if (C1Log > C2Log) {
688     V = Builder.CreateLShr(V, C1Log - C2Log);
689     V = Builder.CreateZExtOrTrunc(V, Y->getType());
690   } else
691     V = Builder.CreateZExtOrTrunc(V, Y->getType());
692 
693   if (NeedXor)
694     V = Builder.CreateXor(V, *C2);
695 
696   return Builder.CreateOr(V, Y);
697 }
698 
699 /// Canonicalize a set or clear of a masked set of constant bits to
700 /// select-of-constants form.
701 static Instruction *foldSetClearBits(SelectInst &Sel,
702                                      InstCombiner::BuilderTy &Builder) {
703   Value *Cond = Sel.getCondition();
704   Value *T = Sel.getTrueValue();
705   Value *F = Sel.getFalseValue();
706   Type *Ty = Sel.getType();
707   Value *X;
708   const APInt *NotC, *C;
709 
710   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
711   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
712       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
713     Constant *Zero = ConstantInt::getNullValue(Ty);
714     Constant *OrC = ConstantInt::get(Ty, *C);
715     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
716     return BinaryOperator::CreateOr(T, NewSel);
717   }
718 
719   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
720   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
721       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
722     Constant *Zero = ConstantInt::getNullValue(Ty);
723     Constant *OrC = ConstantInt::get(Ty, *C);
724     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
725     return BinaryOperator::CreateOr(F, NewSel);
726   }
727 
728   return nullptr;
729 }
730 
731 //   select (x == 0), 0, x * y --> freeze(y) * x
732 //   select (y == 0), 0, x * y --> freeze(x) * y
733 //   select (x == 0), undef, x * y --> freeze(y) * x
734 //   select (x == undef), 0, x * y --> freeze(y) * x
735 // Usage of mul instead of 0 will make the result more poisonous,
736 // so the operand that was not checked in the condition should be frozen.
737 // The latter folding is applied only when a constant compared with x is
738 // is a vector consisting of 0 and undefs. If a constant compared with x
739 // is a scalar undefined value or undefined vector then an expression
740 // should be already folded into a constant.
741 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
742   auto *CondVal = SI.getCondition();
743   auto *TrueVal = SI.getTrueValue();
744   auto *FalseVal = SI.getFalseValue();
745   Value *X, *Y;
746   ICmpInst::Predicate Predicate;
747 
748   // Assuming that constant compared with zero is not undef (but it may be
749   // a vector with some undef elements). Otherwise (when a constant is undef)
750   // the select expression should be already simplified.
751   if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
752       !ICmpInst::isEquality(Predicate))
753     return nullptr;
754 
755   if (Predicate == ICmpInst::ICMP_NE)
756     std::swap(TrueVal, FalseVal);
757 
758   // Check that TrueVal is a constant instead of matching it with m_Zero()
759   // to handle the case when it is a scalar undef value or a vector containing
760   // non-zero elements that are masked by undef elements in the compare
761   // constant.
762   auto *TrueValC = dyn_cast<Constant>(TrueVal);
763   if (TrueValC == nullptr ||
764       !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
765       !isa<Instruction>(FalseVal))
766     return nullptr;
767 
768   auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
769   auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
770   // If X is compared with 0 then TrueVal could be either zero or undef.
771   // m_Zero match vectors containing some undef elements, but for scalars
772   // m_Undef should be used explicitly.
773   if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
774     return nullptr;
775 
776   auto *FalseValI = cast<Instruction>(FalseVal);
777   auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
778                                      *FalseValI);
779   IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
780   return IC.replaceInstUsesWith(SI, FalseValI);
781 }
782 
783 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
784 /// There are 8 commuted/swapped variants of this pattern.
785 /// TODO: Also support a - UMIN(a,b) patterns.
786 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
787                                             const Value *TrueVal,
788                                             const Value *FalseVal,
789                                             InstCombiner::BuilderTy &Builder) {
790   ICmpInst::Predicate Pred = ICI->getPredicate();
791   if (!ICmpInst::isUnsigned(Pred))
792     return nullptr;
793 
794   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
795   if (match(TrueVal, m_Zero())) {
796     Pred = ICmpInst::getInversePredicate(Pred);
797     std::swap(TrueVal, FalseVal);
798   }
799   if (!match(FalseVal, m_Zero()))
800     return nullptr;
801 
802   Value *A = ICI->getOperand(0);
803   Value *B = ICI->getOperand(1);
804   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
805     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
806     std::swap(A, B);
807     Pred = ICmpInst::getSwappedPredicate(Pred);
808   }
809 
810   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
811          "Unexpected isUnsigned predicate!");
812 
813   // Ensure the sub is of the form:
814   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
815   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
816   // Checking for both a-b and a+(-b) as a constant.
817   bool IsNegative = false;
818   const APInt *C;
819   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
820       (match(A, m_APInt(C)) &&
821        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
822     IsNegative = true;
823   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
824            !(match(B, m_APInt(C)) &&
825              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
826     return nullptr;
827 
828   // If we are adding a negate and the sub and icmp are used anywhere else, we
829   // would end up with more instructions.
830   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
831     return nullptr;
832 
833   // (a > b) ? a - b : 0 -> usub.sat(a, b)
834   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
835   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
836   if (IsNegative)
837     Result = Builder.CreateNeg(Result);
838   return Result;
839 }
840 
841 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
842                                        InstCombiner::BuilderTy &Builder) {
843   if (!Cmp->hasOneUse())
844     return nullptr;
845 
846   // Match unsigned saturated add with constant.
847   Value *Cmp0 = Cmp->getOperand(0);
848   Value *Cmp1 = Cmp->getOperand(1);
849   ICmpInst::Predicate Pred = Cmp->getPredicate();
850   Value *X;
851   const APInt *C, *CmpC;
852   if (Pred == ICmpInst::ICMP_ULT &&
853       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
854       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
855     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
856     return Builder.CreateBinaryIntrinsic(
857         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
858   }
859 
860   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
861   // There are 8 commuted variants.
862   // Canonicalize -1 (saturated result) to true value of the select.
863   if (match(FVal, m_AllOnes())) {
864     std::swap(TVal, FVal);
865     Pred = CmpInst::getInversePredicate(Pred);
866   }
867   if (!match(TVal, m_AllOnes()))
868     return nullptr;
869 
870   // Canonicalize predicate to less-than or less-or-equal-than.
871   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
872     std::swap(Cmp0, Cmp1);
873     Pred = CmpInst::getSwappedPredicate(Pred);
874   }
875   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
876     return nullptr;
877 
878   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
879   // Strictness of the comparison is irrelevant.
880   Value *Y;
881   if (match(Cmp0, m_Not(m_Value(X))) &&
882       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
883     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
884     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
885     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
886   }
887   // The 'not' op may be included in the sum but not the compare.
888   // Strictness of the comparison is irrelevant.
889   X = Cmp0;
890   Y = Cmp1;
891   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
892     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
893     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
894     BinaryOperator *BO = cast<BinaryOperator>(FVal);
895     return Builder.CreateBinaryIntrinsic(
896         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
897   }
898   // The overflow may be detected via the add wrapping round.
899   // This is only valid for strict comparison!
900   if (Pred == ICmpInst::ICMP_ULT &&
901       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
902       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
903     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
904     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
905     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
906   }
907 
908   return nullptr;
909 }
910 
911 /// Fold the following code sequence:
912 /// \code
913 ///   int a = ctlz(x & -x);
914 //    x ? 31 - a : a;
915 /// \code
916 ///
917 /// into:
918 ///   cttz(x)
919 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
920                                          Value *FalseVal,
921                                          InstCombiner::BuilderTy &Builder) {
922   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
923   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
924     return nullptr;
925 
926   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
927     std::swap(TrueVal, FalseVal);
928 
929   if (!match(FalseVal,
930              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
931     return nullptr;
932 
933   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
934     return nullptr;
935 
936   Value *X = ICI->getOperand(0);
937   auto *II = cast<IntrinsicInst>(TrueVal);
938   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
939     return nullptr;
940 
941   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
942                                           II->getType());
943   return CallInst::Create(F, {X, II->getArgOperand(1)});
944 }
945 
946 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
947 /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
948 ///
949 /// For example, we can fold the following code sequence:
950 /// \code
951 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
952 ///   %1 = icmp ne i32 %x, 0
953 ///   %2 = select i1 %1, i32 %0, i32 32
954 /// \code
955 ///
956 /// into:
957 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
958 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
959                                  InstCombiner::BuilderTy &Builder) {
960   ICmpInst::Predicate Pred = ICI->getPredicate();
961   Value *CmpLHS = ICI->getOperand(0);
962   Value *CmpRHS = ICI->getOperand(1);
963 
964   // Check if the condition value compares a value for equality against zero.
965   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
966     return nullptr;
967 
968   Value *SelectArg = FalseVal;
969   Value *ValueOnZero = TrueVal;
970   if (Pred == ICmpInst::ICMP_NE)
971     std::swap(SelectArg, ValueOnZero);
972 
973   // Skip zero extend/truncate.
974   Value *Count = nullptr;
975   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
976       !match(SelectArg, m_Trunc(m_Value(Count))))
977     Count = SelectArg;
978 
979   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
980   // input to the cttz/ctlz is used as LHS for the compare instruction.
981   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
982       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
983     return nullptr;
984 
985   IntrinsicInst *II = cast<IntrinsicInst>(Count);
986 
987   // Check if the value propagated on zero is a constant number equal to the
988   // sizeof in bits of 'Count'.
989   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
990   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
991     // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
992     // true to false on this flag, so we can replace it for all users.
993     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
994     return SelectArg;
995   }
996 
997   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
998   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
999   // not be used if the input is zero. Relax to 'zero is poison' for that case.
1000   if (II->hasOneUse() && SelectArg->hasOneUse() &&
1001       !match(II->getArgOperand(1), m_One()))
1002     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1003 
1004   return nullptr;
1005 }
1006 
1007 /// Return true if we find and adjust an icmp+select pattern where the compare
1008 /// is with a constant that can be incremented or decremented to match the
1009 /// minimum or maximum idiom.
1010 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
1011   ICmpInst::Predicate Pred = Cmp.getPredicate();
1012   Value *CmpLHS = Cmp.getOperand(0);
1013   Value *CmpRHS = Cmp.getOperand(1);
1014   Value *TrueVal = Sel.getTrueValue();
1015   Value *FalseVal = Sel.getFalseValue();
1016 
1017   // We may move or edit the compare, so make sure the select is the only user.
1018   const APInt *CmpC;
1019   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
1020     return false;
1021 
1022   // These transforms only work for selects of integers or vector selects of
1023   // integer vectors.
1024   Type *SelTy = Sel.getType();
1025   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
1026   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
1027     return false;
1028 
1029   Constant *AdjustedRHS;
1030   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
1031     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
1032   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
1033     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
1034   else
1035     return false;
1036 
1037   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
1038   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
1039   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
1040       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
1041     ; // Nothing to do here. Values match without any sign/zero extension.
1042   }
1043   // Types do not match. Instead of calculating this with mixed types, promote
1044   // all to the larger type. This enables scalar evolution to analyze this
1045   // expression.
1046   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
1047     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
1048 
1049     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
1050     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
1051     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
1052     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
1053     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
1054       CmpLHS = TrueVal;
1055       AdjustedRHS = SextRHS;
1056     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
1057                SextRHS == TrueVal) {
1058       CmpLHS = FalseVal;
1059       AdjustedRHS = SextRHS;
1060     } else if (Cmp.isUnsigned()) {
1061       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
1062       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
1063       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
1064       // zext + signed compare cannot be changed:
1065       //    0xff <s 0x00, but 0x00ff >s 0x0000
1066       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
1067         CmpLHS = TrueVal;
1068         AdjustedRHS = ZextRHS;
1069       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
1070                  ZextRHS == TrueVal) {
1071         CmpLHS = FalseVal;
1072         AdjustedRHS = ZextRHS;
1073       } else {
1074         return false;
1075       }
1076     } else {
1077       return false;
1078     }
1079   } else {
1080     return false;
1081   }
1082 
1083   Pred = ICmpInst::getSwappedPredicate(Pred);
1084   CmpRHS = AdjustedRHS;
1085   std::swap(FalseVal, TrueVal);
1086   Cmp.setPredicate(Pred);
1087   Cmp.setOperand(0, CmpLHS);
1088   Cmp.setOperand(1, CmpRHS);
1089   Sel.setOperand(1, TrueVal);
1090   Sel.setOperand(2, FalseVal);
1091   Sel.swapProfMetadata();
1092 
1093   // Move the compare instruction right before the select instruction. Otherwise
1094   // the sext/zext value may be defined after the compare instruction uses it.
1095   Cmp.moveBefore(&Sel);
1096 
1097   return true;
1098 }
1099 
1100 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp,
1101                                     InstCombinerImpl &IC) {
1102   Value *LHS, *RHS;
1103   // TODO: What to do with pointer min/max patterns?
1104   if (!Sel.getType()->isIntOrIntVectorTy())
1105     return nullptr;
1106 
1107   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1108   if (SPF == SelectPatternFlavor::SPF_ABS ||
1109       SPF == SelectPatternFlavor::SPF_NABS) {
1110     if (!Cmp.hasOneUse() && !RHS->hasOneUse())
1111       return nullptr; // TODO: Relax this restriction.
1112 
1113     // Note that NSW flag can only be propagated for normal, non-negated abs!
1114     bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1115                           match(RHS, m_NSWNeg(m_Specific(LHS)));
1116     Constant *IntMinIsPoisonC =
1117         ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1118     Instruction *Abs =
1119         IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1120 
1121     if (SPF == SelectPatternFlavor::SPF_NABS)
1122       return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1123     return IC.replaceInstUsesWith(Sel, Abs);
1124   }
1125 
1126   if (SelectPatternResult::isMinOrMax(SPF)) {
1127     Intrinsic::ID IntrinsicID;
1128     switch (SPF) {
1129     case SelectPatternFlavor::SPF_UMIN:
1130       IntrinsicID = Intrinsic::umin;
1131       break;
1132     case SelectPatternFlavor::SPF_UMAX:
1133       IntrinsicID = Intrinsic::umax;
1134       break;
1135     case SelectPatternFlavor::SPF_SMIN:
1136       IntrinsicID = Intrinsic::smin;
1137       break;
1138     case SelectPatternFlavor::SPF_SMAX:
1139       IntrinsicID = Intrinsic::smax;
1140       break;
1141     default:
1142       llvm_unreachable("Unexpected SPF");
1143     }
1144     return IC.replaceInstUsesWith(
1145         Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS));
1146   }
1147 
1148   return nullptr;
1149 }
1150 
1151 /// If we have a select with an equality comparison, then we know the value in
1152 /// one of the arms of the select. See if substituting this value into an arm
1153 /// and simplifying the result yields the same value as the other arm.
1154 ///
1155 /// To make this transform safe, we must drop poison-generating flags
1156 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1157 /// that poison from propagating. If the existing binop already had no
1158 /// poison-generating flags, then this transform can be done by instsimplify.
1159 ///
1160 /// Consider:
1161 ///   %cmp = icmp eq i32 %x, 2147483647
1162 ///   %add = add nsw i32 %x, 1
1163 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1164 ///
1165 /// We can't replace %sel with %add unless we strip away the flags.
1166 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1167 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1168                                                           ICmpInst &Cmp) {
1169   // Value equivalence substitution requires an all-or-nothing replacement.
1170   // It does not make sense for a vector compare where each lane is chosen
1171   // independently.
1172   if (!Cmp.isEquality() || Cmp.getType()->isVectorTy())
1173     return nullptr;
1174 
1175   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1176   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1177   bool Swapped = false;
1178   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1179     std::swap(TrueVal, FalseVal);
1180     Swapped = true;
1181   }
1182 
1183   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1184   // Make sure Y cannot be undef though, as we might pick different values for
1185   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1186   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1187   // replacement cycle.
1188   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1189   if (TrueVal != CmpLHS &&
1190       isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1191     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1192                                           /* AllowRefinement */ true))
1193       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1194 
1195     // Even if TrueVal does not simplify, we can directly replace a use of
1196     // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1197     // else and is safe to speculatively execute (we may end up executing it
1198     // with different operands, which should not cause side-effects or trigger
1199     // undefined behavior). Only do this if CmpRHS is a constant, as
1200     // profitability is not clear for other cases.
1201     // FIXME: The replacement could be performed recursively.
1202     if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()))
1203       if (auto *I = dyn_cast<Instruction>(TrueVal))
1204         if (I->hasOneUse() && isSafeToSpeculativelyExecute(I))
1205           for (Use &U : I->operands())
1206             if (U == CmpLHS) {
1207               replaceUse(U, CmpRHS);
1208               return &Sel;
1209             }
1210   }
1211   if (TrueVal != CmpRHS &&
1212       isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1213     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1214                                           /* AllowRefinement */ true))
1215       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1216 
1217   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1218   if (!FalseInst)
1219     return nullptr;
1220 
1221   // InstSimplify already performed this fold if it was possible subject to
1222   // current poison-generating flags. Try the transform again with
1223   // poison-generating flags temporarily dropped.
1224   bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1225   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1226     WasNUW = OBO->hasNoUnsignedWrap();
1227     WasNSW = OBO->hasNoSignedWrap();
1228     FalseInst->setHasNoUnsignedWrap(false);
1229     FalseInst->setHasNoSignedWrap(false);
1230   }
1231   if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1232     WasExact = PEO->isExact();
1233     FalseInst->setIsExact(false);
1234   }
1235   if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1236     WasInBounds = GEP->isInBounds();
1237     GEP->setIsInBounds(false);
1238   }
1239 
1240   // Try each equivalence substitution possibility.
1241   // We have an 'EQ' comparison, so the select's false value will propagate.
1242   // Example:
1243   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1244   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1245                              /* AllowRefinement */ false) == TrueVal ||
1246       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1247                              /* AllowRefinement */ false) == TrueVal) {
1248     return replaceInstUsesWith(Sel, FalseVal);
1249   }
1250 
1251   // Restore poison-generating flags if the transform did not apply.
1252   if (WasNUW)
1253     FalseInst->setHasNoUnsignedWrap();
1254   if (WasNSW)
1255     FalseInst->setHasNoSignedWrap();
1256   if (WasExact)
1257     FalseInst->setIsExact();
1258   if (WasInBounds)
1259     cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1260 
1261   return nullptr;
1262 }
1263 
1264 // See if this is a pattern like:
1265 //   %old_cmp1 = icmp slt i32 %x, C2
1266 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1267 //   %old_x_offseted = add i32 %x, C1
1268 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1269 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1270 // This can be rewritten as more canonical pattern:
1271 //   %new_cmp1 = icmp slt i32 %x, -C1
1272 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1273 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1274 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1275 // Iff -C1 s<= C2 s<= C0-C1
1276 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1277 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1278 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1279                                     InstCombiner::BuilderTy &Builder) {
1280   Value *X = Sel0.getTrueValue();
1281   Value *Sel1 = Sel0.getFalseValue();
1282 
1283   // First match the condition of the outermost select.
1284   // Said condition must be one-use.
1285   if (!Cmp0.hasOneUse())
1286     return nullptr;
1287   ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1288   Value *Cmp00 = Cmp0.getOperand(0);
1289   Constant *C0;
1290   if (!match(Cmp0.getOperand(1),
1291              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1292     return nullptr;
1293 
1294   if (!isa<SelectInst>(Sel1)) {
1295     Pred0 = ICmpInst::getInversePredicate(Pred0);
1296     std::swap(X, Sel1);
1297   }
1298 
1299   // Canonicalize Cmp0 into ult or uge.
1300   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1301   switch (Pred0) {
1302   case ICmpInst::Predicate::ICMP_ULT:
1303   case ICmpInst::Predicate::ICMP_UGE:
1304     // Although icmp ult %x, 0 is an unusual thing to try and should generally
1305     // have been simplified, it does not verify with undef inputs so ensure we
1306     // are not in a strange state.
1307     if (!match(C0, m_SpecificInt_ICMP(
1308                        ICmpInst::Predicate::ICMP_NE,
1309                        APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1310       return nullptr;
1311     break; // Great!
1312   case ICmpInst::Predicate::ICMP_ULE:
1313   case ICmpInst::Predicate::ICMP_UGT:
1314     // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1315     // C0, which again means it must not have any all-ones elements.
1316     if (!match(C0,
1317                m_SpecificInt_ICMP(
1318                    ICmpInst::Predicate::ICMP_NE,
1319                    APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1320       return nullptr; // Can't do, have all-ones element[s].
1321     C0 = InstCombiner::AddOne(C0);
1322     break;
1323   default:
1324     return nullptr; // Unknown predicate.
1325   }
1326 
1327   // Now that we've canonicalized the ICmp, we know the X we expect;
1328   // the select in other hand should be one-use.
1329   if (!Sel1->hasOneUse())
1330     return nullptr;
1331 
1332   // If the types do not match, look through any truncs to the underlying
1333   // instruction.
1334   if (Cmp00->getType() != X->getType() && X->hasOneUse())
1335     match(X, m_TruncOrSelf(m_Value(X)));
1336 
1337   // We now can finish matching the condition of the outermost select:
1338   // it should either be the X itself, or an addition of some constant to X.
1339   Constant *C1;
1340   if (Cmp00 == X)
1341     C1 = ConstantInt::getNullValue(X->getType());
1342   else if (!match(Cmp00,
1343                   m_Add(m_Specific(X),
1344                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1345     return nullptr;
1346 
1347   Value *Cmp1;
1348   ICmpInst::Predicate Pred1;
1349   Constant *C2;
1350   Value *ReplacementLow, *ReplacementHigh;
1351   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1352                             m_Value(ReplacementHigh))) ||
1353       !match(Cmp1,
1354              m_ICmp(Pred1, m_Specific(X),
1355                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1356     return nullptr;
1357 
1358   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1359     return nullptr; // Not enough one-use instructions for the fold.
1360   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1361   //        two comparisons we'll need to build.
1362 
1363   // Canonicalize Cmp1 into the form we expect.
1364   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1365   switch (Pred1) {
1366   case ICmpInst::Predicate::ICMP_SLT:
1367     break;
1368   case ICmpInst::Predicate::ICMP_SLE:
1369     // We'd have to increment C2 by one, and for that it must not have signed
1370     // max element, but then it would have been canonicalized to 'slt' before
1371     // we get here. So we can't do anything useful with 'sle'.
1372     return nullptr;
1373   case ICmpInst::Predicate::ICMP_SGT:
1374     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1375     // which again means it must not have any signed max elements.
1376     if (!match(C2,
1377                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1378                                   APInt::getSignedMaxValue(
1379                                       C2->getType()->getScalarSizeInBits()))))
1380       return nullptr; // Can't do, have signed max element[s].
1381     C2 = InstCombiner::AddOne(C2);
1382     LLVM_FALLTHROUGH;
1383   case ICmpInst::Predicate::ICMP_SGE:
1384     // Also non-canonical, but here we don't need to change C2,
1385     // so we don't have any restrictions on C2, so we can just handle it.
1386     std::swap(ReplacementLow, ReplacementHigh);
1387     break;
1388   default:
1389     return nullptr; // Unknown predicate.
1390   }
1391 
1392   // The thresholds of this clamp-like pattern.
1393   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1394   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1395   if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1396     std::swap(ThresholdLowIncl, ThresholdHighExcl);
1397 
1398   // The fold has a precondition 1: C2 s>= ThresholdLow
1399   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1400                                          ThresholdLowIncl);
1401   if (!match(Precond1, m_One()))
1402     return nullptr;
1403   // The fold has a precondition 2: C2 s<= ThresholdHigh
1404   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1405                                          ThresholdHighExcl);
1406   if (!match(Precond2, m_One()))
1407     return nullptr;
1408 
1409   // If we are matching from a truncated input, we need to sext the
1410   // ReplacementLow and ReplacementHigh values. Only do the transform if they
1411   // are free to extend due to being constants.
1412   if (X->getType() != Sel0.getType()) {
1413     Constant *LowC, *HighC;
1414     if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1415         !match(ReplacementHigh, m_ImmConstant(HighC)))
1416       return nullptr;
1417     ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
1418     ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
1419   }
1420 
1421   // All good, finally emit the new pattern.
1422   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1423   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1424   Value *MaybeReplacedLow =
1425       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1426 
1427   // Create the final select. If we looked through a truncate above, we will
1428   // need to retruncate the result.
1429   Value *MaybeReplacedHigh = Builder.CreateSelect(
1430       ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1431   return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1432 }
1433 
1434 // If we have
1435 //  %cmp = icmp [canonical predicate] i32 %x, C0
1436 //  %r = select i1 %cmp, i32 %y, i32 C1
1437 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1438 // will have if we flip the strictness of the predicate (i.e. without changing
1439 // the result) is identical to the C1 in select. If it matches we can change
1440 // original comparison to one with swapped predicate, reuse the constant,
1441 // and swap the hands of select.
1442 static Instruction *
1443 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1444                                          InstCombinerImpl &IC) {
1445   ICmpInst::Predicate Pred;
1446   Value *X;
1447   Constant *C0;
1448   if (!match(&Cmp, m_OneUse(m_ICmp(
1449                        Pred, m_Value(X),
1450                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1451     return nullptr;
1452 
1453   // If comparison predicate is non-relational, we won't be able to do anything.
1454   if (ICmpInst::isEquality(Pred))
1455     return nullptr;
1456 
1457   // If comparison predicate is non-canonical, then we certainly won't be able
1458   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1459   if (!InstCombiner::isCanonicalPredicate(Pred))
1460     return nullptr;
1461 
1462   // If the [input] type of comparison and select type are different, lets abort
1463   // for now. We could try to compare constants with trunc/[zs]ext though.
1464   if (C0->getType() != Sel.getType())
1465     return nullptr;
1466 
1467   // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1468   // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1469   //        Or should we just abandon this transform entirely?
1470   if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1471     return nullptr;
1472 
1473 
1474   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1475   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1476   // At least one of these values we are selecting between must be a constant
1477   // else we'll never succeed.
1478   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1479       !match(SelVal1, m_AnyIntegralConstant()))
1480     return nullptr;
1481 
1482   // Does this constant C match any of the `select` values?
1483   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1484     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1485   };
1486 
1487   // If C0 *already* matches true/false value of select, we are done.
1488   if (MatchesSelectValue(C0))
1489     return nullptr;
1490 
1491   // Check the constant we'd have with flipped-strictness predicate.
1492   auto FlippedStrictness =
1493       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1494   if (!FlippedStrictness)
1495     return nullptr;
1496 
1497   // If said constant doesn't match either, then there is no hope,
1498   if (!MatchesSelectValue(FlippedStrictness->second))
1499     return nullptr;
1500 
1501   // It matched! Lets insert the new comparison just before select.
1502   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1503   IC.Builder.SetInsertPoint(&Sel);
1504 
1505   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1506   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1507                                         Cmp.getName() + ".inv");
1508   IC.replaceOperand(Sel, 0, NewCmp);
1509   Sel.swapValues();
1510   Sel.swapProfMetadata();
1511 
1512   return &Sel;
1513 }
1514 
1515 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
1516                                          Value *FVal,
1517                                          InstCombiner::BuilderTy &Builder) {
1518   if (!Cmp->hasOneUse())
1519     return nullptr;
1520 
1521   const APInt *CmpC;
1522   if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC)))
1523     return nullptr;
1524 
1525   // (X u< 2) ? -X : -1 --> sext (X != 0)
1526   Value *X = Cmp->getOperand(0);
1527   if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
1528       match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
1529     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1530 
1531   // (X u> 1) ? -1 : -X --> sext (X != 0)
1532   if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
1533       match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
1534     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1535 
1536   return nullptr;
1537 }
1538 
1539 /// Visit a SelectInst that has an ICmpInst as its first operand.
1540 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1541                                                       ICmpInst *ICI) {
1542   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1543     return NewSel;
1544 
1545   if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this))
1546     return NewSPF;
1547 
1548   if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1549     return replaceInstUsesWith(SI, V);
1550 
1551   if (Instruction *NewSel =
1552           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1553     return NewSel;
1554 
1555   bool Changed = adjustMinMax(SI, *ICI);
1556 
1557   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1558     return replaceInstUsesWith(SI, V);
1559 
1560   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1561   Value *TrueVal = SI.getTrueValue();
1562   Value *FalseVal = SI.getFalseValue();
1563   ICmpInst::Predicate Pred = ICI->getPredicate();
1564   Value *CmpLHS = ICI->getOperand(0);
1565   Value *CmpRHS = ICI->getOperand(1);
1566   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1567     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1568       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1569       SI.setOperand(1, CmpRHS);
1570       Changed = true;
1571     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1572       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1573       SI.setOperand(2, CmpRHS);
1574       Changed = true;
1575     }
1576   }
1577 
1578   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1579   // decomposeBitTestICmp() might help.
1580   {
1581     unsigned BitWidth =
1582         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1583     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1584     Value *X;
1585     const APInt *Y, *C;
1586     bool TrueWhenUnset;
1587     bool IsBitTest = false;
1588     if (ICmpInst::isEquality(Pred) &&
1589         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1590         match(CmpRHS, m_Zero())) {
1591       IsBitTest = true;
1592       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1593     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1594       X = CmpLHS;
1595       Y = &MinSignedValue;
1596       IsBitTest = true;
1597       TrueWhenUnset = false;
1598     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1599       X = CmpLHS;
1600       Y = &MinSignedValue;
1601       IsBitTest = true;
1602       TrueWhenUnset = true;
1603     }
1604     if (IsBitTest) {
1605       Value *V = nullptr;
1606       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1607       if (TrueWhenUnset && TrueVal == X &&
1608           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1609         V = Builder.CreateAnd(X, ~(*Y));
1610       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1611       else if (!TrueWhenUnset && FalseVal == X &&
1612                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1613         V = Builder.CreateAnd(X, ~(*Y));
1614       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1615       else if (TrueWhenUnset && FalseVal == X &&
1616                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1617         V = Builder.CreateOr(X, *Y);
1618       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1619       else if (!TrueWhenUnset && TrueVal == X &&
1620                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1621         V = Builder.CreateOr(X, *Y);
1622 
1623       if (V)
1624         return replaceInstUsesWith(SI, V);
1625     }
1626   }
1627 
1628   if (Instruction *V =
1629           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1630     return V;
1631 
1632   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1633     return V;
1634 
1635   if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
1636     return V;
1637 
1638   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1639     return replaceInstUsesWith(SI, V);
1640 
1641   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1642     return replaceInstUsesWith(SI, V);
1643 
1644   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1645     return replaceInstUsesWith(SI, V);
1646 
1647   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1648     return replaceInstUsesWith(SI, V);
1649 
1650   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1651     return replaceInstUsesWith(SI, V);
1652 
1653   return Changed ? &SI : nullptr;
1654 }
1655 
1656 /// SI is a select whose condition is a PHI node (but the two may be in
1657 /// different blocks). See if the true/false values (V) are live in all of the
1658 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1659 ///
1660 ///   X = phi [ C1, BB1], [C2, BB2]
1661 ///   Y = add
1662 ///   Z = select X, Y, 0
1663 ///
1664 /// because Y is not live in BB1/BB2.
1665 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1666                                                    const SelectInst &SI) {
1667   // If the value is a non-instruction value like a constant or argument, it
1668   // can always be mapped.
1669   const Instruction *I = dyn_cast<Instruction>(V);
1670   if (!I) return true;
1671 
1672   // If V is a PHI node defined in the same block as the condition PHI, we can
1673   // map the arguments.
1674   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1675 
1676   if (const PHINode *VP = dyn_cast<PHINode>(I))
1677     if (VP->getParent() == CondPHI->getParent())
1678       return true;
1679 
1680   // Otherwise, if the PHI and select are defined in the same block and if V is
1681   // defined in a different block, then we can transform it.
1682   if (SI.getParent() == CondPHI->getParent() &&
1683       I->getParent() != CondPHI->getParent())
1684     return true;
1685 
1686   // Otherwise we have a 'hard' case and we can't tell without doing more
1687   // detailed dominator based analysis, punt.
1688   return false;
1689 }
1690 
1691 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1692 ///   SPF2(SPF1(A, B), C)
1693 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1694                                             SelectPatternFlavor SPF1, Value *A,
1695                                             Value *B, Instruction &Outer,
1696                                             SelectPatternFlavor SPF2,
1697                                             Value *C) {
1698   if (Outer.getType() != Inner->getType())
1699     return nullptr;
1700 
1701   if (C == A || C == B) {
1702     // MAX(MAX(A, B), B) -> MAX(A, B)
1703     // MIN(MIN(a, b), a) -> MIN(a, b)
1704     // TODO: This could be done in instsimplify.
1705     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1706       return replaceInstUsesWith(Outer, Inner);
1707 
1708     // MAX(MIN(a, b), a) -> a
1709     // MIN(MAX(a, b), a) -> a
1710     // TODO: This could be done in instsimplify.
1711     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1712         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1713         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1714         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1715       return replaceInstUsesWith(Outer, C);
1716   }
1717 
1718   if (SPF1 == SPF2) {
1719     const APInt *CB, *CC;
1720     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1721       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1722       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1723       // TODO: This could be done in instsimplify.
1724       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1725           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1726           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1727           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1728         return replaceInstUsesWith(Outer, Inner);
1729 
1730       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1731       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1732       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1733           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1734           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1735           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1736         Outer.replaceUsesOfWith(Inner, A);
1737         return &Outer;
1738       }
1739     }
1740   }
1741 
1742   // max(max(A, B), min(A, B)) --> max(A, B)
1743   // min(min(A, B), max(A, B)) --> min(A, B)
1744   // TODO: This could be done in instsimplify.
1745   if (SPF1 == SPF2 &&
1746       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1747        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1748        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1749        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1750     return replaceInstUsesWith(Outer, Inner);
1751 
1752   // ABS(ABS(X)) -> ABS(X)
1753   // NABS(NABS(X)) -> NABS(X)
1754   // TODO: This could be done in instsimplify.
1755   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1756     return replaceInstUsesWith(Outer, Inner);
1757   }
1758 
1759   // ABS(NABS(X)) -> ABS(X)
1760   // NABS(ABS(X)) -> NABS(X)
1761   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1762       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1763     SelectInst *SI = cast<SelectInst>(Inner);
1764     Value *NewSI =
1765         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1766                              SI->getTrueValue(), SI->getName(), SI);
1767     return replaceInstUsesWith(Outer, NewSI);
1768   }
1769 
1770   auto IsFreeOrProfitableToInvert =
1771       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1772     if (match(V, m_Not(m_Value(NotV)))) {
1773       // If V has at most 2 uses then we can get rid of the xor operation
1774       // entirely.
1775       ElidesXor |= !V->hasNUsesOrMore(3);
1776       return true;
1777     }
1778 
1779     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1780       NotV = nullptr;
1781       return true;
1782     }
1783 
1784     return false;
1785   };
1786 
1787   Value *NotA, *NotB, *NotC;
1788   bool ElidesXor = false;
1789 
1790   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1791   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1792   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1793   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1794   //
1795   // This transform is performance neutral if we can elide at least one xor from
1796   // the set of three operands, since we'll be tacking on an xor at the very
1797   // end.
1798   if (SelectPatternResult::isMinOrMax(SPF1) &&
1799       SelectPatternResult::isMinOrMax(SPF2) &&
1800       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1801       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1802       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1803     if (!NotA)
1804       NotA = Builder.CreateNot(A);
1805     if (!NotB)
1806       NotB = Builder.CreateNot(B);
1807     if (!NotC)
1808       NotC = Builder.CreateNot(C);
1809 
1810     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1811                                    NotB);
1812     Value *NewOuter = Builder.CreateNot(
1813         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1814     return replaceInstUsesWith(Outer, NewOuter);
1815   }
1816 
1817   return nullptr;
1818 }
1819 
1820 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1821 /// This is even legal for FP.
1822 static Instruction *foldAddSubSelect(SelectInst &SI,
1823                                      InstCombiner::BuilderTy &Builder) {
1824   Value *CondVal = SI.getCondition();
1825   Value *TrueVal = SI.getTrueValue();
1826   Value *FalseVal = SI.getFalseValue();
1827   auto *TI = dyn_cast<Instruction>(TrueVal);
1828   auto *FI = dyn_cast<Instruction>(FalseVal);
1829   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1830     return nullptr;
1831 
1832   Instruction *AddOp = nullptr, *SubOp = nullptr;
1833   if ((TI->getOpcode() == Instruction::Sub &&
1834        FI->getOpcode() == Instruction::Add) ||
1835       (TI->getOpcode() == Instruction::FSub &&
1836        FI->getOpcode() == Instruction::FAdd)) {
1837     AddOp = FI;
1838     SubOp = TI;
1839   } else if ((FI->getOpcode() == Instruction::Sub &&
1840               TI->getOpcode() == Instruction::Add) ||
1841              (FI->getOpcode() == Instruction::FSub &&
1842               TI->getOpcode() == Instruction::FAdd)) {
1843     AddOp = TI;
1844     SubOp = FI;
1845   }
1846 
1847   if (AddOp) {
1848     Value *OtherAddOp = nullptr;
1849     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1850       OtherAddOp = AddOp->getOperand(1);
1851     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1852       OtherAddOp = AddOp->getOperand(0);
1853     }
1854 
1855     if (OtherAddOp) {
1856       // So at this point we know we have (Y -> OtherAddOp):
1857       //        select C, (add X, Y), (sub X, Z)
1858       Value *NegVal; // Compute -Z
1859       if (SI.getType()->isFPOrFPVectorTy()) {
1860         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1861         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1862           FastMathFlags Flags = AddOp->getFastMathFlags();
1863           Flags &= SubOp->getFastMathFlags();
1864           NegInst->setFastMathFlags(Flags);
1865         }
1866       } else {
1867         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1868       }
1869 
1870       Value *NewTrueOp = OtherAddOp;
1871       Value *NewFalseOp = NegVal;
1872       if (AddOp != TI)
1873         std::swap(NewTrueOp, NewFalseOp);
1874       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1875                                            SI.getName() + ".p", &SI);
1876 
1877       if (SI.getType()->isFPOrFPVectorTy()) {
1878         Instruction *RI =
1879             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1880 
1881         FastMathFlags Flags = AddOp->getFastMathFlags();
1882         Flags &= SubOp->getFastMathFlags();
1883         RI->setFastMathFlags(Flags);
1884         return RI;
1885       } else
1886         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1887     }
1888   }
1889   return nullptr;
1890 }
1891 
1892 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1893 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1894 /// Along with a number of patterns similar to:
1895 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1896 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1897 static Instruction *
1898 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1899   Value *CondVal = SI.getCondition();
1900   Value *TrueVal = SI.getTrueValue();
1901   Value *FalseVal = SI.getFalseValue();
1902 
1903   WithOverflowInst *II;
1904   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1905       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1906     return nullptr;
1907 
1908   Value *X = II->getLHS();
1909   Value *Y = II->getRHS();
1910 
1911   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1912     Type *Ty = Limit->getType();
1913 
1914     ICmpInst::Predicate Pred;
1915     Value *TrueVal, *FalseVal, *Op;
1916     const APInt *C;
1917     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1918                                m_Value(TrueVal), m_Value(FalseVal))))
1919       return false;
1920 
1921     auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1922     auto IsMinMax = [&](Value *Min, Value *Max) {
1923       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1924       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1925       return match(Min, m_SpecificInt(MinVal)) &&
1926              match(Max, m_SpecificInt(MaxVal));
1927     };
1928 
1929     if (Op != X && Op != Y)
1930       return false;
1931 
1932     if (IsAdd) {
1933       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1934       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1935       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1936       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1937       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1938           IsMinMax(TrueVal, FalseVal))
1939         return true;
1940       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1941       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1942       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1943       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1944       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1945           IsMinMax(FalseVal, TrueVal))
1946         return true;
1947     } else {
1948       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1949       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1950       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1951           IsMinMax(TrueVal, FalseVal))
1952         return true;
1953       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1954       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1955       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1956           IsMinMax(FalseVal, TrueVal))
1957         return true;
1958       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1959       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1960       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1961           IsMinMax(FalseVal, TrueVal))
1962         return true;
1963       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1964       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1965       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1966           IsMinMax(TrueVal, FalseVal))
1967         return true;
1968     }
1969 
1970     return false;
1971   };
1972 
1973   Intrinsic::ID NewIntrinsicID;
1974   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1975       match(TrueVal, m_AllOnes()))
1976     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1977     NewIntrinsicID = Intrinsic::uadd_sat;
1978   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1979            match(TrueVal, m_Zero()))
1980     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1981     NewIntrinsicID = Intrinsic::usub_sat;
1982   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1983            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1984     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1985     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1986     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1987     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1988     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1989     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1990     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1991     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1992     NewIntrinsicID = Intrinsic::sadd_sat;
1993   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1994            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1995     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1996     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1997     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1998     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1999     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2000     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2001     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2002     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2003     NewIntrinsicID = Intrinsic::ssub_sat;
2004   else
2005     return nullptr;
2006 
2007   Function *F =
2008       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
2009   return CallInst::Create(F, {X, Y});
2010 }
2011 
2012 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
2013   Constant *C;
2014   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
2015       !match(Sel.getFalseValue(), m_Constant(C)))
2016     return nullptr;
2017 
2018   Instruction *ExtInst;
2019   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2020       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2021     return nullptr;
2022 
2023   auto ExtOpcode = ExtInst->getOpcode();
2024   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2025     return nullptr;
2026 
2027   // If we are extending from a boolean type or if we can create a select that
2028   // has the same size operands as its condition, try to narrow the select.
2029   Value *X = ExtInst->getOperand(0);
2030   Type *SmallType = X->getType();
2031   Value *Cond = Sel.getCondition();
2032   auto *Cmp = dyn_cast<CmpInst>(Cond);
2033   if (!SmallType->isIntOrIntVectorTy(1) &&
2034       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2035     return nullptr;
2036 
2037   // If the constant is the same after truncation to the smaller type and
2038   // extension to the original type, we can narrow the select.
2039   Type *SelType = Sel.getType();
2040   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
2041   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
2042   if (ExtC == C && ExtInst->hasOneUse()) {
2043     Value *TruncCVal = cast<Value>(TruncC);
2044     if (ExtInst == Sel.getFalseValue())
2045       std::swap(X, TruncCVal);
2046 
2047     // select Cond, (ext X), C --> ext(select Cond, X, C')
2048     // select Cond, C, (ext X) --> ext(select Cond, C', X)
2049     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2050     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2051   }
2052 
2053   // If one arm of the select is the extend of the condition, replace that arm
2054   // with the extension of the appropriate known bool value.
2055   if (Cond == X) {
2056     if (ExtInst == Sel.getTrueValue()) {
2057       // select X, (sext X), C --> select X, -1, C
2058       // select X, (zext X), C --> select X,  1, C
2059       Constant *One = ConstantInt::getTrue(SmallType);
2060       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
2061       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
2062     } else {
2063       // select X, C, (sext X) --> select X, C, 0
2064       // select X, C, (zext X) --> select X, C, 0
2065       Constant *Zero = ConstantInt::getNullValue(SelType);
2066       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
2067     }
2068   }
2069 
2070   return nullptr;
2071 }
2072 
2073 /// Try to transform a vector select with a constant condition vector into a
2074 /// shuffle for easier combining with other shuffles and insert/extract.
2075 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2076   Value *CondVal = SI.getCondition();
2077   Constant *CondC;
2078   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2079   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2080     return nullptr;
2081 
2082   unsigned NumElts = CondValTy->getNumElements();
2083   SmallVector<int, 16> Mask;
2084   Mask.reserve(NumElts);
2085   for (unsigned i = 0; i != NumElts; ++i) {
2086     Constant *Elt = CondC->getAggregateElement(i);
2087     if (!Elt)
2088       return nullptr;
2089 
2090     if (Elt->isOneValue()) {
2091       // If the select condition element is true, choose from the 1st vector.
2092       Mask.push_back(i);
2093     } else if (Elt->isNullValue()) {
2094       // If the select condition element is false, choose from the 2nd vector.
2095       Mask.push_back(i + NumElts);
2096     } else if (isa<UndefValue>(Elt)) {
2097       // Undef in a select condition (choose one of the operands) does not mean
2098       // the same thing as undef in a shuffle mask (any value is acceptable), so
2099       // give up.
2100       return nullptr;
2101     } else {
2102       // Bail out on a constant expression.
2103       return nullptr;
2104     }
2105   }
2106 
2107   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2108 }
2109 
2110 /// If we have a select of vectors with a scalar condition, try to convert that
2111 /// to a vector select by splatting the condition. A splat may get folded with
2112 /// other operations in IR and having all operands of a select be vector types
2113 /// is likely better for vector codegen.
2114 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2115                                                    InstCombinerImpl &IC) {
2116   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2117   if (!Ty)
2118     return nullptr;
2119 
2120   // We can replace a single-use extract with constant index.
2121   Value *Cond = Sel.getCondition();
2122   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2123     return nullptr;
2124 
2125   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2126   // Splatting the extracted condition reduces code (we could directly create a
2127   // splat shuffle of the source vector to eliminate the intermediate step).
2128   return IC.replaceOperand(
2129       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2130 }
2131 
2132 /// Reuse bitcasted operands between a compare and select:
2133 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2134 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2135 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2136                                           InstCombiner::BuilderTy &Builder) {
2137   Value *Cond = Sel.getCondition();
2138   Value *TVal = Sel.getTrueValue();
2139   Value *FVal = Sel.getFalseValue();
2140 
2141   CmpInst::Predicate Pred;
2142   Value *A, *B;
2143   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2144     return nullptr;
2145 
2146   // The select condition is a compare instruction. If the select's true/false
2147   // values are already the same as the compare operands, there's nothing to do.
2148   if (TVal == A || TVal == B || FVal == A || FVal == B)
2149     return nullptr;
2150 
2151   Value *C, *D;
2152   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2153     return nullptr;
2154 
2155   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2156   Value *TSrc, *FSrc;
2157   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2158       !match(FVal, m_BitCast(m_Value(FSrc))))
2159     return nullptr;
2160 
2161   // If the select true/false values are *different bitcasts* of the same source
2162   // operands, make the select operands the same as the compare operands and
2163   // cast the result. This is the canonical select form for min/max.
2164   Value *NewSel;
2165   if (TSrc == C && FSrc == D) {
2166     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2167     // bitcast (select (cmp A, B), A, B)
2168     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2169   } else if (TSrc == D && FSrc == C) {
2170     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2171     // bitcast (select (cmp A, B), B, A)
2172     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2173   } else {
2174     return nullptr;
2175   }
2176   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2177 }
2178 
2179 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2180 /// instructions.
2181 ///
2182 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2183 /// selects between the returned value of the cmpxchg instruction its compare
2184 /// operand, the result of the select will always be equal to its false value.
2185 /// For example:
2186 ///
2187 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2188 ///   %1 = extractvalue { i64, i1 } %0, 1
2189 ///   %2 = extractvalue { i64, i1 } %0, 0
2190 ///   %3 = select i1 %1, i64 %compare, i64 %2
2191 ///   ret i64 %3
2192 ///
2193 /// The returned value of the cmpxchg instruction (%2) is the original value
2194 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2195 /// must have been equal to %compare. Thus, the result of the select is always
2196 /// equal to %2, and the code can be simplified to:
2197 ///
2198 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2199 ///   %1 = extractvalue { i64, i1 } %0, 0
2200 ///   ret i64 %1
2201 ///
2202 static Value *foldSelectCmpXchg(SelectInst &SI) {
2203   // A helper that determines if V is an extractvalue instruction whose
2204   // aggregate operand is a cmpxchg instruction and whose single index is equal
2205   // to I. If such conditions are true, the helper returns the cmpxchg
2206   // instruction; otherwise, a nullptr is returned.
2207   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2208     auto *Extract = dyn_cast<ExtractValueInst>(V);
2209     if (!Extract)
2210       return nullptr;
2211     if (Extract->getIndices()[0] != I)
2212       return nullptr;
2213     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2214   };
2215 
2216   // If the select has a single user, and this user is a select instruction that
2217   // we can simplify, skip the cmpxchg simplification for now.
2218   if (SI.hasOneUse())
2219     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2220       if (Select->getCondition() == SI.getCondition())
2221         if (Select->getFalseValue() == SI.getTrueValue() ||
2222             Select->getTrueValue() == SI.getFalseValue())
2223           return nullptr;
2224 
2225   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2226   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2227   if (!CmpXchg)
2228     return nullptr;
2229 
2230   // Check the true value case: The true value of the select is the returned
2231   // value of the same cmpxchg used by the condition, and the false value is the
2232   // cmpxchg instruction's compare operand.
2233   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2234     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2235       return SI.getFalseValue();
2236 
2237   // Check the false value case: The false value of the select is the returned
2238   // value of the same cmpxchg used by the condition, and the true value is the
2239   // cmpxchg instruction's compare operand.
2240   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2241     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2242       return SI.getFalseValue();
2243 
2244   return nullptr;
2245 }
2246 
2247 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2248 /// into a funnel shift intrinsic. Example:
2249 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2250 ///              --> call llvm.fshl.i32(a, a, b)
2251 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2252 ///                 --> call llvm.fshl.i32(a, b, c)
2253 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2254 ///                 --> call llvm.fshr.i32(a, b, c)
2255 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2256                                           InstCombiner::BuilderTy &Builder) {
2257   // This must be a power-of-2 type for a bitmasking transform to be valid.
2258   unsigned Width = Sel.getType()->getScalarSizeInBits();
2259   if (!isPowerOf2_32(Width))
2260     return nullptr;
2261 
2262   BinaryOperator *Or0, *Or1;
2263   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2264     return nullptr;
2265 
2266   Value *SV0, *SV1, *SA0, *SA1;
2267   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2268                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2269       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2270                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2271       Or0->getOpcode() == Or1->getOpcode())
2272     return nullptr;
2273 
2274   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2275   if (Or0->getOpcode() == BinaryOperator::LShr) {
2276     std::swap(Or0, Or1);
2277     std::swap(SV0, SV1);
2278     std::swap(SA0, SA1);
2279   }
2280   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2281          Or1->getOpcode() == BinaryOperator::LShr &&
2282          "Illegal or(shift,shift) pair");
2283 
2284   // Check the shift amounts to see if they are an opposite pair.
2285   Value *ShAmt;
2286   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2287     ShAmt = SA0;
2288   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2289     ShAmt = SA1;
2290   else
2291     return nullptr;
2292 
2293   // We should now have this pattern:
2294   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2295   // The false value of the select must be a funnel-shift of the true value:
2296   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2297   bool IsFshl = (ShAmt == SA0);
2298   Value *TVal = Sel.getTrueValue();
2299   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2300     return nullptr;
2301 
2302   // Finally, see if the select is filtering out a shift-by-zero.
2303   Value *Cond = Sel.getCondition();
2304   ICmpInst::Predicate Pred;
2305   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2306       Pred != ICmpInst::ICMP_EQ)
2307     return nullptr;
2308 
2309   // If this is not a rotate then the select was blocking poison from the
2310   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2311   if (SV0 != SV1) {
2312     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2313       SV1 = Builder.CreateFreeze(SV1);
2314     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2315       SV0 = Builder.CreateFreeze(SV0);
2316   }
2317 
2318   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2319   // Convert to funnel shift intrinsic.
2320   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2321   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2322   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2323   return CallInst::Create(F, { SV0, SV1, ShAmt });
2324 }
2325 
2326 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2327                                          InstCombiner::BuilderTy &Builder) {
2328   Value *Cond = Sel.getCondition();
2329   Value *TVal = Sel.getTrueValue();
2330   Value *FVal = Sel.getFalseValue();
2331   Type *SelType = Sel.getType();
2332 
2333   // Match select ?, TC, FC where the constants are equal but negated.
2334   // TODO: Generalize to handle a negated variable operand?
2335   const APFloat *TC, *FC;
2336   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2337       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2338     return nullptr;
2339 
2340   assert(TC != FC && "Expected equal select arms to simplify");
2341 
2342   Value *X;
2343   const APInt *C;
2344   bool IsTrueIfSignSet;
2345   ICmpInst::Predicate Pred;
2346   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2347       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2348       X->getType() != SelType)
2349     return nullptr;
2350 
2351   // If needed, negate the value that will be the sign argument of the copysign:
2352   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2353   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2354   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2355   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2356   // Note: FMF from the select can not be propagated to the new instructions.
2357   if (IsTrueIfSignSet ^ TC->isNegative())
2358     X = Builder.CreateFNeg(X);
2359 
2360   // Canonicalize the magnitude argument as the positive constant since we do
2361   // not care about its sign.
2362   Value *MagArg = TC->isNegative() ? FVal : TVal;
2363   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2364                                           Sel.getType());
2365   return CallInst::Create(F, { MagArg, X });
2366 }
2367 
2368 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2369   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2370   if (!VecTy)
2371     return nullptr;
2372 
2373   unsigned NumElts = VecTy->getNumElements();
2374   APInt UndefElts(NumElts, 0);
2375   APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2376   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2377     if (V != &Sel)
2378       return replaceInstUsesWith(Sel, V);
2379     return &Sel;
2380   }
2381 
2382   // A select of a "select shuffle" with a common operand can be rearranged
2383   // to select followed by "select shuffle". Because of poison, this only works
2384   // in the case of a shuffle with no undefined mask elements.
2385   Value *Cond = Sel.getCondition();
2386   Value *TVal = Sel.getTrueValue();
2387   Value *FVal = Sel.getFalseValue();
2388   Value *X, *Y;
2389   ArrayRef<int> Mask;
2390   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2391       !is_contained(Mask, UndefMaskElem) &&
2392       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2393     if (X == FVal) {
2394       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2395       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2396       return new ShuffleVectorInst(X, NewSel, Mask);
2397     }
2398     if (Y == FVal) {
2399       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2400       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2401       return new ShuffleVectorInst(NewSel, Y, Mask);
2402     }
2403   }
2404   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2405       !is_contained(Mask, UndefMaskElem) &&
2406       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2407     if (X == TVal) {
2408       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2409       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2410       return new ShuffleVectorInst(X, NewSel, Mask);
2411     }
2412     if (Y == TVal) {
2413       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2414       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2415       return new ShuffleVectorInst(NewSel, Y, Mask);
2416     }
2417   }
2418 
2419   return nullptr;
2420 }
2421 
2422 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2423                                         const DominatorTree &DT,
2424                                         InstCombiner::BuilderTy &Builder) {
2425   // Find the block's immediate dominator that ends with a conditional branch
2426   // that matches select's condition (maybe inverted).
2427   auto *IDomNode = DT[BB]->getIDom();
2428   if (!IDomNode)
2429     return nullptr;
2430   BasicBlock *IDom = IDomNode->getBlock();
2431 
2432   Value *Cond = Sel.getCondition();
2433   Value *IfTrue, *IfFalse;
2434   BasicBlock *TrueSucc, *FalseSucc;
2435   if (match(IDom->getTerminator(),
2436             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2437                  m_BasicBlock(FalseSucc)))) {
2438     IfTrue = Sel.getTrueValue();
2439     IfFalse = Sel.getFalseValue();
2440   } else if (match(IDom->getTerminator(),
2441                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2442                         m_BasicBlock(FalseSucc)))) {
2443     IfTrue = Sel.getFalseValue();
2444     IfFalse = Sel.getTrueValue();
2445   } else
2446     return nullptr;
2447 
2448   // Make sure the branches are actually different.
2449   if (TrueSucc == FalseSucc)
2450     return nullptr;
2451 
2452   // We want to replace select %cond, %a, %b with a phi that takes value %a
2453   // for all incoming edges that are dominated by condition `%cond == true`,
2454   // and value %b for edges dominated by condition `%cond == false`. If %a
2455   // or %b are also phis from the same basic block, we can go further and take
2456   // their incoming values from the corresponding blocks.
2457   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2458   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2459   DenseMap<BasicBlock *, Value *> Inputs;
2460   for (auto *Pred : predecessors(BB)) {
2461     // Check implication.
2462     BasicBlockEdge Incoming(Pred, BB);
2463     if (DT.dominates(TrueEdge, Incoming))
2464       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2465     else if (DT.dominates(FalseEdge, Incoming))
2466       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2467     else
2468       return nullptr;
2469     // Check availability.
2470     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2471       if (!DT.dominates(Insn, Pred->getTerminator()))
2472         return nullptr;
2473   }
2474 
2475   Builder.SetInsertPoint(&*BB->begin());
2476   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2477   for (auto *Pred : predecessors(BB))
2478     PN->addIncoming(Inputs[Pred], Pred);
2479   PN->takeName(&Sel);
2480   return PN;
2481 }
2482 
2483 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2484                                     InstCombiner::BuilderTy &Builder) {
2485   // Try to replace this select with Phi in one of these blocks.
2486   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2487   CandidateBlocks.insert(Sel.getParent());
2488   for (Value *V : Sel.operands())
2489     if (auto *I = dyn_cast<Instruction>(V))
2490       CandidateBlocks.insert(I->getParent());
2491 
2492   for (BasicBlock *BB : CandidateBlocks)
2493     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2494       return PN;
2495   return nullptr;
2496 }
2497 
2498 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2499   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2500   if (!FI)
2501     return nullptr;
2502 
2503   Value *Cond = FI->getOperand(0);
2504   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2505 
2506   //   select (freeze(x == y)), x, y --> y
2507   //   select (freeze(x != y)), x, y --> x
2508   // The freeze should be only used by this select. Otherwise, remaining uses of
2509   // the freeze can observe a contradictory value.
2510   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2511   //   a = select c, x, y   ;
2512   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2513   //                        ; to y, this can happen.
2514   CmpInst::Predicate Pred;
2515   if (FI->hasOneUse() &&
2516       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2517       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2518     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2519   }
2520 
2521   return nullptr;
2522 }
2523 
2524 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2525                                                                  SelectInst &SI,
2526                                                                  bool IsAnd) {
2527   Value *CondVal = SI.getCondition();
2528   Value *A = SI.getTrueValue();
2529   Value *B = SI.getFalseValue();
2530 
2531   assert(Op->getType()->isIntOrIntVectorTy(1) &&
2532          "Op must be either i1 or vector of i1.");
2533 
2534   Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2535   if (!Res)
2536     return nullptr;
2537 
2538   Value *Zero = Constant::getNullValue(A->getType());
2539   Value *One = Constant::getAllOnesValue(A->getType());
2540 
2541   if (*Res == true) {
2542     if (IsAnd)
2543       // select op, (select cond, A, B), false => select op, A, false
2544       // and    op, (select cond, A, B)        => select op, A, false
2545       //   if op = true implies condval = true.
2546       return SelectInst::Create(Op, A, Zero);
2547     else
2548       // select op, true, (select cond, A, B) => select op, true, A
2549       // or     op, (select cond, A, B)       => select op, true, A
2550       //   if op = false implies condval = true.
2551       return SelectInst::Create(Op, One, A);
2552   } else {
2553     if (IsAnd)
2554       // select op, (select cond, A, B), false => select op, B, false
2555       // and    op, (select cond, A, B)        => select op, B, false
2556       //   if op = true implies condval = false.
2557       return SelectInst::Create(Op, B, Zero);
2558     else
2559       // select op, true, (select cond, A, B) => select op, true, B
2560       // or     op, (select cond, A, B)       => select op, true, B
2561       //   if op = false implies condval = false.
2562       return SelectInst::Create(Op, One, B);
2563   }
2564 }
2565 
2566 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2567   Value *CondVal = SI.getCondition();
2568   Value *TrueVal = SI.getTrueValue();
2569   Value *FalseVal = SI.getFalseValue();
2570   Type *SelType = SI.getType();
2571 
2572   // FIXME: Remove this workaround when freeze related patches are done.
2573   // For select with undef operand which feeds into an equality comparison,
2574   // don't simplify it so loop unswitch can know the equality comparison
2575   // may have an undef operand. This is a workaround for PR31652 caused by
2576   // descrepancy about branch on undef between LoopUnswitch and GVN.
2577   if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) {
2578     if (llvm::any_of(SI.users(), [&](User *U) {
2579           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2580           if (CI && CI->isEquality())
2581             return true;
2582           return false;
2583         })) {
2584       return nullptr;
2585     }
2586   }
2587 
2588   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2589                                     SQ.getWithInstruction(&SI)))
2590     return replaceInstUsesWith(SI, V);
2591 
2592   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2593     return I;
2594 
2595   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2596     return I;
2597 
2598   CmpInst::Predicate Pred;
2599 
2600   // Avoid potential infinite loops by checking for non-constant condition.
2601   // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2602   //       Scalar select must have simplified?
2603   if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) &&
2604       TrueVal->getType() == CondVal->getType()) {
2605     // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2606     // checks whether folding it does not convert a well-defined value into
2607     // poison.
2608     if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) {
2609       // Change: A = select B, true, C --> A = or B, C
2610       return BinaryOperator::CreateOr(CondVal, FalseVal);
2611     }
2612     if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) {
2613       // Change: A = select B, C, false --> A = and B, C
2614       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2615     }
2616 
2617     auto *One = ConstantInt::getTrue(SelType);
2618     auto *Zero = ConstantInt::getFalse(SelType);
2619 
2620     // We match the "full" 0 or 1 constant here to avoid a potential infinite
2621     // loop with vectors that may have undefined/poison elements.
2622     // select a, false, b -> select !a, b, false
2623     if (match(TrueVal, m_Specific(Zero))) {
2624       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2625       return SelectInst::Create(NotCond, FalseVal, Zero);
2626     }
2627     // select a, b, true -> select !a, true, b
2628     if (match(FalseVal, m_Specific(One))) {
2629       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2630       return SelectInst::Create(NotCond, One, TrueVal);
2631     }
2632 
2633     // select a, a, b -> select a, true, b
2634     if (CondVal == TrueVal)
2635       return replaceOperand(SI, 1, One);
2636     // select a, b, a -> select a, b, false
2637     if (CondVal == FalseVal)
2638       return replaceOperand(SI, 2, Zero);
2639 
2640     // select a, !a, b -> select !a, b, false
2641     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2642       return SelectInst::Create(TrueVal, FalseVal, Zero);
2643     // select a, b, !a -> select !a, true, b
2644     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2645       return SelectInst::Create(FalseVal, One, TrueVal);
2646 
2647     Value *A, *B;
2648 
2649     // DeMorgan in select form: !a && !b --> !(a || b)
2650     // select !a, !b, false --> not (select a, true, b)
2651     if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2652         (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
2653         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2654       return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
2655 
2656     // DeMorgan in select form: !a || !b --> !(a && b)
2657     // select !a, true, !b --> not (select a, b, false)
2658     if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2659         (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
2660         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2661       return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
2662 
2663     // select (select a, true, b), true, b -> select a, true, b
2664     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2665         match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
2666       return replaceOperand(SI, 0, A);
2667     // select (select a, b, false), b, false -> select a, b, false
2668     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2669         match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
2670       return replaceOperand(SI, 0, A);
2671 
2672     if (!SelType->isVectorTy()) {
2673       if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ,
2674                                             /* AllowRefinement */ true))
2675         return replaceOperand(SI, 1, S);
2676       if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
2677                                             /* AllowRefinement */ true))
2678         return replaceOperand(SI, 2, S);
2679     }
2680 
2681     if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
2682       Use *Y = nullptr;
2683       bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
2684       Value *Op1 = IsAnd ? TrueVal : FalseVal;
2685       if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
2686         auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
2687         InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
2688         replaceUse(*Y, FI);
2689         return replaceInstUsesWith(SI, Op1);
2690       }
2691 
2692       if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
2693         if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
2694                                                         /* IsAnd */ IsAnd))
2695           return I;
2696 
2697       if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) {
2698         if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) {
2699           if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd,
2700                                                       /* IsLogical */ true))
2701             return replaceInstUsesWith(SI, V);
2702 
2703           if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd))
2704             return replaceInstUsesWith(SI, V);
2705         }
2706       }
2707     }
2708 
2709     // select (select a, true, b), c, false -> select a, c, false
2710     // select c, (select a, true, b), false -> select c, a, false
2711     //   if c implies that b is false.
2712     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2713         match(FalseVal, m_Zero())) {
2714       Optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
2715       if (Res && *Res == false)
2716         return replaceOperand(SI, 0, A);
2717     }
2718     if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2719         match(FalseVal, m_Zero())) {
2720       Optional<bool> Res = isImpliedCondition(CondVal, B, DL);
2721       if (Res && *Res == false)
2722         return replaceOperand(SI, 1, A);
2723     }
2724     // select c, true, (select a, b, false)  -> select c, true, a
2725     // select (select a, b, false), true, c  -> select a, true, c
2726     //   if c = false implies that b = true
2727     if (match(TrueVal, m_One()) &&
2728         match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) {
2729       Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
2730       if (Res && *Res == true)
2731         return replaceOperand(SI, 2, A);
2732     }
2733     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2734         match(TrueVal, m_One())) {
2735       Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
2736       if (Res && *Res == true)
2737         return replaceOperand(SI, 0, A);
2738     }
2739 
2740     // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
2741     // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
2742     Value *C1, *C2;
2743     if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) &&
2744         match(TrueVal, m_One()) &&
2745         match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) {
2746       if (match(C2, m_Not(m_Specific(C1)))) // first case
2747         return SelectInst::Create(C1, A, B);
2748       else if (match(C1, m_Not(m_Specific(C2)))) // second case
2749         return SelectInst::Create(C2, B, A);
2750     }
2751   }
2752 
2753   // Selecting between two integer or vector splat integer constants?
2754   //
2755   // Note that we don't handle a scalar select of vectors:
2756   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2757   // because that may need 3 instructions to splat the condition value:
2758   // extend, insertelement, shufflevector.
2759   //
2760   // Do not handle i1 TrueVal and FalseVal otherwise would result in
2761   // zext/sext i1 to i1.
2762   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
2763       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2764     // select C, 1, 0 -> zext C to int
2765     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2766       return new ZExtInst(CondVal, SelType);
2767 
2768     // select C, -1, 0 -> sext C to int
2769     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2770       return new SExtInst(CondVal, SelType);
2771 
2772     // select C, 0, 1 -> zext !C to int
2773     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2774       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2775       return new ZExtInst(NotCond, SelType);
2776     }
2777 
2778     // select C, 0, -1 -> sext !C to int
2779     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2780       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2781       return new SExtInst(NotCond, SelType);
2782     }
2783   }
2784 
2785   if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
2786     Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
2787     // Are we selecting a value based on a comparison of the two values?
2788     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2789         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2790       // Canonicalize to use ordered comparisons by swapping the select
2791       // operands.
2792       //
2793       // e.g.
2794       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2795       if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
2796         FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
2797         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2798         // FIXME: The FMF should propagate from the select, not the fcmp.
2799         Builder.setFastMathFlags(FCmp->getFastMathFlags());
2800         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2801                                             FCmp->getName() + ".inv");
2802         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2803         return replaceInstUsesWith(SI, NewSel);
2804       }
2805 
2806       // NOTE: if we wanted to, this is where to detect MIN/MAX
2807     }
2808   }
2809 
2810   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2811   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2812   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2813   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2814       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2815       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2816     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2817     return replaceInstUsesWith(SI, Fabs);
2818   }
2819   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2820   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2821       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2822       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2823     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2824     return replaceInstUsesWith(SI, Fabs);
2825   }
2826   // With nnan and nsz:
2827   // (X <  +/-0.0) ? -X : X --> fabs(X)
2828   // (X <= +/-0.0) ? -X : X --> fabs(X)
2829   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2830       match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() &&
2831       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2832        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2833     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2834     return replaceInstUsesWith(SI, Fabs);
2835   }
2836   // With nnan and nsz:
2837   // (X >  +/-0.0) ? X : -X --> fabs(X)
2838   // (X >= +/-0.0) ? X : -X --> fabs(X)
2839   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2840       match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() &&
2841       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2842        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2843     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2844     return replaceInstUsesWith(SI, Fabs);
2845   }
2846 
2847   // See if we are selecting two values based on a comparison of the two values.
2848   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2849     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2850       return Result;
2851 
2852   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2853     return Add;
2854   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2855     return Add;
2856   if (Instruction *Or = foldSetClearBits(SI, Builder))
2857     return Or;
2858   if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
2859     return Mul;
2860 
2861   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2862   auto *TI = dyn_cast<Instruction>(TrueVal);
2863   auto *FI = dyn_cast<Instruction>(FalseVal);
2864   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2865     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2866       return IV;
2867 
2868   if (Instruction *I = foldSelectExtConst(SI))
2869     return I;
2870 
2871   // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
2872   // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
2873   auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
2874                                bool Swap) -> GetElementPtrInst * {
2875     Value *Ptr = Gep->getPointerOperand();
2876     if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
2877         !Gep->hasOneUse())
2878       return nullptr;
2879     Value *Idx = Gep->getOperand(1);
2880     if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
2881       return nullptr;
2882     Type *ElementType = Gep->getResultElementType();
2883     Value *NewT = Idx;
2884     Value *NewF = Constant::getNullValue(Idx->getType());
2885     if (Swap)
2886       std::swap(NewT, NewF);
2887     Value *NewSI =
2888         Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
2889     return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
2890   };
2891   if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
2892     if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
2893       return NewGep;
2894   if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
2895     if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
2896       return NewGep;
2897 
2898   // See if we can fold the select into one of our operands.
2899   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2900     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2901       return FoldI;
2902 
2903     Value *LHS, *RHS;
2904     Instruction::CastOps CastOp;
2905     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2906     auto SPF = SPR.Flavor;
2907     if (SPF) {
2908       Value *LHS2, *RHS2;
2909       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2910         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2911                                           RHS2, SI, SPF, RHS))
2912           return R;
2913       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2914         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2915                                           RHS2, SI, SPF, LHS))
2916           return R;
2917     }
2918 
2919     if (SelectPatternResult::isMinOrMax(SPF)) {
2920       // Canonicalize so that
2921       // - type casts are outside select patterns.
2922       // - float clamp is transformed to min/max pattern
2923 
2924       bool IsCastNeeded = LHS->getType() != SelType;
2925       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2926       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2927       if (IsCastNeeded ||
2928           (LHS->getType()->isFPOrFPVectorTy() &&
2929            ((CmpLHS != LHS && CmpLHS != RHS) ||
2930             (CmpRHS != LHS && CmpRHS != RHS)))) {
2931         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2932 
2933         Value *Cmp;
2934         if (CmpInst::isIntPredicate(MinMaxPred)) {
2935           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2936         } else {
2937           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2938           auto FMF =
2939               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2940           Builder.setFastMathFlags(FMF);
2941           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2942         }
2943 
2944         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2945         if (!IsCastNeeded)
2946           return replaceInstUsesWith(SI, NewSI);
2947 
2948         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2949         return replaceInstUsesWith(SI, NewCast);
2950       }
2951     }
2952   }
2953 
2954   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2955   // minnum/maxnum intrinsics.
2956   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2957     Value *X, *Y;
2958     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2959       return replaceInstUsesWith(
2960           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2961 
2962     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2963       return replaceInstUsesWith(
2964           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2965   }
2966 
2967   // See if we can fold the select into a phi node if the condition is a select.
2968   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2969     // The true/false values have to be live in the PHI predecessor's blocks.
2970     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2971         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2972       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2973         return NV;
2974 
2975   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2976     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2977       // select(C, select(C, a, b), c) -> select(C, a, c)
2978       if (TrueSI->getCondition() == CondVal) {
2979         if (SI.getTrueValue() == TrueSI->getTrueValue())
2980           return nullptr;
2981         return replaceOperand(SI, 1, TrueSI->getTrueValue());
2982       }
2983       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2984       // We choose this as normal form to enable folding on the And and
2985       // shortening paths for the values (this helps getUnderlyingObjects() for
2986       // example).
2987       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2988         Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
2989         replaceOperand(SI, 0, And);
2990         replaceOperand(SI, 1, TrueSI->getTrueValue());
2991         return &SI;
2992       }
2993     }
2994   }
2995   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2996     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2997       // select(C, a, select(C, b, c)) -> select(C, a, c)
2998       if (FalseSI->getCondition() == CondVal) {
2999         if (SI.getFalseValue() == FalseSI->getFalseValue())
3000           return nullptr;
3001         return replaceOperand(SI, 2, FalseSI->getFalseValue());
3002       }
3003       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3004       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3005         Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3006         replaceOperand(SI, 0, Or);
3007         replaceOperand(SI, 2, FalseSI->getFalseValue());
3008         return &SI;
3009       }
3010     }
3011   }
3012 
3013   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
3014     // The select might be preventing a division by 0.
3015     switch (BO->getOpcode()) {
3016     default:
3017       return true;
3018     case Instruction::SRem:
3019     case Instruction::URem:
3020     case Instruction::SDiv:
3021     case Instruction::UDiv:
3022       return false;
3023     }
3024   };
3025 
3026   // Try to simplify a binop sandwiched between 2 selects with the same
3027   // condition.
3028   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3029   BinaryOperator *TrueBO;
3030   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
3031       canMergeSelectThroughBinop(TrueBO)) {
3032     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3033       if (TrueBOSI->getCondition() == CondVal) {
3034         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3035         Worklist.push(TrueBO);
3036         return &SI;
3037       }
3038     }
3039     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3040       if (TrueBOSI->getCondition() == CondVal) {
3041         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3042         Worklist.push(TrueBO);
3043         return &SI;
3044       }
3045     }
3046   }
3047 
3048   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3049   BinaryOperator *FalseBO;
3050   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
3051       canMergeSelectThroughBinop(FalseBO)) {
3052     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3053       if (FalseBOSI->getCondition() == CondVal) {
3054         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3055         Worklist.push(FalseBO);
3056         return &SI;
3057       }
3058     }
3059     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3060       if (FalseBOSI->getCondition() == CondVal) {
3061         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3062         Worklist.push(FalseBO);
3063         return &SI;
3064       }
3065     }
3066   }
3067 
3068   Value *NotCond;
3069   if (match(CondVal, m_Not(m_Value(NotCond))) &&
3070       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3071     replaceOperand(SI, 0, NotCond);
3072     SI.swapValues();
3073     SI.swapProfMetadata();
3074     return &SI;
3075   }
3076 
3077   if (Instruction *I = foldVectorSelect(SI))
3078     return I;
3079 
3080   // If we can compute the condition, there's no need for a select.
3081   // Like the above fold, we are attempting to reduce compile-time cost by
3082   // putting this fold here with limitations rather than in InstSimplify.
3083   // The motivation for this call into value tracking is to take advantage of
3084   // the assumption cache, so make sure that is populated.
3085   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3086     KnownBits Known(1);
3087     computeKnownBits(CondVal, Known, 0, &SI);
3088     if (Known.One.isOne())
3089       return replaceInstUsesWith(SI, TrueVal);
3090     if (Known.Zero.isOne())
3091       return replaceInstUsesWith(SI, FalseVal);
3092   }
3093 
3094   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3095     return BitCastSel;
3096 
3097   // Simplify selects that test the returned flag of cmpxchg instructions.
3098   if (Value *V = foldSelectCmpXchg(SI))
3099     return replaceInstUsesWith(SI, V);
3100 
3101   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3102     return Select;
3103 
3104   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3105     return Funnel;
3106 
3107   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3108     return Copysign;
3109 
3110   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3111     return replaceInstUsesWith(SI, PN);
3112 
3113   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3114     return replaceInstUsesWith(SI, Fr);
3115 
3116   // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3117   // Load inst is intentionally not checked for hasOneUse()
3118   if (match(FalseVal, m_Zero()) &&
3119       match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3120                                   m_CombineOr(m_Undef(), m_Zero())))) {
3121     auto *MaskedLoad = cast<IntrinsicInst>(TrueVal);
3122     if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3123       MaskedLoad->setArgOperand(3, FalseVal /* Zero */);
3124     return replaceInstUsesWith(SI, MaskedLoad);
3125   }
3126 
3127   Value *Mask;
3128   if (match(TrueVal, m_Zero()) &&
3129       match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3130                                    m_CombineOr(m_Undef(), m_Zero()))) &&
3131       (CondVal->getType() == Mask->getType())) {
3132     // We can remove the select by ensuring the load zeros all lanes the
3133     // select would have.  We determine this by proving there is no overlap
3134     // between the load and select masks.
3135     // (i.e (load_mask & select_mask) == 0 == no overlap)
3136     bool CanMergeSelectIntoLoad = false;
3137     if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3138       CanMergeSelectIntoLoad = match(V, m_Zero());
3139 
3140     if (CanMergeSelectIntoLoad) {
3141       auto *MaskedLoad = cast<IntrinsicInst>(FalseVal);
3142       if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3143         MaskedLoad->setArgOperand(3, TrueVal /* Zero */);
3144       return replaceInstUsesWith(SI, MaskedLoad);
3145     }
3146   }
3147 
3148   return nullptr;
3149 }
3150