1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/IR/PatternMatch.h" 18 using namespace llvm; 19 using namespace PatternMatch; 20 21 #define DEBUG_TYPE "instcombine" 22 23 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms, 24 /// returning the kind and providing the out parameter results if we 25 /// successfully match. 26 static SelectPatternFlavor 27 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) { 28 SelectInst *SI = dyn_cast<SelectInst>(V); 29 if (!SI) return SPF_UNKNOWN; 30 31 ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition()); 32 if (!ICI) return SPF_UNKNOWN; 33 34 ICmpInst::Predicate Pred = ICI->getPredicate(); 35 Value *CmpLHS = ICI->getOperand(0); 36 Value *CmpRHS = ICI->getOperand(1); 37 Value *TrueVal = SI->getTrueValue(); 38 Value *FalseVal = SI->getFalseValue(); 39 40 LHS = CmpLHS; 41 RHS = CmpRHS; 42 43 // (icmp X, Y) ? X : Y 44 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 45 switch (Pred) { 46 default: return SPF_UNKNOWN; // Equality. 47 case ICmpInst::ICMP_UGT: 48 case ICmpInst::ICMP_UGE: return SPF_UMAX; 49 case ICmpInst::ICMP_SGT: 50 case ICmpInst::ICMP_SGE: return SPF_SMAX; 51 case ICmpInst::ICMP_ULT: 52 case ICmpInst::ICMP_ULE: return SPF_UMIN; 53 case ICmpInst::ICMP_SLT: 54 case ICmpInst::ICMP_SLE: return SPF_SMIN; 55 } 56 } 57 58 // (icmp X, Y) ? Y : X 59 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 60 switch (Pred) { 61 default: return SPF_UNKNOWN; // Equality. 62 case ICmpInst::ICMP_UGT: 63 case ICmpInst::ICMP_UGE: return SPF_UMIN; 64 case ICmpInst::ICMP_SGT: 65 case ICmpInst::ICMP_SGE: return SPF_SMIN; 66 case ICmpInst::ICMP_ULT: 67 case ICmpInst::ICMP_ULE: return SPF_UMAX; 68 case ICmpInst::ICMP_SLT: 69 case ICmpInst::ICMP_SLE: return SPF_SMAX; 70 } 71 } 72 73 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 74 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 75 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 76 77 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 78 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 79 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 80 return (CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS; 81 } 82 83 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 84 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 85 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 86 return (CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS; 87 } 88 } 89 } 90 91 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 92 93 return SPF_UNKNOWN; 94 } 95 96 97 /// GetSelectFoldableOperands - We want to turn code that looks like this: 98 /// %C = or %A, %B 99 /// %D = select %cond, %C, %A 100 /// into: 101 /// %C = select %cond, %B, 0 102 /// %D = or %A, %C 103 /// 104 /// Assuming that the specified instruction is an operand to the select, return 105 /// a bitmask indicating which operands of this instruction are foldable if they 106 /// equal the other incoming value of the select. 107 /// 108 static unsigned GetSelectFoldableOperands(Instruction *I) { 109 switch (I->getOpcode()) { 110 case Instruction::Add: 111 case Instruction::Mul: 112 case Instruction::And: 113 case Instruction::Or: 114 case Instruction::Xor: 115 return 3; // Can fold through either operand. 116 case Instruction::Sub: // Can only fold on the amount subtracted. 117 case Instruction::Shl: // Can only fold on the shift amount. 118 case Instruction::LShr: 119 case Instruction::AShr: 120 return 1; 121 default: 122 return 0; // Cannot fold 123 } 124 } 125 126 /// GetSelectFoldableConstant - For the same transformation as the previous 127 /// function, return the identity constant that goes into the select. 128 static Constant *GetSelectFoldableConstant(Instruction *I) { 129 switch (I->getOpcode()) { 130 default: llvm_unreachable("This cannot happen!"); 131 case Instruction::Add: 132 case Instruction::Sub: 133 case Instruction::Or: 134 case Instruction::Xor: 135 case Instruction::Shl: 136 case Instruction::LShr: 137 case Instruction::AShr: 138 return Constant::getNullValue(I->getType()); 139 case Instruction::And: 140 return Constant::getAllOnesValue(I->getType()); 141 case Instruction::Mul: 142 return ConstantInt::get(I->getType(), 1); 143 } 144 } 145 146 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI 147 /// have the same opcode and only one use each. Try to simplify this. 148 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, 149 Instruction *FI) { 150 if (TI->getNumOperands() == 1) { 151 // If this is a non-volatile load or a cast from the same type, 152 // merge. 153 if (TI->isCast()) { 154 Type *FIOpndTy = FI->getOperand(0)->getType(); 155 if (TI->getOperand(0)->getType() != FIOpndTy) 156 return nullptr; 157 // The select condition may be a vector. We may only change the operand 158 // type if the vector width remains the same (and matches the condition). 159 Type *CondTy = SI.getCondition()->getType(); 160 if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() || 161 CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())) 162 return nullptr; 163 } else { 164 return nullptr; // unknown unary op. 165 } 166 167 // Fold this by inserting a select from the input values. 168 Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0), 169 FI->getOperand(0), SI.getName()+".v"); 170 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 171 TI->getType()); 172 } 173 174 // Only handle binary operators here. 175 if (!isa<BinaryOperator>(TI)) 176 return nullptr; 177 178 // Figure out if the operations have any operands in common. 179 Value *MatchOp, *OtherOpT, *OtherOpF; 180 bool MatchIsOpZero; 181 if (TI->getOperand(0) == FI->getOperand(0)) { 182 MatchOp = TI->getOperand(0); 183 OtherOpT = TI->getOperand(1); 184 OtherOpF = FI->getOperand(1); 185 MatchIsOpZero = true; 186 } else if (TI->getOperand(1) == FI->getOperand(1)) { 187 MatchOp = TI->getOperand(1); 188 OtherOpT = TI->getOperand(0); 189 OtherOpF = FI->getOperand(0); 190 MatchIsOpZero = false; 191 } else if (!TI->isCommutative()) { 192 return nullptr; 193 } else if (TI->getOperand(0) == FI->getOperand(1)) { 194 MatchOp = TI->getOperand(0); 195 OtherOpT = TI->getOperand(1); 196 OtherOpF = FI->getOperand(0); 197 MatchIsOpZero = true; 198 } else if (TI->getOperand(1) == FI->getOperand(0)) { 199 MatchOp = TI->getOperand(1); 200 OtherOpT = TI->getOperand(0); 201 OtherOpF = FI->getOperand(1); 202 MatchIsOpZero = true; 203 } else { 204 return nullptr; 205 } 206 207 // If we reach here, they do have operations in common. 208 Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, 209 OtherOpF, SI.getName()+".v"); 210 211 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) { 212 if (MatchIsOpZero) 213 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); 214 else 215 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); 216 } 217 llvm_unreachable("Shouldn't get here"); 218 } 219 220 static bool isSelect01(Constant *C1, Constant *C2) { 221 ConstantInt *C1I = dyn_cast<ConstantInt>(C1); 222 if (!C1I) 223 return false; 224 ConstantInt *C2I = dyn_cast<ConstantInt>(C2); 225 if (!C2I) 226 return false; 227 if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. 228 return false; 229 return C1I->isOne() || C1I->isAllOnesValue() || 230 C2I->isOne() || C2I->isAllOnesValue(); 231 } 232 233 /// FoldSelectIntoOp - Try fold the select into one of the operands to 234 /// facilitate further optimization. 235 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal, 236 Value *FalseVal) { 237 // See the comment above GetSelectFoldableOperands for a description of the 238 // transformation we are doing here. 239 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { 240 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && 241 !isa<Constant>(FalseVal)) { 242 if (unsigned SFO = GetSelectFoldableOperands(TVI)) { 243 unsigned OpToFold = 0; 244 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 245 OpToFold = 1; 246 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 247 OpToFold = 2; 248 } 249 250 if (OpToFold) { 251 Constant *C = GetSelectFoldableConstant(TVI); 252 Value *OOp = TVI->getOperand(2-OpToFold); 253 // Avoid creating select between 2 constants unless it's selecting 254 // between 0, 1 and -1. 255 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 256 Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C); 257 NewSel->takeName(TVI); 258 BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI); 259 BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), 260 FalseVal, NewSel); 261 if (isa<PossiblyExactOperator>(BO)) 262 BO->setIsExact(TVI_BO->isExact()); 263 if (isa<OverflowingBinaryOperator>(BO)) { 264 BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap()); 265 BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap()); 266 } 267 return BO; 268 } 269 } 270 } 271 } 272 } 273 274 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { 275 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && 276 !isa<Constant>(TrueVal)) { 277 if (unsigned SFO = GetSelectFoldableOperands(FVI)) { 278 unsigned OpToFold = 0; 279 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 280 OpToFold = 1; 281 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 282 OpToFold = 2; 283 } 284 285 if (OpToFold) { 286 Constant *C = GetSelectFoldableConstant(FVI); 287 Value *OOp = FVI->getOperand(2-OpToFold); 288 // Avoid creating select between 2 constants unless it's selecting 289 // between 0, 1 and -1. 290 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 291 Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp); 292 NewSel->takeName(FVI); 293 BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI); 294 BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), 295 TrueVal, NewSel); 296 if (isa<PossiblyExactOperator>(BO)) 297 BO->setIsExact(FVI_BO->isExact()); 298 if (isa<OverflowingBinaryOperator>(BO)) { 299 BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap()); 300 BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap()); 301 } 302 return BO; 303 } 304 } 305 } 306 } 307 } 308 309 return nullptr; 310 } 311 312 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is 313 /// replaced with RepOp. 314 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 315 const DataLayout *TD, 316 const TargetLibraryInfo *TLI, 317 DominatorTree *DT, AssumptionCache *AC) { 318 // Trivial replacement. 319 if (V == Op) 320 return RepOp; 321 322 Instruction *I = dyn_cast<Instruction>(V); 323 if (!I) 324 return nullptr; 325 326 // If this is a binary operator, try to simplify it with the replaced op. 327 if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) { 328 if (B->getOperand(0) == Op) 329 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI); 330 if (B->getOperand(1) == Op) 331 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI); 332 } 333 334 // Same for CmpInsts. 335 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 336 if (C->getOperand(0) == Op) 337 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD, 338 TLI, DT, AC); 339 if (C->getOperand(1) == Op) 340 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD, 341 TLI, DT, AC); 342 } 343 344 // TODO: We could hand off more cases to instsimplify here. 345 346 // If all operands are constant after substituting Op for RepOp then we can 347 // constant fold the instruction. 348 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 349 // Build a list of all constant operands. 350 SmallVector<Constant*, 8> ConstOps; 351 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 352 if (I->getOperand(i) == Op) 353 ConstOps.push_back(CRepOp); 354 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 355 ConstOps.push_back(COp); 356 else 357 break; 358 } 359 360 // All operands were constants, fold it. 361 if (ConstOps.size() == I->getNumOperands()) { 362 if (CmpInst *C = dyn_cast<CmpInst>(I)) 363 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 364 ConstOps[1], TD, TLI); 365 366 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 367 if (!LI->isVolatile()) 368 return ConstantFoldLoadFromConstPtr(ConstOps[0], TD); 369 370 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 371 ConstOps, TD, TLI); 372 } 373 } 374 375 return nullptr; 376 } 377 378 /// foldSelectICmpAndOr - We want to turn: 379 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 380 /// into: 381 /// (or (shl (and X, C1), C3), y) 382 /// iff: 383 /// C1 and C2 are both powers of 2 384 /// where: 385 /// C3 = Log(C2) - Log(C1) 386 /// 387 /// This transform handles cases where: 388 /// 1. The icmp predicate is inverted 389 /// 2. The select operands are reversed 390 /// 3. The magnitude of C2 and C1 are flipped 391 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal, 392 Value *FalseVal, 393 InstCombiner::BuilderTy *Builder) { 394 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 395 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 396 return nullptr; 397 398 Value *CmpLHS = IC->getOperand(0); 399 Value *CmpRHS = IC->getOperand(1); 400 401 if (!match(CmpRHS, m_Zero())) 402 return nullptr; 403 404 Value *X; 405 const APInt *C1; 406 if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1)))) 407 return nullptr; 408 409 const APInt *C2; 410 bool OrOnTrueVal = false; 411 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 412 if (!OrOnFalseVal) 413 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 414 415 if (!OrOnFalseVal && !OrOnTrueVal) 416 return nullptr; 417 418 Value *V = CmpLHS; 419 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 420 421 unsigned C1Log = C1->logBase2(); 422 unsigned C2Log = C2->logBase2(); 423 if (C2Log > C1Log) { 424 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 425 V = Builder->CreateShl(V, C2Log - C1Log); 426 } else if (C1Log > C2Log) { 427 V = Builder->CreateLShr(V, C1Log - C2Log); 428 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 429 } else 430 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 431 432 ICmpInst::Predicate Pred = IC->getPredicate(); 433 if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) || 434 (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal)) 435 V = Builder->CreateXor(V, *C2); 436 437 return Builder->CreateOr(V, Y); 438 } 439 440 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 441 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 442 /// 443 /// For example, we can fold the following code sequence: 444 /// \code 445 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 446 /// %1 = icmp ne i32 %x, 0 447 /// %2 = select i1 %1, i32 %0, i32 32 448 /// \code 449 /// 450 /// into: 451 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 452 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 453 InstCombiner::BuilderTy *Builder) { 454 ICmpInst::Predicate Pred = ICI->getPredicate(); 455 Value *CmpLHS = ICI->getOperand(0); 456 Value *CmpRHS = ICI->getOperand(1); 457 458 // Check if the condition value compares a value for equality against zero. 459 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 460 return nullptr; 461 462 Value *Count = FalseVal; 463 Value *ValueOnZero = TrueVal; 464 if (Pred == ICmpInst::ICMP_NE) 465 std::swap(Count, ValueOnZero); 466 467 // Skip zero extend/truncate. 468 Value *V = nullptr; 469 if (match(Count, m_ZExt(m_Value(V))) || 470 match(Count, m_Trunc(m_Value(V)))) 471 Count = V; 472 473 // Check if the value propagated on zero is a constant number equal to the 474 // sizeof in bits of 'Count'. 475 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 476 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 477 return nullptr; 478 479 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 480 // input to the cttz/ctlz is used as LHS for the compare instruction. 481 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 482 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 483 IntrinsicInst *II = cast<IntrinsicInst>(Count); 484 IRBuilder<> Builder(II); 485 // Explicitly clear the 'undef_on_zero' flag. 486 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 487 Type *Ty = NewI->getArgOperand(1)->getType(); 488 NewI->setArgOperand(1, Constant::getNullValue(Ty)); 489 Builder.Insert(NewI); 490 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 491 } 492 493 return nullptr; 494 } 495 496 /// visitSelectInstWithICmp - Visit a SelectInst that has an 497 /// ICmpInst as its first operand. 498 /// 499 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, 500 ICmpInst *ICI) { 501 bool Changed = false; 502 ICmpInst::Predicate Pred = ICI->getPredicate(); 503 Value *CmpLHS = ICI->getOperand(0); 504 Value *CmpRHS = ICI->getOperand(1); 505 Value *TrueVal = SI.getTrueValue(); 506 Value *FalseVal = SI.getFalseValue(); 507 508 // Check cases where the comparison is with a constant that 509 // can be adjusted to fit the min/max idiom. We may move or edit ICI 510 // here, so make sure the select is the only user. 511 if (ICI->hasOneUse()) 512 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) { 513 // X < MIN ? T : F --> F 514 if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT) 515 && CI->isMinValue(Pred == ICmpInst::ICMP_SLT)) 516 return ReplaceInstUsesWith(SI, FalseVal); 517 // X > MAX ? T : F --> F 518 else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT) 519 && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT)) 520 return ReplaceInstUsesWith(SI, FalseVal); 521 switch (Pred) { 522 default: break; 523 case ICmpInst::ICMP_ULT: 524 case ICmpInst::ICMP_SLT: 525 case ICmpInst::ICMP_UGT: 526 case ICmpInst::ICMP_SGT: { 527 // These transformations only work for selects over integers. 528 IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType()); 529 if (!SelectTy) 530 break; 531 532 Constant *AdjustedRHS; 533 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 534 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1); 535 else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 536 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1); 537 538 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 539 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 540 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 541 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) 542 ; // Nothing to do here. Values match without any sign/zero extension. 543 544 // Types do not match. Instead of calculating this with mixed types 545 // promote all to the larger type. This enables scalar evolution to 546 // analyze this expression. 547 else if (CmpRHS->getType()->getScalarSizeInBits() 548 < SelectTy->getBitWidth()) { 549 Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy); 550 551 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 552 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 553 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 554 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 555 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && 556 sextRHS == FalseVal) { 557 CmpLHS = TrueVal; 558 AdjustedRHS = sextRHS; 559 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 560 sextRHS == TrueVal) { 561 CmpLHS = FalseVal; 562 AdjustedRHS = sextRHS; 563 } else if (ICI->isUnsigned()) { 564 Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy); 565 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 566 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 567 // zext + signed compare cannot be changed: 568 // 0xff <s 0x00, but 0x00ff >s 0x0000 569 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && 570 zextRHS == FalseVal) { 571 CmpLHS = TrueVal; 572 AdjustedRHS = zextRHS; 573 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 574 zextRHS == TrueVal) { 575 CmpLHS = FalseVal; 576 AdjustedRHS = zextRHS; 577 } else 578 break; 579 } else 580 break; 581 } else 582 break; 583 584 Pred = ICmpInst::getSwappedPredicate(Pred); 585 CmpRHS = AdjustedRHS; 586 std::swap(FalseVal, TrueVal); 587 ICI->setPredicate(Pred); 588 ICI->setOperand(0, CmpLHS); 589 ICI->setOperand(1, CmpRHS); 590 SI.setOperand(1, TrueVal); 591 SI.setOperand(2, FalseVal); 592 593 // Move ICI instruction right before the select instruction. Otherwise 594 // the sext/zext value may be defined after the ICI instruction uses it. 595 ICI->moveBefore(&SI); 596 597 Changed = true; 598 break; 599 } 600 } 601 } 602 603 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 604 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 605 // FIXME: Type and constness constraints could be lifted, but we have to 606 // watch code size carefully. We should consider xor instead of 607 // sub/add when we decide to do that. 608 if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) { 609 if (TrueVal->getType() == Ty) { 610 if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) { 611 ConstantInt *C1 = nullptr, *C2 = nullptr; 612 if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) { 613 C1 = dyn_cast<ConstantInt>(TrueVal); 614 C2 = dyn_cast<ConstantInt>(FalseVal); 615 } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) { 616 C1 = dyn_cast<ConstantInt>(FalseVal); 617 C2 = dyn_cast<ConstantInt>(TrueVal); 618 } 619 if (C1 && C2) { 620 // This shift results in either -1 or 0. 621 Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1); 622 623 // Check if we can express the operation with a single or. 624 if (C2->isAllOnesValue()) 625 return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1)); 626 627 Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue()); 628 return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1)); 629 } 630 } 631 } 632 } 633 634 // If we have an equality comparison then we know the value in one of the 635 // arms of the select. See if substituting this value into the arm and 636 // simplifying the result yields the same value as the other arm. 637 if (Pred == ICmpInst::ICMP_EQ) { 638 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) == 639 TrueVal || 640 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) == 641 TrueVal) 642 return ReplaceInstUsesWith(SI, FalseVal); 643 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) == 644 FalseVal || 645 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) == 646 FalseVal) 647 return ReplaceInstUsesWith(SI, FalseVal); 648 } else if (Pred == ICmpInst::ICMP_NE) { 649 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) == 650 FalseVal || 651 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) == 652 FalseVal) 653 return ReplaceInstUsesWith(SI, TrueVal); 654 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) == 655 TrueVal || 656 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) == 657 TrueVal) 658 return ReplaceInstUsesWith(SI, TrueVal); 659 } 660 661 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 662 663 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 664 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 665 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 666 SI.setOperand(1, CmpRHS); 667 Changed = true; 668 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 669 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 670 SI.setOperand(2, CmpRHS); 671 Changed = true; 672 } 673 } 674 675 if (unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits()) { 676 APInt MinSignedValue = APInt::getSignBit(BitWidth); 677 Value *X; 678 const APInt *Y, *C; 679 bool TrueWhenUnset; 680 bool IsBitTest = false; 681 if (ICmpInst::isEquality(Pred) && 682 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 683 match(CmpRHS, m_Zero())) { 684 IsBitTest = true; 685 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 686 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 687 X = CmpLHS; 688 Y = &MinSignedValue; 689 IsBitTest = true; 690 TrueWhenUnset = false; 691 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 692 X = CmpLHS; 693 Y = &MinSignedValue; 694 IsBitTest = true; 695 TrueWhenUnset = true; 696 } 697 if (IsBitTest) { 698 Value *V = nullptr; 699 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 700 if (TrueWhenUnset && TrueVal == X && 701 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 702 V = Builder->CreateAnd(X, ~(*Y)); 703 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 704 else if (!TrueWhenUnset && FalseVal == X && 705 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 706 V = Builder->CreateAnd(X, ~(*Y)); 707 // (X & Y) == 0 ? X ^ Y : X --> X | Y 708 else if (TrueWhenUnset && FalseVal == X && 709 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 710 V = Builder->CreateOr(X, *Y); 711 // (X & Y) != 0 ? X : X ^ Y --> X | Y 712 else if (!TrueWhenUnset && TrueVal == X && 713 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 714 V = Builder->CreateOr(X, *Y); 715 716 if (V) 717 return ReplaceInstUsesWith(SI, V); 718 } 719 } 720 721 if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder)) 722 return ReplaceInstUsesWith(SI, V); 723 724 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 725 return ReplaceInstUsesWith(SI, V); 726 727 return Changed ? &SI : nullptr; 728 } 729 730 731 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a 732 /// PHI node (but the two may be in different blocks). See if the true/false 733 /// values (V) are live in all of the predecessor blocks of the PHI. For 734 /// example, cases like this cannot be mapped: 735 /// 736 /// X = phi [ C1, BB1], [C2, BB2] 737 /// Y = add 738 /// Z = select X, Y, 0 739 /// 740 /// because Y is not live in BB1/BB2. 741 /// 742 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V, 743 const SelectInst &SI) { 744 // If the value is a non-instruction value like a constant or argument, it 745 // can always be mapped. 746 const Instruction *I = dyn_cast<Instruction>(V); 747 if (!I) return true; 748 749 // If V is a PHI node defined in the same block as the condition PHI, we can 750 // map the arguments. 751 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 752 753 if (const PHINode *VP = dyn_cast<PHINode>(I)) 754 if (VP->getParent() == CondPHI->getParent()) 755 return true; 756 757 // Otherwise, if the PHI and select are defined in the same block and if V is 758 // defined in a different block, then we can transform it. 759 if (SI.getParent() == CondPHI->getParent() && 760 I->getParent() != CondPHI->getParent()) 761 return true; 762 763 // Otherwise we have a 'hard' case and we can't tell without doing more 764 // detailed dominator based analysis, punt. 765 return false; 766 } 767 768 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form: 769 /// SPF2(SPF1(A, B), C) 770 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner, 771 SelectPatternFlavor SPF1, 772 Value *A, Value *B, 773 Instruction &Outer, 774 SelectPatternFlavor SPF2, Value *C) { 775 if (C == A || C == B) { 776 // MAX(MAX(A, B), B) -> MAX(A, B) 777 // MIN(MIN(a, b), a) -> MIN(a, b) 778 if (SPF1 == SPF2) 779 return ReplaceInstUsesWith(Outer, Inner); 780 781 // MAX(MIN(a, b), a) -> a 782 // MIN(MAX(a, b), a) -> a 783 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 784 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 785 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 786 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 787 return ReplaceInstUsesWith(Outer, C); 788 } 789 790 if (SPF1 == SPF2) { 791 if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) { 792 if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) { 793 APInt ACB = CB->getValue(); 794 APInt ACC = CC->getValue(); 795 796 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 797 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 798 if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) || 799 (SPF1 == SPF_SMIN && ACB.sle(ACC)) || 800 (SPF1 == SPF_UMAX && ACB.uge(ACC)) || 801 (SPF1 == SPF_SMAX && ACB.sge(ACC))) 802 return ReplaceInstUsesWith(Outer, Inner); 803 804 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 805 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 806 if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) || 807 (SPF1 == SPF_SMIN && ACB.sgt(ACC)) || 808 (SPF1 == SPF_UMAX && ACB.ult(ACC)) || 809 (SPF1 == SPF_SMAX && ACB.slt(ACC))) { 810 Outer.replaceUsesOfWith(Inner, A); 811 return &Outer; 812 } 813 } 814 } 815 } 816 817 // ABS(ABS(X)) -> ABS(X) 818 // NABS(NABS(X)) -> NABS(X) 819 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 820 return ReplaceInstUsesWith(Outer, Inner); 821 } 822 823 // ABS(NABS(X)) -> ABS(X) 824 // NABS(ABS(X)) -> NABS(X) 825 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 826 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 827 SelectInst *SI = cast<SelectInst>(Inner); 828 Value *NewSI = Builder->CreateSelect( 829 SI->getCondition(), SI->getFalseValue(), SI->getTrueValue()); 830 return ReplaceInstUsesWith(Outer, NewSI); 831 } 832 return nullptr; 833 } 834 835 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't 836 /// both be) and we have an icmp instruction with zero, and we have an 'and' 837 /// with the non-constant value and a power of two we can turn the select 838 /// into a shift on the result of the 'and'. 839 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, 840 ConstantInt *FalseVal, 841 InstCombiner::BuilderTy *Builder) { 842 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 843 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 844 return nullptr; 845 846 if (!match(IC->getOperand(1), m_Zero())) 847 return nullptr; 848 849 ConstantInt *AndRHS; 850 Value *LHS = IC->getOperand(0); 851 if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) 852 return nullptr; 853 854 // If both select arms are non-zero see if we have a select of the form 855 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic 856 // for 'x ? 2^n : 0' and fix the thing up at the end. 857 ConstantInt *Offset = nullptr; 858 if (!TrueVal->isZero() && !FalseVal->isZero()) { 859 if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2()) 860 Offset = FalseVal; 861 else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2()) 862 Offset = TrueVal; 863 else 864 return nullptr; 865 866 // Adjust TrueVal and FalseVal to the offset. 867 TrueVal = ConstantInt::get(Builder->getContext(), 868 TrueVal->getValue() - Offset->getValue()); 869 FalseVal = ConstantInt::get(Builder->getContext(), 870 FalseVal->getValue() - Offset->getValue()); 871 } 872 873 // Make sure the mask in the 'and' and one of the select arms is a power of 2. 874 if (!AndRHS->getValue().isPowerOf2() || 875 (!TrueVal->getValue().isPowerOf2() && 876 !FalseVal->getValue().isPowerOf2())) 877 return nullptr; 878 879 // Determine which shift is needed to transform result of the 'and' into the 880 // desired result. 881 ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal; 882 unsigned ValZeros = ValC->getValue().logBase2(); 883 unsigned AndZeros = AndRHS->getValue().logBase2(); 884 885 // If types don't match we can still convert the select by introducing a zext 886 // or a trunc of the 'and'. The trunc case requires that all of the truncated 887 // bits are zero, we can figure that out by looking at the 'and' mask. 888 if (AndZeros >= ValC->getBitWidth()) 889 return nullptr; 890 891 Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType()); 892 if (ValZeros > AndZeros) 893 V = Builder->CreateShl(V, ValZeros - AndZeros); 894 else if (ValZeros < AndZeros) 895 V = Builder->CreateLShr(V, AndZeros - ValZeros); 896 897 // Okay, now we know that everything is set up, we just don't know whether we 898 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 899 bool ShouldNotVal = !TrueVal->isZero(); 900 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; 901 if (ShouldNotVal) 902 V = Builder->CreateXor(V, ValC); 903 904 // Apply an offset if needed. 905 if (Offset) 906 V = Builder->CreateAdd(V, Offset); 907 return V; 908 } 909 910 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 911 Value *CondVal = SI.getCondition(); 912 Value *TrueVal = SI.getTrueValue(); 913 Value *FalseVal = SI.getFalseValue(); 914 915 if (Value *V = 916 SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, DT, AC)) 917 return ReplaceInstUsesWith(SI, V); 918 919 if (SI.getType()->isIntegerTy(1)) { 920 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) { 921 if (C->getZExtValue()) { 922 // Change: A = select B, true, C --> A = or B, C 923 return BinaryOperator::CreateOr(CondVal, FalseVal); 924 } 925 // Change: A = select B, false, C --> A = and !B, C 926 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 927 return BinaryOperator::CreateAnd(NotCond, FalseVal); 928 } 929 if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) { 930 if (C->getZExtValue() == false) { 931 // Change: A = select B, C, false --> A = and B, C 932 return BinaryOperator::CreateAnd(CondVal, TrueVal); 933 } 934 // Change: A = select B, C, true --> A = or !B, C 935 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 936 return BinaryOperator::CreateOr(NotCond, TrueVal); 937 } 938 939 // select a, b, a -> a&b 940 // select a, a, b -> a|b 941 if (CondVal == TrueVal) 942 return BinaryOperator::CreateOr(CondVal, FalseVal); 943 if (CondVal == FalseVal) 944 return BinaryOperator::CreateAnd(CondVal, TrueVal); 945 946 // select a, ~a, b -> (~a)&b 947 // select a, b, ~a -> (~a)|b 948 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 949 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 950 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 951 return BinaryOperator::CreateOr(TrueVal, FalseVal); 952 } 953 954 // Selecting between two integer constants? 955 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) 956 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) { 957 // select C, 1, 0 -> zext C to int 958 if (FalseValC->isZero() && TrueValC->getValue() == 1) 959 return new ZExtInst(CondVal, SI.getType()); 960 961 // select C, -1, 0 -> sext C to int 962 if (FalseValC->isZero() && TrueValC->isAllOnesValue()) 963 return new SExtInst(CondVal, SI.getType()); 964 965 // select C, 0, 1 -> zext !C to int 966 if (TrueValC->isZero() && FalseValC->getValue() == 1) { 967 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 968 return new ZExtInst(NotCond, SI.getType()); 969 } 970 971 // select C, 0, -1 -> sext !C to int 972 if (TrueValC->isZero() && FalseValC->isAllOnesValue()) { 973 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 974 return new SExtInst(NotCond, SI.getType()); 975 } 976 977 if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder)) 978 return ReplaceInstUsesWith(SI, V); 979 } 980 981 // See if we are selecting two values based on a comparison of the two values. 982 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 983 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 984 // Transform (X == Y) ? X : Y -> Y 985 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 986 // This is not safe in general for floating point: 987 // consider X== -0, Y== +0. 988 // It becomes safe if either operand is a nonzero constant. 989 ConstantFP *CFPt, *CFPf; 990 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 991 !CFPt->getValueAPF().isZero()) || 992 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 993 !CFPf->getValueAPF().isZero())) 994 return ReplaceInstUsesWith(SI, FalseVal); 995 } 996 // Transform (X une Y) ? X : Y -> X 997 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 998 // This is not safe in general for floating point: 999 // consider X== -0, Y== +0. 1000 // It becomes safe if either operand is a nonzero constant. 1001 ConstantFP *CFPt, *CFPf; 1002 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1003 !CFPt->getValueAPF().isZero()) || 1004 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1005 !CFPf->getValueAPF().isZero())) 1006 return ReplaceInstUsesWith(SI, TrueVal); 1007 } 1008 1009 // Canonicalize to use ordered comparisons by swapping the select 1010 // operands. 1011 // 1012 // e.g. 1013 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1014 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1015 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1016 Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal, 1017 FCI->getName() + ".inv"); 1018 1019 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1020 SI.getName() + ".p"); 1021 } 1022 1023 // NOTE: if we wanted to, this is where to detect MIN/MAX 1024 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1025 // Transform (X == Y) ? Y : X -> X 1026 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1027 // This is not safe in general for floating point: 1028 // consider X== -0, Y== +0. 1029 // It becomes safe if either operand is a nonzero constant. 1030 ConstantFP *CFPt, *CFPf; 1031 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1032 !CFPt->getValueAPF().isZero()) || 1033 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1034 !CFPf->getValueAPF().isZero())) 1035 return ReplaceInstUsesWith(SI, FalseVal); 1036 } 1037 // Transform (X une Y) ? Y : X -> Y 1038 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1039 // This is not safe in general for floating point: 1040 // consider X== -0, Y== +0. 1041 // It becomes safe if either operand is a nonzero constant. 1042 ConstantFP *CFPt, *CFPf; 1043 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1044 !CFPt->getValueAPF().isZero()) || 1045 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1046 !CFPf->getValueAPF().isZero())) 1047 return ReplaceInstUsesWith(SI, TrueVal); 1048 } 1049 1050 // Canonicalize to use ordered comparisons by swapping the select 1051 // operands. 1052 // 1053 // e.g. 1054 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1055 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1056 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1057 Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal, 1058 FCI->getName() + ".inv"); 1059 1060 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1061 SI.getName() + ".p"); 1062 } 1063 1064 // NOTE: if we wanted to, this is where to detect MIN/MAX 1065 } 1066 // NOTE: if we wanted to, this is where to detect ABS 1067 } 1068 1069 // See if we are selecting two values based on a comparison of the two values. 1070 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1071 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) 1072 return Result; 1073 1074 if (Instruction *TI = dyn_cast<Instruction>(TrueVal)) 1075 if (Instruction *FI = dyn_cast<Instruction>(FalseVal)) 1076 if (TI->hasOneUse() && FI->hasOneUse()) { 1077 Instruction *AddOp = nullptr, *SubOp = nullptr; 1078 1079 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1080 if (TI->getOpcode() == FI->getOpcode()) 1081 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) 1082 return IV; 1083 1084 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is 1085 // even legal for FP. 1086 if ((TI->getOpcode() == Instruction::Sub && 1087 FI->getOpcode() == Instruction::Add) || 1088 (TI->getOpcode() == Instruction::FSub && 1089 FI->getOpcode() == Instruction::FAdd)) { 1090 AddOp = FI; SubOp = TI; 1091 } else if ((FI->getOpcode() == Instruction::Sub && 1092 TI->getOpcode() == Instruction::Add) || 1093 (FI->getOpcode() == Instruction::FSub && 1094 TI->getOpcode() == Instruction::FAdd)) { 1095 AddOp = TI; SubOp = FI; 1096 } 1097 1098 if (AddOp) { 1099 Value *OtherAddOp = nullptr; 1100 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1101 OtherAddOp = AddOp->getOperand(1); 1102 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1103 OtherAddOp = AddOp->getOperand(0); 1104 } 1105 1106 if (OtherAddOp) { 1107 // So at this point we know we have (Y -> OtherAddOp): 1108 // select C, (add X, Y), (sub X, Z) 1109 Value *NegVal; // Compute -Z 1110 if (SI.getType()->isFPOrFPVectorTy()) { 1111 NegVal = Builder->CreateFNeg(SubOp->getOperand(1)); 1112 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1113 FastMathFlags Flags = AddOp->getFastMathFlags(); 1114 Flags &= SubOp->getFastMathFlags(); 1115 NegInst->setFastMathFlags(Flags); 1116 } 1117 } else { 1118 NegVal = Builder->CreateNeg(SubOp->getOperand(1)); 1119 } 1120 1121 Value *NewTrueOp = OtherAddOp; 1122 Value *NewFalseOp = NegVal; 1123 if (AddOp != TI) 1124 std::swap(NewTrueOp, NewFalseOp); 1125 Value *NewSel = 1126 Builder->CreateSelect(CondVal, NewTrueOp, 1127 NewFalseOp, SI.getName() + ".p"); 1128 1129 if (SI.getType()->isFPOrFPVectorTy()) { 1130 Instruction *RI = 1131 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1132 1133 FastMathFlags Flags = AddOp->getFastMathFlags(); 1134 Flags &= SubOp->getFastMathFlags(); 1135 RI->setFastMathFlags(Flags); 1136 return RI; 1137 } else 1138 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1139 } 1140 } 1141 } 1142 1143 // See if we can fold the select into one of our operands. 1144 if (SI.getType()->isIntegerTy()) { 1145 if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal)) 1146 return FoldI; 1147 1148 Value *LHS, *RHS, *LHS2, *RHS2; 1149 SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS); 1150 1151 // MAX(MAX(a, b), a) -> MAX(a, b) 1152 // MIN(MIN(a, b), a) -> MIN(a, b) 1153 // MAX(MIN(a, b), a) -> a 1154 // MIN(MAX(a, b), a) -> a 1155 if (SPF) { 1156 if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2)) 1157 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 1158 SI, SPF, RHS)) 1159 return R; 1160 if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2)) 1161 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 1162 SI, SPF, LHS)) 1163 return R; 1164 } 1165 1166 // MAX(~a, ~b) -> ~MIN(a, b) 1167 if (SPF == SPF_SMAX || SPF == SPF_UMAX) { 1168 if (IsFreeToInvert(LHS, LHS->hasNUses(2)) && 1169 IsFreeToInvert(RHS, RHS->hasNUses(2))) { 1170 1171 // This transform adds a xor operation and that extra cost needs to be 1172 // justified. We look for simplifications that will result from 1173 // applying this rule: 1174 1175 bool Profitable = 1176 (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) || 1177 (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) || 1178 (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value()))); 1179 1180 if (Profitable) { 1181 Value *NewLHS = Builder->CreateNot(LHS); 1182 Value *NewRHS = Builder->CreateNot(RHS); 1183 Value *NewCmp = SPF == SPF_SMAX 1184 ? Builder->CreateICmpSLT(NewLHS, NewRHS) 1185 : Builder->CreateICmpULT(NewLHS, NewRHS); 1186 Value *NewSI = 1187 Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS)); 1188 return ReplaceInstUsesWith(SI, NewSI); 1189 } 1190 } 1191 } 1192 1193 // TODO. 1194 // ABS(-X) -> ABS(X) 1195 } 1196 1197 // See if we can fold the select into a phi node if the condition is a select. 1198 if (isa<PHINode>(SI.getCondition())) 1199 // The true/false values have to be live in the PHI predecessor's blocks. 1200 if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1201 CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1202 if (Instruction *NV = FoldOpIntoPhi(SI)) 1203 return NV; 1204 1205 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1206 // select(C, select(C, a, b), c) -> select(C, a, c) 1207 if (TrueSI->getCondition() == CondVal) { 1208 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1209 return nullptr; 1210 SI.setOperand(1, TrueSI->getTrueValue()); 1211 return &SI; 1212 } 1213 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1214 // We choose this as normal form to enable folding on the And and shortening 1215 // paths for the values (this helps GetUnderlyingObjects() for example). 1216 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1217 Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition()); 1218 SI.setOperand(0, And); 1219 SI.setOperand(1, TrueSI->getTrueValue()); 1220 return &SI; 1221 } 1222 } 1223 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1224 // select(C, a, select(C, b, c)) -> select(C, a, c) 1225 if (FalseSI->getCondition() == CondVal) { 1226 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1227 return nullptr; 1228 SI.setOperand(2, FalseSI->getFalseValue()); 1229 return &SI; 1230 } 1231 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1232 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1233 Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition()); 1234 SI.setOperand(0, Or); 1235 SI.setOperand(2, FalseSI->getFalseValue()); 1236 return &SI; 1237 } 1238 } 1239 1240 if (BinaryOperator::isNot(CondVal)) { 1241 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1242 SI.setOperand(1, FalseVal); 1243 SI.setOperand(2, TrueVal); 1244 return &SI; 1245 } 1246 1247 if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) { 1248 unsigned VWidth = VecTy->getNumElements(); 1249 APInt UndefElts(VWidth, 0); 1250 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1251 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 1252 if (V != &SI) 1253 return ReplaceInstUsesWith(SI, V); 1254 return &SI; 1255 } 1256 1257 if (isa<ConstantAggregateZero>(CondVal)) { 1258 return ReplaceInstUsesWith(SI, FalseVal); 1259 } 1260 } 1261 1262 return nullptr; 1263 } 1264