1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/OverflowInstAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 42 #include "llvm/Transforms/InstCombine/InstCombiner.h" 43 #include <cassert> 44 #include <utility> 45 46 using namespace llvm; 47 using namespace PatternMatch; 48 49 #define DEBUG_TYPE "instcombine" 50 51 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 52 SelectPatternFlavor SPF, Value *A, Value *B) { 53 CmpInst::Predicate Pred = getMinMaxPred(SPF); 54 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 55 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 56 } 57 58 /// Replace a select operand based on an equality comparison with the identity 59 /// constant of a binop. 60 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 61 const TargetLibraryInfo &TLI, 62 InstCombinerImpl &IC) { 63 // The select condition must be an equality compare with a constant operand. 64 Value *X; 65 Constant *C; 66 CmpInst::Predicate Pred; 67 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 68 return nullptr; 69 70 bool IsEq; 71 if (ICmpInst::isEquality(Pred)) 72 IsEq = Pred == ICmpInst::ICMP_EQ; 73 else if (Pred == FCmpInst::FCMP_OEQ) 74 IsEq = true; 75 else if (Pred == FCmpInst::FCMP_UNE) 76 IsEq = false; 77 else 78 return nullptr; 79 80 // A select operand must be a binop. 81 BinaryOperator *BO; 82 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 83 return nullptr; 84 85 // The compare constant must be the identity constant for that binop. 86 // If this a floating-point compare with 0.0, any zero constant will do. 87 Type *Ty = BO->getType(); 88 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 89 if (IdC != C) { 90 if (!IdC || !CmpInst::isFPPredicate(Pred)) 91 return nullptr; 92 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 93 return nullptr; 94 } 95 96 // Last, match the compare variable operand with a binop operand. 97 Value *Y; 98 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 99 return nullptr; 100 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 101 return nullptr; 102 103 // +0.0 compares equal to -0.0, and so it does not behave as required for this 104 // transform. Bail out if we can not exclude that possibility. 105 if (isa<FPMathOperator>(BO)) 106 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 107 return nullptr; 108 109 // BO = binop Y, X 110 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 111 // => 112 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 113 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 114 } 115 116 /// This folds: 117 /// select (icmp eq (and X, C1)), TC, FC 118 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 119 /// To something like: 120 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 121 /// Or: 122 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 123 /// With some variations depending if FC is larger than TC, or the shift 124 /// isn't needed, or the bit widths don't match. 125 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 126 InstCombiner::BuilderTy &Builder) { 127 const APInt *SelTC, *SelFC; 128 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 129 !match(Sel.getFalseValue(), m_APInt(SelFC))) 130 return nullptr; 131 132 // If this is a vector select, we need a vector compare. 133 Type *SelType = Sel.getType(); 134 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 135 return nullptr; 136 137 Value *V; 138 APInt AndMask; 139 bool CreateAnd = false; 140 ICmpInst::Predicate Pred = Cmp->getPredicate(); 141 if (ICmpInst::isEquality(Pred)) { 142 if (!match(Cmp->getOperand(1), m_Zero())) 143 return nullptr; 144 145 V = Cmp->getOperand(0); 146 const APInt *AndRHS; 147 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 148 return nullptr; 149 150 AndMask = *AndRHS; 151 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 152 Pred, V, AndMask)) { 153 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 154 if (!AndMask.isPowerOf2()) 155 return nullptr; 156 157 CreateAnd = true; 158 } else { 159 return nullptr; 160 } 161 162 // In general, when both constants are non-zero, we would need an offset to 163 // replace the select. This would require more instructions than we started 164 // with. But there's one special-case that we handle here because it can 165 // simplify/reduce the instructions. 166 APInt TC = *SelTC; 167 APInt FC = *SelFC; 168 if (!TC.isNullValue() && !FC.isNullValue()) { 169 // If the select constants differ by exactly one bit and that's the same 170 // bit that is masked and checked by the select condition, the select can 171 // be replaced by bitwise logic to set/clear one bit of the constant result. 172 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 173 return nullptr; 174 if (CreateAnd) { 175 // If we have to create an 'and', then we must kill the cmp to not 176 // increase the instruction count. 177 if (!Cmp->hasOneUse()) 178 return nullptr; 179 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 180 } 181 bool ExtraBitInTC = TC.ugt(FC); 182 if (Pred == ICmpInst::ICMP_EQ) { 183 // If the masked bit in V is clear, clear or set the bit in the result: 184 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 185 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 186 Constant *C = ConstantInt::get(SelType, TC); 187 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 188 } 189 if (Pred == ICmpInst::ICMP_NE) { 190 // If the masked bit in V is set, set or clear the bit in the result: 191 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 192 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 193 Constant *C = ConstantInt::get(SelType, FC); 194 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 195 } 196 llvm_unreachable("Only expecting equality predicates"); 197 } 198 199 // Make sure one of the select arms is a power-of-2. 200 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 201 return nullptr; 202 203 // Determine which shift is needed to transform result of the 'and' into the 204 // desired result. 205 const APInt &ValC = !TC.isNullValue() ? TC : FC; 206 unsigned ValZeros = ValC.logBase2(); 207 unsigned AndZeros = AndMask.logBase2(); 208 209 // Insert the 'and' instruction on the input to the truncate. 210 if (CreateAnd) 211 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 212 213 // If types don't match, we can still convert the select by introducing a zext 214 // or a trunc of the 'and'. 215 if (ValZeros > AndZeros) { 216 V = Builder.CreateZExtOrTrunc(V, SelType); 217 V = Builder.CreateShl(V, ValZeros - AndZeros); 218 } else if (ValZeros < AndZeros) { 219 V = Builder.CreateLShr(V, AndZeros - ValZeros); 220 V = Builder.CreateZExtOrTrunc(V, SelType); 221 } else { 222 V = Builder.CreateZExtOrTrunc(V, SelType); 223 } 224 225 // Okay, now we know that everything is set up, we just don't know whether we 226 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 227 bool ShouldNotVal = !TC.isNullValue(); 228 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 229 if (ShouldNotVal) 230 V = Builder.CreateXor(V, ValC); 231 232 return V; 233 } 234 235 /// We want to turn code that looks like this: 236 /// %C = or %A, %B 237 /// %D = select %cond, %C, %A 238 /// into: 239 /// %C = select %cond, %B, 0 240 /// %D = or %A, %C 241 /// 242 /// Assuming that the specified instruction is an operand to the select, return 243 /// a bitmask indicating which operands of this instruction are foldable if they 244 /// equal the other incoming value of the select. 245 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 246 switch (I->getOpcode()) { 247 case Instruction::Add: 248 case Instruction::Mul: 249 case Instruction::And: 250 case Instruction::Or: 251 case Instruction::Xor: 252 return 3; // Can fold through either operand. 253 case Instruction::Sub: // Can only fold on the amount subtracted. 254 case Instruction::Shl: // Can only fold on the shift amount. 255 case Instruction::LShr: 256 case Instruction::AShr: 257 return 1; 258 default: 259 return 0; // Cannot fold 260 } 261 } 262 263 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 264 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 265 Instruction *FI) { 266 // Don't break up min/max patterns. The hasOneUse checks below prevent that 267 // for most cases, but vector min/max with bitcasts can be transformed. If the 268 // one-use restrictions are eased for other patterns, we still don't want to 269 // obfuscate min/max. 270 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 271 match(&SI, m_SMax(m_Value(), m_Value())) || 272 match(&SI, m_UMin(m_Value(), m_Value())) || 273 match(&SI, m_UMax(m_Value(), m_Value())))) 274 return nullptr; 275 276 // If this is a cast from the same type, merge. 277 Value *Cond = SI.getCondition(); 278 Type *CondTy = Cond->getType(); 279 if (TI->getNumOperands() == 1 && TI->isCast()) { 280 Type *FIOpndTy = FI->getOperand(0)->getType(); 281 if (TI->getOperand(0)->getType() != FIOpndTy) 282 return nullptr; 283 284 // The select condition may be a vector. We may only change the operand 285 // type if the vector width remains the same (and matches the condition). 286 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 287 if (!FIOpndTy->isVectorTy() || 288 CondVTy->getElementCount() != 289 cast<VectorType>(FIOpndTy)->getElementCount()) 290 return nullptr; 291 292 // TODO: If the backend knew how to deal with casts better, we could 293 // remove this limitation. For now, there's too much potential to create 294 // worse codegen by promoting the select ahead of size-altering casts 295 // (PR28160). 296 // 297 // Note that ValueTracking's matchSelectPattern() looks through casts 298 // without checking 'hasOneUse' when it matches min/max patterns, so this 299 // transform may end up happening anyway. 300 if (TI->getOpcode() != Instruction::BitCast && 301 (!TI->hasOneUse() || !FI->hasOneUse())) 302 return nullptr; 303 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 304 // TODO: The one-use restrictions for a scalar select could be eased if 305 // the fold of a select in visitLoadInst() was enhanced to match a pattern 306 // that includes a cast. 307 return nullptr; 308 } 309 310 // Fold this by inserting a select from the input values. 311 Value *NewSI = 312 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 313 SI.getName() + ".v", &SI); 314 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 315 TI->getType()); 316 } 317 318 // Cond ? -X : -Y --> -(Cond ? X : Y) 319 Value *X, *Y; 320 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 321 (TI->hasOneUse() || FI->hasOneUse())) { 322 // Intersect FMF from the fneg instructions and union those with the select. 323 FastMathFlags FMF = TI->getFastMathFlags(); 324 FMF &= FI->getFastMathFlags(); 325 FMF |= SI.getFastMathFlags(); 326 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 327 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 328 NewSelI->setFastMathFlags(FMF); 329 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 330 NewFNeg->setFastMathFlags(FMF); 331 return NewFNeg; 332 } 333 334 // Min/max intrinsic with a common operand can have the common operand pulled 335 // after the select. This is the same transform as below for binops, but 336 // specialized for intrinsic matching and without the restrictive uses clause. 337 auto *TII = dyn_cast<IntrinsicInst>(TI); 338 auto *FII = dyn_cast<IntrinsicInst>(FI); 339 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() && 340 (TII->hasOneUse() || FII->hasOneUse())) { 341 Value *T0, *T1, *F0, *F1; 342 if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) && 343 match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) { 344 if (T0 == F0) { 345 Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI); 346 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 347 } 348 if (T0 == F1) { 349 Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI); 350 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 351 } 352 if (T1 == F0) { 353 Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI); 354 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 355 } 356 if (T1 == F1) { 357 Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI); 358 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 359 } 360 } 361 } 362 363 // Only handle binary operators (including two-operand getelementptr) with 364 // one-use here. As with the cast case above, it may be possible to relax the 365 // one-use constraint, but that needs be examined carefully since it may not 366 // reduce the total number of instructions. 367 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 368 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 369 !TI->hasOneUse() || !FI->hasOneUse()) 370 return nullptr; 371 372 // Figure out if the operations have any operands in common. 373 Value *MatchOp, *OtherOpT, *OtherOpF; 374 bool MatchIsOpZero; 375 if (TI->getOperand(0) == FI->getOperand(0)) { 376 MatchOp = TI->getOperand(0); 377 OtherOpT = TI->getOperand(1); 378 OtherOpF = FI->getOperand(1); 379 MatchIsOpZero = true; 380 } else if (TI->getOperand(1) == FI->getOperand(1)) { 381 MatchOp = TI->getOperand(1); 382 OtherOpT = TI->getOperand(0); 383 OtherOpF = FI->getOperand(0); 384 MatchIsOpZero = false; 385 } else if (!TI->isCommutative()) { 386 return nullptr; 387 } else if (TI->getOperand(0) == FI->getOperand(1)) { 388 MatchOp = TI->getOperand(0); 389 OtherOpT = TI->getOperand(1); 390 OtherOpF = FI->getOperand(0); 391 MatchIsOpZero = true; 392 } else if (TI->getOperand(1) == FI->getOperand(0)) { 393 MatchOp = TI->getOperand(1); 394 OtherOpT = TI->getOperand(0); 395 OtherOpF = FI->getOperand(1); 396 MatchIsOpZero = true; 397 } else { 398 return nullptr; 399 } 400 401 // If the select condition is a vector, the operands of the original select's 402 // operands also must be vectors. This may not be the case for getelementptr 403 // for example. 404 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 405 !OtherOpF->getType()->isVectorTy())) 406 return nullptr; 407 408 // If we reach here, they do have operations in common. 409 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 410 SI.getName() + ".v", &SI); 411 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 412 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 413 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 414 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 415 NewBO->copyIRFlags(TI); 416 NewBO->andIRFlags(FI); 417 return NewBO; 418 } 419 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 420 auto *FGEP = cast<GetElementPtrInst>(FI); 421 Type *ElementType = TGEP->getResultElementType(); 422 return TGEP->isInBounds() && FGEP->isInBounds() 423 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 424 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 425 } 426 llvm_unreachable("Expected BinaryOperator or GEP"); 427 return nullptr; 428 } 429 430 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 431 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 432 return false; 433 return C1I.isOneValue() || C1I.isAllOnesValue() || 434 C2I.isOneValue() || C2I.isAllOnesValue(); 435 } 436 437 /// Try to fold the select into one of the operands to allow further 438 /// optimization. 439 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 440 Value *FalseVal) { 441 // See the comment above GetSelectFoldableOperands for a description of the 442 // transformation we are doing here. 443 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 444 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 445 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 446 unsigned OpToFold = 0; 447 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 448 OpToFold = 1; 449 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 450 OpToFold = 2; 451 } 452 453 if (OpToFold) { 454 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(), 455 TVI->getType(), true); 456 Value *OOp = TVI->getOperand(2-OpToFold); 457 // Avoid creating select between 2 constants unless it's selecting 458 // between 0, 1 and -1. 459 const APInt *OOpC; 460 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 461 if (!isa<Constant>(OOp) || 462 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 463 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 464 NewSel->takeName(TVI); 465 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 466 FalseVal, NewSel); 467 BO->copyIRFlags(TVI); 468 return BO; 469 } 470 } 471 } 472 } 473 } 474 475 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 476 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 477 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 478 unsigned OpToFold = 0; 479 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 480 OpToFold = 1; 481 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 482 OpToFold = 2; 483 } 484 485 if (OpToFold) { 486 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(), 487 FVI->getType(), true); 488 Value *OOp = FVI->getOperand(2-OpToFold); 489 // Avoid creating select between 2 constants unless it's selecting 490 // between 0, 1 and -1. 491 const APInt *OOpC; 492 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 493 if (!isa<Constant>(OOp) || 494 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 495 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 496 NewSel->takeName(FVI); 497 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 498 TrueVal, NewSel); 499 BO->copyIRFlags(FVI); 500 return BO; 501 } 502 } 503 } 504 } 505 } 506 507 return nullptr; 508 } 509 510 /// We want to turn: 511 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 512 /// into: 513 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 514 /// Note: 515 /// Z may be 0 if lshr is missing. 516 /// Worst-case scenario is that we will replace 5 instructions with 5 different 517 /// instructions, but we got rid of select. 518 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 519 Value *TVal, Value *FVal, 520 InstCombiner::BuilderTy &Builder) { 521 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 522 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 523 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 524 return nullptr; 525 526 // The TrueVal has general form of: and %B, 1 527 Value *B; 528 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 529 return nullptr; 530 531 // Where %B may be optionally shifted: lshr %X, %Z. 532 Value *X, *Z; 533 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 534 if (!HasShift) 535 X = B; 536 537 Value *Y; 538 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 539 return nullptr; 540 541 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 542 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 543 Constant *One = ConstantInt::get(SelType, 1); 544 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 545 Value *FullMask = Builder.CreateOr(Y, MaskB); 546 Value *MaskedX = Builder.CreateAnd(X, FullMask); 547 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 548 return new ZExtInst(ICmpNeZero, SelType); 549 } 550 551 /// We want to turn: 552 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 553 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 554 /// into: 555 /// ashr (X, Y) 556 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 557 Value *FalseVal, 558 InstCombiner::BuilderTy &Builder) { 559 ICmpInst::Predicate Pred = IC->getPredicate(); 560 Value *CmpLHS = IC->getOperand(0); 561 Value *CmpRHS = IC->getOperand(1); 562 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 563 return nullptr; 564 565 Value *X, *Y; 566 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 567 if ((Pred != ICmpInst::ICMP_SGT || 568 !match(CmpRHS, 569 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 570 (Pred != ICmpInst::ICMP_SLT || 571 !match(CmpRHS, 572 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 573 return nullptr; 574 575 // Canonicalize so that ashr is in FalseVal. 576 if (Pred == ICmpInst::ICMP_SLT) 577 std::swap(TrueVal, FalseVal); 578 579 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 580 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 581 match(CmpLHS, m_Specific(X))) { 582 const auto *Ashr = cast<Instruction>(FalseVal); 583 // if lshr is not exact and ashr is, this new ashr must not be exact. 584 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 585 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 586 } 587 588 return nullptr; 589 } 590 591 /// We want to turn: 592 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 593 /// into: 594 /// (or (shl (and X, C1), C3), Y) 595 /// iff: 596 /// C1 and C2 are both powers of 2 597 /// where: 598 /// C3 = Log(C2) - Log(C1) 599 /// 600 /// This transform handles cases where: 601 /// 1. The icmp predicate is inverted 602 /// 2. The select operands are reversed 603 /// 3. The magnitude of C2 and C1 are flipped 604 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 605 Value *FalseVal, 606 InstCombiner::BuilderTy &Builder) { 607 // Only handle integer compares. Also, if this is a vector select, we need a 608 // vector compare. 609 if (!TrueVal->getType()->isIntOrIntVectorTy() || 610 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 611 return nullptr; 612 613 Value *CmpLHS = IC->getOperand(0); 614 Value *CmpRHS = IC->getOperand(1); 615 616 Value *V; 617 unsigned C1Log; 618 bool IsEqualZero; 619 bool NeedAnd = false; 620 if (IC->isEquality()) { 621 if (!match(CmpRHS, m_Zero())) 622 return nullptr; 623 624 const APInt *C1; 625 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 626 return nullptr; 627 628 V = CmpLHS; 629 C1Log = C1->logBase2(); 630 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 631 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 632 IC->getPredicate() == ICmpInst::ICMP_SGT) { 633 // We also need to recognize (icmp slt (trunc (X)), 0) and 634 // (icmp sgt (trunc (X)), -1). 635 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 636 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 637 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 638 return nullptr; 639 640 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 641 return nullptr; 642 643 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 644 NeedAnd = true; 645 } else { 646 return nullptr; 647 } 648 649 const APInt *C2; 650 bool OrOnTrueVal = false; 651 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 652 if (!OrOnFalseVal) 653 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 654 655 if (!OrOnFalseVal && !OrOnTrueVal) 656 return nullptr; 657 658 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 659 660 unsigned C2Log = C2->logBase2(); 661 662 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 663 bool NeedShift = C1Log != C2Log; 664 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 665 V->getType()->getScalarSizeInBits(); 666 667 // Make sure we don't create more instructions than we save. 668 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 669 if ((NeedShift + NeedXor + NeedZExtTrunc) > 670 (IC->hasOneUse() + Or->hasOneUse())) 671 return nullptr; 672 673 if (NeedAnd) { 674 // Insert the AND instruction on the input to the truncate. 675 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 676 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 677 } 678 679 if (C2Log > C1Log) { 680 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 681 V = Builder.CreateShl(V, C2Log - C1Log); 682 } else if (C1Log > C2Log) { 683 V = Builder.CreateLShr(V, C1Log - C2Log); 684 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 685 } else 686 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 687 688 if (NeedXor) 689 V = Builder.CreateXor(V, *C2); 690 691 return Builder.CreateOr(V, Y); 692 } 693 694 /// Canonicalize a set or clear of a masked set of constant bits to 695 /// select-of-constants form. 696 static Instruction *foldSetClearBits(SelectInst &Sel, 697 InstCombiner::BuilderTy &Builder) { 698 Value *Cond = Sel.getCondition(); 699 Value *T = Sel.getTrueValue(); 700 Value *F = Sel.getFalseValue(); 701 Type *Ty = Sel.getType(); 702 Value *X; 703 const APInt *NotC, *C; 704 705 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 706 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 707 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 708 Constant *Zero = ConstantInt::getNullValue(Ty); 709 Constant *OrC = ConstantInt::get(Ty, *C); 710 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 711 return BinaryOperator::CreateOr(T, NewSel); 712 } 713 714 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 715 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 716 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 717 Constant *Zero = ConstantInt::getNullValue(Ty); 718 Constant *OrC = ConstantInt::get(Ty, *C); 719 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 720 return BinaryOperator::CreateOr(F, NewSel); 721 } 722 723 return nullptr; 724 } 725 726 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 727 /// There are 8 commuted/swapped variants of this pattern. 728 /// TODO: Also support a - UMIN(a,b) patterns. 729 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 730 const Value *TrueVal, 731 const Value *FalseVal, 732 InstCombiner::BuilderTy &Builder) { 733 ICmpInst::Predicate Pred = ICI->getPredicate(); 734 if (!ICmpInst::isUnsigned(Pred)) 735 return nullptr; 736 737 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 738 if (match(TrueVal, m_Zero())) { 739 Pred = ICmpInst::getInversePredicate(Pred); 740 std::swap(TrueVal, FalseVal); 741 } 742 if (!match(FalseVal, m_Zero())) 743 return nullptr; 744 745 Value *A = ICI->getOperand(0); 746 Value *B = ICI->getOperand(1); 747 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 748 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 749 std::swap(A, B); 750 Pred = ICmpInst::getSwappedPredicate(Pred); 751 } 752 753 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 754 "Unexpected isUnsigned predicate!"); 755 756 // Ensure the sub is of the form: 757 // (a > b) ? a - b : 0 -> usub.sat(a, b) 758 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 759 // Checking for both a-b and a+(-b) as a constant. 760 bool IsNegative = false; 761 const APInt *C; 762 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 763 (match(A, m_APInt(C)) && 764 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 765 IsNegative = true; 766 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 767 !(match(B, m_APInt(C)) && 768 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 769 return nullptr; 770 771 // If we are adding a negate and the sub and icmp are used anywhere else, we 772 // would end up with more instructions. 773 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 774 return nullptr; 775 776 // (a > b) ? a - b : 0 -> usub.sat(a, b) 777 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 778 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 779 if (IsNegative) 780 Result = Builder.CreateNeg(Result); 781 return Result; 782 } 783 784 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 785 InstCombiner::BuilderTy &Builder) { 786 if (!Cmp->hasOneUse()) 787 return nullptr; 788 789 // Match unsigned saturated add with constant. 790 Value *Cmp0 = Cmp->getOperand(0); 791 Value *Cmp1 = Cmp->getOperand(1); 792 ICmpInst::Predicate Pred = Cmp->getPredicate(); 793 Value *X; 794 const APInt *C, *CmpC; 795 if (Pred == ICmpInst::ICMP_ULT && 796 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 797 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 798 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 799 return Builder.CreateBinaryIntrinsic( 800 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 801 } 802 803 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 804 // There are 8 commuted variants. 805 // Canonicalize -1 (saturated result) to true value of the select. 806 if (match(FVal, m_AllOnes())) { 807 std::swap(TVal, FVal); 808 Pred = CmpInst::getInversePredicate(Pred); 809 } 810 if (!match(TVal, m_AllOnes())) 811 return nullptr; 812 813 // Canonicalize predicate to less-than or less-or-equal-than. 814 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 815 std::swap(Cmp0, Cmp1); 816 Pred = CmpInst::getSwappedPredicate(Pred); 817 } 818 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 819 return nullptr; 820 821 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 822 // Strictness of the comparison is irrelevant. 823 Value *Y; 824 if (match(Cmp0, m_Not(m_Value(X))) && 825 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 826 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 827 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 828 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 829 } 830 // The 'not' op may be included in the sum but not the compare. 831 // Strictness of the comparison is irrelevant. 832 X = Cmp0; 833 Y = Cmp1; 834 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 835 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 836 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 837 BinaryOperator *BO = cast<BinaryOperator>(FVal); 838 return Builder.CreateBinaryIntrinsic( 839 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 840 } 841 // The overflow may be detected via the add wrapping round. 842 // This is only valid for strict comparison! 843 if (Pred == ICmpInst::ICMP_ULT && 844 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 845 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 846 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 847 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 848 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 849 } 850 851 return nullptr; 852 } 853 854 /// Fold the following code sequence: 855 /// \code 856 /// int a = ctlz(x & -x); 857 // x ? 31 - a : a; 858 /// \code 859 /// 860 /// into: 861 /// cttz(x) 862 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 863 Value *FalseVal, 864 InstCombiner::BuilderTy &Builder) { 865 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 866 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 867 return nullptr; 868 869 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 870 std::swap(TrueVal, FalseVal); 871 872 if (!match(FalseVal, 873 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 874 return nullptr; 875 876 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 877 return nullptr; 878 879 Value *X = ICI->getOperand(0); 880 auto *II = cast<IntrinsicInst>(TrueVal); 881 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 882 return nullptr; 883 884 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 885 II->getType()); 886 return CallInst::Create(F, {X, II->getArgOperand(1)}); 887 } 888 889 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 890 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 891 /// 892 /// For example, we can fold the following code sequence: 893 /// \code 894 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 895 /// %1 = icmp ne i32 %x, 0 896 /// %2 = select i1 %1, i32 %0, i32 32 897 /// \code 898 /// 899 /// into: 900 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 901 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 902 InstCombiner::BuilderTy &Builder) { 903 ICmpInst::Predicate Pred = ICI->getPredicate(); 904 Value *CmpLHS = ICI->getOperand(0); 905 Value *CmpRHS = ICI->getOperand(1); 906 907 // Check if the condition value compares a value for equality against zero. 908 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 909 return nullptr; 910 911 Value *SelectArg = FalseVal; 912 Value *ValueOnZero = TrueVal; 913 if (Pred == ICmpInst::ICMP_NE) 914 std::swap(SelectArg, ValueOnZero); 915 916 // Skip zero extend/truncate. 917 Value *Count = nullptr; 918 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 919 !match(SelectArg, m_Trunc(m_Value(Count)))) 920 Count = SelectArg; 921 922 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 923 // input to the cttz/ctlz is used as LHS for the compare instruction. 924 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 925 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 926 return nullptr; 927 928 IntrinsicInst *II = cast<IntrinsicInst>(Count); 929 930 // Check if the value propagated on zero is a constant number equal to the 931 // sizeof in bits of 'Count'. 932 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 933 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 934 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from 935 // true to false on this flag, so we can replace it for all users. 936 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 937 return SelectArg; 938 } 939 940 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 941 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 942 // not be used if the input is zero. Relax to 'undef_on_zero' for that case. 943 if (II->hasOneUse() && SelectArg->hasOneUse() && 944 !match(II->getArgOperand(1), m_One())) 945 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 946 947 return nullptr; 948 } 949 950 /// Return true if we find and adjust an icmp+select pattern where the compare 951 /// is with a constant that can be incremented or decremented to match the 952 /// minimum or maximum idiom. 953 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 954 ICmpInst::Predicate Pred = Cmp.getPredicate(); 955 Value *CmpLHS = Cmp.getOperand(0); 956 Value *CmpRHS = Cmp.getOperand(1); 957 Value *TrueVal = Sel.getTrueValue(); 958 Value *FalseVal = Sel.getFalseValue(); 959 960 // We may move or edit the compare, so make sure the select is the only user. 961 const APInt *CmpC; 962 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 963 return false; 964 965 // These transforms only work for selects of integers or vector selects of 966 // integer vectors. 967 Type *SelTy = Sel.getType(); 968 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 969 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 970 return false; 971 972 Constant *AdjustedRHS; 973 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 974 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 975 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 976 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 977 else 978 return false; 979 980 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 981 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 982 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 983 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 984 ; // Nothing to do here. Values match without any sign/zero extension. 985 } 986 // Types do not match. Instead of calculating this with mixed types, promote 987 // all to the larger type. This enables scalar evolution to analyze this 988 // expression. 989 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 990 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 991 992 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 993 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 994 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 995 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 996 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 997 CmpLHS = TrueVal; 998 AdjustedRHS = SextRHS; 999 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 1000 SextRHS == TrueVal) { 1001 CmpLHS = FalseVal; 1002 AdjustedRHS = SextRHS; 1003 } else if (Cmp.isUnsigned()) { 1004 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 1005 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 1006 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 1007 // zext + signed compare cannot be changed: 1008 // 0xff <s 0x00, but 0x00ff >s 0x0000 1009 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 1010 CmpLHS = TrueVal; 1011 AdjustedRHS = ZextRHS; 1012 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 1013 ZextRHS == TrueVal) { 1014 CmpLHS = FalseVal; 1015 AdjustedRHS = ZextRHS; 1016 } else { 1017 return false; 1018 } 1019 } else { 1020 return false; 1021 } 1022 } else { 1023 return false; 1024 } 1025 1026 Pred = ICmpInst::getSwappedPredicate(Pred); 1027 CmpRHS = AdjustedRHS; 1028 std::swap(FalseVal, TrueVal); 1029 Cmp.setPredicate(Pred); 1030 Cmp.setOperand(0, CmpLHS); 1031 Cmp.setOperand(1, CmpRHS); 1032 Sel.setOperand(1, TrueVal); 1033 Sel.setOperand(2, FalseVal); 1034 Sel.swapProfMetadata(); 1035 1036 // Move the compare instruction right before the select instruction. Otherwise 1037 // the sext/zext value may be defined after the compare instruction uses it. 1038 Cmp.moveBefore(&Sel); 1039 1040 return true; 1041 } 1042 1043 /// If this is an integer min/max (icmp + select) with a constant operand, 1044 /// create the canonical icmp for the min/max operation and canonicalize the 1045 /// constant to the 'false' operand of the select: 1046 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1047 /// Note: if C1 != C2, this will change the icmp constant to the existing 1048 /// constant operand of the select. 1049 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1050 ICmpInst &Cmp, 1051 InstCombinerImpl &IC) { 1052 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1053 return nullptr; 1054 1055 // Canonicalize the compare predicate based on whether we have min or max. 1056 Value *LHS, *RHS; 1057 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1058 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1059 return nullptr; 1060 1061 // Is this already canonical? 1062 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1063 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1064 Cmp.getPredicate() == CanonicalPred) 1065 return nullptr; 1066 1067 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1068 // as this may cause an infinite combine loop. Let the sub be folded first. 1069 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1070 match(RHS, m_Sub(m_Value(), m_Zero()))) 1071 return nullptr; 1072 1073 // Create the canonical compare and plug it into the select. 1074 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1075 1076 // If the select operands did not change, we're done. 1077 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1078 return &Sel; 1079 1080 // If we are swapping the select operands, swap the metadata too. 1081 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1082 "Unexpected results from matchSelectPattern"); 1083 Sel.swapValues(); 1084 Sel.swapProfMetadata(); 1085 return &Sel; 1086 } 1087 1088 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1089 InstCombinerImpl &IC) { 1090 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1091 return nullptr; 1092 1093 Value *LHS, *RHS; 1094 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1095 if (SPF != SelectPatternFlavor::SPF_ABS && 1096 SPF != SelectPatternFlavor::SPF_NABS) 1097 return nullptr; 1098 1099 // Note that NSW flag can only be propagated for normal, non-negated abs! 1100 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1101 match(RHS, m_NSWNeg(m_Specific(LHS))); 1102 Constant *IntMinIsPoisonC = 1103 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1104 Instruction *Abs = 1105 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1106 1107 if (SPF == SelectPatternFlavor::SPF_NABS) 1108 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1109 1110 return IC.replaceInstUsesWith(Sel, Abs); 1111 } 1112 1113 /// If we have a select with an equality comparison, then we know the value in 1114 /// one of the arms of the select. See if substituting this value into an arm 1115 /// and simplifying the result yields the same value as the other arm. 1116 /// 1117 /// To make this transform safe, we must drop poison-generating flags 1118 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1119 /// that poison from propagating. If the existing binop already had no 1120 /// poison-generating flags, then this transform can be done by instsimplify. 1121 /// 1122 /// Consider: 1123 /// %cmp = icmp eq i32 %x, 2147483647 1124 /// %add = add nsw i32 %x, 1 1125 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1126 /// 1127 /// We can't replace %sel with %add unless we strip away the flags. 1128 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1129 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1130 ICmpInst &Cmp) { 1131 // Value equivalence substitution requires an all-or-nothing replacement. 1132 // It does not make sense for a vector compare where each lane is chosen 1133 // independently. 1134 if (!Cmp.isEquality() || Cmp.getType()->isVectorTy()) 1135 return nullptr; 1136 1137 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1138 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1139 bool Swapped = false; 1140 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1141 std::swap(TrueVal, FalseVal); 1142 Swapped = true; 1143 } 1144 1145 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1146 // Make sure Y cannot be undef though, as we might pick different values for 1147 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1148 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1149 // replacement cycle. 1150 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1151 if (TrueVal != CmpLHS && 1152 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1153 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1154 /* AllowRefinement */ true)) 1155 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1156 1157 // Even if TrueVal does not simplify, we can directly replace a use of 1158 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1159 // else and is safe to speculatively execute (we may end up executing it 1160 // with different operands, which should not cause side-effects or trigger 1161 // undefined behavior). Only do this if CmpRHS is a constant, as 1162 // profitability is not clear for other cases. 1163 // FIXME: The replacement could be performed recursively. 1164 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant())) 1165 if (auto *I = dyn_cast<Instruction>(TrueVal)) 1166 if (I->hasOneUse() && isSafeToSpeculativelyExecute(I)) 1167 for (Use &U : I->operands()) 1168 if (U == CmpLHS) { 1169 replaceUse(U, CmpRHS); 1170 return &Sel; 1171 } 1172 } 1173 if (TrueVal != CmpRHS && 1174 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1175 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1176 /* AllowRefinement */ true)) 1177 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1178 1179 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1180 if (!FalseInst) 1181 return nullptr; 1182 1183 // InstSimplify already performed this fold if it was possible subject to 1184 // current poison-generating flags. Try the transform again with 1185 // poison-generating flags temporarily dropped. 1186 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1187 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1188 WasNUW = OBO->hasNoUnsignedWrap(); 1189 WasNSW = OBO->hasNoSignedWrap(); 1190 FalseInst->setHasNoUnsignedWrap(false); 1191 FalseInst->setHasNoSignedWrap(false); 1192 } 1193 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1194 WasExact = PEO->isExact(); 1195 FalseInst->setIsExact(false); 1196 } 1197 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1198 WasInBounds = GEP->isInBounds(); 1199 GEP->setIsInBounds(false); 1200 } 1201 1202 // Try each equivalence substitution possibility. 1203 // We have an 'EQ' comparison, so the select's false value will propagate. 1204 // Example: 1205 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1206 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1207 /* AllowRefinement */ false) == TrueVal || 1208 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1209 /* AllowRefinement */ false) == TrueVal) { 1210 return replaceInstUsesWith(Sel, FalseVal); 1211 } 1212 1213 // Restore poison-generating flags if the transform did not apply. 1214 if (WasNUW) 1215 FalseInst->setHasNoUnsignedWrap(); 1216 if (WasNSW) 1217 FalseInst->setHasNoSignedWrap(); 1218 if (WasExact) 1219 FalseInst->setIsExact(); 1220 if (WasInBounds) 1221 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1222 1223 return nullptr; 1224 } 1225 1226 // See if this is a pattern like: 1227 // %old_cmp1 = icmp slt i32 %x, C2 1228 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1229 // %old_x_offseted = add i32 %x, C1 1230 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1231 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1232 // This can be rewritten as more canonical pattern: 1233 // %new_cmp1 = icmp slt i32 %x, -C1 1234 // %new_cmp2 = icmp sge i32 %x, C0-C1 1235 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1236 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1237 // Iff -C1 s<= C2 s<= C0-C1 1238 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1239 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1240 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1241 InstCombiner::BuilderTy &Builder) { 1242 Value *X = Sel0.getTrueValue(); 1243 Value *Sel1 = Sel0.getFalseValue(); 1244 1245 // First match the condition of the outermost select. 1246 // Said condition must be one-use. 1247 if (!Cmp0.hasOneUse()) 1248 return nullptr; 1249 Value *Cmp00 = Cmp0.getOperand(0); 1250 Constant *C0; 1251 if (!match(Cmp0.getOperand(1), 1252 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1253 return nullptr; 1254 // Canonicalize Cmp0 into the form we expect. 1255 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1256 switch (Cmp0.getPredicate()) { 1257 case ICmpInst::Predicate::ICMP_ULT: 1258 break; // Great! 1259 case ICmpInst::Predicate::ICMP_ULE: 1260 // We'd have to increment C0 by one, and for that it must not have all-ones 1261 // element, but then it would have been canonicalized to 'ult' before 1262 // we get here. So we can't do anything useful with 'ule'. 1263 return nullptr; 1264 case ICmpInst::Predicate::ICMP_UGT: 1265 // We want to canonicalize it to 'ult', so we'll need to increment C0, 1266 // which again means it must not have any all-ones elements. 1267 if (!match(C0, 1268 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1269 APInt::getAllOnesValue( 1270 C0->getType()->getScalarSizeInBits())))) 1271 return nullptr; // Can't do, have all-ones element[s]. 1272 C0 = InstCombiner::AddOne(C0); 1273 std::swap(X, Sel1); 1274 break; 1275 case ICmpInst::Predicate::ICMP_UGE: 1276 // The only way we'd get this predicate if this `icmp` has extra uses, 1277 // but then we won't be able to do this fold. 1278 return nullptr; 1279 default: 1280 return nullptr; // Unknown predicate. 1281 } 1282 1283 // Now that we've canonicalized the ICmp, we know the X we expect; 1284 // the select in other hand should be one-use. 1285 if (!Sel1->hasOneUse()) 1286 return nullptr; 1287 1288 // We now can finish matching the condition of the outermost select: 1289 // it should either be the X itself, or an addition of some constant to X. 1290 Constant *C1; 1291 if (Cmp00 == X) 1292 C1 = ConstantInt::getNullValue(Sel0.getType()); 1293 else if (!match(Cmp00, 1294 m_Add(m_Specific(X), 1295 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1296 return nullptr; 1297 1298 Value *Cmp1; 1299 ICmpInst::Predicate Pred1; 1300 Constant *C2; 1301 Value *ReplacementLow, *ReplacementHigh; 1302 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1303 m_Value(ReplacementHigh))) || 1304 !match(Cmp1, 1305 m_ICmp(Pred1, m_Specific(X), 1306 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1307 return nullptr; 1308 1309 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1310 return nullptr; // Not enough one-use instructions for the fold. 1311 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1312 // two comparisons we'll need to build. 1313 1314 // Canonicalize Cmp1 into the form we expect. 1315 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1316 switch (Pred1) { 1317 case ICmpInst::Predicate::ICMP_SLT: 1318 break; 1319 case ICmpInst::Predicate::ICMP_SLE: 1320 // We'd have to increment C2 by one, and for that it must not have signed 1321 // max element, but then it would have been canonicalized to 'slt' before 1322 // we get here. So we can't do anything useful with 'sle'. 1323 return nullptr; 1324 case ICmpInst::Predicate::ICMP_SGT: 1325 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1326 // which again means it must not have any signed max elements. 1327 if (!match(C2, 1328 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1329 APInt::getSignedMaxValue( 1330 C2->getType()->getScalarSizeInBits())))) 1331 return nullptr; // Can't do, have signed max element[s]. 1332 C2 = InstCombiner::AddOne(C2); 1333 LLVM_FALLTHROUGH; 1334 case ICmpInst::Predicate::ICMP_SGE: 1335 // Also non-canonical, but here we don't need to change C2, 1336 // so we don't have any restrictions on C2, so we can just handle it. 1337 std::swap(ReplacementLow, ReplacementHigh); 1338 break; 1339 default: 1340 return nullptr; // Unknown predicate. 1341 } 1342 1343 // The thresholds of this clamp-like pattern. 1344 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1345 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1346 1347 // The fold has a precondition 1: C2 s>= ThresholdLow 1348 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1349 ThresholdLowIncl); 1350 if (!match(Precond1, m_One())) 1351 return nullptr; 1352 // The fold has a precondition 2: C2 s<= ThresholdHigh 1353 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1354 ThresholdHighExcl); 1355 if (!match(Precond2, m_One())) 1356 return nullptr; 1357 1358 // All good, finally emit the new pattern. 1359 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1360 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1361 Value *MaybeReplacedLow = 1362 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1363 Instruction *MaybeReplacedHigh = 1364 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1365 1366 return MaybeReplacedHigh; 1367 } 1368 1369 // If we have 1370 // %cmp = icmp [canonical predicate] i32 %x, C0 1371 // %r = select i1 %cmp, i32 %y, i32 C1 1372 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1373 // will have if we flip the strictness of the predicate (i.e. without changing 1374 // the result) is identical to the C1 in select. If it matches we can change 1375 // original comparison to one with swapped predicate, reuse the constant, 1376 // and swap the hands of select. 1377 static Instruction * 1378 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1379 InstCombinerImpl &IC) { 1380 ICmpInst::Predicate Pred; 1381 Value *X; 1382 Constant *C0; 1383 if (!match(&Cmp, m_OneUse(m_ICmp( 1384 Pred, m_Value(X), 1385 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1386 return nullptr; 1387 1388 // If comparison predicate is non-relational, we won't be able to do anything. 1389 if (ICmpInst::isEquality(Pred)) 1390 return nullptr; 1391 1392 // If comparison predicate is non-canonical, then we certainly won't be able 1393 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1394 if (!InstCombiner::isCanonicalPredicate(Pred)) 1395 return nullptr; 1396 1397 // If the [input] type of comparison and select type are different, lets abort 1398 // for now. We could try to compare constants with trunc/[zs]ext though. 1399 if (C0->getType() != Sel.getType()) 1400 return nullptr; 1401 1402 // FIXME: are there any magic icmp predicate+constant pairs we must not touch? 1403 1404 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1405 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1406 // At least one of these values we are selecting between must be a constant 1407 // else we'll never succeed. 1408 if (!match(SelVal0, m_AnyIntegralConstant()) && 1409 !match(SelVal1, m_AnyIntegralConstant())) 1410 return nullptr; 1411 1412 // Does this constant C match any of the `select` values? 1413 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1414 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1415 }; 1416 1417 // If C0 *already* matches true/false value of select, we are done. 1418 if (MatchesSelectValue(C0)) 1419 return nullptr; 1420 1421 // Check the constant we'd have with flipped-strictness predicate. 1422 auto FlippedStrictness = 1423 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1424 if (!FlippedStrictness) 1425 return nullptr; 1426 1427 // If said constant doesn't match either, then there is no hope, 1428 if (!MatchesSelectValue(FlippedStrictness->second)) 1429 return nullptr; 1430 1431 // It matched! Lets insert the new comparison just before select. 1432 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1433 IC.Builder.SetInsertPoint(&Sel); 1434 1435 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1436 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1437 Cmp.getName() + ".inv"); 1438 IC.replaceOperand(Sel, 0, NewCmp); 1439 Sel.swapValues(); 1440 Sel.swapProfMetadata(); 1441 1442 return &Sel; 1443 } 1444 1445 /// Visit a SelectInst that has an ICmpInst as its first operand. 1446 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1447 ICmpInst *ICI) { 1448 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1449 return NewSel; 1450 1451 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1452 return NewSel; 1453 1454 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1455 return NewAbs; 1456 1457 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) 1458 return NewAbs; 1459 1460 if (Instruction *NewSel = 1461 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1462 return NewSel; 1463 1464 bool Changed = adjustMinMax(SI, *ICI); 1465 1466 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1467 return replaceInstUsesWith(SI, V); 1468 1469 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1470 Value *TrueVal = SI.getTrueValue(); 1471 Value *FalseVal = SI.getFalseValue(); 1472 ICmpInst::Predicate Pred = ICI->getPredicate(); 1473 Value *CmpLHS = ICI->getOperand(0); 1474 Value *CmpRHS = ICI->getOperand(1); 1475 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1476 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1477 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1478 SI.setOperand(1, CmpRHS); 1479 Changed = true; 1480 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1481 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1482 SI.setOperand(2, CmpRHS); 1483 Changed = true; 1484 } 1485 } 1486 1487 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1488 // decomposeBitTestICmp() might help. 1489 { 1490 unsigned BitWidth = 1491 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1492 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1493 Value *X; 1494 const APInt *Y, *C; 1495 bool TrueWhenUnset; 1496 bool IsBitTest = false; 1497 if (ICmpInst::isEquality(Pred) && 1498 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1499 match(CmpRHS, m_Zero())) { 1500 IsBitTest = true; 1501 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1502 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1503 X = CmpLHS; 1504 Y = &MinSignedValue; 1505 IsBitTest = true; 1506 TrueWhenUnset = false; 1507 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1508 X = CmpLHS; 1509 Y = &MinSignedValue; 1510 IsBitTest = true; 1511 TrueWhenUnset = true; 1512 } 1513 if (IsBitTest) { 1514 Value *V = nullptr; 1515 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1516 if (TrueWhenUnset && TrueVal == X && 1517 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1518 V = Builder.CreateAnd(X, ~(*Y)); 1519 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1520 else if (!TrueWhenUnset && FalseVal == X && 1521 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1522 V = Builder.CreateAnd(X, ~(*Y)); 1523 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1524 else if (TrueWhenUnset && FalseVal == X && 1525 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1526 V = Builder.CreateOr(X, *Y); 1527 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1528 else if (!TrueWhenUnset && TrueVal == X && 1529 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1530 V = Builder.CreateOr(X, *Y); 1531 1532 if (V) 1533 return replaceInstUsesWith(SI, V); 1534 } 1535 } 1536 1537 if (Instruction *V = 1538 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1539 return V; 1540 1541 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1542 return V; 1543 1544 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1545 return replaceInstUsesWith(SI, V); 1546 1547 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1548 return replaceInstUsesWith(SI, V); 1549 1550 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1551 return replaceInstUsesWith(SI, V); 1552 1553 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1554 return replaceInstUsesWith(SI, V); 1555 1556 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1557 return replaceInstUsesWith(SI, V); 1558 1559 return Changed ? &SI : nullptr; 1560 } 1561 1562 /// SI is a select whose condition is a PHI node (but the two may be in 1563 /// different blocks). See if the true/false values (V) are live in all of the 1564 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1565 /// 1566 /// X = phi [ C1, BB1], [C2, BB2] 1567 /// Y = add 1568 /// Z = select X, Y, 0 1569 /// 1570 /// because Y is not live in BB1/BB2. 1571 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1572 const SelectInst &SI) { 1573 // If the value is a non-instruction value like a constant or argument, it 1574 // can always be mapped. 1575 const Instruction *I = dyn_cast<Instruction>(V); 1576 if (!I) return true; 1577 1578 // If V is a PHI node defined in the same block as the condition PHI, we can 1579 // map the arguments. 1580 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1581 1582 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1583 if (VP->getParent() == CondPHI->getParent()) 1584 return true; 1585 1586 // Otherwise, if the PHI and select are defined in the same block and if V is 1587 // defined in a different block, then we can transform it. 1588 if (SI.getParent() == CondPHI->getParent() && 1589 I->getParent() != CondPHI->getParent()) 1590 return true; 1591 1592 // Otherwise we have a 'hard' case and we can't tell without doing more 1593 // detailed dominator based analysis, punt. 1594 return false; 1595 } 1596 1597 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1598 /// SPF2(SPF1(A, B), C) 1599 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1600 SelectPatternFlavor SPF1, Value *A, 1601 Value *B, Instruction &Outer, 1602 SelectPatternFlavor SPF2, 1603 Value *C) { 1604 if (Outer.getType() != Inner->getType()) 1605 return nullptr; 1606 1607 if (C == A || C == B) { 1608 // MAX(MAX(A, B), B) -> MAX(A, B) 1609 // MIN(MIN(a, b), a) -> MIN(a, b) 1610 // TODO: This could be done in instsimplify. 1611 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1612 return replaceInstUsesWith(Outer, Inner); 1613 1614 // MAX(MIN(a, b), a) -> a 1615 // MIN(MAX(a, b), a) -> a 1616 // TODO: This could be done in instsimplify. 1617 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1618 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1619 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1620 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1621 return replaceInstUsesWith(Outer, C); 1622 } 1623 1624 if (SPF1 == SPF2) { 1625 const APInt *CB, *CC; 1626 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1627 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1628 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1629 // TODO: This could be done in instsimplify. 1630 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1631 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1632 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1633 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1634 return replaceInstUsesWith(Outer, Inner); 1635 1636 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1637 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1638 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1639 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1640 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1641 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1642 Outer.replaceUsesOfWith(Inner, A); 1643 return &Outer; 1644 } 1645 } 1646 } 1647 1648 // max(max(A, B), min(A, B)) --> max(A, B) 1649 // min(min(A, B), max(A, B)) --> min(A, B) 1650 // TODO: This could be done in instsimplify. 1651 if (SPF1 == SPF2 && 1652 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1653 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1654 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1655 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1656 return replaceInstUsesWith(Outer, Inner); 1657 1658 // ABS(ABS(X)) -> ABS(X) 1659 // NABS(NABS(X)) -> NABS(X) 1660 // TODO: This could be done in instsimplify. 1661 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1662 return replaceInstUsesWith(Outer, Inner); 1663 } 1664 1665 // ABS(NABS(X)) -> ABS(X) 1666 // NABS(ABS(X)) -> NABS(X) 1667 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1668 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1669 SelectInst *SI = cast<SelectInst>(Inner); 1670 Value *NewSI = 1671 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1672 SI->getTrueValue(), SI->getName(), SI); 1673 return replaceInstUsesWith(Outer, NewSI); 1674 } 1675 1676 auto IsFreeOrProfitableToInvert = 1677 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1678 if (match(V, m_Not(m_Value(NotV)))) { 1679 // If V has at most 2 uses then we can get rid of the xor operation 1680 // entirely. 1681 ElidesXor |= !V->hasNUsesOrMore(3); 1682 return true; 1683 } 1684 1685 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1686 NotV = nullptr; 1687 return true; 1688 } 1689 1690 return false; 1691 }; 1692 1693 Value *NotA, *NotB, *NotC; 1694 bool ElidesXor = false; 1695 1696 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1697 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1698 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1699 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1700 // 1701 // This transform is performance neutral if we can elide at least one xor from 1702 // the set of three operands, since we'll be tacking on an xor at the very 1703 // end. 1704 if (SelectPatternResult::isMinOrMax(SPF1) && 1705 SelectPatternResult::isMinOrMax(SPF2) && 1706 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1707 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1708 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1709 if (!NotA) 1710 NotA = Builder.CreateNot(A); 1711 if (!NotB) 1712 NotB = Builder.CreateNot(B); 1713 if (!NotC) 1714 NotC = Builder.CreateNot(C); 1715 1716 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1717 NotB); 1718 Value *NewOuter = Builder.CreateNot( 1719 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1720 return replaceInstUsesWith(Outer, NewOuter); 1721 } 1722 1723 return nullptr; 1724 } 1725 1726 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1727 /// This is even legal for FP. 1728 static Instruction *foldAddSubSelect(SelectInst &SI, 1729 InstCombiner::BuilderTy &Builder) { 1730 Value *CondVal = SI.getCondition(); 1731 Value *TrueVal = SI.getTrueValue(); 1732 Value *FalseVal = SI.getFalseValue(); 1733 auto *TI = dyn_cast<Instruction>(TrueVal); 1734 auto *FI = dyn_cast<Instruction>(FalseVal); 1735 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1736 return nullptr; 1737 1738 Instruction *AddOp = nullptr, *SubOp = nullptr; 1739 if ((TI->getOpcode() == Instruction::Sub && 1740 FI->getOpcode() == Instruction::Add) || 1741 (TI->getOpcode() == Instruction::FSub && 1742 FI->getOpcode() == Instruction::FAdd)) { 1743 AddOp = FI; 1744 SubOp = TI; 1745 } else if ((FI->getOpcode() == Instruction::Sub && 1746 TI->getOpcode() == Instruction::Add) || 1747 (FI->getOpcode() == Instruction::FSub && 1748 TI->getOpcode() == Instruction::FAdd)) { 1749 AddOp = TI; 1750 SubOp = FI; 1751 } 1752 1753 if (AddOp) { 1754 Value *OtherAddOp = nullptr; 1755 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1756 OtherAddOp = AddOp->getOperand(1); 1757 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1758 OtherAddOp = AddOp->getOperand(0); 1759 } 1760 1761 if (OtherAddOp) { 1762 // So at this point we know we have (Y -> OtherAddOp): 1763 // select C, (add X, Y), (sub X, Z) 1764 Value *NegVal; // Compute -Z 1765 if (SI.getType()->isFPOrFPVectorTy()) { 1766 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1767 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1768 FastMathFlags Flags = AddOp->getFastMathFlags(); 1769 Flags &= SubOp->getFastMathFlags(); 1770 NegInst->setFastMathFlags(Flags); 1771 } 1772 } else { 1773 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1774 } 1775 1776 Value *NewTrueOp = OtherAddOp; 1777 Value *NewFalseOp = NegVal; 1778 if (AddOp != TI) 1779 std::swap(NewTrueOp, NewFalseOp); 1780 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1781 SI.getName() + ".p", &SI); 1782 1783 if (SI.getType()->isFPOrFPVectorTy()) { 1784 Instruction *RI = 1785 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1786 1787 FastMathFlags Flags = AddOp->getFastMathFlags(); 1788 Flags &= SubOp->getFastMathFlags(); 1789 RI->setFastMathFlags(Flags); 1790 return RI; 1791 } else 1792 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1793 } 1794 } 1795 return nullptr; 1796 } 1797 1798 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1799 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1800 /// Along with a number of patterns similar to: 1801 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1802 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1803 static Instruction * 1804 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1805 Value *CondVal = SI.getCondition(); 1806 Value *TrueVal = SI.getTrueValue(); 1807 Value *FalseVal = SI.getFalseValue(); 1808 1809 WithOverflowInst *II; 1810 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1811 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1812 return nullptr; 1813 1814 Value *X = II->getLHS(); 1815 Value *Y = II->getRHS(); 1816 1817 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1818 Type *Ty = Limit->getType(); 1819 1820 ICmpInst::Predicate Pred; 1821 Value *TrueVal, *FalseVal, *Op; 1822 const APInt *C; 1823 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1824 m_Value(TrueVal), m_Value(FalseVal)))) 1825 return false; 1826 1827 auto IsZeroOrOne = [](const APInt &C) { 1828 return C.isNullValue() || C.isOneValue(); 1829 }; 1830 auto IsMinMax = [&](Value *Min, Value *Max) { 1831 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1832 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1833 return match(Min, m_SpecificInt(MinVal)) && 1834 match(Max, m_SpecificInt(MaxVal)); 1835 }; 1836 1837 if (Op != X && Op != Y) 1838 return false; 1839 1840 if (IsAdd) { 1841 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1842 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1843 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1844 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1845 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1846 IsMinMax(TrueVal, FalseVal)) 1847 return true; 1848 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1849 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1850 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1851 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1852 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1853 IsMinMax(FalseVal, TrueVal)) 1854 return true; 1855 } else { 1856 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1857 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1858 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1859 IsMinMax(TrueVal, FalseVal)) 1860 return true; 1861 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1862 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1863 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1864 IsMinMax(FalseVal, TrueVal)) 1865 return true; 1866 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1867 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1868 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1869 IsMinMax(FalseVal, TrueVal)) 1870 return true; 1871 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1872 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1873 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1874 IsMinMax(TrueVal, FalseVal)) 1875 return true; 1876 } 1877 1878 return false; 1879 }; 1880 1881 Intrinsic::ID NewIntrinsicID; 1882 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1883 match(TrueVal, m_AllOnes())) 1884 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1885 NewIntrinsicID = Intrinsic::uadd_sat; 1886 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1887 match(TrueVal, m_Zero())) 1888 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1889 NewIntrinsicID = Intrinsic::usub_sat; 1890 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1891 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1892 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1893 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1894 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1895 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1896 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1897 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1898 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1899 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1900 NewIntrinsicID = Intrinsic::sadd_sat; 1901 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1902 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1903 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1904 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1905 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1906 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1907 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1908 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1909 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1910 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1911 NewIntrinsicID = Intrinsic::ssub_sat; 1912 else 1913 return nullptr; 1914 1915 Function *F = 1916 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1917 return CallInst::Create(F, {X, Y}); 1918 } 1919 1920 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 1921 Constant *C; 1922 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1923 !match(Sel.getFalseValue(), m_Constant(C))) 1924 return nullptr; 1925 1926 Instruction *ExtInst; 1927 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1928 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1929 return nullptr; 1930 1931 auto ExtOpcode = ExtInst->getOpcode(); 1932 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1933 return nullptr; 1934 1935 // If we are extending from a boolean type or if we can create a select that 1936 // has the same size operands as its condition, try to narrow the select. 1937 Value *X = ExtInst->getOperand(0); 1938 Type *SmallType = X->getType(); 1939 Value *Cond = Sel.getCondition(); 1940 auto *Cmp = dyn_cast<CmpInst>(Cond); 1941 if (!SmallType->isIntOrIntVectorTy(1) && 1942 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1943 return nullptr; 1944 1945 // If the constant is the same after truncation to the smaller type and 1946 // extension to the original type, we can narrow the select. 1947 Type *SelType = Sel.getType(); 1948 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1949 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1950 if (ExtC == C && ExtInst->hasOneUse()) { 1951 Value *TruncCVal = cast<Value>(TruncC); 1952 if (ExtInst == Sel.getFalseValue()) 1953 std::swap(X, TruncCVal); 1954 1955 // select Cond, (ext X), C --> ext(select Cond, X, C') 1956 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1957 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1958 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1959 } 1960 1961 // If one arm of the select is the extend of the condition, replace that arm 1962 // with the extension of the appropriate known bool value. 1963 if (Cond == X) { 1964 if (ExtInst == Sel.getTrueValue()) { 1965 // select X, (sext X), C --> select X, -1, C 1966 // select X, (zext X), C --> select X, 1, C 1967 Constant *One = ConstantInt::getTrue(SmallType); 1968 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1969 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1970 } else { 1971 // select X, C, (sext X) --> select X, C, 0 1972 // select X, C, (zext X) --> select X, C, 0 1973 Constant *Zero = ConstantInt::getNullValue(SelType); 1974 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1975 } 1976 } 1977 1978 return nullptr; 1979 } 1980 1981 /// Try to transform a vector select with a constant condition vector into a 1982 /// shuffle for easier combining with other shuffles and insert/extract. 1983 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1984 Value *CondVal = SI.getCondition(); 1985 Constant *CondC; 1986 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 1987 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 1988 return nullptr; 1989 1990 unsigned NumElts = CondValTy->getNumElements(); 1991 SmallVector<int, 16> Mask; 1992 Mask.reserve(NumElts); 1993 for (unsigned i = 0; i != NumElts; ++i) { 1994 Constant *Elt = CondC->getAggregateElement(i); 1995 if (!Elt) 1996 return nullptr; 1997 1998 if (Elt->isOneValue()) { 1999 // If the select condition element is true, choose from the 1st vector. 2000 Mask.push_back(i); 2001 } else if (Elt->isNullValue()) { 2002 // If the select condition element is false, choose from the 2nd vector. 2003 Mask.push_back(i + NumElts); 2004 } else if (isa<UndefValue>(Elt)) { 2005 // Undef in a select condition (choose one of the operands) does not mean 2006 // the same thing as undef in a shuffle mask (any value is acceptable), so 2007 // give up. 2008 return nullptr; 2009 } else { 2010 // Bail out on a constant expression. 2011 return nullptr; 2012 } 2013 } 2014 2015 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2016 } 2017 2018 /// If we have a select of vectors with a scalar condition, try to convert that 2019 /// to a vector select by splatting the condition. A splat may get folded with 2020 /// other operations in IR and having all operands of a select be vector types 2021 /// is likely better for vector codegen. 2022 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2023 InstCombinerImpl &IC) { 2024 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2025 if (!Ty) 2026 return nullptr; 2027 2028 // We can replace a single-use extract with constant index. 2029 Value *Cond = Sel.getCondition(); 2030 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2031 return nullptr; 2032 2033 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2034 // Splatting the extracted condition reduces code (we could directly create a 2035 // splat shuffle of the source vector to eliminate the intermediate step). 2036 return IC.replaceOperand( 2037 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2038 } 2039 2040 /// Reuse bitcasted operands between a compare and select: 2041 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2042 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2043 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2044 InstCombiner::BuilderTy &Builder) { 2045 Value *Cond = Sel.getCondition(); 2046 Value *TVal = Sel.getTrueValue(); 2047 Value *FVal = Sel.getFalseValue(); 2048 2049 CmpInst::Predicate Pred; 2050 Value *A, *B; 2051 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2052 return nullptr; 2053 2054 // The select condition is a compare instruction. If the select's true/false 2055 // values are already the same as the compare operands, there's nothing to do. 2056 if (TVal == A || TVal == B || FVal == A || FVal == B) 2057 return nullptr; 2058 2059 Value *C, *D; 2060 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2061 return nullptr; 2062 2063 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2064 Value *TSrc, *FSrc; 2065 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2066 !match(FVal, m_BitCast(m_Value(FSrc)))) 2067 return nullptr; 2068 2069 // If the select true/false values are *different bitcasts* of the same source 2070 // operands, make the select operands the same as the compare operands and 2071 // cast the result. This is the canonical select form for min/max. 2072 Value *NewSel; 2073 if (TSrc == C && FSrc == D) { 2074 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2075 // bitcast (select (cmp A, B), A, B) 2076 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2077 } else if (TSrc == D && FSrc == C) { 2078 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2079 // bitcast (select (cmp A, B), B, A) 2080 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2081 } else { 2082 return nullptr; 2083 } 2084 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2085 } 2086 2087 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2088 /// instructions. 2089 /// 2090 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2091 /// selects between the returned value of the cmpxchg instruction its compare 2092 /// operand, the result of the select will always be equal to its false value. 2093 /// For example: 2094 /// 2095 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2096 /// %1 = extractvalue { i64, i1 } %0, 1 2097 /// %2 = extractvalue { i64, i1 } %0, 0 2098 /// %3 = select i1 %1, i64 %compare, i64 %2 2099 /// ret i64 %3 2100 /// 2101 /// The returned value of the cmpxchg instruction (%2) is the original value 2102 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2103 /// must have been equal to %compare. Thus, the result of the select is always 2104 /// equal to %2, and the code can be simplified to: 2105 /// 2106 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2107 /// %1 = extractvalue { i64, i1 } %0, 0 2108 /// ret i64 %1 2109 /// 2110 static Value *foldSelectCmpXchg(SelectInst &SI) { 2111 // A helper that determines if V is an extractvalue instruction whose 2112 // aggregate operand is a cmpxchg instruction and whose single index is equal 2113 // to I. If such conditions are true, the helper returns the cmpxchg 2114 // instruction; otherwise, a nullptr is returned. 2115 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2116 auto *Extract = dyn_cast<ExtractValueInst>(V); 2117 if (!Extract) 2118 return nullptr; 2119 if (Extract->getIndices()[0] != I) 2120 return nullptr; 2121 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2122 }; 2123 2124 // If the select has a single user, and this user is a select instruction that 2125 // we can simplify, skip the cmpxchg simplification for now. 2126 if (SI.hasOneUse()) 2127 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2128 if (Select->getCondition() == SI.getCondition()) 2129 if (Select->getFalseValue() == SI.getTrueValue() || 2130 Select->getTrueValue() == SI.getFalseValue()) 2131 return nullptr; 2132 2133 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2134 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2135 if (!CmpXchg) 2136 return nullptr; 2137 2138 // Check the true value case: The true value of the select is the returned 2139 // value of the same cmpxchg used by the condition, and the false value is the 2140 // cmpxchg instruction's compare operand. 2141 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2142 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2143 return SI.getFalseValue(); 2144 2145 // Check the false value case: The false value of the select is the returned 2146 // value of the same cmpxchg used by the condition, and the true value is the 2147 // cmpxchg instruction's compare operand. 2148 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2149 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2150 return SI.getFalseValue(); 2151 2152 return nullptr; 2153 } 2154 2155 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2156 Value *Y, 2157 InstCombiner::BuilderTy &Builder) { 2158 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2159 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2160 SPF == SelectPatternFlavor::SPF_UMAX; 2161 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2162 // the constant value check to an assert. 2163 Value *A; 2164 const APInt *C1, *C2; 2165 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2166 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2167 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2168 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2169 Value *NewMinMax = createMinMax(Builder, SPF, A, 2170 ConstantInt::get(X->getType(), *C2 - *C1)); 2171 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2172 ConstantInt::get(X->getType(), *C1)); 2173 } 2174 2175 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2176 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2177 bool Overflow; 2178 APInt Diff = C2->ssub_ov(*C1, Overflow); 2179 if (!Overflow) { 2180 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2181 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2182 Value *NewMinMax = createMinMax(Builder, SPF, A, 2183 ConstantInt::get(X->getType(), Diff)); 2184 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2185 ConstantInt::get(X->getType(), *C1)); 2186 } 2187 } 2188 2189 return nullptr; 2190 } 2191 2192 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2193 Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) { 2194 Type *Ty = MinMax1.getType(); 2195 2196 // We are looking for a tree of: 2197 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2198 // Where the min and max could be reversed 2199 Instruction *MinMax2; 2200 BinaryOperator *AddSub; 2201 const APInt *MinValue, *MaxValue; 2202 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2203 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2204 return nullptr; 2205 } else if (match(&MinMax1, 2206 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2207 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2208 return nullptr; 2209 } else 2210 return nullptr; 2211 2212 // Check that the constants clamp a saturate, and that the new type would be 2213 // sensible to convert to. 2214 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2215 return nullptr; 2216 // In what bitwidth can this be treated as saturating arithmetics? 2217 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2218 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2219 // good first approximation for what should be done there. 2220 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2221 return nullptr; 2222 2223 // Also make sure that the number of uses is as expected. The 3 is for the 2224 // the two items of the compare and the select, or 2 from a min/max. 2225 unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3; 2226 if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses)) 2227 return nullptr; 2228 2229 // Create the new type (which can be a vector type) 2230 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2231 // Match the two extends from the add/sub 2232 Value *A, *B; 2233 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B))))) 2234 return nullptr; 2235 // And check the incoming values are of a type smaller than or equal to the 2236 // size of the saturation. Otherwise the higher bits can cause different 2237 // results. 2238 if (A->getType()->getScalarSizeInBits() > NewBitWidth || 2239 B->getType()->getScalarSizeInBits() > NewBitWidth) 2240 return nullptr; 2241 2242 Intrinsic::ID IntrinsicID; 2243 if (AddSub->getOpcode() == Instruction::Add) 2244 IntrinsicID = Intrinsic::sadd_sat; 2245 else if (AddSub->getOpcode() == Instruction::Sub) 2246 IntrinsicID = Intrinsic::ssub_sat; 2247 else 2248 return nullptr; 2249 2250 // Finally create and return the sat intrinsic, truncated to the new type 2251 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2252 Value *AT = Builder.CreateSExt(A, NewTy); 2253 Value *BT = Builder.CreateSExt(B, NewTy); 2254 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2255 return CastInst::Create(Instruction::SExt, Sat, Ty); 2256 } 2257 2258 /// Reduce a sequence of min/max with a common operand. 2259 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2260 Value *RHS, 2261 InstCombiner::BuilderTy &Builder) { 2262 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2263 // TODO: Allow FP min/max with nnan/nsz. 2264 if (!LHS->getType()->isIntOrIntVectorTy()) 2265 return nullptr; 2266 2267 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2268 Value *A, *B, *C, *D; 2269 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2270 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2271 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2272 return nullptr; 2273 2274 // Look for a common operand. The use checks are different than usual because 2275 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2276 // the select. 2277 Value *MinMaxOp = nullptr; 2278 Value *ThirdOp = nullptr; 2279 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2280 // If the LHS is only used in this chain and the RHS is used outside of it, 2281 // reuse the RHS min/max because that will eliminate the LHS. 2282 if (D == A || C == A) { 2283 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2284 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2285 MinMaxOp = RHS; 2286 ThirdOp = B; 2287 } else if (D == B || C == B) { 2288 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2289 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2290 MinMaxOp = RHS; 2291 ThirdOp = A; 2292 } 2293 } else if (!RHS->hasNUsesOrMore(3)) { 2294 // Reuse the LHS. This will eliminate the RHS. 2295 if (D == A || D == B) { 2296 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2297 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2298 MinMaxOp = LHS; 2299 ThirdOp = C; 2300 } else if (C == A || C == B) { 2301 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2302 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2303 MinMaxOp = LHS; 2304 ThirdOp = D; 2305 } 2306 } 2307 if (!MinMaxOp || !ThirdOp) 2308 return nullptr; 2309 2310 CmpInst::Predicate P = getMinMaxPred(SPF); 2311 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2312 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2313 } 2314 2315 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2316 /// into a funnel shift intrinsic. Example: 2317 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2318 /// --> call llvm.fshl.i32(a, a, b) 2319 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2320 /// --> call llvm.fshl.i32(a, b, c) 2321 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2322 /// --> call llvm.fshr.i32(a, b, c) 2323 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2324 InstCombiner::BuilderTy &Builder) { 2325 // This must be a power-of-2 type for a bitmasking transform to be valid. 2326 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2327 if (!isPowerOf2_32(Width)) 2328 return nullptr; 2329 2330 BinaryOperator *Or0, *Or1; 2331 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2332 return nullptr; 2333 2334 Value *SV0, *SV1, *SA0, *SA1; 2335 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2336 m_ZExtOrSelf(m_Value(SA0))))) || 2337 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2338 m_ZExtOrSelf(m_Value(SA1))))) || 2339 Or0->getOpcode() == Or1->getOpcode()) 2340 return nullptr; 2341 2342 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2343 if (Or0->getOpcode() == BinaryOperator::LShr) { 2344 std::swap(Or0, Or1); 2345 std::swap(SV0, SV1); 2346 std::swap(SA0, SA1); 2347 } 2348 assert(Or0->getOpcode() == BinaryOperator::Shl && 2349 Or1->getOpcode() == BinaryOperator::LShr && 2350 "Illegal or(shift,shift) pair"); 2351 2352 // Check the shift amounts to see if they are an opposite pair. 2353 Value *ShAmt; 2354 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2355 ShAmt = SA0; 2356 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2357 ShAmt = SA1; 2358 else 2359 return nullptr; 2360 2361 // We should now have this pattern: 2362 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2363 // The false value of the select must be a funnel-shift of the true value: 2364 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2365 bool IsFshl = (ShAmt == SA0); 2366 Value *TVal = Sel.getTrueValue(); 2367 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2368 return nullptr; 2369 2370 // Finally, see if the select is filtering out a shift-by-zero. 2371 Value *Cond = Sel.getCondition(); 2372 ICmpInst::Predicate Pred; 2373 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2374 Pred != ICmpInst::ICMP_EQ) 2375 return nullptr; 2376 2377 // If this is not a rotate then the select was blocking poison from the 2378 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2379 if (SV0 != SV1) { 2380 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2381 SV1 = Builder.CreateFreeze(SV1); 2382 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2383 SV0 = Builder.CreateFreeze(SV0); 2384 } 2385 2386 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2387 // Convert to funnel shift intrinsic. 2388 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2389 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2390 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2391 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2392 } 2393 2394 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2395 InstCombiner::BuilderTy &Builder) { 2396 Value *Cond = Sel.getCondition(); 2397 Value *TVal = Sel.getTrueValue(); 2398 Value *FVal = Sel.getFalseValue(); 2399 Type *SelType = Sel.getType(); 2400 2401 // Match select ?, TC, FC where the constants are equal but negated. 2402 // TODO: Generalize to handle a negated variable operand? 2403 const APFloat *TC, *FC; 2404 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2405 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2406 return nullptr; 2407 2408 assert(TC != FC && "Expected equal select arms to simplify"); 2409 2410 Value *X; 2411 const APInt *C; 2412 bool IsTrueIfSignSet; 2413 ICmpInst::Predicate Pred; 2414 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2415 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2416 X->getType() != SelType) 2417 return nullptr; 2418 2419 // If needed, negate the value that will be the sign argument of the copysign: 2420 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2421 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2422 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2423 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2424 if (IsTrueIfSignSet ^ TC->isNegative()) 2425 X = Builder.CreateFNegFMF(X, &Sel); 2426 2427 // Canonicalize the magnitude argument as the positive constant since we do 2428 // not care about its sign. 2429 Value *MagArg = TC->isNegative() ? FVal : TVal; 2430 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2431 Sel.getType()); 2432 Instruction *CopySign = CallInst::Create(F, { MagArg, X }); 2433 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2434 return CopySign; 2435 } 2436 2437 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2438 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2439 if (!VecTy) 2440 return nullptr; 2441 2442 unsigned NumElts = VecTy->getNumElements(); 2443 APInt UndefElts(NumElts, 0); 2444 APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts)); 2445 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2446 if (V != &Sel) 2447 return replaceInstUsesWith(Sel, V); 2448 return &Sel; 2449 } 2450 2451 // A select of a "select shuffle" with a common operand can be rearranged 2452 // to select followed by "select shuffle". Because of poison, this only works 2453 // in the case of a shuffle with no undefined mask elements. 2454 Value *Cond = Sel.getCondition(); 2455 Value *TVal = Sel.getTrueValue(); 2456 Value *FVal = Sel.getFalseValue(); 2457 Value *X, *Y; 2458 ArrayRef<int> Mask; 2459 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2460 !is_contained(Mask, UndefMaskElem) && 2461 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2462 if (X == FVal) { 2463 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2464 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2465 return new ShuffleVectorInst(X, NewSel, Mask); 2466 } 2467 if (Y == FVal) { 2468 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2469 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2470 return new ShuffleVectorInst(NewSel, Y, Mask); 2471 } 2472 } 2473 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2474 !is_contained(Mask, UndefMaskElem) && 2475 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2476 if (X == TVal) { 2477 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2478 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2479 return new ShuffleVectorInst(X, NewSel, Mask); 2480 } 2481 if (Y == TVal) { 2482 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2483 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2484 return new ShuffleVectorInst(NewSel, Y, Mask); 2485 } 2486 } 2487 2488 return nullptr; 2489 } 2490 2491 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2492 const DominatorTree &DT, 2493 InstCombiner::BuilderTy &Builder) { 2494 // Find the block's immediate dominator that ends with a conditional branch 2495 // that matches select's condition (maybe inverted). 2496 auto *IDomNode = DT[BB]->getIDom(); 2497 if (!IDomNode) 2498 return nullptr; 2499 BasicBlock *IDom = IDomNode->getBlock(); 2500 2501 Value *Cond = Sel.getCondition(); 2502 Value *IfTrue, *IfFalse; 2503 BasicBlock *TrueSucc, *FalseSucc; 2504 if (match(IDom->getTerminator(), 2505 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2506 m_BasicBlock(FalseSucc)))) { 2507 IfTrue = Sel.getTrueValue(); 2508 IfFalse = Sel.getFalseValue(); 2509 } else if (match(IDom->getTerminator(), 2510 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2511 m_BasicBlock(FalseSucc)))) { 2512 IfTrue = Sel.getFalseValue(); 2513 IfFalse = Sel.getTrueValue(); 2514 } else 2515 return nullptr; 2516 2517 // Make sure the branches are actually different. 2518 if (TrueSucc == FalseSucc) 2519 return nullptr; 2520 2521 // We want to replace select %cond, %a, %b with a phi that takes value %a 2522 // for all incoming edges that are dominated by condition `%cond == true`, 2523 // and value %b for edges dominated by condition `%cond == false`. If %a 2524 // or %b are also phis from the same basic block, we can go further and take 2525 // their incoming values from the corresponding blocks. 2526 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2527 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2528 DenseMap<BasicBlock *, Value *> Inputs; 2529 for (auto *Pred : predecessors(BB)) { 2530 // Check implication. 2531 BasicBlockEdge Incoming(Pred, BB); 2532 if (DT.dominates(TrueEdge, Incoming)) 2533 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2534 else if (DT.dominates(FalseEdge, Incoming)) 2535 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2536 else 2537 return nullptr; 2538 // Check availability. 2539 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2540 if (!DT.dominates(Insn, Pred->getTerminator())) 2541 return nullptr; 2542 } 2543 2544 Builder.SetInsertPoint(&*BB->begin()); 2545 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2546 for (auto *Pred : predecessors(BB)) 2547 PN->addIncoming(Inputs[Pred], Pred); 2548 PN->takeName(&Sel); 2549 return PN; 2550 } 2551 2552 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2553 InstCombiner::BuilderTy &Builder) { 2554 // Try to replace this select with Phi in one of these blocks. 2555 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2556 CandidateBlocks.insert(Sel.getParent()); 2557 for (Value *V : Sel.operands()) 2558 if (auto *I = dyn_cast<Instruction>(V)) 2559 CandidateBlocks.insert(I->getParent()); 2560 2561 for (BasicBlock *BB : CandidateBlocks) 2562 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2563 return PN; 2564 return nullptr; 2565 } 2566 2567 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2568 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2569 if (!FI) 2570 return nullptr; 2571 2572 Value *Cond = FI->getOperand(0); 2573 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2574 2575 // select (freeze(x == y)), x, y --> y 2576 // select (freeze(x != y)), x, y --> x 2577 // The freeze should be only used by this select. Otherwise, remaining uses of 2578 // the freeze can observe a contradictory value. 2579 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2580 // a = select c, x, y ; 2581 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2582 // ; to y, this can happen. 2583 CmpInst::Predicate Pred; 2584 if (FI->hasOneUse() && 2585 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2586 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2587 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2588 } 2589 2590 return nullptr; 2591 } 2592 2593 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2594 SelectInst &SI, 2595 bool IsAnd) { 2596 Value *CondVal = SI.getCondition(); 2597 Value *A = SI.getTrueValue(); 2598 Value *B = SI.getFalseValue(); 2599 2600 assert(Op->getType()->isIntOrIntVectorTy(1) && 2601 "Op must be either i1 or vector of i1."); 2602 2603 Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd); 2604 if (!Res) 2605 return nullptr; 2606 2607 Value *Zero = Constant::getNullValue(A->getType()); 2608 Value *One = Constant::getAllOnesValue(A->getType()); 2609 2610 if (*Res == true) { 2611 if (IsAnd) 2612 // select op, (select cond, A, B), false => select op, A, false 2613 // and op, (select cond, A, B) => select op, A, false 2614 // if op = true implies condval = true. 2615 return SelectInst::Create(Op, A, Zero); 2616 else 2617 // select op, true, (select cond, A, B) => select op, true, A 2618 // or op, (select cond, A, B) => select op, true, A 2619 // if op = false implies condval = true. 2620 return SelectInst::Create(Op, One, A); 2621 } else { 2622 if (IsAnd) 2623 // select op, (select cond, A, B), false => select op, B, false 2624 // and op, (select cond, A, B) => select op, B, false 2625 // if op = true implies condval = false. 2626 return SelectInst::Create(Op, B, Zero); 2627 else 2628 // select op, true, (select cond, A, B) => select op, true, B 2629 // or op, (select cond, A, B) => select op, true, B 2630 // if op = false implies condval = false. 2631 return SelectInst::Create(Op, One, B); 2632 } 2633 } 2634 2635 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2636 Value *CondVal = SI.getCondition(); 2637 Value *TrueVal = SI.getTrueValue(); 2638 Value *FalseVal = SI.getFalseValue(); 2639 Type *SelType = SI.getType(); 2640 2641 // FIXME: Remove this workaround when freeze related patches are done. 2642 // For select with undef operand which feeds into an equality comparison, 2643 // don't simplify it so loop unswitch can know the equality comparison 2644 // may have an undef operand. This is a workaround for PR31652 caused by 2645 // descrepancy about branch on undef between LoopUnswitch and GVN. 2646 if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) { 2647 if (llvm::any_of(SI.users(), [&](User *U) { 2648 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2649 if (CI && CI->isEquality()) 2650 return true; 2651 return false; 2652 })) { 2653 return nullptr; 2654 } 2655 } 2656 2657 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2658 SQ.getWithInstruction(&SI))) 2659 return replaceInstUsesWith(SI, V); 2660 2661 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2662 return I; 2663 2664 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2665 return I; 2666 2667 CmpInst::Predicate Pred; 2668 2669 // Avoid potential infinite loops by checking for non-constant condition. 2670 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 2671 // Scalar select must have simplified? 2672 if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) && 2673 TrueVal->getType() == CondVal->getType()) { 2674 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 2675 // checks whether folding it does not convert a well-defined value into 2676 // poison. 2677 if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) { 2678 // Change: A = select B, true, C --> A = or B, C 2679 return BinaryOperator::CreateOr(CondVal, FalseVal); 2680 } 2681 if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) { 2682 // Change: A = select B, C, false --> A = and B, C 2683 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2684 } 2685 2686 auto *One = ConstantInt::getTrue(SelType); 2687 auto *Zero = ConstantInt::getFalse(SelType); 2688 2689 // We match the "full" 0 or 1 constant here to avoid a potential infinite 2690 // loop with vectors that may have undefined/poison elements. 2691 // select a, false, b -> select !a, b, false 2692 if (match(TrueVal, m_Specific(Zero))) { 2693 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2694 return SelectInst::Create(NotCond, FalseVal, Zero); 2695 } 2696 // select a, b, true -> select !a, true, b 2697 if (match(FalseVal, m_Specific(One))) { 2698 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2699 return SelectInst::Create(NotCond, One, TrueVal); 2700 } 2701 2702 // select a, a, b -> select a, true, b 2703 if (CondVal == TrueVal) 2704 return replaceOperand(SI, 1, One); 2705 // select a, b, a -> select a, b, false 2706 if (CondVal == FalseVal) 2707 return replaceOperand(SI, 2, Zero); 2708 2709 // select a, !a, b -> select !a, b, false 2710 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2711 return SelectInst::Create(TrueVal, FalseVal, Zero); 2712 // select a, b, !a -> select !a, true, b 2713 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2714 return SelectInst::Create(FalseVal, One, TrueVal); 2715 2716 Value *A, *B; 2717 2718 // DeMorgan in select form: !a && !b --> !(a || b) 2719 // select !a, !b, false --> not (select a, true, b) 2720 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2721 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 2722 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2723 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 2724 2725 // DeMorgan in select form: !a || !b --> !(a && b) 2726 // select !a, true, !b --> not (select a, b, false) 2727 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2728 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 2729 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2730 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 2731 2732 // select (select a, true, b), true, b -> select a, true, b 2733 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2734 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 2735 return replaceOperand(SI, 0, A); 2736 // select (select a, b, false), b, false -> select a, b, false 2737 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2738 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 2739 return replaceOperand(SI, 0, A); 2740 2741 if (!SelType->isVectorTy()) { 2742 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ, 2743 /* AllowRefinement */ true)) 2744 return replaceOperand(SI, 1, S); 2745 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ, 2746 /* AllowRefinement */ true)) 2747 return replaceOperand(SI, 2, S); 2748 } 2749 2750 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 2751 Use *Y = nullptr; 2752 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 2753 Value *Op1 = IsAnd ? TrueVal : FalseVal; 2754 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 2755 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 2756 InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser())); 2757 replaceUse(*Y, FI); 2758 return replaceInstUsesWith(SI, Op1); 2759 } 2760 2761 if (auto *Op1SI = dyn_cast<SelectInst>(Op1)) 2762 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI, 2763 /* IsAnd */ IsAnd)) 2764 return I; 2765 2766 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) { 2767 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) { 2768 if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd, 2769 /* IsLogical */ true)) 2770 return replaceInstUsesWith(SI, V); 2771 2772 if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd)) 2773 return replaceInstUsesWith(SI, V); 2774 } 2775 } 2776 } 2777 2778 // select (select a, true, b), c, false -> select a, c, false 2779 // select c, (select a, true, b), false -> select c, a, false 2780 // if c implies that b is false. 2781 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2782 match(FalseVal, m_Zero())) { 2783 Optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 2784 if (Res && *Res == false) 2785 return replaceOperand(SI, 0, A); 2786 } 2787 if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2788 match(FalseVal, m_Zero())) { 2789 Optional<bool> Res = isImpliedCondition(CondVal, B, DL); 2790 if (Res && *Res == false) 2791 return replaceOperand(SI, 1, A); 2792 } 2793 // select c, true, (select a, b, false) -> select c, true, a 2794 // select (select a, b, false), true, c -> select a, true, c 2795 // if c = false implies that b = true 2796 if (match(TrueVal, m_One()) && 2797 match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) { 2798 Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 2799 if (Res && *Res == true) 2800 return replaceOperand(SI, 2, A); 2801 } 2802 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2803 match(TrueVal, m_One())) { 2804 Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 2805 if (Res && *Res == true) 2806 return replaceOperand(SI, 0, A); 2807 } 2808 2809 // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b 2810 // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a 2811 Value *C1, *C2; 2812 if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) && 2813 match(TrueVal, m_One()) && 2814 match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) { 2815 if (match(C2, m_Not(m_Specific(C1)))) // first case 2816 return SelectInst::Create(C1, A, B); 2817 else if (match(C1, m_Not(m_Specific(C2)))) // second case 2818 return SelectInst::Create(C2, B, A); 2819 } 2820 } 2821 2822 // Selecting between two integer or vector splat integer constants? 2823 // 2824 // Note that we don't handle a scalar select of vectors: 2825 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2826 // because that may need 3 instructions to splat the condition value: 2827 // extend, insertelement, shufflevector. 2828 // 2829 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2830 // zext/sext i1 to i1. 2831 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2832 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2833 // select C, 1, 0 -> zext C to int 2834 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2835 return new ZExtInst(CondVal, SelType); 2836 2837 // select C, -1, 0 -> sext C to int 2838 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2839 return new SExtInst(CondVal, SelType); 2840 2841 // select C, 0, 1 -> zext !C to int 2842 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2843 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2844 return new ZExtInst(NotCond, SelType); 2845 } 2846 2847 // select C, 0, -1 -> sext !C to int 2848 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2849 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2850 return new SExtInst(NotCond, SelType); 2851 } 2852 } 2853 2854 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 2855 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 2856 // Are we selecting a value based on a comparison of the two values? 2857 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2858 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2859 // Canonicalize to use ordered comparisons by swapping the select 2860 // operands. 2861 // 2862 // e.g. 2863 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2864 if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) { 2865 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 2866 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2867 // FIXME: The FMF should propagate from the select, not the fcmp. 2868 Builder.setFastMathFlags(FCmp->getFastMathFlags()); 2869 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2870 FCmp->getName() + ".inv"); 2871 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2872 return replaceInstUsesWith(SI, NewSel); 2873 } 2874 2875 // NOTE: if we wanted to, this is where to detect MIN/MAX 2876 } 2877 } 2878 2879 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2880 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2881 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2882 Instruction *FSub; 2883 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2884 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2885 match(TrueVal, m_Instruction(FSub)) && 2886 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2887 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 2888 return replaceInstUsesWith(SI, Fabs); 2889 } 2890 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2891 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2892 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2893 match(FalseVal, m_Instruction(FSub)) && 2894 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2895 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 2896 return replaceInstUsesWith(SI, Fabs); 2897 } 2898 // With nnan and nsz: 2899 // (X < +/-0.0) ? -X : X --> fabs(X) 2900 // (X <= +/-0.0) ? -X : X --> fabs(X) 2901 Instruction *FNeg; 2902 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2903 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && 2904 match(TrueVal, m_Instruction(FNeg)) && SI.hasNoSignedZeros() && 2905 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2906 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2907 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 2908 return replaceInstUsesWith(SI, Fabs); 2909 } 2910 // With nnan and nsz: 2911 // (X > +/-0.0) ? X : -X --> fabs(X) 2912 // (X >= +/-0.0) ? X : -X --> fabs(X) 2913 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2914 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && 2915 match(FalseVal, m_Instruction(FNeg)) && SI.hasNoSignedZeros() && 2916 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2917 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2918 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 2919 return replaceInstUsesWith(SI, Fabs); 2920 } 2921 2922 // See if we are selecting two values based on a comparison of the two values. 2923 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2924 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2925 return Result; 2926 2927 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2928 return Add; 2929 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2930 return Add; 2931 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2932 return Or; 2933 2934 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2935 auto *TI = dyn_cast<Instruction>(TrueVal); 2936 auto *FI = dyn_cast<Instruction>(FalseVal); 2937 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2938 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2939 return IV; 2940 2941 if (Instruction *I = foldSelectExtConst(SI)) 2942 return I; 2943 2944 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 2945 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 2946 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 2947 bool Swap) -> GetElementPtrInst * { 2948 Value *Ptr = Gep->getPointerOperand(); 2949 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 2950 !Gep->hasOneUse()) 2951 return nullptr; 2952 Type *ElementType = Gep->getResultElementType(); 2953 Value *Idx = Gep->getOperand(1); 2954 Value *NewT = Idx; 2955 Value *NewF = Constant::getNullValue(Idx->getType()); 2956 if (Swap) 2957 std::swap(NewT, NewF); 2958 Value *NewSI = 2959 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 2960 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI}); 2961 }; 2962 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 2963 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 2964 return NewGep; 2965 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 2966 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 2967 return NewGep; 2968 2969 // See if we can fold the select into one of our operands. 2970 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2971 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2972 return FoldI; 2973 2974 Value *LHS, *RHS; 2975 Instruction::CastOps CastOp; 2976 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2977 auto SPF = SPR.Flavor; 2978 if (SPF) { 2979 Value *LHS2, *RHS2; 2980 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2981 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2982 RHS2, SI, SPF, RHS)) 2983 return R; 2984 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2985 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2986 RHS2, SI, SPF, LHS)) 2987 return R; 2988 // TODO. 2989 // ABS(-X) -> ABS(X) 2990 } 2991 2992 if (SelectPatternResult::isMinOrMax(SPF)) { 2993 // Canonicalize so that 2994 // - type casts are outside select patterns. 2995 // - float clamp is transformed to min/max pattern 2996 2997 bool IsCastNeeded = LHS->getType() != SelType; 2998 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2999 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 3000 if (IsCastNeeded || 3001 (LHS->getType()->isFPOrFPVectorTy() && 3002 ((CmpLHS != LHS && CmpLHS != RHS) || 3003 (CmpRHS != LHS && CmpRHS != RHS)))) { 3004 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 3005 3006 Value *Cmp; 3007 if (CmpInst::isIntPredicate(MinMaxPred)) { 3008 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 3009 } else { 3010 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3011 auto FMF = 3012 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 3013 Builder.setFastMathFlags(FMF); 3014 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 3015 } 3016 3017 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 3018 if (!IsCastNeeded) 3019 return replaceInstUsesWith(SI, NewSI); 3020 3021 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 3022 return replaceInstUsesWith(SI, NewCast); 3023 } 3024 3025 // MAX(~a, ~b) -> ~MIN(a, b) 3026 // MAX(~a, C) -> ~MIN(a, ~C) 3027 // MIN(~a, ~b) -> ~MAX(a, b) 3028 // MIN(~a, C) -> ~MAX(a, ~C) 3029 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 3030 Value *A; 3031 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 3032 !isFreeToInvert(A, A->hasOneUse()) && 3033 // Passing false to only consider m_Not and constants. 3034 isFreeToInvert(Y, false)) { 3035 Value *B = Builder.CreateNot(Y); 3036 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 3037 A, B); 3038 // Copy the profile metadata. 3039 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 3040 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 3041 // Swap the metadata if the operands are swapped. 3042 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 3043 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 3044 } 3045 3046 return BinaryOperator::CreateNot(NewMinMax); 3047 } 3048 3049 return nullptr; 3050 }; 3051 3052 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 3053 return I; 3054 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 3055 return I; 3056 3057 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 3058 return I; 3059 3060 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 3061 return I; 3062 if (Instruction *I = matchSAddSubSat(SI)) 3063 return I; 3064 } 3065 } 3066 3067 // Canonicalize select of FP values where NaN and -0.0 are not valid as 3068 // minnum/maxnum intrinsics. 3069 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 3070 Value *X, *Y; 3071 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 3072 return replaceInstUsesWith( 3073 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 3074 3075 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 3076 return replaceInstUsesWith( 3077 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 3078 } 3079 3080 // See if we can fold the select into a phi node if the condition is a select. 3081 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 3082 // The true/false values have to be live in the PHI predecessor's blocks. 3083 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 3084 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 3085 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 3086 return NV; 3087 3088 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 3089 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 3090 // select(C, select(C, a, b), c) -> select(C, a, c) 3091 if (TrueSI->getCondition() == CondVal) { 3092 if (SI.getTrueValue() == TrueSI->getTrueValue()) 3093 return nullptr; 3094 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 3095 } 3096 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 3097 // We choose this as normal form to enable folding on the And and 3098 // shortening paths for the values (this helps getUnderlyingObjects() for 3099 // example). 3100 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 3101 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 3102 replaceOperand(SI, 0, And); 3103 replaceOperand(SI, 1, TrueSI->getTrueValue()); 3104 return &SI; 3105 } 3106 } 3107 } 3108 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 3109 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 3110 // select(C, a, select(C, b, c)) -> select(C, a, c) 3111 if (FalseSI->getCondition() == CondVal) { 3112 if (SI.getFalseValue() == FalseSI->getFalseValue()) 3113 return nullptr; 3114 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 3115 } 3116 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3117 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3118 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3119 replaceOperand(SI, 0, Or); 3120 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3121 return &SI; 3122 } 3123 } 3124 } 3125 3126 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 3127 // The select might be preventing a division by 0. 3128 switch (BO->getOpcode()) { 3129 default: 3130 return true; 3131 case Instruction::SRem: 3132 case Instruction::URem: 3133 case Instruction::SDiv: 3134 case Instruction::UDiv: 3135 return false; 3136 } 3137 }; 3138 3139 // Try to simplify a binop sandwiched between 2 selects with the same 3140 // condition. 3141 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3142 BinaryOperator *TrueBO; 3143 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 3144 canMergeSelectThroughBinop(TrueBO)) { 3145 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3146 if (TrueBOSI->getCondition() == CondVal) { 3147 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3148 Worklist.push(TrueBO); 3149 return &SI; 3150 } 3151 } 3152 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3153 if (TrueBOSI->getCondition() == CondVal) { 3154 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3155 Worklist.push(TrueBO); 3156 return &SI; 3157 } 3158 } 3159 } 3160 3161 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3162 BinaryOperator *FalseBO; 3163 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 3164 canMergeSelectThroughBinop(FalseBO)) { 3165 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3166 if (FalseBOSI->getCondition() == CondVal) { 3167 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3168 Worklist.push(FalseBO); 3169 return &SI; 3170 } 3171 } 3172 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3173 if (FalseBOSI->getCondition() == CondVal) { 3174 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3175 Worklist.push(FalseBO); 3176 return &SI; 3177 } 3178 } 3179 } 3180 3181 Value *NotCond; 3182 if (match(CondVal, m_Not(m_Value(NotCond))) && 3183 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3184 replaceOperand(SI, 0, NotCond); 3185 SI.swapValues(); 3186 SI.swapProfMetadata(); 3187 return &SI; 3188 } 3189 3190 if (Instruction *I = foldVectorSelect(SI)) 3191 return I; 3192 3193 // If we can compute the condition, there's no need for a select. 3194 // Like the above fold, we are attempting to reduce compile-time cost by 3195 // putting this fold here with limitations rather than in InstSimplify. 3196 // The motivation for this call into value tracking is to take advantage of 3197 // the assumption cache, so make sure that is populated. 3198 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3199 KnownBits Known(1); 3200 computeKnownBits(CondVal, Known, 0, &SI); 3201 if (Known.One.isOneValue()) 3202 return replaceInstUsesWith(SI, TrueVal); 3203 if (Known.Zero.isOneValue()) 3204 return replaceInstUsesWith(SI, FalseVal); 3205 } 3206 3207 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3208 return BitCastSel; 3209 3210 // Simplify selects that test the returned flag of cmpxchg instructions. 3211 if (Value *V = foldSelectCmpXchg(SI)) 3212 return replaceInstUsesWith(SI, V); 3213 3214 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3215 return Select; 3216 3217 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3218 return Funnel; 3219 3220 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3221 return Copysign; 3222 3223 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3224 return replaceInstUsesWith(SI, PN); 3225 3226 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3227 return replaceInstUsesWith(SI, Fr); 3228 3229 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 3230 // Load inst is intentionally not checked for hasOneUse() 3231 if (match(FalseVal, m_Zero()) && 3232 match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 3233 m_CombineOr(m_Undef(), m_Zero())))) { 3234 auto *MaskedLoad = cast<IntrinsicInst>(TrueVal); 3235 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3236 MaskedLoad->setArgOperand(3, FalseVal /* Zero */); 3237 return replaceInstUsesWith(SI, MaskedLoad); 3238 } 3239 3240 Value *Mask; 3241 if (match(TrueVal, m_Zero()) && 3242 match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 3243 m_CombineOr(m_Undef(), m_Zero()))) && 3244 (CondVal->getType() == Mask->getType())) { 3245 // We can remove the select by ensuring the load zeros all lanes the 3246 // select would have. We determine this by proving there is no overlap 3247 // between the load and select masks. 3248 // (i.e (load_mask & select_mask) == 0 == no overlap) 3249 bool CanMergeSelectIntoLoad = false; 3250 if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 3251 CanMergeSelectIntoLoad = match(V, m_Zero()); 3252 3253 if (CanMergeSelectIntoLoad) { 3254 auto *MaskedLoad = cast<IntrinsicInst>(FalseVal); 3255 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3256 MaskedLoad->setArgOperand(3, TrueVal /* Zero */); 3257 return replaceInstUsesWith(SI, MaskedLoad); 3258 } 3259 } 3260 3261 return nullptr; 3262 } 3263