1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/MDBuilder.h" 19 #include "llvm/IR/PatternMatch.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 static SelectPatternFlavor 26 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) { 27 switch (SPF) { 28 default: 29 llvm_unreachable("unhandled!"); 30 31 case SPF_SMIN: 32 return SPF_SMAX; 33 case SPF_UMIN: 34 return SPF_UMAX; 35 case SPF_SMAX: 36 return SPF_SMIN; 37 case SPF_UMAX: 38 return SPF_UMIN; 39 } 40 } 41 42 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF, 43 bool Ordered=false) { 44 switch (SPF) { 45 default: 46 llvm_unreachable("unhandled!"); 47 48 case SPF_SMIN: 49 return ICmpInst::ICMP_SLT; 50 case SPF_UMIN: 51 return ICmpInst::ICMP_ULT; 52 case SPF_SMAX: 53 return ICmpInst::ICMP_SGT; 54 case SPF_UMAX: 55 return ICmpInst::ICMP_UGT; 56 case SPF_FMINNUM: 57 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 58 case SPF_FMAXNUM: 59 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 60 } 61 } 62 63 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder, 64 SelectPatternFlavor SPF, Value *A, 65 Value *B) { 66 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF); 67 assert(CmpInst::isIntPredicate(Pred)); 68 return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B); 69 } 70 71 /// We want to turn code that looks like this: 72 /// %C = or %A, %B 73 /// %D = select %cond, %C, %A 74 /// into: 75 /// %C = select %cond, %B, 0 76 /// %D = or %A, %C 77 /// 78 /// Assuming that the specified instruction is an operand to the select, return 79 /// a bitmask indicating which operands of this instruction are foldable if they 80 /// equal the other incoming value of the select. 81 /// 82 static unsigned getSelectFoldableOperands(Instruction *I) { 83 switch (I->getOpcode()) { 84 case Instruction::Add: 85 case Instruction::Mul: 86 case Instruction::And: 87 case Instruction::Or: 88 case Instruction::Xor: 89 return 3; // Can fold through either operand. 90 case Instruction::Sub: // Can only fold on the amount subtracted. 91 case Instruction::Shl: // Can only fold on the shift amount. 92 case Instruction::LShr: 93 case Instruction::AShr: 94 return 1; 95 default: 96 return 0; // Cannot fold 97 } 98 } 99 100 /// For the same transformation as the previous function, return the identity 101 /// constant that goes into the select. 102 static Constant *getSelectFoldableConstant(Instruction *I) { 103 switch (I->getOpcode()) { 104 default: llvm_unreachable("This cannot happen!"); 105 case Instruction::Add: 106 case Instruction::Sub: 107 case Instruction::Or: 108 case Instruction::Xor: 109 case Instruction::Shl: 110 case Instruction::LShr: 111 case Instruction::AShr: 112 return Constant::getNullValue(I->getType()); 113 case Instruction::And: 114 return Constant::getAllOnesValue(I->getType()); 115 case Instruction::Mul: 116 return ConstantInt::get(I->getType(), 1); 117 } 118 } 119 120 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 121 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 122 Instruction *FI) { 123 // If this is a cast from the same type, merge. 124 if (TI->getNumOperands() == 1 && TI->isCast()) { 125 Type *FIOpndTy = FI->getOperand(0)->getType(); 126 if (TI->getOperand(0)->getType() != FIOpndTy) 127 return nullptr; 128 129 // The select condition may be a vector. We may only change the operand 130 // type if the vector width remains the same (and matches the condition). 131 Type *CondTy = SI.getCondition()->getType(); 132 if (CondTy->isVectorTy()) { 133 if (!FIOpndTy->isVectorTy()) 134 return nullptr; 135 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 136 return nullptr; 137 138 // TODO: If the backend knew how to deal with casts better, we could 139 // remove this limitation. For now, there's too much potential to create 140 // worse codegen by promoting the select ahead of size-altering casts 141 // (PR28160). 142 // 143 // Note that ValueTracking's matchSelectPattern() looks through casts 144 // without checking 'hasOneUse' when it matches min/max patterns, so this 145 // transform may end up happening anyway. 146 if (TI->getOpcode() != Instruction::BitCast && 147 (!TI->hasOneUse() || !FI->hasOneUse())) 148 return nullptr; 149 150 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 151 // TODO: The one-use restrictions for a scalar select could be eased if 152 // the fold of a select in visitLoadInst() was enhanced to match a pattern 153 // that includes a cast. 154 return nullptr; 155 } 156 157 // Fold this by inserting a select from the input values. 158 Value *NewSI = 159 Builder->CreateSelect(SI.getCondition(), TI->getOperand(0), 160 FI->getOperand(0), SI.getName() + ".v", &SI); 161 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 162 TI->getType()); 163 } 164 165 // Only handle binary operators with one-use here. As with the cast case 166 // above, it may be possible to relax the one-use constraint, but that needs 167 // be examined carefully since it may not reduce the total number of 168 // instructions. 169 BinaryOperator *BO = dyn_cast<BinaryOperator>(TI); 170 if (!BO || !TI->hasOneUse() || !FI->hasOneUse()) 171 return nullptr; 172 173 // Figure out if the operations have any operands in common. 174 Value *MatchOp, *OtherOpT, *OtherOpF; 175 bool MatchIsOpZero; 176 if (TI->getOperand(0) == FI->getOperand(0)) { 177 MatchOp = TI->getOperand(0); 178 OtherOpT = TI->getOperand(1); 179 OtherOpF = FI->getOperand(1); 180 MatchIsOpZero = true; 181 } else if (TI->getOperand(1) == FI->getOperand(1)) { 182 MatchOp = TI->getOperand(1); 183 OtherOpT = TI->getOperand(0); 184 OtherOpF = FI->getOperand(0); 185 MatchIsOpZero = false; 186 } else if (!TI->isCommutative()) { 187 return nullptr; 188 } else if (TI->getOperand(0) == FI->getOperand(1)) { 189 MatchOp = TI->getOperand(0); 190 OtherOpT = TI->getOperand(1); 191 OtherOpF = FI->getOperand(0); 192 MatchIsOpZero = true; 193 } else if (TI->getOperand(1) == FI->getOperand(0)) { 194 MatchOp = TI->getOperand(1); 195 OtherOpT = TI->getOperand(0); 196 OtherOpF = FI->getOperand(1); 197 MatchIsOpZero = true; 198 } else { 199 return nullptr; 200 } 201 202 // If we reach here, they do have operations in common. 203 Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 204 SI.getName() + ".v", &SI); 205 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 206 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 207 return BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 208 } 209 210 static bool isSelect01(Constant *C1, Constant *C2) { 211 ConstantInt *C1I = dyn_cast<ConstantInt>(C1); 212 if (!C1I) 213 return false; 214 ConstantInt *C2I = dyn_cast<ConstantInt>(C2); 215 if (!C2I) 216 return false; 217 if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. 218 return false; 219 return C1I->isOne() || C1I->isAllOnesValue() || 220 C2I->isOne() || C2I->isAllOnesValue(); 221 } 222 223 /// Try to fold the select into one of the operands to allow further 224 /// optimization. 225 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 226 Value *FalseVal) { 227 // See the comment above GetSelectFoldableOperands for a description of the 228 // transformation we are doing here. 229 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { 230 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && 231 !isa<Constant>(FalseVal)) { 232 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 233 unsigned OpToFold = 0; 234 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 235 OpToFold = 1; 236 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 237 OpToFold = 2; 238 } 239 240 if (OpToFold) { 241 Constant *C = getSelectFoldableConstant(TVI); 242 Value *OOp = TVI->getOperand(2-OpToFold); 243 // Avoid creating select between 2 constants unless it's selecting 244 // between 0, 1 and -1. 245 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 246 Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C); 247 NewSel->takeName(TVI); 248 BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI); 249 BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), 250 FalseVal, NewSel); 251 BO->copyIRFlags(TVI_BO); 252 return BO; 253 } 254 } 255 } 256 } 257 } 258 259 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { 260 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && 261 !isa<Constant>(TrueVal)) { 262 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 263 unsigned OpToFold = 0; 264 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 265 OpToFold = 1; 266 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 267 OpToFold = 2; 268 } 269 270 if (OpToFold) { 271 Constant *C = getSelectFoldableConstant(FVI); 272 Value *OOp = FVI->getOperand(2-OpToFold); 273 // Avoid creating select between 2 constants unless it's selecting 274 // between 0, 1 and -1. 275 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 276 Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp); 277 NewSel->takeName(FVI); 278 BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI); 279 BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), 280 TrueVal, NewSel); 281 BO->copyIRFlags(FVI_BO); 282 return BO; 283 } 284 } 285 } 286 } 287 } 288 289 return nullptr; 290 } 291 292 /// We want to turn: 293 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 294 /// into: 295 /// (or (shl (and X, C1), C3), y) 296 /// iff: 297 /// C1 and C2 are both powers of 2 298 /// where: 299 /// C3 = Log(C2) - Log(C1) 300 /// 301 /// This transform handles cases where: 302 /// 1. The icmp predicate is inverted 303 /// 2. The select operands are reversed 304 /// 3. The magnitude of C2 and C1 are flipped 305 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal, 306 Value *FalseVal, 307 InstCombiner::BuilderTy *Builder) { 308 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 309 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 310 return nullptr; 311 312 Value *CmpLHS = IC->getOperand(0); 313 Value *CmpRHS = IC->getOperand(1); 314 315 if (!match(CmpRHS, m_Zero())) 316 return nullptr; 317 318 Value *X; 319 const APInt *C1; 320 if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1)))) 321 return nullptr; 322 323 const APInt *C2; 324 bool OrOnTrueVal = false; 325 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 326 if (!OrOnFalseVal) 327 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 328 329 if (!OrOnFalseVal && !OrOnTrueVal) 330 return nullptr; 331 332 Value *V = CmpLHS; 333 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 334 335 unsigned C1Log = C1->logBase2(); 336 unsigned C2Log = C2->logBase2(); 337 if (C2Log > C1Log) { 338 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 339 V = Builder->CreateShl(V, C2Log - C1Log); 340 } else if (C1Log > C2Log) { 341 V = Builder->CreateLShr(V, C1Log - C2Log); 342 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 343 } else 344 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 345 346 ICmpInst::Predicate Pred = IC->getPredicate(); 347 if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) || 348 (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal)) 349 V = Builder->CreateXor(V, *C2); 350 351 return Builder->CreateOr(V, Y); 352 } 353 354 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 355 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 356 /// 357 /// For example, we can fold the following code sequence: 358 /// \code 359 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 360 /// %1 = icmp ne i32 %x, 0 361 /// %2 = select i1 %1, i32 %0, i32 32 362 /// \code 363 /// 364 /// into: 365 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 366 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 367 InstCombiner::BuilderTy *Builder) { 368 ICmpInst::Predicate Pred = ICI->getPredicate(); 369 Value *CmpLHS = ICI->getOperand(0); 370 Value *CmpRHS = ICI->getOperand(1); 371 372 // Check if the condition value compares a value for equality against zero. 373 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 374 return nullptr; 375 376 Value *Count = FalseVal; 377 Value *ValueOnZero = TrueVal; 378 if (Pred == ICmpInst::ICMP_NE) 379 std::swap(Count, ValueOnZero); 380 381 // Skip zero extend/truncate. 382 Value *V = nullptr; 383 if (match(Count, m_ZExt(m_Value(V))) || 384 match(Count, m_Trunc(m_Value(V)))) 385 Count = V; 386 387 // Check if the value propagated on zero is a constant number equal to the 388 // sizeof in bits of 'Count'. 389 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 390 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 391 return nullptr; 392 393 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 394 // input to the cttz/ctlz is used as LHS for the compare instruction. 395 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 396 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 397 IntrinsicInst *II = cast<IntrinsicInst>(Count); 398 IRBuilder<> Builder(II); 399 // Explicitly clear the 'undef_on_zero' flag. 400 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 401 Type *Ty = NewI->getArgOperand(1)->getType(); 402 NewI->setArgOperand(1, Constant::getNullValue(Ty)); 403 Builder.Insert(NewI); 404 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 405 } 406 407 return nullptr; 408 } 409 410 /// Return true if we find and adjust an icmp+select pattern where the compare 411 /// is with a constant that can be incremented or decremented to match the 412 /// minimum or maximum idiom. 413 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 414 ICmpInst::Predicate Pred = Cmp.getPredicate(); 415 Value *CmpLHS = Cmp.getOperand(0); 416 Value *CmpRHS = Cmp.getOperand(1); 417 Value *TrueVal = Sel.getTrueValue(); 418 Value *FalseVal = Sel.getFalseValue(); 419 420 // We may move or edit the compare, so make sure the select is the only user. 421 const APInt *CmpC; 422 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 423 return false; 424 425 // These transforms only work for selects of integers or vector selects of 426 // integer vectors. 427 Type *SelTy = Sel.getType(); 428 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 429 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 430 return false; 431 432 Constant *AdjustedRHS; 433 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 434 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 435 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 436 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 437 else 438 return false; 439 440 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 441 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 442 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 443 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 444 ; // Nothing to do here. Values match without any sign/zero extension. 445 } 446 // Types do not match. Instead of calculating this with mixed types, promote 447 // all to the larger type. This enables scalar evolution to analyze this 448 // expression. 449 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 450 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 451 452 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 453 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 454 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 455 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 456 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 457 CmpLHS = TrueVal; 458 AdjustedRHS = SextRHS; 459 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 460 SextRHS == TrueVal) { 461 CmpLHS = FalseVal; 462 AdjustedRHS = SextRHS; 463 } else if (Cmp.isUnsigned()) { 464 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 465 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 466 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 467 // zext + signed compare cannot be changed: 468 // 0xff <s 0x00, but 0x00ff >s 0x0000 469 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 470 CmpLHS = TrueVal; 471 AdjustedRHS = ZextRHS; 472 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 473 ZextRHS == TrueVal) { 474 CmpLHS = FalseVal; 475 AdjustedRHS = ZextRHS; 476 } else { 477 return false; 478 } 479 } else { 480 return false; 481 } 482 } else { 483 return false; 484 } 485 486 Pred = ICmpInst::getSwappedPredicate(Pred); 487 CmpRHS = AdjustedRHS; 488 std::swap(FalseVal, TrueVal); 489 Cmp.setPredicate(Pred); 490 Cmp.setOperand(0, CmpLHS); 491 Cmp.setOperand(1, CmpRHS); 492 Sel.setOperand(1, TrueVal); 493 Sel.setOperand(2, FalseVal); 494 Sel.swapProfMetadata(); 495 496 // Move the compare instruction right before the select instruction. Otherwise 497 // the sext/zext value may be defined after the compare instruction uses it. 498 Cmp.moveBefore(&Sel); 499 500 return true; 501 } 502 503 /// Visit a SelectInst that has an ICmpInst as its first operand. 504 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 505 ICmpInst *ICI) { 506 bool Changed = adjustMinMax(SI, *ICI); 507 508 ICmpInst::Predicate Pred = ICI->getPredicate(); 509 Value *CmpLHS = ICI->getOperand(0); 510 Value *CmpRHS = ICI->getOperand(1); 511 Value *TrueVal = SI.getTrueValue(); 512 Value *FalseVal = SI.getFalseValue(); 513 514 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 515 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 516 // FIXME: Type and constness constraints could be lifted, but we have to 517 // watch code size carefully. We should consider xor instead of 518 // sub/add when we decide to do that. 519 if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) { 520 if (TrueVal->getType() == Ty) { 521 if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) { 522 ConstantInt *C1 = nullptr, *C2 = nullptr; 523 if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) { 524 C1 = dyn_cast<ConstantInt>(TrueVal); 525 C2 = dyn_cast<ConstantInt>(FalseVal); 526 } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) { 527 C1 = dyn_cast<ConstantInt>(FalseVal); 528 C2 = dyn_cast<ConstantInt>(TrueVal); 529 } 530 if (C1 && C2) { 531 // This shift results in either -1 or 0. 532 Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1); 533 534 // Check if we can express the operation with a single or. 535 if (C2->isAllOnesValue()) 536 return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1)); 537 538 Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue()); 539 return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1)); 540 } 541 } 542 } 543 } 544 545 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 546 547 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 548 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 549 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 550 SI.setOperand(1, CmpRHS); 551 Changed = true; 552 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 553 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 554 SI.setOperand(2, CmpRHS); 555 Changed = true; 556 } 557 } 558 559 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 560 // decomposeBitTestICmp() might help. 561 { 562 unsigned BitWidth = 563 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 564 APInt MinSignedValue = APInt::getSignBit(BitWidth); 565 Value *X; 566 const APInt *Y, *C; 567 bool TrueWhenUnset; 568 bool IsBitTest = false; 569 if (ICmpInst::isEquality(Pred) && 570 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 571 match(CmpRHS, m_Zero())) { 572 IsBitTest = true; 573 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 574 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 575 X = CmpLHS; 576 Y = &MinSignedValue; 577 IsBitTest = true; 578 TrueWhenUnset = false; 579 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 580 X = CmpLHS; 581 Y = &MinSignedValue; 582 IsBitTest = true; 583 TrueWhenUnset = true; 584 } 585 if (IsBitTest) { 586 Value *V = nullptr; 587 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 588 if (TrueWhenUnset && TrueVal == X && 589 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 590 V = Builder->CreateAnd(X, ~(*Y)); 591 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 592 else if (!TrueWhenUnset && FalseVal == X && 593 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 594 V = Builder->CreateAnd(X, ~(*Y)); 595 // (X & Y) == 0 ? X ^ Y : X --> X | Y 596 else if (TrueWhenUnset && FalseVal == X && 597 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 598 V = Builder->CreateOr(X, *Y); 599 // (X & Y) != 0 ? X : X ^ Y --> X | Y 600 else if (!TrueWhenUnset && TrueVal == X && 601 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 602 V = Builder->CreateOr(X, *Y); 603 604 if (V) 605 return replaceInstUsesWith(SI, V); 606 } 607 } 608 609 if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder)) 610 return replaceInstUsesWith(SI, V); 611 612 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 613 return replaceInstUsesWith(SI, V); 614 615 return Changed ? &SI : nullptr; 616 } 617 618 619 /// SI is a select whose condition is a PHI node (but the two may be in 620 /// different blocks). See if the true/false values (V) are live in all of the 621 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 622 /// 623 /// X = phi [ C1, BB1], [C2, BB2] 624 /// Y = add 625 /// Z = select X, Y, 0 626 /// 627 /// because Y is not live in BB1/BB2. 628 /// 629 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 630 const SelectInst &SI) { 631 // If the value is a non-instruction value like a constant or argument, it 632 // can always be mapped. 633 const Instruction *I = dyn_cast<Instruction>(V); 634 if (!I) return true; 635 636 // If V is a PHI node defined in the same block as the condition PHI, we can 637 // map the arguments. 638 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 639 640 if (const PHINode *VP = dyn_cast<PHINode>(I)) 641 if (VP->getParent() == CondPHI->getParent()) 642 return true; 643 644 // Otherwise, if the PHI and select are defined in the same block and if V is 645 // defined in a different block, then we can transform it. 646 if (SI.getParent() == CondPHI->getParent() && 647 I->getParent() != CondPHI->getParent()) 648 return true; 649 650 // Otherwise we have a 'hard' case and we can't tell without doing more 651 // detailed dominator based analysis, punt. 652 return false; 653 } 654 655 /// We have an SPF (e.g. a min or max) of an SPF of the form: 656 /// SPF2(SPF1(A, B), C) 657 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 658 SelectPatternFlavor SPF1, 659 Value *A, Value *B, 660 Instruction &Outer, 661 SelectPatternFlavor SPF2, Value *C) { 662 if (Outer.getType() != Inner->getType()) 663 return nullptr; 664 665 if (C == A || C == B) { 666 // MAX(MAX(A, B), B) -> MAX(A, B) 667 // MIN(MIN(a, b), a) -> MIN(a, b) 668 if (SPF1 == SPF2) 669 return replaceInstUsesWith(Outer, Inner); 670 671 // MAX(MIN(a, b), a) -> a 672 // MIN(MAX(a, b), a) -> a 673 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 674 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 675 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 676 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 677 return replaceInstUsesWith(Outer, C); 678 } 679 680 if (SPF1 == SPF2) { 681 const APInt *CB, *CC; 682 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 683 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 684 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 685 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 686 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 687 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 688 (SPF1 == SPF_SMAX && CB->sge(*CC))) 689 return replaceInstUsesWith(Outer, Inner); 690 691 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 692 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 693 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 694 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 695 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 696 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 697 Outer.replaceUsesOfWith(Inner, A); 698 return &Outer; 699 } 700 } 701 } 702 703 // ABS(ABS(X)) -> ABS(X) 704 // NABS(NABS(X)) -> NABS(X) 705 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 706 return replaceInstUsesWith(Outer, Inner); 707 } 708 709 // ABS(NABS(X)) -> ABS(X) 710 // NABS(ABS(X)) -> NABS(X) 711 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 712 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 713 SelectInst *SI = cast<SelectInst>(Inner); 714 Value *NewSI = 715 Builder->CreateSelect(SI->getCondition(), SI->getFalseValue(), 716 SI->getTrueValue(), SI->getName(), SI); 717 return replaceInstUsesWith(Outer, NewSI); 718 } 719 720 auto IsFreeOrProfitableToInvert = 721 [&](Value *V, Value *&NotV, bool &ElidesXor) { 722 if (match(V, m_Not(m_Value(NotV)))) { 723 // If V has at most 2 uses then we can get rid of the xor operation 724 // entirely. 725 ElidesXor |= !V->hasNUsesOrMore(3); 726 return true; 727 } 728 729 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 730 NotV = nullptr; 731 return true; 732 } 733 734 return false; 735 }; 736 737 Value *NotA, *NotB, *NotC; 738 bool ElidesXor = false; 739 740 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 741 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 742 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 743 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 744 // 745 // This transform is performance neutral if we can elide at least one xor from 746 // the set of three operands, since we'll be tacking on an xor at the very 747 // end. 748 if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 749 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 750 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 751 if (!NotA) 752 NotA = Builder->CreateNot(A); 753 if (!NotB) 754 NotB = Builder->CreateNot(B); 755 if (!NotC) 756 NotC = Builder->CreateNot(C); 757 758 Value *NewInner = generateMinMaxSelectPattern( 759 Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB); 760 Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern( 761 Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC)); 762 return replaceInstUsesWith(Outer, NewOuter); 763 } 764 765 return nullptr; 766 } 767 768 /// If one of the constants is zero (we know they can't both be) and we have an 769 /// icmp instruction with zero, and we have an 'and' with the non-constant value 770 /// and a power of two we can turn the select into a shift on the result of the 771 /// 'and'. 772 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, 773 ConstantInt *FalseVal, 774 InstCombiner::BuilderTy *Builder) { 775 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 776 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 777 return nullptr; 778 779 if (!match(IC->getOperand(1), m_Zero())) 780 return nullptr; 781 782 ConstantInt *AndRHS; 783 Value *LHS = IC->getOperand(0); 784 if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) 785 return nullptr; 786 787 // If both select arms are non-zero see if we have a select of the form 788 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic 789 // for 'x ? 2^n : 0' and fix the thing up at the end. 790 ConstantInt *Offset = nullptr; 791 if (!TrueVal->isZero() && !FalseVal->isZero()) { 792 if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2()) 793 Offset = FalseVal; 794 else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2()) 795 Offset = TrueVal; 796 else 797 return nullptr; 798 799 // Adjust TrueVal and FalseVal to the offset. 800 TrueVal = ConstantInt::get(Builder->getContext(), 801 TrueVal->getValue() - Offset->getValue()); 802 FalseVal = ConstantInt::get(Builder->getContext(), 803 FalseVal->getValue() - Offset->getValue()); 804 } 805 806 // Make sure the mask in the 'and' and one of the select arms is a power of 2. 807 if (!AndRHS->getValue().isPowerOf2() || 808 (!TrueVal->getValue().isPowerOf2() && 809 !FalseVal->getValue().isPowerOf2())) 810 return nullptr; 811 812 // Determine which shift is needed to transform result of the 'and' into the 813 // desired result. 814 ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal; 815 unsigned ValZeros = ValC->getValue().logBase2(); 816 unsigned AndZeros = AndRHS->getValue().logBase2(); 817 818 // If types don't match we can still convert the select by introducing a zext 819 // or a trunc of the 'and'. The trunc case requires that all of the truncated 820 // bits are zero, we can figure that out by looking at the 'and' mask. 821 if (AndZeros >= ValC->getBitWidth()) 822 return nullptr; 823 824 Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType()); 825 if (ValZeros > AndZeros) 826 V = Builder->CreateShl(V, ValZeros - AndZeros); 827 else if (ValZeros < AndZeros) 828 V = Builder->CreateLShr(V, AndZeros - ValZeros); 829 830 // Okay, now we know that everything is set up, we just don't know whether we 831 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 832 bool ShouldNotVal = !TrueVal->isZero(); 833 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; 834 if (ShouldNotVal) 835 V = Builder->CreateXor(V, ValC); 836 837 // Apply an offset if needed. 838 if (Offset) 839 V = Builder->CreateAdd(V, Offset); 840 return V; 841 } 842 843 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 844 /// This is even legal for FP. 845 static Instruction *foldAddSubSelect(SelectInst &SI, 846 InstCombiner::BuilderTy &Builder) { 847 Value *CondVal = SI.getCondition(); 848 Value *TrueVal = SI.getTrueValue(); 849 Value *FalseVal = SI.getFalseValue(); 850 auto *TI = dyn_cast<Instruction>(TrueVal); 851 auto *FI = dyn_cast<Instruction>(FalseVal); 852 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 853 return nullptr; 854 855 Instruction *AddOp = nullptr, *SubOp = nullptr; 856 if ((TI->getOpcode() == Instruction::Sub && 857 FI->getOpcode() == Instruction::Add) || 858 (TI->getOpcode() == Instruction::FSub && 859 FI->getOpcode() == Instruction::FAdd)) { 860 AddOp = FI; 861 SubOp = TI; 862 } else if ((FI->getOpcode() == Instruction::Sub && 863 TI->getOpcode() == Instruction::Add) || 864 (FI->getOpcode() == Instruction::FSub && 865 TI->getOpcode() == Instruction::FAdd)) { 866 AddOp = TI; 867 SubOp = FI; 868 } 869 870 if (AddOp) { 871 Value *OtherAddOp = nullptr; 872 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 873 OtherAddOp = AddOp->getOperand(1); 874 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 875 OtherAddOp = AddOp->getOperand(0); 876 } 877 878 if (OtherAddOp) { 879 // So at this point we know we have (Y -> OtherAddOp): 880 // select C, (add X, Y), (sub X, Z) 881 Value *NegVal; // Compute -Z 882 if (SI.getType()->isFPOrFPVectorTy()) { 883 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 884 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 885 FastMathFlags Flags = AddOp->getFastMathFlags(); 886 Flags &= SubOp->getFastMathFlags(); 887 NegInst->setFastMathFlags(Flags); 888 } 889 } else { 890 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 891 } 892 893 Value *NewTrueOp = OtherAddOp; 894 Value *NewFalseOp = NegVal; 895 if (AddOp != TI) 896 std::swap(NewTrueOp, NewFalseOp); 897 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 898 SI.getName() + ".p", &SI); 899 900 if (SI.getType()->isFPOrFPVectorTy()) { 901 Instruction *RI = 902 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 903 904 FastMathFlags Flags = AddOp->getFastMathFlags(); 905 Flags &= SubOp->getFastMathFlags(); 906 RI->setFastMathFlags(Flags); 907 return RI; 908 } else 909 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 910 } 911 } 912 return nullptr; 913 } 914 915 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 916 Instruction *ExtInst; 917 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 918 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 919 return nullptr; 920 921 auto ExtOpcode = ExtInst->getOpcode(); 922 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 923 return nullptr; 924 925 // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too. 926 Value *X = ExtInst->getOperand(0); 927 Type *SmallType = X->getType(); 928 if (!SmallType->getScalarType()->isIntegerTy(1)) 929 return nullptr; 930 931 Constant *C; 932 if (!match(Sel.getTrueValue(), m_Constant(C)) && 933 !match(Sel.getFalseValue(), m_Constant(C))) 934 return nullptr; 935 936 // If the constant is the same after truncation to the smaller type and 937 // extension to the original type, we can narrow the select. 938 Value *Cond = Sel.getCondition(); 939 Type *SelType = Sel.getType(); 940 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 941 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 942 if (ExtC == C) { 943 Value *TruncCVal = cast<Value>(TruncC); 944 if (ExtInst == Sel.getFalseValue()) 945 std::swap(X, TruncCVal); 946 947 // select Cond, (ext X), C --> ext(select Cond, X, C') 948 // select Cond, C, (ext X) --> ext(select Cond, C', X) 949 Value *NewSel = Builder->CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 950 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 951 } 952 953 // If one arm of the select is the extend of the condition, replace that arm 954 // with the extension of the appropriate known bool value. 955 if (Cond == X) { 956 SelectInst *NewSel; 957 if (ExtInst == Sel.getTrueValue()) { 958 // select X, (sext X), C --> select X, -1, C 959 // select X, (zext X), C --> select X, 1, C 960 Constant *One = ConstantInt::getTrue(SmallType); 961 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 962 NewSel = SelectInst::Create(Cond, AllOnesOrOne, C); 963 } else { 964 // select X, C, (sext X) --> select X, C, 0 965 // select X, C, (zext X) --> select X, C, 0 966 Constant *Zero = ConstantInt::getNullValue(SelType); 967 NewSel = SelectInst::Create(Cond, C, Zero); 968 } 969 NewSel->copyMetadata(Sel); 970 return NewSel; 971 } 972 973 return nullptr; 974 } 975 976 /// Try to transform a vector select with a constant condition vector into a 977 /// shuffle for easier combining with other shuffles and insert/extract. 978 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 979 Value *CondVal = SI.getCondition(); 980 Constant *CondC; 981 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 982 return nullptr; 983 984 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 985 SmallVector<Constant *, 16> Mask; 986 Mask.reserve(NumElts); 987 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 988 for (unsigned i = 0; i != NumElts; ++i) { 989 Constant *Elt = CondC->getAggregateElement(i); 990 if (!Elt) 991 return nullptr; 992 993 if (Elt->isOneValue()) { 994 // If the select condition element is true, choose from the 1st vector. 995 Mask.push_back(ConstantInt::get(Int32Ty, i)); 996 } else if (Elt->isNullValue()) { 997 // If the select condition element is false, choose from the 2nd vector. 998 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 999 } else if (isa<UndefValue>(Elt)) { 1000 // If the select condition element is undef, the shuffle mask is undef. 1001 Mask.push_back(UndefValue::get(Int32Ty)); 1002 } else { 1003 // Bail out on a constant expression. 1004 return nullptr; 1005 } 1006 } 1007 1008 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1009 ConstantVector::get(Mask)); 1010 } 1011 1012 /// Reuse bitcasted operands between a compare and select: 1013 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1014 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1015 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1016 InstCombiner::BuilderTy &Builder) { 1017 Value *Cond = Sel.getCondition(); 1018 Value *TVal = Sel.getTrueValue(); 1019 Value *FVal = Sel.getFalseValue(); 1020 1021 CmpInst::Predicate Pred; 1022 Value *A, *B; 1023 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1024 return nullptr; 1025 1026 // The select condition is a compare instruction. If the select's true/false 1027 // values are already the same as the compare operands, there's nothing to do. 1028 if (TVal == A || TVal == B || FVal == A || FVal == B) 1029 return nullptr; 1030 1031 Value *C, *D; 1032 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1033 return nullptr; 1034 1035 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1036 Value *TSrc, *FSrc; 1037 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1038 !match(FVal, m_BitCast(m_Value(FSrc)))) 1039 return nullptr; 1040 1041 // If the select true/false values are *different bitcasts* of the same source 1042 // operands, make the select operands the same as the compare operands and 1043 // cast the result. This is the canonical select form for min/max. 1044 Value *NewSel; 1045 if (TSrc == C && FSrc == D) { 1046 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1047 // bitcast (select (cmp A, B), A, B) 1048 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1049 } else if (TSrc == D && FSrc == C) { 1050 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1051 // bitcast (select (cmp A, B), B, A) 1052 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1053 } else { 1054 return nullptr; 1055 } 1056 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1057 } 1058 1059 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1060 Value *CondVal = SI.getCondition(); 1061 Value *TrueVal = SI.getTrueValue(); 1062 Value *FalseVal = SI.getFalseValue(); 1063 Type *SelType = SI.getType(); 1064 1065 if (Value *V = 1066 SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, &TLI, &DT, &AC)) 1067 return replaceInstUsesWith(SI, V); 1068 1069 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1070 return I; 1071 1072 if (SelType->getScalarType()->isIntegerTy(1) && 1073 TrueVal->getType() == CondVal->getType()) { 1074 if (match(TrueVal, m_One())) { 1075 // Change: A = select B, true, C --> A = or B, C 1076 return BinaryOperator::CreateOr(CondVal, FalseVal); 1077 } 1078 if (match(TrueVal, m_Zero())) { 1079 // Change: A = select B, false, C --> A = and !B, C 1080 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1081 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1082 } 1083 if (match(FalseVal, m_Zero())) { 1084 // Change: A = select B, C, false --> A = and B, C 1085 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1086 } 1087 if (match(FalseVal, m_One())) { 1088 // Change: A = select B, C, true --> A = or !B, C 1089 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1090 return BinaryOperator::CreateOr(NotCond, TrueVal); 1091 } 1092 1093 // select a, a, b -> a | b 1094 // select a, b, a -> a & b 1095 if (CondVal == TrueVal) 1096 return BinaryOperator::CreateOr(CondVal, FalseVal); 1097 if (CondVal == FalseVal) 1098 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1099 1100 // select a, ~a, b -> (~a) & b 1101 // select a, b, ~a -> (~a) | b 1102 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1103 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1104 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1105 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1106 } 1107 1108 // Selecting between two integer or vector splat integer constants? 1109 // 1110 // Note that we don't handle a scalar select of vectors: 1111 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1112 // because that may need 3 instructions to splat the condition value: 1113 // extend, insertelement, shufflevector. 1114 if (CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1115 // select C, 1, 0 -> zext C to int 1116 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1117 return new ZExtInst(CondVal, SelType); 1118 1119 // select C, -1, 0 -> sext C to int 1120 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1121 return new SExtInst(CondVal, SelType); 1122 1123 // select C, 0, 1 -> zext !C to int 1124 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1125 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1126 return new ZExtInst(NotCond, SelType); 1127 } 1128 1129 // select C, 0, -1 -> sext !C to int 1130 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1131 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1132 return new SExtInst(NotCond, SelType); 1133 } 1134 } 1135 1136 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) 1137 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) 1138 if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder)) 1139 return replaceInstUsesWith(SI, V); 1140 1141 // See if we are selecting two values based on a comparison of the two values. 1142 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1143 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1144 // Transform (X == Y) ? X : Y -> Y 1145 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1146 // This is not safe in general for floating point: 1147 // consider X== -0, Y== +0. 1148 // It becomes safe if either operand is a nonzero constant. 1149 ConstantFP *CFPt, *CFPf; 1150 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1151 !CFPt->getValueAPF().isZero()) || 1152 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1153 !CFPf->getValueAPF().isZero())) 1154 return replaceInstUsesWith(SI, FalseVal); 1155 } 1156 // Transform (X une Y) ? X : Y -> X 1157 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1158 // This is not safe in general for floating point: 1159 // consider X== -0, Y== +0. 1160 // It becomes safe if either operand is a nonzero constant. 1161 ConstantFP *CFPt, *CFPf; 1162 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1163 !CFPt->getValueAPF().isZero()) || 1164 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1165 !CFPf->getValueAPF().isZero())) 1166 return replaceInstUsesWith(SI, TrueVal); 1167 } 1168 1169 // Canonicalize to use ordered comparisons by swapping the select 1170 // operands. 1171 // 1172 // e.g. 1173 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1174 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1175 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1176 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1177 Builder->setFastMathFlags(FCI->getFastMathFlags()); 1178 Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal, 1179 FCI->getName() + ".inv"); 1180 1181 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1182 SI.getName() + ".p"); 1183 } 1184 1185 // NOTE: if we wanted to, this is where to detect MIN/MAX 1186 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1187 // Transform (X == Y) ? Y : X -> X 1188 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1189 // This is not safe in general for floating point: 1190 // consider X== -0, Y== +0. 1191 // It becomes safe if either operand is a nonzero constant. 1192 ConstantFP *CFPt, *CFPf; 1193 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1194 !CFPt->getValueAPF().isZero()) || 1195 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1196 !CFPf->getValueAPF().isZero())) 1197 return replaceInstUsesWith(SI, FalseVal); 1198 } 1199 // Transform (X une Y) ? Y : X -> Y 1200 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1201 // This is not safe in general for floating point: 1202 // consider X== -0, Y== +0. 1203 // It becomes safe if either operand is a nonzero constant. 1204 ConstantFP *CFPt, *CFPf; 1205 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1206 !CFPt->getValueAPF().isZero()) || 1207 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1208 !CFPf->getValueAPF().isZero())) 1209 return replaceInstUsesWith(SI, TrueVal); 1210 } 1211 1212 // Canonicalize to use ordered comparisons by swapping the select 1213 // operands. 1214 // 1215 // e.g. 1216 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1217 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1218 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1219 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1220 Builder->setFastMathFlags(FCI->getFastMathFlags()); 1221 Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal, 1222 FCI->getName() + ".inv"); 1223 1224 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1225 SI.getName() + ".p"); 1226 } 1227 1228 // NOTE: if we wanted to, this is where to detect MIN/MAX 1229 } 1230 // NOTE: if we wanted to, this is where to detect ABS 1231 } 1232 1233 // See if we are selecting two values based on a comparison of the two values. 1234 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1235 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1236 return Result; 1237 1238 if (Instruction *Add = foldAddSubSelect(SI, *Builder)) 1239 return Add; 1240 1241 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1242 auto *TI = dyn_cast<Instruction>(TrueVal); 1243 auto *FI = dyn_cast<Instruction>(FalseVal); 1244 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1245 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1246 return IV; 1247 1248 if (Instruction *I = foldSelectExtConst(SI)) 1249 return I; 1250 1251 // See if we can fold the select into one of our operands. 1252 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1253 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1254 return FoldI; 1255 1256 Value *LHS, *RHS, *LHS2, *RHS2; 1257 Instruction::CastOps CastOp; 1258 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1259 auto SPF = SPR.Flavor; 1260 1261 if (SelectPatternResult::isMinOrMax(SPF)) { 1262 // Canonicalize so that type casts are outside select patterns. 1263 if (LHS->getType()->getPrimitiveSizeInBits() != 1264 SelType->getPrimitiveSizeInBits()) { 1265 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered); 1266 1267 Value *Cmp; 1268 if (CmpInst::isIntPredicate(Pred)) { 1269 Cmp = Builder->CreateICmp(Pred, LHS, RHS); 1270 } else { 1271 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1272 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1273 Builder->setFastMathFlags(FMF); 1274 Cmp = Builder->CreateFCmp(Pred, LHS, RHS); 1275 } 1276 1277 Value *NewSI = Builder->CreateCast( 1278 CastOp, Builder->CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI), 1279 SelType); 1280 return replaceInstUsesWith(SI, NewSI); 1281 } 1282 } 1283 1284 if (SPF) { 1285 // MAX(MAX(a, b), a) -> MAX(a, b) 1286 // MIN(MIN(a, b), a) -> MIN(a, b) 1287 // MAX(MIN(a, b), a) -> a 1288 // MIN(MAX(a, b), a) -> a 1289 // ABS(ABS(a)) -> ABS(a) 1290 // NABS(NABS(a)) -> NABS(a) 1291 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1292 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 1293 SI, SPF, RHS)) 1294 return R; 1295 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1296 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 1297 SI, SPF, LHS)) 1298 return R; 1299 } 1300 1301 // MAX(~a, ~b) -> ~MIN(a, b) 1302 if ((SPF == SPF_SMAX || SPF == SPF_UMAX) && 1303 IsFreeToInvert(LHS, LHS->hasNUses(2)) && 1304 IsFreeToInvert(RHS, RHS->hasNUses(2))) { 1305 // For this transform to be profitable, we need to eliminate at least two 1306 // 'not' instructions if we're going to add one 'not' instruction. 1307 int NumberOfNots = 1308 (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) + 1309 (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) + 1310 (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value()))); 1311 1312 if (NumberOfNots >= 2) { 1313 Value *NewLHS = Builder->CreateNot(LHS); 1314 Value *NewRHS = Builder->CreateNot(RHS); 1315 Value *NewCmp = SPF == SPF_SMAX 1316 ? Builder->CreateICmpSLT(NewLHS, NewRHS) 1317 : Builder->CreateICmpULT(NewLHS, NewRHS); 1318 Value *NewSI = 1319 Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS)); 1320 return replaceInstUsesWith(SI, NewSI); 1321 } 1322 } 1323 1324 // TODO. 1325 // ABS(-X) -> ABS(X) 1326 } 1327 1328 // See if we can fold the select into a phi node if the condition is a select. 1329 if (isa<PHINode>(SI.getCondition())) 1330 // The true/false values have to be live in the PHI predecessor's blocks. 1331 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1332 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1333 if (Instruction *NV = FoldOpIntoPhi(SI)) 1334 return NV; 1335 1336 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1337 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1338 // select(C, select(C, a, b), c) -> select(C, a, c) 1339 if (TrueSI->getCondition() == CondVal) { 1340 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1341 return nullptr; 1342 SI.setOperand(1, TrueSI->getTrueValue()); 1343 return &SI; 1344 } 1345 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1346 // We choose this as normal form to enable folding on the And and shortening 1347 // paths for the values (this helps GetUnderlyingObjects() for example). 1348 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1349 Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition()); 1350 SI.setOperand(0, And); 1351 SI.setOperand(1, TrueSI->getTrueValue()); 1352 return &SI; 1353 } 1354 } 1355 } 1356 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1357 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1358 // select(C, a, select(C, b, c)) -> select(C, a, c) 1359 if (FalseSI->getCondition() == CondVal) { 1360 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1361 return nullptr; 1362 SI.setOperand(2, FalseSI->getFalseValue()); 1363 return &SI; 1364 } 1365 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1366 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1367 Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition()); 1368 SI.setOperand(0, Or); 1369 SI.setOperand(2, FalseSI->getFalseValue()); 1370 return &SI; 1371 } 1372 } 1373 } 1374 1375 if (BinaryOperator::isNot(CondVal)) { 1376 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1377 SI.setOperand(1, FalseVal); 1378 SI.setOperand(2, TrueVal); 1379 return &SI; 1380 } 1381 1382 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 1383 unsigned VWidth = VecTy->getNumElements(); 1384 APInt UndefElts(VWidth, 0); 1385 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1386 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 1387 if (V != &SI) 1388 return replaceInstUsesWith(SI, V); 1389 return &SI; 1390 } 1391 1392 if (isa<ConstantAggregateZero>(CondVal)) { 1393 return replaceInstUsesWith(SI, FalseVal); 1394 } 1395 } 1396 1397 // See if we can determine the result of this select based on a dominating 1398 // condition. 1399 BasicBlock *Parent = SI.getParent(); 1400 if (BasicBlock *Dom = Parent->getSinglePredecessor()) { 1401 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 1402 if (PBI && PBI->isConditional() && 1403 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 1404 (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { 1405 bool CondIsFalse = PBI->getSuccessor(1) == Parent; 1406 Optional<bool> Implication = isImpliedCondition( 1407 PBI->getCondition(), SI.getCondition(), DL, CondIsFalse); 1408 if (Implication) { 1409 Value *V = *Implication ? TrueVal : FalseVal; 1410 return replaceInstUsesWith(SI, V); 1411 } 1412 } 1413 } 1414 1415 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, *Builder)) 1416 return BitCastSel; 1417 1418 return nullptr; 1419 } 1420