1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/OverflowInstAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/KnownBits.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
43 #include <cassert>
44 #include <utility>
45 
46 #define DEBUG_TYPE "instcombine"
47 #include "llvm/Transforms/Utils/InstructionWorklist.h"
48 
49 using namespace llvm;
50 using namespace PatternMatch;
51 
52 
53 /// Replace a select operand based on an equality comparison with the identity
54 /// constant of a binop.
55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
56                                             const TargetLibraryInfo &TLI,
57                                             InstCombinerImpl &IC) {
58   // The select condition must be an equality compare with a constant operand.
59   Value *X;
60   Constant *C;
61   CmpInst::Predicate Pred;
62   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
63     return nullptr;
64 
65   bool IsEq;
66   if (ICmpInst::isEquality(Pred))
67     IsEq = Pred == ICmpInst::ICMP_EQ;
68   else if (Pred == FCmpInst::FCMP_OEQ)
69     IsEq = true;
70   else if (Pred == FCmpInst::FCMP_UNE)
71     IsEq = false;
72   else
73     return nullptr;
74 
75   // A select operand must be a binop.
76   BinaryOperator *BO;
77   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
78     return nullptr;
79 
80   // The compare constant must be the identity constant for that binop.
81   // If this a floating-point compare with 0.0, any zero constant will do.
82   Type *Ty = BO->getType();
83   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
84   if (IdC != C) {
85     if (!IdC || !CmpInst::isFPPredicate(Pred))
86       return nullptr;
87     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
88       return nullptr;
89   }
90 
91   // Last, match the compare variable operand with a binop operand.
92   Value *Y;
93   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
94     return nullptr;
95   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
96     return nullptr;
97 
98   // +0.0 compares equal to -0.0, and so it does not behave as required for this
99   // transform. Bail out if we can not exclude that possibility.
100   if (isa<FPMathOperator>(BO))
101     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
102       return nullptr;
103 
104   // BO = binop Y, X
105   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
106   // =>
107   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
108   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
109 }
110 
111 /// This folds:
112 ///  select (icmp eq (and X, C1)), TC, FC
113 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
114 /// To something like:
115 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
116 /// Or:
117 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
118 /// With some variations depending if FC is larger than TC, or the shift
119 /// isn't needed, or the bit widths don't match.
120 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
121                                 InstCombiner::BuilderTy &Builder) {
122   const APInt *SelTC, *SelFC;
123   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
124       !match(Sel.getFalseValue(), m_APInt(SelFC)))
125     return nullptr;
126 
127   // If this is a vector select, we need a vector compare.
128   Type *SelType = Sel.getType();
129   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
130     return nullptr;
131 
132   Value *V;
133   APInt AndMask;
134   bool CreateAnd = false;
135   ICmpInst::Predicate Pred = Cmp->getPredicate();
136   if (ICmpInst::isEquality(Pred)) {
137     if (!match(Cmp->getOperand(1), m_Zero()))
138       return nullptr;
139 
140     V = Cmp->getOperand(0);
141     const APInt *AndRHS;
142     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
143       return nullptr;
144 
145     AndMask = *AndRHS;
146   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
147                                   Pred, V, AndMask)) {
148     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
149     if (!AndMask.isPowerOf2())
150       return nullptr;
151 
152     CreateAnd = true;
153   } else {
154     return nullptr;
155   }
156 
157   // In general, when both constants are non-zero, we would need an offset to
158   // replace the select. This would require more instructions than we started
159   // with. But there's one special-case that we handle here because it can
160   // simplify/reduce the instructions.
161   APInt TC = *SelTC;
162   APInt FC = *SelFC;
163   if (!TC.isZero() && !FC.isZero()) {
164     // If the select constants differ by exactly one bit and that's the same
165     // bit that is masked and checked by the select condition, the select can
166     // be replaced by bitwise logic to set/clear one bit of the constant result.
167     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
168       return nullptr;
169     if (CreateAnd) {
170       // If we have to create an 'and', then we must kill the cmp to not
171       // increase the instruction count.
172       if (!Cmp->hasOneUse())
173         return nullptr;
174       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
175     }
176     bool ExtraBitInTC = TC.ugt(FC);
177     if (Pred == ICmpInst::ICMP_EQ) {
178       // If the masked bit in V is clear, clear or set the bit in the result:
179       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
180       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
181       Constant *C = ConstantInt::get(SelType, TC);
182       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
183     }
184     if (Pred == ICmpInst::ICMP_NE) {
185       // If the masked bit in V is set, set or clear the bit in the result:
186       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
187       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
188       Constant *C = ConstantInt::get(SelType, FC);
189       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
190     }
191     llvm_unreachable("Only expecting equality predicates");
192   }
193 
194   // Make sure one of the select arms is a power-of-2.
195   if (!TC.isPowerOf2() && !FC.isPowerOf2())
196     return nullptr;
197 
198   // Determine which shift is needed to transform result of the 'and' into the
199   // desired result.
200   const APInt &ValC = !TC.isZero() ? TC : FC;
201   unsigned ValZeros = ValC.logBase2();
202   unsigned AndZeros = AndMask.logBase2();
203 
204   // Insert the 'and' instruction on the input to the truncate.
205   if (CreateAnd)
206     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
207 
208   // If types don't match, we can still convert the select by introducing a zext
209   // or a trunc of the 'and'.
210   if (ValZeros > AndZeros) {
211     V = Builder.CreateZExtOrTrunc(V, SelType);
212     V = Builder.CreateShl(V, ValZeros - AndZeros);
213   } else if (ValZeros < AndZeros) {
214     V = Builder.CreateLShr(V, AndZeros - ValZeros);
215     V = Builder.CreateZExtOrTrunc(V, SelType);
216   } else {
217     V = Builder.CreateZExtOrTrunc(V, SelType);
218   }
219 
220   // Okay, now we know that everything is set up, we just don't know whether we
221   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
222   bool ShouldNotVal = !TC.isZero();
223   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
224   if (ShouldNotVal)
225     V = Builder.CreateXor(V, ValC);
226 
227   return V;
228 }
229 
230 /// We want to turn code that looks like this:
231 ///   %C = or %A, %B
232 ///   %D = select %cond, %C, %A
233 /// into:
234 ///   %C = select %cond, %B, 0
235 ///   %D = or %A, %C
236 ///
237 /// Assuming that the specified instruction is an operand to the select, return
238 /// a bitmask indicating which operands of this instruction are foldable if they
239 /// equal the other incoming value of the select.
240 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
241   switch (I->getOpcode()) {
242   case Instruction::Add:
243   case Instruction::FAdd:
244   case Instruction::Mul:
245   case Instruction::FMul:
246   case Instruction::And:
247   case Instruction::Or:
248   case Instruction::Xor:
249     return 3;              // Can fold through either operand.
250   case Instruction::Sub:   // Can only fold on the amount subtracted.
251   case Instruction::FSub:
252   case Instruction::FDiv:  // Can only fold on the divisor amount.
253   case Instruction::Shl:   // Can only fold on the shift amount.
254   case Instruction::LShr:
255   case Instruction::AShr:
256     return 1;
257   default:
258     return 0;              // Cannot fold
259   }
260 }
261 
262 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
263 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
264                                               Instruction *FI) {
265   // Don't break up min/max patterns. The hasOneUse checks below prevent that
266   // for most cases, but vector min/max with bitcasts can be transformed. If the
267   // one-use restrictions are eased for other patterns, we still don't want to
268   // obfuscate min/max.
269   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
270        match(&SI, m_SMax(m_Value(), m_Value())) ||
271        match(&SI, m_UMin(m_Value(), m_Value())) ||
272        match(&SI, m_UMax(m_Value(), m_Value()))))
273     return nullptr;
274 
275   // If this is a cast from the same type, merge.
276   Value *Cond = SI.getCondition();
277   Type *CondTy = Cond->getType();
278   if (TI->getNumOperands() == 1 && TI->isCast()) {
279     Type *FIOpndTy = FI->getOperand(0)->getType();
280     if (TI->getOperand(0)->getType() != FIOpndTy)
281       return nullptr;
282 
283     // The select condition may be a vector. We may only change the operand
284     // type if the vector width remains the same (and matches the condition).
285     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
286       if (!FIOpndTy->isVectorTy() ||
287           CondVTy->getElementCount() !=
288               cast<VectorType>(FIOpndTy)->getElementCount())
289         return nullptr;
290 
291       // TODO: If the backend knew how to deal with casts better, we could
292       // remove this limitation. For now, there's too much potential to create
293       // worse codegen by promoting the select ahead of size-altering casts
294       // (PR28160).
295       //
296       // Note that ValueTracking's matchSelectPattern() looks through casts
297       // without checking 'hasOneUse' when it matches min/max patterns, so this
298       // transform may end up happening anyway.
299       if (TI->getOpcode() != Instruction::BitCast &&
300           (!TI->hasOneUse() || !FI->hasOneUse()))
301         return nullptr;
302     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
303       // TODO: The one-use restrictions for a scalar select could be eased if
304       // the fold of a select in visitLoadInst() was enhanced to match a pattern
305       // that includes a cast.
306       return nullptr;
307     }
308 
309     // Fold this by inserting a select from the input values.
310     Value *NewSI =
311         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
312                              SI.getName() + ".v", &SI);
313     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
314                             TI->getType());
315   }
316 
317   // Cond ? -X : -Y --> -(Cond ? X : Y)
318   Value *X, *Y;
319   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
320       (TI->hasOneUse() || FI->hasOneUse())) {
321     // Intersect FMF from the fneg instructions and union those with the select.
322     FastMathFlags FMF = TI->getFastMathFlags();
323     FMF &= FI->getFastMathFlags();
324     FMF |= SI.getFastMathFlags();
325     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
326     if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
327       NewSelI->setFastMathFlags(FMF);
328     Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
329     NewFNeg->setFastMathFlags(FMF);
330     return NewFNeg;
331   }
332 
333   // Min/max intrinsic with a common operand can have the common operand pulled
334   // after the select. This is the same transform as below for binops, but
335   // specialized for intrinsic matching and without the restrictive uses clause.
336   auto *TII = dyn_cast<IntrinsicInst>(TI);
337   auto *FII = dyn_cast<IntrinsicInst>(FI);
338   if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() &&
339       (TII->hasOneUse() || FII->hasOneUse())) {
340     Value *T0, *T1, *F0, *F1;
341     if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) &&
342         match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) {
343       if (T0 == F0) {
344         Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI);
345         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
346       }
347       if (T0 == F1) {
348         Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI);
349         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
350       }
351       if (T1 == F0) {
352         Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI);
353         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
354       }
355       if (T1 == F1) {
356         Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI);
357         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
358       }
359     }
360   }
361 
362   // Only handle binary operators (including two-operand getelementptr) with
363   // one-use here. As with the cast case above, it may be possible to relax the
364   // one-use constraint, but that needs be examined carefully since it may not
365   // reduce the total number of instructions.
366   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
367       !TI->isSameOperationAs(FI) ||
368       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
369       !TI->hasOneUse() || !FI->hasOneUse())
370     return nullptr;
371 
372   // Figure out if the operations have any operands in common.
373   Value *MatchOp, *OtherOpT, *OtherOpF;
374   bool MatchIsOpZero;
375   if (TI->getOperand(0) == FI->getOperand(0)) {
376     MatchOp  = TI->getOperand(0);
377     OtherOpT = TI->getOperand(1);
378     OtherOpF = FI->getOperand(1);
379     MatchIsOpZero = true;
380   } else if (TI->getOperand(1) == FI->getOperand(1)) {
381     MatchOp  = TI->getOperand(1);
382     OtherOpT = TI->getOperand(0);
383     OtherOpF = FI->getOperand(0);
384     MatchIsOpZero = false;
385   } else if (!TI->isCommutative()) {
386     return nullptr;
387   } else if (TI->getOperand(0) == FI->getOperand(1)) {
388     MatchOp  = TI->getOperand(0);
389     OtherOpT = TI->getOperand(1);
390     OtherOpF = FI->getOperand(0);
391     MatchIsOpZero = true;
392   } else if (TI->getOperand(1) == FI->getOperand(0)) {
393     MatchOp  = TI->getOperand(1);
394     OtherOpT = TI->getOperand(0);
395     OtherOpF = FI->getOperand(1);
396     MatchIsOpZero = true;
397   } else {
398     return nullptr;
399   }
400 
401   // If the select condition is a vector, the operands of the original select's
402   // operands also must be vectors. This may not be the case for getelementptr
403   // for example.
404   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
405                                !OtherOpF->getType()->isVectorTy()))
406     return nullptr;
407 
408   // If we reach here, they do have operations in common.
409   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
410                                       SI.getName() + ".v", &SI);
411   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
412   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
413   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
414     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
415     NewBO->copyIRFlags(TI);
416     NewBO->andIRFlags(FI);
417     return NewBO;
418   }
419   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
420     auto *FGEP = cast<GetElementPtrInst>(FI);
421     Type *ElementType = TGEP->getResultElementType();
422     return TGEP->isInBounds() && FGEP->isInBounds()
423                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
424                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
425   }
426   llvm_unreachable("Expected BinaryOperator or GEP");
427   return nullptr;
428 }
429 
430 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
431   if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
432     return false;
433   return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
434 }
435 
436 /// Try to fold the select into one of the operands to allow further
437 /// optimization.
438 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
439                                                 Value *FalseVal) {
440   // See the comment above GetSelectFoldableOperands for a description of the
441   // transformation we are doing here.
442   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
443     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
444       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
445         unsigned OpToFold = 0;
446         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
447           OpToFold = 1;
448         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
449           OpToFold = 2;
450         }
451 
452         if (OpToFold) {
453           Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
454                                                        TVI->getType(), true);
455           Value *OOp = TVI->getOperand(2-OpToFold);
456           // Avoid creating select between 2 constants unless it's selecting
457           // between 0, 1 and -1.
458           const APInt *OOpC;
459           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
460           if (!isa<Constant>(OOp) ||
461               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
462             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
463             NewSel->takeName(TVI);
464             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
465                                                         FalseVal, NewSel);
466             BO->copyIRFlags(TVI);
467             return BO;
468           }
469         }
470       }
471     }
472   }
473 
474   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
475     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
476       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
477         unsigned OpToFold = 0;
478         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
479           OpToFold = 1;
480         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
481           OpToFold = 2;
482         }
483 
484         if (OpToFold) {
485           Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
486                                                        FVI->getType(), true);
487           Value *OOp = FVI->getOperand(2-OpToFold);
488           // Avoid creating select between 2 constants unless it's selecting
489           // between 0, 1 and -1.
490           const APInt *OOpC;
491           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
492           if (!isa<Constant>(OOp) ||
493               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
494             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
495             NewSel->takeName(FVI);
496             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
497                                                         TrueVal, NewSel);
498             BO->copyIRFlags(FVI);
499             return BO;
500           }
501         }
502       }
503     }
504   }
505 
506   return nullptr;
507 }
508 
509 /// We want to turn:
510 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
511 /// into:
512 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
513 /// Note:
514 ///   Z may be 0 if lshr is missing.
515 /// Worst-case scenario is that we will replace 5 instructions with 5 different
516 /// instructions, but we got rid of select.
517 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
518                                          Value *TVal, Value *FVal,
519                                          InstCombiner::BuilderTy &Builder) {
520   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
521         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
522         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
523     return nullptr;
524 
525   // The TrueVal has general form of:  and %B, 1
526   Value *B;
527   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
528     return nullptr;
529 
530   // Where %B may be optionally shifted:  lshr %X, %Z.
531   Value *X, *Z;
532   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
533   if (!HasShift)
534     X = B;
535 
536   Value *Y;
537   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
538     return nullptr;
539 
540   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
541   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
542   Constant *One = ConstantInt::get(SelType, 1);
543   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
544   Value *FullMask = Builder.CreateOr(Y, MaskB);
545   Value *MaskedX = Builder.CreateAnd(X, FullMask);
546   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
547   return new ZExtInst(ICmpNeZero, SelType);
548 }
549 
550 /// We want to turn:
551 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
552 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
553 /// into:
554 ///   ashr (X, Y)
555 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
556                                      Value *FalseVal,
557                                      InstCombiner::BuilderTy &Builder) {
558   ICmpInst::Predicate Pred = IC->getPredicate();
559   Value *CmpLHS = IC->getOperand(0);
560   Value *CmpRHS = IC->getOperand(1);
561   if (!CmpRHS->getType()->isIntOrIntVectorTy())
562     return nullptr;
563 
564   Value *X, *Y;
565   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
566   if ((Pred != ICmpInst::ICMP_SGT ||
567        !match(CmpRHS,
568               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
569       (Pred != ICmpInst::ICMP_SLT ||
570        !match(CmpRHS,
571               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
572     return nullptr;
573 
574   // Canonicalize so that ashr is in FalseVal.
575   if (Pred == ICmpInst::ICMP_SLT)
576     std::swap(TrueVal, FalseVal);
577 
578   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
579       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
580       match(CmpLHS, m_Specific(X))) {
581     const auto *Ashr = cast<Instruction>(FalseVal);
582     // if lshr is not exact and ashr is, this new ashr must not be exact.
583     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
584     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
585   }
586 
587   return nullptr;
588 }
589 
590 /// We want to turn:
591 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
592 /// into:
593 ///   (or (shl (and X, C1), C3), Y)
594 /// iff:
595 ///   C1 and C2 are both powers of 2
596 /// where:
597 ///   C3 = Log(C2) - Log(C1)
598 ///
599 /// This transform handles cases where:
600 /// 1. The icmp predicate is inverted
601 /// 2. The select operands are reversed
602 /// 3. The magnitude of C2 and C1 are flipped
603 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
604                                   Value *FalseVal,
605                                   InstCombiner::BuilderTy &Builder) {
606   // Only handle integer compares. Also, if this is a vector select, we need a
607   // vector compare.
608   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
609       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
610     return nullptr;
611 
612   Value *CmpLHS = IC->getOperand(0);
613   Value *CmpRHS = IC->getOperand(1);
614 
615   Value *V;
616   unsigned C1Log;
617   bool IsEqualZero;
618   bool NeedAnd = false;
619   if (IC->isEquality()) {
620     if (!match(CmpRHS, m_Zero()))
621       return nullptr;
622 
623     const APInt *C1;
624     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
625       return nullptr;
626 
627     V = CmpLHS;
628     C1Log = C1->logBase2();
629     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
630   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
631              IC->getPredicate() == ICmpInst::ICMP_SGT) {
632     // We also need to recognize (icmp slt (trunc (X)), 0) and
633     // (icmp sgt (trunc (X)), -1).
634     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
635     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
636         (!IsEqualZero && !match(CmpRHS, m_Zero())))
637       return nullptr;
638 
639     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
640       return nullptr;
641 
642     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
643     NeedAnd = true;
644   } else {
645     return nullptr;
646   }
647 
648   const APInt *C2;
649   bool OrOnTrueVal = false;
650   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
651   if (!OrOnFalseVal)
652     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
653 
654   if (!OrOnFalseVal && !OrOnTrueVal)
655     return nullptr;
656 
657   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
658 
659   unsigned C2Log = C2->logBase2();
660 
661   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
662   bool NeedShift = C1Log != C2Log;
663   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
664                        V->getType()->getScalarSizeInBits();
665 
666   // Make sure we don't create more instructions than we save.
667   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
668   if ((NeedShift + NeedXor + NeedZExtTrunc) >
669       (IC->hasOneUse() + Or->hasOneUse()))
670     return nullptr;
671 
672   if (NeedAnd) {
673     // Insert the AND instruction on the input to the truncate.
674     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
675     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
676   }
677 
678   if (C2Log > C1Log) {
679     V = Builder.CreateZExtOrTrunc(V, Y->getType());
680     V = Builder.CreateShl(V, C2Log - C1Log);
681   } else if (C1Log > C2Log) {
682     V = Builder.CreateLShr(V, C1Log - C2Log);
683     V = Builder.CreateZExtOrTrunc(V, Y->getType());
684   } else
685     V = Builder.CreateZExtOrTrunc(V, Y->getType());
686 
687   if (NeedXor)
688     V = Builder.CreateXor(V, *C2);
689 
690   return Builder.CreateOr(V, Y);
691 }
692 
693 /// Canonicalize a set or clear of a masked set of constant bits to
694 /// select-of-constants form.
695 static Instruction *foldSetClearBits(SelectInst &Sel,
696                                      InstCombiner::BuilderTy &Builder) {
697   Value *Cond = Sel.getCondition();
698   Value *T = Sel.getTrueValue();
699   Value *F = Sel.getFalseValue();
700   Type *Ty = Sel.getType();
701   Value *X;
702   const APInt *NotC, *C;
703 
704   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
705   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
706       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
707     Constant *Zero = ConstantInt::getNullValue(Ty);
708     Constant *OrC = ConstantInt::get(Ty, *C);
709     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
710     return BinaryOperator::CreateOr(T, NewSel);
711   }
712 
713   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
714   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
715       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
716     Constant *Zero = ConstantInt::getNullValue(Ty);
717     Constant *OrC = ConstantInt::get(Ty, *C);
718     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
719     return BinaryOperator::CreateOr(F, NewSel);
720   }
721 
722   return nullptr;
723 }
724 
725 //   select (x == 0), 0, x * y --> freeze(y) * x
726 //   select (y == 0), 0, x * y --> freeze(x) * y
727 //   select (x == 0), undef, x * y --> freeze(y) * x
728 //   select (x == undef), 0, x * y --> freeze(y) * x
729 // Usage of mul instead of 0 will make the result more poisonous,
730 // so the operand that was not checked in the condition should be frozen.
731 // The latter folding is applied only when a constant compared with x is
732 // is a vector consisting of 0 and undefs. If a constant compared with x
733 // is a scalar undefined value or undefined vector then an expression
734 // should be already folded into a constant.
735 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
736   auto *CondVal = SI.getCondition();
737   auto *TrueVal = SI.getTrueValue();
738   auto *FalseVal = SI.getFalseValue();
739   Value *X, *Y;
740   ICmpInst::Predicate Predicate;
741 
742   // Assuming that constant compared with zero is not undef (but it may be
743   // a vector with some undef elements). Otherwise (when a constant is undef)
744   // the select expression should be already simplified.
745   if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
746       !ICmpInst::isEquality(Predicate))
747     return nullptr;
748 
749   if (Predicate == ICmpInst::ICMP_NE)
750     std::swap(TrueVal, FalseVal);
751 
752   // Check that TrueVal is a constant instead of matching it with m_Zero()
753   // to handle the case when it is a scalar undef value or a vector containing
754   // non-zero elements that are masked by undef elements in the compare
755   // constant.
756   auto *TrueValC = dyn_cast<Constant>(TrueVal);
757   if (TrueValC == nullptr ||
758       !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
759       !isa<Instruction>(FalseVal))
760     return nullptr;
761 
762   auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
763   auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
764   // If X is compared with 0 then TrueVal could be either zero or undef.
765   // m_Zero match vectors containing some undef elements, but for scalars
766   // m_Undef should be used explicitly.
767   if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
768     return nullptr;
769 
770   auto *FalseValI = cast<Instruction>(FalseVal);
771   auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
772                                      *FalseValI);
773   IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
774   return IC.replaceInstUsesWith(SI, FalseValI);
775 }
776 
777 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
778 /// There are 8 commuted/swapped variants of this pattern.
779 /// TODO: Also support a - UMIN(a,b) patterns.
780 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
781                                             const Value *TrueVal,
782                                             const Value *FalseVal,
783                                             InstCombiner::BuilderTy &Builder) {
784   ICmpInst::Predicate Pred = ICI->getPredicate();
785   if (!ICmpInst::isUnsigned(Pred))
786     return nullptr;
787 
788   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
789   if (match(TrueVal, m_Zero())) {
790     Pred = ICmpInst::getInversePredicate(Pred);
791     std::swap(TrueVal, FalseVal);
792   }
793   if (!match(FalseVal, m_Zero()))
794     return nullptr;
795 
796   Value *A = ICI->getOperand(0);
797   Value *B = ICI->getOperand(1);
798   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
799     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
800     std::swap(A, B);
801     Pred = ICmpInst::getSwappedPredicate(Pred);
802   }
803 
804   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
805          "Unexpected isUnsigned predicate!");
806 
807   // Ensure the sub is of the form:
808   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
809   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
810   // Checking for both a-b and a+(-b) as a constant.
811   bool IsNegative = false;
812   const APInt *C;
813   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
814       (match(A, m_APInt(C)) &&
815        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
816     IsNegative = true;
817   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
818            !(match(B, m_APInt(C)) &&
819              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
820     return nullptr;
821 
822   // If we are adding a negate and the sub and icmp are used anywhere else, we
823   // would end up with more instructions.
824   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
825     return nullptr;
826 
827   // (a > b) ? a - b : 0 -> usub.sat(a, b)
828   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
829   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
830   if (IsNegative)
831     Result = Builder.CreateNeg(Result);
832   return Result;
833 }
834 
835 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
836                                        InstCombiner::BuilderTy &Builder) {
837   if (!Cmp->hasOneUse())
838     return nullptr;
839 
840   // Match unsigned saturated add with constant.
841   Value *Cmp0 = Cmp->getOperand(0);
842   Value *Cmp1 = Cmp->getOperand(1);
843   ICmpInst::Predicate Pred = Cmp->getPredicate();
844   Value *X;
845   const APInt *C, *CmpC;
846   if (Pred == ICmpInst::ICMP_ULT &&
847       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
848       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
849     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
850     return Builder.CreateBinaryIntrinsic(
851         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
852   }
853 
854   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
855   // There are 8 commuted variants.
856   // Canonicalize -1 (saturated result) to true value of the select.
857   if (match(FVal, m_AllOnes())) {
858     std::swap(TVal, FVal);
859     Pred = CmpInst::getInversePredicate(Pred);
860   }
861   if (!match(TVal, m_AllOnes()))
862     return nullptr;
863 
864   // Canonicalize predicate to less-than or less-or-equal-than.
865   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
866     std::swap(Cmp0, Cmp1);
867     Pred = CmpInst::getSwappedPredicate(Pred);
868   }
869   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
870     return nullptr;
871 
872   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
873   // Strictness of the comparison is irrelevant.
874   Value *Y;
875   if (match(Cmp0, m_Not(m_Value(X))) &&
876       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
877     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
878     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
879     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
880   }
881   // The 'not' op may be included in the sum but not the compare.
882   // Strictness of the comparison is irrelevant.
883   X = Cmp0;
884   Y = Cmp1;
885   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
886     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
887     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
888     BinaryOperator *BO = cast<BinaryOperator>(FVal);
889     return Builder.CreateBinaryIntrinsic(
890         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
891   }
892   // The overflow may be detected via the add wrapping round.
893   // This is only valid for strict comparison!
894   if (Pred == ICmpInst::ICMP_ULT &&
895       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
896       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
897     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
898     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
899     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
900   }
901 
902   return nullptr;
903 }
904 
905 /// Fold the following code sequence:
906 /// \code
907 ///   int a = ctlz(x & -x);
908 //    x ? 31 - a : a;
909 /// \code
910 ///
911 /// into:
912 ///   cttz(x)
913 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
914                                          Value *FalseVal,
915                                          InstCombiner::BuilderTy &Builder) {
916   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
917   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
918     return nullptr;
919 
920   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
921     std::swap(TrueVal, FalseVal);
922 
923   if (!match(FalseVal,
924              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
925     return nullptr;
926 
927   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
928     return nullptr;
929 
930   Value *X = ICI->getOperand(0);
931   auto *II = cast<IntrinsicInst>(TrueVal);
932   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
933     return nullptr;
934 
935   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
936                                           II->getType());
937   return CallInst::Create(F, {X, II->getArgOperand(1)});
938 }
939 
940 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
941 /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
942 ///
943 /// For example, we can fold the following code sequence:
944 /// \code
945 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
946 ///   %1 = icmp ne i32 %x, 0
947 ///   %2 = select i1 %1, i32 %0, i32 32
948 /// \code
949 ///
950 /// into:
951 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
952 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
953                                  InstCombiner::BuilderTy &Builder) {
954   ICmpInst::Predicate Pred = ICI->getPredicate();
955   Value *CmpLHS = ICI->getOperand(0);
956   Value *CmpRHS = ICI->getOperand(1);
957 
958   // Check if the condition value compares a value for equality against zero.
959   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
960     return nullptr;
961 
962   Value *SelectArg = FalseVal;
963   Value *ValueOnZero = TrueVal;
964   if (Pred == ICmpInst::ICMP_NE)
965     std::swap(SelectArg, ValueOnZero);
966 
967   // Skip zero extend/truncate.
968   Value *Count = nullptr;
969   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
970       !match(SelectArg, m_Trunc(m_Value(Count))))
971     Count = SelectArg;
972 
973   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
974   // input to the cttz/ctlz is used as LHS for the compare instruction.
975   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
976       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
977     return nullptr;
978 
979   IntrinsicInst *II = cast<IntrinsicInst>(Count);
980 
981   // Check if the value propagated on zero is a constant number equal to the
982   // sizeof in bits of 'Count'.
983   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
984   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
985     // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
986     // true to false on this flag, so we can replace it for all users.
987     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
988     return SelectArg;
989   }
990 
991   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
992   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
993   // not be used if the input is zero. Relax to 'zero is poison' for that case.
994   if (II->hasOneUse() && SelectArg->hasOneUse() &&
995       !match(II->getArgOperand(1), m_One()))
996     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
997 
998   return nullptr;
999 }
1000 
1001 /// Return true if we find and adjust an icmp+select pattern where the compare
1002 /// is with a constant that can be incremented or decremented to match the
1003 /// minimum or maximum idiom.
1004 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
1005   ICmpInst::Predicate Pred = Cmp.getPredicate();
1006   Value *CmpLHS = Cmp.getOperand(0);
1007   Value *CmpRHS = Cmp.getOperand(1);
1008   Value *TrueVal = Sel.getTrueValue();
1009   Value *FalseVal = Sel.getFalseValue();
1010 
1011   // We may move or edit the compare, so make sure the select is the only user.
1012   const APInt *CmpC;
1013   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
1014     return false;
1015 
1016   // These transforms only work for selects of integers or vector selects of
1017   // integer vectors.
1018   Type *SelTy = Sel.getType();
1019   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
1020   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
1021     return false;
1022 
1023   Constant *AdjustedRHS;
1024   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
1025     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
1026   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
1027     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
1028   else
1029     return false;
1030 
1031   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
1032   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
1033   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
1034       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
1035     ; // Nothing to do here. Values match without any sign/zero extension.
1036   }
1037   // Types do not match. Instead of calculating this with mixed types, promote
1038   // all to the larger type. This enables scalar evolution to analyze this
1039   // expression.
1040   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
1041     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
1042 
1043     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
1044     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
1045     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
1046     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
1047     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
1048       CmpLHS = TrueVal;
1049       AdjustedRHS = SextRHS;
1050     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
1051                SextRHS == TrueVal) {
1052       CmpLHS = FalseVal;
1053       AdjustedRHS = SextRHS;
1054     } else if (Cmp.isUnsigned()) {
1055       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
1056       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
1057       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
1058       // zext + signed compare cannot be changed:
1059       //    0xff <s 0x00, but 0x00ff >s 0x0000
1060       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
1061         CmpLHS = TrueVal;
1062         AdjustedRHS = ZextRHS;
1063       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
1064                  ZextRHS == TrueVal) {
1065         CmpLHS = FalseVal;
1066         AdjustedRHS = ZextRHS;
1067       } else {
1068         return false;
1069       }
1070     } else {
1071       return false;
1072     }
1073   } else {
1074     return false;
1075   }
1076 
1077   Pred = ICmpInst::getSwappedPredicate(Pred);
1078   CmpRHS = AdjustedRHS;
1079   std::swap(FalseVal, TrueVal);
1080   Cmp.setPredicate(Pred);
1081   Cmp.setOperand(0, CmpLHS);
1082   Cmp.setOperand(1, CmpRHS);
1083   Sel.setOperand(1, TrueVal);
1084   Sel.setOperand(2, FalseVal);
1085   Sel.swapProfMetadata();
1086 
1087   // Move the compare instruction right before the select instruction. Otherwise
1088   // the sext/zext value may be defined after the compare instruction uses it.
1089   Cmp.moveBefore(&Sel);
1090 
1091   return true;
1092 }
1093 
1094 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp,
1095                                     InstCombinerImpl &IC) {
1096   Value *LHS, *RHS;
1097   // TODO: What to do with pointer min/max patterns?
1098   if (!Sel.getType()->isIntOrIntVectorTy())
1099     return nullptr;
1100 
1101   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1102   if (SPF == SelectPatternFlavor::SPF_ABS ||
1103       SPF == SelectPatternFlavor::SPF_NABS) {
1104     if (!Cmp.hasOneUse() && !RHS->hasOneUse())
1105       return nullptr; // TODO: Relax this restriction.
1106 
1107     // Note that NSW flag can only be propagated for normal, non-negated abs!
1108     bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1109                           match(RHS, m_NSWNeg(m_Specific(LHS)));
1110     Constant *IntMinIsPoisonC =
1111         ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1112     Instruction *Abs =
1113         IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1114 
1115     if (SPF == SelectPatternFlavor::SPF_NABS)
1116       return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1117     return IC.replaceInstUsesWith(Sel, Abs);
1118   }
1119 
1120   if (SelectPatternResult::isMinOrMax(SPF)) {
1121     Intrinsic::ID IntrinsicID;
1122     switch (SPF) {
1123     case SelectPatternFlavor::SPF_UMIN:
1124       IntrinsicID = Intrinsic::umin;
1125       break;
1126     case SelectPatternFlavor::SPF_UMAX:
1127       IntrinsicID = Intrinsic::umax;
1128       break;
1129     case SelectPatternFlavor::SPF_SMIN:
1130       IntrinsicID = Intrinsic::smin;
1131       break;
1132     case SelectPatternFlavor::SPF_SMAX:
1133       IntrinsicID = Intrinsic::smax;
1134       break;
1135     default:
1136       llvm_unreachable("Unexpected SPF");
1137     }
1138     return IC.replaceInstUsesWith(
1139         Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS));
1140   }
1141 
1142   return nullptr;
1143 }
1144 
1145 /// If we have a select with an equality comparison, then we know the value in
1146 /// one of the arms of the select. See if substituting this value into an arm
1147 /// and simplifying the result yields the same value as the other arm.
1148 ///
1149 /// To make this transform safe, we must drop poison-generating flags
1150 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1151 /// that poison from propagating. If the existing binop already had no
1152 /// poison-generating flags, then this transform can be done by instsimplify.
1153 ///
1154 /// Consider:
1155 ///   %cmp = icmp eq i32 %x, 2147483647
1156 ///   %add = add nsw i32 %x, 1
1157 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1158 ///
1159 /// We can't replace %sel with %add unless we strip away the flags.
1160 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1161 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1162                                                           ICmpInst &Cmp) {
1163   // Value equivalence substitution requires an all-or-nothing replacement.
1164   // It does not make sense for a vector compare where each lane is chosen
1165   // independently.
1166   if (!Cmp.isEquality() || Cmp.getType()->isVectorTy())
1167     return nullptr;
1168 
1169   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1170   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1171   bool Swapped = false;
1172   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1173     std::swap(TrueVal, FalseVal);
1174     Swapped = true;
1175   }
1176 
1177   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1178   // Make sure Y cannot be undef though, as we might pick different values for
1179   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1180   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1181   // replacement cycle.
1182   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1183   if (TrueVal != CmpLHS &&
1184       isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1185     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1186                                           /* AllowRefinement */ true))
1187       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1188 
1189     // Even if TrueVal does not simplify, we can directly replace a use of
1190     // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1191     // else and is safe to speculatively execute (we may end up executing it
1192     // with different operands, which should not cause side-effects or trigger
1193     // undefined behavior). Only do this if CmpRHS is a constant, as
1194     // profitability is not clear for other cases.
1195     // FIXME: The replacement could be performed recursively.
1196     if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()))
1197       if (auto *I = dyn_cast<Instruction>(TrueVal))
1198         if (I->hasOneUse() && isSafeToSpeculativelyExecute(I))
1199           for (Use &U : I->operands())
1200             if (U == CmpLHS) {
1201               replaceUse(U, CmpRHS);
1202               return &Sel;
1203             }
1204   }
1205   if (TrueVal != CmpRHS &&
1206       isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1207     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1208                                           /* AllowRefinement */ true))
1209       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1210 
1211   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1212   if (!FalseInst)
1213     return nullptr;
1214 
1215   // InstSimplify already performed this fold if it was possible subject to
1216   // current poison-generating flags. Try the transform again with
1217   // poison-generating flags temporarily dropped.
1218   bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1219   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1220     WasNUW = OBO->hasNoUnsignedWrap();
1221     WasNSW = OBO->hasNoSignedWrap();
1222     FalseInst->setHasNoUnsignedWrap(false);
1223     FalseInst->setHasNoSignedWrap(false);
1224   }
1225   if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1226     WasExact = PEO->isExact();
1227     FalseInst->setIsExact(false);
1228   }
1229   if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1230     WasInBounds = GEP->isInBounds();
1231     GEP->setIsInBounds(false);
1232   }
1233 
1234   // Try each equivalence substitution possibility.
1235   // We have an 'EQ' comparison, so the select's false value will propagate.
1236   // Example:
1237   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1238   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1239                              /* AllowRefinement */ false) == TrueVal ||
1240       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1241                              /* AllowRefinement */ false) == TrueVal) {
1242     return replaceInstUsesWith(Sel, FalseVal);
1243   }
1244 
1245   // Restore poison-generating flags if the transform did not apply.
1246   if (WasNUW)
1247     FalseInst->setHasNoUnsignedWrap();
1248   if (WasNSW)
1249     FalseInst->setHasNoSignedWrap();
1250   if (WasExact)
1251     FalseInst->setIsExact();
1252   if (WasInBounds)
1253     cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1254 
1255   return nullptr;
1256 }
1257 
1258 // See if this is a pattern like:
1259 //   %old_cmp1 = icmp slt i32 %x, C2
1260 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1261 //   %old_x_offseted = add i32 %x, C1
1262 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1263 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1264 // This can be rewritten as more canonical pattern:
1265 //   %new_cmp1 = icmp slt i32 %x, -C1
1266 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1267 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1268 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1269 // Iff -C1 s<= C2 s<= C0-C1
1270 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1271 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1272 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1273                                     InstCombiner::BuilderTy &Builder) {
1274   Value *X = Sel0.getTrueValue();
1275   Value *Sel1 = Sel0.getFalseValue();
1276 
1277   // First match the condition of the outermost select.
1278   // Said condition must be one-use.
1279   if (!Cmp0.hasOneUse())
1280     return nullptr;
1281   ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1282   Value *Cmp00 = Cmp0.getOperand(0);
1283   Constant *C0;
1284   if (!match(Cmp0.getOperand(1),
1285              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1286     return nullptr;
1287 
1288   if (!isa<SelectInst>(Sel1)) {
1289     Pred0 = ICmpInst::getInversePredicate(Pred0);
1290     std::swap(X, Sel1);
1291   }
1292 
1293   // Canonicalize Cmp0 into ult or uge.
1294   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1295   switch (Pred0) {
1296   case ICmpInst::Predicate::ICMP_ULT:
1297   case ICmpInst::Predicate::ICMP_UGE:
1298     // Although icmp ult %x, 0 is an unusual thing to try and should generally
1299     // have been simplified, it does not verify with undef inputs so ensure we
1300     // are not in a strange state.
1301     if (!match(C0, m_SpecificInt_ICMP(
1302                        ICmpInst::Predicate::ICMP_NE,
1303                        APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1304       return nullptr;
1305     break; // Great!
1306   case ICmpInst::Predicate::ICMP_ULE:
1307   case ICmpInst::Predicate::ICMP_UGT:
1308     // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1309     // C0, which again means it must not have any all-ones elements.
1310     if (!match(C0,
1311                m_SpecificInt_ICMP(
1312                    ICmpInst::Predicate::ICMP_NE,
1313                    APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1314       return nullptr; // Can't do, have all-ones element[s].
1315     C0 = InstCombiner::AddOne(C0);
1316     break;
1317   default:
1318     return nullptr; // Unknown predicate.
1319   }
1320 
1321   // Now that we've canonicalized the ICmp, we know the X we expect;
1322   // the select in other hand should be one-use.
1323   if (!Sel1->hasOneUse())
1324     return nullptr;
1325 
1326   // If the types do not match, look through any truncs to the underlying
1327   // instruction.
1328   if (Cmp00->getType() != X->getType() && X->hasOneUse())
1329     match(X, m_TruncOrSelf(m_Value(X)));
1330 
1331   // We now can finish matching the condition of the outermost select:
1332   // it should either be the X itself, or an addition of some constant to X.
1333   Constant *C1;
1334   if (Cmp00 == X)
1335     C1 = ConstantInt::getNullValue(X->getType());
1336   else if (!match(Cmp00,
1337                   m_Add(m_Specific(X),
1338                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1339     return nullptr;
1340 
1341   Value *Cmp1;
1342   ICmpInst::Predicate Pred1;
1343   Constant *C2;
1344   Value *ReplacementLow, *ReplacementHigh;
1345   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1346                             m_Value(ReplacementHigh))) ||
1347       !match(Cmp1,
1348              m_ICmp(Pred1, m_Specific(X),
1349                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1350     return nullptr;
1351 
1352   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1353     return nullptr; // Not enough one-use instructions for the fold.
1354   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1355   //        two comparisons we'll need to build.
1356 
1357   // Canonicalize Cmp1 into the form we expect.
1358   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1359   switch (Pred1) {
1360   case ICmpInst::Predicate::ICMP_SLT:
1361     break;
1362   case ICmpInst::Predicate::ICMP_SLE:
1363     // We'd have to increment C2 by one, and for that it must not have signed
1364     // max element, but then it would have been canonicalized to 'slt' before
1365     // we get here. So we can't do anything useful with 'sle'.
1366     return nullptr;
1367   case ICmpInst::Predicate::ICMP_SGT:
1368     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1369     // which again means it must not have any signed max elements.
1370     if (!match(C2,
1371                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1372                                   APInt::getSignedMaxValue(
1373                                       C2->getType()->getScalarSizeInBits()))))
1374       return nullptr; // Can't do, have signed max element[s].
1375     C2 = InstCombiner::AddOne(C2);
1376     LLVM_FALLTHROUGH;
1377   case ICmpInst::Predicate::ICMP_SGE:
1378     // Also non-canonical, but here we don't need to change C2,
1379     // so we don't have any restrictions on C2, so we can just handle it.
1380     std::swap(ReplacementLow, ReplacementHigh);
1381     break;
1382   default:
1383     return nullptr; // Unknown predicate.
1384   }
1385 
1386   // The thresholds of this clamp-like pattern.
1387   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1388   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1389   if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1390     std::swap(ThresholdLowIncl, ThresholdHighExcl);
1391 
1392   // The fold has a precondition 1: C2 s>= ThresholdLow
1393   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1394                                          ThresholdLowIncl);
1395   if (!match(Precond1, m_One()))
1396     return nullptr;
1397   // The fold has a precondition 2: C2 s<= ThresholdHigh
1398   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1399                                          ThresholdHighExcl);
1400   if (!match(Precond2, m_One()))
1401     return nullptr;
1402 
1403   // If we are matching from a truncated input, we need to sext the
1404   // ReplacementLow and ReplacementHigh values. Only do the transform if they
1405   // are free to extend due to being constants.
1406   if (X->getType() != Sel0.getType()) {
1407     Constant *LowC, *HighC;
1408     if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1409         !match(ReplacementHigh, m_ImmConstant(HighC)))
1410       return nullptr;
1411     ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
1412     ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
1413   }
1414 
1415   // All good, finally emit the new pattern.
1416   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1417   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1418   Value *MaybeReplacedLow =
1419       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1420 
1421   // Create the final select. If we looked through a truncate above, we will
1422   // need to retruncate the result.
1423   Value *MaybeReplacedHigh = Builder.CreateSelect(
1424       ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1425   return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1426 }
1427 
1428 // If we have
1429 //  %cmp = icmp [canonical predicate] i32 %x, C0
1430 //  %r = select i1 %cmp, i32 %y, i32 C1
1431 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1432 // will have if we flip the strictness of the predicate (i.e. without changing
1433 // the result) is identical to the C1 in select. If it matches we can change
1434 // original comparison to one with swapped predicate, reuse the constant,
1435 // and swap the hands of select.
1436 static Instruction *
1437 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1438                                          InstCombinerImpl &IC) {
1439   ICmpInst::Predicate Pred;
1440   Value *X;
1441   Constant *C0;
1442   if (!match(&Cmp, m_OneUse(m_ICmp(
1443                        Pred, m_Value(X),
1444                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1445     return nullptr;
1446 
1447   // If comparison predicate is non-relational, we won't be able to do anything.
1448   if (ICmpInst::isEquality(Pred))
1449     return nullptr;
1450 
1451   // If comparison predicate is non-canonical, then we certainly won't be able
1452   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1453   if (!InstCombiner::isCanonicalPredicate(Pred))
1454     return nullptr;
1455 
1456   // If the [input] type of comparison and select type are different, lets abort
1457   // for now. We could try to compare constants with trunc/[zs]ext though.
1458   if (C0->getType() != Sel.getType())
1459     return nullptr;
1460 
1461   // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1462   // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1463   //        Or should we just abandon this transform entirely?
1464   if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1465     return nullptr;
1466 
1467 
1468   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1469   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1470   // At least one of these values we are selecting between must be a constant
1471   // else we'll never succeed.
1472   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1473       !match(SelVal1, m_AnyIntegralConstant()))
1474     return nullptr;
1475 
1476   // Does this constant C match any of the `select` values?
1477   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1478     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1479   };
1480 
1481   // If C0 *already* matches true/false value of select, we are done.
1482   if (MatchesSelectValue(C0))
1483     return nullptr;
1484 
1485   // Check the constant we'd have with flipped-strictness predicate.
1486   auto FlippedStrictness =
1487       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1488   if (!FlippedStrictness)
1489     return nullptr;
1490 
1491   // If said constant doesn't match either, then there is no hope,
1492   if (!MatchesSelectValue(FlippedStrictness->second))
1493     return nullptr;
1494 
1495   // It matched! Lets insert the new comparison just before select.
1496   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1497   IC.Builder.SetInsertPoint(&Sel);
1498 
1499   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1500   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1501                                         Cmp.getName() + ".inv");
1502   IC.replaceOperand(Sel, 0, NewCmp);
1503   Sel.swapValues();
1504   Sel.swapProfMetadata();
1505 
1506   return &Sel;
1507 }
1508 
1509 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
1510                                          Value *FVal,
1511                                          InstCombiner::BuilderTy &Builder) {
1512   if (!Cmp->hasOneUse())
1513     return nullptr;
1514 
1515   const APInt *CmpC;
1516   if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC)))
1517     return nullptr;
1518 
1519   // (X u< 2) ? -X : -1 --> sext (X != 0)
1520   Value *X = Cmp->getOperand(0);
1521   if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
1522       match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
1523     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1524 
1525   // (X u> 1) ? -1 : -X --> sext (X != 0)
1526   if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
1527       match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
1528     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1529 
1530   return nullptr;
1531 }
1532 
1533 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI) {
1534   const APInt *CmpC;
1535   Value *V;
1536   CmpInst::Predicate Pred;
1537   if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC))))
1538     return nullptr;
1539 
1540   BinaryOperator *BO;
1541   const APInt *C;
1542   CmpInst::Predicate CPred;
1543   if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO))))
1544     CPred = ICI->getPredicate();
1545   else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C))))
1546     CPred = ICI->getInversePredicate();
1547   else
1548     return nullptr;
1549 
1550   const APInt *BinOpC;
1551   if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC))))
1552     return nullptr;
1553 
1554   ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC)
1555                         .binaryOp(BO->getOpcode(), *BinOpC);
1556   if (R == *C) {
1557     BO->dropPoisonGeneratingFlags();
1558     return BO;
1559   }
1560   return nullptr;
1561 }
1562 
1563 /// Visit a SelectInst that has an ICmpInst as its first operand.
1564 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1565                                                       ICmpInst *ICI) {
1566   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1567     return NewSel;
1568 
1569   if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this))
1570     return NewSPF;
1571 
1572   if (Value *V = foldSelectInstWithICmpConst(SI, ICI))
1573     return replaceInstUsesWith(SI, V);
1574 
1575   if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1576     return replaceInstUsesWith(SI, V);
1577 
1578   if (Instruction *NewSel =
1579           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1580     return NewSel;
1581 
1582   bool Changed = adjustMinMax(SI, *ICI);
1583 
1584   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1585     return replaceInstUsesWith(SI, V);
1586 
1587   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1588   Value *TrueVal = SI.getTrueValue();
1589   Value *FalseVal = SI.getFalseValue();
1590   ICmpInst::Predicate Pred = ICI->getPredicate();
1591   Value *CmpLHS = ICI->getOperand(0);
1592   Value *CmpRHS = ICI->getOperand(1);
1593   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1594     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1595       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1596       SI.setOperand(1, CmpRHS);
1597       Changed = true;
1598     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1599       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1600       SI.setOperand(2, CmpRHS);
1601       Changed = true;
1602     }
1603   }
1604 
1605   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1606   // decomposeBitTestICmp() might help.
1607   {
1608     unsigned BitWidth =
1609         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1610     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1611     Value *X;
1612     const APInt *Y, *C;
1613     bool TrueWhenUnset;
1614     bool IsBitTest = false;
1615     if (ICmpInst::isEquality(Pred) &&
1616         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1617         match(CmpRHS, m_Zero())) {
1618       IsBitTest = true;
1619       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1620     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1621       X = CmpLHS;
1622       Y = &MinSignedValue;
1623       IsBitTest = true;
1624       TrueWhenUnset = false;
1625     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1626       X = CmpLHS;
1627       Y = &MinSignedValue;
1628       IsBitTest = true;
1629       TrueWhenUnset = true;
1630     }
1631     if (IsBitTest) {
1632       Value *V = nullptr;
1633       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1634       if (TrueWhenUnset && TrueVal == X &&
1635           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1636         V = Builder.CreateAnd(X, ~(*Y));
1637       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1638       else if (!TrueWhenUnset && FalseVal == X &&
1639                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1640         V = Builder.CreateAnd(X, ~(*Y));
1641       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1642       else if (TrueWhenUnset && FalseVal == X &&
1643                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1644         V = Builder.CreateOr(X, *Y);
1645       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1646       else if (!TrueWhenUnset && TrueVal == X &&
1647                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1648         V = Builder.CreateOr(X, *Y);
1649 
1650       if (V)
1651         return replaceInstUsesWith(SI, V);
1652     }
1653   }
1654 
1655   if (Instruction *V =
1656           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1657     return V;
1658 
1659   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1660     return V;
1661 
1662   if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
1663     return V;
1664 
1665   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1666     return replaceInstUsesWith(SI, V);
1667 
1668   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1669     return replaceInstUsesWith(SI, V);
1670 
1671   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1672     return replaceInstUsesWith(SI, V);
1673 
1674   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1675     return replaceInstUsesWith(SI, V);
1676 
1677   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1678     return replaceInstUsesWith(SI, V);
1679 
1680   return Changed ? &SI : nullptr;
1681 }
1682 
1683 /// SI is a select whose condition is a PHI node (but the two may be in
1684 /// different blocks). See if the true/false values (V) are live in all of the
1685 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1686 ///
1687 ///   X = phi [ C1, BB1], [C2, BB2]
1688 ///   Y = add
1689 ///   Z = select X, Y, 0
1690 ///
1691 /// because Y is not live in BB1/BB2.
1692 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1693                                                    const SelectInst &SI) {
1694   // If the value is a non-instruction value like a constant or argument, it
1695   // can always be mapped.
1696   const Instruction *I = dyn_cast<Instruction>(V);
1697   if (!I) return true;
1698 
1699   // If V is a PHI node defined in the same block as the condition PHI, we can
1700   // map the arguments.
1701   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1702 
1703   if (const PHINode *VP = dyn_cast<PHINode>(I))
1704     if (VP->getParent() == CondPHI->getParent())
1705       return true;
1706 
1707   // Otherwise, if the PHI and select are defined in the same block and if V is
1708   // defined in a different block, then we can transform it.
1709   if (SI.getParent() == CondPHI->getParent() &&
1710       I->getParent() != CondPHI->getParent())
1711     return true;
1712 
1713   // Otherwise we have a 'hard' case and we can't tell without doing more
1714   // detailed dominator based analysis, punt.
1715   return false;
1716 }
1717 
1718 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1719 ///   SPF2(SPF1(A, B), C)
1720 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1721                                             SelectPatternFlavor SPF1, Value *A,
1722                                             Value *B, Instruction &Outer,
1723                                             SelectPatternFlavor SPF2,
1724                                             Value *C) {
1725   if (Outer.getType() != Inner->getType())
1726     return nullptr;
1727 
1728   if (C == A || C == B) {
1729     // MAX(MAX(A, B), B) -> MAX(A, B)
1730     // MIN(MIN(a, b), a) -> MIN(a, b)
1731     // TODO: This could be done in instsimplify.
1732     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1733       return replaceInstUsesWith(Outer, Inner);
1734   }
1735 
1736   return nullptr;
1737 }
1738 
1739 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1740 /// This is even legal for FP.
1741 static Instruction *foldAddSubSelect(SelectInst &SI,
1742                                      InstCombiner::BuilderTy &Builder) {
1743   Value *CondVal = SI.getCondition();
1744   Value *TrueVal = SI.getTrueValue();
1745   Value *FalseVal = SI.getFalseValue();
1746   auto *TI = dyn_cast<Instruction>(TrueVal);
1747   auto *FI = dyn_cast<Instruction>(FalseVal);
1748   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1749     return nullptr;
1750 
1751   Instruction *AddOp = nullptr, *SubOp = nullptr;
1752   if ((TI->getOpcode() == Instruction::Sub &&
1753        FI->getOpcode() == Instruction::Add) ||
1754       (TI->getOpcode() == Instruction::FSub &&
1755        FI->getOpcode() == Instruction::FAdd)) {
1756     AddOp = FI;
1757     SubOp = TI;
1758   } else if ((FI->getOpcode() == Instruction::Sub &&
1759               TI->getOpcode() == Instruction::Add) ||
1760              (FI->getOpcode() == Instruction::FSub &&
1761               TI->getOpcode() == Instruction::FAdd)) {
1762     AddOp = TI;
1763     SubOp = FI;
1764   }
1765 
1766   if (AddOp) {
1767     Value *OtherAddOp = nullptr;
1768     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1769       OtherAddOp = AddOp->getOperand(1);
1770     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1771       OtherAddOp = AddOp->getOperand(0);
1772     }
1773 
1774     if (OtherAddOp) {
1775       // So at this point we know we have (Y -> OtherAddOp):
1776       //        select C, (add X, Y), (sub X, Z)
1777       Value *NegVal; // Compute -Z
1778       if (SI.getType()->isFPOrFPVectorTy()) {
1779         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1780         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1781           FastMathFlags Flags = AddOp->getFastMathFlags();
1782           Flags &= SubOp->getFastMathFlags();
1783           NegInst->setFastMathFlags(Flags);
1784         }
1785       } else {
1786         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1787       }
1788 
1789       Value *NewTrueOp = OtherAddOp;
1790       Value *NewFalseOp = NegVal;
1791       if (AddOp != TI)
1792         std::swap(NewTrueOp, NewFalseOp);
1793       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1794                                            SI.getName() + ".p", &SI);
1795 
1796       if (SI.getType()->isFPOrFPVectorTy()) {
1797         Instruction *RI =
1798             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1799 
1800         FastMathFlags Flags = AddOp->getFastMathFlags();
1801         Flags &= SubOp->getFastMathFlags();
1802         RI->setFastMathFlags(Flags);
1803         return RI;
1804       } else
1805         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1806     }
1807   }
1808   return nullptr;
1809 }
1810 
1811 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1812 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1813 /// Along with a number of patterns similar to:
1814 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1815 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1816 static Instruction *
1817 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1818   Value *CondVal = SI.getCondition();
1819   Value *TrueVal = SI.getTrueValue();
1820   Value *FalseVal = SI.getFalseValue();
1821 
1822   WithOverflowInst *II;
1823   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1824       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1825     return nullptr;
1826 
1827   Value *X = II->getLHS();
1828   Value *Y = II->getRHS();
1829 
1830   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1831     Type *Ty = Limit->getType();
1832 
1833     ICmpInst::Predicate Pred;
1834     Value *TrueVal, *FalseVal, *Op;
1835     const APInt *C;
1836     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1837                                m_Value(TrueVal), m_Value(FalseVal))))
1838       return false;
1839 
1840     auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1841     auto IsMinMax = [&](Value *Min, Value *Max) {
1842       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1843       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1844       return match(Min, m_SpecificInt(MinVal)) &&
1845              match(Max, m_SpecificInt(MaxVal));
1846     };
1847 
1848     if (Op != X && Op != Y)
1849       return false;
1850 
1851     if (IsAdd) {
1852       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1853       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1854       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1855       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1856       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1857           IsMinMax(TrueVal, FalseVal))
1858         return true;
1859       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1860       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1861       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1862       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1863       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1864           IsMinMax(FalseVal, TrueVal))
1865         return true;
1866     } else {
1867       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1868       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1869       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1870           IsMinMax(TrueVal, FalseVal))
1871         return true;
1872       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1873       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1874       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1875           IsMinMax(FalseVal, TrueVal))
1876         return true;
1877       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1878       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1879       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1880           IsMinMax(FalseVal, TrueVal))
1881         return true;
1882       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1883       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1884       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1885           IsMinMax(TrueVal, FalseVal))
1886         return true;
1887     }
1888 
1889     return false;
1890   };
1891 
1892   Intrinsic::ID NewIntrinsicID;
1893   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1894       match(TrueVal, m_AllOnes()))
1895     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1896     NewIntrinsicID = Intrinsic::uadd_sat;
1897   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1898            match(TrueVal, m_Zero()))
1899     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1900     NewIntrinsicID = Intrinsic::usub_sat;
1901   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1902            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1903     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1904     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1905     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1906     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1907     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1908     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1909     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1910     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1911     NewIntrinsicID = Intrinsic::sadd_sat;
1912   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1913            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1914     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1915     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1916     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1917     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1918     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1919     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1920     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1921     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1922     NewIntrinsicID = Intrinsic::ssub_sat;
1923   else
1924     return nullptr;
1925 
1926   Function *F =
1927       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1928   return CallInst::Create(F, {X, Y});
1929 }
1930 
1931 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
1932   Constant *C;
1933   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1934       !match(Sel.getFalseValue(), m_Constant(C)))
1935     return nullptr;
1936 
1937   Instruction *ExtInst;
1938   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1939       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1940     return nullptr;
1941 
1942   auto ExtOpcode = ExtInst->getOpcode();
1943   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1944     return nullptr;
1945 
1946   // If we are extending from a boolean type or if we can create a select that
1947   // has the same size operands as its condition, try to narrow the select.
1948   Value *X = ExtInst->getOperand(0);
1949   Type *SmallType = X->getType();
1950   Value *Cond = Sel.getCondition();
1951   auto *Cmp = dyn_cast<CmpInst>(Cond);
1952   if (!SmallType->isIntOrIntVectorTy(1) &&
1953       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1954     return nullptr;
1955 
1956   // If the constant is the same after truncation to the smaller type and
1957   // extension to the original type, we can narrow the select.
1958   Type *SelType = Sel.getType();
1959   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1960   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1961   if (ExtC == C && ExtInst->hasOneUse()) {
1962     Value *TruncCVal = cast<Value>(TruncC);
1963     if (ExtInst == Sel.getFalseValue())
1964       std::swap(X, TruncCVal);
1965 
1966     // select Cond, (ext X), C --> ext(select Cond, X, C')
1967     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1968     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1969     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1970   }
1971 
1972   // If one arm of the select is the extend of the condition, replace that arm
1973   // with the extension of the appropriate known bool value.
1974   if (Cond == X) {
1975     if (ExtInst == Sel.getTrueValue()) {
1976       // select X, (sext X), C --> select X, -1, C
1977       // select X, (zext X), C --> select X,  1, C
1978       Constant *One = ConstantInt::getTrue(SmallType);
1979       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1980       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1981     } else {
1982       // select X, C, (sext X) --> select X, C, 0
1983       // select X, C, (zext X) --> select X, C, 0
1984       Constant *Zero = ConstantInt::getNullValue(SelType);
1985       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1986     }
1987   }
1988 
1989   return nullptr;
1990 }
1991 
1992 /// Try to transform a vector select with a constant condition vector into a
1993 /// shuffle for easier combining with other shuffles and insert/extract.
1994 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1995   Value *CondVal = SI.getCondition();
1996   Constant *CondC;
1997   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
1998   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
1999     return nullptr;
2000 
2001   unsigned NumElts = CondValTy->getNumElements();
2002   SmallVector<int, 16> Mask;
2003   Mask.reserve(NumElts);
2004   for (unsigned i = 0; i != NumElts; ++i) {
2005     Constant *Elt = CondC->getAggregateElement(i);
2006     if (!Elt)
2007       return nullptr;
2008 
2009     if (Elt->isOneValue()) {
2010       // If the select condition element is true, choose from the 1st vector.
2011       Mask.push_back(i);
2012     } else if (Elt->isNullValue()) {
2013       // If the select condition element is false, choose from the 2nd vector.
2014       Mask.push_back(i + NumElts);
2015     } else if (isa<UndefValue>(Elt)) {
2016       // Undef in a select condition (choose one of the operands) does not mean
2017       // the same thing as undef in a shuffle mask (any value is acceptable), so
2018       // give up.
2019       return nullptr;
2020     } else {
2021       // Bail out on a constant expression.
2022       return nullptr;
2023     }
2024   }
2025 
2026   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2027 }
2028 
2029 /// If we have a select of vectors with a scalar condition, try to convert that
2030 /// to a vector select by splatting the condition. A splat may get folded with
2031 /// other operations in IR and having all operands of a select be vector types
2032 /// is likely better for vector codegen.
2033 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2034                                                    InstCombinerImpl &IC) {
2035   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2036   if (!Ty)
2037     return nullptr;
2038 
2039   // We can replace a single-use extract with constant index.
2040   Value *Cond = Sel.getCondition();
2041   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2042     return nullptr;
2043 
2044   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2045   // Splatting the extracted condition reduces code (we could directly create a
2046   // splat shuffle of the source vector to eliminate the intermediate step).
2047   return IC.replaceOperand(
2048       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2049 }
2050 
2051 /// Reuse bitcasted operands between a compare and select:
2052 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2053 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2054 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2055                                           InstCombiner::BuilderTy &Builder) {
2056   Value *Cond = Sel.getCondition();
2057   Value *TVal = Sel.getTrueValue();
2058   Value *FVal = Sel.getFalseValue();
2059 
2060   CmpInst::Predicate Pred;
2061   Value *A, *B;
2062   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2063     return nullptr;
2064 
2065   // The select condition is a compare instruction. If the select's true/false
2066   // values are already the same as the compare operands, there's nothing to do.
2067   if (TVal == A || TVal == B || FVal == A || FVal == B)
2068     return nullptr;
2069 
2070   Value *C, *D;
2071   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2072     return nullptr;
2073 
2074   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2075   Value *TSrc, *FSrc;
2076   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2077       !match(FVal, m_BitCast(m_Value(FSrc))))
2078     return nullptr;
2079 
2080   // If the select true/false values are *different bitcasts* of the same source
2081   // operands, make the select operands the same as the compare operands and
2082   // cast the result. This is the canonical select form for min/max.
2083   Value *NewSel;
2084   if (TSrc == C && FSrc == D) {
2085     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2086     // bitcast (select (cmp A, B), A, B)
2087     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2088   } else if (TSrc == D && FSrc == C) {
2089     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2090     // bitcast (select (cmp A, B), B, A)
2091     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2092   } else {
2093     return nullptr;
2094   }
2095   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2096 }
2097 
2098 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2099 /// instructions.
2100 ///
2101 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2102 /// selects between the returned value of the cmpxchg instruction its compare
2103 /// operand, the result of the select will always be equal to its false value.
2104 /// For example:
2105 ///
2106 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2107 ///   %1 = extractvalue { i64, i1 } %0, 1
2108 ///   %2 = extractvalue { i64, i1 } %0, 0
2109 ///   %3 = select i1 %1, i64 %compare, i64 %2
2110 ///   ret i64 %3
2111 ///
2112 /// The returned value of the cmpxchg instruction (%2) is the original value
2113 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2114 /// must have been equal to %compare. Thus, the result of the select is always
2115 /// equal to %2, and the code can be simplified to:
2116 ///
2117 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2118 ///   %1 = extractvalue { i64, i1 } %0, 0
2119 ///   ret i64 %1
2120 ///
2121 static Value *foldSelectCmpXchg(SelectInst &SI) {
2122   // A helper that determines if V is an extractvalue instruction whose
2123   // aggregate operand is a cmpxchg instruction and whose single index is equal
2124   // to I. If such conditions are true, the helper returns the cmpxchg
2125   // instruction; otherwise, a nullptr is returned.
2126   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2127     auto *Extract = dyn_cast<ExtractValueInst>(V);
2128     if (!Extract)
2129       return nullptr;
2130     if (Extract->getIndices()[0] != I)
2131       return nullptr;
2132     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2133   };
2134 
2135   // If the select has a single user, and this user is a select instruction that
2136   // we can simplify, skip the cmpxchg simplification for now.
2137   if (SI.hasOneUse())
2138     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2139       if (Select->getCondition() == SI.getCondition())
2140         if (Select->getFalseValue() == SI.getTrueValue() ||
2141             Select->getTrueValue() == SI.getFalseValue())
2142           return nullptr;
2143 
2144   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2145   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2146   if (!CmpXchg)
2147     return nullptr;
2148 
2149   // Check the true value case: The true value of the select is the returned
2150   // value of the same cmpxchg used by the condition, and the false value is the
2151   // cmpxchg instruction's compare operand.
2152   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2153     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2154       return SI.getFalseValue();
2155 
2156   // Check the false value case: The false value of the select is the returned
2157   // value of the same cmpxchg used by the condition, and the true value is the
2158   // cmpxchg instruction's compare operand.
2159   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2160     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2161       return SI.getFalseValue();
2162 
2163   return nullptr;
2164 }
2165 
2166 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2167 /// into a funnel shift intrinsic. Example:
2168 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2169 ///              --> call llvm.fshl.i32(a, a, b)
2170 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2171 ///                 --> call llvm.fshl.i32(a, b, c)
2172 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2173 ///                 --> call llvm.fshr.i32(a, b, c)
2174 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2175                                           InstCombiner::BuilderTy &Builder) {
2176   // This must be a power-of-2 type for a bitmasking transform to be valid.
2177   unsigned Width = Sel.getType()->getScalarSizeInBits();
2178   if (!isPowerOf2_32(Width))
2179     return nullptr;
2180 
2181   BinaryOperator *Or0, *Or1;
2182   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2183     return nullptr;
2184 
2185   Value *SV0, *SV1, *SA0, *SA1;
2186   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2187                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2188       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2189                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2190       Or0->getOpcode() == Or1->getOpcode())
2191     return nullptr;
2192 
2193   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2194   if (Or0->getOpcode() == BinaryOperator::LShr) {
2195     std::swap(Or0, Or1);
2196     std::swap(SV0, SV1);
2197     std::swap(SA0, SA1);
2198   }
2199   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2200          Or1->getOpcode() == BinaryOperator::LShr &&
2201          "Illegal or(shift,shift) pair");
2202 
2203   // Check the shift amounts to see if they are an opposite pair.
2204   Value *ShAmt;
2205   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2206     ShAmt = SA0;
2207   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2208     ShAmt = SA1;
2209   else
2210     return nullptr;
2211 
2212   // We should now have this pattern:
2213   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2214   // The false value of the select must be a funnel-shift of the true value:
2215   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2216   bool IsFshl = (ShAmt == SA0);
2217   Value *TVal = Sel.getTrueValue();
2218   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2219     return nullptr;
2220 
2221   // Finally, see if the select is filtering out a shift-by-zero.
2222   Value *Cond = Sel.getCondition();
2223   ICmpInst::Predicate Pred;
2224   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2225       Pred != ICmpInst::ICMP_EQ)
2226     return nullptr;
2227 
2228   // If this is not a rotate then the select was blocking poison from the
2229   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2230   if (SV0 != SV1) {
2231     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2232       SV1 = Builder.CreateFreeze(SV1);
2233     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2234       SV0 = Builder.CreateFreeze(SV0);
2235   }
2236 
2237   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2238   // Convert to funnel shift intrinsic.
2239   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2240   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2241   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2242   return CallInst::Create(F, { SV0, SV1, ShAmt });
2243 }
2244 
2245 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2246                                          InstCombiner::BuilderTy &Builder) {
2247   Value *Cond = Sel.getCondition();
2248   Value *TVal = Sel.getTrueValue();
2249   Value *FVal = Sel.getFalseValue();
2250   Type *SelType = Sel.getType();
2251 
2252   // Match select ?, TC, FC where the constants are equal but negated.
2253   // TODO: Generalize to handle a negated variable operand?
2254   const APFloat *TC, *FC;
2255   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2256       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2257     return nullptr;
2258 
2259   assert(TC != FC && "Expected equal select arms to simplify");
2260 
2261   Value *X;
2262   const APInt *C;
2263   bool IsTrueIfSignSet;
2264   ICmpInst::Predicate Pred;
2265   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2266       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2267       X->getType() != SelType)
2268     return nullptr;
2269 
2270   // If needed, negate the value that will be the sign argument of the copysign:
2271   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2272   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2273   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2274   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2275   // Note: FMF from the select can not be propagated to the new instructions.
2276   if (IsTrueIfSignSet ^ TC->isNegative())
2277     X = Builder.CreateFNeg(X);
2278 
2279   // Canonicalize the magnitude argument as the positive constant since we do
2280   // not care about its sign.
2281   Value *MagArg = TC->isNegative() ? FVal : TVal;
2282   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2283                                           Sel.getType());
2284   return CallInst::Create(F, { MagArg, X });
2285 }
2286 
2287 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2288   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2289   if (!VecTy)
2290     return nullptr;
2291 
2292   unsigned NumElts = VecTy->getNumElements();
2293   APInt UndefElts(NumElts, 0);
2294   APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2295   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2296     if (V != &Sel)
2297       return replaceInstUsesWith(Sel, V);
2298     return &Sel;
2299   }
2300 
2301   // A select of a "select shuffle" with a common operand can be rearranged
2302   // to select followed by "select shuffle". Because of poison, this only works
2303   // in the case of a shuffle with no undefined mask elements.
2304   Value *Cond = Sel.getCondition();
2305   Value *TVal = Sel.getTrueValue();
2306   Value *FVal = Sel.getFalseValue();
2307   Value *X, *Y;
2308   ArrayRef<int> Mask;
2309   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2310       !is_contained(Mask, UndefMaskElem) &&
2311       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2312     if (X == FVal) {
2313       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2314       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2315       return new ShuffleVectorInst(X, NewSel, Mask);
2316     }
2317     if (Y == FVal) {
2318       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2319       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2320       return new ShuffleVectorInst(NewSel, Y, Mask);
2321     }
2322   }
2323   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2324       !is_contained(Mask, UndefMaskElem) &&
2325       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2326     if (X == TVal) {
2327       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2328       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2329       return new ShuffleVectorInst(X, NewSel, Mask);
2330     }
2331     if (Y == TVal) {
2332       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2333       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2334       return new ShuffleVectorInst(NewSel, Y, Mask);
2335     }
2336   }
2337 
2338   return nullptr;
2339 }
2340 
2341 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2342                                         const DominatorTree &DT,
2343                                         InstCombiner::BuilderTy &Builder) {
2344   // Find the block's immediate dominator that ends with a conditional branch
2345   // that matches select's condition (maybe inverted).
2346   auto *IDomNode = DT[BB]->getIDom();
2347   if (!IDomNode)
2348     return nullptr;
2349   BasicBlock *IDom = IDomNode->getBlock();
2350 
2351   Value *Cond = Sel.getCondition();
2352   Value *IfTrue, *IfFalse;
2353   BasicBlock *TrueSucc, *FalseSucc;
2354   if (match(IDom->getTerminator(),
2355             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2356                  m_BasicBlock(FalseSucc)))) {
2357     IfTrue = Sel.getTrueValue();
2358     IfFalse = Sel.getFalseValue();
2359   } else if (match(IDom->getTerminator(),
2360                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2361                         m_BasicBlock(FalseSucc)))) {
2362     IfTrue = Sel.getFalseValue();
2363     IfFalse = Sel.getTrueValue();
2364   } else
2365     return nullptr;
2366 
2367   // Make sure the branches are actually different.
2368   if (TrueSucc == FalseSucc)
2369     return nullptr;
2370 
2371   // We want to replace select %cond, %a, %b with a phi that takes value %a
2372   // for all incoming edges that are dominated by condition `%cond == true`,
2373   // and value %b for edges dominated by condition `%cond == false`. If %a
2374   // or %b are also phis from the same basic block, we can go further and take
2375   // their incoming values from the corresponding blocks.
2376   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2377   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2378   DenseMap<BasicBlock *, Value *> Inputs;
2379   for (auto *Pred : predecessors(BB)) {
2380     // Check implication.
2381     BasicBlockEdge Incoming(Pred, BB);
2382     if (DT.dominates(TrueEdge, Incoming))
2383       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2384     else if (DT.dominates(FalseEdge, Incoming))
2385       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2386     else
2387       return nullptr;
2388     // Check availability.
2389     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2390       if (!DT.dominates(Insn, Pred->getTerminator()))
2391         return nullptr;
2392   }
2393 
2394   Builder.SetInsertPoint(&*BB->begin());
2395   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2396   for (auto *Pred : predecessors(BB))
2397     PN->addIncoming(Inputs[Pred], Pred);
2398   PN->takeName(&Sel);
2399   return PN;
2400 }
2401 
2402 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2403                                     InstCombiner::BuilderTy &Builder) {
2404   // Try to replace this select with Phi in one of these blocks.
2405   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2406   CandidateBlocks.insert(Sel.getParent());
2407   for (Value *V : Sel.operands())
2408     if (auto *I = dyn_cast<Instruction>(V))
2409       CandidateBlocks.insert(I->getParent());
2410 
2411   for (BasicBlock *BB : CandidateBlocks)
2412     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2413       return PN;
2414   return nullptr;
2415 }
2416 
2417 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2418   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2419   if (!FI)
2420     return nullptr;
2421 
2422   Value *Cond = FI->getOperand(0);
2423   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2424 
2425   //   select (freeze(x == y)), x, y --> y
2426   //   select (freeze(x != y)), x, y --> x
2427   // The freeze should be only used by this select. Otherwise, remaining uses of
2428   // the freeze can observe a contradictory value.
2429   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2430   //   a = select c, x, y   ;
2431   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2432   //                        ; to y, this can happen.
2433   CmpInst::Predicate Pred;
2434   if (FI->hasOneUse() &&
2435       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2436       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2437     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2438   }
2439 
2440   return nullptr;
2441 }
2442 
2443 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2444                                                                  SelectInst &SI,
2445                                                                  bool IsAnd) {
2446   Value *CondVal = SI.getCondition();
2447   Value *A = SI.getTrueValue();
2448   Value *B = SI.getFalseValue();
2449 
2450   assert(Op->getType()->isIntOrIntVectorTy(1) &&
2451          "Op must be either i1 or vector of i1.");
2452 
2453   Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2454   if (!Res)
2455     return nullptr;
2456 
2457   Value *Zero = Constant::getNullValue(A->getType());
2458   Value *One = Constant::getAllOnesValue(A->getType());
2459 
2460   if (*Res == true) {
2461     if (IsAnd)
2462       // select op, (select cond, A, B), false => select op, A, false
2463       // and    op, (select cond, A, B)        => select op, A, false
2464       //   if op = true implies condval = true.
2465       return SelectInst::Create(Op, A, Zero);
2466     else
2467       // select op, true, (select cond, A, B) => select op, true, A
2468       // or     op, (select cond, A, B)       => select op, true, A
2469       //   if op = false implies condval = true.
2470       return SelectInst::Create(Op, One, A);
2471   } else {
2472     if (IsAnd)
2473       // select op, (select cond, A, B), false => select op, B, false
2474       // and    op, (select cond, A, B)        => select op, B, false
2475       //   if op = true implies condval = false.
2476       return SelectInst::Create(Op, B, Zero);
2477     else
2478       // select op, true, (select cond, A, B) => select op, true, B
2479       // or     op, (select cond, A, B)       => select op, true, B
2480       //   if op = false implies condval = false.
2481       return SelectInst::Create(Op, One, B);
2482   }
2483 }
2484 
2485 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2486   Value *CondVal = SI.getCondition();
2487   Value *TrueVal = SI.getTrueValue();
2488   Value *FalseVal = SI.getFalseValue();
2489   Type *SelType = SI.getType();
2490 
2491   // FIXME: Remove this workaround when freeze related patches are done.
2492   // For select with undef operand which feeds into an equality comparison,
2493   // don't simplify it so loop unswitch can know the equality comparison
2494   // may have an undef operand. This is a workaround for PR31652 caused by
2495   // descrepancy about branch on undef between LoopUnswitch and GVN.
2496   if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) {
2497     if (llvm::any_of(SI.users(), [&](User *U) {
2498           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2499           if (CI && CI->isEquality())
2500             return true;
2501           return false;
2502         })) {
2503       return nullptr;
2504     }
2505   }
2506 
2507   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2508                                     SQ.getWithInstruction(&SI)))
2509     return replaceInstUsesWith(SI, V);
2510 
2511   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2512     return I;
2513 
2514   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2515     return I;
2516 
2517   CmpInst::Predicate Pred;
2518 
2519   // Avoid potential infinite loops by checking for non-constant condition.
2520   // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2521   //       Scalar select must have simplified?
2522   if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) &&
2523       TrueVal->getType() == CondVal->getType()) {
2524     // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2525     // checks whether folding it does not convert a well-defined value into
2526     // poison.
2527     if (match(TrueVal, m_One())) {
2528       if (impliesPoison(FalseVal, CondVal)) {
2529         // Change: A = select B, true, C --> A = or B, C
2530         return BinaryOperator::CreateOr(CondVal, FalseVal);
2531       }
2532 
2533       if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2534         if (auto *RHS = dyn_cast<FCmpInst>(FalseVal))
2535           if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false,
2536                                           /*IsSelectLogical*/ true))
2537             return replaceInstUsesWith(SI, V);
2538     }
2539     if (match(FalseVal, m_Zero())) {
2540       if (impliesPoison(TrueVal, CondVal)) {
2541         // Change: A = select B, C, false --> A = and B, C
2542         return BinaryOperator::CreateAnd(CondVal, TrueVal);
2543       }
2544 
2545       if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2546         if (auto *RHS = dyn_cast<FCmpInst>(TrueVal))
2547           if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true,
2548                                           /*IsSelectLogical*/ true))
2549             return replaceInstUsesWith(SI, V);
2550     }
2551 
2552     auto *One = ConstantInt::getTrue(SelType);
2553     auto *Zero = ConstantInt::getFalse(SelType);
2554 
2555     // We match the "full" 0 or 1 constant here to avoid a potential infinite
2556     // loop with vectors that may have undefined/poison elements.
2557     // select a, false, b -> select !a, b, false
2558     if (match(TrueVal, m_Specific(Zero))) {
2559       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2560       return SelectInst::Create(NotCond, FalseVal, Zero);
2561     }
2562     // select a, b, true -> select !a, true, b
2563     if (match(FalseVal, m_Specific(One))) {
2564       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2565       return SelectInst::Create(NotCond, One, TrueVal);
2566     }
2567 
2568     // select a, a, b -> select a, true, b
2569     if (CondVal == TrueVal)
2570       return replaceOperand(SI, 1, One);
2571     // select a, b, a -> select a, b, false
2572     if (CondVal == FalseVal)
2573       return replaceOperand(SI, 2, Zero);
2574 
2575     // select a, !a, b -> select !a, b, false
2576     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2577       return SelectInst::Create(TrueVal, FalseVal, Zero);
2578     // select a, b, !a -> select !a, true, b
2579     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2580       return SelectInst::Create(FalseVal, One, TrueVal);
2581 
2582     Value *A, *B;
2583 
2584     // DeMorgan in select form: !a && !b --> !(a || b)
2585     // select !a, !b, false --> not (select a, true, b)
2586     if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2587         (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
2588         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2589       return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
2590 
2591     // DeMorgan in select form: !a || !b --> !(a && b)
2592     // select !a, true, !b --> not (select a, b, false)
2593     if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2594         (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
2595         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2596       return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
2597 
2598     // select (select a, true, b), true, b -> select a, true, b
2599     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2600         match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
2601       return replaceOperand(SI, 0, A);
2602     // select (select a, b, false), b, false -> select a, b, false
2603     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2604         match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
2605       return replaceOperand(SI, 0, A);
2606 
2607     Value *C;
2608     // select (~a | c), a, b -> and a, (or c, freeze(b))
2609     if (match(CondVal, m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))) &&
2610         CondVal->hasOneUse()) {
2611       FalseVal = Builder.CreateFreeze(FalseVal);
2612       return BinaryOperator::CreateAnd(TrueVal, Builder.CreateOr(C, FalseVal));
2613     }
2614     // select (~c & b), a, b -> and b, (or freeze(a), c)
2615     if (match(CondVal, m_c_And(m_Not(m_Value(C)), m_Specific(FalseVal))) &&
2616         CondVal->hasOneUse()) {
2617       TrueVal = Builder.CreateFreeze(TrueVal);
2618       return BinaryOperator::CreateAnd(FalseVal, Builder.CreateOr(C, TrueVal));
2619     }
2620 
2621     if (!SelType->isVectorTy()) {
2622       if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ,
2623                                             /* AllowRefinement */ true))
2624         return replaceOperand(SI, 1, S);
2625       if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
2626                                             /* AllowRefinement */ true))
2627         return replaceOperand(SI, 2, S);
2628     }
2629 
2630     if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
2631       Use *Y = nullptr;
2632       bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
2633       Value *Op1 = IsAnd ? TrueVal : FalseVal;
2634       if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
2635         auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
2636         InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
2637         replaceUse(*Y, FI);
2638         return replaceInstUsesWith(SI, Op1);
2639       }
2640 
2641       if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
2642         if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
2643                                                         /* IsAnd */ IsAnd))
2644           return I;
2645 
2646       if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) {
2647         if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) {
2648           if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd,
2649                                                       /* IsLogical */ true))
2650             return replaceInstUsesWith(SI, V);
2651 
2652           if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd))
2653             return replaceInstUsesWith(SI, V);
2654         }
2655       }
2656     }
2657 
2658     // select (select a, true, b), c, false -> select a, c, false
2659     // select c, (select a, true, b), false -> select c, a, false
2660     //   if c implies that b is false.
2661     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2662         match(FalseVal, m_Zero())) {
2663       Optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
2664       if (Res && *Res == false)
2665         return replaceOperand(SI, 0, A);
2666     }
2667     if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2668         match(FalseVal, m_Zero())) {
2669       Optional<bool> Res = isImpliedCondition(CondVal, B, DL);
2670       if (Res && *Res == false)
2671         return replaceOperand(SI, 1, A);
2672     }
2673     // select c, true, (select a, b, false)  -> select c, true, a
2674     // select (select a, b, false), true, c  -> select a, true, c
2675     //   if c = false implies that b = true
2676     if (match(TrueVal, m_One()) &&
2677         match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) {
2678       Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
2679       if (Res && *Res == true)
2680         return replaceOperand(SI, 2, A);
2681     }
2682     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2683         match(TrueVal, m_One())) {
2684       Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
2685       if (Res && *Res == true)
2686         return replaceOperand(SI, 0, A);
2687     }
2688 
2689     // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
2690     // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
2691     Value *C1, *C2;
2692     if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) &&
2693         match(TrueVal, m_One()) &&
2694         match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) {
2695       if (match(C2, m_Not(m_Specific(C1)))) // first case
2696         return SelectInst::Create(C1, A, B);
2697       else if (match(C1, m_Not(m_Specific(C2)))) // second case
2698         return SelectInst::Create(C2, B, A);
2699     }
2700   }
2701 
2702   // Selecting between two integer or vector splat integer constants?
2703   //
2704   // Note that we don't handle a scalar select of vectors:
2705   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2706   // because that may need 3 instructions to splat the condition value:
2707   // extend, insertelement, shufflevector.
2708   //
2709   // Do not handle i1 TrueVal and FalseVal otherwise would result in
2710   // zext/sext i1 to i1.
2711   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
2712       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2713     // select C, 1, 0 -> zext C to int
2714     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2715       return new ZExtInst(CondVal, SelType);
2716 
2717     // select C, -1, 0 -> sext C to int
2718     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2719       return new SExtInst(CondVal, SelType);
2720 
2721     // select C, 0, 1 -> zext !C to int
2722     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2723       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2724       return new ZExtInst(NotCond, SelType);
2725     }
2726 
2727     // select C, 0, -1 -> sext !C to int
2728     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2729       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2730       return new SExtInst(NotCond, SelType);
2731     }
2732   }
2733 
2734   if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
2735     Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
2736     // Are we selecting a value based on a comparison of the two values?
2737     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2738         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2739       // Canonicalize to use ordered comparisons by swapping the select
2740       // operands.
2741       //
2742       // e.g.
2743       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2744       if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
2745         FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
2746         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2747         // FIXME: The FMF should propagate from the select, not the fcmp.
2748         Builder.setFastMathFlags(FCmp->getFastMathFlags());
2749         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2750                                             FCmp->getName() + ".inv");
2751         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2752         return replaceInstUsesWith(SI, NewSel);
2753       }
2754 
2755       // NOTE: if we wanted to, this is where to detect MIN/MAX
2756     }
2757   }
2758 
2759   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2760   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2761   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2762   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2763       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2764       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2765     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2766     return replaceInstUsesWith(SI, Fabs);
2767   }
2768   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2769   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2770       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2771       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2772     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2773     return replaceInstUsesWith(SI, Fabs);
2774   }
2775   // With nnan and nsz:
2776   // (X <  +/-0.0) ? -X : X --> fabs(X)
2777   // (X <= +/-0.0) ? -X : X --> fabs(X)
2778   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2779       match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() &&
2780       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2781        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2782     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2783     return replaceInstUsesWith(SI, Fabs);
2784   }
2785   // With nnan and nsz:
2786   // (X >  +/-0.0) ? X : -X --> fabs(X)
2787   // (X >= +/-0.0) ? X : -X --> fabs(X)
2788   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2789       match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() &&
2790       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2791        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2792     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2793     return replaceInstUsesWith(SI, Fabs);
2794   }
2795 
2796   // See if we are selecting two values based on a comparison of the two values.
2797   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2798     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2799       return Result;
2800 
2801   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2802     return Add;
2803   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2804     return Add;
2805   if (Instruction *Or = foldSetClearBits(SI, Builder))
2806     return Or;
2807   if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
2808     return Mul;
2809 
2810   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2811   auto *TI = dyn_cast<Instruction>(TrueVal);
2812   auto *FI = dyn_cast<Instruction>(FalseVal);
2813   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2814     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2815       return IV;
2816 
2817   if (Instruction *I = foldSelectExtConst(SI))
2818     return I;
2819 
2820   // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
2821   // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
2822   auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
2823                                bool Swap) -> GetElementPtrInst * {
2824     Value *Ptr = Gep->getPointerOperand();
2825     if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
2826         !Gep->hasOneUse())
2827       return nullptr;
2828     Value *Idx = Gep->getOperand(1);
2829     if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
2830       return nullptr;
2831     Type *ElementType = Gep->getResultElementType();
2832     Value *NewT = Idx;
2833     Value *NewF = Constant::getNullValue(Idx->getType());
2834     if (Swap)
2835       std::swap(NewT, NewF);
2836     Value *NewSI =
2837         Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
2838     return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
2839   };
2840   if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
2841     if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
2842       return NewGep;
2843   if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
2844     if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
2845       return NewGep;
2846 
2847   // See if we can fold the select into one of our operands.
2848   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2849     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2850       return FoldI;
2851 
2852     Value *LHS, *RHS;
2853     Instruction::CastOps CastOp;
2854     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2855     auto SPF = SPR.Flavor;
2856     if (SPF) {
2857       Value *LHS2, *RHS2;
2858       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2859         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2860                                           RHS2, SI, SPF, RHS))
2861           return R;
2862       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2863         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2864                                           RHS2, SI, SPF, LHS))
2865           return R;
2866     }
2867 
2868     if (SelectPatternResult::isMinOrMax(SPF)) {
2869       // Canonicalize so that
2870       // - type casts are outside select patterns.
2871       // - float clamp is transformed to min/max pattern
2872 
2873       bool IsCastNeeded = LHS->getType() != SelType;
2874       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2875       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2876       if (IsCastNeeded ||
2877           (LHS->getType()->isFPOrFPVectorTy() &&
2878            ((CmpLHS != LHS && CmpLHS != RHS) ||
2879             (CmpRHS != LHS && CmpRHS != RHS)))) {
2880         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2881 
2882         Value *Cmp;
2883         if (CmpInst::isIntPredicate(MinMaxPred)) {
2884           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2885         } else {
2886           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2887           auto FMF =
2888               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2889           Builder.setFastMathFlags(FMF);
2890           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2891         }
2892 
2893         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2894         if (!IsCastNeeded)
2895           return replaceInstUsesWith(SI, NewSI);
2896 
2897         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2898         return replaceInstUsesWith(SI, NewCast);
2899       }
2900     }
2901   }
2902 
2903   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2904   // minnum/maxnum intrinsics.
2905   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2906     Value *X, *Y;
2907     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2908       return replaceInstUsesWith(
2909           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2910 
2911     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2912       return replaceInstUsesWith(
2913           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2914   }
2915 
2916   // See if we can fold the select into a phi node if the condition is a select.
2917   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2918     // The true/false values have to be live in the PHI predecessor's blocks.
2919     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2920         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2921       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2922         return NV;
2923 
2924   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2925     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2926       // select(C, select(C, a, b), c) -> select(C, a, c)
2927       if (TrueSI->getCondition() == CondVal) {
2928         if (SI.getTrueValue() == TrueSI->getTrueValue())
2929           return nullptr;
2930         return replaceOperand(SI, 1, TrueSI->getTrueValue());
2931       }
2932       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2933       // We choose this as normal form to enable folding on the And and
2934       // shortening paths for the values (this helps getUnderlyingObjects() for
2935       // example).
2936       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2937         Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
2938         replaceOperand(SI, 0, And);
2939         replaceOperand(SI, 1, TrueSI->getTrueValue());
2940         return &SI;
2941       }
2942     }
2943   }
2944   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2945     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2946       // select(C, a, select(C, b, c)) -> select(C, a, c)
2947       if (FalseSI->getCondition() == CondVal) {
2948         if (SI.getFalseValue() == FalseSI->getFalseValue())
2949           return nullptr;
2950         return replaceOperand(SI, 2, FalseSI->getFalseValue());
2951       }
2952       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2953       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2954         Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
2955         replaceOperand(SI, 0, Or);
2956         replaceOperand(SI, 2, FalseSI->getFalseValue());
2957         return &SI;
2958       }
2959     }
2960   }
2961 
2962   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2963     // The select might be preventing a division by 0.
2964     switch (BO->getOpcode()) {
2965     default:
2966       return true;
2967     case Instruction::SRem:
2968     case Instruction::URem:
2969     case Instruction::SDiv:
2970     case Instruction::UDiv:
2971       return false;
2972     }
2973   };
2974 
2975   // Try to simplify a binop sandwiched between 2 selects with the same
2976   // condition.
2977   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2978   BinaryOperator *TrueBO;
2979   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2980       canMergeSelectThroughBinop(TrueBO)) {
2981     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2982       if (TrueBOSI->getCondition() == CondVal) {
2983         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
2984         Worklist.push(TrueBO);
2985         return &SI;
2986       }
2987     }
2988     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2989       if (TrueBOSI->getCondition() == CondVal) {
2990         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
2991         Worklist.push(TrueBO);
2992         return &SI;
2993       }
2994     }
2995   }
2996 
2997   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2998   BinaryOperator *FalseBO;
2999   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
3000       canMergeSelectThroughBinop(FalseBO)) {
3001     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3002       if (FalseBOSI->getCondition() == CondVal) {
3003         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3004         Worklist.push(FalseBO);
3005         return &SI;
3006       }
3007     }
3008     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3009       if (FalseBOSI->getCondition() == CondVal) {
3010         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3011         Worklist.push(FalseBO);
3012         return &SI;
3013       }
3014     }
3015   }
3016 
3017   Value *NotCond;
3018   if (match(CondVal, m_Not(m_Value(NotCond))) &&
3019       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3020     replaceOperand(SI, 0, NotCond);
3021     SI.swapValues();
3022     SI.swapProfMetadata();
3023     return &SI;
3024   }
3025 
3026   if (Instruction *I = foldVectorSelect(SI))
3027     return I;
3028 
3029   // If we can compute the condition, there's no need for a select.
3030   // Like the above fold, we are attempting to reduce compile-time cost by
3031   // putting this fold here with limitations rather than in InstSimplify.
3032   // The motivation for this call into value tracking is to take advantage of
3033   // the assumption cache, so make sure that is populated.
3034   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3035     KnownBits Known(1);
3036     computeKnownBits(CondVal, Known, 0, &SI);
3037     if (Known.One.isOne())
3038       return replaceInstUsesWith(SI, TrueVal);
3039     if (Known.Zero.isOne())
3040       return replaceInstUsesWith(SI, FalseVal);
3041   }
3042 
3043   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3044     return BitCastSel;
3045 
3046   // Simplify selects that test the returned flag of cmpxchg instructions.
3047   if (Value *V = foldSelectCmpXchg(SI))
3048     return replaceInstUsesWith(SI, V);
3049 
3050   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3051     return Select;
3052 
3053   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3054     return Funnel;
3055 
3056   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3057     return Copysign;
3058 
3059   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3060     return replaceInstUsesWith(SI, PN);
3061 
3062   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3063     return replaceInstUsesWith(SI, Fr);
3064 
3065   // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3066   // Load inst is intentionally not checked for hasOneUse()
3067   if (match(FalseVal, m_Zero()) &&
3068       (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3069                                    m_CombineOr(m_Undef(), m_Zero()))) ||
3070        match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
3071                                      m_CombineOr(m_Undef(), m_Zero()))))) {
3072     auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
3073     if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3074       MaskedInst->setArgOperand(3, FalseVal /* Zero */);
3075     return replaceInstUsesWith(SI, MaskedInst);
3076   }
3077 
3078   Value *Mask;
3079   if (match(TrueVal, m_Zero()) &&
3080       (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3081                                     m_CombineOr(m_Undef(), m_Zero()))) ||
3082        match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
3083                                       m_CombineOr(m_Undef(), m_Zero())))) &&
3084       (CondVal->getType() == Mask->getType())) {
3085     // We can remove the select by ensuring the load zeros all lanes the
3086     // select would have.  We determine this by proving there is no overlap
3087     // between the load and select masks.
3088     // (i.e (load_mask & select_mask) == 0 == no overlap)
3089     bool CanMergeSelectIntoLoad = false;
3090     if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3091       CanMergeSelectIntoLoad = match(V, m_Zero());
3092 
3093     if (CanMergeSelectIntoLoad) {
3094       auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
3095       if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3096         MaskedInst->setArgOperand(3, TrueVal /* Zero */);
3097       return replaceInstUsesWith(SI, MaskedInst);
3098     }
3099   }
3100 
3101   return nullptr;
3102 }
3103