1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CmpInstAnalysis.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 42 #include <cassert> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 51 SelectPatternFlavor SPF, Value *A, Value *B) { 52 CmpInst::Predicate Pred = getMinMaxPred(SPF); 53 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 54 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 55 } 56 57 /// Replace a select operand based on an equality comparison with the identity 58 /// constant of a binop. 59 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 60 const TargetLibraryInfo &TLI) { 61 // The select condition must be an equality compare with a constant operand. 62 Value *X; 63 Constant *C; 64 CmpInst::Predicate Pred; 65 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 66 return nullptr; 67 68 bool IsEq; 69 if (ICmpInst::isEquality(Pred)) 70 IsEq = Pred == ICmpInst::ICMP_EQ; 71 else if (Pred == FCmpInst::FCMP_OEQ) 72 IsEq = true; 73 else if (Pred == FCmpInst::FCMP_UNE) 74 IsEq = false; 75 else 76 return nullptr; 77 78 // A select operand must be a binop, and the compare constant must be the 79 // identity constant for that binop. 80 BinaryOperator *BO; 81 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)) || 82 ConstantExpr::getBinOpIdentity(BO->getOpcode(), BO->getType(), true) != C) 83 return nullptr; 84 85 // Last, match the compare variable operand with a binop operand. 86 Value *Y; 87 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 88 return nullptr; 89 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 90 return nullptr; 91 92 // +0.0 compares equal to -0.0, and so it does not behave as required for this 93 // transform. Bail out if we can not exclude that possibility. 94 if (isa<FPMathOperator>(BO)) 95 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 96 return nullptr; 97 98 // BO = binop Y, X 99 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 100 // => 101 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 102 Sel.setOperand(IsEq ? 1 : 2, Y); 103 return &Sel; 104 } 105 106 /// This folds: 107 /// select (icmp eq (and X, C1)), TC, FC 108 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 109 /// To something like: 110 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 111 /// Or: 112 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 113 /// With some variations depending if FC is larger than TC, or the shift 114 /// isn't needed, or the bit widths don't match. 115 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 116 InstCombiner::BuilderTy &Builder) { 117 const APInt *SelTC, *SelFC; 118 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 119 !match(Sel.getFalseValue(), m_APInt(SelFC))) 120 return nullptr; 121 122 // If this is a vector select, we need a vector compare. 123 Type *SelType = Sel.getType(); 124 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 125 return nullptr; 126 127 Value *V; 128 APInt AndMask; 129 bool CreateAnd = false; 130 ICmpInst::Predicate Pred = Cmp->getPredicate(); 131 if (ICmpInst::isEquality(Pred)) { 132 if (!match(Cmp->getOperand(1), m_Zero())) 133 return nullptr; 134 135 V = Cmp->getOperand(0); 136 const APInt *AndRHS; 137 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 138 return nullptr; 139 140 AndMask = *AndRHS; 141 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 142 Pred, V, AndMask)) { 143 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 144 if (!AndMask.isPowerOf2()) 145 return nullptr; 146 147 CreateAnd = true; 148 } else { 149 return nullptr; 150 } 151 152 // In general, when both constants are non-zero, we would need an offset to 153 // replace the select. This would require more instructions than we started 154 // with. But there's one special-case that we handle here because it can 155 // simplify/reduce the instructions. 156 APInt TC = *SelTC; 157 APInt FC = *SelFC; 158 if (!TC.isNullValue() && !FC.isNullValue()) { 159 // If the select constants differ by exactly one bit and that's the same 160 // bit that is masked and checked by the select condition, the select can 161 // be replaced by bitwise logic to set/clear one bit of the constant result. 162 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 163 return nullptr; 164 if (CreateAnd) { 165 // If we have to create an 'and', then we must kill the cmp to not 166 // increase the instruction count. 167 if (!Cmp->hasOneUse()) 168 return nullptr; 169 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 170 } 171 bool ExtraBitInTC = TC.ugt(FC); 172 if (Pred == ICmpInst::ICMP_EQ) { 173 // If the masked bit in V is clear, clear or set the bit in the result: 174 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 175 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 176 Constant *C = ConstantInt::get(SelType, TC); 177 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 178 } 179 if (Pred == ICmpInst::ICMP_NE) { 180 // If the masked bit in V is set, set or clear the bit in the result: 181 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 182 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 183 Constant *C = ConstantInt::get(SelType, FC); 184 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 185 } 186 llvm_unreachable("Only expecting equality predicates"); 187 } 188 189 // Make sure one of the select arms is a power-of-2. 190 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 191 return nullptr; 192 193 // Determine which shift is needed to transform result of the 'and' into the 194 // desired result. 195 const APInt &ValC = !TC.isNullValue() ? TC : FC; 196 unsigned ValZeros = ValC.logBase2(); 197 unsigned AndZeros = AndMask.logBase2(); 198 199 // Insert the 'and' instruction on the input to the truncate. 200 if (CreateAnd) 201 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 202 203 // If types don't match, we can still convert the select by introducing a zext 204 // or a trunc of the 'and'. 205 if (ValZeros > AndZeros) { 206 V = Builder.CreateZExtOrTrunc(V, SelType); 207 V = Builder.CreateShl(V, ValZeros - AndZeros); 208 } else if (ValZeros < AndZeros) { 209 V = Builder.CreateLShr(V, AndZeros - ValZeros); 210 V = Builder.CreateZExtOrTrunc(V, SelType); 211 } else { 212 V = Builder.CreateZExtOrTrunc(V, SelType); 213 } 214 215 // Okay, now we know that everything is set up, we just don't know whether we 216 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 217 bool ShouldNotVal = !TC.isNullValue(); 218 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 219 if (ShouldNotVal) 220 V = Builder.CreateXor(V, ValC); 221 222 return V; 223 } 224 225 /// We want to turn code that looks like this: 226 /// %C = or %A, %B 227 /// %D = select %cond, %C, %A 228 /// into: 229 /// %C = select %cond, %B, 0 230 /// %D = or %A, %C 231 /// 232 /// Assuming that the specified instruction is an operand to the select, return 233 /// a bitmask indicating which operands of this instruction are foldable if they 234 /// equal the other incoming value of the select. 235 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 236 switch (I->getOpcode()) { 237 case Instruction::Add: 238 case Instruction::Mul: 239 case Instruction::And: 240 case Instruction::Or: 241 case Instruction::Xor: 242 return 3; // Can fold through either operand. 243 case Instruction::Sub: // Can only fold on the amount subtracted. 244 case Instruction::Shl: // Can only fold on the shift amount. 245 case Instruction::LShr: 246 case Instruction::AShr: 247 return 1; 248 default: 249 return 0; // Cannot fold 250 } 251 } 252 253 /// For the same transformation as the previous function, return the identity 254 /// constant that goes into the select. 255 static APInt getSelectFoldableConstant(BinaryOperator *I) { 256 switch (I->getOpcode()) { 257 default: llvm_unreachable("This cannot happen!"); 258 case Instruction::Add: 259 case Instruction::Sub: 260 case Instruction::Or: 261 case Instruction::Xor: 262 case Instruction::Shl: 263 case Instruction::LShr: 264 case Instruction::AShr: 265 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 266 case Instruction::And: 267 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 268 case Instruction::Mul: 269 return APInt(I->getType()->getScalarSizeInBits(), 1); 270 } 271 } 272 273 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 274 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 275 Instruction *FI) { 276 // Don't break up min/max patterns. The hasOneUse checks below prevent that 277 // for most cases, but vector min/max with bitcasts can be transformed. If the 278 // one-use restrictions are eased for other patterns, we still don't want to 279 // obfuscate min/max. 280 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 281 match(&SI, m_SMax(m_Value(), m_Value())) || 282 match(&SI, m_UMin(m_Value(), m_Value())) || 283 match(&SI, m_UMax(m_Value(), m_Value())))) 284 return nullptr; 285 286 // If this is a cast from the same type, merge. 287 if (TI->getNumOperands() == 1 && TI->isCast()) { 288 Type *FIOpndTy = FI->getOperand(0)->getType(); 289 if (TI->getOperand(0)->getType() != FIOpndTy) 290 return nullptr; 291 292 // The select condition may be a vector. We may only change the operand 293 // type if the vector width remains the same (and matches the condition). 294 Type *CondTy = SI.getCondition()->getType(); 295 if (CondTy->isVectorTy()) { 296 if (!FIOpndTy->isVectorTy()) 297 return nullptr; 298 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 299 return nullptr; 300 301 // TODO: If the backend knew how to deal with casts better, we could 302 // remove this limitation. For now, there's too much potential to create 303 // worse codegen by promoting the select ahead of size-altering casts 304 // (PR28160). 305 // 306 // Note that ValueTracking's matchSelectPattern() looks through casts 307 // without checking 'hasOneUse' when it matches min/max patterns, so this 308 // transform may end up happening anyway. 309 if (TI->getOpcode() != Instruction::BitCast && 310 (!TI->hasOneUse() || !FI->hasOneUse())) 311 return nullptr; 312 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 313 // TODO: The one-use restrictions for a scalar select could be eased if 314 // the fold of a select in visitLoadInst() was enhanced to match a pattern 315 // that includes a cast. 316 return nullptr; 317 } 318 319 // Fold this by inserting a select from the input values. 320 Value *NewSI = 321 Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), 322 FI->getOperand(0), SI.getName() + ".v", &SI); 323 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 324 TI->getType()); 325 } 326 327 // Only handle binary operators (including two-operand getelementptr) with 328 // one-use here. As with the cast case above, it may be possible to relax the 329 // one-use constraint, but that needs be examined carefully since it may not 330 // reduce the total number of instructions. 331 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 332 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 333 !TI->hasOneUse() || !FI->hasOneUse()) 334 return nullptr; 335 336 // Figure out if the operations have any operands in common. 337 Value *MatchOp, *OtherOpT, *OtherOpF; 338 bool MatchIsOpZero; 339 if (TI->getOperand(0) == FI->getOperand(0)) { 340 MatchOp = TI->getOperand(0); 341 OtherOpT = TI->getOperand(1); 342 OtherOpF = FI->getOperand(1); 343 MatchIsOpZero = true; 344 } else if (TI->getOperand(1) == FI->getOperand(1)) { 345 MatchOp = TI->getOperand(1); 346 OtherOpT = TI->getOperand(0); 347 OtherOpF = FI->getOperand(0); 348 MatchIsOpZero = false; 349 } else if (!TI->isCommutative()) { 350 return nullptr; 351 } else if (TI->getOperand(0) == FI->getOperand(1)) { 352 MatchOp = TI->getOperand(0); 353 OtherOpT = TI->getOperand(1); 354 OtherOpF = FI->getOperand(0); 355 MatchIsOpZero = true; 356 } else if (TI->getOperand(1) == FI->getOperand(0)) { 357 MatchOp = TI->getOperand(1); 358 OtherOpT = TI->getOperand(0); 359 OtherOpF = FI->getOperand(1); 360 MatchIsOpZero = true; 361 } else { 362 return nullptr; 363 } 364 365 // If the select condition is a vector, the operands of the original select's 366 // operands also must be vectors. This may not be the case for getelementptr 367 // for example. 368 if (SI.getCondition()->getType()->isVectorTy() && 369 (!OtherOpT->getType()->isVectorTy() || 370 !OtherOpF->getType()->isVectorTy())) 371 return nullptr; 372 373 // If we reach here, they do have operations in common. 374 Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 375 SI.getName() + ".v", &SI); 376 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 377 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 378 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 379 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 380 NewBO->copyIRFlags(TI); 381 NewBO->andIRFlags(FI); 382 return NewBO; 383 } 384 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 385 auto *FGEP = cast<GetElementPtrInst>(FI); 386 Type *ElementType = TGEP->getResultElementType(); 387 return TGEP->isInBounds() && FGEP->isInBounds() 388 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 389 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 390 } 391 llvm_unreachable("Expected BinaryOperator or GEP"); 392 return nullptr; 393 } 394 395 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 396 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 397 return false; 398 return C1I.isOneValue() || C1I.isAllOnesValue() || 399 C2I.isOneValue() || C2I.isAllOnesValue(); 400 } 401 402 /// Try to fold the select into one of the operands to allow further 403 /// optimization. 404 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 405 Value *FalseVal) { 406 // See the comment above GetSelectFoldableOperands for a description of the 407 // transformation we are doing here. 408 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 409 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 410 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 411 unsigned OpToFold = 0; 412 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 413 OpToFold = 1; 414 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 415 OpToFold = 2; 416 } 417 418 if (OpToFold) { 419 APInt CI = getSelectFoldableConstant(TVI); 420 Value *OOp = TVI->getOperand(2-OpToFold); 421 // Avoid creating select between 2 constants unless it's selecting 422 // between 0, 1 and -1. 423 const APInt *OOpC; 424 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 425 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 426 Value *C = ConstantInt::get(OOp->getType(), CI); 427 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 428 NewSel->takeName(TVI); 429 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 430 FalseVal, NewSel); 431 BO->copyIRFlags(TVI); 432 return BO; 433 } 434 } 435 } 436 } 437 } 438 439 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 440 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 441 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 442 unsigned OpToFold = 0; 443 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 444 OpToFold = 1; 445 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 446 OpToFold = 2; 447 } 448 449 if (OpToFold) { 450 APInt CI = getSelectFoldableConstant(FVI); 451 Value *OOp = FVI->getOperand(2-OpToFold); 452 // Avoid creating select between 2 constants unless it's selecting 453 // between 0, 1 and -1. 454 const APInt *OOpC; 455 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 456 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 457 Value *C = ConstantInt::get(OOp->getType(), CI); 458 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 459 NewSel->takeName(FVI); 460 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 461 TrueVal, NewSel); 462 BO->copyIRFlags(FVI); 463 return BO; 464 } 465 } 466 } 467 } 468 } 469 470 return nullptr; 471 } 472 473 /// We want to turn: 474 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 475 /// into: 476 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 477 /// Note: 478 /// Z may be 0 if lshr is missing. 479 /// Worst-case scenario is that we will replace 5 instructions with 5 different 480 /// instructions, but we got rid of select. 481 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 482 Value *TVal, Value *FVal, 483 InstCombiner::BuilderTy &Builder) { 484 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 485 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 486 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 487 return nullptr; 488 489 // The TrueVal has general form of: and %B, 1 490 Value *B; 491 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 492 return nullptr; 493 494 // Where %B may be optionally shifted: lshr %X, %Z. 495 Value *X, *Z; 496 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 497 if (!HasShift) 498 X = B; 499 500 Value *Y; 501 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 502 return nullptr; 503 504 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 505 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 506 Constant *One = ConstantInt::get(SelType, 1); 507 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 508 Value *FullMask = Builder.CreateOr(Y, MaskB); 509 Value *MaskedX = Builder.CreateAnd(X, FullMask); 510 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 511 return new ZExtInst(ICmpNeZero, SelType); 512 } 513 514 /// We want to turn: 515 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 516 /// into: 517 /// (or (shl (and X, C1), C3), Y) 518 /// iff: 519 /// C1 and C2 are both powers of 2 520 /// where: 521 /// C3 = Log(C2) - Log(C1) 522 /// 523 /// This transform handles cases where: 524 /// 1. The icmp predicate is inverted 525 /// 2. The select operands are reversed 526 /// 3. The magnitude of C2 and C1 are flipped 527 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 528 Value *FalseVal, 529 InstCombiner::BuilderTy &Builder) { 530 // Only handle integer compares. Also, if this is a vector select, we need a 531 // vector compare. 532 if (!TrueVal->getType()->isIntOrIntVectorTy() || 533 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 534 return nullptr; 535 536 Value *CmpLHS = IC->getOperand(0); 537 Value *CmpRHS = IC->getOperand(1); 538 539 Value *V; 540 unsigned C1Log; 541 bool IsEqualZero; 542 bool NeedAnd = false; 543 if (IC->isEquality()) { 544 if (!match(CmpRHS, m_Zero())) 545 return nullptr; 546 547 const APInt *C1; 548 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 549 return nullptr; 550 551 V = CmpLHS; 552 C1Log = C1->logBase2(); 553 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 554 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 555 IC->getPredicate() == ICmpInst::ICMP_SGT) { 556 // We also need to recognize (icmp slt (trunc (X)), 0) and 557 // (icmp sgt (trunc (X)), -1). 558 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 559 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 560 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 561 return nullptr; 562 563 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 564 return nullptr; 565 566 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 567 NeedAnd = true; 568 } else { 569 return nullptr; 570 } 571 572 const APInt *C2; 573 bool OrOnTrueVal = false; 574 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 575 if (!OrOnFalseVal) 576 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 577 578 if (!OrOnFalseVal && !OrOnTrueVal) 579 return nullptr; 580 581 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 582 583 unsigned C2Log = C2->logBase2(); 584 585 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 586 bool NeedShift = C1Log != C2Log; 587 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 588 V->getType()->getScalarSizeInBits(); 589 590 // Make sure we don't create more instructions than we save. 591 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 592 if ((NeedShift + NeedXor + NeedZExtTrunc) > 593 (IC->hasOneUse() + Or->hasOneUse())) 594 return nullptr; 595 596 if (NeedAnd) { 597 // Insert the AND instruction on the input to the truncate. 598 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 599 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 600 } 601 602 if (C2Log > C1Log) { 603 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 604 V = Builder.CreateShl(V, C2Log - C1Log); 605 } else if (C1Log > C2Log) { 606 V = Builder.CreateLShr(V, C1Log - C2Log); 607 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 608 } else 609 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 610 611 if (NeedXor) 612 V = Builder.CreateXor(V, *C2); 613 614 return Builder.CreateOr(V, Y); 615 } 616 617 /// Transform patterns such as: (a > b) ? a - b : 0 618 /// into: ((a > b) ? a : b) - b) 619 /// This produces a canonical max pattern that is more easily recognized by the 620 /// backend and converted into saturated subtraction instructions if those 621 /// exist. 622 /// There are 8 commuted/swapped variants of this pattern. 623 /// TODO: Also support a - UMIN(a,b) patterns. 624 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 625 const Value *TrueVal, 626 const Value *FalseVal, 627 InstCombiner::BuilderTy &Builder) { 628 ICmpInst::Predicate Pred = ICI->getPredicate(); 629 if (!ICmpInst::isUnsigned(Pred)) 630 return nullptr; 631 632 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 633 if (match(TrueVal, m_Zero())) { 634 Pred = ICmpInst::getInversePredicate(Pred); 635 std::swap(TrueVal, FalseVal); 636 } 637 if (!match(FalseVal, m_Zero())) 638 return nullptr; 639 640 Value *A = ICI->getOperand(0); 641 Value *B = ICI->getOperand(1); 642 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 643 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 644 std::swap(A, B); 645 Pred = ICmpInst::getSwappedPredicate(Pred); 646 } 647 648 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 649 "Unexpected isUnsigned predicate!"); 650 651 // Account for swapped form of subtraction: ((a > b) ? b - a : 0). 652 bool IsNegative = false; 653 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A)))) 654 IsNegative = true; 655 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B)))) 656 return nullptr; 657 658 // If sub is used anywhere else, we wouldn't be able to eliminate it 659 // afterwards. 660 if (!TrueVal->hasOneUse()) 661 return nullptr; 662 663 // All checks passed, convert to canonical unsigned saturated subtraction 664 // form: sub(max()). 665 // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b) 666 Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 667 return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B); 668 } 669 670 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 671 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 672 /// 673 /// For example, we can fold the following code sequence: 674 /// \code 675 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 676 /// %1 = icmp ne i32 %x, 0 677 /// %2 = select i1 %1, i32 %0, i32 32 678 /// \code 679 /// 680 /// into: 681 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 682 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 683 InstCombiner::BuilderTy &Builder) { 684 ICmpInst::Predicate Pred = ICI->getPredicate(); 685 Value *CmpLHS = ICI->getOperand(0); 686 Value *CmpRHS = ICI->getOperand(1); 687 688 // Check if the condition value compares a value for equality against zero. 689 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 690 return nullptr; 691 692 Value *Count = FalseVal; 693 Value *ValueOnZero = TrueVal; 694 if (Pred == ICmpInst::ICMP_NE) 695 std::swap(Count, ValueOnZero); 696 697 // Skip zero extend/truncate. 698 Value *V = nullptr; 699 if (match(Count, m_ZExt(m_Value(V))) || 700 match(Count, m_Trunc(m_Value(V)))) 701 Count = V; 702 703 // Check if the value propagated on zero is a constant number equal to the 704 // sizeof in bits of 'Count'. 705 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 706 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 707 return nullptr; 708 709 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 710 // input to the cttz/ctlz is used as LHS for the compare instruction. 711 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 712 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 713 IntrinsicInst *II = cast<IntrinsicInst>(Count); 714 // Explicitly clear the 'undef_on_zero' flag. 715 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 716 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 717 Builder.Insert(NewI); 718 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 719 } 720 721 return nullptr; 722 } 723 724 /// Return true if we find and adjust an icmp+select pattern where the compare 725 /// is with a constant that can be incremented or decremented to match the 726 /// minimum or maximum idiom. 727 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 728 ICmpInst::Predicate Pred = Cmp.getPredicate(); 729 Value *CmpLHS = Cmp.getOperand(0); 730 Value *CmpRHS = Cmp.getOperand(1); 731 Value *TrueVal = Sel.getTrueValue(); 732 Value *FalseVal = Sel.getFalseValue(); 733 734 // We may move or edit the compare, so make sure the select is the only user. 735 const APInt *CmpC; 736 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 737 return false; 738 739 // These transforms only work for selects of integers or vector selects of 740 // integer vectors. 741 Type *SelTy = Sel.getType(); 742 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 743 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 744 return false; 745 746 Constant *AdjustedRHS; 747 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 748 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 749 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 750 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 751 else 752 return false; 753 754 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 755 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 756 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 757 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 758 ; // Nothing to do here. Values match without any sign/zero extension. 759 } 760 // Types do not match. Instead of calculating this with mixed types, promote 761 // all to the larger type. This enables scalar evolution to analyze this 762 // expression. 763 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 764 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 765 766 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 767 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 768 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 769 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 770 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 771 CmpLHS = TrueVal; 772 AdjustedRHS = SextRHS; 773 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 774 SextRHS == TrueVal) { 775 CmpLHS = FalseVal; 776 AdjustedRHS = SextRHS; 777 } else if (Cmp.isUnsigned()) { 778 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 779 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 780 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 781 // zext + signed compare cannot be changed: 782 // 0xff <s 0x00, but 0x00ff >s 0x0000 783 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 784 CmpLHS = TrueVal; 785 AdjustedRHS = ZextRHS; 786 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 787 ZextRHS == TrueVal) { 788 CmpLHS = FalseVal; 789 AdjustedRHS = ZextRHS; 790 } else { 791 return false; 792 } 793 } else { 794 return false; 795 } 796 } else { 797 return false; 798 } 799 800 Pred = ICmpInst::getSwappedPredicate(Pred); 801 CmpRHS = AdjustedRHS; 802 std::swap(FalseVal, TrueVal); 803 Cmp.setPredicate(Pred); 804 Cmp.setOperand(0, CmpLHS); 805 Cmp.setOperand(1, CmpRHS); 806 Sel.setOperand(1, TrueVal); 807 Sel.setOperand(2, FalseVal); 808 Sel.swapProfMetadata(); 809 810 // Move the compare instruction right before the select instruction. Otherwise 811 // the sext/zext value may be defined after the compare instruction uses it. 812 Cmp.moveBefore(&Sel); 813 814 return true; 815 } 816 817 /// If this is an integer min/max (icmp + select) with a constant operand, 818 /// create the canonical icmp for the min/max operation and canonicalize the 819 /// constant to the 'false' operand of the select: 820 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 821 /// Note: if C1 != C2, this will change the icmp constant to the existing 822 /// constant operand of the select. 823 static Instruction * 824 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 825 InstCombiner::BuilderTy &Builder) { 826 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 827 return nullptr; 828 829 // Canonicalize the compare predicate based on whether we have min or max. 830 Value *LHS, *RHS; 831 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 832 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 833 return nullptr; 834 835 // Is this already canonical? 836 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 837 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 838 Cmp.getPredicate() == CanonicalPred) 839 return nullptr; 840 841 // Create the canonical compare and plug it into the select. 842 Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); 843 844 // If the select operands did not change, we're done. 845 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 846 return &Sel; 847 848 // If we are swapping the select operands, swap the metadata too. 849 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 850 "Unexpected results from matchSelectPattern"); 851 Sel.setTrueValue(LHS); 852 Sel.setFalseValue(RHS); 853 Sel.swapProfMetadata(); 854 return &Sel; 855 } 856 857 /// There are many select variants for each of ABS/NABS. 858 /// In matchSelectPattern(), there are different compare constants, compare 859 /// predicates/operands and select operands. 860 /// In isKnownNegation(), there are different formats of negated operands. 861 /// Canonicalize all these variants to 1 pattern. 862 /// This makes CSE more likely. 863 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 864 InstCombiner::BuilderTy &Builder) { 865 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 866 return nullptr; 867 868 // Choose a sign-bit check for the compare (likely simpler for codegen). 869 // ABS: (X <s 0) ? -X : X 870 // NABS: (X <s 0) ? X : -X 871 Value *LHS, *RHS; 872 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 873 if (SPF != SelectPatternFlavor::SPF_ABS && 874 SPF != SelectPatternFlavor::SPF_NABS) 875 return nullptr; 876 877 Value *TVal = Sel.getTrueValue(); 878 Value *FVal = Sel.getFalseValue(); 879 assert(isKnownNegation(TVal, FVal) && 880 "Unexpected result from matchSelectPattern"); 881 882 // The compare may use the negated abs()/nabs() operand, or it may use 883 // negation in non-canonical form such as: sub A, B. 884 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 885 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 886 887 bool CmpCanonicalized = !CmpUsesNegatedOp && 888 match(Cmp.getOperand(1), m_ZeroInt()) && 889 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 890 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 891 892 // Is this already canonical? 893 if (CmpCanonicalized && RHSCanonicalized) 894 return nullptr; 895 896 // If RHS is used by other instructions except compare and select, don't 897 // canonicalize it to not increase the instruction count. 898 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 899 return nullptr; 900 901 // Create the canonical compare: icmp slt LHS 0. 902 if (!CmpCanonicalized) { 903 Cmp.setPredicate(ICmpInst::ICMP_SLT); 904 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 905 if (CmpUsesNegatedOp) 906 Cmp.setOperand(0, LHS); 907 } 908 909 // Create the canonical RHS: RHS = sub (0, LHS). 910 if (!RHSCanonicalized) { 911 assert(RHS->hasOneUse() && "RHS use number is not right"); 912 RHS = Builder.CreateNeg(LHS); 913 if (TVal == LHS) { 914 Sel.setFalseValue(RHS); 915 FVal = RHS; 916 } else { 917 Sel.setTrueValue(RHS); 918 TVal = RHS; 919 } 920 } 921 922 // If the select operands do not change, we're done. 923 if (SPF == SelectPatternFlavor::SPF_NABS) { 924 if (TVal == LHS) 925 return &Sel; 926 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 927 } else { 928 if (FVal == LHS) 929 return &Sel; 930 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 931 } 932 933 // We are swapping the select operands, so swap the metadata too. 934 Sel.setTrueValue(FVal); 935 Sel.setFalseValue(TVal); 936 Sel.swapProfMetadata(); 937 return &Sel; 938 } 939 940 /// Visit a SelectInst that has an ICmpInst as its first operand. 941 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 942 ICmpInst *ICI) { 943 Value *TrueVal = SI.getTrueValue(); 944 Value *FalseVal = SI.getFalseValue(); 945 946 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 947 return NewSel; 948 949 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) 950 return NewAbs; 951 952 bool Changed = adjustMinMax(SI, *ICI); 953 954 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 955 return replaceInstUsesWith(SI, V); 956 957 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 958 ICmpInst::Predicate Pred = ICI->getPredicate(); 959 Value *CmpLHS = ICI->getOperand(0); 960 Value *CmpRHS = ICI->getOperand(1); 961 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 962 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 963 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 964 SI.setOperand(1, CmpRHS); 965 Changed = true; 966 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 967 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 968 SI.setOperand(2, CmpRHS); 969 Changed = true; 970 } 971 } 972 973 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 974 // decomposeBitTestICmp() might help. 975 { 976 unsigned BitWidth = 977 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 978 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 979 Value *X; 980 const APInt *Y, *C; 981 bool TrueWhenUnset; 982 bool IsBitTest = false; 983 if (ICmpInst::isEquality(Pred) && 984 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 985 match(CmpRHS, m_Zero())) { 986 IsBitTest = true; 987 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 988 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 989 X = CmpLHS; 990 Y = &MinSignedValue; 991 IsBitTest = true; 992 TrueWhenUnset = false; 993 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 994 X = CmpLHS; 995 Y = &MinSignedValue; 996 IsBitTest = true; 997 TrueWhenUnset = true; 998 } 999 if (IsBitTest) { 1000 Value *V = nullptr; 1001 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1002 if (TrueWhenUnset && TrueVal == X && 1003 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1004 V = Builder.CreateAnd(X, ~(*Y)); 1005 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1006 else if (!TrueWhenUnset && FalseVal == X && 1007 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1008 V = Builder.CreateAnd(X, ~(*Y)); 1009 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1010 else if (TrueWhenUnset && FalseVal == X && 1011 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1012 V = Builder.CreateOr(X, *Y); 1013 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1014 else if (!TrueWhenUnset && TrueVal == X && 1015 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1016 V = Builder.CreateOr(X, *Y); 1017 1018 if (V) 1019 return replaceInstUsesWith(SI, V); 1020 } 1021 } 1022 1023 if (Instruction *V = 1024 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1025 return V; 1026 1027 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1028 return replaceInstUsesWith(SI, V); 1029 1030 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1031 return replaceInstUsesWith(SI, V); 1032 1033 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1034 return replaceInstUsesWith(SI, V); 1035 1036 return Changed ? &SI : nullptr; 1037 } 1038 1039 /// SI is a select whose condition is a PHI node (but the two may be in 1040 /// different blocks). See if the true/false values (V) are live in all of the 1041 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1042 /// 1043 /// X = phi [ C1, BB1], [C2, BB2] 1044 /// Y = add 1045 /// Z = select X, Y, 0 1046 /// 1047 /// because Y is not live in BB1/BB2. 1048 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1049 const SelectInst &SI) { 1050 // If the value is a non-instruction value like a constant or argument, it 1051 // can always be mapped. 1052 const Instruction *I = dyn_cast<Instruction>(V); 1053 if (!I) return true; 1054 1055 // If V is a PHI node defined in the same block as the condition PHI, we can 1056 // map the arguments. 1057 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1058 1059 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1060 if (VP->getParent() == CondPHI->getParent()) 1061 return true; 1062 1063 // Otherwise, if the PHI and select are defined in the same block and if V is 1064 // defined in a different block, then we can transform it. 1065 if (SI.getParent() == CondPHI->getParent() && 1066 I->getParent() != CondPHI->getParent()) 1067 return true; 1068 1069 // Otherwise we have a 'hard' case and we can't tell without doing more 1070 // detailed dominator based analysis, punt. 1071 return false; 1072 } 1073 1074 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1075 /// SPF2(SPF1(A, B), C) 1076 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 1077 SelectPatternFlavor SPF1, 1078 Value *A, Value *B, 1079 Instruction &Outer, 1080 SelectPatternFlavor SPF2, Value *C) { 1081 if (Outer.getType() != Inner->getType()) 1082 return nullptr; 1083 1084 if (C == A || C == B) { 1085 // MAX(MAX(A, B), B) -> MAX(A, B) 1086 // MIN(MIN(a, b), a) -> MIN(a, b) 1087 // TODO: This could be done in instsimplify. 1088 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1089 return replaceInstUsesWith(Outer, Inner); 1090 1091 // MAX(MIN(a, b), a) -> a 1092 // MIN(MAX(a, b), a) -> a 1093 // TODO: This could be done in instsimplify. 1094 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1095 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1096 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1097 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1098 return replaceInstUsesWith(Outer, C); 1099 } 1100 1101 if (SPF1 == SPF2) { 1102 const APInt *CB, *CC; 1103 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1104 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1105 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1106 // TODO: This could be done in instsimplify. 1107 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1108 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1109 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1110 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1111 return replaceInstUsesWith(Outer, Inner); 1112 1113 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1114 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1115 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1116 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1117 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1118 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1119 Outer.replaceUsesOfWith(Inner, A); 1120 return &Outer; 1121 } 1122 } 1123 } 1124 1125 // ABS(ABS(X)) -> ABS(X) 1126 // NABS(NABS(X)) -> NABS(X) 1127 // TODO: This could be done in instsimplify. 1128 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1129 return replaceInstUsesWith(Outer, Inner); 1130 } 1131 1132 // ABS(NABS(X)) -> ABS(X) 1133 // NABS(ABS(X)) -> NABS(X) 1134 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1135 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1136 SelectInst *SI = cast<SelectInst>(Inner); 1137 Value *NewSI = 1138 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1139 SI->getTrueValue(), SI->getName(), SI); 1140 return replaceInstUsesWith(Outer, NewSI); 1141 } 1142 1143 auto IsFreeOrProfitableToInvert = 1144 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1145 if (match(V, m_Not(m_Value(NotV)))) { 1146 // If V has at most 2 uses then we can get rid of the xor operation 1147 // entirely. 1148 ElidesXor |= !V->hasNUsesOrMore(3); 1149 return true; 1150 } 1151 1152 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1153 NotV = nullptr; 1154 return true; 1155 } 1156 1157 return false; 1158 }; 1159 1160 Value *NotA, *NotB, *NotC; 1161 bool ElidesXor = false; 1162 1163 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1164 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1165 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1166 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1167 // 1168 // This transform is performance neutral if we can elide at least one xor from 1169 // the set of three operands, since we'll be tacking on an xor at the very 1170 // end. 1171 if (SelectPatternResult::isMinOrMax(SPF1) && 1172 SelectPatternResult::isMinOrMax(SPF2) && 1173 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1174 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1175 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1176 if (!NotA) 1177 NotA = Builder.CreateNot(A); 1178 if (!NotB) 1179 NotB = Builder.CreateNot(B); 1180 if (!NotC) 1181 NotC = Builder.CreateNot(C); 1182 1183 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1184 NotB); 1185 Value *NewOuter = Builder.CreateNot( 1186 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1187 return replaceInstUsesWith(Outer, NewOuter); 1188 } 1189 1190 return nullptr; 1191 } 1192 1193 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1194 /// This is even legal for FP. 1195 static Instruction *foldAddSubSelect(SelectInst &SI, 1196 InstCombiner::BuilderTy &Builder) { 1197 Value *CondVal = SI.getCondition(); 1198 Value *TrueVal = SI.getTrueValue(); 1199 Value *FalseVal = SI.getFalseValue(); 1200 auto *TI = dyn_cast<Instruction>(TrueVal); 1201 auto *FI = dyn_cast<Instruction>(FalseVal); 1202 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1203 return nullptr; 1204 1205 Instruction *AddOp = nullptr, *SubOp = nullptr; 1206 if ((TI->getOpcode() == Instruction::Sub && 1207 FI->getOpcode() == Instruction::Add) || 1208 (TI->getOpcode() == Instruction::FSub && 1209 FI->getOpcode() == Instruction::FAdd)) { 1210 AddOp = FI; 1211 SubOp = TI; 1212 } else if ((FI->getOpcode() == Instruction::Sub && 1213 TI->getOpcode() == Instruction::Add) || 1214 (FI->getOpcode() == Instruction::FSub && 1215 TI->getOpcode() == Instruction::FAdd)) { 1216 AddOp = TI; 1217 SubOp = FI; 1218 } 1219 1220 if (AddOp) { 1221 Value *OtherAddOp = nullptr; 1222 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1223 OtherAddOp = AddOp->getOperand(1); 1224 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1225 OtherAddOp = AddOp->getOperand(0); 1226 } 1227 1228 if (OtherAddOp) { 1229 // So at this point we know we have (Y -> OtherAddOp): 1230 // select C, (add X, Y), (sub X, Z) 1231 Value *NegVal; // Compute -Z 1232 if (SI.getType()->isFPOrFPVectorTy()) { 1233 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1234 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1235 FastMathFlags Flags = AddOp->getFastMathFlags(); 1236 Flags &= SubOp->getFastMathFlags(); 1237 NegInst->setFastMathFlags(Flags); 1238 } 1239 } else { 1240 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1241 } 1242 1243 Value *NewTrueOp = OtherAddOp; 1244 Value *NewFalseOp = NegVal; 1245 if (AddOp != TI) 1246 std::swap(NewTrueOp, NewFalseOp); 1247 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1248 SI.getName() + ".p", &SI); 1249 1250 if (SI.getType()->isFPOrFPVectorTy()) { 1251 Instruction *RI = 1252 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1253 1254 FastMathFlags Flags = AddOp->getFastMathFlags(); 1255 Flags &= SubOp->getFastMathFlags(); 1256 RI->setFastMathFlags(Flags); 1257 return RI; 1258 } else 1259 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1260 } 1261 } 1262 return nullptr; 1263 } 1264 1265 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1266 Constant *C; 1267 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1268 !match(Sel.getFalseValue(), m_Constant(C))) 1269 return nullptr; 1270 1271 Instruction *ExtInst; 1272 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1273 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1274 return nullptr; 1275 1276 auto ExtOpcode = ExtInst->getOpcode(); 1277 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1278 return nullptr; 1279 1280 // If we are extending from a boolean type or if we can create a select that 1281 // has the same size operands as its condition, try to narrow the select. 1282 Value *X = ExtInst->getOperand(0); 1283 Type *SmallType = X->getType(); 1284 Value *Cond = Sel.getCondition(); 1285 auto *Cmp = dyn_cast<CmpInst>(Cond); 1286 if (!SmallType->isIntOrIntVectorTy(1) && 1287 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1288 return nullptr; 1289 1290 // If the constant is the same after truncation to the smaller type and 1291 // extension to the original type, we can narrow the select. 1292 Type *SelType = Sel.getType(); 1293 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1294 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1295 if (ExtC == C) { 1296 Value *TruncCVal = cast<Value>(TruncC); 1297 if (ExtInst == Sel.getFalseValue()) 1298 std::swap(X, TruncCVal); 1299 1300 // select Cond, (ext X), C --> ext(select Cond, X, C') 1301 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1302 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1303 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1304 } 1305 1306 // If one arm of the select is the extend of the condition, replace that arm 1307 // with the extension of the appropriate known bool value. 1308 if (Cond == X) { 1309 if (ExtInst == Sel.getTrueValue()) { 1310 // select X, (sext X), C --> select X, -1, C 1311 // select X, (zext X), C --> select X, 1, C 1312 Constant *One = ConstantInt::getTrue(SmallType); 1313 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1314 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1315 } else { 1316 // select X, C, (sext X) --> select X, C, 0 1317 // select X, C, (zext X) --> select X, C, 0 1318 Constant *Zero = ConstantInt::getNullValue(SelType); 1319 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1320 } 1321 } 1322 1323 return nullptr; 1324 } 1325 1326 /// Try to transform a vector select with a constant condition vector into a 1327 /// shuffle for easier combining with other shuffles and insert/extract. 1328 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1329 Value *CondVal = SI.getCondition(); 1330 Constant *CondC; 1331 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1332 return nullptr; 1333 1334 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1335 SmallVector<Constant *, 16> Mask; 1336 Mask.reserve(NumElts); 1337 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1338 for (unsigned i = 0; i != NumElts; ++i) { 1339 Constant *Elt = CondC->getAggregateElement(i); 1340 if (!Elt) 1341 return nullptr; 1342 1343 if (Elt->isOneValue()) { 1344 // If the select condition element is true, choose from the 1st vector. 1345 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1346 } else if (Elt->isNullValue()) { 1347 // If the select condition element is false, choose from the 2nd vector. 1348 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1349 } else if (isa<UndefValue>(Elt)) { 1350 // Undef in a select condition (choose one of the operands) does not mean 1351 // the same thing as undef in a shuffle mask (any value is acceptable), so 1352 // give up. 1353 return nullptr; 1354 } else { 1355 // Bail out on a constant expression. 1356 return nullptr; 1357 } 1358 } 1359 1360 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1361 ConstantVector::get(Mask)); 1362 } 1363 1364 /// Reuse bitcasted operands between a compare and select: 1365 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1366 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1367 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1368 InstCombiner::BuilderTy &Builder) { 1369 Value *Cond = Sel.getCondition(); 1370 Value *TVal = Sel.getTrueValue(); 1371 Value *FVal = Sel.getFalseValue(); 1372 1373 CmpInst::Predicate Pred; 1374 Value *A, *B; 1375 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1376 return nullptr; 1377 1378 // The select condition is a compare instruction. If the select's true/false 1379 // values are already the same as the compare operands, there's nothing to do. 1380 if (TVal == A || TVal == B || FVal == A || FVal == B) 1381 return nullptr; 1382 1383 Value *C, *D; 1384 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1385 return nullptr; 1386 1387 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1388 Value *TSrc, *FSrc; 1389 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1390 !match(FVal, m_BitCast(m_Value(FSrc)))) 1391 return nullptr; 1392 1393 // If the select true/false values are *different bitcasts* of the same source 1394 // operands, make the select operands the same as the compare operands and 1395 // cast the result. This is the canonical select form for min/max. 1396 Value *NewSel; 1397 if (TSrc == C && FSrc == D) { 1398 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1399 // bitcast (select (cmp A, B), A, B) 1400 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1401 } else if (TSrc == D && FSrc == C) { 1402 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1403 // bitcast (select (cmp A, B), B, A) 1404 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1405 } else { 1406 return nullptr; 1407 } 1408 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1409 } 1410 1411 /// Try to eliminate select instructions that test the returned flag of cmpxchg 1412 /// instructions. 1413 /// 1414 /// If a select instruction tests the returned flag of a cmpxchg instruction and 1415 /// selects between the returned value of the cmpxchg instruction its compare 1416 /// operand, the result of the select will always be equal to its false value. 1417 /// For example: 1418 /// 1419 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1420 /// %1 = extractvalue { i64, i1 } %0, 1 1421 /// %2 = extractvalue { i64, i1 } %0, 0 1422 /// %3 = select i1 %1, i64 %compare, i64 %2 1423 /// ret i64 %3 1424 /// 1425 /// The returned value of the cmpxchg instruction (%2) is the original value 1426 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 1427 /// must have been equal to %compare. Thus, the result of the select is always 1428 /// equal to %2, and the code can be simplified to: 1429 /// 1430 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1431 /// %1 = extractvalue { i64, i1 } %0, 0 1432 /// ret i64 %1 1433 /// 1434 static Instruction *foldSelectCmpXchg(SelectInst &SI) { 1435 // A helper that determines if V is an extractvalue instruction whose 1436 // aggregate operand is a cmpxchg instruction and whose single index is equal 1437 // to I. If such conditions are true, the helper returns the cmpxchg 1438 // instruction; otherwise, a nullptr is returned. 1439 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 1440 auto *Extract = dyn_cast<ExtractValueInst>(V); 1441 if (!Extract) 1442 return nullptr; 1443 if (Extract->getIndices()[0] != I) 1444 return nullptr; 1445 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 1446 }; 1447 1448 // If the select has a single user, and this user is a select instruction that 1449 // we can simplify, skip the cmpxchg simplification for now. 1450 if (SI.hasOneUse()) 1451 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 1452 if (Select->getCondition() == SI.getCondition()) 1453 if (Select->getFalseValue() == SI.getTrueValue() || 1454 Select->getTrueValue() == SI.getFalseValue()) 1455 return nullptr; 1456 1457 // Ensure the select condition is the returned flag of a cmpxchg instruction. 1458 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 1459 if (!CmpXchg) 1460 return nullptr; 1461 1462 // Check the true value case: The true value of the select is the returned 1463 // value of the same cmpxchg used by the condition, and the false value is the 1464 // cmpxchg instruction's compare operand. 1465 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 1466 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { 1467 SI.setTrueValue(SI.getFalseValue()); 1468 return &SI; 1469 } 1470 1471 // Check the false value case: The false value of the select is the returned 1472 // value of the same cmpxchg used by the condition, and the true value is the 1473 // cmpxchg instruction's compare operand. 1474 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 1475 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { 1476 SI.setTrueValue(SI.getFalseValue()); 1477 return &SI; 1478 } 1479 1480 return nullptr; 1481 } 1482 1483 /// Reduce a sequence of min/max with a common operand. 1484 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 1485 Value *RHS, 1486 InstCombiner::BuilderTy &Builder) { 1487 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 1488 // TODO: Allow FP min/max with nnan/nsz. 1489 if (!LHS->getType()->isIntOrIntVectorTy()) 1490 return nullptr; 1491 1492 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1493 Value *A, *B, *C, *D; 1494 SelectPatternResult L = matchSelectPattern(LHS, A, B); 1495 SelectPatternResult R = matchSelectPattern(RHS, C, D); 1496 if (SPF != L.Flavor || L.Flavor != R.Flavor) 1497 return nullptr; 1498 1499 // Look for a common operand. The use checks are different than usual because 1500 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 1501 // the select. 1502 Value *MinMaxOp = nullptr; 1503 Value *ThirdOp = nullptr; 1504 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 1505 // If the LHS is only used in this chain and the RHS is used outside of it, 1506 // reuse the RHS min/max because that will eliminate the LHS. 1507 if (D == A || C == A) { 1508 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1509 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1510 MinMaxOp = RHS; 1511 ThirdOp = B; 1512 } else if (D == B || C == B) { 1513 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1514 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1515 MinMaxOp = RHS; 1516 ThirdOp = A; 1517 } 1518 } else if (!RHS->hasNUsesOrMore(3)) { 1519 // Reuse the LHS. This will eliminate the RHS. 1520 if (D == A || D == B) { 1521 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1522 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1523 MinMaxOp = LHS; 1524 ThirdOp = C; 1525 } else if (C == A || C == B) { 1526 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1527 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1528 MinMaxOp = LHS; 1529 ThirdOp = D; 1530 } 1531 } 1532 if (!MinMaxOp || !ThirdOp) 1533 return nullptr; 1534 1535 CmpInst::Predicate P = getMinMaxPred(SPF); 1536 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 1537 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 1538 } 1539 1540 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1541 Value *CondVal = SI.getCondition(); 1542 Value *TrueVal = SI.getTrueValue(); 1543 Value *FalseVal = SI.getFalseValue(); 1544 Type *SelType = SI.getType(); 1545 1546 // FIXME: Remove this workaround when freeze related patches are done. 1547 // For select with undef operand which feeds into an equality comparison, 1548 // don't simplify it so loop unswitch can know the equality comparison 1549 // may have an undef operand. This is a workaround for PR31652 caused by 1550 // descrepancy about branch on undef between LoopUnswitch and GVN. 1551 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1552 if (llvm::any_of(SI.users(), [&](User *U) { 1553 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1554 if (CI && CI->isEquality()) 1555 return true; 1556 return false; 1557 })) { 1558 return nullptr; 1559 } 1560 } 1561 1562 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1563 SQ.getWithInstruction(&SI))) 1564 return replaceInstUsesWith(SI, V); 1565 1566 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1567 return I; 1568 1569 // Canonicalize a one-use integer compare with a non-canonical predicate by 1570 // inverting the predicate and swapping the select operands. This matches a 1571 // compare canonicalization for conditional branches. 1572 // TODO: Should we do the same for FP compares? 1573 CmpInst::Predicate Pred; 1574 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 1575 !isCanonicalPredicate(Pred)) { 1576 // Swap true/false values and condition. 1577 CmpInst *Cond = cast<CmpInst>(CondVal); 1578 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 1579 SI.setOperand(1, FalseVal); 1580 SI.setOperand(2, TrueVal); 1581 SI.swapProfMetadata(); 1582 Worklist.Add(Cond); 1583 return &SI; 1584 } 1585 1586 if (SelType->isIntOrIntVectorTy(1) && 1587 TrueVal->getType() == CondVal->getType()) { 1588 if (match(TrueVal, m_One())) { 1589 // Change: A = select B, true, C --> A = or B, C 1590 return BinaryOperator::CreateOr(CondVal, FalseVal); 1591 } 1592 if (match(TrueVal, m_Zero())) { 1593 // Change: A = select B, false, C --> A = and !B, C 1594 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1595 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1596 } 1597 if (match(FalseVal, m_Zero())) { 1598 // Change: A = select B, C, false --> A = and B, C 1599 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1600 } 1601 if (match(FalseVal, m_One())) { 1602 // Change: A = select B, C, true --> A = or !B, C 1603 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1604 return BinaryOperator::CreateOr(NotCond, TrueVal); 1605 } 1606 1607 // select a, a, b -> a | b 1608 // select a, b, a -> a & b 1609 if (CondVal == TrueVal) 1610 return BinaryOperator::CreateOr(CondVal, FalseVal); 1611 if (CondVal == FalseVal) 1612 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1613 1614 // select a, ~a, b -> (~a) & b 1615 // select a, b, ~a -> (~a) | b 1616 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1617 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1618 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1619 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1620 } 1621 1622 // Selecting between two integer or vector splat integer constants? 1623 // 1624 // Note that we don't handle a scalar select of vectors: 1625 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1626 // because that may need 3 instructions to splat the condition value: 1627 // extend, insertelement, shufflevector. 1628 if (SelType->isIntOrIntVectorTy() && 1629 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1630 // select C, 1, 0 -> zext C to int 1631 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1632 return new ZExtInst(CondVal, SelType); 1633 1634 // select C, -1, 0 -> sext C to int 1635 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1636 return new SExtInst(CondVal, SelType); 1637 1638 // select C, 0, 1 -> zext !C to int 1639 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1640 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1641 return new ZExtInst(NotCond, SelType); 1642 } 1643 1644 // select C, 0, -1 -> sext !C to int 1645 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1646 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1647 return new SExtInst(NotCond, SelType); 1648 } 1649 } 1650 1651 // See if we are selecting two values based on a comparison of the two values. 1652 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1653 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1654 // Transform (X == Y) ? X : Y -> Y 1655 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1656 // This is not safe in general for floating point: 1657 // consider X== -0, Y== +0. 1658 // It becomes safe if either operand is a nonzero constant. 1659 ConstantFP *CFPt, *CFPf; 1660 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1661 !CFPt->getValueAPF().isZero()) || 1662 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1663 !CFPf->getValueAPF().isZero())) 1664 return replaceInstUsesWith(SI, FalseVal); 1665 } 1666 // Transform (X une Y) ? X : Y -> X 1667 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1668 // This is not safe in general for floating point: 1669 // consider X== -0, Y== +0. 1670 // It becomes safe if either operand is a nonzero constant. 1671 ConstantFP *CFPt, *CFPf; 1672 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1673 !CFPt->getValueAPF().isZero()) || 1674 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1675 !CFPf->getValueAPF().isZero())) 1676 return replaceInstUsesWith(SI, TrueVal); 1677 } 1678 1679 // Canonicalize to use ordered comparisons by swapping the select 1680 // operands. 1681 // 1682 // e.g. 1683 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1684 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1685 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1686 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1687 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1688 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 1689 FCI->getName() + ".inv"); 1690 1691 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1692 SI.getName() + ".p"); 1693 } 1694 1695 // NOTE: if we wanted to, this is where to detect MIN/MAX 1696 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1697 // Transform (X == Y) ? Y : X -> X 1698 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1699 // This is not safe in general for floating point: 1700 // consider X== -0, Y== +0. 1701 // It becomes safe if either operand is a nonzero constant. 1702 ConstantFP *CFPt, *CFPf; 1703 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1704 !CFPt->getValueAPF().isZero()) || 1705 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1706 !CFPf->getValueAPF().isZero())) 1707 return replaceInstUsesWith(SI, FalseVal); 1708 } 1709 // Transform (X une Y) ? Y : X -> Y 1710 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1711 // This is not safe in general for floating point: 1712 // consider X== -0, Y== +0. 1713 // It becomes safe if either operand is a nonzero constant. 1714 ConstantFP *CFPt, *CFPf; 1715 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1716 !CFPt->getValueAPF().isZero()) || 1717 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1718 !CFPf->getValueAPF().isZero())) 1719 return replaceInstUsesWith(SI, TrueVal); 1720 } 1721 1722 // Canonicalize to use ordered comparisons by swapping the select 1723 // operands. 1724 // 1725 // e.g. 1726 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1727 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1728 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1729 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1730 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1731 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 1732 FCI->getName() + ".inv"); 1733 1734 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1735 SI.getName() + ".p"); 1736 } 1737 1738 // NOTE: if we wanted to, this is where to detect MIN/MAX 1739 } 1740 1741 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 1742 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 1743 // also require nnan because we do not want to unintentionally change the 1744 // sign of a NaN value. 1745 Value *X = FCI->getOperand(0); 1746 FCmpInst::Predicate Pred = FCI->getPredicate(); 1747 if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) { 1748 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 1749 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 1750 if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE && 1751 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) || 1752 (X == TrueVal && Pred == FCmpInst::FCMP_OGT && 1753 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) { 1754 Value *Fabs = Builder.CreateIntrinsic(Intrinsic::fabs, { X }, FCI); 1755 return replaceInstUsesWith(SI, Fabs); 1756 } 1757 // With nsz: 1758 // (X < +/-0.0) ? -X : X --> fabs(X) 1759 // (X <= +/-0.0) ? -X : X --> fabs(X) 1760 // (X > +/-0.0) ? X : -X --> fabs(X) 1761 // (X >= +/-0.0) ? X : -X --> fabs(X) 1762 if (FCI->hasNoSignedZeros() && 1763 ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) && 1764 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) || 1765 (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) && 1766 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) { 1767 Value *Fabs = Builder.CreateIntrinsic(Intrinsic::fabs, { X }, FCI); 1768 return replaceInstUsesWith(SI, Fabs); 1769 } 1770 } 1771 } 1772 1773 // See if we are selecting two values based on a comparison of the two values. 1774 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1775 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1776 return Result; 1777 1778 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 1779 return Add; 1780 1781 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1782 auto *TI = dyn_cast<Instruction>(TrueVal); 1783 auto *FI = dyn_cast<Instruction>(FalseVal); 1784 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1785 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1786 return IV; 1787 1788 if (Instruction *I = foldSelectExtConst(SI)) 1789 return I; 1790 1791 // See if we can fold the select into one of our operands. 1792 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1793 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1794 return FoldI; 1795 1796 Value *LHS, *RHS; 1797 Instruction::CastOps CastOp; 1798 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1799 auto SPF = SPR.Flavor; 1800 if (SPF) { 1801 Value *LHS2, *RHS2; 1802 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1803 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 1804 RHS2, SI, SPF, RHS)) 1805 return R; 1806 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1807 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 1808 RHS2, SI, SPF, LHS)) 1809 return R; 1810 // TODO. 1811 // ABS(-X) -> ABS(X) 1812 } 1813 1814 if (SelectPatternResult::isMinOrMax(SPF)) { 1815 // Canonicalize so that 1816 // - type casts are outside select patterns. 1817 // - float clamp is transformed to min/max pattern 1818 1819 bool IsCastNeeded = LHS->getType() != SelType; 1820 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 1821 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 1822 if (IsCastNeeded || 1823 (LHS->getType()->isFPOrFPVectorTy() && 1824 ((CmpLHS != LHS && CmpLHS != RHS) || 1825 (CmpRHS != LHS && CmpRHS != RHS)))) { 1826 CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered); 1827 1828 Value *Cmp; 1829 if (CmpInst::isIntPredicate(Pred)) { 1830 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 1831 } else { 1832 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1833 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1834 Builder.setFastMathFlags(FMF); 1835 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 1836 } 1837 1838 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 1839 if (!IsCastNeeded) 1840 return replaceInstUsesWith(SI, NewSI); 1841 1842 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 1843 return replaceInstUsesWith(SI, NewCast); 1844 } 1845 1846 // MAX(~a, ~b) -> ~MIN(a, b) 1847 // MAX(~a, C) -> ~MIN(a, ~C) 1848 // MIN(~a, ~b) -> ~MAX(a, b) 1849 // MIN(~a, C) -> ~MAX(a, ~C) 1850 auto moveNotAfterMinMax = [&](Value *X, Value *Y, 1851 bool Swapped) -> Instruction * { 1852 Value *A; 1853 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 1854 !IsFreeToInvert(A, A->hasOneUse()) && 1855 // Passing false to only consider m_Not and constants. 1856 IsFreeToInvert(Y, false)) { 1857 Value *B = Builder.CreateNot(Y); 1858 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 1859 A, B); 1860 // Copy the profile metadata. 1861 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 1862 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 1863 // Swap the metadata if the operands are swapped. 1864 if (Swapped) { 1865 assert(X == SI.getFalseValue() && Y == SI.getTrueValue() && 1866 "Unexpected operands."); 1867 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 1868 } else { 1869 assert(X == SI.getTrueValue() && Y == SI.getFalseValue() && 1870 "Unexpected operands."); 1871 } 1872 } 1873 1874 return BinaryOperator::CreateNot(NewMinMax); 1875 } 1876 1877 return nullptr; 1878 }; 1879 1880 if (Instruction *I = moveNotAfterMinMax(LHS, RHS, /*Swapped*/false)) 1881 return I; 1882 if (Instruction *I = moveNotAfterMinMax(RHS, LHS, /*Swapped*/true)) 1883 return I; 1884 1885 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 1886 return I; 1887 } 1888 } 1889 1890 // See if we can fold the select into a phi node if the condition is a select. 1891 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 1892 // The true/false values have to be live in the PHI predecessor's blocks. 1893 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1894 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1895 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 1896 return NV; 1897 1898 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1899 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1900 // select(C, select(C, a, b), c) -> select(C, a, c) 1901 if (TrueSI->getCondition() == CondVal) { 1902 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1903 return nullptr; 1904 SI.setOperand(1, TrueSI->getTrueValue()); 1905 return &SI; 1906 } 1907 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1908 // We choose this as normal form to enable folding on the And and shortening 1909 // paths for the values (this helps GetUnderlyingObjects() for example). 1910 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1911 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 1912 SI.setOperand(0, And); 1913 SI.setOperand(1, TrueSI->getTrueValue()); 1914 return &SI; 1915 } 1916 } 1917 } 1918 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1919 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1920 // select(C, a, select(C, b, c)) -> select(C, a, c) 1921 if (FalseSI->getCondition() == CondVal) { 1922 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1923 return nullptr; 1924 SI.setOperand(2, FalseSI->getFalseValue()); 1925 return &SI; 1926 } 1927 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1928 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1929 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 1930 SI.setOperand(0, Or); 1931 SI.setOperand(2, FalseSI->getFalseValue()); 1932 return &SI; 1933 } 1934 } 1935 } 1936 1937 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 1938 // The select might be preventing a division by 0. 1939 switch (BO->getOpcode()) { 1940 default: 1941 return true; 1942 case Instruction::SRem: 1943 case Instruction::URem: 1944 case Instruction::SDiv: 1945 case Instruction::UDiv: 1946 return false; 1947 } 1948 }; 1949 1950 // Try to simplify a binop sandwiched between 2 selects with the same 1951 // condition. 1952 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 1953 BinaryOperator *TrueBO; 1954 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 1955 canMergeSelectThroughBinop(TrueBO)) { 1956 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 1957 if (TrueBOSI->getCondition() == CondVal) { 1958 TrueBO->setOperand(0, TrueBOSI->getTrueValue()); 1959 Worklist.Add(TrueBO); 1960 return &SI; 1961 } 1962 } 1963 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 1964 if (TrueBOSI->getCondition() == CondVal) { 1965 TrueBO->setOperand(1, TrueBOSI->getTrueValue()); 1966 Worklist.Add(TrueBO); 1967 return &SI; 1968 } 1969 } 1970 } 1971 1972 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 1973 BinaryOperator *FalseBO; 1974 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 1975 canMergeSelectThroughBinop(FalseBO)) { 1976 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 1977 if (FalseBOSI->getCondition() == CondVal) { 1978 FalseBO->setOperand(0, FalseBOSI->getFalseValue()); 1979 Worklist.Add(FalseBO); 1980 return &SI; 1981 } 1982 } 1983 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 1984 if (FalseBOSI->getCondition() == CondVal) { 1985 FalseBO->setOperand(1, FalseBOSI->getFalseValue()); 1986 Worklist.Add(FalseBO); 1987 return &SI; 1988 } 1989 } 1990 } 1991 1992 if (BinaryOperator::isNot(CondVal)) { 1993 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1994 SI.setOperand(1, FalseVal); 1995 SI.setOperand(2, TrueVal); 1996 return &SI; 1997 } 1998 1999 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 2000 unsigned VWidth = VecTy->getNumElements(); 2001 APInt UndefElts(VWidth, 0); 2002 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2003 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 2004 if (V != &SI) 2005 return replaceInstUsesWith(SI, V); 2006 return &SI; 2007 } 2008 } 2009 2010 // See if we can determine the result of this select based on a dominating 2011 // condition. 2012 BasicBlock *Parent = SI.getParent(); 2013 if (BasicBlock *Dom = Parent->getSinglePredecessor()) { 2014 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 2015 if (PBI && PBI->isConditional() && 2016 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 2017 (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { 2018 bool CondIsTrue = PBI->getSuccessor(0) == Parent; 2019 Optional<bool> Implication = isImpliedCondition( 2020 PBI->getCondition(), SI.getCondition(), DL, CondIsTrue); 2021 if (Implication) { 2022 Value *V = *Implication ? TrueVal : FalseVal; 2023 return replaceInstUsesWith(SI, V); 2024 } 2025 } 2026 } 2027 2028 // If we can compute the condition, there's no need for a select. 2029 // Like the above fold, we are attempting to reduce compile-time cost by 2030 // putting this fold here with limitations rather than in InstSimplify. 2031 // The motivation for this call into value tracking is to take advantage of 2032 // the assumption cache, so make sure that is populated. 2033 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 2034 KnownBits Known(1); 2035 computeKnownBits(CondVal, Known, 0, &SI); 2036 if (Known.One.isOneValue()) 2037 return replaceInstUsesWith(SI, TrueVal); 2038 if (Known.Zero.isOneValue()) 2039 return replaceInstUsesWith(SI, FalseVal); 2040 } 2041 2042 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 2043 return BitCastSel; 2044 2045 // Simplify selects that test the returned flag of cmpxchg instructions. 2046 if (Instruction *Select = foldSelectCmpXchg(SI)) 2047 return Select; 2048 2049 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI)) 2050 return Select; 2051 2052 return nullptr; 2053 } 2054