1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CmpInstAnalysis.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
42 #include <cassert>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace PatternMatch;
47 
48 #define DEBUG_TYPE "instcombine"
49 
50 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
51                            SelectPatternFlavor SPF, Value *A, Value *B) {
52   CmpInst::Predicate Pred = getMinMaxPred(SPF);
53   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
54   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
55 }
56 
57 /// Replace a select operand based on an equality comparison with the identity
58 /// constant of a binop.
59 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
60                                             const TargetLibraryInfo &TLI) {
61   // The select condition must be an equality compare with a constant operand.
62   Value *X;
63   Constant *C;
64   CmpInst::Predicate Pred;
65   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
66     return nullptr;
67 
68   bool IsEq;
69   if (ICmpInst::isEquality(Pred))
70     IsEq = Pred == ICmpInst::ICMP_EQ;
71   else if (Pred == FCmpInst::FCMP_OEQ)
72     IsEq = true;
73   else if (Pred == FCmpInst::FCMP_UNE)
74     IsEq = false;
75   else
76     return nullptr;
77 
78   // A select operand must be a binop, and the compare constant must be the
79   // identity constant for that binop.
80   BinaryOperator *BO;
81   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)) ||
82       ConstantExpr::getBinOpIdentity(BO->getOpcode(), BO->getType(), true) != C)
83     return nullptr;
84 
85   // Last, match the compare variable operand with a binop operand.
86   Value *Y;
87   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
88     return nullptr;
89   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
90     return nullptr;
91 
92   // +0.0 compares equal to -0.0, and so it does not behave as required for this
93   // transform. Bail out if we can not exclude that possibility.
94   if (isa<FPMathOperator>(BO))
95     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
96       return nullptr;
97 
98   // BO = binop Y, X
99   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
100   // =>
101   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
102   Sel.setOperand(IsEq ? 1 : 2, Y);
103   return &Sel;
104 }
105 
106 /// This folds:
107 ///  select (icmp eq (and X, C1)), TC, FC
108 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
109 /// To something like:
110 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
111 /// Or:
112 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
113 /// With some variations depending if FC is larger than TC, or the shift
114 /// isn't needed, or the bit widths don't match.
115 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
116                                 InstCombiner::BuilderTy &Builder) {
117   const APInt *SelTC, *SelFC;
118   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
119       !match(Sel.getFalseValue(), m_APInt(SelFC)))
120     return nullptr;
121 
122   // If this is a vector select, we need a vector compare.
123   Type *SelType = Sel.getType();
124   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
125     return nullptr;
126 
127   Value *V;
128   APInt AndMask;
129   bool CreateAnd = false;
130   ICmpInst::Predicate Pred = Cmp->getPredicate();
131   if (ICmpInst::isEquality(Pred)) {
132     if (!match(Cmp->getOperand(1), m_Zero()))
133       return nullptr;
134 
135     V = Cmp->getOperand(0);
136     const APInt *AndRHS;
137     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
138       return nullptr;
139 
140     AndMask = *AndRHS;
141   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
142                                   Pred, V, AndMask)) {
143     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
144     if (!AndMask.isPowerOf2())
145       return nullptr;
146 
147     CreateAnd = true;
148   } else {
149     return nullptr;
150   }
151 
152   // In general, when both constants are non-zero, we would need an offset to
153   // replace the select. This would require more instructions than we started
154   // with. But there's one special-case that we handle here because it can
155   // simplify/reduce the instructions.
156   APInt TC = *SelTC;
157   APInt FC = *SelFC;
158   if (!TC.isNullValue() && !FC.isNullValue()) {
159     // If the select constants differ by exactly one bit and that's the same
160     // bit that is masked and checked by the select condition, the select can
161     // be replaced by bitwise logic to set/clear one bit of the constant result.
162     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
163       return nullptr;
164     if (CreateAnd) {
165       // If we have to create an 'and', then we must kill the cmp to not
166       // increase the instruction count.
167       if (!Cmp->hasOneUse())
168         return nullptr;
169       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
170     }
171     bool ExtraBitInTC = TC.ugt(FC);
172     if (Pred == ICmpInst::ICMP_EQ) {
173       // If the masked bit in V is clear, clear or set the bit in the result:
174       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
175       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
176       Constant *C = ConstantInt::get(SelType, TC);
177       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
178     }
179     if (Pred == ICmpInst::ICMP_NE) {
180       // If the masked bit in V is set, set or clear the bit in the result:
181       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
182       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
183       Constant *C = ConstantInt::get(SelType, FC);
184       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
185     }
186     llvm_unreachable("Only expecting equality predicates");
187   }
188 
189   // Make sure one of the select arms is a power-of-2.
190   if (!TC.isPowerOf2() && !FC.isPowerOf2())
191     return nullptr;
192 
193   // Determine which shift is needed to transform result of the 'and' into the
194   // desired result.
195   const APInt &ValC = !TC.isNullValue() ? TC : FC;
196   unsigned ValZeros = ValC.logBase2();
197   unsigned AndZeros = AndMask.logBase2();
198 
199   // Insert the 'and' instruction on the input to the truncate.
200   if (CreateAnd)
201     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
202 
203   // If types don't match, we can still convert the select by introducing a zext
204   // or a trunc of the 'and'.
205   if (ValZeros > AndZeros) {
206     V = Builder.CreateZExtOrTrunc(V, SelType);
207     V = Builder.CreateShl(V, ValZeros - AndZeros);
208   } else if (ValZeros < AndZeros) {
209     V = Builder.CreateLShr(V, AndZeros - ValZeros);
210     V = Builder.CreateZExtOrTrunc(V, SelType);
211   } else {
212     V = Builder.CreateZExtOrTrunc(V, SelType);
213   }
214 
215   // Okay, now we know that everything is set up, we just don't know whether we
216   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
217   bool ShouldNotVal = !TC.isNullValue();
218   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
219   if (ShouldNotVal)
220     V = Builder.CreateXor(V, ValC);
221 
222   return V;
223 }
224 
225 /// We want to turn code that looks like this:
226 ///   %C = or %A, %B
227 ///   %D = select %cond, %C, %A
228 /// into:
229 ///   %C = select %cond, %B, 0
230 ///   %D = or %A, %C
231 ///
232 /// Assuming that the specified instruction is an operand to the select, return
233 /// a bitmask indicating which operands of this instruction are foldable if they
234 /// equal the other incoming value of the select.
235 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
236   switch (I->getOpcode()) {
237   case Instruction::Add:
238   case Instruction::Mul:
239   case Instruction::And:
240   case Instruction::Or:
241   case Instruction::Xor:
242     return 3;              // Can fold through either operand.
243   case Instruction::Sub:   // Can only fold on the amount subtracted.
244   case Instruction::Shl:   // Can only fold on the shift amount.
245   case Instruction::LShr:
246   case Instruction::AShr:
247     return 1;
248   default:
249     return 0;              // Cannot fold
250   }
251 }
252 
253 /// For the same transformation as the previous function, return the identity
254 /// constant that goes into the select.
255 static APInt getSelectFoldableConstant(BinaryOperator *I) {
256   switch (I->getOpcode()) {
257   default: llvm_unreachable("This cannot happen!");
258   case Instruction::Add:
259   case Instruction::Sub:
260   case Instruction::Or:
261   case Instruction::Xor:
262   case Instruction::Shl:
263   case Instruction::LShr:
264   case Instruction::AShr:
265     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
266   case Instruction::And:
267     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
268   case Instruction::Mul:
269     return APInt(I->getType()->getScalarSizeInBits(), 1);
270   }
271 }
272 
273 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
274 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
275                                           Instruction *FI) {
276   // Don't break up min/max patterns. The hasOneUse checks below prevent that
277   // for most cases, but vector min/max with bitcasts can be transformed. If the
278   // one-use restrictions are eased for other patterns, we still don't want to
279   // obfuscate min/max.
280   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
281        match(&SI, m_SMax(m_Value(), m_Value())) ||
282        match(&SI, m_UMin(m_Value(), m_Value())) ||
283        match(&SI, m_UMax(m_Value(), m_Value()))))
284     return nullptr;
285 
286   // If this is a cast from the same type, merge.
287   if (TI->getNumOperands() == 1 && TI->isCast()) {
288     Type *FIOpndTy = FI->getOperand(0)->getType();
289     if (TI->getOperand(0)->getType() != FIOpndTy)
290       return nullptr;
291 
292     // The select condition may be a vector. We may only change the operand
293     // type if the vector width remains the same (and matches the condition).
294     Type *CondTy = SI.getCondition()->getType();
295     if (CondTy->isVectorTy()) {
296       if (!FIOpndTy->isVectorTy())
297         return nullptr;
298       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
299         return nullptr;
300 
301       // TODO: If the backend knew how to deal with casts better, we could
302       // remove this limitation. For now, there's too much potential to create
303       // worse codegen by promoting the select ahead of size-altering casts
304       // (PR28160).
305       //
306       // Note that ValueTracking's matchSelectPattern() looks through casts
307       // without checking 'hasOneUse' when it matches min/max patterns, so this
308       // transform may end up happening anyway.
309       if (TI->getOpcode() != Instruction::BitCast &&
310           (!TI->hasOneUse() || !FI->hasOneUse()))
311         return nullptr;
312     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
313       // TODO: The one-use restrictions for a scalar select could be eased if
314       // the fold of a select in visitLoadInst() was enhanced to match a pattern
315       // that includes a cast.
316       return nullptr;
317     }
318 
319     // Fold this by inserting a select from the input values.
320     Value *NewSI =
321         Builder.CreateSelect(SI.getCondition(), TI->getOperand(0),
322                              FI->getOperand(0), SI.getName() + ".v", &SI);
323     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
324                             TI->getType());
325   }
326 
327   // Only handle binary operators (including two-operand getelementptr) with
328   // one-use here. As with the cast case above, it may be possible to relax the
329   // one-use constraint, but that needs be examined carefully since it may not
330   // reduce the total number of instructions.
331   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
332       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
333       !TI->hasOneUse() || !FI->hasOneUse())
334     return nullptr;
335 
336   // Figure out if the operations have any operands in common.
337   Value *MatchOp, *OtherOpT, *OtherOpF;
338   bool MatchIsOpZero;
339   if (TI->getOperand(0) == FI->getOperand(0)) {
340     MatchOp  = TI->getOperand(0);
341     OtherOpT = TI->getOperand(1);
342     OtherOpF = FI->getOperand(1);
343     MatchIsOpZero = true;
344   } else if (TI->getOperand(1) == FI->getOperand(1)) {
345     MatchOp  = TI->getOperand(1);
346     OtherOpT = TI->getOperand(0);
347     OtherOpF = FI->getOperand(0);
348     MatchIsOpZero = false;
349   } else if (!TI->isCommutative()) {
350     return nullptr;
351   } else if (TI->getOperand(0) == FI->getOperand(1)) {
352     MatchOp  = TI->getOperand(0);
353     OtherOpT = TI->getOperand(1);
354     OtherOpF = FI->getOperand(0);
355     MatchIsOpZero = true;
356   } else if (TI->getOperand(1) == FI->getOperand(0)) {
357     MatchOp  = TI->getOperand(1);
358     OtherOpT = TI->getOperand(0);
359     OtherOpF = FI->getOperand(1);
360     MatchIsOpZero = true;
361   } else {
362     return nullptr;
363   }
364 
365   // If the select condition is a vector, the operands of the original select's
366   // operands also must be vectors. This may not be the case for getelementptr
367   // for example.
368   if (SI.getCondition()->getType()->isVectorTy() &&
369       (!OtherOpT->getType()->isVectorTy() ||
370        !OtherOpF->getType()->isVectorTy()))
371     return nullptr;
372 
373   // If we reach here, they do have operations in common.
374   Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
375                                       SI.getName() + ".v", &SI);
376   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
377   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
378   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
379     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
380     NewBO->copyIRFlags(TI);
381     NewBO->andIRFlags(FI);
382     return NewBO;
383   }
384   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
385     auto *FGEP = cast<GetElementPtrInst>(FI);
386     Type *ElementType = TGEP->getResultElementType();
387     return TGEP->isInBounds() && FGEP->isInBounds()
388                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
389                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
390   }
391   llvm_unreachable("Expected BinaryOperator or GEP");
392   return nullptr;
393 }
394 
395 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
396   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
397     return false;
398   return C1I.isOneValue() || C1I.isAllOnesValue() ||
399          C2I.isOneValue() || C2I.isAllOnesValue();
400 }
401 
402 /// Try to fold the select into one of the operands to allow further
403 /// optimization.
404 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
405                                             Value *FalseVal) {
406   // See the comment above GetSelectFoldableOperands for a description of the
407   // transformation we are doing here.
408   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
409     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
410       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
411         unsigned OpToFold = 0;
412         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
413           OpToFold = 1;
414         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
415           OpToFold = 2;
416         }
417 
418         if (OpToFold) {
419           APInt CI = getSelectFoldableConstant(TVI);
420           Value *OOp = TVI->getOperand(2-OpToFold);
421           // Avoid creating select between 2 constants unless it's selecting
422           // between 0, 1 and -1.
423           const APInt *OOpC;
424           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
425           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
426             Value *C = ConstantInt::get(OOp->getType(), CI);
427             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
428             NewSel->takeName(TVI);
429             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
430                                                         FalseVal, NewSel);
431             BO->copyIRFlags(TVI);
432             return BO;
433           }
434         }
435       }
436     }
437   }
438 
439   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
440     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
441       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
442         unsigned OpToFold = 0;
443         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
444           OpToFold = 1;
445         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
446           OpToFold = 2;
447         }
448 
449         if (OpToFold) {
450           APInt CI = getSelectFoldableConstant(FVI);
451           Value *OOp = FVI->getOperand(2-OpToFold);
452           // Avoid creating select between 2 constants unless it's selecting
453           // between 0, 1 and -1.
454           const APInt *OOpC;
455           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
456           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
457             Value *C = ConstantInt::get(OOp->getType(), CI);
458             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
459             NewSel->takeName(FVI);
460             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
461                                                         TrueVal, NewSel);
462             BO->copyIRFlags(FVI);
463             return BO;
464           }
465         }
466       }
467     }
468   }
469 
470   return nullptr;
471 }
472 
473 /// We want to turn:
474 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
475 /// into:
476 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
477 /// Note:
478 ///   Z may be 0 if lshr is missing.
479 /// Worst-case scenario is that we will replace 5 instructions with 5 different
480 /// instructions, but we got rid of select.
481 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
482                                          Value *TVal, Value *FVal,
483                                          InstCombiner::BuilderTy &Builder) {
484   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
485         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
486         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
487     return nullptr;
488 
489   // The TrueVal has general form of:  and %B, 1
490   Value *B;
491   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
492     return nullptr;
493 
494   // Where %B may be optionally shifted:  lshr %X, %Z.
495   Value *X, *Z;
496   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
497   if (!HasShift)
498     X = B;
499 
500   Value *Y;
501   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
502     return nullptr;
503 
504   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
505   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
506   Constant *One = ConstantInt::get(SelType, 1);
507   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
508   Value *FullMask = Builder.CreateOr(Y, MaskB);
509   Value *MaskedX = Builder.CreateAnd(X, FullMask);
510   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
511   return new ZExtInst(ICmpNeZero, SelType);
512 }
513 
514 /// We want to turn:
515 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
516 /// into:
517 ///   (or (shl (and X, C1), C3), Y)
518 /// iff:
519 ///   C1 and C2 are both powers of 2
520 /// where:
521 ///   C3 = Log(C2) - Log(C1)
522 ///
523 /// This transform handles cases where:
524 /// 1. The icmp predicate is inverted
525 /// 2. The select operands are reversed
526 /// 3. The magnitude of C2 and C1 are flipped
527 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
528                                   Value *FalseVal,
529                                   InstCombiner::BuilderTy &Builder) {
530   // Only handle integer compares. Also, if this is a vector select, we need a
531   // vector compare.
532   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
533       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
534     return nullptr;
535 
536   Value *CmpLHS = IC->getOperand(0);
537   Value *CmpRHS = IC->getOperand(1);
538 
539   Value *V;
540   unsigned C1Log;
541   bool IsEqualZero;
542   bool NeedAnd = false;
543   if (IC->isEquality()) {
544     if (!match(CmpRHS, m_Zero()))
545       return nullptr;
546 
547     const APInt *C1;
548     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
549       return nullptr;
550 
551     V = CmpLHS;
552     C1Log = C1->logBase2();
553     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
554   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
555              IC->getPredicate() == ICmpInst::ICMP_SGT) {
556     // We also need to recognize (icmp slt (trunc (X)), 0) and
557     // (icmp sgt (trunc (X)), -1).
558     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
559     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
560         (!IsEqualZero && !match(CmpRHS, m_Zero())))
561       return nullptr;
562 
563     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
564       return nullptr;
565 
566     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
567     NeedAnd = true;
568   } else {
569     return nullptr;
570   }
571 
572   const APInt *C2;
573   bool OrOnTrueVal = false;
574   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
575   if (!OrOnFalseVal)
576     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
577 
578   if (!OrOnFalseVal && !OrOnTrueVal)
579     return nullptr;
580 
581   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
582 
583   unsigned C2Log = C2->logBase2();
584 
585   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
586   bool NeedShift = C1Log != C2Log;
587   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
588                        V->getType()->getScalarSizeInBits();
589 
590   // Make sure we don't create more instructions than we save.
591   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
592   if ((NeedShift + NeedXor + NeedZExtTrunc) >
593       (IC->hasOneUse() + Or->hasOneUse()))
594     return nullptr;
595 
596   if (NeedAnd) {
597     // Insert the AND instruction on the input to the truncate.
598     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
599     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
600   }
601 
602   if (C2Log > C1Log) {
603     V = Builder.CreateZExtOrTrunc(V, Y->getType());
604     V = Builder.CreateShl(V, C2Log - C1Log);
605   } else if (C1Log > C2Log) {
606     V = Builder.CreateLShr(V, C1Log - C2Log);
607     V = Builder.CreateZExtOrTrunc(V, Y->getType());
608   } else
609     V = Builder.CreateZExtOrTrunc(V, Y->getType());
610 
611   if (NeedXor)
612     V = Builder.CreateXor(V, *C2);
613 
614   return Builder.CreateOr(V, Y);
615 }
616 
617 /// Transform patterns such as: (a > b) ? a - b : 0
618 /// into: ((a > b) ? a : b) - b)
619 /// This produces a canonical max pattern that is more easily recognized by the
620 /// backend and converted into saturated subtraction instructions if those
621 /// exist.
622 /// There are 8 commuted/swapped variants of this pattern.
623 /// TODO: Also support a - UMIN(a,b) patterns.
624 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
625                                             const Value *TrueVal,
626                                             const Value *FalseVal,
627                                             InstCombiner::BuilderTy &Builder) {
628   ICmpInst::Predicate Pred = ICI->getPredicate();
629   if (!ICmpInst::isUnsigned(Pred))
630     return nullptr;
631 
632   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
633   if (match(TrueVal, m_Zero())) {
634     Pred = ICmpInst::getInversePredicate(Pred);
635     std::swap(TrueVal, FalseVal);
636   }
637   if (!match(FalseVal, m_Zero()))
638     return nullptr;
639 
640   Value *A = ICI->getOperand(0);
641   Value *B = ICI->getOperand(1);
642   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
643     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
644     std::swap(A, B);
645     Pred = ICmpInst::getSwappedPredicate(Pred);
646   }
647 
648   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
649          "Unexpected isUnsigned predicate!");
650 
651   // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
652   bool IsNegative = false;
653   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
654     IsNegative = true;
655   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
656     return nullptr;
657 
658   // If sub is used anywhere else, we wouldn't be able to eliminate it
659   // afterwards.
660   if (!TrueVal->hasOneUse())
661     return nullptr;
662 
663   // All checks passed, convert to canonical unsigned saturated subtraction
664   // form: sub(max()).
665   // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b)
666   Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
667   return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B);
668 }
669 
670 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
671 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
672 ///
673 /// For example, we can fold the following code sequence:
674 /// \code
675 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
676 ///   %1 = icmp ne i32 %x, 0
677 ///   %2 = select i1 %1, i32 %0, i32 32
678 /// \code
679 ///
680 /// into:
681 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
682 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
683                                  InstCombiner::BuilderTy &Builder) {
684   ICmpInst::Predicate Pred = ICI->getPredicate();
685   Value *CmpLHS = ICI->getOperand(0);
686   Value *CmpRHS = ICI->getOperand(1);
687 
688   // Check if the condition value compares a value for equality against zero.
689   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
690     return nullptr;
691 
692   Value *Count = FalseVal;
693   Value *ValueOnZero = TrueVal;
694   if (Pred == ICmpInst::ICMP_NE)
695     std::swap(Count, ValueOnZero);
696 
697   // Skip zero extend/truncate.
698   Value *V = nullptr;
699   if (match(Count, m_ZExt(m_Value(V))) ||
700       match(Count, m_Trunc(m_Value(V))))
701     Count = V;
702 
703   // Check if the value propagated on zero is a constant number equal to the
704   // sizeof in bits of 'Count'.
705   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
706   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
707     return nullptr;
708 
709   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
710   // input to the cttz/ctlz is used as LHS for the compare instruction.
711   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
712       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
713     IntrinsicInst *II = cast<IntrinsicInst>(Count);
714     // Explicitly clear the 'undef_on_zero' flag.
715     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
716     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
717     Builder.Insert(NewI);
718     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
719   }
720 
721   return nullptr;
722 }
723 
724 /// Return true if we find and adjust an icmp+select pattern where the compare
725 /// is with a constant that can be incremented or decremented to match the
726 /// minimum or maximum idiom.
727 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
728   ICmpInst::Predicate Pred = Cmp.getPredicate();
729   Value *CmpLHS = Cmp.getOperand(0);
730   Value *CmpRHS = Cmp.getOperand(1);
731   Value *TrueVal = Sel.getTrueValue();
732   Value *FalseVal = Sel.getFalseValue();
733 
734   // We may move or edit the compare, so make sure the select is the only user.
735   const APInt *CmpC;
736   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
737     return false;
738 
739   // These transforms only work for selects of integers or vector selects of
740   // integer vectors.
741   Type *SelTy = Sel.getType();
742   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
743   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
744     return false;
745 
746   Constant *AdjustedRHS;
747   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
748     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
749   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
750     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
751   else
752     return false;
753 
754   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
755   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
756   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
757       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
758     ; // Nothing to do here. Values match without any sign/zero extension.
759   }
760   // Types do not match. Instead of calculating this with mixed types, promote
761   // all to the larger type. This enables scalar evolution to analyze this
762   // expression.
763   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
764     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
765 
766     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
767     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
768     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
769     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
770     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
771       CmpLHS = TrueVal;
772       AdjustedRHS = SextRHS;
773     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
774                SextRHS == TrueVal) {
775       CmpLHS = FalseVal;
776       AdjustedRHS = SextRHS;
777     } else if (Cmp.isUnsigned()) {
778       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
779       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
780       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
781       // zext + signed compare cannot be changed:
782       //    0xff <s 0x00, but 0x00ff >s 0x0000
783       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
784         CmpLHS = TrueVal;
785         AdjustedRHS = ZextRHS;
786       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
787                  ZextRHS == TrueVal) {
788         CmpLHS = FalseVal;
789         AdjustedRHS = ZextRHS;
790       } else {
791         return false;
792       }
793     } else {
794       return false;
795     }
796   } else {
797     return false;
798   }
799 
800   Pred = ICmpInst::getSwappedPredicate(Pred);
801   CmpRHS = AdjustedRHS;
802   std::swap(FalseVal, TrueVal);
803   Cmp.setPredicate(Pred);
804   Cmp.setOperand(0, CmpLHS);
805   Cmp.setOperand(1, CmpRHS);
806   Sel.setOperand(1, TrueVal);
807   Sel.setOperand(2, FalseVal);
808   Sel.swapProfMetadata();
809 
810   // Move the compare instruction right before the select instruction. Otherwise
811   // the sext/zext value may be defined after the compare instruction uses it.
812   Cmp.moveBefore(&Sel);
813 
814   return true;
815 }
816 
817 /// If this is an integer min/max (icmp + select) with a constant operand,
818 /// create the canonical icmp for the min/max operation and canonicalize the
819 /// constant to the 'false' operand of the select:
820 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
821 /// Note: if C1 != C2, this will change the icmp constant to the existing
822 /// constant operand of the select.
823 static Instruction *
824 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
825                                InstCombiner::BuilderTy &Builder) {
826   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
827     return nullptr;
828 
829   // Canonicalize the compare predicate based on whether we have min or max.
830   Value *LHS, *RHS;
831   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
832   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
833     return nullptr;
834 
835   // Is this already canonical?
836   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
837   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
838       Cmp.getPredicate() == CanonicalPred)
839     return nullptr;
840 
841   // Create the canonical compare and plug it into the select.
842   Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
843 
844   // If the select operands did not change, we're done.
845   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
846     return &Sel;
847 
848   // If we are swapping the select operands, swap the metadata too.
849   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
850          "Unexpected results from matchSelectPattern");
851   Sel.setTrueValue(LHS);
852   Sel.setFalseValue(RHS);
853   Sel.swapProfMetadata();
854   return &Sel;
855 }
856 
857 /// There are many select variants for each of ABS/NABS.
858 /// In matchSelectPattern(), there are different compare constants, compare
859 /// predicates/operands and select operands.
860 /// In isKnownNegation(), there are different formats of negated operands.
861 /// Canonicalize all these variants to 1 pattern.
862 /// This makes CSE more likely.
863 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
864                                         InstCombiner::BuilderTy &Builder) {
865   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
866     return nullptr;
867 
868   // Choose a sign-bit check for the compare (likely simpler for codegen).
869   // ABS:  (X <s 0) ? -X : X
870   // NABS: (X <s 0) ? X : -X
871   Value *LHS, *RHS;
872   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
873   if (SPF != SelectPatternFlavor::SPF_ABS &&
874       SPF != SelectPatternFlavor::SPF_NABS)
875     return nullptr;
876 
877   Value *TVal = Sel.getTrueValue();
878   Value *FVal = Sel.getFalseValue();
879   assert(isKnownNegation(TVal, FVal) &&
880          "Unexpected result from matchSelectPattern");
881 
882   // The compare may use the negated abs()/nabs() operand, or it may use
883   // negation in non-canonical form such as: sub A, B.
884   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
885                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
886 
887   bool CmpCanonicalized = !CmpUsesNegatedOp &&
888                           match(Cmp.getOperand(1), m_ZeroInt()) &&
889                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
890   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
891 
892   // Is this already canonical?
893   if (CmpCanonicalized && RHSCanonicalized)
894     return nullptr;
895 
896   // If RHS is used by other instructions except compare and select, don't
897   // canonicalize it to not increase the instruction count.
898   if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
899     return nullptr;
900 
901   // Create the canonical compare: icmp slt LHS 0.
902   if (!CmpCanonicalized) {
903     Cmp.setPredicate(ICmpInst::ICMP_SLT);
904     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
905     if (CmpUsesNegatedOp)
906       Cmp.setOperand(0, LHS);
907   }
908 
909   // Create the canonical RHS: RHS = sub (0, LHS).
910   if (!RHSCanonicalized) {
911     assert(RHS->hasOneUse() && "RHS use number is not right");
912     RHS = Builder.CreateNeg(LHS);
913     if (TVal == LHS) {
914       Sel.setFalseValue(RHS);
915       FVal = RHS;
916     } else {
917       Sel.setTrueValue(RHS);
918       TVal = RHS;
919     }
920   }
921 
922   // If the select operands do not change, we're done.
923   if (SPF == SelectPatternFlavor::SPF_NABS) {
924     if (TVal == LHS)
925       return &Sel;
926     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
927   } else {
928     if (FVal == LHS)
929       return &Sel;
930     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
931   }
932 
933   // We are swapping the select operands, so swap the metadata too.
934   Sel.setTrueValue(FVal);
935   Sel.setFalseValue(TVal);
936   Sel.swapProfMetadata();
937   return &Sel;
938 }
939 
940 /// Visit a SelectInst that has an ICmpInst as its first operand.
941 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
942                                                   ICmpInst *ICI) {
943   Value *TrueVal = SI.getTrueValue();
944   Value *FalseVal = SI.getFalseValue();
945 
946   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
947     return NewSel;
948 
949   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
950     return NewAbs;
951 
952   bool Changed = adjustMinMax(SI, *ICI);
953 
954   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
955     return replaceInstUsesWith(SI, V);
956 
957   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
958   ICmpInst::Predicate Pred = ICI->getPredicate();
959   Value *CmpLHS = ICI->getOperand(0);
960   Value *CmpRHS = ICI->getOperand(1);
961   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
962     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
963       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
964       SI.setOperand(1, CmpRHS);
965       Changed = true;
966     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
967       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
968       SI.setOperand(2, CmpRHS);
969       Changed = true;
970     }
971   }
972 
973   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
974   // decomposeBitTestICmp() might help.
975   {
976     unsigned BitWidth =
977         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
978     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
979     Value *X;
980     const APInt *Y, *C;
981     bool TrueWhenUnset;
982     bool IsBitTest = false;
983     if (ICmpInst::isEquality(Pred) &&
984         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
985         match(CmpRHS, m_Zero())) {
986       IsBitTest = true;
987       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
988     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
989       X = CmpLHS;
990       Y = &MinSignedValue;
991       IsBitTest = true;
992       TrueWhenUnset = false;
993     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
994       X = CmpLHS;
995       Y = &MinSignedValue;
996       IsBitTest = true;
997       TrueWhenUnset = true;
998     }
999     if (IsBitTest) {
1000       Value *V = nullptr;
1001       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1002       if (TrueWhenUnset && TrueVal == X &&
1003           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1004         V = Builder.CreateAnd(X, ~(*Y));
1005       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1006       else if (!TrueWhenUnset && FalseVal == X &&
1007                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1008         V = Builder.CreateAnd(X, ~(*Y));
1009       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1010       else if (TrueWhenUnset && FalseVal == X &&
1011                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1012         V = Builder.CreateOr(X, *Y);
1013       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1014       else if (!TrueWhenUnset && TrueVal == X &&
1015                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1016         V = Builder.CreateOr(X, *Y);
1017 
1018       if (V)
1019         return replaceInstUsesWith(SI, V);
1020     }
1021   }
1022 
1023   if (Instruction *V =
1024           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1025     return V;
1026 
1027   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1028     return replaceInstUsesWith(SI, V);
1029 
1030   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1031     return replaceInstUsesWith(SI, V);
1032 
1033   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1034     return replaceInstUsesWith(SI, V);
1035 
1036   return Changed ? &SI : nullptr;
1037 }
1038 
1039 /// SI is a select whose condition is a PHI node (but the two may be in
1040 /// different blocks). See if the true/false values (V) are live in all of the
1041 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1042 ///
1043 ///   X = phi [ C1, BB1], [C2, BB2]
1044 ///   Y = add
1045 ///   Z = select X, Y, 0
1046 ///
1047 /// because Y is not live in BB1/BB2.
1048 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1049                                                    const SelectInst &SI) {
1050   // If the value is a non-instruction value like a constant or argument, it
1051   // can always be mapped.
1052   const Instruction *I = dyn_cast<Instruction>(V);
1053   if (!I) return true;
1054 
1055   // If V is a PHI node defined in the same block as the condition PHI, we can
1056   // map the arguments.
1057   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1058 
1059   if (const PHINode *VP = dyn_cast<PHINode>(I))
1060     if (VP->getParent() == CondPHI->getParent())
1061       return true;
1062 
1063   // Otherwise, if the PHI and select are defined in the same block and if V is
1064   // defined in a different block, then we can transform it.
1065   if (SI.getParent() == CondPHI->getParent() &&
1066       I->getParent() != CondPHI->getParent())
1067     return true;
1068 
1069   // Otherwise we have a 'hard' case and we can't tell without doing more
1070   // detailed dominator based analysis, punt.
1071   return false;
1072 }
1073 
1074 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1075 ///   SPF2(SPF1(A, B), C)
1076 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1077                                         SelectPatternFlavor SPF1,
1078                                         Value *A, Value *B,
1079                                         Instruction &Outer,
1080                                         SelectPatternFlavor SPF2, Value *C) {
1081   if (Outer.getType() != Inner->getType())
1082     return nullptr;
1083 
1084   if (C == A || C == B) {
1085     // MAX(MAX(A, B), B) -> MAX(A, B)
1086     // MIN(MIN(a, b), a) -> MIN(a, b)
1087     // TODO: This could be done in instsimplify.
1088     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1089       return replaceInstUsesWith(Outer, Inner);
1090 
1091     // MAX(MIN(a, b), a) -> a
1092     // MIN(MAX(a, b), a) -> a
1093     // TODO: This could be done in instsimplify.
1094     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1095         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1096         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1097         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1098       return replaceInstUsesWith(Outer, C);
1099   }
1100 
1101   if (SPF1 == SPF2) {
1102     const APInt *CB, *CC;
1103     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1104       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1105       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1106       // TODO: This could be done in instsimplify.
1107       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1108           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1109           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1110           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1111         return replaceInstUsesWith(Outer, Inner);
1112 
1113       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1114       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1115       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1116           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1117           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1118           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1119         Outer.replaceUsesOfWith(Inner, A);
1120         return &Outer;
1121       }
1122     }
1123   }
1124 
1125   // ABS(ABS(X)) -> ABS(X)
1126   // NABS(NABS(X)) -> NABS(X)
1127   // TODO: This could be done in instsimplify.
1128   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1129     return replaceInstUsesWith(Outer, Inner);
1130   }
1131 
1132   // ABS(NABS(X)) -> ABS(X)
1133   // NABS(ABS(X)) -> NABS(X)
1134   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1135       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1136     SelectInst *SI = cast<SelectInst>(Inner);
1137     Value *NewSI =
1138         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1139                              SI->getTrueValue(), SI->getName(), SI);
1140     return replaceInstUsesWith(Outer, NewSI);
1141   }
1142 
1143   auto IsFreeOrProfitableToInvert =
1144       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1145     if (match(V, m_Not(m_Value(NotV)))) {
1146       // If V has at most 2 uses then we can get rid of the xor operation
1147       // entirely.
1148       ElidesXor |= !V->hasNUsesOrMore(3);
1149       return true;
1150     }
1151 
1152     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1153       NotV = nullptr;
1154       return true;
1155     }
1156 
1157     return false;
1158   };
1159 
1160   Value *NotA, *NotB, *NotC;
1161   bool ElidesXor = false;
1162 
1163   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1164   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1165   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1166   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1167   //
1168   // This transform is performance neutral if we can elide at least one xor from
1169   // the set of three operands, since we'll be tacking on an xor at the very
1170   // end.
1171   if (SelectPatternResult::isMinOrMax(SPF1) &&
1172       SelectPatternResult::isMinOrMax(SPF2) &&
1173       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1174       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1175       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1176     if (!NotA)
1177       NotA = Builder.CreateNot(A);
1178     if (!NotB)
1179       NotB = Builder.CreateNot(B);
1180     if (!NotC)
1181       NotC = Builder.CreateNot(C);
1182 
1183     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1184                                    NotB);
1185     Value *NewOuter = Builder.CreateNot(
1186         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1187     return replaceInstUsesWith(Outer, NewOuter);
1188   }
1189 
1190   return nullptr;
1191 }
1192 
1193 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1194 /// This is even legal for FP.
1195 static Instruction *foldAddSubSelect(SelectInst &SI,
1196                                      InstCombiner::BuilderTy &Builder) {
1197   Value *CondVal = SI.getCondition();
1198   Value *TrueVal = SI.getTrueValue();
1199   Value *FalseVal = SI.getFalseValue();
1200   auto *TI = dyn_cast<Instruction>(TrueVal);
1201   auto *FI = dyn_cast<Instruction>(FalseVal);
1202   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1203     return nullptr;
1204 
1205   Instruction *AddOp = nullptr, *SubOp = nullptr;
1206   if ((TI->getOpcode() == Instruction::Sub &&
1207        FI->getOpcode() == Instruction::Add) ||
1208       (TI->getOpcode() == Instruction::FSub &&
1209        FI->getOpcode() == Instruction::FAdd)) {
1210     AddOp = FI;
1211     SubOp = TI;
1212   } else if ((FI->getOpcode() == Instruction::Sub &&
1213               TI->getOpcode() == Instruction::Add) ||
1214              (FI->getOpcode() == Instruction::FSub &&
1215               TI->getOpcode() == Instruction::FAdd)) {
1216     AddOp = TI;
1217     SubOp = FI;
1218   }
1219 
1220   if (AddOp) {
1221     Value *OtherAddOp = nullptr;
1222     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1223       OtherAddOp = AddOp->getOperand(1);
1224     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1225       OtherAddOp = AddOp->getOperand(0);
1226     }
1227 
1228     if (OtherAddOp) {
1229       // So at this point we know we have (Y -> OtherAddOp):
1230       //        select C, (add X, Y), (sub X, Z)
1231       Value *NegVal; // Compute -Z
1232       if (SI.getType()->isFPOrFPVectorTy()) {
1233         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1234         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1235           FastMathFlags Flags = AddOp->getFastMathFlags();
1236           Flags &= SubOp->getFastMathFlags();
1237           NegInst->setFastMathFlags(Flags);
1238         }
1239       } else {
1240         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1241       }
1242 
1243       Value *NewTrueOp = OtherAddOp;
1244       Value *NewFalseOp = NegVal;
1245       if (AddOp != TI)
1246         std::swap(NewTrueOp, NewFalseOp);
1247       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1248                                            SI.getName() + ".p", &SI);
1249 
1250       if (SI.getType()->isFPOrFPVectorTy()) {
1251         Instruction *RI =
1252             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1253 
1254         FastMathFlags Flags = AddOp->getFastMathFlags();
1255         Flags &= SubOp->getFastMathFlags();
1256         RI->setFastMathFlags(Flags);
1257         return RI;
1258       } else
1259         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1260     }
1261   }
1262   return nullptr;
1263 }
1264 
1265 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1266   Constant *C;
1267   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1268       !match(Sel.getFalseValue(), m_Constant(C)))
1269     return nullptr;
1270 
1271   Instruction *ExtInst;
1272   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1273       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1274     return nullptr;
1275 
1276   auto ExtOpcode = ExtInst->getOpcode();
1277   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1278     return nullptr;
1279 
1280   // If we are extending from a boolean type or if we can create a select that
1281   // has the same size operands as its condition, try to narrow the select.
1282   Value *X = ExtInst->getOperand(0);
1283   Type *SmallType = X->getType();
1284   Value *Cond = Sel.getCondition();
1285   auto *Cmp = dyn_cast<CmpInst>(Cond);
1286   if (!SmallType->isIntOrIntVectorTy(1) &&
1287       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1288     return nullptr;
1289 
1290   // If the constant is the same after truncation to the smaller type and
1291   // extension to the original type, we can narrow the select.
1292   Type *SelType = Sel.getType();
1293   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1294   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1295   if (ExtC == C) {
1296     Value *TruncCVal = cast<Value>(TruncC);
1297     if (ExtInst == Sel.getFalseValue())
1298       std::swap(X, TruncCVal);
1299 
1300     // select Cond, (ext X), C --> ext(select Cond, X, C')
1301     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1302     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1303     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1304   }
1305 
1306   // If one arm of the select is the extend of the condition, replace that arm
1307   // with the extension of the appropriate known bool value.
1308   if (Cond == X) {
1309     if (ExtInst == Sel.getTrueValue()) {
1310       // select X, (sext X), C --> select X, -1, C
1311       // select X, (zext X), C --> select X,  1, C
1312       Constant *One = ConstantInt::getTrue(SmallType);
1313       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1314       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1315     } else {
1316       // select X, C, (sext X) --> select X, C, 0
1317       // select X, C, (zext X) --> select X, C, 0
1318       Constant *Zero = ConstantInt::getNullValue(SelType);
1319       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1320     }
1321   }
1322 
1323   return nullptr;
1324 }
1325 
1326 /// Try to transform a vector select with a constant condition vector into a
1327 /// shuffle for easier combining with other shuffles and insert/extract.
1328 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1329   Value *CondVal = SI.getCondition();
1330   Constant *CondC;
1331   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1332     return nullptr;
1333 
1334   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1335   SmallVector<Constant *, 16> Mask;
1336   Mask.reserve(NumElts);
1337   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1338   for (unsigned i = 0; i != NumElts; ++i) {
1339     Constant *Elt = CondC->getAggregateElement(i);
1340     if (!Elt)
1341       return nullptr;
1342 
1343     if (Elt->isOneValue()) {
1344       // If the select condition element is true, choose from the 1st vector.
1345       Mask.push_back(ConstantInt::get(Int32Ty, i));
1346     } else if (Elt->isNullValue()) {
1347       // If the select condition element is false, choose from the 2nd vector.
1348       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1349     } else if (isa<UndefValue>(Elt)) {
1350       // Undef in a select condition (choose one of the operands) does not mean
1351       // the same thing as undef in a shuffle mask (any value is acceptable), so
1352       // give up.
1353       return nullptr;
1354     } else {
1355       // Bail out on a constant expression.
1356       return nullptr;
1357     }
1358   }
1359 
1360   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1361                                ConstantVector::get(Mask));
1362 }
1363 
1364 /// Reuse bitcasted operands between a compare and select:
1365 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1366 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1367 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1368                                           InstCombiner::BuilderTy &Builder) {
1369   Value *Cond = Sel.getCondition();
1370   Value *TVal = Sel.getTrueValue();
1371   Value *FVal = Sel.getFalseValue();
1372 
1373   CmpInst::Predicate Pred;
1374   Value *A, *B;
1375   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1376     return nullptr;
1377 
1378   // The select condition is a compare instruction. If the select's true/false
1379   // values are already the same as the compare operands, there's nothing to do.
1380   if (TVal == A || TVal == B || FVal == A || FVal == B)
1381     return nullptr;
1382 
1383   Value *C, *D;
1384   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1385     return nullptr;
1386 
1387   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1388   Value *TSrc, *FSrc;
1389   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1390       !match(FVal, m_BitCast(m_Value(FSrc))))
1391     return nullptr;
1392 
1393   // If the select true/false values are *different bitcasts* of the same source
1394   // operands, make the select operands the same as the compare operands and
1395   // cast the result. This is the canonical select form for min/max.
1396   Value *NewSel;
1397   if (TSrc == C && FSrc == D) {
1398     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1399     // bitcast (select (cmp A, B), A, B)
1400     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1401   } else if (TSrc == D && FSrc == C) {
1402     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1403     // bitcast (select (cmp A, B), B, A)
1404     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1405   } else {
1406     return nullptr;
1407   }
1408   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1409 }
1410 
1411 /// Try to eliminate select instructions that test the returned flag of cmpxchg
1412 /// instructions.
1413 ///
1414 /// If a select instruction tests the returned flag of a cmpxchg instruction and
1415 /// selects between the returned value of the cmpxchg instruction its compare
1416 /// operand, the result of the select will always be equal to its false value.
1417 /// For example:
1418 ///
1419 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1420 ///   %1 = extractvalue { i64, i1 } %0, 1
1421 ///   %2 = extractvalue { i64, i1 } %0, 0
1422 ///   %3 = select i1 %1, i64 %compare, i64 %2
1423 ///   ret i64 %3
1424 ///
1425 /// The returned value of the cmpxchg instruction (%2) is the original value
1426 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
1427 /// must have been equal to %compare. Thus, the result of the select is always
1428 /// equal to %2, and the code can be simplified to:
1429 ///
1430 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1431 ///   %1 = extractvalue { i64, i1 } %0, 0
1432 ///   ret i64 %1
1433 ///
1434 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
1435   // A helper that determines if V is an extractvalue instruction whose
1436   // aggregate operand is a cmpxchg instruction and whose single index is equal
1437   // to I. If such conditions are true, the helper returns the cmpxchg
1438   // instruction; otherwise, a nullptr is returned.
1439   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
1440     auto *Extract = dyn_cast<ExtractValueInst>(V);
1441     if (!Extract)
1442       return nullptr;
1443     if (Extract->getIndices()[0] != I)
1444       return nullptr;
1445     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
1446   };
1447 
1448   // If the select has a single user, and this user is a select instruction that
1449   // we can simplify, skip the cmpxchg simplification for now.
1450   if (SI.hasOneUse())
1451     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
1452       if (Select->getCondition() == SI.getCondition())
1453         if (Select->getFalseValue() == SI.getTrueValue() ||
1454             Select->getTrueValue() == SI.getFalseValue())
1455           return nullptr;
1456 
1457   // Ensure the select condition is the returned flag of a cmpxchg instruction.
1458   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
1459   if (!CmpXchg)
1460     return nullptr;
1461 
1462   // Check the true value case: The true value of the select is the returned
1463   // value of the same cmpxchg used by the condition, and the false value is the
1464   // cmpxchg instruction's compare operand.
1465   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
1466     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
1467       SI.setTrueValue(SI.getFalseValue());
1468       return &SI;
1469     }
1470 
1471   // Check the false value case: The false value of the select is the returned
1472   // value of the same cmpxchg used by the condition, and the true value is the
1473   // cmpxchg instruction's compare operand.
1474   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
1475     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
1476       SI.setTrueValue(SI.getFalseValue());
1477       return &SI;
1478     }
1479 
1480   return nullptr;
1481 }
1482 
1483 /// Reduce a sequence of min/max with a common operand.
1484 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
1485                                         Value *RHS,
1486                                         InstCombiner::BuilderTy &Builder) {
1487   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
1488   // TODO: Allow FP min/max with nnan/nsz.
1489   if (!LHS->getType()->isIntOrIntVectorTy())
1490     return nullptr;
1491 
1492   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1493   Value *A, *B, *C, *D;
1494   SelectPatternResult L = matchSelectPattern(LHS, A, B);
1495   SelectPatternResult R = matchSelectPattern(RHS, C, D);
1496   if (SPF != L.Flavor || L.Flavor != R.Flavor)
1497     return nullptr;
1498 
1499   // Look for a common operand. The use checks are different than usual because
1500   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
1501   // the select.
1502   Value *MinMaxOp = nullptr;
1503   Value *ThirdOp = nullptr;
1504   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
1505     // If the LHS is only used in this chain and the RHS is used outside of it,
1506     // reuse the RHS min/max because that will eliminate the LHS.
1507     if (D == A || C == A) {
1508       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1509       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1510       MinMaxOp = RHS;
1511       ThirdOp = B;
1512     } else if (D == B || C == B) {
1513       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1514       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1515       MinMaxOp = RHS;
1516       ThirdOp = A;
1517     }
1518   } else if (!RHS->hasNUsesOrMore(3)) {
1519     // Reuse the LHS. This will eliminate the RHS.
1520     if (D == A || D == B) {
1521       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1522       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1523       MinMaxOp = LHS;
1524       ThirdOp = C;
1525     } else if (C == A || C == B) {
1526       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1527       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1528       MinMaxOp = LHS;
1529       ThirdOp = D;
1530     }
1531   }
1532   if (!MinMaxOp || !ThirdOp)
1533     return nullptr;
1534 
1535   CmpInst::Predicate P = getMinMaxPred(SPF);
1536   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
1537   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
1538 }
1539 
1540 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
1541   Value *CondVal = SI.getCondition();
1542   Value *TrueVal = SI.getTrueValue();
1543   Value *FalseVal = SI.getFalseValue();
1544   Type *SelType = SI.getType();
1545 
1546   // FIXME: Remove this workaround when freeze related patches are done.
1547   // For select with undef operand which feeds into an equality comparison,
1548   // don't simplify it so loop unswitch can know the equality comparison
1549   // may have an undef operand. This is a workaround for PR31652 caused by
1550   // descrepancy about branch on undef between LoopUnswitch and GVN.
1551   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
1552     if (llvm::any_of(SI.users(), [&](User *U) {
1553           ICmpInst *CI = dyn_cast<ICmpInst>(U);
1554           if (CI && CI->isEquality())
1555             return true;
1556           return false;
1557         })) {
1558       return nullptr;
1559     }
1560   }
1561 
1562   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
1563                                     SQ.getWithInstruction(&SI)))
1564     return replaceInstUsesWith(SI, V);
1565 
1566   if (Instruction *I = canonicalizeSelectToShuffle(SI))
1567     return I;
1568 
1569   // Canonicalize a one-use integer compare with a non-canonical predicate by
1570   // inverting the predicate and swapping the select operands. This matches a
1571   // compare canonicalization for conditional branches.
1572   // TODO: Should we do the same for FP compares?
1573   CmpInst::Predicate Pred;
1574   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
1575       !isCanonicalPredicate(Pred)) {
1576     // Swap true/false values and condition.
1577     CmpInst *Cond = cast<CmpInst>(CondVal);
1578     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
1579     SI.setOperand(1, FalseVal);
1580     SI.setOperand(2, TrueVal);
1581     SI.swapProfMetadata();
1582     Worklist.Add(Cond);
1583     return &SI;
1584   }
1585 
1586   if (SelType->isIntOrIntVectorTy(1) &&
1587       TrueVal->getType() == CondVal->getType()) {
1588     if (match(TrueVal, m_One())) {
1589       // Change: A = select B, true, C --> A = or B, C
1590       return BinaryOperator::CreateOr(CondVal, FalseVal);
1591     }
1592     if (match(TrueVal, m_Zero())) {
1593       // Change: A = select B, false, C --> A = and !B, C
1594       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1595       return BinaryOperator::CreateAnd(NotCond, FalseVal);
1596     }
1597     if (match(FalseVal, m_Zero())) {
1598       // Change: A = select B, C, false --> A = and B, C
1599       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1600     }
1601     if (match(FalseVal, m_One())) {
1602       // Change: A = select B, C, true --> A = or !B, C
1603       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1604       return BinaryOperator::CreateOr(NotCond, TrueVal);
1605     }
1606 
1607     // select a, a, b  -> a | b
1608     // select a, b, a  -> a & b
1609     if (CondVal == TrueVal)
1610       return BinaryOperator::CreateOr(CondVal, FalseVal);
1611     if (CondVal == FalseVal)
1612       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1613 
1614     // select a, ~a, b -> (~a) & b
1615     // select a, b, ~a -> (~a) | b
1616     if (match(TrueVal, m_Not(m_Specific(CondVal))))
1617       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
1618     if (match(FalseVal, m_Not(m_Specific(CondVal))))
1619       return BinaryOperator::CreateOr(TrueVal, FalseVal);
1620   }
1621 
1622   // Selecting between two integer or vector splat integer constants?
1623   //
1624   // Note that we don't handle a scalar select of vectors:
1625   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
1626   // because that may need 3 instructions to splat the condition value:
1627   // extend, insertelement, shufflevector.
1628   if (SelType->isIntOrIntVectorTy() &&
1629       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
1630     // select C, 1, 0 -> zext C to int
1631     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
1632       return new ZExtInst(CondVal, SelType);
1633 
1634     // select C, -1, 0 -> sext C to int
1635     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
1636       return new SExtInst(CondVal, SelType);
1637 
1638     // select C, 0, 1 -> zext !C to int
1639     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
1640       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1641       return new ZExtInst(NotCond, SelType);
1642     }
1643 
1644     // select C, 0, -1 -> sext !C to int
1645     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
1646       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1647       return new SExtInst(NotCond, SelType);
1648     }
1649   }
1650 
1651   // See if we are selecting two values based on a comparison of the two values.
1652   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
1653     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
1654       // Transform (X == Y) ? X : Y  -> Y
1655       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1656         // This is not safe in general for floating point:
1657         // consider X== -0, Y== +0.
1658         // It becomes safe if either operand is a nonzero constant.
1659         ConstantFP *CFPt, *CFPf;
1660         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1661               !CFPt->getValueAPF().isZero()) ||
1662             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1663              !CFPf->getValueAPF().isZero()))
1664         return replaceInstUsesWith(SI, FalseVal);
1665       }
1666       // Transform (X une Y) ? X : Y  -> X
1667       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1668         // This is not safe in general for floating point:
1669         // consider X== -0, Y== +0.
1670         // It becomes safe if either operand is a nonzero constant.
1671         ConstantFP *CFPt, *CFPf;
1672         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1673               !CFPt->getValueAPF().isZero()) ||
1674             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1675              !CFPf->getValueAPF().isZero()))
1676         return replaceInstUsesWith(SI, TrueVal);
1677       }
1678 
1679       // Canonicalize to use ordered comparisons by swapping the select
1680       // operands.
1681       //
1682       // e.g.
1683       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1684       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1685         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1686         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1687         Builder.setFastMathFlags(FCI->getFastMathFlags());
1688         Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
1689                                             FCI->getName() + ".inv");
1690 
1691         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1692                                   SI.getName() + ".p");
1693       }
1694 
1695       // NOTE: if we wanted to, this is where to detect MIN/MAX
1696     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1697       // Transform (X == Y) ? Y : X  -> X
1698       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1699         // This is not safe in general for floating point:
1700         // consider X== -0, Y== +0.
1701         // It becomes safe if either operand is a nonzero constant.
1702         ConstantFP *CFPt, *CFPf;
1703         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1704               !CFPt->getValueAPF().isZero()) ||
1705             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1706              !CFPf->getValueAPF().isZero()))
1707           return replaceInstUsesWith(SI, FalseVal);
1708       }
1709       // Transform (X une Y) ? Y : X  -> Y
1710       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1711         // This is not safe in general for floating point:
1712         // consider X== -0, Y== +0.
1713         // It becomes safe if either operand is a nonzero constant.
1714         ConstantFP *CFPt, *CFPf;
1715         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1716               !CFPt->getValueAPF().isZero()) ||
1717             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1718              !CFPf->getValueAPF().isZero()))
1719           return replaceInstUsesWith(SI, TrueVal);
1720       }
1721 
1722       // Canonicalize to use ordered comparisons by swapping the select
1723       // operands.
1724       //
1725       // e.g.
1726       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1727       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1728         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1729         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1730         Builder.setFastMathFlags(FCI->getFastMathFlags());
1731         Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
1732                                             FCI->getName() + ".inv");
1733 
1734         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1735                                   SI.getName() + ".p");
1736       }
1737 
1738       // NOTE: if we wanted to, this is where to detect MIN/MAX
1739     }
1740 
1741     // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
1742     // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
1743     // also require nnan because we do not want to unintentionally change the
1744     // sign of a NaN value.
1745     Value *X = FCI->getOperand(0);
1746     FCmpInst::Predicate Pred = FCI->getPredicate();
1747     if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) {
1748       // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
1749       // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
1750       if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE &&
1751            match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) ||
1752           (X == TrueVal && Pred == FCmpInst::FCMP_OGT &&
1753            match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) {
1754         Value *Fabs = Builder.CreateIntrinsic(Intrinsic::fabs, { X }, FCI);
1755         return replaceInstUsesWith(SI, Fabs);
1756       }
1757       // With nsz:
1758       // (X <  +/-0.0) ? -X : X --> fabs(X)
1759       // (X <= +/-0.0) ? -X : X --> fabs(X)
1760       // (X >  +/-0.0) ? X : -X --> fabs(X)
1761       // (X >= +/-0.0) ? X : -X --> fabs(X)
1762       if (FCI->hasNoSignedZeros() &&
1763           ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) &&
1764             (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) ||
1765            (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) &&
1766             (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) {
1767         Value *Fabs = Builder.CreateIntrinsic(Intrinsic::fabs, { X }, FCI);
1768         return replaceInstUsesWith(SI, Fabs);
1769       }
1770     }
1771   }
1772 
1773   // See if we are selecting two values based on a comparison of the two values.
1774   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1775     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
1776       return Result;
1777 
1778   if (Instruction *Add = foldAddSubSelect(SI, Builder))
1779     return Add;
1780 
1781   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1782   auto *TI = dyn_cast<Instruction>(TrueVal);
1783   auto *FI = dyn_cast<Instruction>(FalseVal);
1784   if (TI && FI && TI->getOpcode() == FI->getOpcode())
1785     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
1786       return IV;
1787 
1788   if (Instruction *I = foldSelectExtConst(SI))
1789     return I;
1790 
1791   // See if we can fold the select into one of our operands.
1792   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1793     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
1794       return FoldI;
1795 
1796     Value *LHS, *RHS;
1797     Instruction::CastOps CastOp;
1798     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1799     auto SPF = SPR.Flavor;
1800     if (SPF) {
1801       Value *LHS2, *RHS2;
1802       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1803         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
1804                                           RHS2, SI, SPF, RHS))
1805           return R;
1806       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1807         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
1808                                           RHS2, SI, SPF, LHS))
1809           return R;
1810       // TODO.
1811       // ABS(-X) -> ABS(X)
1812     }
1813 
1814     if (SelectPatternResult::isMinOrMax(SPF)) {
1815       // Canonicalize so that
1816       // - type casts are outside select patterns.
1817       // - float clamp is transformed to min/max pattern
1818 
1819       bool IsCastNeeded = LHS->getType() != SelType;
1820       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
1821       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
1822       if (IsCastNeeded ||
1823           (LHS->getType()->isFPOrFPVectorTy() &&
1824            ((CmpLHS != LHS && CmpLHS != RHS) ||
1825             (CmpRHS != LHS && CmpRHS != RHS)))) {
1826         CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered);
1827 
1828         Value *Cmp;
1829         if (CmpInst::isIntPredicate(Pred)) {
1830           Cmp = Builder.CreateICmp(Pred, LHS, RHS);
1831         } else {
1832           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1833           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1834           Builder.setFastMathFlags(FMF);
1835           Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
1836         }
1837 
1838         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
1839         if (!IsCastNeeded)
1840           return replaceInstUsesWith(SI, NewSI);
1841 
1842         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
1843         return replaceInstUsesWith(SI, NewCast);
1844       }
1845 
1846       // MAX(~a, ~b) -> ~MIN(a, b)
1847       // MAX(~a, C)  -> ~MIN(a, ~C)
1848       // MIN(~a, ~b) -> ~MAX(a, b)
1849       // MIN(~a, C)  -> ~MAX(a, ~C)
1850       auto moveNotAfterMinMax = [&](Value *X, Value *Y,
1851                                     bool Swapped) -> Instruction * {
1852         Value *A;
1853         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
1854             !IsFreeToInvert(A, A->hasOneUse()) &&
1855             // Passing false to only consider m_Not and constants.
1856             IsFreeToInvert(Y, false)) {
1857           Value *B = Builder.CreateNot(Y);
1858           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
1859                                           A, B);
1860           // Copy the profile metadata.
1861           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
1862             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
1863             // Swap the metadata if the operands are swapped.
1864             if (Swapped) {
1865               assert(X == SI.getFalseValue() && Y == SI.getTrueValue() &&
1866                      "Unexpected operands.");
1867               cast<SelectInst>(NewMinMax)->swapProfMetadata();
1868             } else {
1869               assert(X == SI.getTrueValue() && Y == SI.getFalseValue() &&
1870                      "Unexpected operands.");
1871             }
1872           }
1873 
1874           return BinaryOperator::CreateNot(NewMinMax);
1875         }
1876 
1877         return nullptr;
1878       };
1879 
1880       if (Instruction *I = moveNotAfterMinMax(LHS, RHS, /*Swapped*/false))
1881         return I;
1882       if (Instruction *I = moveNotAfterMinMax(RHS, LHS, /*Swapped*/true))
1883         return I;
1884 
1885       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
1886         return I;
1887     }
1888   }
1889 
1890   // See if we can fold the select into a phi node if the condition is a select.
1891   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
1892     // The true/false values have to be live in the PHI predecessor's blocks.
1893     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1894         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1895       if (Instruction *NV = foldOpIntoPhi(SI, PN))
1896         return NV;
1897 
1898   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1899     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1900       // select(C, select(C, a, b), c) -> select(C, a, c)
1901       if (TrueSI->getCondition() == CondVal) {
1902         if (SI.getTrueValue() == TrueSI->getTrueValue())
1903           return nullptr;
1904         SI.setOperand(1, TrueSI->getTrueValue());
1905         return &SI;
1906       }
1907       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1908       // We choose this as normal form to enable folding on the And and shortening
1909       // paths for the values (this helps GetUnderlyingObjects() for example).
1910       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1911         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
1912         SI.setOperand(0, And);
1913         SI.setOperand(1, TrueSI->getTrueValue());
1914         return &SI;
1915       }
1916     }
1917   }
1918   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1919     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1920       // select(C, a, select(C, b, c)) -> select(C, a, c)
1921       if (FalseSI->getCondition() == CondVal) {
1922         if (SI.getFalseValue() == FalseSI->getFalseValue())
1923           return nullptr;
1924         SI.setOperand(2, FalseSI->getFalseValue());
1925         return &SI;
1926       }
1927       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1928       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1929         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
1930         SI.setOperand(0, Or);
1931         SI.setOperand(2, FalseSI->getFalseValue());
1932         return &SI;
1933       }
1934     }
1935   }
1936 
1937   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
1938     // The select might be preventing a division by 0.
1939     switch (BO->getOpcode()) {
1940     default:
1941       return true;
1942     case Instruction::SRem:
1943     case Instruction::URem:
1944     case Instruction::SDiv:
1945     case Instruction::UDiv:
1946       return false;
1947     }
1948   };
1949 
1950   // Try to simplify a binop sandwiched between 2 selects with the same
1951   // condition.
1952   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
1953   BinaryOperator *TrueBO;
1954   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
1955       canMergeSelectThroughBinop(TrueBO)) {
1956     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
1957       if (TrueBOSI->getCondition() == CondVal) {
1958         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
1959         Worklist.Add(TrueBO);
1960         return &SI;
1961       }
1962     }
1963     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
1964       if (TrueBOSI->getCondition() == CondVal) {
1965         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
1966         Worklist.Add(TrueBO);
1967         return &SI;
1968       }
1969     }
1970   }
1971 
1972   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
1973   BinaryOperator *FalseBO;
1974   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
1975       canMergeSelectThroughBinop(FalseBO)) {
1976     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
1977       if (FalseBOSI->getCondition() == CondVal) {
1978         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
1979         Worklist.Add(FalseBO);
1980         return &SI;
1981       }
1982     }
1983     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
1984       if (FalseBOSI->getCondition() == CondVal) {
1985         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
1986         Worklist.Add(FalseBO);
1987         return &SI;
1988       }
1989     }
1990   }
1991 
1992   if (BinaryOperator::isNot(CondVal)) {
1993     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
1994     SI.setOperand(1, FalseVal);
1995     SI.setOperand(2, TrueVal);
1996     return &SI;
1997   }
1998 
1999   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2000     unsigned VWidth = VecTy->getNumElements();
2001     APInt UndefElts(VWidth, 0);
2002     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2003     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2004       if (V != &SI)
2005         return replaceInstUsesWith(SI, V);
2006       return &SI;
2007     }
2008   }
2009 
2010   // See if we can determine the result of this select based on a dominating
2011   // condition.
2012   BasicBlock *Parent = SI.getParent();
2013   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
2014     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
2015     if (PBI && PBI->isConditional() &&
2016         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
2017         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
2018       bool CondIsTrue = PBI->getSuccessor(0) == Parent;
2019       Optional<bool> Implication = isImpliedCondition(
2020           PBI->getCondition(), SI.getCondition(), DL, CondIsTrue);
2021       if (Implication) {
2022         Value *V = *Implication ? TrueVal : FalseVal;
2023         return replaceInstUsesWith(SI, V);
2024       }
2025     }
2026   }
2027 
2028   // If we can compute the condition, there's no need for a select.
2029   // Like the above fold, we are attempting to reduce compile-time cost by
2030   // putting this fold here with limitations rather than in InstSimplify.
2031   // The motivation for this call into value tracking is to take advantage of
2032   // the assumption cache, so make sure that is populated.
2033   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2034     KnownBits Known(1);
2035     computeKnownBits(CondVal, Known, 0, &SI);
2036     if (Known.One.isOneValue())
2037       return replaceInstUsesWith(SI, TrueVal);
2038     if (Known.Zero.isOneValue())
2039       return replaceInstUsesWith(SI, FalseVal);
2040   }
2041 
2042   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2043     return BitCastSel;
2044 
2045   // Simplify selects that test the returned flag of cmpxchg instructions.
2046   if (Instruction *Select = foldSelectCmpXchg(SI))
2047     return Select;
2048 
2049   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2050     return Select;
2051 
2052   return nullptr;
2053 }
2054