1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include "llvm/Transforms/InstCombine/InstCombiner.h" 42 #include <cassert> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 51 SelectPatternFlavor SPF, Value *A, Value *B) { 52 CmpInst::Predicate Pred = getMinMaxPred(SPF); 53 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 54 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 55 } 56 57 /// Replace a select operand based on an equality comparison with the identity 58 /// constant of a binop. 59 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 60 const TargetLibraryInfo &TLI, 61 InstCombinerImpl &IC) { 62 // The select condition must be an equality compare with a constant operand. 63 Value *X; 64 Constant *C; 65 CmpInst::Predicate Pred; 66 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 67 return nullptr; 68 69 bool IsEq; 70 if (ICmpInst::isEquality(Pred)) 71 IsEq = Pred == ICmpInst::ICMP_EQ; 72 else if (Pred == FCmpInst::FCMP_OEQ) 73 IsEq = true; 74 else if (Pred == FCmpInst::FCMP_UNE) 75 IsEq = false; 76 else 77 return nullptr; 78 79 // A select operand must be a binop. 80 BinaryOperator *BO; 81 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 82 return nullptr; 83 84 // The compare constant must be the identity constant for that binop. 85 // If this a floating-point compare with 0.0, any zero constant will do. 86 Type *Ty = BO->getType(); 87 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 88 if (IdC != C) { 89 if (!IdC || !CmpInst::isFPPredicate(Pred)) 90 return nullptr; 91 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 92 return nullptr; 93 } 94 95 // Last, match the compare variable operand with a binop operand. 96 Value *Y; 97 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 98 return nullptr; 99 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 100 return nullptr; 101 102 // +0.0 compares equal to -0.0, and so it does not behave as required for this 103 // transform. Bail out if we can not exclude that possibility. 104 if (isa<FPMathOperator>(BO)) 105 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 106 return nullptr; 107 108 // BO = binop Y, X 109 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 110 // => 111 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 112 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 113 } 114 115 /// This folds: 116 /// select (icmp eq (and X, C1)), TC, FC 117 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 118 /// To something like: 119 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 120 /// Or: 121 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 122 /// With some variations depending if FC is larger than TC, or the shift 123 /// isn't needed, or the bit widths don't match. 124 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 125 InstCombiner::BuilderTy &Builder) { 126 const APInt *SelTC, *SelFC; 127 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 128 !match(Sel.getFalseValue(), m_APInt(SelFC))) 129 return nullptr; 130 131 // If this is a vector select, we need a vector compare. 132 Type *SelType = Sel.getType(); 133 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 134 return nullptr; 135 136 Value *V; 137 APInt AndMask; 138 bool CreateAnd = false; 139 ICmpInst::Predicate Pred = Cmp->getPredicate(); 140 if (ICmpInst::isEquality(Pred)) { 141 if (!match(Cmp->getOperand(1), m_Zero())) 142 return nullptr; 143 144 V = Cmp->getOperand(0); 145 const APInt *AndRHS; 146 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 147 return nullptr; 148 149 AndMask = *AndRHS; 150 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 151 Pred, V, AndMask)) { 152 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 153 if (!AndMask.isPowerOf2()) 154 return nullptr; 155 156 CreateAnd = true; 157 } else { 158 return nullptr; 159 } 160 161 // In general, when both constants are non-zero, we would need an offset to 162 // replace the select. This would require more instructions than we started 163 // with. But there's one special-case that we handle here because it can 164 // simplify/reduce the instructions. 165 APInt TC = *SelTC; 166 APInt FC = *SelFC; 167 if (!TC.isNullValue() && !FC.isNullValue()) { 168 // If the select constants differ by exactly one bit and that's the same 169 // bit that is masked and checked by the select condition, the select can 170 // be replaced by bitwise logic to set/clear one bit of the constant result. 171 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 172 return nullptr; 173 if (CreateAnd) { 174 // If we have to create an 'and', then we must kill the cmp to not 175 // increase the instruction count. 176 if (!Cmp->hasOneUse()) 177 return nullptr; 178 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 179 } 180 bool ExtraBitInTC = TC.ugt(FC); 181 if (Pred == ICmpInst::ICMP_EQ) { 182 // If the masked bit in V is clear, clear or set the bit in the result: 183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 184 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 185 Constant *C = ConstantInt::get(SelType, TC); 186 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 187 } 188 if (Pred == ICmpInst::ICMP_NE) { 189 // If the masked bit in V is set, set or clear the bit in the result: 190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 191 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 192 Constant *C = ConstantInt::get(SelType, FC); 193 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 194 } 195 llvm_unreachable("Only expecting equality predicates"); 196 } 197 198 // Make sure one of the select arms is a power-of-2. 199 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 200 return nullptr; 201 202 // Determine which shift is needed to transform result of the 'and' into the 203 // desired result. 204 const APInt &ValC = !TC.isNullValue() ? TC : FC; 205 unsigned ValZeros = ValC.logBase2(); 206 unsigned AndZeros = AndMask.logBase2(); 207 208 // Insert the 'and' instruction on the input to the truncate. 209 if (CreateAnd) 210 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 211 212 // If types don't match, we can still convert the select by introducing a zext 213 // or a trunc of the 'and'. 214 if (ValZeros > AndZeros) { 215 V = Builder.CreateZExtOrTrunc(V, SelType); 216 V = Builder.CreateShl(V, ValZeros - AndZeros); 217 } else if (ValZeros < AndZeros) { 218 V = Builder.CreateLShr(V, AndZeros - ValZeros); 219 V = Builder.CreateZExtOrTrunc(V, SelType); 220 } else { 221 V = Builder.CreateZExtOrTrunc(V, SelType); 222 } 223 224 // Okay, now we know that everything is set up, we just don't know whether we 225 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 226 bool ShouldNotVal = !TC.isNullValue(); 227 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 228 if (ShouldNotVal) 229 V = Builder.CreateXor(V, ValC); 230 231 return V; 232 } 233 234 /// We want to turn code that looks like this: 235 /// %C = or %A, %B 236 /// %D = select %cond, %C, %A 237 /// into: 238 /// %C = select %cond, %B, 0 239 /// %D = or %A, %C 240 /// 241 /// Assuming that the specified instruction is an operand to the select, return 242 /// a bitmask indicating which operands of this instruction are foldable if they 243 /// equal the other incoming value of the select. 244 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 245 switch (I->getOpcode()) { 246 case Instruction::Add: 247 case Instruction::Mul: 248 case Instruction::And: 249 case Instruction::Or: 250 case Instruction::Xor: 251 return 3; // Can fold through either operand. 252 case Instruction::Sub: // Can only fold on the amount subtracted. 253 case Instruction::Shl: // Can only fold on the shift amount. 254 case Instruction::LShr: 255 case Instruction::AShr: 256 return 1; 257 default: 258 return 0; // Cannot fold 259 } 260 } 261 262 /// For the same transformation as the previous function, return the identity 263 /// constant that goes into the select. 264 static APInt getSelectFoldableConstant(BinaryOperator *I) { 265 switch (I->getOpcode()) { 266 default: llvm_unreachable("This cannot happen!"); 267 case Instruction::Add: 268 case Instruction::Sub: 269 case Instruction::Or: 270 case Instruction::Xor: 271 case Instruction::Shl: 272 case Instruction::LShr: 273 case Instruction::AShr: 274 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 275 case Instruction::And: 276 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 277 case Instruction::Mul: 278 return APInt(I->getType()->getScalarSizeInBits(), 1); 279 } 280 } 281 282 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 283 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 284 Instruction *FI) { 285 // Don't break up min/max patterns. The hasOneUse checks below prevent that 286 // for most cases, but vector min/max with bitcasts can be transformed. If the 287 // one-use restrictions are eased for other patterns, we still don't want to 288 // obfuscate min/max. 289 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 290 match(&SI, m_SMax(m_Value(), m_Value())) || 291 match(&SI, m_UMin(m_Value(), m_Value())) || 292 match(&SI, m_UMax(m_Value(), m_Value())))) 293 return nullptr; 294 295 // If this is a cast from the same type, merge. 296 Value *Cond = SI.getCondition(); 297 Type *CondTy = Cond->getType(); 298 if (TI->getNumOperands() == 1 && TI->isCast()) { 299 Type *FIOpndTy = FI->getOperand(0)->getType(); 300 if (TI->getOperand(0)->getType() != FIOpndTy) 301 return nullptr; 302 303 // The select condition may be a vector. We may only change the operand 304 // type if the vector width remains the same (and matches the condition). 305 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 306 if (!FIOpndTy->isVectorTy()) 307 return nullptr; 308 if (cast<FixedVectorType>(CondVTy)->getNumElements() != 309 cast<FixedVectorType>(FIOpndTy)->getNumElements()) 310 return nullptr; 311 312 // TODO: If the backend knew how to deal with casts better, we could 313 // remove this limitation. For now, there's too much potential to create 314 // worse codegen by promoting the select ahead of size-altering casts 315 // (PR28160). 316 // 317 // Note that ValueTracking's matchSelectPattern() looks through casts 318 // without checking 'hasOneUse' when it matches min/max patterns, so this 319 // transform may end up happening anyway. 320 if (TI->getOpcode() != Instruction::BitCast && 321 (!TI->hasOneUse() || !FI->hasOneUse())) 322 return nullptr; 323 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 324 // TODO: The one-use restrictions for a scalar select could be eased if 325 // the fold of a select in visitLoadInst() was enhanced to match a pattern 326 // that includes a cast. 327 return nullptr; 328 } 329 330 // Fold this by inserting a select from the input values. 331 Value *NewSI = 332 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 333 SI.getName() + ".v", &SI); 334 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 335 TI->getType()); 336 } 337 338 // Cond ? -X : -Y --> -(Cond ? X : Y) 339 Value *X, *Y; 340 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 341 (TI->hasOneUse() || FI->hasOneUse())) { 342 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 343 return UnaryOperator::CreateFNegFMF(NewSel, TI); 344 } 345 346 // Only handle binary operators (including two-operand getelementptr) with 347 // one-use here. As with the cast case above, it may be possible to relax the 348 // one-use constraint, but that needs be examined carefully since it may not 349 // reduce the total number of instructions. 350 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 351 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 352 !TI->hasOneUse() || !FI->hasOneUse()) 353 return nullptr; 354 355 // Figure out if the operations have any operands in common. 356 Value *MatchOp, *OtherOpT, *OtherOpF; 357 bool MatchIsOpZero; 358 if (TI->getOperand(0) == FI->getOperand(0)) { 359 MatchOp = TI->getOperand(0); 360 OtherOpT = TI->getOperand(1); 361 OtherOpF = FI->getOperand(1); 362 MatchIsOpZero = true; 363 } else if (TI->getOperand(1) == FI->getOperand(1)) { 364 MatchOp = TI->getOperand(1); 365 OtherOpT = TI->getOperand(0); 366 OtherOpF = FI->getOperand(0); 367 MatchIsOpZero = false; 368 } else if (!TI->isCommutative()) { 369 return nullptr; 370 } else if (TI->getOperand(0) == FI->getOperand(1)) { 371 MatchOp = TI->getOperand(0); 372 OtherOpT = TI->getOperand(1); 373 OtherOpF = FI->getOperand(0); 374 MatchIsOpZero = true; 375 } else if (TI->getOperand(1) == FI->getOperand(0)) { 376 MatchOp = TI->getOperand(1); 377 OtherOpT = TI->getOperand(0); 378 OtherOpF = FI->getOperand(1); 379 MatchIsOpZero = true; 380 } else { 381 return nullptr; 382 } 383 384 // If the select condition is a vector, the operands of the original select's 385 // operands also must be vectors. This may not be the case for getelementptr 386 // for example. 387 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 388 !OtherOpF->getType()->isVectorTy())) 389 return nullptr; 390 391 // If we reach here, they do have operations in common. 392 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 393 SI.getName() + ".v", &SI); 394 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 395 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 396 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 397 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 398 NewBO->copyIRFlags(TI); 399 NewBO->andIRFlags(FI); 400 return NewBO; 401 } 402 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 403 auto *FGEP = cast<GetElementPtrInst>(FI); 404 Type *ElementType = TGEP->getResultElementType(); 405 return TGEP->isInBounds() && FGEP->isInBounds() 406 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 407 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 408 } 409 llvm_unreachable("Expected BinaryOperator or GEP"); 410 return nullptr; 411 } 412 413 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 414 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 415 return false; 416 return C1I.isOneValue() || C1I.isAllOnesValue() || 417 C2I.isOneValue() || C2I.isAllOnesValue(); 418 } 419 420 /// Try to fold the select into one of the operands to allow further 421 /// optimization. 422 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 423 Value *FalseVal) { 424 // See the comment above GetSelectFoldableOperands for a description of the 425 // transformation we are doing here. 426 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 427 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 428 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 429 unsigned OpToFold = 0; 430 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 431 OpToFold = 1; 432 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 433 OpToFold = 2; 434 } 435 436 if (OpToFold) { 437 APInt CI = getSelectFoldableConstant(TVI); 438 Value *OOp = TVI->getOperand(2-OpToFold); 439 // Avoid creating select between 2 constants unless it's selecting 440 // between 0, 1 and -1. 441 const APInt *OOpC; 442 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 443 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 444 Value *C = ConstantInt::get(OOp->getType(), CI); 445 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 446 NewSel->takeName(TVI); 447 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 448 FalseVal, NewSel); 449 BO->copyIRFlags(TVI); 450 return BO; 451 } 452 } 453 } 454 } 455 } 456 457 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 458 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 459 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 460 unsigned OpToFold = 0; 461 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 462 OpToFold = 1; 463 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 464 OpToFold = 2; 465 } 466 467 if (OpToFold) { 468 APInt CI = getSelectFoldableConstant(FVI); 469 Value *OOp = FVI->getOperand(2-OpToFold); 470 // Avoid creating select between 2 constants unless it's selecting 471 // between 0, 1 and -1. 472 const APInt *OOpC; 473 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 474 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 475 Value *C = ConstantInt::get(OOp->getType(), CI); 476 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 477 NewSel->takeName(FVI); 478 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 479 TrueVal, NewSel); 480 BO->copyIRFlags(FVI); 481 return BO; 482 } 483 } 484 } 485 } 486 } 487 488 return nullptr; 489 } 490 491 /// We want to turn: 492 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 493 /// into: 494 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 495 /// Note: 496 /// Z may be 0 if lshr is missing. 497 /// Worst-case scenario is that we will replace 5 instructions with 5 different 498 /// instructions, but we got rid of select. 499 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 500 Value *TVal, Value *FVal, 501 InstCombiner::BuilderTy &Builder) { 502 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 503 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 504 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 505 return nullptr; 506 507 // The TrueVal has general form of: and %B, 1 508 Value *B; 509 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 510 return nullptr; 511 512 // Where %B may be optionally shifted: lshr %X, %Z. 513 Value *X, *Z; 514 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 515 if (!HasShift) 516 X = B; 517 518 Value *Y; 519 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 520 return nullptr; 521 522 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 523 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 524 Constant *One = ConstantInt::get(SelType, 1); 525 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 526 Value *FullMask = Builder.CreateOr(Y, MaskB); 527 Value *MaskedX = Builder.CreateAnd(X, FullMask); 528 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 529 return new ZExtInst(ICmpNeZero, SelType); 530 } 531 532 /// We want to turn: 533 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 534 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 535 /// into: 536 /// ashr (X, Y) 537 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 538 Value *FalseVal, 539 InstCombiner::BuilderTy &Builder) { 540 ICmpInst::Predicate Pred = IC->getPredicate(); 541 Value *CmpLHS = IC->getOperand(0); 542 Value *CmpRHS = IC->getOperand(1); 543 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 544 return nullptr; 545 546 Value *X, *Y; 547 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 548 if ((Pred != ICmpInst::ICMP_SGT || 549 !match(CmpRHS, 550 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 551 (Pred != ICmpInst::ICMP_SLT || 552 !match(CmpRHS, 553 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 554 return nullptr; 555 556 // Canonicalize so that ashr is in FalseVal. 557 if (Pred == ICmpInst::ICMP_SLT) 558 std::swap(TrueVal, FalseVal); 559 560 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 561 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 562 match(CmpLHS, m_Specific(X))) { 563 const auto *Ashr = cast<Instruction>(FalseVal); 564 // if lshr is not exact and ashr is, this new ashr must not be exact. 565 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 566 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 567 } 568 569 return nullptr; 570 } 571 572 /// We want to turn: 573 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 574 /// into: 575 /// (or (shl (and X, C1), C3), Y) 576 /// iff: 577 /// C1 and C2 are both powers of 2 578 /// where: 579 /// C3 = Log(C2) - Log(C1) 580 /// 581 /// This transform handles cases where: 582 /// 1. The icmp predicate is inverted 583 /// 2. The select operands are reversed 584 /// 3. The magnitude of C2 and C1 are flipped 585 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 586 Value *FalseVal, 587 InstCombiner::BuilderTy &Builder) { 588 // Only handle integer compares. Also, if this is a vector select, we need a 589 // vector compare. 590 if (!TrueVal->getType()->isIntOrIntVectorTy() || 591 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 592 return nullptr; 593 594 Value *CmpLHS = IC->getOperand(0); 595 Value *CmpRHS = IC->getOperand(1); 596 597 Value *V; 598 unsigned C1Log; 599 bool IsEqualZero; 600 bool NeedAnd = false; 601 if (IC->isEquality()) { 602 if (!match(CmpRHS, m_Zero())) 603 return nullptr; 604 605 const APInt *C1; 606 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 607 return nullptr; 608 609 V = CmpLHS; 610 C1Log = C1->logBase2(); 611 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 612 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 613 IC->getPredicate() == ICmpInst::ICMP_SGT) { 614 // We also need to recognize (icmp slt (trunc (X)), 0) and 615 // (icmp sgt (trunc (X)), -1). 616 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 617 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 618 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 619 return nullptr; 620 621 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 622 return nullptr; 623 624 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 625 NeedAnd = true; 626 } else { 627 return nullptr; 628 } 629 630 const APInt *C2; 631 bool OrOnTrueVal = false; 632 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 633 if (!OrOnFalseVal) 634 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 635 636 if (!OrOnFalseVal && !OrOnTrueVal) 637 return nullptr; 638 639 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 640 641 unsigned C2Log = C2->logBase2(); 642 643 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 644 bool NeedShift = C1Log != C2Log; 645 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 646 V->getType()->getScalarSizeInBits(); 647 648 // Make sure we don't create more instructions than we save. 649 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 650 if ((NeedShift + NeedXor + NeedZExtTrunc) > 651 (IC->hasOneUse() + Or->hasOneUse())) 652 return nullptr; 653 654 if (NeedAnd) { 655 // Insert the AND instruction on the input to the truncate. 656 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 657 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 658 } 659 660 if (C2Log > C1Log) { 661 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 662 V = Builder.CreateShl(V, C2Log - C1Log); 663 } else if (C1Log > C2Log) { 664 V = Builder.CreateLShr(V, C1Log - C2Log); 665 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 666 } else 667 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 668 669 if (NeedXor) 670 V = Builder.CreateXor(V, *C2); 671 672 return Builder.CreateOr(V, Y); 673 } 674 675 /// Canonicalize a set or clear of a masked set of constant bits to 676 /// select-of-constants form. 677 static Instruction *foldSetClearBits(SelectInst &Sel, 678 InstCombiner::BuilderTy &Builder) { 679 Value *Cond = Sel.getCondition(); 680 Value *T = Sel.getTrueValue(); 681 Value *F = Sel.getFalseValue(); 682 Type *Ty = Sel.getType(); 683 Value *X; 684 const APInt *NotC, *C; 685 686 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 687 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 688 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 689 Constant *Zero = ConstantInt::getNullValue(Ty); 690 Constant *OrC = ConstantInt::get(Ty, *C); 691 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 692 return BinaryOperator::CreateOr(T, NewSel); 693 } 694 695 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 696 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 697 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 698 Constant *Zero = ConstantInt::getNullValue(Ty); 699 Constant *OrC = ConstantInt::get(Ty, *C); 700 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 701 return BinaryOperator::CreateOr(F, NewSel); 702 } 703 704 return nullptr; 705 } 706 707 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 708 /// There are 8 commuted/swapped variants of this pattern. 709 /// TODO: Also support a - UMIN(a,b) patterns. 710 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 711 const Value *TrueVal, 712 const Value *FalseVal, 713 InstCombiner::BuilderTy &Builder) { 714 ICmpInst::Predicate Pred = ICI->getPredicate(); 715 if (!ICmpInst::isUnsigned(Pred)) 716 return nullptr; 717 718 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 719 if (match(TrueVal, m_Zero())) { 720 Pred = ICmpInst::getInversePredicate(Pred); 721 std::swap(TrueVal, FalseVal); 722 } 723 if (!match(FalseVal, m_Zero())) 724 return nullptr; 725 726 Value *A = ICI->getOperand(0); 727 Value *B = ICI->getOperand(1); 728 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 729 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 730 std::swap(A, B); 731 Pred = ICmpInst::getSwappedPredicate(Pred); 732 } 733 734 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 735 "Unexpected isUnsigned predicate!"); 736 737 // Ensure the sub is of the form: 738 // (a > b) ? a - b : 0 -> usub.sat(a, b) 739 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 740 // Checking for both a-b and a+(-b) as a constant. 741 bool IsNegative = false; 742 const APInt *C; 743 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 744 (match(A, m_APInt(C)) && 745 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 746 IsNegative = true; 747 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 748 !(match(B, m_APInt(C)) && 749 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 750 return nullptr; 751 752 // If we are adding a negate and the sub and icmp are used anywhere else, we 753 // would end up with more instructions. 754 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 755 return nullptr; 756 757 // (a > b) ? a - b : 0 -> usub.sat(a, b) 758 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 759 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 760 if (IsNegative) 761 Result = Builder.CreateNeg(Result); 762 return Result; 763 } 764 765 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 766 InstCombiner::BuilderTy &Builder) { 767 if (!Cmp->hasOneUse()) 768 return nullptr; 769 770 // Match unsigned saturated add with constant. 771 Value *Cmp0 = Cmp->getOperand(0); 772 Value *Cmp1 = Cmp->getOperand(1); 773 ICmpInst::Predicate Pred = Cmp->getPredicate(); 774 Value *X; 775 const APInt *C, *CmpC; 776 if (Pred == ICmpInst::ICMP_ULT && 777 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 778 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 779 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 780 return Builder.CreateBinaryIntrinsic( 781 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 782 } 783 784 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 785 // There are 8 commuted variants. 786 // Canonicalize -1 (saturated result) to true value of the select. Just 787 // swapping the compare operands is legal, because the selected value is the 788 // same in case of equality, so we can interchange u< and u<=. 789 if (match(FVal, m_AllOnes())) { 790 std::swap(TVal, FVal); 791 std::swap(Cmp0, Cmp1); 792 } 793 if (!match(TVal, m_AllOnes())) 794 return nullptr; 795 796 // Canonicalize predicate to 'ULT'. 797 if (Pred == ICmpInst::ICMP_UGT) { 798 Pred = ICmpInst::ICMP_ULT; 799 std::swap(Cmp0, Cmp1); 800 } 801 if (Pred != ICmpInst::ICMP_ULT) 802 return nullptr; 803 804 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 805 Value *Y; 806 if (match(Cmp0, m_Not(m_Value(X))) && 807 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 808 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 809 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 810 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 811 } 812 // The 'not' op may be included in the sum but not the compare. 813 X = Cmp0; 814 Y = Cmp1; 815 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 816 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 817 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 818 BinaryOperator *BO = cast<BinaryOperator>(FVal); 819 return Builder.CreateBinaryIntrinsic( 820 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 821 } 822 // The overflow may be detected via the add wrapping round. 823 if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 824 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 825 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 826 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 827 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 828 } 829 830 return nullptr; 831 } 832 833 /// Fold the following code sequence: 834 /// \code 835 /// int a = ctlz(x & -x); 836 // x ? 31 - a : a; 837 /// \code 838 /// 839 /// into: 840 /// cttz(x) 841 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 842 Value *FalseVal, 843 InstCombiner::BuilderTy &Builder) { 844 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 845 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 846 return nullptr; 847 848 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 849 std::swap(TrueVal, FalseVal); 850 851 if (!match(FalseVal, 852 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 853 return nullptr; 854 855 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 856 return nullptr; 857 858 Value *X = ICI->getOperand(0); 859 auto *II = cast<IntrinsicInst>(TrueVal); 860 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 861 return nullptr; 862 863 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 864 II->getType()); 865 return CallInst::Create(F, {X, II->getArgOperand(1)}); 866 } 867 868 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 869 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 870 /// 871 /// For example, we can fold the following code sequence: 872 /// \code 873 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 874 /// %1 = icmp ne i32 %x, 0 875 /// %2 = select i1 %1, i32 %0, i32 32 876 /// \code 877 /// 878 /// into: 879 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 880 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 881 InstCombiner::BuilderTy &Builder) { 882 ICmpInst::Predicate Pred = ICI->getPredicate(); 883 Value *CmpLHS = ICI->getOperand(0); 884 Value *CmpRHS = ICI->getOperand(1); 885 886 // Check if the condition value compares a value for equality against zero. 887 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 888 return nullptr; 889 890 Value *SelectArg = FalseVal; 891 Value *ValueOnZero = TrueVal; 892 if (Pred == ICmpInst::ICMP_NE) 893 std::swap(SelectArg, ValueOnZero); 894 895 // Skip zero extend/truncate. 896 Value *Count = nullptr; 897 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 898 !match(SelectArg, m_Trunc(m_Value(Count)))) 899 Count = SelectArg; 900 901 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 902 // input to the cttz/ctlz is used as LHS for the compare instruction. 903 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 904 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 905 return nullptr; 906 907 IntrinsicInst *II = cast<IntrinsicInst>(Count); 908 909 // Check if the value propagated on zero is a constant number equal to the 910 // sizeof in bits of 'Count'. 911 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 912 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 913 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from 914 // true to false on this flag, so we can replace it for all users. 915 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 916 return SelectArg; 917 } 918 919 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 920 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 921 // not be used if the input is zero. Relax to 'undef_on_zero' for that case. 922 if (II->hasOneUse() && SelectArg->hasOneUse() && 923 !match(II->getArgOperand(1), m_One())) 924 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 925 926 return nullptr; 927 } 928 929 /// Return true if we find and adjust an icmp+select pattern where the compare 930 /// is with a constant that can be incremented or decremented to match the 931 /// minimum or maximum idiom. 932 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 933 ICmpInst::Predicate Pred = Cmp.getPredicate(); 934 Value *CmpLHS = Cmp.getOperand(0); 935 Value *CmpRHS = Cmp.getOperand(1); 936 Value *TrueVal = Sel.getTrueValue(); 937 Value *FalseVal = Sel.getFalseValue(); 938 939 // We may move or edit the compare, so make sure the select is the only user. 940 const APInt *CmpC; 941 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 942 return false; 943 944 // These transforms only work for selects of integers or vector selects of 945 // integer vectors. 946 Type *SelTy = Sel.getType(); 947 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 948 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 949 return false; 950 951 Constant *AdjustedRHS; 952 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 953 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 954 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 955 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 956 else 957 return false; 958 959 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 960 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 961 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 962 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 963 ; // Nothing to do here. Values match without any sign/zero extension. 964 } 965 // Types do not match. Instead of calculating this with mixed types, promote 966 // all to the larger type. This enables scalar evolution to analyze this 967 // expression. 968 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 969 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 970 971 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 972 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 973 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 974 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 975 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 976 CmpLHS = TrueVal; 977 AdjustedRHS = SextRHS; 978 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 979 SextRHS == TrueVal) { 980 CmpLHS = FalseVal; 981 AdjustedRHS = SextRHS; 982 } else if (Cmp.isUnsigned()) { 983 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 984 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 985 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 986 // zext + signed compare cannot be changed: 987 // 0xff <s 0x00, but 0x00ff >s 0x0000 988 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 989 CmpLHS = TrueVal; 990 AdjustedRHS = ZextRHS; 991 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 992 ZextRHS == TrueVal) { 993 CmpLHS = FalseVal; 994 AdjustedRHS = ZextRHS; 995 } else { 996 return false; 997 } 998 } else { 999 return false; 1000 } 1001 } else { 1002 return false; 1003 } 1004 1005 Pred = ICmpInst::getSwappedPredicate(Pred); 1006 CmpRHS = AdjustedRHS; 1007 std::swap(FalseVal, TrueVal); 1008 Cmp.setPredicate(Pred); 1009 Cmp.setOperand(0, CmpLHS); 1010 Cmp.setOperand(1, CmpRHS); 1011 Sel.setOperand(1, TrueVal); 1012 Sel.setOperand(2, FalseVal); 1013 Sel.swapProfMetadata(); 1014 1015 // Move the compare instruction right before the select instruction. Otherwise 1016 // the sext/zext value may be defined after the compare instruction uses it. 1017 Cmp.moveBefore(&Sel); 1018 1019 return true; 1020 } 1021 1022 /// If this is an integer min/max (icmp + select) with a constant operand, 1023 /// create the canonical icmp for the min/max operation and canonicalize the 1024 /// constant to the 'false' operand of the select: 1025 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1026 /// Note: if C1 != C2, this will change the icmp constant to the existing 1027 /// constant operand of the select. 1028 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1029 ICmpInst &Cmp, 1030 InstCombinerImpl &IC) { 1031 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1032 return nullptr; 1033 1034 // Canonicalize the compare predicate based on whether we have min or max. 1035 Value *LHS, *RHS; 1036 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1037 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1038 return nullptr; 1039 1040 // Is this already canonical? 1041 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1042 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1043 Cmp.getPredicate() == CanonicalPred) 1044 return nullptr; 1045 1046 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1047 // as this may cause an infinite combine loop. Let the sub be folded first. 1048 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1049 match(RHS, m_Sub(m_Value(), m_Zero()))) 1050 return nullptr; 1051 1052 // Create the canonical compare and plug it into the select. 1053 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1054 1055 // If the select operands did not change, we're done. 1056 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1057 return &Sel; 1058 1059 // If we are swapping the select operands, swap the metadata too. 1060 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1061 "Unexpected results from matchSelectPattern"); 1062 Sel.swapValues(); 1063 Sel.swapProfMetadata(); 1064 return &Sel; 1065 } 1066 1067 /// There are many select variants for each of ABS/NABS. 1068 /// In matchSelectPattern(), there are different compare constants, compare 1069 /// predicates/operands and select operands. 1070 /// In isKnownNegation(), there are different formats of negated operands. 1071 /// Canonicalize all these variants to 1 pattern. 1072 /// This makes CSE more likely. 1073 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1074 InstCombinerImpl &IC) { 1075 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1076 return nullptr; 1077 1078 // Choose a sign-bit check for the compare (likely simpler for codegen). 1079 // ABS: (X <s 0) ? -X : X 1080 // NABS: (X <s 0) ? X : -X 1081 Value *LHS, *RHS; 1082 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1083 if (SPF != SelectPatternFlavor::SPF_ABS && 1084 SPF != SelectPatternFlavor::SPF_NABS) 1085 return nullptr; 1086 1087 Value *TVal = Sel.getTrueValue(); 1088 Value *FVal = Sel.getFalseValue(); 1089 assert(isKnownNegation(TVal, FVal) && 1090 "Unexpected result from matchSelectPattern"); 1091 1092 // The compare may use the negated abs()/nabs() operand, or it may use 1093 // negation in non-canonical form such as: sub A, B. 1094 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 1095 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 1096 1097 bool CmpCanonicalized = !CmpUsesNegatedOp && 1098 match(Cmp.getOperand(1), m_ZeroInt()) && 1099 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 1100 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 1101 1102 // Is this already canonical? 1103 if (CmpCanonicalized && RHSCanonicalized) 1104 return nullptr; 1105 1106 // If RHS is not canonical but is used by other instructions, don't 1107 // canonicalize it and potentially increase the instruction count. 1108 if (!RHSCanonicalized) 1109 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 1110 return nullptr; 1111 1112 // Create the canonical compare: icmp slt LHS 0. 1113 if (!CmpCanonicalized) { 1114 Cmp.setPredicate(ICmpInst::ICMP_SLT); 1115 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 1116 if (CmpUsesNegatedOp) 1117 Cmp.setOperand(0, LHS); 1118 } 1119 1120 // Create the canonical RHS: RHS = sub (0, LHS). 1121 if (!RHSCanonicalized) { 1122 assert(RHS->hasOneUse() && "RHS use number is not right"); 1123 RHS = IC.Builder.CreateNeg(LHS); 1124 if (TVal == LHS) { 1125 // Replace false value. 1126 IC.replaceOperand(Sel, 2, RHS); 1127 FVal = RHS; 1128 } else { 1129 // Replace true value. 1130 IC.replaceOperand(Sel, 1, RHS); 1131 TVal = RHS; 1132 } 1133 } 1134 1135 // If the select operands do not change, we're done. 1136 if (SPF == SelectPatternFlavor::SPF_NABS) { 1137 if (TVal == LHS) 1138 return &Sel; 1139 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 1140 } else { 1141 if (FVal == LHS) 1142 return &Sel; 1143 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 1144 } 1145 1146 // We are swapping the select operands, so swap the metadata too. 1147 Sel.swapValues(); 1148 Sel.swapProfMetadata(); 1149 return &Sel; 1150 } 1151 1152 /// If we have a select with an equality comparison, then we know the value in 1153 /// one of the arms of the select. See if substituting this value into an arm 1154 /// and simplifying the result yields the same value as the other arm. 1155 /// 1156 /// To make this transform safe, we must drop poison-generating flags 1157 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1158 /// that poison from propagating. If the existing binop already had no 1159 /// poison-generating flags, then this transform can be done by instsimplify. 1160 /// 1161 /// Consider: 1162 /// %cmp = icmp eq i32 %x, 2147483647 1163 /// %add = add nsw i32 %x, 1 1164 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1165 /// 1166 /// We can't replace %sel with %add unless we strip away the flags. 1167 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1168 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1169 ICmpInst &Cmp) { 1170 if (!Cmp.isEquality()) 1171 return nullptr; 1172 1173 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1174 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1175 bool Swapped = false; 1176 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1177 std::swap(TrueVal, FalseVal); 1178 Swapped = true; 1179 } 1180 1181 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1182 // Make sure Y cannot be undef though, as we might pick different values for 1183 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1184 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1185 // replacement cycle. 1186 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1187 if (TrueVal != CmpLHS && isGuaranteedNotToBeUndefOrPoison(CmpRHS, &Sel, &DT)) 1188 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1189 /* AllowRefinement */ true)) 1190 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1191 if (TrueVal != CmpRHS && isGuaranteedNotToBeUndefOrPoison(CmpLHS, &Sel, &DT)) 1192 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1193 /* AllowRefinement */ true)) 1194 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1195 1196 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1197 if (!FalseInst) 1198 return nullptr; 1199 1200 // InstSimplify already performed this fold if it was possible subject to 1201 // current poison-generating flags. Try the transform again with 1202 // poison-generating flags temporarily dropped. 1203 bool WasNUW = false, WasNSW = false, WasExact = false; 1204 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1205 WasNUW = OBO->hasNoUnsignedWrap(); 1206 WasNSW = OBO->hasNoSignedWrap(); 1207 FalseInst->setHasNoUnsignedWrap(false); 1208 FalseInst->setHasNoSignedWrap(false); 1209 } 1210 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1211 WasExact = PEO->isExact(); 1212 FalseInst->setIsExact(false); 1213 } 1214 1215 // Try each equivalence substitution possibility. 1216 // We have an 'EQ' comparison, so the select's false value will propagate. 1217 // Example: 1218 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1219 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1220 /* AllowRefinement */ false) == TrueVal || 1221 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1222 /* AllowRefinement */ false) == TrueVal) { 1223 return replaceInstUsesWith(Sel, FalseVal); 1224 } 1225 1226 // Restore poison-generating flags if the transform did not apply. 1227 if (WasNUW) 1228 FalseInst->setHasNoUnsignedWrap(); 1229 if (WasNSW) 1230 FalseInst->setHasNoSignedWrap(); 1231 if (WasExact) 1232 FalseInst->setIsExact(); 1233 1234 return nullptr; 1235 } 1236 1237 // See if this is a pattern like: 1238 // %old_cmp1 = icmp slt i32 %x, C2 1239 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1240 // %old_x_offseted = add i32 %x, C1 1241 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1242 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1243 // This can be rewritten as more canonical pattern: 1244 // %new_cmp1 = icmp slt i32 %x, -C1 1245 // %new_cmp2 = icmp sge i32 %x, C0-C1 1246 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1247 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1248 // Iff -C1 s<= C2 s<= C0-C1 1249 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1250 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1251 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1252 InstCombiner::BuilderTy &Builder) { 1253 Value *X = Sel0.getTrueValue(); 1254 Value *Sel1 = Sel0.getFalseValue(); 1255 1256 // First match the condition of the outermost select. 1257 // Said condition must be one-use. 1258 if (!Cmp0.hasOneUse()) 1259 return nullptr; 1260 Value *Cmp00 = Cmp0.getOperand(0); 1261 Constant *C0; 1262 if (!match(Cmp0.getOperand(1), 1263 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1264 return nullptr; 1265 // Canonicalize Cmp0 into the form we expect. 1266 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1267 switch (Cmp0.getPredicate()) { 1268 case ICmpInst::Predicate::ICMP_ULT: 1269 break; // Great! 1270 case ICmpInst::Predicate::ICMP_ULE: 1271 // We'd have to increment C0 by one, and for that it must not have all-ones 1272 // element, but then it would have been canonicalized to 'ult' before 1273 // we get here. So we can't do anything useful with 'ule'. 1274 return nullptr; 1275 case ICmpInst::Predicate::ICMP_UGT: 1276 // We want to canonicalize it to 'ult', so we'll need to increment C0, 1277 // which again means it must not have any all-ones elements. 1278 if (!match(C0, 1279 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1280 APInt::getAllOnesValue( 1281 C0->getType()->getScalarSizeInBits())))) 1282 return nullptr; // Can't do, have all-ones element[s]. 1283 C0 = InstCombiner::AddOne(C0); 1284 std::swap(X, Sel1); 1285 break; 1286 case ICmpInst::Predicate::ICMP_UGE: 1287 // The only way we'd get this predicate if this `icmp` has extra uses, 1288 // but then we won't be able to do this fold. 1289 return nullptr; 1290 default: 1291 return nullptr; // Unknown predicate. 1292 } 1293 1294 // Now that we've canonicalized the ICmp, we know the X we expect; 1295 // the select in other hand should be one-use. 1296 if (!Sel1->hasOneUse()) 1297 return nullptr; 1298 1299 // We now can finish matching the condition of the outermost select: 1300 // it should either be the X itself, or an addition of some constant to X. 1301 Constant *C1; 1302 if (Cmp00 == X) 1303 C1 = ConstantInt::getNullValue(Sel0.getType()); 1304 else if (!match(Cmp00, 1305 m_Add(m_Specific(X), 1306 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1307 return nullptr; 1308 1309 Value *Cmp1; 1310 ICmpInst::Predicate Pred1; 1311 Constant *C2; 1312 Value *ReplacementLow, *ReplacementHigh; 1313 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1314 m_Value(ReplacementHigh))) || 1315 !match(Cmp1, 1316 m_ICmp(Pred1, m_Specific(X), 1317 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1318 return nullptr; 1319 1320 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1321 return nullptr; // Not enough one-use instructions for the fold. 1322 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1323 // two comparisons we'll need to build. 1324 1325 // Canonicalize Cmp1 into the form we expect. 1326 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1327 switch (Pred1) { 1328 case ICmpInst::Predicate::ICMP_SLT: 1329 break; 1330 case ICmpInst::Predicate::ICMP_SLE: 1331 // We'd have to increment C2 by one, and for that it must not have signed 1332 // max element, but then it would have been canonicalized to 'slt' before 1333 // we get here. So we can't do anything useful with 'sle'. 1334 return nullptr; 1335 case ICmpInst::Predicate::ICMP_SGT: 1336 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1337 // which again means it must not have any signed max elements. 1338 if (!match(C2, 1339 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1340 APInt::getSignedMaxValue( 1341 C2->getType()->getScalarSizeInBits())))) 1342 return nullptr; // Can't do, have signed max element[s]. 1343 C2 = InstCombiner::AddOne(C2); 1344 LLVM_FALLTHROUGH; 1345 case ICmpInst::Predicate::ICMP_SGE: 1346 // Also non-canonical, but here we don't need to change C2, 1347 // so we don't have any restrictions on C2, so we can just handle it. 1348 std::swap(ReplacementLow, ReplacementHigh); 1349 break; 1350 default: 1351 return nullptr; // Unknown predicate. 1352 } 1353 1354 // The thresholds of this clamp-like pattern. 1355 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1356 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1357 1358 // The fold has a precondition 1: C2 s>= ThresholdLow 1359 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1360 ThresholdLowIncl); 1361 if (!match(Precond1, m_One())) 1362 return nullptr; 1363 // The fold has a precondition 2: C2 s<= ThresholdHigh 1364 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1365 ThresholdHighExcl); 1366 if (!match(Precond2, m_One())) 1367 return nullptr; 1368 1369 // All good, finally emit the new pattern. 1370 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1371 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1372 Value *MaybeReplacedLow = 1373 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1374 Instruction *MaybeReplacedHigh = 1375 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1376 1377 return MaybeReplacedHigh; 1378 } 1379 1380 // If we have 1381 // %cmp = icmp [canonical predicate] i32 %x, C0 1382 // %r = select i1 %cmp, i32 %y, i32 C1 1383 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1384 // will have if we flip the strictness of the predicate (i.e. without changing 1385 // the result) is identical to the C1 in select. If it matches we can change 1386 // original comparison to one with swapped predicate, reuse the constant, 1387 // and swap the hands of select. 1388 static Instruction * 1389 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1390 InstCombinerImpl &IC) { 1391 ICmpInst::Predicate Pred; 1392 Value *X; 1393 Constant *C0; 1394 if (!match(&Cmp, m_OneUse(m_ICmp( 1395 Pred, m_Value(X), 1396 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1397 return nullptr; 1398 1399 // If comparison predicate is non-relational, we won't be able to do anything. 1400 if (ICmpInst::isEquality(Pred)) 1401 return nullptr; 1402 1403 // If comparison predicate is non-canonical, then we certainly won't be able 1404 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1405 if (!InstCombiner::isCanonicalPredicate(Pred)) 1406 return nullptr; 1407 1408 // If the [input] type of comparison and select type are different, lets abort 1409 // for now. We could try to compare constants with trunc/[zs]ext though. 1410 if (C0->getType() != Sel.getType()) 1411 return nullptr; 1412 1413 // FIXME: are there any magic icmp predicate+constant pairs we must not touch? 1414 1415 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1416 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1417 // At least one of these values we are selecting between must be a constant 1418 // else we'll never succeed. 1419 if (!match(SelVal0, m_AnyIntegralConstant()) && 1420 !match(SelVal1, m_AnyIntegralConstant())) 1421 return nullptr; 1422 1423 // Does this constant C match any of the `select` values? 1424 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1425 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1426 }; 1427 1428 // If C0 *already* matches true/false value of select, we are done. 1429 if (MatchesSelectValue(C0)) 1430 return nullptr; 1431 1432 // Check the constant we'd have with flipped-strictness predicate. 1433 auto FlippedStrictness = 1434 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1435 if (!FlippedStrictness) 1436 return nullptr; 1437 1438 // If said constant doesn't match either, then there is no hope, 1439 if (!MatchesSelectValue(FlippedStrictness->second)) 1440 return nullptr; 1441 1442 // It matched! Lets insert the new comparison just before select. 1443 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1444 IC.Builder.SetInsertPoint(&Sel); 1445 1446 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1447 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1448 Cmp.getName() + ".inv"); 1449 IC.replaceOperand(Sel, 0, NewCmp); 1450 Sel.swapValues(); 1451 Sel.swapProfMetadata(); 1452 1453 return &Sel; 1454 } 1455 1456 /// Visit a SelectInst that has an ICmpInst as its first operand. 1457 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1458 ICmpInst *ICI) { 1459 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1460 return NewSel; 1461 1462 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1463 return NewSel; 1464 1465 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1466 return NewAbs; 1467 1468 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) 1469 return NewAbs; 1470 1471 if (Instruction *NewSel = 1472 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1473 return NewSel; 1474 1475 bool Changed = adjustMinMax(SI, *ICI); 1476 1477 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1478 return replaceInstUsesWith(SI, V); 1479 1480 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1481 Value *TrueVal = SI.getTrueValue(); 1482 Value *FalseVal = SI.getFalseValue(); 1483 ICmpInst::Predicate Pred = ICI->getPredicate(); 1484 Value *CmpLHS = ICI->getOperand(0); 1485 Value *CmpRHS = ICI->getOperand(1); 1486 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1487 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1488 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1489 SI.setOperand(1, CmpRHS); 1490 Changed = true; 1491 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1492 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1493 SI.setOperand(2, CmpRHS); 1494 Changed = true; 1495 } 1496 } 1497 1498 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1499 // decomposeBitTestICmp() might help. 1500 { 1501 unsigned BitWidth = 1502 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1503 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1504 Value *X; 1505 const APInt *Y, *C; 1506 bool TrueWhenUnset; 1507 bool IsBitTest = false; 1508 if (ICmpInst::isEquality(Pred) && 1509 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1510 match(CmpRHS, m_Zero())) { 1511 IsBitTest = true; 1512 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1513 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1514 X = CmpLHS; 1515 Y = &MinSignedValue; 1516 IsBitTest = true; 1517 TrueWhenUnset = false; 1518 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1519 X = CmpLHS; 1520 Y = &MinSignedValue; 1521 IsBitTest = true; 1522 TrueWhenUnset = true; 1523 } 1524 if (IsBitTest) { 1525 Value *V = nullptr; 1526 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1527 if (TrueWhenUnset && TrueVal == X && 1528 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1529 V = Builder.CreateAnd(X, ~(*Y)); 1530 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1531 else if (!TrueWhenUnset && FalseVal == X && 1532 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1533 V = Builder.CreateAnd(X, ~(*Y)); 1534 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1535 else if (TrueWhenUnset && FalseVal == X && 1536 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1537 V = Builder.CreateOr(X, *Y); 1538 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1539 else if (!TrueWhenUnset && TrueVal == X && 1540 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1541 V = Builder.CreateOr(X, *Y); 1542 1543 if (V) 1544 return replaceInstUsesWith(SI, V); 1545 } 1546 } 1547 1548 if (Instruction *V = 1549 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1550 return V; 1551 1552 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1553 return V; 1554 1555 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1556 return replaceInstUsesWith(SI, V); 1557 1558 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1559 return replaceInstUsesWith(SI, V); 1560 1561 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1562 return replaceInstUsesWith(SI, V); 1563 1564 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1565 return replaceInstUsesWith(SI, V); 1566 1567 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1568 return replaceInstUsesWith(SI, V); 1569 1570 return Changed ? &SI : nullptr; 1571 } 1572 1573 /// SI is a select whose condition is a PHI node (but the two may be in 1574 /// different blocks). See if the true/false values (V) are live in all of the 1575 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1576 /// 1577 /// X = phi [ C1, BB1], [C2, BB2] 1578 /// Y = add 1579 /// Z = select X, Y, 0 1580 /// 1581 /// because Y is not live in BB1/BB2. 1582 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1583 const SelectInst &SI) { 1584 // If the value is a non-instruction value like a constant or argument, it 1585 // can always be mapped. 1586 const Instruction *I = dyn_cast<Instruction>(V); 1587 if (!I) return true; 1588 1589 // If V is a PHI node defined in the same block as the condition PHI, we can 1590 // map the arguments. 1591 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1592 1593 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1594 if (VP->getParent() == CondPHI->getParent()) 1595 return true; 1596 1597 // Otherwise, if the PHI and select are defined in the same block and if V is 1598 // defined in a different block, then we can transform it. 1599 if (SI.getParent() == CondPHI->getParent() && 1600 I->getParent() != CondPHI->getParent()) 1601 return true; 1602 1603 // Otherwise we have a 'hard' case and we can't tell without doing more 1604 // detailed dominator based analysis, punt. 1605 return false; 1606 } 1607 1608 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1609 /// SPF2(SPF1(A, B), C) 1610 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1611 SelectPatternFlavor SPF1, Value *A, 1612 Value *B, Instruction &Outer, 1613 SelectPatternFlavor SPF2, 1614 Value *C) { 1615 if (Outer.getType() != Inner->getType()) 1616 return nullptr; 1617 1618 if (C == A || C == B) { 1619 // MAX(MAX(A, B), B) -> MAX(A, B) 1620 // MIN(MIN(a, b), a) -> MIN(a, b) 1621 // TODO: This could be done in instsimplify. 1622 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1623 return replaceInstUsesWith(Outer, Inner); 1624 1625 // MAX(MIN(a, b), a) -> a 1626 // MIN(MAX(a, b), a) -> a 1627 // TODO: This could be done in instsimplify. 1628 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1629 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1630 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1631 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1632 return replaceInstUsesWith(Outer, C); 1633 } 1634 1635 if (SPF1 == SPF2) { 1636 const APInt *CB, *CC; 1637 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1638 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1639 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1640 // TODO: This could be done in instsimplify. 1641 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1642 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1643 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1644 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1645 return replaceInstUsesWith(Outer, Inner); 1646 1647 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1648 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1649 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1650 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1651 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1652 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1653 Outer.replaceUsesOfWith(Inner, A); 1654 return &Outer; 1655 } 1656 } 1657 } 1658 1659 // max(max(A, B), min(A, B)) --> max(A, B) 1660 // min(min(A, B), max(A, B)) --> min(A, B) 1661 // TODO: This could be done in instsimplify. 1662 if (SPF1 == SPF2 && 1663 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1664 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1665 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1666 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1667 return replaceInstUsesWith(Outer, Inner); 1668 1669 // ABS(ABS(X)) -> ABS(X) 1670 // NABS(NABS(X)) -> NABS(X) 1671 // TODO: This could be done in instsimplify. 1672 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1673 return replaceInstUsesWith(Outer, Inner); 1674 } 1675 1676 // ABS(NABS(X)) -> ABS(X) 1677 // NABS(ABS(X)) -> NABS(X) 1678 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1679 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1680 SelectInst *SI = cast<SelectInst>(Inner); 1681 Value *NewSI = 1682 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1683 SI->getTrueValue(), SI->getName(), SI); 1684 return replaceInstUsesWith(Outer, NewSI); 1685 } 1686 1687 auto IsFreeOrProfitableToInvert = 1688 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1689 if (match(V, m_Not(m_Value(NotV)))) { 1690 // If V has at most 2 uses then we can get rid of the xor operation 1691 // entirely. 1692 ElidesXor |= !V->hasNUsesOrMore(3); 1693 return true; 1694 } 1695 1696 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1697 NotV = nullptr; 1698 return true; 1699 } 1700 1701 return false; 1702 }; 1703 1704 Value *NotA, *NotB, *NotC; 1705 bool ElidesXor = false; 1706 1707 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1708 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1709 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1710 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1711 // 1712 // This transform is performance neutral if we can elide at least one xor from 1713 // the set of three operands, since we'll be tacking on an xor at the very 1714 // end. 1715 if (SelectPatternResult::isMinOrMax(SPF1) && 1716 SelectPatternResult::isMinOrMax(SPF2) && 1717 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1718 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1719 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1720 if (!NotA) 1721 NotA = Builder.CreateNot(A); 1722 if (!NotB) 1723 NotB = Builder.CreateNot(B); 1724 if (!NotC) 1725 NotC = Builder.CreateNot(C); 1726 1727 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1728 NotB); 1729 Value *NewOuter = Builder.CreateNot( 1730 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1731 return replaceInstUsesWith(Outer, NewOuter); 1732 } 1733 1734 return nullptr; 1735 } 1736 1737 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1738 /// This is even legal for FP. 1739 static Instruction *foldAddSubSelect(SelectInst &SI, 1740 InstCombiner::BuilderTy &Builder) { 1741 Value *CondVal = SI.getCondition(); 1742 Value *TrueVal = SI.getTrueValue(); 1743 Value *FalseVal = SI.getFalseValue(); 1744 auto *TI = dyn_cast<Instruction>(TrueVal); 1745 auto *FI = dyn_cast<Instruction>(FalseVal); 1746 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1747 return nullptr; 1748 1749 Instruction *AddOp = nullptr, *SubOp = nullptr; 1750 if ((TI->getOpcode() == Instruction::Sub && 1751 FI->getOpcode() == Instruction::Add) || 1752 (TI->getOpcode() == Instruction::FSub && 1753 FI->getOpcode() == Instruction::FAdd)) { 1754 AddOp = FI; 1755 SubOp = TI; 1756 } else if ((FI->getOpcode() == Instruction::Sub && 1757 TI->getOpcode() == Instruction::Add) || 1758 (FI->getOpcode() == Instruction::FSub && 1759 TI->getOpcode() == Instruction::FAdd)) { 1760 AddOp = TI; 1761 SubOp = FI; 1762 } 1763 1764 if (AddOp) { 1765 Value *OtherAddOp = nullptr; 1766 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1767 OtherAddOp = AddOp->getOperand(1); 1768 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1769 OtherAddOp = AddOp->getOperand(0); 1770 } 1771 1772 if (OtherAddOp) { 1773 // So at this point we know we have (Y -> OtherAddOp): 1774 // select C, (add X, Y), (sub X, Z) 1775 Value *NegVal; // Compute -Z 1776 if (SI.getType()->isFPOrFPVectorTy()) { 1777 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1778 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1779 FastMathFlags Flags = AddOp->getFastMathFlags(); 1780 Flags &= SubOp->getFastMathFlags(); 1781 NegInst->setFastMathFlags(Flags); 1782 } 1783 } else { 1784 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1785 } 1786 1787 Value *NewTrueOp = OtherAddOp; 1788 Value *NewFalseOp = NegVal; 1789 if (AddOp != TI) 1790 std::swap(NewTrueOp, NewFalseOp); 1791 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1792 SI.getName() + ".p", &SI); 1793 1794 if (SI.getType()->isFPOrFPVectorTy()) { 1795 Instruction *RI = 1796 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1797 1798 FastMathFlags Flags = AddOp->getFastMathFlags(); 1799 Flags &= SubOp->getFastMathFlags(); 1800 RI->setFastMathFlags(Flags); 1801 return RI; 1802 } else 1803 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1804 } 1805 } 1806 return nullptr; 1807 } 1808 1809 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1810 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1811 /// Along with a number of patterns similar to: 1812 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1813 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1814 static Instruction * 1815 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1816 Value *CondVal = SI.getCondition(); 1817 Value *TrueVal = SI.getTrueValue(); 1818 Value *FalseVal = SI.getFalseValue(); 1819 1820 WithOverflowInst *II; 1821 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1822 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1823 return nullptr; 1824 1825 Value *X = II->getLHS(); 1826 Value *Y = II->getRHS(); 1827 1828 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1829 Type *Ty = Limit->getType(); 1830 1831 ICmpInst::Predicate Pred; 1832 Value *TrueVal, *FalseVal, *Op; 1833 const APInt *C; 1834 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1835 m_Value(TrueVal), m_Value(FalseVal)))) 1836 return false; 1837 1838 auto IsZeroOrOne = [](const APInt &C) { 1839 return C.isNullValue() || C.isOneValue(); 1840 }; 1841 auto IsMinMax = [&](Value *Min, Value *Max) { 1842 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1843 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1844 return match(Min, m_SpecificInt(MinVal)) && 1845 match(Max, m_SpecificInt(MaxVal)); 1846 }; 1847 1848 if (Op != X && Op != Y) 1849 return false; 1850 1851 if (IsAdd) { 1852 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1853 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1854 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1855 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1856 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1857 IsMinMax(TrueVal, FalseVal)) 1858 return true; 1859 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1860 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1861 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1862 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1863 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1864 IsMinMax(FalseVal, TrueVal)) 1865 return true; 1866 } else { 1867 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1868 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1869 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1870 IsMinMax(TrueVal, FalseVal)) 1871 return true; 1872 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1873 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1874 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1875 IsMinMax(FalseVal, TrueVal)) 1876 return true; 1877 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1878 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1879 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1880 IsMinMax(FalseVal, TrueVal)) 1881 return true; 1882 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1883 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1884 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1885 IsMinMax(TrueVal, FalseVal)) 1886 return true; 1887 } 1888 1889 return false; 1890 }; 1891 1892 Intrinsic::ID NewIntrinsicID; 1893 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1894 match(TrueVal, m_AllOnes())) 1895 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1896 NewIntrinsicID = Intrinsic::uadd_sat; 1897 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1898 match(TrueVal, m_Zero())) 1899 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1900 NewIntrinsicID = Intrinsic::usub_sat; 1901 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1902 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1903 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1904 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1905 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1906 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1907 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1908 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1909 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1910 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1911 NewIntrinsicID = Intrinsic::sadd_sat; 1912 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1913 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1914 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1915 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1916 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1917 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1918 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1919 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1920 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1921 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1922 NewIntrinsicID = Intrinsic::ssub_sat; 1923 else 1924 return nullptr; 1925 1926 Function *F = 1927 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1928 return CallInst::Create(F, {X, Y}); 1929 } 1930 1931 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 1932 Constant *C; 1933 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1934 !match(Sel.getFalseValue(), m_Constant(C))) 1935 return nullptr; 1936 1937 Instruction *ExtInst; 1938 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1939 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1940 return nullptr; 1941 1942 auto ExtOpcode = ExtInst->getOpcode(); 1943 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1944 return nullptr; 1945 1946 // If we are extending from a boolean type or if we can create a select that 1947 // has the same size operands as its condition, try to narrow the select. 1948 Value *X = ExtInst->getOperand(0); 1949 Type *SmallType = X->getType(); 1950 Value *Cond = Sel.getCondition(); 1951 auto *Cmp = dyn_cast<CmpInst>(Cond); 1952 if (!SmallType->isIntOrIntVectorTy(1) && 1953 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1954 return nullptr; 1955 1956 // If the constant is the same after truncation to the smaller type and 1957 // extension to the original type, we can narrow the select. 1958 Type *SelType = Sel.getType(); 1959 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1960 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1961 if (ExtC == C && ExtInst->hasOneUse()) { 1962 Value *TruncCVal = cast<Value>(TruncC); 1963 if (ExtInst == Sel.getFalseValue()) 1964 std::swap(X, TruncCVal); 1965 1966 // select Cond, (ext X), C --> ext(select Cond, X, C') 1967 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1968 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1969 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1970 } 1971 1972 // If one arm of the select is the extend of the condition, replace that arm 1973 // with the extension of the appropriate known bool value. 1974 if (Cond == X) { 1975 if (ExtInst == Sel.getTrueValue()) { 1976 // select X, (sext X), C --> select X, -1, C 1977 // select X, (zext X), C --> select X, 1, C 1978 Constant *One = ConstantInt::getTrue(SmallType); 1979 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1980 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1981 } else { 1982 // select X, C, (sext X) --> select X, C, 0 1983 // select X, C, (zext X) --> select X, C, 0 1984 Constant *Zero = ConstantInt::getNullValue(SelType); 1985 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1986 } 1987 } 1988 1989 return nullptr; 1990 } 1991 1992 /// Try to transform a vector select with a constant condition vector into a 1993 /// shuffle for easier combining with other shuffles and insert/extract. 1994 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1995 Value *CondVal = SI.getCondition(); 1996 Constant *CondC; 1997 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1998 return nullptr; 1999 2000 unsigned NumElts = 2001 cast<FixedVectorType>(CondVal->getType())->getNumElements(); 2002 SmallVector<int, 16> Mask; 2003 Mask.reserve(NumElts); 2004 for (unsigned i = 0; i != NumElts; ++i) { 2005 Constant *Elt = CondC->getAggregateElement(i); 2006 if (!Elt) 2007 return nullptr; 2008 2009 if (Elt->isOneValue()) { 2010 // If the select condition element is true, choose from the 1st vector. 2011 Mask.push_back(i); 2012 } else if (Elt->isNullValue()) { 2013 // If the select condition element is false, choose from the 2nd vector. 2014 Mask.push_back(i + NumElts); 2015 } else if (isa<UndefValue>(Elt)) { 2016 // Undef in a select condition (choose one of the operands) does not mean 2017 // the same thing as undef in a shuffle mask (any value is acceptable), so 2018 // give up. 2019 return nullptr; 2020 } else { 2021 // Bail out on a constant expression. 2022 return nullptr; 2023 } 2024 } 2025 2026 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2027 } 2028 2029 /// If we have a select of vectors with a scalar condition, try to convert that 2030 /// to a vector select by splatting the condition. A splat may get folded with 2031 /// other operations in IR and having all operands of a select be vector types 2032 /// is likely better for vector codegen. 2033 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2034 InstCombinerImpl &IC) { 2035 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2036 if (!Ty) 2037 return nullptr; 2038 2039 // We can replace a single-use extract with constant index. 2040 Value *Cond = Sel.getCondition(); 2041 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2042 return nullptr; 2043 2044 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2045 // Splatting the extracted condition reduces code (we could directly create a 2046 // splat shuffle of the source vector to eliminate the intermediate step). 2047 return IC.replaceOperand( 2048 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2049 } 2050 2051 /// Reuse bitcasted operands between a compare and select: 2052 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2053 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2054 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2055 InstCombiner::BuilderTy &Builder) { 2056 Value *Cond = Sel.getCondition(); 2057 Value *TVal = Sel.getTrueValue(); 2058 Value *FVal = Sel.getFalseValue(); 2059 2060 CmpInst::Predicate Pred; 2061 Value *A, *B; 2062 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2063 return nullptr; 2064 2065 // The select condition is a compare instruction. If the select's true/false 2066 // values are already the same as the compare operands, there's nothing to do. 2067 if (TVal == A || TVal == B || FVal == A || FVal == B) 2068 return nullptr; 2069 2070 Value *C, *D; 2071 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2072 return nullptr; 2073 2074 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2075 Value *TSrc, *FSrc; 2076 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2077 !match(FVal, m_BitCast(m_Value(FSrc)))) 2078 return nullptr; 2079 2080 // If the select true/false values are *different bitcasts* of the same source 2081 // operands, make the select operands the same as the compare operands and 2082 // cast the result. This is the canonical select form for min/max. 2083 Value *NewSel; 2084 if (TSrc == C && FSrc == D) { 2085 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2086 // bitcast (select (cmp A, B), A, B) 2087 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2088 } else if (TSrc == D && FSrc == C) { 2089 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2090 // bitcast (select (cmp A, B), B, A) 2091 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2092 } else { 2093 return nullptr; 2094 } 2095 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2096 } 2097 2098 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2099 /// instructions. 2100 /// 2101 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2102 /// selects between the returned value of the cmpxchg instruction its compare 2103 /// operand, the result of the select will always be equal to its false value. 2104 /// For example: 2105 /// 2106 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2107 /// %1 = extractvalue { i64, i1 } %0, 1 2108 /// %2 = extractvalue { i64, i1 } %0, 0 2109 /// %3 = select i1 %1, i64 %compare, i64 %2 2110 /// ret i64 %3 2111 /// 2112 /// The returned value of the cmpxchg instruction (%2) is the original value 2113 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2114 /// must have been equal to %compare. Thus, the result of the select is always 2115 /// equal to %2, and the code can be simplified to: 2116 /// 2117 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2118 /// %1 = extractvalue { i64, i1 } %0, 0 2119 /// ret i64 %1 2120 /// 2121 static Value *foldSelectCmpXchg(SelectInst &SI) { 2122 // A helper that determines if V is an extractvalue instruction whose 2123 // aggregate operand is a cmpxchg instruction and whose single index is equal 2124 // to I. If such conditions are true, the helper returns the cmpxchg 2125 // instruction; otherwise, a nullptr is returned. 2126 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2127 auto *Extract = dyn_cast<ExtractValueInst>(V); 2128 if (!Extract) 2129 return nullptr; 2130 if (Extract->getIndices()[0] != I) 2131 return nullptr; 2132 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2133 }; 2134 2135 // If the select has a single user, and this user is a select instruction that 2136 // we can simplify, skip the cmpxchg simplification for now. 2137 if (SI.hasOneUse()) 2138 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2139 if (Select->getCondition() == SI.getCondition()) 2140 if (Select->getFalseValue() == SI.getTrueValue() || 2141 Select->getTrueValue() == SI.getFalseValue()) 2142 return nullptr; 2143 2144 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2145 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2146 if (!CmpXchg) 2147 return nullptr; 2148 2149 // Check the true value case: The true value of the select is the returned 2150 // value of the same cmpxchg used by the condition, and the false value is the 2151 // cmpxchg instruction's compare operand. 2152 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2153 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2154 return SI.getFalseValue(); 2155 2156 // Check the false value case: The false value of the select is the returned 2157 // value of the same cmpxchg used by the condition, and the true value is the 2158 // cmpxchg instruction's compare operand. 2159 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2160 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2161 return SI.getFalseValue(); 2162 2163 return nullptr; 2164 } 2165 2166 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2167 Value *Y, 2168 InstCombiner::BuilderTy &Builder) { 2169 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2170 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2171 SPF == SelectPatternFlavor::SPF_UMAX; 2172 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2173 // the constant value check to an assert. 2174 Value *A; 2175 const APInt *C1, *C2; 2176 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2177 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2178 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2179 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2180 Value *NewMinMax = createMinMax(Builder, SPF, A, 2181 ConstantInt::get(X->getType(), *C2 - *C1)); 2182 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2183 ConstantInt::get(X->getType(), *C1)); 2184 } 2185 2186 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2187 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2188 bool Overflow; 2189 APInt Diff = C2->ssub_ov(*C1, Overflow); 2190 if (!Overflow) { 2191 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2192 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2193 Value *NewMinMax = createMinMax(Builder, SPF, A, 2194 ConstantInt::get(X->getType(), Diff)); 2195 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2196 ConstantInt::get(X->getType(), *C1)); 2197 } 2198 } 2199 2200 return nullptr; 2201 } 2202 2203 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2204 Instruction *InstCombinerImpl::matchSAddSubSat(SelectInst &MinMax1) { 2205 Type *Ty = MinMax1.getType(); 2206 2207 // We are looking for a tree of: 2208 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2209 // Where the min and max could be reversed 2210 Instruction *MinMax2; 2211 BinaryOperator *AddSub; 2212 const APInt *MinValue, *MaxValue; 2213 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2214 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2215 return nullptr; 2216 } else if (match(&MinMax1, 2217 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2218 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2219 return nullptr; 2220 } else 2221 return nullptr; 2222 2223 // Check that the constants clamp a saturate, and that the new type would be 2224 // sensible to convert to. 2225 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2226 return nullptr; 2227 // In what bitwidth can this be treated as saturating arithmetics? 2228 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2229 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2230 // good first approximation for what should be done there. 2231 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2232 return nullptr; 2233 2234 // Also make sure that the number of uses is as expected. The "3"s are for the 2235 // the two items of min/max (the compare and the select). 2236 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3)) 2237 return nullptr; 2238 2239 // Create the new type (which can be a vector type) 2240 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2241 // Match the two extends from the add/sub 2242 Value *A, *B; 2243 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B))))) 2244 return nullptr; 2245 // And check the incoming values are of a type smaller than or equal to the 2246 // size of the saturation. Otherwise the higher bits can cause different 2247 // results. 2248 if (A->getType()->getScalarSizeInBits() > NewBitWidth || 2249 B->getType()->getScalarSizeInBits() > NewBitWidth) 2250 return nullptr; 2251 2252 Intrinsic::ID IntrinsicID; 2253 if (AddSub->getOpcode() == Instruction::Add) 2254 IntrinsicID = Intrinsic::sadd_sat; 2255 else if (AddSub->getOpcode() == Instruction::Sub) 2256 IntrinsicID = Intrinsic::ssub_sat; 2257 else 2258 return nullptr; 2259 2260 // Finally create and return the sat intrinsic, truncated to the new type 2261 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2262 Value *AT = Builder.CreateSExt(A, NewTy); 2263 Value *BT = Builder.CreateSExt(B, NewTy); 2264 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2265 return CastInst::Create(Instruction::SExt, Sat, Ty); 2266 } 2267 2268 /// Reduce a sequence of min/max with a common operand. 2269 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2270 Value *RHS, 2271 InstCombiner::BuilderTy &Builder) { 2272 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2273 // TODO: Allow FP min/max with nnan/nsz. 2274 if (!LHS->getType()->isIntOrIntVectorTy()) 2275 return nullptr; 2276 2277 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2278 Value *A, *B, *C, *D; 2279 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2280 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2281 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2282 return nullptr; 2283 2284 // Look for a common operand. The use checks are different than usual because 2285 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2286 // the select. 2287 Value *MinMaxOp = nullptr; 2288 Value *ThirdOp = nullptr; 2289 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2290 // If the LHS is only used in this chain and the RHS is used outside of it, 2291 // reuse the RHS min/max because that will eliminate the LHS. 2292 if (D == A || C == A) { 2293 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2294 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2295 MinMaxOp = RHS; 2296 ThirdOp = B; 2297 } else if (D == B || C == B) { 2298 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2299 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2300 MinMaxOp = RHS; 2301 ThirdOp = A; 2302 } 2303 } else if (!RHS->hasNUsesOrMore(3)) { 2304 // Reuse the LHS. This will eliminate the RHS. 2305 if (D == A || D == B) { 2306 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2307 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2308 MinMaxOp = LHS; 2309 ThirdOp = C; 2310 } else if (C == A || C == B) { 2311 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2312 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2313 MinMaxOp = LHS; 2314 ThirdOp = D; 2315 } 2316 } 2317 if (!MinMaxOp || !ThirdOp) 2318 return nullptr; 2319 2320 CmpInst::Predicate P = getMinMaxPred(SPF); 2321 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2322 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2323 } 2324 2325 /// Try to reduce a rotate pattern that includes a compare and select into a 2326 /// funnel shift intrinsic. Example: 2327 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2328 /// --> call llvm.fshl.i32(a, a, b) 2329 static Instruction *foldSelectRotate(SelectInst &Sel, 2330 InstCombiner::BuilderTy &Builder) { 2331 // The false value of the select must be a rotate of the true value. 2332 Value *Or0, *Or1; 2333 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 2334 return nullptr; 2335 2336 Value *TVal = Sel.getTrueValue(); 2337 Value *SA0, *SA1; 2338 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), 2339 m_ZExtOrSelf(m_Value(SA0))))) || 2340 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), 2341 m_ZExtOrSelf(m_Value(SA1)))))) 2342 return nullptr; 2343 2344 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 2345 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 2346 if (ShiftOpcode0 == ShiftOpcode1) 2347 return nullptr; 2348 2349 // We have one of these patterns so far: 2350 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) 2351 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) 2352 // This must be a power-of-2 rotate for a bitmasking transform to be valid. 2353 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2354 if (!isPowerOf2_32(Width)) 2355 return nullptr; 2356 2357 // Check the shift amounts to see if they are an opposite pair. 2358 Value *ShAmt; 2359 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2360 ShAmt = SA0; 2361 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2362 ShAmt = SA1; 2363 else 2364 return nullptr; 2365 2366 // Finally, see if the select is filtering out a shift-by-zero. 2367 Value *Cond = Sel.getCondition(); 2368 ICmpInst::Predicate Pred; 2369 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2370 Pred != ICmpInst::ICMP_EQ) 2371 return nullptr; 2372 2373 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2374 // Convert to funnel shift intrinsic. 2375 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || 2376 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); 2377 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2378 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2379 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2380 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); 2381 } 2382 2383 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2384 InstCombiner::BuilderTy &Builder) { 2385 Value *Cond = Sel.getCondition(); 2386 Value *TVal = Sel.getTrueValue(); 2387 Value *FVal = Sel.getFalseValue(); 2388 Type *SelType = Sel.getType(); 2389 2390 // Match select ?, TC, FC where the constants are equal but negated. 2391 // TODO: Generalize to handle a negated variable operand? 2392 const APFloat *TC, *FC; 2393 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2394 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2395 return nullptr; 2396 2397 assert(TC != FC && "Expected equal select arms to simplify"); 2398 2399 Value *X; 2400 const APInt *C; 2401 bool IsTrueIfSignSet; 2402 ICmpInst::Predicate Pred; 2403 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2404 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2405 X->getType() != SelType) 2406 return nullptr; 2407 2408 // If needed, negate the value that will be the sign argument of the copysign: 2409 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2410 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2411 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2412 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2413 if (IsTrueIfSignSet ^ TC->isNegative()) 2414 X = Builder.CreateFNegFMF(X, &Sel); 2415 2416 // Canonicalize the magnitude argument as the positive constant since we do 2417 // not care about its sign. 2418 Value *MagArg = TC->isNegative() ? FVal : TVal; 2419 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2420 Sel.getType()); 2421 Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X }); 2422 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2423 return CopySign; 2424 } 2425 2426 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2427 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2428 if (!VecTy) 2429 return nullptr; 2430 2431 unsigned NumElts = VecTy->getNumElements(); 2432 APInt UndefElts(NumElts, 0); 2433 APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts)); 2434 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2435 if (V != &Sel) 2436 return replaceInstUsesWith(Sel, V); 2437 return &Sel; 2438 } 2439 2440 // A select of a "select shuffle" with a common operand can be rearranged 2441 // to select followed by "select shuffle". Because of poison, this only works 2442 // in the case of a shuffle with no undefined mask elements. 2443 Value *Cond = Sel.getCondition(); 2444 Value *TVal = Sel.getTrueValue(); 2445 Value *FVal = Sel.getFalseValue(); 2446 Value *X, *Y; 2447 ArrayRef<int> Mask; 2448 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2449 !is_contained(Mask, UndefMaskElem) && 2450 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2451 if (X == FVal) { 2452 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2453 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2454 return new ShuffleVectorInst(X, NewSel, Mask); 2455 } 2456 if (Y == FVal) { 2457 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2458 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2459 return new ShuffleVectorInst(NewSel, Y, Mask); 2460 } 2461 } 2462 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2463 !is_contained(Mask, UndefMaskElem) && 2464 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2465 if (X == TVal) { 2466 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2467 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2468 return new ShuffleVectorInst(X, NewSel, Mask); 2469 } 2470 if (Y == TVal) { 2471 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2472 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2473 return new ShuffleVectorInst(NewSel, Y, Mask); 2474 } 2475 } 2476 2477 return nullptr; 2478 } 2479 2480 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2481 const DominatorTree &DT, 2482 InstCombiner::BuilderTy &Builder) { 2483 // Find the block's immediate dominator that ends with a conditional branch 2484 // that matches select's condition (maybe inverted). 2485 auto *IDomNode = DT[BB]->getIDom(); 2486 if (!IDomNode) 2487 return nullptr; 2488 BasicBlock *IDom = IDomNode->getBlock(); 2489 2490 Value *Cond = Sel.getCondition(); 2491 Value *IfTrue, *IfFalse; 2492 BasicBlock *TrueSucc, *FalseSucc; 2493 if (match(IDom->getTerminator(), 2494 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2495 m_BasicBlock(FalseSucc)))) { 2496 IfTrue = Sel.getTrueValue(); 2497 IfFalse = Sel.getFalseValue(); 2498 } else if (match(IDom->getTerminator(), 2499 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2500 m_BasicBlock(FalseSucc)))) { 2501 IfTrue = Sel.getFalseValue(); 2502 IfFalse = Sel.getTrueValue(); 2503 } else 2504 return nullptr; 2505 2506 // Make sure the branches are actually different. 2507 if (TrueSucc == FalseSucc) 2508 return nullptr; 2509 2510 // We want to replace select %cond, %a, %b with a phi that takes value %a 2511 // for all incoming edges that are dominated by condition `%cond == true`, 2512 // and value %b for edges dominated by condition `%cond == false`. If %a 2513 // or %b are also phis from the same basic block, we can go further and take 2514 // their incoming values from the corresponding blocks. 2515 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2516 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2517 DenseMap<BasicBlock *, Value *> Inputs; 2518 for (auto *Pred : predecessors(BB)) { 2519 // Check implication. 2520 BasicBlockEdge Incoming(Pred, BB); 2521 if (DT.dominates(TrueEdge, Incoming)) 2522 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2523 else if (DT.dominates(FalseEdge, Incoming)) 2524 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2525 else 2526 return nullptr; 2527 // Check availability. 2528 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2529 if (!DT.dominates(Insn, Pred->getTerminator())) 2530 return nullptr; 2531 } 2532 2533 Builder.SetInsertPoint(&*BB->begin()); 2534 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2535 for (auto *Pred : predecessors(BB)) 2536 PN->addIncoming(Inputs[Pred], Pred); 2537 PN->takeName(&Sel); 2538 return PN; 2539 } 2540 2541 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2542 InstCombiner::BuilderTy &Builder) { 2543 // Try to replace this select with Phi in one of these blocks. 2544 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2545 CandidateBlocks.insert(Sel.getParent()); 2546 for (Value *V : Sel.operands()) 2547 if (auto *I = dyn_cast<Instruction>(V)) 2548 CandidateBlocks.insert(I->getParent()); 2549 2550 for (BasicBlock *BB : CandidateBlocks) 2551 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2552 return PN; 2553 return nullptr; 2554 } 2555 2556 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2557 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2558 if (!FI) 2559 return nullptr; 2560 2561 Value *Cond = FI->getOperand(0); 2562 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2563 2564 // select (freeze(x == y)), x, y --> y 2565 // select (freeze(x != y)), x, y --> x 2566 // The freeze should be only used by this select. Otherwise, remaining uses of 2567 // the freeze can observe a contradictory value. 2568 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2569 // a = select c, x, y ; 2570 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2571 // ; to y, this can happen. 2572 CmpInst::Predicate Pred; 2573 if (FI->hasOneUse() && 2574 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2575 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2576 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2577 } 2578 2579 return nullptr; 2580 } 2581 2582 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2583 Value *CondVal = SI.getCondition(); 2584 Value *TrueVal = SI.getTrueValue(); 2585 Value *FalseVal = SI.getFalseValue(); 2586 Type *SelType = SI.getType(); 2587 2588 // FIXME: Remove this workaround when freeze related patches are done. 2589 // For select with undef operand which feeds into an equality comparison, 2590 // don't simplify it so loop unswitch can know the equality comparison 2591 // may have an undef operand. This is a workaround for PR31652 caused by 2592 // descrepancy about branch on undef between LoopUnswitch and GVN. 2593 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 2594 if (llvm::any_of(SI.users(), [&](User *U) { 2595 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2596 if (CI && CI->isEquality()) 2597 return true; 2598 return false; 2599 })) { 2600 return nullptr; 2601 } 2602 } 2603 2604 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2605 SQ.getWithInstruction(&SI))) 2606 return replaceInstUsesWith(SI, V); 2607 2608 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2609 return I; 2610 2611 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2612 return I; 2613 2614 CmpInst::Predicate Pred; 2615 2616 if (SelType->isIntOrIntVectorTy(1) && 2617 TrueVal->getType() == CondVal->getType()) { 2618 if (match(TrueVal, m_One())) { 2619 // Change: A = select B, true, C --> A = or B, C 2620 return BinaryOperator::CreateOr(CondVal, FalseVal); 2621 } 2622 if (match(TrueVal, m_Zero())) { 2623 // Change: A = select B, false, C --> A = and !B, C 2624 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2625 return BinaryOperator::CreateAnd(NotCond, FalseVal); 2626 } 2627 if (match(FalseVal, m_Zero())) { 2628 // Change: A = select B, C, false --> A = and B, C 2629 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2630 } 2631 if (match(FalseVal, m_One())) { 2632 // Change: A = select B, C, true --> A = or !B, C 2633 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2634 return BinaryOperator::CreateOr(NotCond, TrueVal); 2635 } 2636 2637 // select a, a, b -> a | b 2638 // select a, b, a -> a & b 2639 if (CondVal == TrueVal) 2640 return BinaryOperator::CreateOr(CondVal, FalseVal); 2641 if (CondVal == FalseVal) 2642 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2643 2644 // select a, ~a, b -> (~a) & b 2645 // select a, b, ~a -> (~a) | b 2646 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2647 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 2648 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2649 return BinaryOperator::CreateOr(TrueVal, FalseVal); 2650 } 2651 2652 // Selecting between two integer or vector splat integer constants? 2653 // 2654 // Note that we don't handle a scalar select of vectors: 2655 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2656 // because that may need 3 instructions to splat the condition value: 2657 // extend, insertelement, shufflevector. 2658 if (SelType->isIntOrIntVectorTy() && 2659 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2660 // select C, 1, 0 -> zext C to int 2661 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2662 return new ZExtInst(CondVal, SelType); 2663 2664 // select C, -1, 0 -> sext C to int 2665 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2666 return new SExtInst(CondVal, SelType); 2667 2668 // select C, 0, 1 -> zext !C to int 2669 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2670 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2671 return new ZExtInst(NotCond, SelType); 2672 } 2673 2674 // select C, 0, -1 -> sext !C to int 2675 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2676 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2677 return new SExtInst(NotCond, SelType); 2678 } 2679 } 2680 2681 // See if we are selecting two values based on a comparison of the two values. 2682 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 2683 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1); 2684 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2685 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2686 // Canonicalize to use ordered comparisons by swapping the select 2687 // operands. 2688 // 2689 // e.g. 2690 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2691 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 2692 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 2693 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2694 // FIXME: The FMF should propagate from the select, not the fcmp. 2695 Builder.setFastMathFlags(FCI->getFastMathFlags()); 2696 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2697 FCI->getName() + ".inv"); 2698 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2699 return replaceInstUsesWith(SI, NewSel); 2700 } 2701 2702 // NOTE: if we wanted to, this is where to detect MIN/MAX 2703 } 2704 } 2705 2706 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2707 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 2708 // also require nnan because we do not want to unintentionally change the 2709 // sign of a NaN value. 2710 // FIXME: These folds should test/propagate FMF from the select, not the 2711 // fsub or fneg. 2712 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2713 Instruction *FSub; 2714 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2715 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2716 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2717 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2718 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub); 2719 return replaceInstUsesWith(SI, Fabs); 2720 } 2721 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2722 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2723 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2724 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2725 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2726 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub); 2727 return replaceInstUsesWith(SI, Fabs); 2728 } 2729 // With nnan and nsz: 2730 // (X < +/-0.0) ? -X : X --> fabs(X) 2731 // (X <= +/-0.0) ? -X : X --> fabs(X) 2732 Instruction *FNeg; 2733 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2734 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && 2735 match(TrueVal, m_Instruction(FNeg)) && 2736 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2737 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2738 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2739 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg); 2740 return replaceInstUsesWith(SI, Fabs); 2741 } 2742 // With nnan and nsz: 2743 // (X > +/-0.0) ? X : -X --> fabs(X) 2744 // (X >= +/-0.0) ? X : -X --> fabs(X) 2745 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2746 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && 2747 match(FalseVal, m_Instruction(FNeg)) && 2748 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2749 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2750 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2751 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg); 2752 return replaceInstUsesWith(SI, Fabs); 2753 } 2754 2755 // See if we are selecting two values based on a comparison of the two values. 2756 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2757 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2758 return Result; 2759 2760 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2761 return Add; 2762 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2763 return Add; 2764 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2765 return Or; 2766 2767 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2768 auto *TI = dyn_cast<Instruction>(TrueVal); 2769 auto *FI = dyn_cast<Instruction>(FalseVal); 2770 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2771 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2772 return IV; 2773 2774 if (Instruction *I = foldSelectExtConst(SI)) 2775 return I; 2776 2777 // See if we can fold the select into one of our operands. 2778 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2779 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2780 return FoldI; 2781 2782 Value *LHS, *RHS; 2783 Instruction::CastOps CastOp; 2784 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2785 auto SPF = SPR.Flavor; 2786 if (SPF) { 2787 Value *LHS2, *RHS2; 2788 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2789 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2790 RHS2, SI, SPF, RHS)) 2791 return R; 2792 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2793 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2794 RHS2, SI, SPF, LHS)) 2795 return R; 2796 // TODO. 2797 // ABS(-X) -> ABS(X) 2798 } 2799 2800 if (SelectPatternResult::isMinOrMax(SPF)) { 2801 // Canonicalize so that 2802 // - type casts are outside select patterns. 2803 // - float clamp is transformed to min/max pattern 2804 2805 bool IsCastNeeded = LHS->getType() != SelType; 2806 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2807 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2808 if (IsCastNeeded || 2809 (LHS->getType()->isFPOrFPVectorTy() && 2810 ((CmpLHS != LHS && CmpLHS != RHS) || 2811 (CmpRHS != LHS && CmpRHS != RHS)))) { 2812 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2813 2814 Value *Cmp; 2815 if (CmpInst::isIntPredicate(MinMaxPred)) { 2816 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2817 } else { 2818 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2819 auto FMF = 2820 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2821 Builder.setFastMathFlags(FMF); 2822 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2823 } 2824 2825 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2826 if (!IsCastNeeded) 2827 return replaceInstUsesWith(SI, NewSI); 2828 2829 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2830 return replaceInstUsesWith(SI, NewCast); 2831 } 2832 2833 // MAX(~a, ~b) -> ~MIN(a, b) 2834 // MAX(~a, C) -> ~MIN(a, ~C) 2835 // MIN(~a, ~b) -> ~MAX(a, b) 2836 // MIN(~a, C) -> ~MAX(a, ~C) 2837 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 2838 Value *A; 2839 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 2840 !isFreeToInvert(A, A->hasOneUse()) && 2841 // Passing false to only consider m_Not and constants. 2842 isFreeToInvert(Y, false)) { 2843 Value *B = Builder.CreateNot(Y); 2844 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 2845 A, B); 2846 // Copy the profile metadata. 2847 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 2848 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 2849 // Swap the metadata if the operands are swapped. 2850 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 2851 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 2852 } 2853 2854 return BinaryOperator::CreateNot(NewMinMax); 2855 } 2856 2857 return nullptr; 2858 }; 2859 2860 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 2861 return I; 2862 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2863 return I; 2864 2865 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2866 return I; 2867 2868 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2869 return I; 2870 if (Instruction *I = matchSAddSubSat(SI)) 2871 return I; 2872 } 2873 } 2874 2875 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2876 // minnum/maxnum intrinsics. 2877 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2878 Value *X, *Y; 2879 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2880 return replaceInstUsesWith( 2881 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2882 2883 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2884 return replaceInstUsesWith( 2885 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 2886 } 2887 2888 // See if we can fold the select into a phi node if the condition is a select. 2889 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2890 // The true/false values have to be live in the PHI predecessor's blocks. 2891 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2892 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2893 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2894 return NV; 2895 2896 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2897 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2898 // select(C, select(C, a, b), c) -> select(C, a, c) 2899 if (TrueSI->getCondition() == CondVal) { 2900 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2901 return nullptr; 2902 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 2903 } 2904 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2905 // We choose this as normal form to enable folding on the And and 2906 // shortening paths for the values (this helps getUnderlyingObjects() for 2907 // example). 2908 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2909 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 2910 replaceOperand(SI, 0, And); 2911 replaceOperand(SI, 1, TrueSI->getTrueValue()); 2912 return &SI; 2913 } 2914 } 2915 } 2916 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2917 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2918 // select(C, a, select(C, b, c)) -> select(C, a, c) 2919 if (FalseSI->getCondition() == CondVal) { 2920 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2921 return nullptr; 2922 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 2923 } 2924 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2925 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2926 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 2927 replaceOperand(SI, 0, Or); 2928 replaceOperand(SI, 2, FalseSI->getFalseValue()); 2929 return &SI; 2930 } 2931 } 2932 } 2933 2934 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2935 // The select might be preventing a division by 0. 2936 switch (BO->getOpcode()) { 2937 default: 2938 return true; 2939 case Instruction::SRem: 2940 case Instruction::URem: 2941 case Instruction::SDiv: 2942 case Instruction::UDiv: 2943 return false; 2944 } 2945 }; 2946 2947 // Try to simplify a binop sandwiched between 2 selects with the same 2948 // condition. 2949 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 2950 BinaryOperator *TrueBO; 2951 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 2952 canMergeSelectThroughBinop(TrueBO)) { 2953 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 2954 if (TrueBOSI->getCondition() == CondVal) { 2955 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 2956 Worklist.push(TrueBO); 2957 return &SI; 2958 } 2959 } 2960 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 2961 if (TrueBOSI->getCondition() == CondVal) { 2962 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 2963 Worklist.push(TrueBO); 2964 return &SI; 2965 } 2966 } 2967 } 2968 2969 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2970 BinaryOperator *FalseBO; 2971 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2972 canMergeSelectThroughBinop(FalseBO)) { 2973 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2974 if (FalseBOSI->getCondition() == CondVal) { 2975 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 2976 Worklist.push(FalseBO); 2977 return &SI; 2978 } 2979 } 2980 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2981 if (FalseBOSI->getCondition() == CondVal) { 2982 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 2983 Worklist.push(FalseBO); 2984 return &SI; 2985 } 2986 } 2987 } 2988 2989 Value *NotCond; 2990 if (match(CondVal, m_Not(m_Value(NotCond)))) { 2991 replaceOperand(SI, 0, NotCond); 2992 SI.swapValues(); 2993 SI.swapProfMetadata(); 2994 return &SI; 2995 } 2996 2997 if (Instruction *I = foldVectorSelect(SI)) 2998 return I; 2999 3000 // If we can compute the condition, there's no need for a select. 3001 // Like the above fold, we are attempting to reduce compile-time cost by 3002 // putting this fold here with limitations rather than in InstSimplify. 3003 // The motivation for this call into value tracking is to take advantage of 3004 // the assumption cache, so make sure that is populated. 3005 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3006 KnownBits Known(1); 3007 computeKnownBits(CondVal, Known, 0, &SI); 3008 if (Known.One.isOneValue()) 3009 return replaceInstUsesWith(SI, TrueVal); 3010 if (Known.Zero.isOneValue()) 3011 return replaceInstUsesWith(SI, FalseVal); 3012 } 3013 3014 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3015 return BitCastSel; 3016 3017 // Simplify selects that test the returned flag of cmpxchg instructions. 3018 if (Value *V = foldSelectCmpXchg(SI)) 3019 return replaceInstUsesWith(SI, V); 3020 3021 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3022 return Select; 3023 3024 if (Instruction *Rot = foldSelectRotate(SI, Builder)) 3025 return Rot; 3026 3027 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3028 return Copysign; 3029 3030 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3031 return replaceInstUsesWith(SI, PN); 3032 3033 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3034 return replaceInstUsesWith(SI, Fr); 3035 3036 return nullptr; 3037 } 3038