1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CmpInstAnalysis.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 42 #include <cassert> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 static SelectPatternFlavor 51 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) { 52 switch (SPF) { 53 default: 54 llvm_unreachable("unhandled!"); 55 56 case SPF_SMIN: 57 return SPF_SMAX; 58 case SPF_UMIN: 59 return SPF_UMAX; 60 case SPF_SMAX: 61 return SPF_SMIN; 62 case SPF_UMAX: 63 return SPF_UMIN; 64 } 65 } 66 67 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF, 68 bool Ordered=false) { 69 switch (SPF) { 70 default: 71 llvm_unreachable("unhandled!"); 72 73 case SPF_SMIN: 74 return ICmpInst::ICMP_SLT; 75 case SPF_UMIN: 76 return ICmpInst::ICMP_ULT; 77 case SPF_SMAX: 78 return ICmpInst::ICMP_SGT; 79 case SPF_UMAX: 80 return ICmpInst::ICMP_UGT; 81 case SPF_FMINNUM: 82 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 83 case SPF_FMAXNUM: 84 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 85 } 86 } 87 88 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy &Builder, 89 SelectPatternFlavor SPF, Value *A, 90 Value *B) { 91 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF); 92 assert(CmpInst::isIntPredicate(Pred)); 93 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 94 } 95 96 /// If one of the constants is zero (we know they can't both be) and we have an 97 /// icmp instruction with zero, and we have an 'and' with the non-constant value 98 /// and a power of two we can turn the select into a shift on the result of the 99 /// 'and'. 100 /// This folds: 101 /// select (icmp eq (and X, C1)), C2, C3 102 /// iff C1 is a power 2 and the difference between C2 and C3 is a power of 2. 103 /// To something like: 104 /// (shr (and (X, C1)), (log2(C1) - log2(C2-C3))) + C3 105 /// Or: 106 /// (shl (and (X, C1)), (log2(C2-C3) - log2(C1))) + C3 107 /// With some variations depending if C3 is larger than C2, or the shift 108 /// isn't needed, or the bit widths don't match. 109 static Value *foldSelectICmpAnd(Type *SelType, const ICmpInst *IC, 110 APInt TrueVal, APInt FalseVal, 111 InstCombiner::BuilderTy &Builder) { 112 assert(SelType->isIntOrIntVectorTy() && "Not an integer select?"); 113 114 // If this is a vector select, we need a vector compare. 115 if (SelType->isVectorTy() != IC->getType()->isVectorTy()) 116 return nullptr; 117 118 Value *V; 119 APInt AndMask; 120 bool CreateAnd = false; 121 ICmpInst::Predicate Pred = IC->getPredicate(); 122 if (ICmpInst::isEquality(Pred)) { 123 if (!match(IC->getOperand(1), m_Zero())) 124 return nullptr; 125 126 V = IC->getOperand(0); 127 128 const APInt *AndRHS; 129 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 130 return nullptr; 131 132 AndMask = *AndRHS; 133 } else if (decomposeBitTestICmp(IC->getOperand(0), IC->getOperand(1), 134 Pred, V, AndMask)) { 135 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 136 137 if (!AndMask.isPowerOf2()) 138 return nullptr; 139 140 CreateAnd = true; 141 } else { 142 return nullptr; 143 } 144 145 // If both select arms are non-zero see if we have a select of the form 146 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic 147 // for 'x ? 2^n : 0' and fix the thing up at the end. 148 APInt Offset(TrueVal.getBitWidth(), 0); 149 if (!TrueVal.isNullValue() && !FalseVal.isNullValue()) { 150 if ((TrueVal - FalseVal).isPowerOf2()) 151 Offset = FalseVal; 152 else if ((FalseVal - TrueVal).isPowerOf2()) 153 Offset = TrueVal; 154 else 155 return nullptr; 156 157 // Adjust TrueVal and FalseVal to the offset. 158 TrueVal -= Offset; 159 FalseVal -= Offset; 160 } 161 162 // Make sure one of the select arms is a power of 2. 163 if (!TrueVal.isPowerOf2() && !FalseVal.isPowerOf2()) 164 return nullptr; 165 166 // Determine which shift is needed to transform result of the 'and' into the 167 // desired result. 168 const APInt &ValC = !TrueVal.isNullValue() ? TrueVal : FalseVal; 169 unsigned ValZeros = ValC.logBase2(); 170 unsigned AndZeros = AndMask.logBase2(); 171 172 if (CreateAnd) { 173 // Insert the AND instruction on the input to the truncate. 174 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 175 } 176 177 // If types don't match we can still convert the select by introducing a zext 178 // or a trunc of the 'and'. 179 if (ValZeros > AndZeros) { 180 V = Builder.CreateZExtOrTrunc(V, SelType); 181 V = Builder.CreateShl(V, ValZeros - AndZeros); 182 } else if (ValZeros < AndZeros) { 183 V = Builder.CreateLShr(V, AndZeros - ValZeros); 184 V = Builder.CreateZExtOrTrunc(V, SelType); 185 } else 186 V = Builder.CreateZExtOrTrunc(V, SelType); 187 188 // Okay, now we know that everything is set up, we just don't know whether we 189 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 190 bool ShouldNotVal = !TrueVal.isNullValue(); 191 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 192 if (ShouldNotVal) 193 V = Builder.CreateXor(V, ValC); 194 195 // Apply an offset if needed. 196 if (!Offset.isNullValue()) 197 V = Builder.CreateAdd(V, ConstantInt::get(V->getType(), Offset)); 198 return V; 199 } 200 201 /// We want to turn code that looks like this: 202 /// %C = or %A, %B 203 /// %D = select %cond, %C, %A 204 /// into: 205 /// %C = select %cond, %B, 0 206 /// %D = or %A, %C 207 /// 208 /// Assuming that the specified instruction is an operand to the select, return 209 /// a bitmask indicating which operands of this instruction are foldable if they 210 /// equal the other incoming value of the select. 211 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 212 switch (I->getOpcode()) { 213 case Instruction::Add: 214 case Instruction::Mul: 215 case Instruction::And: 216 case Instruction::Or: 217 case Instruction::Xor: 218 return 3; // Can fold through either operand. 219 case Instruction::Sub: // Can only fold on the amount subtracted. 220 case Instruction::Shl: // Can only fold on the shift amount. 221 case Instruction::LShr: 222 case Instruction::AShr: 223 return 1; 224 default: 225 return 0; // Cannot fold 226 } 227 } 228 229 /// For the same transformation as the previous function, return the identity 230 /// constant that goes into the select. 231 static APInt getSelectFoldableConstant(BinaryOperator *I) { 232 switch (I->getOpcode()) { 233 default: llvm_unreachable("This cannot happen!"); 234 case Instruction::Add: 235 case Instruction::Sub: 236 case Instruction::Or: 237 case Instruction::Xor: 238 case Instruction::Shl: 239 case Instruction::LShr: 240 case Instruction::AShr: 241 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 242 case Instruction::And: 243 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 244 case Instruction::Mul: 245 return APInt(I->getType()->getScalarSizeInBits(), 1); 246 } 247 } 248 249 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 250 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 251 Instruction *FI) { 252 // Don't break up min/max patterns. The hasOneUse checks below prevent that 253 // for most cases, but vector min/max with bitcasts can be transformed. If the 254 // one-use restrictions are eased for other patterns, we still don't want to 255 // obfuscate min/max. 256 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 257 match(&SI, m_SMax(m_Value(), m_Value())) || 258 match(&SI, m_UMin(m_Value(), m_Value())) || 259 match(&SI, m_UMax(m_Value(), m_Value())))) 260 return nullptr; 261 262 // If this is a cast from the same type, merge. 263 if (TI->getNumOperands() == 1 && TI->isCast()) { 264 Type *FIOpndTy = FI->getOperand(0)->getType(); 265 if (TI->getOperand(0)->getType() != FIOpndTy) 266 return nullptr; 267 268 // The select condition may be a vector. We may only change the operand 269 // type if the vector width remains the same (and matches the condition). 270 Type *CondTy = SI.getCondition()->getType(); 271 if (CondTy->isVectorTy()) { 272 if (!FIOpndTy->isVectorTy()) 273 return nullptr; 274 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 275 return nullptr; 276 277 // TODO: If the backend knew how to deal with casts better, we could 278 // remove this limitation. For now, there's too much potential to create 279 // worse codegen by promoting the select ahead of size-altering casts 280 // (PR28160). 281 // 282 // Note that ValueTracking's matchSelectPattern() looks through casts 283 // without checking 'hasOneUse' when it matches min/max patterns, so this 284 // transform may end up happening anyway. 285 if (TI->getOpcode() != Instruction::BitCast && 286 (!TI->hasOneUse() || !FI->hasOneUse())) 287 return nullptr; 288 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 289 // TODO: The one-use restrictions for a scalar select could be eased if 290 // the fold of a select in visitLoadInst() was enhanced to match a pattern 291 // that includes a cast. 292 return nullptr; 293 } 294 295 // Fold this by inserting a select from the input values. 296 Value *NewSI = 297 Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), 298 FI->getOperand(0), SI.getName() + ".v", &SI); 299 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 300 TI->getType()); 301 } 302 303 // Only handle binary operators (including two-operand getelementptr) with 304 // one-use here. As with the cast case above, it may be possible to relax the 305 // one-use constraint, but that needs be examined carefully since it may not 306 // reduce the total number of instructions. 307 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 308 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 309 !TI->hasOneUse() || !FI->hasOneUse()) 310 return nullptr; 311 312 // Figure out if the operations have any operands in common. 313 Value *MatchOp, *OtherOpT, *OtherOpF; 314 bool MatchIsOpZero; 315 if (TI->getOperand(0) == FI->getOperand(0)) { 316 MatchOp = TI->getOperand(0); 317 OtherOpT = TI->getOperand(1); 318 OtherOpF = FI->getOperand(1); 319 MatchIsOpZero = true; 320 } else if (TI->getOperand(1) == FI->getOperand(1)) { 321 MatchOp = TI->getOperand(1); 322 OtherOpT = TI->getOperand(0); 323 OtherOpF = FI->getOperand(0); 324 MatchIsOpZero = false; 325 } else if (!TI->isCommutative()) { 326 return nullptr; 327 } else if (TI->getOperand(0) == FI->getOperand(1)) { 328 MatchOp = TI->getOperand(0); 329 OtherOpT = TI->getOperand(1); 330 OtherOpF = FI->getOperand(0); 331 MatchIsOpZero = true; 332 } else if (TI->getOperand(1) == FI->getOperand(0)) { 333 MatchOp = TI->getOperand(1); 334 OtherOpT = TI->getOperand(0); 335 OtherOpF = FI->getOperand(1); 336 MatchIsOpZero = true; 337 } else { 338 return nullptr; 339 } 340 341 // If we reach here, they do have operations in common. 342 Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 343 SI.getName() + ".v", &SI); 344 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 345 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 346 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 347 return BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 348 } 349 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 350 auto *FGEP = cast<GetElementPtrInst>(FI); 351 Type *ElementType = TGEP->getResultElementType(); 352 return TGEP->isInBounds() && FGEP->isInBounds() 353 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 354 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 355 } 356 llvm_unreachable("Expected BinaryOperator or GEP"); 357 return nullptr; 358 } 359 360 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 361 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 362 return false; 363 return C1I.isOneValue() || C1I.isAllOnesValue() || 364 C2I.isOneValue() || C2I.isAllOnesValue(); 365 } 366 367 /// Try to fold the select into one of the operands to allow further 368 /// optimization. 369 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 370 Value *FalseVal) { 371 // See the comment above GetSelectFoldableOperands for a description of the 372 // transformation we are doing here. 373 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 374 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 375 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 376 unsigned OpToFold = 0; 377 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 378 OpToFold = 1; 379 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 380 OpToFold = 2; 381 } 382 383 if (OpToFold) { 384 APInt CI = getSelectFoldableConstant(TVI); 385 Value *OOp = TVI->getOperand(2-OpToFold); 386 // Avoid creating select between 2 constants unless it's selecting 387 // between 0, 1 and -1. 388 const APInt *OOpC; 389 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 390 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 391 Value *C = ConstantInt::get(OOp->getType(), CI); 392 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 393 NewSel->takeName(TVI); 394 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 395 FalseVal, NewSel); 396 BO->copyIRFlags(TVI); 397 return BO; 398 } 399 } 400 } 401 } 402 } 403 404 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 405 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 406 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 407 unsigned OpToFold = 0; 408 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 409 OpToFold = 1; 410 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 411 OpToFold = 2; 412 } 413 414 if (OpToFold) { 415 APInt CI = getSelectFoldableConstant(FVI); 416 Value *OOp = FVI->getOperand(2-OpToFold); 417 // Avoid creating select between 2 constants unless it's selecting 418 // between 0, 1 and -1. 419 const APInt *OOpC; 420 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 421 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 422 Value *C = ConstantInt::get(OOp->getType(), CI); 423 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 424 NewSel->takeName(FVI); 425 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 426 TrueVal, NewSel); 427 BO->copyIRFlags(FVI); 428 return BO; 429 } 430 } 431 } 432 } 433 } 434 435 return nullptr; 436 } 437 438 /// We want to turn: 439 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 440 /// into: 441 /// (or (shl (and X, C1), C3), Y) 442 /// iff: 443 /// C1 and C2 are both powers of 2 444 /// where: 445 /// C3 = Log(C2) - Log(C1) 446 /// 447 /// This transform handles cases where: 448 /// 1. The icmp predicate is inverted 449 /// 2. The select operands are reversed 450 /// 3. The magnitude of C2 and C1 are flipped 451 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 452 Value *FalseVal, 453 InstCombiner::BuilderTy &Builder) { 454 // Only handle integer compares. Also, if this is a vector select, we need a 455 // vector compare. 456 if (!TrueVal->getType()->isIntOrIntVectorTy() || 457 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 458 return nullptr; 459 460 Value *CmpLHS = IC->getOperand(0); 461 Value *CmpRHS = IC->getOperand(1); 462 463 Value *V; 464 unsigned C1Log; 465 bool IsEqualZero; 466 bool NeedAnd = false; 467 if (IC->isEquality()) { 468 if (!match(CmpRHS, m_Zero())) 469 return nullptr; 470 471 const APInt *C1; 472 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 473 return nullptr; 474 475 V = CmpLHS; 476 C1Log = C1->logBase2(); 477 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 478 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 479 IC->getPredicate() == ICmpInst::ICMP_SGT) { 480 // We also need to recognize (icmp slt (trunc (X)), 0) and 481 // (icmp sgt (trunc (X)), -1). 482 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 483 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 484 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 485 return nullptr; 486 487 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 488 return nullptr; 489 490 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 491 NeedAnd = true; 492 } else { 493 return nullptr; 494 } 495 496 const APInt *C2; 497 bool OrOnTrueVal = false; 498 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 499 if (!OrOnFalseVal) 500 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 501 502 if (!OrOnFalseVal && !OrOnTrueVal) 503 return nullptr; 504 505 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 506 507 unsigned C2Log = C2->logBase2(); 508 509 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 510 bool NeedShift = C1Log != C2Log; 511 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 512 V->getType()->getScalarSizeInBits(); 513 514 // Make sure we don't create more instructions than we save. 515 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 516 if ((NeedShift + NeedXor + NeedZExtTrunc) > 517 (IC->hasOneUse() + Or->hasOneUse())) 518 return nullptr; 519 520 if (NeedAnd) { 521 // Insert the AND instruction on the input to the truncate. 522 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 523 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 524 } 525 526 if (C2Log > C1Log) { 527 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 528 V = Builder.CreateShl(V, C2Log - C1Log); 529 } else if (C1Log > C2Log) { 530 V = Builder.CreateLShr(V, C1Log - C2Log); 531 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 532 } else 533 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 534 535 if (NeedXor) 536 V = Builder.CreateXor(V, *C2); 537 538 return Builder.CreateOr(V, Y); 539 } 540 541 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 542 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 543 /// 544 /// For example, we can fold the following code sequence: 545 /// \code 546 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 547 /// %1 = icmp ne i32 %x, 0 548 /// %2 = select i1 %1, i32 %0, i32 32 549 /// \code 550 /// 551 /// into: 552 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 553 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 554 InstCombiner::BuilderTy &Builder) { 555 ICmpInst::Predicate Pred = ICI->getPredicate(); 556 Value *CmpLHS = ICI->getOperand(0); 557 Value *CmpRHS = ICI->getOperand(1); 558 559 // Check if the condition value compares a value for equality against zero. 560 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 561 return nullptr; 562 563 Value *Count = FalseVal; 564 Value *ValueOnZero = TrueVal; 565 if (Pred == ICmpInst::ICMP_NE) 566 std::swap(Count, ValueOnZero); 567 568 // Skip zero extend/truncate. 569 Value *V = nullptr; 570 if (match(Count, m_ZExt(m_Value(V))) || 571 match(Count, m_Trunc(m_Value(V)))) 572 Count = V; 573 574 // Check if the value propagated on zero is a constant number equal to the 575 // sizeof in bits of 'Count'. 576 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 577 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 578 return nullptr; 579 580 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 581 // input to the cttz/ctlz is used as LHS for the compare instruction. 582 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 583 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 584 IntrinsicInst *II = cast<IntrinsicInst>(Count); 585 // Explicitly clear the 'undef_on_zero' flag. 586 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 587 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 588 Builder.Insert(NewI); 589 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 590 } 591 592 return nullptr; 593 } 594 595 /// Return true if we find and adjust an icmp+select pattern where the compare 596 /// is with a constant that can be incremented or decremented to match the 597 /// minimum or maximum idiom. 598 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 599 ICmpInst::Predicate Pred = Cmp.getPredicate(); 600 Value *CmpLHS = Cmp.getOperand(0); 601 Value *CmpRHS = Cmp.getOperand(1); 602 Value *TrueVal = Sel.getTrueValue(); 603 Value *FalseVal = Sel.getFalseValue(); 604 605 // We may move or edit the compare, so make sure the select is the only user. 606 const APInt *CmpC; 607 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 608 return false; 609 610 // These transforms only work for selects of integers or vector selects of 611 // integer vectors. 612 Type *SelTy = Sel.getType(); 613 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 614 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 615 return false; 616 617 Constant *AdjustedRHS; 618 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 619 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 620 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 621 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 622 else 623 return false; 624 625 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 626 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 627 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 628 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 629 ; // Nothing to do here. Values match without any sign/zero extension. 630 } 631 // Types do not match. Instead of calculating this with mixed types, promote 632 // all to the larger type. This enables scalar evolution to analyze this 633 // expression. 634 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 635 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 636 637 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 638 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 639 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 640 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 641 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 642 CmpLHS = TrueVal; 643 AdjustedRHS = SextRHS; 644 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 645 SextRHS == TrueVal) { 646 CmpLHS = FalseVal; 647 AdjustedRHS = SextRHS; 648 } else if (Cmp.isUnsigned()) { 649 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 650 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 651 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 652 // zext + signed compare cannot be changed: 653 // 0xff <s 0x00, but 0x00ff >s 0x0000 654 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 655 CmpLHS = TrueVal; 656 AdjustedRHS = ZextRHS; 657 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 658 ZextRHS == TrueVal) { 659 CmpLHS = FalseVal; 660 AdjustedRHS = ZextRHS; 661 } else { 662 return false; 663 } 664 } else { 665 return false; 666 } 667 } else { 668 return false; 669 } 670 671 Pred = ICmpInst::getSwappedPredicate(Pred); 672 CmpRHS = AdjustedRHS; 673 std::swap(FalseVal, TrueVal); 674 Cmp.setPredicate(Pred); 675 Cmp.setOperand(0, CmpLHS); 676 Cmp.setOperand(1, CmpRHS); 677 Sel.setOperand(1, TrueVal); 678 Sel.setOperand(2, FalseVal); 679 Sel.swapProfMetadata(); 680 681 // Move the compare instruction right before the select instruction. Otherwise 682 // the sext/zext value may be defined after the compare instruction uses it. 683 Cmp.moveBefore(&Sel); 684 685 return true; 686 } 687 688 /// If this is an integer min/max (icmp + select) with a constant operand, 689 /// create the canonical icmp for the min/max operation and canonicalize the 690 /// constant to the 'false' operand of the select: 691 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 692 /// Note: if C1 != C2, this will change the icmp constant to the existing 693 /// constant operand of the select. 694 static Instruction * 695 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 696 InstCombiner::BuilderTy &Builder) { 697 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 698 return nullptr; 699 700 // Canonicalize the compare predicate based on whether we have min or max. 701 Value *LHS, *RHS; 702 ICmpInst::Predicate NewPred; 703 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 704 switch (SPR.Flavor) { 705 case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break; 706 case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break; 707 case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break; 708 case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break; 709 default: return nullptr; 710 } 711 712 // Is this already canonical? 713 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 714 Cmp.getPredicate() == NewPred) 715 return nullptr; 716 717 // Create the canonical compare and plug it into the select. 718 Sel.setCondition(Builder.CreateICmp(NewPred, LHS, RHS)); 719 720 // If the select operands did not change, we're done. 721 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 722 return &Sel; 723 724 // If we are swapping the select operands, swap the metadata too. 725 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 726 "Unexpected results from matchSelectPattern"); 727 Sel.setTrueValue(LHS); 728 Sel.setFalseValue(RHS); 729 Sel.swapProfMetadata(); 730 return &Sel; 731 } 732 733 /// Visit a SelectInst that has an ICmpInst as its first operand. 734 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 735 ICmpInst *ICI) { 736 Value *TrueVal = SI.getTrueValue(); 737 Value *FalseVal = SI.getFalseValue(); 738 739 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 740 return NewSel; 741 742 bool Changed = adjustMinMax(SI, *ICI); 743 744 ICmpInst::Predicate Pred = ICI->getPredicate(); 745 Value *CmpLHS = ICI->getOperand(0); 746 Value *CmpRHS = ICI->getOperand(1); 747 748 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 749 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 750 // FIXME: Type and constness constraints could be lifted, but we have to 751 // watch code size carefully. We should consider xor instead of 752 // sub/add when we decide to do that. 753 // TODO: Merge this with foldSelectICmpAnd somehow. 754 if (CmpLHS->getType()->isIntOrIntVectorTy() && 755 CmpLHS->getType() == TrueVal->getType()) { 756 const APInt *C1, *C2; 757 if (match(TrueVal, m_APInt(C1)) && match(FalseVal, m_APInt(C2))) { 758 ICmpInst::Predicate Pred = ICI->getPredicate(); 759 Value *X; 760 APInt Mask; 761 if (decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask, false)) { 762 if (Mask.isSignMask()) { 763 assert(X == CmpLHS && "Expected to use the compare input directly"); 764 assert(ICmpInst::isEquality(Pred) && "Expected equality predicate"); 765 766 if (Pred == ICmpInst::ICMP_NE) 767 std::swap(C1, C2); 768 769 // This shift results in either -1 or 0. 770 Value *AShr = Builder.CreateAShr(X, Mask.getBitWidth() - 1); 771 772 // Check if we can express the operation with a single or. 773 if (C2->isAllOnesValue()) 774 return replaceInstUsesWith(SI, Builder.CreateOr(AShr, *C1)); 775 776 Value *And = Builder.CreateAnd(AShr, *C2 - *C1); 777 return replaceInstUsesWith(SI, Builder.CreateAdd(And, 778 ConstantInt::get(And->getType(), *C1))); 779 } 780 } 781 } 782 } 783 784 { 785 const APInt *TrueValC, *FalseValC; 786 if (match(TrueVal, m_APInt(TrueValC)) && 787 match(FalseVal, m_APInt(FalseValC))) 788 if (Value *V = foldSelectICmpAnd(SI.getType(), ICI, *TrueValC, 789 *FalseValC, Builder)) 790 return replaceInstUsesWith(SI, V); 791 } 792 793 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 794 795 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 796 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 797 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 798 SI.setOperand(1, CmpRHS); 799 Changed = true; 800 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 801 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 802 SI.setOperand(2, CmpRHS); 803 Changed = true; 804 } 805 } 806 807 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 808 // decomposeBitTestICmp() might help. 809 { 810 unsigned BitWidth = 811 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 812 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 813 Value *X; 814 const APInt *Y, *C; 815 bool TrueWhenUnset; 816 bool IsBitTest = false; 817 if (ICmpInst::isEquality(Pred) && 818 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 819 match(CmpRHS, m_Zero())) { 820 IsBitTest = true; 821 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 822 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 823 X = CmpLHS; 824 Y = &MinSignedValue; 825 IsBitTest = true; 826 TrueWhenUnset = false; 827 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 828 X = CmpLHS; 829 Y = &MinSignedValue; 830 IsBitTest = true; 831 TrueWhenUnset = true; 832 } 833 if (IsBitTest) { 834 Value *V = nullptr; 835 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 836 if (TrueWhenUnset && TrueVal == X && 837 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 838 V = Builder.CreateAnd(X, ~(*Y)); 839 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 840 else if (!TrueWhenUnset && FalseVal == X && 841 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 842 V = Builder.CreateAnd(X, ~(*Y)); 843 // (X & Y) == 0 ? X ^ Y : X --> X | Y 844 else if (TrueWhenUnset && FalseVal == X && 845 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 846 V = Builder.CreateOr(X, *Y); 847 // (X & Y) != 0 ? X : X ^ Y --> X | Y 848 else if (!TrueWhenUnset && TrueVal == X && 849 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 850 V = Builder.CreateOr(X, *Y); 851 852 if (V) 853 return replaceInstUsesWith(SI, V); 854 } 855 } 856 857 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 858 return replaceInstUsesWith(SI, V); 859 860 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 861 return replaceInstUsesWith(SI, V); 862 863 return Changed ? &SI : nullptr; 864 } 865 866 867 /// SI is a select whose condition is a PHI node (but the two may be in 868 /// different blocks). See if the true/false values (V) are live in all of the 869 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 870 /// 871 /// X = phi [ C1, BB1], [C2, BB2] 872 /// Y = add 873 /// Z = select X, Y, 0 874 /// 875 /// because Y is not live in BB1/BB2. 876 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 877 const SelectInst &SI) { 878 // If the value is a non-instruction value like a constant or argument, it 879 // can always be mapped. 880 const Instruction *I = dyn_cast<Instruction>(V); 881 if (!I) return true; 882 883 // If V is a PHI node defined in the same block as the condition PHI, we can 884 // map the arguments. 885 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 886 887 if (const PHINode *VP = dyn_cast<PHINode>(I)) 888 if (VP->getParent() == CondPHI->getParent()) 889 return true; 890 891 // Otherwise, if the PHI and select are defined in the same block and if V is 892 // defined in a different block, then we can transform it. 893 if (SI.getParent() == CondPHI->getParent() && 894 I->getParent() != CondPHI->getParent()) 895 return true; 896 897 // Otherwise we have a 'hard' case and we can't tell without doing more 898 // detailed dominator based analysis, punt. 899 return false; 900 } 901 902 /// We have an SPF (e.g. a min or max) of an SPF of the form: 903 /// SPF2(SPF1(A, B), C) 904 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 905 SelectPatternFlavor SPF1, 906 Value *A, Value *B, 907 Instruction &Outer, 908 SelectPatternFlavor SPF2, Value *C) { 909 if (Outer.getType() != Inner->getType()) 910 return nullptr; 911 912 if (C == A || C == B) { 913 // MAX(MAX(A, B), B) -> MAX(A, B) 914 // MIN(MIN(a, b), a) -> MIN(a, b) 915 if (SPF1 == SPF2) 916 return replaceInstUsesWith(Outer, Inner); 917 918 // MAX(MIN(a, b), a) -> a 919 // MIN(MAX(a, b), a) -> a 920 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 921 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 922 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 923 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 924 return replaceInstUsesWith(Outer, C); 925 } 926 927 if (SPF1 == SPF2) { 928 const APInt *CB, *CC; 929 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 930 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 931 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 932 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 933 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 934 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 935 (SPF1 == SPF_SMAX && CB->sge(*CC))) 936 return replaceInstUsesWith(Outer, Inner); 937 938 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 939 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 940 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 941 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 942 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 943 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 944 Outer.replaceUsesOfWith(Inner, A); 945 return &Outer; 946 } 947 } 948 } 949 950 // ABS(ABS(X)) -> ABS(X) 951 // NABS(NABS(X)) -> NABS(X) 952 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 953 return replaceInstUsesWith(Outer, Inner); 954 } 955 956 // ABS(NABS(X)) -> ABS(X) 957 // NABS(ABS(X)) -> NABS(X) 958 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 959 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 960 SelectInst *SI = cast<SelectInst>(Inner); 961 Value *NewSI = 962 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 963 SI->getTrueValue(), SI->getName(), SI); 964 return replaceInstUsesWith(Outer, NewSI); 965 } 966 967 auto IsFreeOrProfitableToInvert = 968 [&](Value *V, Value *&NotV, bool &ElidesXor) { 969 if (match(V, m_Not(m_Value(NotV)))) { 970 // If V has at most 2 uses then we can get rid of the xor operation 971 // entirely. 972 ElidesXor |= !V->hasNUsesOrMore(3); 973 return true; 974 } 975 976 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 977 NotV = nullptr; 978 return true; 979 } 980 981 return false; 982 }; 983 984 Value *NotA, *NotB, *NotC; 985 bool ElidesXor = false; 986 987 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 988 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 989 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 990 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 991 // 992 // This transform is performance neutral if we can elide at least one xor from 993 // the set of three operands, since we'll be tacking on an xor at the very 994 // end. 995 if (SelectPatternResult::isMinOrMax(SPF1) && 996 SelectPatternResult::isMinOrMax(SPF2) && 997 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 998 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 999 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1000 if (!NotA) 1001 NotA = Builder.CreateNot(A); 1002 if (!NotB) 1003 NotB = Builder.CreateNot(B); 1004 if (!NotC) 1005 NotC = Builder.CreateNot(C); 1006 1007 Value *NewInner = generateMinMaxSelectPattern( 1008 Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB); 1009 Value *NewOuter = Builder.CreateNot(generateMinMaxSelectPattern( 1010 Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC)); 1011 return replaceInstUsesWith(Outer, NewOuter); 1012 } 1013 1014 return nullptr; 1015 } 1016 1017 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1018 /// This is even legal for FP. 1019 static Instruction *foldAddSubSelect(SelectInst &SI, 1020 InstCombiner::BuilderTy &Builder) { 1021 Value *CondVal = SI.getCondition(); 1022 Value *TrueVal = SI.getTrueValue(); 1023 Value *FalseVal = SI.getFalseValue(); 1024 auto *TI = dyn_cast<Instruction>(TrueVal); 1025 auto *FI = dyn_cast<Instruction>(FalseVal); 1026 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1027 return nullptr; 1028 1029 Instruction *AddOp = nullptr, *SubOp = nullptr; 1030 if ((TI->getOpcode() == Instruction::Sub && 1031 FI->getOpcode() == Instruction::Add) || 1032 (TI->getOpcode() == Instruction::FSub && 1033 FI->getOpcode() == Instruction::FAdd)) { 1034 AddOp = FI; 1035 SubOp = TI; 1036 } else if ((FI->getOpcode() == Instruction::Sub && 1037 TI->getOpcode() == Instruction::Add) || 1038 (FI->getOpcode() == Instruction::FSub && 1039 TI->getOpcode() == Instruction::FAdd)) { 1040 AddOp = TI; 1041 SubOp = FI; 1042 } 1043 1044 if (AddOp) { 1045 Value *OtherAddOp = nullptr; 1046 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1047 OtherAddOp = AddOp->getOperand(1); 1048 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1049 OtherAddOp = AddOp->getOperand(0); 1050 } 1051 1052 if (OtherAddOp) { 1053 // So at this point we know we have (Y -> OtherAddOp): 1054 // select C, (add X, Y), (sub X, Z) 1055 Value *NegVal; // Compute -Z 1056 if (SI.getType()->isFPOrFPVectorTy()) { 1057 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1058 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1059 FastMathFlags Flags = AddOp->getFastMathFlags(); 1060 Flags &= SubOp->getFastMathFlags(); 1061 NegInst->setFastMathFlags(Flags); 1062 } 1063 } else { 1064 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1065 } 1066 1067 Value *NewTrueOp = OtherAddOp; 1068 Value *NewFalseOp = NegVal; 1069 if (AddOp != TI) 1070 std::swap(NewTrueOp, NewFalseOp); 1071 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1072 SI.getName() + ".p", &SI); 1073 1074 if (SI.getType()->isFPOrFPVectorTy()) { 1075 Instruction *RI = 1076 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1077 1078 FastMathFlags Flags = AddOp->getFastMathFlags(); 1079 Flags &= SubOp->getFastMathFlags(); 1080 RI->setFastMathFlags(Flags); 1081 return RI; 1082 } else 1083 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1084 } 1085 } 1086 return nullptr; 1087 } 1088 1089 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1090 Instruction *ExtInst; 1091 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1092 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1093 return nullptr; 1094 1095 auto ExtOpcode = ExtInst->getOpcode(); 1096 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1097 return nullptr; 1098 1099 // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too. 1100 Value *X = ExtInst->getOperand(0); 1101 Type *SmallType = X->getType(); 1102 if (!SmallType->isIntOrIntVectorTy(1)) 1103 return nullptr; 1104 1105 Constant *C; 1106 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1107 !match(Sel.getFalseValue(), m_Constant(C))) 1108 return nullptr; 1109 1110 // If the constant is the same after truncation to the smaller type and 1111 // extension to the original type, we can narrow the select. 1112 Value *Cond = Sel.getCondition(); 1113 Type *SelType = Sel.getType(); 1114 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1115 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1116 if (ExtC == C) { 1117 Value *TruncCVal = cast<Value>(TruncC); 1118 if (ExtInst == Sel.getFalseValue()) 1119 std::swap(X, TruncCVal); 1120 1121 // select Cond, (ext X), C --> ext(select Cond, X, C') 1122 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1123 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1124 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1125 } 1126 1127 // If one arm of the select is the extend of the condition, replace that arm 1128 // with the extension of the appropriate known bool value. 1129 if (Cond == X) { 1130 if (ExtInst == Sel.getTrueValue()) { 1131 // select X, (sext X), C --> select X, -1, C 1132 // select X, (zext X), C --> select X, 1, C 1133 Constant *One = ConstantInt::getTrue(SmallType); 1134 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1135 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1136 } else { 1137 // select X, C, (sext X) --> select X, C, 0 1138 // select X, C, (zext X) --> select X, C, 0 1139 Constant *Zero = ConstantInt::getNullValue(SelType); 1140 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1141 } 1142 } 1143 1144 return nullptr; 1145 } 1146 1147 /// Try to transform a vector select with a constant condition vector into a 1148 /// shuffle for easier combining with other shuffles and insert/extract. 1149 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1150 Value *CondVal = SI.getCondition(); 1151 Constant *CondC; 1152 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1153 return nullptr; 1154 1155 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1156 SmallVector<Constant *, 16> Mask; 1157 Mask.reserve(NumElts); 1158 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1159 for (unsigned i = 0; i != NumElts; ++i) { 1160 Constant *Elt = CondC->getAggregateElement(i); 1161 if (!Elt) 1162 return nullptr; 1163 1164 if (Elt->isOneValue()) { 1165 // If the select condition element is true, choose from the 1st vector. 1166 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1167 } else if (Elt->isNullValue()) { 1168 // If the select condition element is false, choose from the 2nd vector. 1169 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1170 } else if (isa<UndefValue>(Elt)) { 1171 // Undef in a select condition (choose one of the operands) does not mean 1172 // the same thing as undef in a shuffle mask (any value is acceptable), so 1173 // give up. 1174 return nullptr; 1175 } else { 1176 // Bail out on a constant expression. 1177 return nullptr; 1178 } 1179 } 1180 1181 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1182 ConstantVector::get(Mask)); 1183 } 1184 1185 /// Reuse bitcasted operands between a compare and select: 1186 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1187 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1188 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1189 InstCombiner::BuilderTy &Builder) { 1190 Value *Cond = Sel.getCondition(); 1191 Value *TVal = Sel.getTrueValue(); 1192 Value *FVal = Sel.getFalseValue(); 1193 1194 CmpInst::Predicate Pred; 1195 Value *A, *B; 1196 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1197 return nullptr; 1198 1199 // The select condition is a compare instruction. If the select's true/false 1200 // values are already the same as the compare operands, there's nothing to do. 1201 if (TVal == A || TVal == B || FVal == A || FVal == B) 1202 return nullptr; 1203 1204 Value *C, *D; 1205 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1206 return nullptr; 1207 1208 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1209 Value *TSrc, *FSrc; 1210 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1211 !match(FVal, m_BitCast(m_Value(FSrc)))) 1212 return nullptr; 1213 1214 // If the select true/false values are *different bitcasts* of the same source 1215 // operands, make the select operands the same as the compare operands and 1216 // cast the result. This is the canonical select form for min/max. 1217 Value *NewSel; 1218 if (TSrc == C && FSrc == D) { 1219 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1220 // bitcast (select (cmp A, B), A, B) 1221 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1222 } else if (TSrc == D && FSrc == C) { 1223 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1224 // bitcast (select (cmp A, B), B, A) 1225 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1226 } else { 1227 return nullptr; 1228 } 1229 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1230 } 1231 1232 /// Try to eliminate select instructions that test the returned flag of cmpxchg 1233 /// instructions. 1234 /// 1235 /// If a select instruction tests the returned flag of a cmpxchg instruction and 1236 /// selects between the returned value of the cmpxchg instruction its compare 1237 /// operand, the result of the select will always be equal to its false value. 1238 /// For example: 1239 /// 1240 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1241 /// %1 = extractvalue { i64, i1 } %0, 1 1242 /// %2 = extractvalue { i64, i1 } %0, 0 1243 /// %3 = select i1 %1, i64 %compare, i64 %2 1244 /// ret i64 %3 1245 /// 1246 /// The returned value of the cmpxchg instruction (%2) is the original value 1247 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 1248 /// must have been equal to %compare. Thus, the result of the select is always 1249 /// equal to %2, and the code can be simplified to: 1250 /// 1251 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1252 /// %1 = extractvalue { i64, i1 } %0, 0 1253 /// ret i64 %1 1254 /// 1255 static Instruction *foldSelectCmpXchg(SelectInst &SI) { 1256 // A helper that determines if V is an extractvalue instruction whose 1257 // aggregate operand is a cmpxchg instruction and whose single index is equal 1258 // to I. If such conditions are true, the helper returns the cmpxchg 1259 // instruction; otherwise, a nullptr is returned. 1260 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 1261 auto *Extract = dyn_cast<ExtractValueInst>(V); 1262 if (!Extract) 1263 return nullptr; 1264 if (Extract->getIndices()[0] != I) 1265 return nullptr; 1266 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 1267 }; 1268 1269 // If the select has a single user, and this user is a select instruction that 1270 // we can simplify, skip the cmpxchg simplification for now. 1271 if (SI.hasOneUse()) 1272 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 1273 if (Select->getCondition() == SI.getCondition()) 1274 if (Select->getFalseValue() == SI.getTrueValue() || 1275 Select->getTrueValue() == SI.getFalseValue()) 1276 return nullptr; 1277 1278 // Ensure the select condition is the returned flag of a cmpxchg instruction. 1279 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 1280 if (!CmpXchg) 1281 return nullptr; 1282 1283 // Check the true value case: The true value of the select is the returned 1284 // value of the same cmpxchg used by the condition, and the false value is the 1285 // cmpxchg instruction's compare operand. 1286 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 1287 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { 1288 SI.setTrueValue(SI.getFalseValue()); 1289 return &SI; 1290 } 1291 1292 // Check the false value case: The false value of the select is the returned 1293 // value of the same cmpxchg used by the condition, and the true value is the 1294 // cmpxchg instruction's compare operand. 1295 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 1296 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { 1297 SI.setTrueValue(SI.getFalseValue()); 1298 return &SI; 1299 } 1300 1301 return nullptr; 1302 } 1303 1304 /// Reduce a sequence of min/max with a common operand. 1305 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 1306 Value *RHS, 1307 InstCombiner::BuilderTy &Builder) { 1308 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 1309 // TODO: Allow FP min/max with nnan/nsz. 1310 if (!LHS->getType()->isIntOrIntVectorTy()) 1311 return nullptr; 1312 1313 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1314 Value *A, *B, *C, *D; 1315 SelectPatternResult L = matchSelectPattern(LHS, A, B); 1316 SelectPatternResult R = matchSelectPattern(RHS, C, D); 1317 if (SPF != L.Flavor || L.Flavor != R.Flavor) 1318 return nullptr; 1319 1320 // Look for a common operand. The use checks are different than usual because 1321 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 1322 // the select. 1323 Value *MinMaxOp = nullptr; 1324 Value *ThirdOp = nullptr; 1325 if (LHS->getNumUses() <= 2 && RHS->getNumUses() > 2) { 1326 // If the LHS is only used in this chain and the RHS is used outside of it, 1327 // reuse the RHS min/max because that will eliminate the LHS. 1328 if (D == A || C == A) { 1329 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1330 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1331 MinMaxOp = RHS; 1332 ThirdOp = B; 1333 } else if (D == B || C == B) { 1334 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1335 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1336 MinMaxOp = RHS; 1337 ThirdOp = A; 1338 } 1339 } else if (RHS->getNumUses() <= 2) { 1340 // Reuse the LHS. This will eliminate the RHS. 1341 if (D == A || D == B) { 1342 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1343 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1344 MinMaxOp = LHS; 1345 ThirdOp = C; 1346 } else if (C == A || C == B) { 1347 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1348 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1349 MinMaxOp = LHS; 1350 ThirdOp = D; 1351 } 1352 } 1353 if (!MinMaxOp || !ThirdOp) 1354 return nullptr; 1355 1356 CmpInst::Predicate P = getCmpPredicateForMinMax(SPF); 1357 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 1358 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 1359 } 1360 1361 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1362 Value *CondVal = SI.getCondition(); 1363 Value *TrueVal = SI.getTrueValue(); 1364 Value *FalseVal = SI.getFalseValue(); 1365 Type *SelType = SI.getType(); 1366 1367 // FIXME: Remove this workaround when freeze related patches are done. 1368 // For select with undef operand which feeds into an equality comparison, 1369 // don't simplify it so loop unswitch can know the equality comparison 1370 // may have an undef operand. This is a workaround for PR31652 caused by 1371 // descrepancy about branch on undef between LoopUnswitch and GVN. 1372 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1373 if (llvm::any_of(SI.users(), [&](User *U) { 1374 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1375 if (CI && CI->isEquality()) 1376 return true; 1377 return false; 1378 })) { 1379 return nullptr; 1380 } 1381 } 1382 1383 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1384 SQ.getWithInstruction(&SI))) 1385 return replaceInstUsesWith(SI, V); 1386 1387 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1388 return I; 1389 1390 // Canonicalize a one-use integer compare with a non-canonical predicate by 1391 // inverting the predicate and swapping the select operands. This matches a 1392 // compare canonicalization for conditional branches. 1393 // TODO: Should we do the same for FP compares? 1394 CmpInst::Predicate Pred; 1395 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 1396 !isCanonicalPredicate(Pred)) { 1397 // Swap true/false values and condition. 1398 CmpInst *Cond = cast<CmpInst>(CondVal); 1399 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 1400 SI.setOperand(1, FalseVal); 1401 SI.setOperand(2, TrueVal); 1402 SI.swapProfMetadata(); 1403 Worklist.Add(Cond); 1404 return &SI; 1405 } 1406 1407 if (SelType->isIntOrIntVectorTy(1) && 1408 TrueVal->getType() == CondVal->getType()) { 1409 if (match(TrueVal, m_One())) { 1410 // Change: A = select B, true, C --> A = or B, C 1411 return BinaryOperator::CreateOr(CondVal, FalseVal); 1412 } 1413 if (match(TrueVal, m_Zero())) { 1414 // Change: A = select B, false, C --> A = and !B, C 1415 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1416 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1417 } 1418 if (match(FalseVal, m_Zero())) { 1419 // Change: A = select B, C, false --> A = and B, C 1420 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1421 } 1422 if (match(FalseVal, m_One())) { 1423 // Change: A = select B, C, true --> A = or !B, C 1424 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1425 return BinaryOperator::CreateOr(NotCond, TrueVal); 1426 } 1427 1428 // select a, a, b -> a | b 1429 // select a, b, a -> a & b 1430 if (CondVal == TrueVal) 1431 return BinaryOperator::CreateOr(CondVal, FalseVal); 1432 if (CondVal == FalseVal) 1433 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1434 1435 // select a, ~a, b -> (~a) & b 1436 // select a, b, ~a -> (~a) | b 1437 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1438 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1439 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1440 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1441 } 1442 1443 // Selecting between two integer or vector splat integer constants? 1444 // 1445 // Note that we don't handle a scalar select of vectors: 1446 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1447 // because that may need 3 instructions to splat the condition value: 1448 // extend, insertelement, shufflevector. 1449 if (SelType->isIntOrIntVectorTy() && 1450 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1451 // select C, 1, 0 -> zext C to int 1452 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1453 return new ZExtInst(CondVal, SelType); 1454 1455 // select C, -1, 0 -> sext C to int 1456 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1457 return new SExtInst(CondVal, SelType); 1458 1459 // select C, 0, 1 -> zext !C to int 1460 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1461 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1462 return new ZExtInst(NotCond, SelType); 1463 } 1464 1465 // select C, 0, -1 -> sext !C to int 1466 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1467 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1468 return new SExtInst(NotCond, SelType); 1469 } 1470 } 1471 1472 // See if we are selecting two values based on a comparison of the two values. 1473 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1474 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1475 // Transform (X == Y) ? X : Y -> Y 1476 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1477 // This is not safe in general for floating point: 1478 // consider X== -0, Y== +0. 1479 // It becomes safe if either operand is a nonzero constant. 1480 ConstantFP *CFPt, *CFPf; 1481 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1482 !CFPt->getValueAPF().isZero()) || 1483 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1484 !CFPf->getValueAPF().isZero())) 1485 return replaceInstUsesWith(SI, FalseVal); 1486 } 1487 // Transform (X une Y) ? X : Y -> X 1488 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1489 // This is not safe in general for floating point: 1490 // consider X== -0, Y== +0. 1491 // It becomes safe if either operand is a nonzero constant. 1492 ConstantFP *CFPt, *CFPf; 1493 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1494 !CFPt->getValueAPF().isZero()) || 1495 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1496 !CFPf->getValueAPF().isZero())) 1497 return replaceInstUsesWith(SI, TrueVal); 1498 } 1499 1500 // Canonicalize to use ordered comparisons by swapping the select 1501 // operands. 1502 // 1503 // e.g. 1504 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1505 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1506 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1507 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1508 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1509 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 1510 FCI->getName() + ".inv"); 1511 1512 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1513 SI.getName() + ".p"); 1514 } 1515 1516 // NOTE: if we wanted to, this is where to detect MIN/MAX 1517 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1518 // Transform (X == Y) ? Y : X -> X 1519 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1520 // This is not safe in general for floating point: 1521 // consider X== -0, Y== +0. 1522 // It becomes safe if either operand is a nonzero constant. 1523 ConstantFP *CFPt, *CFPf; 1524 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1525 !CFPt->getValueAPF().isZero()) || 1526 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1527 !CFPf->getValueAPF().isZero())) 1528 return replaceInstUsesWith(SI, FalseVal); 1529 } 1530 // Transform (X une Y) ? Y : X -> Y 1531 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1532 // This is not safe in general for floating point: 1533 // consider X== -0, Y== +0. 1534 // It becomes safe if either operand is a nonzero constant. 1535 ConstantFP *CFPt, *CFPf; 1536 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1537 !CFPt->getValueAPF().isZero()) || 1538 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1539 !CFPf->getValueAPF().isZero())) 1540 return replaceInstUsesWith(SI, TrueVal); 1541 } 1542 1543 // Canonicalize to use ordered comparisons by swapping the select 1544 // operands. 1545 // 1546 // e.g. 1547 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1548 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1549 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1550 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1551 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1552 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 1553 FCI->getName() + ".inv"); 1554 1555 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1556 SI.getName() + ".p"); 1557 } 1558 1559 // NOTE: if we wanted to, this is where to detect MIN/MAX 1560 } 1561 // NOTE: if we wanted to, this is where to detect ABS 1562 } 1563 1564 // See if we are selecting two values based on a comparison of the two values. 1565 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1566 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1567 return Result; 1568 1569 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 1570 return Add; 1571 1572 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1573 auto *TI = dyn_cast<Instruction>(TrueVal); 1574 auto *FI = dyn_cast<Instruction>(FalseVal); 1575 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1576 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1577 return IV; 1578 1579 if (Instruction *I = foldSelectExtConst(SI)) 1580 return I; 1581 1582 // See if we can fold the select into one of our operands. 1583 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1584 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1585 return FoldI; 1586 1587 Value *LHS, *RHS, *LHS2, *RHS2; 1588 Instruction::CastOps CastOp; 1589 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1590 auto SPF = SPR.Flavor; 1591 1592 if (SelectPatternResult::isMinOrMax(SPF)) { 1593 // Canonicalize so that 1594 // - type casts are outside select patterns. 1595 // - float clamp is transformed to min/max pattern 1596 1597 bool IsCastNeeded = LHS->getType() != SelType; 1598 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 1599 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 1600 if (IsCastNeeded || 1601 (LHS->getType()->isFPOrFPVectorTy() && 1602 ((CmpLHS != LHS && CmpLHS != RHS) || 1603 (CmpRHS != LHS && CmpRHS != RHS)))) { 1604 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered); 1605 1606 Value *Cmp; 1607 if (CmpInst::isIntPredicate(Pred)) { 1608 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 1609 } else { 1610 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1611 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1612 Builder.setFastMathFlags(FMF); 1613 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 1614 } 1615 1616 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 1617 if (!IsCastNeeded) 1618 return replaceInstUsesWith(SI, NewSI); 1619 1620 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 1621 return replaceInstUsesWith(SI, NewCast); 1622 } 1623 1624 // MAX(~a, ~b) -> ~MIN(a, b) 1625 // MIN(~a, ~b) -> ~MAX(a, b) 1626 Value *A, *B; 1627 if (match(LHS, m_Not(m_Value(A))) && match(RHS, m_Not(m_Value(B))) && 1628 (LHS->getNumUses() <= 2 || RHS->getNumUses() <= 2)) { 1629 CmpInst::Predicate InvertedPred = 1630 getCmpPredicateForMinMax(getInverseMinMaxSelectPattern(SPF)); 1631 Value *InvertedCmp = Builder.CreateICmp(InvertedPred, A, B); 1632 Value *NewSel = Builder.CreateSelect(InvertedCmp, A, B); 1633 return BinaryOperator::CreateNot(NewSel); 1634 } 1635 1636 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 1637 return I; 1638 } 1639 1640 if (SPF) { 1641 // MAX(MAX(a, b), a) -> MAX(a, b) 1642 // MIN(MIN(a, b), a) -> MIN(a, b) 1643 // MAX(MIN(a, b), a) -> a 1644 // MIN(MAX(a, b), a) -> a 1645 // ABS(ABS(a)) -> ABS(a) 1646 // NABS(NABS(a)) -> NABS(a) 1647 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1648 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 1649 SI, SPF, RHS)) 1650 return R; 1651 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1652 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 1653 SI, SPF, LHS)) 1654 return R; 1655 } 1656 1657 // TODO. 1658 // ABS(-X) -> ABS(X) 1659 } 1660 1661 // See if we can fold the select into a phi node if the condition is a select. 1662 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 1663 // The true/false values have to be live in the PHI predecessor's blocks. 1664 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1665 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1666 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 1667 return NV; 1668 1669 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1670 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1671 // select(C, select(C, a, b), c) -> select(C, a, c) 1672 if (TrueSI->getCondition() == CondVal) { 1673 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1674 return nullptr; 1675 SI.setOperand(1, TrueSI->getTrueValue()); 1676 return &SI; 1677 } 1678 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1679 // We choose this as normal form to enable folding on the And and shortening 1680 // paths for the values (this helps GetUnderlyingObjects() for example). 1681 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1682 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 1683 SI.setOperand(0, And); 1684 SI.setOperand(1, TrueSI->getTrueValue()); 1685 return &SI; 1686 } 1687 } 1688 } 1689 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1690 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1691 // select(C, a, select(C, b, c)) -> select(C, a, c) 1692 if (FalseSI->getCondition() == CondVal) { 1693 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1694 return nullptr; 1695 SI.setOperand(2, FalseSI->getFalseValue()); 1696 return &SI; 1697 } 1698 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1699 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1700 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 1701 SI.setOperand(0, Or); 1702 SI.setOperand(2, FalseSI->getFalseValue()); 1703 return &SI; 1704 } 1705 } 1706 } 1707 1708 // Try to simplify a binop sandwiched between 2 selects with the same 1709 // condition. 1710 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 1711 BinaryOperator *TrueBO; 1712 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO)))) { 1713 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 1714 if (TrueBOSI->getCondition() == CondVal) { 1715 TrueBO->setOperand(0, TrueBOSI->getTrueValue()); 1716 Worklist.Add(TrueBO); 1717 return &SI; 1718 } 1719 } 1720 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 1721 if (TrueBOSI->getCondition() == CondVal) { 1722 TrueBO->setOperand(1, TrueBOSI->getTrueValue()); 1723 Worklist.Add(TrueBO); 1724 return &SI; 1725 } 1726 } 1727 } 1728 1729 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 1730 BinaryOperator *FalseBO; 1731 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO)))) { 1732 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 1733 if (FalseBOSI->getCondition() == CondVal) { 1734 FalseBO->setOperand(0, FalseBOSI->getFalseValue()); 1735 Worklist.Add(FalseBO); 1736 return &SI; 1737 } 1738 } 1739 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 1740 if (FalseBOSI->getCondition() == CondVal) { 1741 FalseBO->setOperand(1, FalseBOSI->getFalseValue()); 1742 Worklist.Add(FalseBO); 1743 return &SI; 1744 } 1745 } 1746 } 1747 1748 if (BinaryOperator::isNot(CondVal)) { 1749 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1750 SI.setOperand(1, FalseVal); 1751 SI.setOperand(2, TrueVal); 1752 return &SI; 1753 } 1754 1755 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 1756 unsigned VWidth = VecTy->getNumElements(); 1757 APInt UndefElts(VWidth, 0); 1758 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1759 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 1760 if (V != &SI) 1761 return replaceInstUsesWith(SI, V); 1762 return &SI; 1763 } 1764 } 1765 1766 // See if we can determine the result of this select based on a dominating 1767 // condition. 1768 BasicBlock *Parent = SI.getParent(); 1769 if (BasicBlock *Dom = Parent->getSinglePredecessor()) { 1770 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 1771 if (PBI && PBI->isConditional() && 1772 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 1773 (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { 1774 bool CondIsTrue = PBI->getSuccessor(0) == Parent; 1775 Optional<bool> Implication = isImpliedCondition( 1776 PBI->getCondition(), SI.getCondition(), DL, CondIsTrue); 1777 if (Implication) { 1778 Value *V = *Implication ? TrueVal : FalseVal; 1779 return replaceInstUsesWith(SI, V); 1780 } 1781 } 1782 } 1783 1784 // If we can compute the condition, there's no need for a select. 1785 // Like the above fold, we are attempting to reduce compile-time cost by 1786 // putting this fold here with limitations rather than in InstSimplify. 1787 // The motivation for this call into value tracking is to take advantage of 1788 // the assumption cache, so make sure that is populated. 1789 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 1790 KnownBits Known(1); 1791 computeKnownBits(CondVal, Known, 0, &SI); 1792 if (Known.One.isOneValue()) 1793 return replaceInstUsesWith(SI, TrueVal); 1794 if (Known.Zero.isOneValue()) 1795 return replaceInstUsesWith(SI, FalseVal); 1796 } 1797 1798 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 1799 return BitCastSel; 1800 1801 // Simplify selects that test the returned flag of cmpxchg instructions. 1802 if (Instruction *Select = foldSelectCmpXchg(SI)) 1803 return Select; 1804 1805 return nullptr; 1806 } 1807