1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/CmpInstAnalysis.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/MDBuilder.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/Support/KnownBits.h" 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 static SelectPatternFlavor 28 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) { 29 switch (SPF) { 30 default: 31 llvm_unreachable("unhandled!"); 32 33 case SPF_SMIN: 34 return SPF_SMAX; 35 case SPF_UMIN: 36 return SPF_UMAX; 37 case SPF_SMAX: 38 return SPF_SMIN; 39 case SPF_UMAX: 40 return SPF_UMIN; 41 } 42 } 43 44 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF, 45 bool Ordered=false) { 46 switch (SPF) { 47 default: 48 llvm_unreachable("unhandled!"); 49 50 case SPF_SMIN: 51 return ICmpInst::ICMP_SLT; 52 case SPF_UMIN: 53 return ICmpInst::ICMP_ULT; 54 case SPF_SMAX: 55 return ICmpInst::ICMP_SGT; 56 case SPF_UMAX: 57 return ICmpInst::ICMP_UGT; 58 case SPF_FMINNUM: 59 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 60 case SPF_FMAXNUM: 61 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 62 } 63 } 64 65 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy &Builder, 66 SelectPatternFlavor SPF, Value *A, 67 Value *B) { 68 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF); 69 assert(CmpInst::isIntPredicate(Pred)); 70 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 71 } 72 73 /// We want to turn code that looks like this: 74 /// %C = or %A, %B 75 /// %D = select %cond, %C, %A 76 /// into: 77 /// %C = select %cond, %B, 0 78 /// %D = or %A, %C 79 /// 80 /// Assuming that the specified instruction is an operand to the select, return 81 /// a bitmask indicating which operands of this instruction are foldable if they 82 /// equal the other incoming value of the select. 83 /// 84 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 85 switch (I->getOpcode()) { 86 case Instruction::Add: 87 case Instruction::Mul: 88 case Instruction::And: 89 case Instruction::Or: 90 case Instruction::Xor: 91 return 3; // Can fold through either operand. 92 case Instruction::Sub: // Can only fold on the amount subtracted. 93 case Instruction::Shl: // Can only fold on the shift amount. 94 case Instruction::LShr: 95 case Instruction::AShr: 96 return 1; 97 default: 98 return 0; // Cannot fold 99 } 100 } 101 102 /// For the same transformation as the previous function, return the identity 103 /// constant that goes into the select. 104 static Constant *getSelectFoldableConstant(BinaryOperator *I) { 105 switch (I->getOpcode()) { 106 default: llvm_unreachable("This cannot happen!"); 107 case Instruction::Add: 108 case Instruction::Sub: 109 case Instruction::Or: 110 case Instruction::Xor: 111 case Instruction::Shl: 112 case Instruction::LShr: 113 case Instruction::AShr: 114 return Constant::getNullValue(I->getType()); 115 case Instruction::And: 116 return Constant::getAllOnesValue(I->getType()); 117 case Instruction::Mul: 118 return ConstantInt::get(I->getType(), 1); 119 } 120 } 121 122 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 123 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 124 Instruction *FI) { 125 // Don't break up min/max patterns. The hasOneUse checks below prevent that 126 // for most cases, but vector min/max with bitcasts can be transformed. If the 127 // one-use restrictions are eased for other patterns, we still don't want to 128 // obfuscate min/max. 129 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 130 match(&SI, m_SMax(m_Value(), m_Value())) || 131 match(&SI, m_UMin(m_Value(), m_Value())) || 132 match(&SI, m_UMax(m_Value(), m_Value())))) 133 return nullptr; 134 135 // If this is a cast from the same type, merge. 136 if (TI->getNumOperands() == 1 && TI->isCast()) { 137 Type *FIOpndTy = FI->getOperand(0)->getType(); 138 if (TI->getOperand(0)->getType() != FIOpndTy) 139 return nullptr; 140 141 // The select condition may be a vector. We may only change the operand 142 // type if the vector width remains the same (and matches the condition). 143 Type *CondTy = SI.getCondition()->getType(); 144 if (CondTy->isVectorTy()) { 145 if (!FIOpndTy->isVectorTy()) 146 return nullptr; 147 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 148 return nullptr; 149 150 // TODO: If the backend knew how to deal with casts better, we could 151 // remove this limitation. For now, there's too much potential to create 152 // worse codegen by promoting the select ahead of size-altering casts 153 // (PR28160). 154 // 155 // Note that ValueTracking's matchSelectPattern() looks through casts 156 // without checking 'hasOneUse' when it matches min/max patterns, so this 157 // transform may end up happening anyway. 158 if (TI->getOpcode() != Instruction::BitCast && 159 (!TI->hasOneUse() || !FI->hasOneUse())) 160 return nullptr; 161 162 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 163 // TODO: The one-use restrictions for a scalar select could be eased if 164 // the fold of a select in visitLoadInst() was enhanced to match a pattern 165 // that includes a cast. 166 return nullptr; 167 } 168 169 // Fold this by inserting a select from the input values. 170 Value *NewSI = 171 Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), 172 FI->getOperand(0), SI.getName() + ".v", &SI); 173 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 174 TI->getType()); 175 } 176 177 // Only handle binary operators with one-use here. As with the cast case 178 // above, it may be possible to relax the one-use constraint, but that needs 179 // be examined carefully since it may not reduce the total number of 180 // instructions. 181 BinaryOperator *BO = dyn_cast<BinaryOperator>(TI); 182 if (!BO || !TI->hasOneUse() || !FI->hasOneUse()) 183 return nullptr; 184 185 // Figure out if the operations have any operands in common. 186 Value *MatchOp, *OtherOpT, *OtherOpF; 187 bool MatchIsOpZero; 188 if (TI->getOperand(0) == FI->getOperand(0)) { 189 MatchOp = TI->getOperand(0); 190 OtherOpT = TI->getOperand(1); 191 OtherOpF = FI->getOperand(1); 192 MatchIsOpZero = true; 193 } else if (TI->getOperand(1) == FI->getOperand(1)) { 194 MatchOp = TI->getOperand(1); 195 OtherOpT = TI->getOperand(0); 196 OtherOpF = FI->getOperand(0); 197 MatchIsOpZero = false; 198 } else if (!TI->isCommutative()) { 199 return nullptr; 200 } else if (TI->getOperand(0) == FI->getOperand(1)) { 201 MatchOp = TI->getOperand(0); 202 OtherOpT = TI->getOperand(1); 203 OtherOpF = FI->getOperand(0); 204 MatchIsOpZero = true; 205 } else if (TI->getOperand(1) == FI->getOperand(0)) { 206 MatchOp = TI->getOperand(1); 207 OtherOpT = TI->getOperand(0); 208 OtherOpF = FI->getOperand(1); 209 MatchIsOpZero = true; 210 } else { 211 return nullptr; 212 } 213 214 // If we reach here, they do have operations in common. 215 Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 216 SI.getName() + ".v", &SI); 217 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 218 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 219 return BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 220 } 221 222 static bool isSelect01(Constant *C1, Constant *C2) { 223 const APInt *C1I, *C2I; 224 if (!match(C1, m_APInt(C1I))) 225 return false; 226 if (!match(C2, m_APInt(C2I))) 227 return false; 228 if (!C1I->isNullValue() && !C2I->isNullValue()) // One side must be zero. 229 return false; 230 return C1I->isOneValue() || C1I->isAllOnesValue() || 231 C2I->isOneValue() || C2I->isAllOnesValue(); 232 } 233 234 /// Try to fold the select into one of the operands to allow further 235 /// optimization. 236 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 237 Value *FalseVal) { 238 // See the comment above GetSelectFoldableOperands for a description of the 239 // transformation we are doing here. 240 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 241 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 242 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 243 unsigned OpToFold = 0; 244 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 245 OpToFold = 1; 246 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 247 OpToFold = 2; 248 } 249 250 if (OpToFold) { 251 Constant *C = getSelectFoldableConstant(TVI); 252 Value *OOp = TVI->getOperand(2-OpToFold); 253 // Avoid creating select between 2 constants unless it's selecting 254 // between 0, 1 and -1. 255 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 256 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 257 NewSel->takeName(TVI); 258 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 259 FalseVal, NewSel); 260 BO->copyIRFlags(TVI); 261 return BO; 262 } 263 } 264 } 265 } 266 } 267 268 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 269 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 270 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 271 unsigned OpToFold = 0; 272 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 273 OpToFold = 1; 274 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 275 OpToFold = 2; 276 } 277 278 if (OpToFold) { 279 Constant *C = getSelectFoldableConstant(FVI); 280 Value *OOp = FVI->getOperand(2-OpToFold); 281 // Avoid creating select between 2 constants unless it's selecting 282 // between 0, 1 and -1. 283 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 284 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 285 NewSel->takeName(FVI); 286 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 287 TrueVal, NewSel); 288 BO->copyIRFlags(FVI); 289 return BO; 290 } 291 } 292 } 293 } 294 } 295 296 return nullptr; 297 } 298 299 /// We want to turn: 300 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 301 /// into: 302 /// (or (shl (and X, C1), C3), Y) 303 /// iff: 304 /// C1 and C2 are both powers of 2 305 /// where: 306 /// C3 = Log(C2) - Log(C1) 307 /// 308 /// This transform handles cases where: 309 /// 1. The icmp predicate is inverted 310 /// 2. The select operands are reversed 311 /// 3. The magnitude of C2 and C1 are flipped 312 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 313 Value *FalseVal, 314 InstCombiner::BuilderTy &Builder) { 315 // Only handle integer compares. Also, if this is a vector select, we need a 316 // vector compare. 317 if (!TrueVal->getType()->isIntOrIntVectorTy() || 318 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 319 return nullptr; 320 321 Value *CmpLHS = IC->getOperand(0); 322 Value *CmpRHS = IC->getOperand(1); 323 324 Value *V; 325 unsigned C1Log; 326 bool IsEqualZero; 327 bool NeedAnd = false; 328 if (IC->isEquality()) { 329 if (!match(CmpRHS, m_Zero())) 330 return nullptr; 331 332 const APInt *C1; 333 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 334 return nullptr; 335 336 V = CmpLHS; 337 C1Log = C1->logBase2(); 338 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 339 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 340 IC->getPredicate() == ICmpInst::ICMP_SGT) { 341 // We also need to recognize (icmp slt (trunc (X)), 0) and 342 // (icmp sgt (trunc (X)), -1). 343 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 344 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 345 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 346 return nullptr; 347 348 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 349 return nullptr; 350 351 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 352 NeedAnd = true; 353 } else { 354 return nullptr; 355 } 356 357 const APInt *C2; 358 bool OrOnTrueVal = false; 359 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 360 if (!OrOnFalseVal) 361 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 362 363 if (!OrOnFalseVal && !OrOnTrueVal) 364 return nullptr; 365 366 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 367 368 unsigned C2Log = C2->logBase2(); 369 370 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 371 bool NeedShift = C1Log != C2Log; 372 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 373 V->getType()->getScalarSizeInBits(); 374 375 // Make sure we don't create more instructions than we save. 376 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 377 if ((NeedShift + NeedXor + NeedZExtTrunc) > 378 (IC->hasOneUse() + Or->hasOneUse())) 379 return nullptr; 380 381 if (NeedAnd) { 382 // Insert the AND instruction on the input to the truncate. 383 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 384 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 385 } 386 387 if (C2Log > C1Log) { 388 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 389 V = Builder.CreateShl(V, C2Log - C1Log); 390 } else if (C1Log > C2Log) { 391 V = Builder.CreateLShr(V, C1Log - C2Log); 392 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 393 } else 394 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 395 396 if (NeedXor) 397 V = Builder.CreateXor(V, *C2); 398 399 return Builder.CreateOr(V, Y); 400 } 401 402 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 403 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 404 /// 405 /// For example, we can fold the following code sequence: 406 /// \code 407 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 408 /// %1 = icmp ne i32 %x, 0 409 /// %2 = select i1 %1, i32 %0, i32 32 410 /// \code 411 /// 412 /// into: 413 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 414 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 415 InstCombiner::BuilderTy &Builder) { 416 ICmpInst::Predicate Pred = ICI->getPredicate(); 417 Value *CmpLHS = ICI->getOperand(0); 418 Value *CmpRHS = ICI->getOperand(1); 419 420 // Check if the condition value compares a value for equality against zero. 421 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 422 return nullptr; 423 424 Value *Count = FalseVal; 425 Value *ValueOnZero = TrueVal; 426 if (Pred == ICmpInst::ICMP_NE) 427 std::swap(Count, ValueOnZero); 428 429 // Skip zero extend/truncate. 430 Value *V = nullptr; 431 if (match(Count, m_ZExt(m_Value(V))) || 432 match(Count, m_Trunc(m_Value(V)))) 433 Count = V; 434 435 // Check if the value propagated on zero is a constant number equal to the 436 // sizeof in bits of 'Count'. 437 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 438 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 439 return nullptr; 440 441 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 442 // input to the cttz/ctlz is used as LHS for the compare instruction. 443 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 444 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 445 IntrinsicInst *II = cast<IntrinsicInst>(Count); 446 // Explicitly clear the 'undef_on_zero' flag. 447 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 448 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 449 Builder.Insert(NewI); 450 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 451 } 452 453 return nullptr; 454 } 455 456 /// Return true if we find and adjust an icmp+select pattern where the compare 457 /// is with a constant that can be incremented or decremented to match the 458 /// minimum or maximum idiom. 459 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 460 ICmpInst::Predicate Pred = Cmp.getPredicate(); 461 Value *CmpLHS = Cmp.getOperand(0); 462 Value *CmpRHS = Cmp.getOperand(1); 463 Value *TrueVal = Sel.getTrueValue(); 464 Value *FalseVal = Sel.getFalseValue(); 465 466 // We may move or edit the compare, so make sure the select is the only user. 467 const APInt *CmpC; 468 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 469 return false; 470 471 // These transforms only work for selects of integers or vector selects of 472 // integer vectors. 473 Type *SelTy = Sel.getType(); 474 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 475 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 476 return false; 477 478 Constant *AdjustedRHS; 479 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 480 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 481 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 482 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 483 else 484 return false; 485 486 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 487 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 488 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 489 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 490 ; // Nothing to do here. Values match without any sign/zero extension. 491 } 492 // Types do not match. Instead of calculating this with mixed types, promote 493 // all to the larger type. This enables scalar evolution to analyze this 494 // expression. 495 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 496 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 497 498 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 499 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 500 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 501 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 502 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 503 CmpLHS = TrueVal; 504 AdjustedRHS = SextRHS; 505 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 506 SextRHS == TrueVal) { 507 CmpLHS = FalseVal; 508 AdjustedRHS = SextRHS; 509 } else if (Cmp.isUnsigned()) { 510 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 511 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 512 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 513 // zext + signed compare cannot be changed: 514 // 0xff <s 0x00, but 0x00ff >s 0x0000 515 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 516 CmpLHS = TrueVal; 517 AdjustedRHS = ZextRHS; 518 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 519 ZextRHS == TrueVal) { 520 CmpLHS = FalseVal; 521 AdjustedRHS = ZextRHS; 522 } else { 523 return false; 524 } 525 } else { 526 return false; 527 } 528 } else { 529 return false; 530 } 531 532 Pred = ICmpInst::getSwappedPredicate(Pred); 533 CmpRHS = AdjustedRHS; 534 std::swap(FalseVal, TrueVal); 535 Cmp.setPredicate(Pred); 536 Cmp.setOperand(0, CmpLHS); 537 Cmp.setOperand(1, CmpRHS); 538 Sel.setOperand(1, TrueVal); 539 Sel.setOperand(2, FalseVal); 540 Sel.swapProfMetadata(); 541 542 // Move the compare instruction right before the select instruction. Otherwise 543 // the sext/zext value may be defined after the compare instruction uses it. 544 Cmp.moveBefore(&Sel); 545 546 return true; 547 } 548 549 /// If this is an integer min/max (icmp + select) with a constant operand, 550 /// create the canonical icmp for the min/max operation and canonicalize the 551 /// constant to the 'false' operand of the select: 552 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 553 /// Note: if C1 != C2, this will change the icmp constant to the existing 554 /// constant operand of the select. 555 static Instruction * 556 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 557 InstCombiner::BuilderTy &Builder) { 558 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 559 return nullptr; 560 561 // Canonicalize the compare predicate based on whether we have min or max. 562 Value *LHS, *RHS; 563 ICmpInst::Predicate NewPred; 564 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 565 switch (SPR.Flavor) { 566 case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break; 567 case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break; 568 case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break; 569 case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break; 570 default: return nullptr; 571 } 572 573 // Is this already canonical? 574 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 575 Cmp.getPredicate() == NewPred) 576 return nullptr; 577 578 // Create the canonical compare and plug it into the select. 579 Sel.setCondition(Builder.CreateICmp(NewPred, LHS, RHS)); 580 581 // If the select operands did not change, we're done. 582 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 583 return &Sel; 584 585 // If we are swapping the select operands, swap the metadata too. 586 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 587 "Unexpected results from matchSelectPattern"); 588 Sel.setTrueValue(LHS); 589 Sel.setFalseValue(RHS); 590 Sel.swapProfMetadata(); 591 return &Sel; 592 } 593 594 /// If one of the constants is zero (we know they can't both be) and we have an 595 /// icmp instruction with zero, and we have an 'and' with the non-constant value 596 /// and a power of two we can turn the select into a shift on the result of the 597 /// 'and'. 598 /// This folds: 599 /// select (icmp eq (and X, C1)), C2, C3 600 /// iff C1 is a power 2 and the difference between C2 and C3 is a power of 2. 601 /// To something like: 602 /// (shr (and (X, C1)), (log2(C1) - log2(C2-C3))) + C3 603 /// Or: 604 /// (shl (and (X, C1)), (log2(C2-C3) - log2(C1))) + C3 605 /// With some variations depending if C3 is larger than C2, or the shift 606 /// isn't needed, or the bit widths don't match. 607 static Value *foldSelectICmpAnd(Type *SelType, const ICmpInst *IC, 608 APInt TrueVal, APInt FalseVal, 609 InstCombiner::BuilderTy &Builder) { 610 assert(SelType->isIntOrIntVectorTy() && "Not an integer select?"); 611 612 // If this is a vector select, we need a vector compare. 613 if (SelType->isVectorTy() != IC->getType()->isVectorTy()) 614 return nullptr; 615 616 Value *V; 617 APInt AndMask; 618 bool CreateAnd = false; 619 ICmpInst::Predicate Pred = IC->getPredicate(); 620 if (ICmpInst::isEquality(Pred)) { 621 if (!match(IC->getOperand(1), m_Zero())) 622 return nullptr; 623 624 V = IC->getOperand(0); 625 626 const APInt *AndRHS; 627 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 628 return nullptr; 629 630 AndMask = *AndRHS; 631 } else if (decomposeBitTestICmp(IC->getOperand(0), IC->getOperand(1), 632 Pred, V, AndMask)) { 633 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 634 635 if (!AndMask.isPowerOf2()) 636 return nullptr; 637 638 CreateAnd = true; 639 } else { 640 return nullptr; 641 } 642 643 // If both select arms are non-zero see if we have a select of the form 644 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic 645 // for 'x ? 2^n : 0' and fix the thing up at the end. 646 APInt Offset(TrueVal.getBitWidth(), 0); 647 if (!TrueVal.isNullValue() && !FalseVal.isNullValue()) { 648 if ((TrueVal - FalseVal).isPowerOf2()) 649 Offset = FalseVal; 650 else if ((FalseVal - TrueVal).isPowerOf2()) 651 Offset = TrueVal; 652 else 653 return nullptr; 654 655 // Adjust TrueVal and FalseVal to the offset. 656 TrueVal -= Offset; 657 FalseVal -= Offset; 658 } 659 660 // Make sure one of the select arms is a power of 2. 661 if (!TrueVal.isPowerOf2() && !FalseVal.isPowerOf2()) 662 return nullptr; 663 664 // Determine which shift is needed to transform result of the 'and' into the 665 // desired result. 666 const APInt &ValC = !TrueVal.isNullValue() ? TrueVal : FalseVal; 667 unsigned ValZeros = ValC.logBase2(); 668 unsigned AndZeros = AndMask.logBase2(); 669 670 if (CreateAnd) { 671 // Insert the AND instruction on the input to the truncate. 672 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 673 } 674 675 // If types don't match we can still convert the select by introducing a zext 676 // or a trunc of the 'and'. 677 if (ValZeros > AndZeros) { 678 V = Builder.CreateZExtOrTrunc(V, SelType); 679 V = Builder.CreateShl(V, ValZeros - AndZeros); 680 } else if (ValZeros < AndZeros) { 681 V = Builder.CreateLShr(V, AndZeros - ValZeros); 682 V = Builder.CreateZExtOrTrunc(V, SelType); 683 } else 684 V = Builder.CreateZExtOrTrunc(V, SelType); 685 686 // Okay, now we know that everything is set up, we just don't know whether we 687 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 688 bool ShouldNotVal = !TrueVal.isNullValue(); 689 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 690 if (ShouldNotVal) 691 V = Builder.CreateXor(V, ValC); 692 693 // Apply an offset if needed. 694 if (!Offset.isNullValue()) 695 V = Builder.CreateAdd(V, ConstantInt::get(V->getType(), Offset)); 696 return V; 697 } 698 699 /// Visit a SelectInst that has an ICmpInst as its first operand. 700 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 701 ICmpInst *ICI) { 702 Value *TrueVal = SI.getTrueValue(); 703 Value *FalseVal = SI.getFalseValue(); 704 705 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 706 return NewSel; 707 708 bool Changed = adjustMinMax(SI, *ICI); 709 710 ICmpInst::Predicate Pred = ICI->getPredicate(); 711 Value *CmpLHS = ICI->getOperand(0); 712 Value *CmpRHS = ICI->getOperand(1); 713 714 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 715 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 716 // FIXME: Type and constness constraints could be lifted, but we have to 717 // watch code size carefully. We should consider xor instead of 718 // sub/add when we decide to do that. 719 // TODO: Merge this with foldSelectICmpAnd somehow. 720 if (CmpLHS->getType()->isIntOrIntVectorTy() && 721 CmpLHS->getType() == TrueVal->getType()) { 722 const APInt *C1, *C2; 723 if (match(TrueVal, m_APInt(C1)) && match(FalseVal, m_APInt(C2))) { 724 ICmpInst::Predicate Pred = ICI->getPredicate(); 725 Value *X; 726 APInt Mask; 727 if (decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) { 728 if (Mask.isSignMask()) { 729 assert(X == CmpLHS && "Expected to use the compare input directly"); 730 assert(ICmpInst::isEquality(Pred) && "Expected equality predicate"); 731 732 if (Pred == ICmpInst::ICMP_NE) 733 std::swap(C1, C2); 734 735 // This shift results in either -1 or 0. 736 Value *AShr = Builder.CreateAShr(X, Mask.getBitWidth() - 1); 737 738 // Check if we can express the operation with a single or. 739 if (C2->isAllOnesValue()) 740 return replaceInstUsesWith(SI, Builder.CreateOr(AShr, *C1)); 741 742 Value *And = Builder.CreateAnd(AShr, *C2 - *C1); 743 return replaceInstUsesWith(SI, Builder.CreateAdd(And, 744 ConstantInt::get(And->getType(), *C1))); 745 } 746 } 747 } 748 } 749 750 { 751 const APInt *TrueValC, *FalseValC; 752 if (match(TrueVal, m_APInt(TrueValC)) && 753 match(FalseVal, m_APInt(FalseValC))) 754 if (Value *V = foldSelectICmpAnd(SI.getType(), ICI, *TrueValC, 755 *FalseValC, Builder)) 756 return replaceInstUsesWith(SI, V); 757 } 758 759 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 760 761 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 762 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 763 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 764 SI.setOperand(1, CmpRHS); 765 Changed = true; 766 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 767 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 768 SI.setOperand(2, CmpRHS); 769 Changed = true; 770 } 771 } 772 773 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 774 // decomposeBitTestICmp() might help. 775 { 776 unsigned BitWidth = 777 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 778 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 779 Value *X; 780 const APInt *Y, *C; 781 bool TrueWhenUnset; 782 bool IsBitTest = false; 783 if (ICmpInst::isEquality(Pred) && 784 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 785 match(CmpRHS, m_Zero())) { 786 IsBitTest = true; 787 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 788 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 789 X = CmpLHS; 790 Y = &MinSignedValue; 791 IsBitTest = true; 792 TrueWhenUnset = false; 793 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 794 X = CmpLHS; 795 Y = &MinSignedValue; 796 IsBitTest = true; 797 TrueWhenUnset = true; 798 } 799 if (IsBitTest) { 800 Value *V = nullptr; 801 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 802 if (TrueWhenUnset && TrueVal == X && 803 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 804 V = Builder.CreateAnd(X, ~(*Y)); 805 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 806 else if (!TrueWhenUnset && FalseVal == X && 807 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 808 V = Builder.CreateAnd(X, ~(*Y)); 809 // (X & Y) == 0 ? X ^ Y : X --> X | Y 810 else if (TrueWhenUnset && FalseVal == X && 811 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 812 V = Builder.CreateOr(X, *Y); 813 // (X & Y) != 0 ? X : X ^ Y --> X | Y 814 else if (!TrueWhenUnset && TrueVal == X && 815 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 816 V = Builder.CreateOr(X, *Y); 817 818 if (V) 819 return replaceInstUsesWith(SI, V); 820 } 821 } 822 823 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 824 return replaceInstUsesWith(SI, V); 825 826 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 827 return replaceInstUsesWith(SI, V); 828 829 return Changed ? &SI : nullptr; 830 } 831 832 833 /// SI is a select whose condition is a PHI node (but the two may be in 834 /// different blocks). See if the true/false values (V) are live in all of the 835 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 836 /// 837 /// X = phi [ C1, BB1], [C2, BB2] 838 /// Y = add 839 /// Z = select X, Y, 0 840 /// 841 /// because Y is not live in BB1/BB2. 842 /// 843 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 844 const SelectInst &SI) { 845 // If the value is a non-instruction value like a constant or argument, it 846 // can always be mapped. 847 const Instruction *I = dyn_cast<Instruction>(V); 848 if (!I) return true; 849 850 // If V is a PHI node defined in the same block as the condition PHI, we can 851 // map the arguments. 852 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 853 854 if (const PHINode *VP = dyn_cast<PHINode>(I)) 855 if (VP->getParent() == CondPHI->getParent()) 856 return true; 857 858 // Otherwise, if the PHI and select are defined in the same block and if V is 859 // defined in a different block, then we can transform it. 860 if (SI.getParent() == CondPHI->getParent() && 861 I->getParent() != CondPHI->getParent()) 862 return true; 863 864 // Otherwise we have a 'hard' case and we can't tell without doing more 865 // detailed dominator based analysis, punt. 866 return false; 867 } 868 869 /// We have an SPF (e.g. a min or max) of an SPF of the form: 870 /// SPF2(SPF1(A, B), C) 871 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 872 SelectPatternFlavor SPF1, 873 Value *A, Value *B, 874 Instruction &Outer, 875 SelectPatternFlavor SPF2, Value *C) { 876 if (Outer.getType() != Inner->getType()) 877 return nullptr; 878 879 if (C == A || C == B) { 880 // MAX(MAX(A, B), B) -> MAX(A, B) 881 // MIN(MIN(a, b), a) -> MIN(a, b) 882 if (SPF1 == SPF2) 883 return replaceInstUsesWith(Outer, Inner); 884 885 // MAX(MIN(a, b), a) -> a 886 // MIN(MAX(a, b), a) -> a 887 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 888 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 889 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 890 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 891 return replaceInstUsesWith(Outer, C); 892 } 893 894 if (SPF1 == SPF2) { 895 const APInt *CB, *CC; 896 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 897 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 898 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 899 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 900 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 901 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 902 (SPF1 == SPF_SMAX && CB->sge(*CC))) 903 return replaceInstUsesWith(Outer, Inner); 904 905 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 906 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 907 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 908 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 909 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 910 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 911 Outer.replaceUsesOfWith(Inner, A); 912 return &Outer; 913 } 914 } 915 } 916 917 // ABS(ABS(X)) -> ABS(X) 918 // NABS(NABS(X)) -> NABS(X) 919 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 920 return replaceInstUsesWith(Outer, Inner); 921 } 922 923 // ABS(NABS(X)) -> ABS(X) 924 // NABS(ABS(X)) -> NABS(X) 925 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 926 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 927 SelectInst *SI = cast<SelectInst>(Inner); 928 Value *NewSI = 929 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 930 SI->getTrueValue(), SI->getName(), SI); 931 return replaceInstUsesWith(Outer, NewSI); 932 } 933 934 auto IsFreeOrProfitableToInvert = 935 [&](Value *V, Value *&NotV, bool &ElidesXor) { 936 if (match(V, m_Not(m_Value(NotV)))) { 937 // If V has at most 2 uses then we can get rid of the xor operation 938 // entirely. 939 ElidesXor |= !V->hasNUsesOrMore(3); 940 return true; 941 } 942 943 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 944 NotV = nullptr; 945 return true; 946 } 947 948 return false; 949 }; 950 951 Value *NotA, *NotB, *NotC; 952 bool ElidesXor = false; 953 954 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 955 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 956 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 957 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 958 // 959 // This transform is performance neutral if we can elide at least one xor from 960 // the set of three operands, since we'll be tacking on an xor at the very 961 // end. 962 if (SelectPatternResult::isMinOrMax(SPF1) && 963 SelectPatternResult::isMinOrMax(SPF2) && 964 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 965 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 966 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 967 if (!NotA) 968 NotA = Builder.CreateNot(A); 969 if (!NotB) 970 NotB = Builder.CreateNot(B); 971 if (!NotC) 972 NotC = Builder.CreateNot(C); 973 974 Value *NewInner = generateMinMaxSelectPattern( 975 Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB); 976 Value *NewOuter = Builder.CreateNot(generateMinMaxSelectPattern( 977 Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC)); 978 return replaceInstUsesWith(Outer, NewOuter); 979 } 980 981 return nullptr; 982 } 983 984 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 985 /// This is even legal for FP. 986 static Instruction *foldAddSubSelect(SelectInst &SI, 987 InstCombiner::BuilderTy &Builder) { 988 Value *CondVal = SI.getCondition(); 989 Value *TrueVal = SI.getTrueValue(); 990 Value *FalseVal = SI.getFalseValue(); 991 auto *TI = dyn_cast<Instruction>(TrueVal); 992 auto *FI = dyn_cast<Instruction>(FalseVal); 993 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 994 return nullptr; 995 996 Instruction *AddOp = nullptr, *SubOp = nullptr; 997 if ((TI->getOpcode() == Instruction::Sub && 998 FI->getOpcode() == Instruction::Add) || 999 (TI->getOpcode() == Instruction::FSub && 1000 FI->getOpcode() == Instruction::FAdd)) { 1001 AddOp = FI; 1002 SubOp = TI; 1003 } else if ((FI->getOpcode() == Instruction::Sub && 1004 TI->getOpcode() == Instruction::Add) || 1005 (FI->getOpcode() == Instruction::FSub && 1006 TI->getOpcode() == Instruction::FAdd)) { 1007 AddOp = TI; 1008 SubOp = FI; 1009 } 1010 1011 if (AddOp) { 1012 Value *OtherAddOp = nullptr; 1013 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1014 OtherAddOp = AddOp->getOperand(1); 1015 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1016 OtherAddOp = AddOp->getOperand(0); 1017 } 1018 1019 if (OtherAddOp) { 1020 // So at this point we know we have (Y -> OtherAddOp): 1021 // select C, (add X, Y), (sub X, Z) 1022 Value *NegVal; // Compute -Z 1023 if (SI.getType()->isFPOrFPVectorTy()) { 1024 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1025 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1026 FastMathFlags Flags = AddOp->getFastMathFlags(); 1027 Flags &= SubOp->getFastMathFlags(); 1028 NegInst->setFastMathFlags(Flags); 1029 } 1030 } else { 1031 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1032 } 1033 1034 Value *NewTrueOp = OtherAddOp; 1035 Value *NewFalseOp = NegVal; 1036 if (AddOp != TI) 1037 std::swap(NewTrueOp, NewFalseOp); 1038 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1039 SI.getName() + ".p", &SI); 1040 1041 if (SI.getType()->isFPOrFPVectorTy()) { 1042 Instruction *RI = 1043 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1044 1045 FastMathFlags Flags = AddOp->getFastMathFlags(); 1046 Flags &= SubOp->getFastMathFlags(); 1047 RI->setFastMathFlags(Flags); 1048 return RI; 1049 } else 1050 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1051 } 1052 } 1053 return nullptr; 1054 } 1055 1056 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1057 Instruction *ExtInst; 1058 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1059 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1060 return nullptr; 1061 1062 auto ExtOpcode = ExtInst->getOpcode(); 1063 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1064 return nullptr; 1065 1066 // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too. 1067 Value *X = ExtInst->getOperand(0); 1068 Type *SmallType = X->getType(); 1069 if (!SmallType->isIntOrIntVectorTy(1)) 1070 return nullptr; 1071 1072 Constant *C; 1073 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1074 !match(Sel.getFalseValue(), m_Constant(C))) 1075 return nullptr; 1076 1077 // If the constant is the same after truncation to the smaller type and 1078 // extension to the original type, we can narrow the select. 1079 Value *Cond = Sel.getCondition(); 1080 Type *SelType = Sel.getType(); 1081 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1082 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1083 if (ExtC == C) { 1084 Value *TruncCVal = cast<Value>(TruncC); 1085 if (ExtInst == Sel.getFalseValue()) 1086 std::swap(X, TruncCVal); 1087 1088 // select Cond, (ext X), C --> ext(select Cond, X, C') 1089 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1090 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1091 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1092 } 1093 1094 // If one arm of the select is the extend of the condition, replace that arm 1095 // with the extension of the appropriate known bool value. 1096 if (Cond == X) { 1097 if (ExtInst == Sel.getTrueValue()) { 1098 // select X, (sext X), C --> select X, -1, C 1099 // select X, (zext X), C --> select X, 1, C 1100 Constant *One = ConstantInt::getTrue(SmallType); 1101 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1102 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1103 } else { 1104 // select X, C, (sext X) --> select X, C, 0 1105 // select X, C, (zext X) --> select X, C, 0 1106 Constant *Zero = ConstantInt::getNullValue(SelType); 1107 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1108 } 1109 } 1110 1111 return nullptr; 1112 } 1113 1114 /// Try to transform a vector select with a constant condition vector into a 1115 /// shuffle for easier combining with other shuffles and insert/extract. 1116 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1117 Value *CondVal = SI.getCondition(); 1118 Constant *CondC; 1119 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1120 return nullptr; 1121 1122 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1123 SmallVector<Constant *, 16> Mask; 1124 Mask.reserve(NumElts); 1125 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1126 for (unsigned i = 0; i != NumElts; ++i) { 1127 Constant *Elt = CondC->getAggregateElement(i); 1128 if (!Elt) 1129 return nullptr; 1130 1131 if (Elt->isOneValue()) { 1132 // If the select condition element is true, choose from the 1st vector. 1133 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1134 } else if (Elt->isNullValue()) { 1135 // If the select condition element is false, choose from the 2nd vector. 1136 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1137 } else if (isa<UndefValue>(Elt)) { 1138 // Undef in a select condition (choose one of the operands) does not mean 1139 // the same thing as undef in a shuffle mask (any value is acceptable), so 1140 // give up. 1141 return nullptr; 1142 } else { 1143 // Bail out on a constant expression. 1144 return nullptr; 1145 } 1146 } 1147 1148 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1149 ConstantVector::get(Mask)); 1150 } 1151 1152 /// Reuse bitcasted operands between a compare and select: 1153 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1154 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1155 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1156 InstCombiner::BuilderTy &Builder) { 1157 Value *Cond = Sel.getCondition(); 1158 Value *TVal = Sel.getTrueValue(); 1159 Value *FVal = Sel.getFalseValue(); 1160 1161 CmpInst::Predicate Pred; 1162 Value *A, *B; 1163 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1164 return nullptr; 1165 1166 // The select condition is a compare instruction. If the select's true/false 1167 // values are already the same as the compare operands, there's nothing to do. 1168 if (TVal == A || TVal == B || FVal == A || FVal == B) 1169 return nullptr; 1170 1171 Value *C, *D; 1172 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1173 return nullptr; 1174 1175 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1176 Value *TSrc, *FSrc; 1177 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1178 !match(FVal, m_BitCast(m_Value(FSrc)))) 1179 return nullptr; 1180 1181 // If the select true/false values are *different bitcasts* of the same source 1182 // operands, make the select operands the same as the compare operands and 1183 // cast the result. This is the canonical select form for min/max. 1184 Value *NewSel; 1185 if (TSrc == C && FSrc == D) { 1186 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1187 // bitcast (select (cmp A, B), A, B) 1188 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1189 } else if (TSrc == D && FSrc == C) { 1190 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1191 // bitcast (select (cmp A, B), B, A) 1192 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1193 } else { 1194 return nullptr; 1195 } 1196 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1197 } 1198 1199 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1200 Value *CondVal = SI.getCondition(); 1201 Value *TrueVal = SI.getTrueValue(); 1202 Value *FalseVal = SI.getFalseValue(); 1203 Type *SelType = SI.getType(); 1204 1205 // FIXME: Remove this workaround when freeze related patches are done. 1206 // For select with undef operand which feeds into an equality comparison, 1207 // don't simplify it so loop unswitch can know the equality comparison 1208 // may have an undef operand. This is a workaround for PR31652 caused by 1209 // descrepancy about branch on undef between LoopUnswitch and GVN. 1210 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1211 if (any_of(SI.users(), [&](User *U) { 1212 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1213 if (CI && CI->isEquality()) 1214 return true; 1215 return false; 1216 })) { 1217 return nullptr; 1218 } 1219 } 1220 1221 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1222 SQ.getWithInstruction(&SI))) 1223 return replaceInstUsesWith(SI, V); 1224 1225 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1226 return I; 1227 1228 // Canonicalize a one-use integer compare with a non-canonical predicate by 1229 // inverting the predicate and swapping the select operands. This matches a 1230 // compare canonicalization for conditional branches. 1231 // TODO: Should we do the same for FP compares? 1232 CmpInst::Predicate Pred; 1233 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 1234 !isCanonicalPredicate(Pred)) { 1235 // Swap true/false values and condition. 1236 CmpInst *Cond = cast<CmpInst>(CondVal); 1237 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 1238 SI.setOperand(1, FalseVal); 1239 SI.setOperand(2, TrueVal); 1240 SI.swapProfMetadata(); 1241 Worklist.Add(Cond); 1242 return &SI; 1243 } 1244 1245 if (SelType->isIntOrIntVectorTy(1) && 1246 TrueVal->getType() == CondVal->getType()) { 1247 if (match(TrueVal, m_One())) { 1248 // Change: A = select B, true, C --> A = or B, C 1249 return BinaryOperator::CreateOr(CondVal, FalseVal); 1250 } 1251 if (match(TrueVal, m_Zero())) { 1252 // Change: A = select B, false, C --> A = and !B, C 1253 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1254 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1255 } 1256 if (match(FalseVal, m_Zero())) { 1257 // Change: A = select B, C, false --> A = and B, C 1258 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1259 } 1260 if (match(FalseVal, m_One())) { 1261 // Change: A = select B, C, true --> A = or !B, C 1262 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1263 return BinaryOperator::CreateOr(NotCond, TrueVal); 1264 } 1265 1266 // select a, a, b -> a | b 1267 // select a, b, a -> a & b 1268 if (CondVal == TrueVal) 1269 return BinaryOperator::CreateOr(CondVal, FalseVal); 1270 if (CondVal == FalseVal) 1271 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1272 1273 // select a, ~a, b -> (~a) & b 1274 // select a, b, ~a -> (~a) | b 1275 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1276 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1277 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1278 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1279 } 1280 1281 // Selecting between two integer or vector splat integer constants? 1282 // 1283 // Note that we don't handle a scalar select of vectors: 1284 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1285 // because that may need 3 instructions to splat the condition value: 1286 // extend, insertelement, shufflevector. 1287 if (SelType->isIntOrIntVectorTy() && 1288 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1289 // select C, 1, 0 -> zext C to int 1290 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1291 return new ZExtInst(CondVal, SelType); 1292 1293 // select C, -1, 0 -> sext C to int 1294 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1295 return new SExtInst(CondVal, SelType); 1296 1297 // select C, 0, 1 -> zext !C to int 1298 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1299 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1300 return new ZExtInst(NotCond, SelType); 1301 } 1302 1303 // select C, 0, -1 -> sext !C to int 1304 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1305 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1306 return new SExtInst(NotCond, SelType); 1307 } 1308 } 1309 1310 // See if we are selecting two values based on a comparison of the two values. 1311 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1312 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1313 // Transform (X == Y) ? X : Y -> Y 1314 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1315 // This is not safe in general for floating point: 1316 // consider X== -0, Y== +0. 1317 // It becomes safe if either operand is a nonzero constant. 1318 ConstantFP *CFPt, *CFPf; 1319 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1320 !CFPt->getValueAPF().isZero()) || 1321 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1322 !CFPf->getValueAPF().isZero())) 1323 return replaceInstUsesWith(SI, FalseVal); 1324 } 1325 // Transform (X une Y) ? X : Y -> X 1326 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1327 // This is not safe in general for floating point: 1328 // consider X== -0, Y== +0. 1329 // It becomes safe if either operand is a nonzero constant. 1330 ConstantFP *CFPt, *CFPf; 1331 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1332 !CFPt->getValueAPF().isZero()) || 1333 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1334 !CFPf->getValueAPF().isZero())) 1335 return replaceInstUsesWith(SI, TrueVal); 1336 } 1337 1338 // Canonicalize to use ordered comparisons by swapping the select 1339 // operands. 1340 // 1341 // e.g. 1342 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1343 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1344 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1345 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1346 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1347 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 1348 FCI->getName() + ".inv"); 1349 1350 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1351 SI.getName() + ".p"); 1352 } 1353 1354 // NOTE: if we wanted to, this is where to detect MIN/MAX 1355 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1356 // Transform (X == Y) ? Y : X -> X 1357 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1358 // This is not safe in general for floating point: 1359 // consider X== -0, Y== +0. 1360 // It becomes safe if either operand is a nonzero constant. 1361 ConstantFP *CFPt, *CFPf; 1362 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1363 !CFPt->getValueAPF().isZero()) || 1364 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1365 !CFPf->getValueAPF().isZero())) 1366 return replaceInstUsesWith(SI, FalseVal); 1367 } 1368 // Transform (X une Y) ? Y : X -> Y 1369 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1370 // This is not safe in general for floating point: 1371 // consider X== -0, Y== +0. 1372 // It becomes safe if either operand is a nonzero constant. 1373 ConstantFP *CFPt, *CFPf; 1374 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1375 !CFPt->getValueAPF().isZero()) || 1376 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1377 !CFPf->getValueAPF().isZero())) 1378 return replaceInstUsesWith(SI, TrueVal); 1379 } 1380 1381 // Canonicalize to use ordered comparisons by swapping the select 1382 // operands. 1383 // 1384 // e.g. 1385 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1386 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1387 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1388 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1389 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1390 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 1391 FCI->getName() + ".inv"); 1392 1393 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1394 SI.getName() + ".p"); 1395 } 1396 1397 // NOTE: if we wanted to, this is where to detect MIN/MAX 1398 } 1399 // NOTE: if we wanted to, this is where to detect ABS 1400 } 1401 1402 // See if we are selecting two values based on a comparison of the two values. 1403 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1404 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1405 return Result; 1406 1407 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 1408 return Add; 1409 1410 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1411 auto *TI = dyn_cast<Instruction>(TrueVal); 1412 auto *FI = dyn_cast<Instruction>(FalseVal); 1413 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1414 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1415 return IV; 1416 1417 if (Instruction *I = foldSelectExtConst(SI)) 1418 return I; 1419 1420 // See if we can fold the select into one of our operands. 1421 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1422 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1423 return FoldI; 1424 1425 Value *LHS, *RHS, *LHS2, *RHS2; 1426 Instruction::CastOps CastOp; 1427 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1428 auto SPF = SPR.Flavor; 1429 1430 if (SelectPatternResult::isMinOrMax(SPF)) { 1431 // Canonicalize so that 1432 // - type casts are outside select patterns. 1433 // - float clamp is transformed to min/max pattern 1434 1435 bool IsCastNeeded = LHS->getType() != SelType; 1436 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 1437 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 1438 if (IsCastNeeded || 1439 (LHS->getType()->isFPOrFPVectorTy() && 1440 ((CmpLHS != LHS && CmpLHS != RHS) || 1441 (CmpRHS != LHS && CmpRHS != RHS)))) { 1442 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered); 1443 1444 Value *Cmp; 1445 if (CmpInst::isIntPredicate(Pred)) { 1446 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 1447 } else { 1448 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1449 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1450 Builder.setFastMathFlags(FMF); 1451 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 1452 } 1453 1454 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 1455 if (!IsCastNeeded) 1456 return replaceInstUsesWith(SI, NewSI); 1457 1458 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 1459 return replaceInstUsesWith(SI, NewCast); 1460 } 1461 } 1462 1463 if (SPF) { 1464 // MAX(MAX(a, b), a) -> MAX(a, b) 1465 // MIN(MIN(a, b), a) -> MIN(a, b) 1466 // MAX(MIN(a, b), a) -> a 1467 // MIN(MAX(a, b), a) -> a 1468 // ABS(ABS(a)) -> ABS(a) 1469 // NABS(NABS(a)) -> NABS(a) 1470 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1471 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 1472 SI, SPF, RHS)) 1473 return R; 1474 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1475 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 1476 SI, SPF, LHS)) 1477 return R; 1478 } 1479 1480 // MAX(~a, ~b) -> ~MIN(a, b) 1481 if ((SPF == SPF_SMAX || SPF == SPF_UMAX) && 1482 IsFreeToInvert(LHS, LHS->hasNUses(2)) && 1483 IsFreeToInvert(RHS, RHS->hasNUses(2))) { 1484 // For this transform to be profitable, we need to eliminate at least two 1485 // 'not' instructions if we're going to add one 'not' instruction. 1486 int NumberOfNots = 1487 (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) + 1488 (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) + 1489 (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value()))); 1490 1491 if (NumberOfNots >= 2) { 1492 Value *NewLHS = Builder.CreateNot(LHS); 1493 Value *NewRHS = Builder.CreateNot(RHS); 1494 Value *NewCmp = SPF == SPF_SMAX ? Builder.CreateICmpSLT(NewLHS, NewRHS) 1495 : Builder.CreateICmpULT(NewLHS, NewRHS); 1496 Value *NewSI = 1497 Builder.CreateNot(Builder.CreateSelect(NewCmp, NewLHS, NewRHS)); 1498 return replaceInstUsesWith(SI, NewSI); 1499 } 1500 } 1501 1502 // TODO. 1503 // ABS(-X) -> ABS(X) 1504 } 1505 1506 // See if we can fold the select into a phi node if the condition is a select. 1507 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 1508 // The true/false values have to be live in the PHI predecessor's blocks. 1509 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1510 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1511 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 1512 return NV; 1513 1514 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1515 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1516 // select(C, select(C, a, b), c) -> select(C, a, c) 1517 if (TrueSI->getCondition() == CondVal) { 1518 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1519 return nullptr; 1520 SI.setOperand(1, TrueSI->getTrueValue()); 1521 return &SI; 1522 } 1523 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1524 // We choose this as normal form to enable folding on the And and shortening 1525 // paths for the values (this helps GetUnderlyingObjects() for example). 1526 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1527 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 1528 SI.setOperand(0, And); 1529 SI.setOperand(1, TrueSI->getTrueValue()); 1530 return &SI; 1531 } 1532 } 1533 } 1534 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1535 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1536 // select(C, a, select(C, b, c)) -> select(C, a, c) 1537 if (FalseSI->getCondition() == CondVal) { 1538 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1539 return nullptr; 1540 SI.setOperand(2, FalseSI->getFalseValue()); 1541 return &SI; 1542 } 1543 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1544 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1545 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 1546 SI.setOperand(0, Or); 1547 SI.setOperand(2, FalseSI->getFalseValue()); 1548 return &SI; 1549 } 1550 } 1551 } 1552 1553 if (BinaryOperator::isNot(CondVal)) { 1554 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1555 SI.setOperand(1, FalseVal); 1556 SI.setOperand(2, TrueVal); 1557 return &SI; 1558 } 1559 1560 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 1561 unsigned VWidth = VecTy->getNumElements(); 1562 APInt UndefElts(VWidth, 0); 1563 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1564 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 1565 if (V != &SI) 1566 return replaceInstUsesWith(SI, V); 1567 return &SI; 1568 } 1569 } 1570 1571 // See if we can determine the result of this select based on a dominating 1572 // condition. 1573 BasicBlock *Parent = SI.getParent(); 1574 if (BasicBlock *Dom = Parent->getSinglePredecessor()) { 1575 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 1576 if (PBI && PBI->isConditional() && 1577 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 1578 (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { 1579 bool CondIsTrue = PBI->getSuccessor(0) == Parent; 1580 Optional<bool> Implication = isImpliedCondition( 1581 PBI->getCondition(), SI.getCondition(), DL, CondIsTrue); 1582 if (Implication) { 1583 Value *V = *Implication ? TrueVal : FalseVal; 1584 return replaceInstUsesWith(SI, V); 1585 } 1586 } 1587 } 1588 1589 // If we can compute the condition, there's no need for a select. 1590 // Like the above fold, we are attempting to reduce compile-time cost by 1591 // putting this fold here with limitations rather than in InstSimplify. 1592 // The motivation for this call into value tracking is to take advantage of 1593 // the assumption cache, so make sure that is populated. 1594 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 1595 KnownBits Known(1); 1596 computeKnownBits(CondVal, Known, 0, &SI); 1597 if (Known.One.isOneValue()) 1598 return replaceInstUsesWith(SI, TrueVal); 1599 if (Known.Zero.isOneValue()) 1600 return replaceInstUsesWith(SI, FalseVal); 1601 } 1602 1603 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 1604 return BitCastSel; 1605 1606 return nullptr; 1607 } 1608