1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/CmpInstAnalysis.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/MDBuilder.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/Support/KnownBits.h"
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 static SelectPatternFlavor
28 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
29   switch (SPF) {
30   default:
31     llvm_unreachable("unhandled!");
32 
33   case SPF_SMIN:
34     return SPF_SMAX;
35   case SPF_UMIN:
36     return SPF_UMAX;
37   case SPF_SMAX:
38     return SPF_SMIN;
39   case SPF_UMAX:
40     return SPF_UMIN;
41   }
42 }
43 
44 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
45                                                    bool Ordered=false) {
46   switch (SPF) {
47   default:
48     llvm_unreachable("unhandled!");
49 
50   case SPF_SMIN:
51     return ICmpInst::ICMP_SLT;
52   case SPF_UMIN:
53     return ICmpInst::ICMP_ULT;
54   case SPF_SMAX:
55     return ICmpInst::ICMP_SGT;
56   case SPF_UMAX:
57     return ICmpInst::ICMP_UGT;
58   case SPF_FMINNUM:
59     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
60   case SPF_FMAXNUM:
61     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
62   }
63 }
64 
65 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy &Builder,
66                                           SelectPatternFlavor SPF, Value *A,
67                                           Value *B) {
68   CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
69   assert(CmpInst::isIntPredicate(Pred));
70   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
71 }
72 
73 /// We want to turn code that looks like this:
74 ///   %C = or %A, %B
75 ///   %D = select %cond, %C, %A
76 /// into:
77 ///   %C = select %cond, %B, 0
78 ///   %D = or %A, %C
79 ///
80 /// Assuming that the specified instruction is an operand to the select, return
81 /// a bitmask indicating which operands of this instruction are foldable if they
82 /// equal the other incoming value of the select.
83 ///
84 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
85   switch (I->getOpcode()) {
86   case Instruction::Add:
87   case Instruction::Mul:
88   case Instruction::And:
89   case Instruction::Or:
90   case Instruction::Xor:
91     return 3;              // Can fold through either operand.
92   case Instruction::Sub:   // Can only fold on the amount subtracted.
93   case Instruction::Shl:   // Can only fold on the shift amount.
94   case Instruction::LShr:
95   case Instruction::AShr:
96     return 1;
97   default:
98     return 0;              // Cannot fold
99   }
100 }
101 
102 /// For the same transformation as the previous function, return the identity
103 /// constant that goes into the select.
104 static Constant *getSelectFoldableConstant(BinaryOperator *I) {
105   switch (I->getOpcode()) {
106   default: llvm_unreachable("This cannot happen!");
107   case Instruction::Add:
108   case Instruction::Sub:
109   case Instruction::Or:
110   case Instruction::Xor:
111   case Instruction::Shl:
112   case Instruction::LShr:
113   case Instruction::AShr:
114     return Constant::getNullValue(I->getType());
115   case Instruction::And:
116     return Constant::getAllOnesValue(I->getType());
117   case Instruction::Mul:
118     return ConstantInt::get(I->getType(), 1);
119   }
120 }
121 
122 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
123 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
124                                           Instruction *FI) {
125   // Don't break up min/max patterns. The hasOneUse checks below prevent that
126   // for most cases, but vector min/max with bitcasts can be transformed. If the
127   // one-use restrictions are eased for other patterns, we still don't want to
128   // obfuscate min/max.
129   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
130        match(&SI, m_SMax(m_Value(), m_Value())) ||
131        match(&SI, m_UMin(m_Value(), m_Value())) ||
132        match(&SI, m_UMax(m_Value(), m_Value()))))
133     return nullptr;
134 
135   // If this is a cast from the same type, merge.
136   if (TI->getNumOperands() == 1 && TI->isCast()) {
137     Type *FIOpndTy = FI->getOperand(0)->getType();
138     if (TI->getOperand(0)->getType() != FIOpndTy)
139       return nullptr;
140 
141     // The select condition may be a vector. We may only change the operand
142     // type if the vector width remains the same (and matches the condition).
143     Type *CondTy = SI.getCondition()->getType();
144     if (CondTy->isVectorTy()) {
145       if (!FIOpndTy->isVectorTy())
146         return nullptr;
147       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
148         return nullptr;
149 
150       // TODO: If the backend knew how to deal with casts better, we could
151       // remove this limitation. For now, there's too much potential to create
152       // worse codegen by promoting the select ahead of size-altering casts
153       // (PR28160).
154       //
155       // Note that ValueTracking's matchSelectPattern() looks through casts
156       // without checking 'hasOneUse' when it matches min/max patterns, so this
157       // transform may end up happening anyway.
158       if (TI->getOpcode() != Instruction::BitCast &&
159           (!TI->hasOneUse() || !FI->hasOneUse()))
160         return nullptr;
161 
162     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
163       // TODO: The one-use restrictions for a scalar select could be eased if
164       // the fold of a select in visitLoadInst() was enhanced to match a pattern
165       // that includes a cast.
166       return nullptr;
167     }
168 
169     // Fold this by inserting a select from the input values.
170     Value *NewSI =
171         Builder.CreateSelect(SI.getCondition(), TI->getOperand(0),
172                              FI->getOperand(0), SI.getName() + ".v", &SI);
173     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
174                             TI->getType());
175   }
176 
177   // Only handle binary operators with one-use here. As with the cast case
178   // above, it may be possible to relax the one-use constraint, but that needs
179   // be examined carefully since it may not reduce the total number of
180   // instructions.
181   BinaryOperator *BO = dyn_cast<BinaryOperator>(TI);
182   if (!BO || !TI->hasOneUse() || !FI->hasOneUse())
183     return nullptr;
184 
185   // Figure out if the operations have any operands in common.
186   Value *MatchOp, *OtherOpT, *OtherOpF;
187   bool MatchIsOpZero;
188   if (TI->getOperand(0) == FI->getOperand(0)) {
189     MatchOp  = TI->getOperand(0);
190     OtherOpT = TI->getOperand(1);
191     OtherOpF = FI->getOperand(1);
192     MatchIsOpZero = true;
193   } else if (TI->getOperand(1) == FI->getOperand(1)) {
194     MatchOp  = TI->getOperand(1);
195     OtherOpT = TI->getOperand(0);
196     OtherOpF = FI->getOperand(0);
197     MatchIsOpZero = false;
198   } else if (!TI->isCommutative()) {
199     return nullptr;
200   } else if (TI->getOperand(0) == FI->getOperand(1)) {
201     MatchOp  = TI->getOperand(0);
202     OtherOpT = TI->getOperand(1);
203     OtherOpF = FI->getOperand(0);
204     MatchIsOpZero = true;
205   } else if (TI->getOperand(1) == FI->getOperand(0)) {
206     MatchOp  = TI->getOperand(1);
207     OtherOpT = TI->getOperand(0);
208     OtherOpF = FI->getOperand(1);
209     MatchIsOpZero = true;
210   } else {
211     return nullptr;
212   }
213 
214   // If we reach here, they do have operations in common.
215   Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
216                                       SI.getName() + ".v", &SI);
217   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
218   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
219   return BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
220 }
221 
222 static bool isSelect01(Constant *C1, Constant *C2) {
223   const APInt *C1I, *C2I;
224   if (!match(C1, m_APInt(C1I)))
225     return false;
226   if (!match(C2, m_APInt(C2I)))
227     return false;
228   if (!C1I->isNullValue() && !C2I->isNullValue()) // One side must be zero.
229     return false;
230   return C1I->isOneValue() || C1I->isAllOnesValue() ||
231          C2I->isOneValue() || C2I->isAllOnesValue();
232 }
233 
234 /// Try to fold the select into one of the operands to allow further
235 /// optimization.
236 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
237                                             Value *FalseVal) {
238   // See the comment above GetSelectFoldableOperands for a description of the
239   // transformation we are doing here.
240   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
241     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
242       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
243         unsigned OpToFold = 0;
244         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
245           OpToFold = 1;
246         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
247           OpToFold = 2;
248         }
249 
250         if (OpToFold) {
251           Constant *C = getSelectFoldableConstant(TVI);
252           Value *OOp = TVI->getOperand(2-OpToFold);
253           // Avoid creating select between 2 constants unless it's selecting
254           // between 0, 1 and -1.
255           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
256             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
257             NewSel->takeName(TVI);
258             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
259                                                         FalseVal, NewSel);
260             BO->copyIRFlags(TVI);
261             return BO;
262           }
263         }
264       }
265     }
266   }
267 
268   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
269     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
270       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
271         unsigned OpToFold = 0;
272         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
273           OpToFold = 1;
274         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
275           OpToFold = 2;
276         }
277 
278         if (OpToFold) {
279           Constant *C = getSelectFoldableConstant(FVI);
280           Value *OOp = FVI->getOperand(2-OpToFold);
281           // Avoid creating select between 2 constants unless it's selecting
282           // between 0, 1 and -1.
283           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
284             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
285             NewSel->takeName(FVI);
286             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
287                                                         TrueVal, NewSel);
288             BO->copyIRFlags(FVI);
289             return BO;
290           }
291         }
292       }
293     }
294   }
295 
296   return nullptr;
297 }
298 
299 /// We want to turn:
300 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
301 /// into:
302 ///   (or (shl (and X, C1), C3), Y)
303 /// iff:
304 ///   C1 and C2 are both powers of 2
305 /// where:
306 ///   C3 = Log(C2) - Log(C1)
307 ///
308 /// This transform handles cases where:
309 /// 1. The icmp predicate is inverted
310 /// 2. The select operands are reversed
311 /// 3. The magnitude of C2 and C1 are flipped
312 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
313                                   Value *FalseVal,
314                                   InstCombiner::BuilderTy &Builder) {
315   // Only handle integer compares. Also, if this is a vector select, we need a
316   // vector compare.
317   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
318       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
319     return nullptr;
320 
321   Value *CmpLHS = IC->getOperand(0);
322   Value *CmpRHS = IC->getOperand(1);
323 
324   Value *V;
325   unsigned C1Log;
326   bool IsEqualZero;
327   bool NeedAnd = false;
328   if (IC->isEquality()) {
329     if (!match(CmpRHS, m_Zero()))
330       return nullptr;
331 
332     const APInt *C1;
333     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
334       return nullptr;
335 
336     V = CmpLHS;
337     C1Log = C1->logBase2();
338     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
339   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
340              IC->getPredicate() == ICmpInst::ICMP_SGT) {
341     // We also need to recognize (icmp slt (trunc (X)), 0) and
342     // (icmp sgt (trunc (X)), -1).
343     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
344     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
345         (!IsEqualZero && !match(CmpRHS, m_Zero())))
346       return nullptr;
347 
348     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
349       return nullptr;
350 
351     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
352     NeedAnd = true;
353   } else {
354     return nullptr;
355   }
356 
357   const APInt *C2;
358   bool OrOnTrueVal = false;
359   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
360   if (!OrOnFalseVal)
361     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
362 
363   if (!OrOnFalseVal && !OrOnTrueVal)
364     return nullptr;
365 
366   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
367 
368   unsigned C2Log = C2->logBase2();
369 
370   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
371   bool NeedShift = C1Log != C2Log;
372   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
373                        V->getType()->getScalarSizeInBits();
374 
375   // Make sure we don't create more instructions than we save.
376   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
377   if ((NeedShift + NeedXor + NeedZExtTrunc) >
378       (IC->hasOneUse() + Or->hasOneUse()))
379     return nullptr;
380 
381   if (NeedAnd) {
382     // Insert the AND instruction on the input to the truncate.
383     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
384     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
385   }
386 
387   if (C2Log > C1Log) {
388     V = Builder.CreateZExtOrTrunc(V, Y->getType());
389     V = Builder.CreateShl(V, C2Log - C1Log);
390   } else if (C1Log > C2Log) {
391     V = Builder.CreateLShr(V, C1Log - C2Log);
392     V = Builder.CreateZExtOrTrunc(V, Y->getType());
393   } else
394     V = Builder.CreateZExtOrTrunc(V, Y->getType());
395 
396   if (NeedXor)
397     V = Builder.CreateXor(V, *C2);
398 
399   return Builder.CreateOr(V, Y);
400 }
401 
402 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
403 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
404 ///
405 /// For example, we can fold the following code sequence:
406 /// \code
407 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
408 ///   %1 = icmp ne i32 %x, 0
409 ///   %2 = select i1 %1, i32 %0, i32 32
410 /// \code
411 ///
412 /// into:
413 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
414 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
415                                  InstCombiner::BuilderTy &Builder) {
416   ICmpInst::Predicate Pred = ICI->getPredicate();
417   Value *CmpLHS = ICI->getOperand(0);
418   Value *CmpRHS = ICI->getOperand(1);
419 
420   // Check if the condition value compares a value for equality against zero.
421   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
422     return nullptr;
423 
424   Value *Count = FalseVal;
425   Value *ValueOnZero = TrueVal;
426   if (Pred == ICmpInst::ICMP_NE)
427     std::swap(Count, ValueOnZero);
428 
429   // Skip zero extend/truncate.
430   Value *V = nullptr;
431   if (match(Count, m_ZExt(m_Value(V))) ||
432       match(Count, m_Trunc(m_Value(V))))
433     Count = V;
434 
435   // Check if the value propagated on zero is a constant number equal to the
436   // sizeof in bits of 'Count'.
437   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
438   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
439     return nullptr;
440 
441   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
442   // input to the cttz/ctlz is used as LHS for the compare instruction.
443   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
444       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
445     IntrinsicInst *II = cast<IntrinsicInst>(Count);
446     // Explicitly clear the 'undef_on_zero' flag.
447     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
448     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
449     Builder.Insert(NewI);
450     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
451   }
452 
453   return nullptr;
454 }
455 
456 /// Return true if we find and adjust an icmp+select pattern where the compare
457 /// is with a constant that can be incremented or decremented to match the
458 /// minimum or maximum idiom.
459 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
460   ICmpInst::Predicate Pred = Cmp.getPredicate();
461   Value *CmpLHS = Cmp.getOperand(0);
462   Value *CmpRHS = Cmp.getOperand(1);
463   Value *TrueVal = Sel.getTrueValue();
464   Value *FalseVal = Sel.getFalseValue();
465 
466   // We may move or edit the compare, so make sure the select is the only user.
467   const APInt *CmpC;
468   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
469     return false;
470 
471   // These transforms only work for selects of integers or vector selects of
472   // integer vectors.
473   Type *SelTy = Sel.getType();
474   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
475   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
476     return false;
477 
478   Constant *AdjustedRHS;
479   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
480     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
481   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
482     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
483   else
484     return false;
485 
486   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
487   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
488   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
489       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
490     ; // Nothing to do here. Values match without any sign/zero extension.
491   }
492   // Types do not match. Instead of calculating this with mixed types, promote
493   // all to the larger type. This enables scalar evolution to analyze this
494   // expression.
495   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
496     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
497 
498     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
499     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
500     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
501     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
502     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
503       CmpLHS = TrueVal;
504       AdjustedRHS = SextRHS;
505     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
506                SextRHS == TrueVal) {
507       CmpLHS = FalseVal;
508       AdjustedRHS = SextRHS;
509     } else if (Cmp.isUnsigned()) {
510       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
511       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
512       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
513       // zext + signed compare cannot be changed:
514       //    0xff <s 0x00, but 0x00ff >s 0x0000
515       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
516         CmpLHS = TrueVal;
517         AdjustedRHS = ZextRHS;
518       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
519                  ZextRHS == TrueVal) {
520         CmpLHS = FalseVal;
521         AdjustedRHS = ZextRHS;
522       } else {
523         return false;
524       }
525     } else {
526       return false;
527     }
528   } else {
529     return false;
530   }
531 
532   Pred = ICmpInst::getSwappedPredicate(Pred);
533   CmpRHS = AdjustedRHS;
534   std::swap(FalseVal, TrueVal);
535   Cmp.setPredicate(Pred);
536   Cmp.setOperand(0, CmpLHS);
537   Cmp.setOperand(1, CmpRHS);
538   Sel.setOperand(1, TrueVal);
539   Sel.setOperand(2, FalseVal);
540   Sel.swapProfMetadata();
541 
542   // Move the compare instruction right before the select instruction. Otherwise
543   // the sext/zext value may be defined after the compare instruction uses it.
544   Cmp.moveBefore(&Sel);
545 
546   return true;
547 }
548 
549 /// If this is an integer min/max (icmp + select) with a constant operand,
550 /// create the canonical icmp for the min/max operation and canonicalize the
551 /// constant to the 'false' operand of the select:
552 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
553 /// Note: if C1 != C2, this will change the icmp constant to the existing
554 /// constant operand of the select.
555 static Instruction *
556 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
557                                InstCombiner::BuilderTy &Builder) {
558   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
559     return nullptr;
560 
561   // Canonicalize the compare predicate based on whether we have min or max.
562   Value *LHS, *RHS;
563   ICmpInst::Predicate NewPred;
564   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
565   switch (SPR.Flavor) {
566   case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break;
567   case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break;
568   case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break;
569   case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break;
570   default: return nullptr;
571   }
572 
573   // Is this already canonical?
574   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
575       Cmp.getPredicate() == NewPred)
576     return nullptr;
577 
578   // Create the canonical compare and plug it into the select.
579   Sel.setCondition(Builder.CreateICmp(NewPred, LHS, RHS));
580 
581   // If the select operands did not change, we're done.
582   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
583     return &Sel;
584 
585   // If we are swapping the select operands, swap the metadata too.
586   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
587          "Unexpected results from matchSelectPattern");
588   Sel.setTrueValue(LHS);
589   Sel.setFalseValue(RHS);
590   Sel.swapProfMetadata();
591   return &Sel;
592 }
593 
594 /// If one of the constants is zero (we know they can't both be) and we have an
595 /// icmp instruction with zero, and we have an 'and' with the non-constant value
596 /// and a power of two we can turn the select into a shift on the result of the
597 /// 'and'.
598 /// This folds:
599 ///  select (icmp eq (and X, C1)), C2, C3
600 ///    iff C1 is a power 2 and the difference between C2 and C3 is a power of 2.
601 /// To something like:
602 ///  (shr (and (X, C1)), (log2(C1) - log2(C2-C3))) + C3
603 /// Or:
604 ///  (shl (and (X, C1)), (log2(C2-C3) - log2(C1))) + C3
605 /// With some variations depending if C3 is larger than C2, or the shift
606 /// isn't needed, or the bit widths don't match.
607 static Value *foldSelectICmpAnd(Type *SelType, const ICmpInst *IC,
608                                 APInt TrueVal, APInt FalseVal,
609                                 InstCombiner::BuilderTy &Builder) {
610   assert(SelType->isIntOrIntVectorTy() && "Not an integer select?");
611 
612   // If this is a vector select, we need a vector compare.
613   if (SelType->isVectorTy() != IC->getType()->isVectorTy())
614     return nullptr;
615 
616   Value *V;
617   APInt AndMask;
618   bool CreateAnd = false;
619   ICmpInst::Predicate Pred = IC->getPredicate();
620   if (ICmpInst::isEquality(Pred)) {
621     if (!match(IC->getOperand(1), m_Zero()))
622       return nullptr;
623 
624     V = IC->getOperand(0);
625 
626     const APInt *AndRHS;
627     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
628       return nullptr;
629 
630     AndMask = *AndRHS;
631   } else if (decomposeBitTestICmp(IC->getOperand(0), IC->getOperand(1),
632                                   Pred, V, AndMask)) {
633     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
634 
635     if (!AndMask.isPowerOf2())
636       return nullptr;
637 
638     CreateAnd = true;
639   } else {
640     return nullptr;
641   }
642 
643   // If both select arms are non-zero see if we have a select of the form
644   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
645   // for 'x ? 2^n : 0' and fix the thing up at the end.
646   APInt Offset(TrueVal.getBitWidth(), 0);
647   if (!TrueVal.isNullValue() && !FalseVal.isNullValue()) {
648     if ((TrueVal - FalseVal).isPowerOf2())
649       Offset = FalseVal;
650     else if ((FalseVal - TrueVal).isPowerOf2())
651       Offset = TrueVal;
652     else
653       return nullptr;
654 
655     // Adjust TrueVal and FalseVal to the offset.
656     TrueVal -= Offset;
657     FalseVal -= Offset;
658   }
659 
660   // Make sure one of the select arms is a power of 2.
661   if (!TrueVal.isPowerOf2() && !FalseVal.isPowerOf2())
662     return nullptr;
663 
664   // Determine which shift is needed to transform result of the 'and' into the
665   // desired result.
666   const APInt &ValC = !TrueVal.isNullValue() ? TrueVal : FalseVal;
667   unsigned ValZeros = ValC.logBase2();
668   unsigned AndZeros = AndMask.logBase2();
669 
670   if (CreateAnd) {
671     // Insert the AND instruction on the input to the truncate.
672     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
673   }
674 
675   // If types don't match we can still convert the select by introducing a zext
676   // or a trunc of the 'and'.
677   if (ValZeros > AndZeros) {
678     V = Builder.CreateZExtOrTrunc(V, SelType);
679     V = Builder.CreateShl(V, ValZeros - AndZeros);
680   } else if (ValZeros < AndZeros) {
681     V = Builder.CreateLShr(V, AndZeros - ValZeros);
682     V = Builder.CreateZExtOrTrunc(V, SelType);
683   } else
684     V = Builder.CreateZExtOrTrunc(V, SelType);
685 
686   // Okay, now we know that everything is set up, we just don't know whether we
687   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
688   bool ShouldNotVal = !TrueVal.isNullValue();
689   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
690   if (ShouldNotVal)
691     V = Builder.CreateXor(V, ValC);
692 
693   // Apply an offset if needed.
694   if (!Offset.isNullValue())
695     V = Builder.CreateAdd(V, ConstantInt::get(V->getType(), Offset));
696   return V;
697 }
698 
699 /// Visit a SelectInst that has an ICmpInst as its first operand.
700 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
701                                                   ICmpInst *ICI) {
702   Value *TrueVal = SI.getTrueValue();
703   Value *FalseVal = SI.getFalseValue();
704 
705   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
706     return NewSel;
707 
708   bool Changed = adjustMinMax(SI, *ICI);
709 
710   ICmpInst::Predicate Pred = ICI->getPredicate();
711   Value *CmpLHS = ICI->getOperand(0);
712   Value *CmpRHS = ICI->getOperand(1);
713 
714   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
715   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
716   // FIXME: Type and constness constraints could be lifted, but we have to
717   //        watch code size carefully. We should consider xor instead of
718   //        sub/add when we decide to do that.
719   // TODO: Merge this with foldSelectICmpAnd somehow.
720   if (CmpLHS->getType()->isIntOrIntVectorTy() &&
721       CmpLHS->getType() == TrueVal->getType()) {
722     const APInt *C1, *C2;
723     if (match(TrueVal, m_APInt(C1)) && match(FalseVal, m_APInt(C2))) {
724       ICmpInst::Predicate Pred = ICI->getPredicate();
725       Value *X;
726       APInt Mask;
727       if (decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) {
728         if (Mask.isSignMask()) {
729           assert(X == CmpLHS && "Expected to use the compare input directly");
730           assert(ICmpInst::isEquality(Pred) && "Expected equality predicate");
731 
732           if (Pred == ICmpInst::ICMP_NE)
733             std::swap(C1, C2);
734 
735           // This shift results in either -1 or 0.
736           Value *AShr = Builder.CreateAShr(X, Mask.getBitWidth() - 1);
737 
738           // Check if we can express the operation with a single or.
739           if (C2->isAllOnesValue())
740             return replaceInstUsesWith(SI, Builder.CreateOr(AShr, *C1));
741 
742           Value *And = Builder.CreateAnd(AShr, *C2 - *C1);
743           return replaceInstUsesWith(SI, Builder.CreateAdd(And,
744                                         ConstantInt::get(And->getType(), *C1)));
745         }
746       }
747     }
748   }
749 
750   {
751     const APInt *TrueValC, *FalseValC;
752     if (match(TrueVal, m_APInt(TrueValC)) &&
753         match(FalseVal, m_APInt(FalseValC)))
754       if (Value *V = foldSelectICmpAnd(SI.getType(), ICI, *TrueValC,
755                                        *FalseValC, Builder))
756         return replaceInstUsesWith(SI, V);
757   }
758 
759   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
760 
761   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
762     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
763       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
764       SI.setOperand(1, CmpRHS);
765       Changed = true;
766     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
767       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
768       SI.setOperand(2, CmpRHS);
769       Changed = true;
770     }
771   }
772 
773   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
774   // decomposeBitTestICmp() might help.
775   {
776     unsigned BitWidth =
777         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
778     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
779     Value *X;
780     const APInt *Y, *C;
781     bool TrueWhenUnset;
782     bool IsBitTest = false;
783     if (ICmpInst::isEquality(Pred) &&
784         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
785         match(CmpRHS, m_Zero())) {
786       IsBitTest = true;
787       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
788     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
789       X = CmpLHS;
790       Y = &MinSignedValue;
791       IsBitTest = true;
792       TrueWhenUnset = false;
793     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
794       X = CmpLHS;
795       Y = &MinSignedValue;
796       IsBitTest = true;
797       TrueWhenUnset = true;
798     }
799     if (IsBitTest) {
800       Value *V = nullptr;
801       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
802       if (TrueWhenUnset && TrueVal == X &&
803           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
804         V = Builder.CreateAnd(X, ~(*Y));
805       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
806       else if (!TrueWhenUnset && FalseVal == X &&
807                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
808         V = Builder.CreateAnd(X, ~(*Y));
809       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
810       else if (TrueWhenUnset && FalseVal == X &&
811                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
812         V = Builder.CreateOr(X, *Y);
813       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
814       else if (!TrueWhenUnset && TrueVal == X &&
815                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
816         V = Builder.CreateOr(X, *Y);
817 
818       if (V)
819         return replaceInstUsesWith(SI, V);
820     }
821   }
822 
823   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
824     return replaceInstUsesWith(SI, V);
825 
826   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
827     return replaceInstUsesWith(SI, V);
828 
829   return Changed ? &SI : nullptr;
830 }
831 
832 
833 /// SI is a select whose condition is a PHI node (but the two may be in
834 /// different blocks). See if the true/false values (V) are live in all of the
835 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
836 ///
837 ///   X = phi [ C1, BB1], [C2, BB2]
838 ///   Y = add
839 ///   Z = select X, Y, 0
840 ///
841 /// because Y is not live in BB1/BB2.
842 ///
843 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
844                                                    const SelectInst &SI) {
845   // If the value is a non-instruction value like a constant or argument, it
846   // can always be mapped.
847   const Instruction *I = dyn_cast<Instruction>(V);
848   if (!I) return true;
849 
850   // If V is a PHI node defined in the same block as the condition PHI, we can
851   // map the arguments.
852   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
853 
854   if (const PHINode *VP = dyn_cast<PHINode>(I))
855     if (VP->getParent() == CondPHI->getParent())
856       return true;
857 
858   // Otherwise, if the PHI and select are defined in the same block and if V is
859   // defined in a different block, then we can transform it.
860   if (SI.getParent() == CondPHI->getParent() &&
861       I->getParent() != CondPHI->getParent())
862     return true;
863 
864   // Otherwise we have a 'hard' case and we can't tell without doing more
865   // detailed dominator based analysis, punt.
866   return false;
867 }
868 
869 /// We have an SPF (e.g. a min or max) of an SPF of the form:
870 ///   SPF2(SPF1(A, B), C)
871 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
872                                         SelectPatternFlavor SPF1,
873                                         Value *A, Value *B,
874                                         Instruction &Outer,
875                                         SelectPatternFlavor SPF2, Value *C) {
876   if (Outer.getType() != Inner->getType())
877     return nullptr;
878 
879   if (C == A || C == B) {
880     // MAX(MAX(A, B), B) -> MAX(A, B)
881     // MIN(MIN(a, b), a) -> MIN(a, b)
882     if (SPF1 == SPF2)
883       return replaceInstUsesWith(Outer, Inner);
884 
885     // MAX(MIN(a, b), a) -> a
886     // MIN(MAX(a, b), a) -> a
887     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
888         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
889         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
890         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
891       return replaceInstUsesWith(Outer, C);
892   }
893 
894   if (SPF1 == SPF2) {
895     const APInt *CB, *CC;
896     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
897       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
898       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
899       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
900           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
901           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
902           (SPF1 == SPF_SMAX && CB->sge(*CC)))
903         return replaceInstUsesWith(Outer, Inner);
904 
905       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
906       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
907       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
908           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
909           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
910           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
911         Outer.replaceUsesOfWith(Inner, A);
912         return &Outer;
913       }
914     }
915   }
916 
917   // ABS(ABS(X)) -> ABS(X)
918   // NABS(NABS(X)) -> NABS(X)
919   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
920     return replaceInstUsesWith(Outer, Inner);
921   }
922 
923   // ABS(NABS(X)) -> ABS(X)
924   // NABS(ABS(X)) -> NABS(X)
925   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
926       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
927     SelectInst *SI = cast<SelectInst>(Inner);
928     Value *NewSI =
929         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
930                              SI->getTrueValue(), SI->getName(), SI);
931     return replaceInstUsesWith(Outer, NewSI);
932   }
933 
934   auto IsFreeOrProfitableToInvert =
935       [&](Value *V, Value *&NotV, bool &ElidesXor) {
936     if (match(V, m_Not(m_Value(NotV)))) {
937       // If V has at most 2 uses then we can get rid of the xor operation
938       // entirely.
939       ElidesXor |= !V->hasNUsesOrMore(3);
940       return true;
941     }
942 
943     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
944       NotV = nullptr;
945       return true;
946     }
947 
948     return false;
949   };
950 
951   Value *NotA, *NotB, *NotC;
952   bool ElidesXor = false;
953 
954   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
955   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
956   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
957   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
958   //
959   // This transform is performance neutral if we can elide at least one xor from
960   // the set of three operands, since we'll be tacking on an xor at the very
961   // end.
962   if (SelectPatternResult::isMinOrMax(SPF1) &&
963       SelectPatternResult::isMinOrMax(SPF2) &&
964       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
965       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
966       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
967     if (!NotA)
968       NotA = Builder.CreateNot(A);
969     if (!NotB)
970       NotB = Builder.CreateNot(B);
971     if (!NotC)
972       NotC = Builder.CreateNot(C);
973 
974     Value *NewInner = generateMinMaxSelectPattern(
975         Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
976     Value *NewOuter = Builder.CreateNot(generateMinMaxSelectPattern(
977         Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
978     return replaceInstUsesWith(Outer, NewOuter);
979   }
980 
981   return nullptr;
982 }
983 
984 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
985 /// This is even legal for FP.
986 static Instruction *foldAddSubSelect(SelectInst &SI,
987                                      InstCombiner::BuilderTy &Builder) {
988   Value *CondVal = SI.getCondition();
989   Value *TrueVal = SI.getTrueValue();
990   Value *FalseVal = SI.getFalseValue();
991   auto *TI = dyn_cast<Instruction>(TrueVal);
992   auto *FI = dyn_cast<Instruction>(FalseVal);
993   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
994     return nullptr;
995 
996   Instruction *AddOp = nullptr, *SubOp = nullptr;
997   if ((TI->getOpcode() == Instruction::Sub &&
998        FI->getOpcode() == Instruction::Add) ||
999       (TI->getOpcode() == Instruction::FSub &&
1000        FI->getOpcode() == Instruction::FAdd)) {
1001     AddOp = FI;
1002     SubOp = TI;
1003   } else if ((FI->getOpcode() == Instruction::Sub &&
1004               TI->getOpcode() == Instruction::Add) ||
1005              (FI->getOpcode() == Instruction::FSub &&
1006               TI->getOpcode() == Instruction::FAdd)) {
1007     AddOp = TI;
1008     SubOp = FI;
1009   }
1010 
1011   if (AddOp) {
1012     Value *OtherAddOp = nullptr;
1013     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1014       OtherAddOp = AddOp->getOperand(1);
1015     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1016       OtherAddOp = AddOp->getOperand(0);
1017     }
1018 
1019     if (OtherAddOp) {
1020       // So at this point we know we have (Y -> OtherAddOp):
1021       //        select C, (add X, Y), (sub X, Z)
1022       Value *NegVal; // Compute -Z
1023       if (SI.getType()->isFPOrFPVectorTy()) {
1024         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1025         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1026           FastMathFlags Flags = AddOp->getFastMathFlags();
1027           Flags &= SubOp->getFastMathFlags();
1028           NegInst->setFastMathFlags(Flags);
1029         }
1030       } else {
1031         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1032       }
1033 
1034       Value *NewTrueOp = OtherAddOp;
1035       Value *NewFalseOp = NegVal;
1036       if (AddOp != TI)
1037         std::swap(NewTrueOp, NewFalseOp);
1038       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1039                                            SI.getName() + ".p", &SI);
1040 
1041       if (SI.getType()->isFPOrFPVectorTy()) {
1042         Instruction *RI =
1043             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1044 
1045         FastMathFlags Flags = AddOp->getFastMathFlags();
1046         Flags &= SubOp->getFastMathFlags();
1047         RI->setFastMathFlags(Flags);
1048         return RI;
1049       } else
1050         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1051     }
1052   }
1053   return nullptr;
1054 }
1055 
1056 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1057   Instruction *ExtInst;
1058   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1059       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1060     return nullptr;
1061 
1062   auto ExtOpcode = ExtInst->getOpcode();
1063   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1064     return nullptr;
1065 
1066   // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too.
1067   Value *X = ExtInst->getOperand(0);
1068   Type *SmallType = X->getType();
1069   if (!SmallType->isIntOrIntVectorTy(1))
1070     return nullptr;
1071 
1072   Constant *C;
1073   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1074       !match(Sel.getFalseValue(), m_Constant(C)))
1075     return nullptr;
1076 
1077   // If the constant is the same after truncation to the smaller type and
1078   // extension to the original type, we can narrow the select.
1079   Value *Cond = Sel.getCondition();
1080   Type *SelType = Sel.getType();
1081   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1082   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1083   if (ExtC == C) {
1084     Value *TruncCVal = cast<Value>(TruncC);
1085     if (ExtInst == Sel.getFalseValue())
1086       std::swap(X, TruncCVal);
1087 
1088     // select Cond, (ext X), C --> ext(select Cond, X, C')
1089     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1090     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1091     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1092   }
1093 
1094   // If one arm of the select is the extend of the condition, replace that arm
1095   // with the extension of the appropriate known bool value.
1096   if (Cond == X) {
1097     if (ExtInst == Sel.getTrueValue()) {
1098       // select X, (sext X), C --> select X, -1, C
1099       // select X, (zext X), C --> select X,  1, C
1100       Constant *One = ConstantInt::getTrue(SmallType);
1101       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1102       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1103     } else {
1104       // select X, C, (sext X) --> select X, C, 0
1105       // select X, C, (zext X) --> select X, C, 0
1106       Constant *Zero = ConstantInt::getNullValue(SelType);
1107       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1108     }
1109   }
1110 
1111   return nullptr;
1112 }
1113 
1114 /// Try to transform a vector select with a constant condition vector into a
1115 /// shuffle for easier combining with other shuffles and insert/extract.
1116 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1117   Value *CondVal = SI.getCondition();
1118   Constant *CondC;
1119   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1120     return nullptr;
1121 
1122   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1123   SmallVector<Constant *, 16> Mask;
1124   Mask.reserve(NumElts);
1125   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1126   for (unsigned i = 0; i != NumElts; ++i) {
1127     Constant *Elt = CondC->getAggregateElement(i);
1128     if (!Elt)
1129       return nullptr;
1130 
1131     if (Elt->isOneValue()) {
1132       // If the select condition element is true, choose from the 1st vector.
1133       Mask.push_back(ConstantInt::get(Int32Ty, i));
1134     } else if (Elt->isNullValue()) {
1135       // If the select condition element is false, choose from the 2nd vector.
1136       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1137     } else if (isa<UndefValue>(Elt)) {
1138       // Undef in a select condition (choose one of the operands) does not mean
1139       // the same thing as undef in a shuffle mask (any value is acceptable), so
1140       // give up.
1141       return nullptr;
1142     } else {
1143       // Bail out on a constant expression.
1144       return nullptr;
1145     }
1146   }
1147 
1148   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1149                                ConstantVector::get(Mask));
1150 }
1151 
1152 /// Reuse bitcasted operands between a compare and select:
1153 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1154 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1155 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1156                                           InstCombiner::BuilderTy &Builder) {
1157   Value *Cond = Sel.getCondition();
1158   Value *TVal = Sel.getTrueValue();
1159   Value *FVal = Sel.getFalseValue();
1160 
1161   CmpInst::Predicate Pred;
1162   Value *A, *B;
1163   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1164     return nullptr;
1165 
1166   // The select condition is a compare instruction. If the select's true/false
1167   // values are already the same as the compare operands, there's nothing to do.
1168   if (TVal == A || TVal == B || FVal == A || FVal == B)
1169     return nullptr;
1170 
1171   Value *C, *D;
1172   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1173     return nullptr;
1174 
1175   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1176   Value *TSrc, *FSrc;
1177   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1178       !match(FVal, m_BitCast(m_Value(FSrc))))
1179     return nullptr;
1180 
1181   // If the select true/false values are *different bitcasts* of the same source
1182   // operands, make the select operands the same as the compare operands and
1183   // cast the result. This is the canonical select form for min/max.
1184   Value *NewSel;
1185   if (TSrc == C && FSrc == D) {
1186     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1187     // bitcast (select (cmp A, B), A, B)
1188     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1189   } else if (TSrc == D && FSrc == C) {
1190     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1191     // bitcast (select (cmp A, B), B, A)
1192     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1193   } else {
1194     return nullptr;
1195   }
1196   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1197 }
1198 
1199 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
1200   Value *CondVal = SI.getCondition();
1201   Value *TrueVal = SI.getTrueValue();
1202   Value *FalseVal = SI.getFalseValue();
1203   Type *SelType = SI.getType();
1204 
1205   // FIXME: Remove this workaround when freeze related patches are done.
1206   // For select with undef operand which feeds into an equality comparison,
1207   // don't simplify it so loop unswitch can know the equality comparison
1208   // may have an undef operand. This is a workaround for PR31652 caused by
1209   // descrepancy about branch on undef between LoopUnswitch and GVN.
1210   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
1211     if (any_of(SI.users(), [&](User *U) {
1212           ICmpInst *CI = dyn_cast<ICmpInst>(U);
1213           if (CI && CI->isEquality())
1214             return true;
1215           return false;
1216         })) {
1217       return nullptr;
1218     }
1219   }
1220 
1221   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
1222                                     SQ.getWithInstruction(&SI)))
1223     return replaceInstUsesWith(SI, V);
1224 
1225   if (Instruction *I = canonicalizeSelectToShuffle(SI))
1226     return I;
1227 
1228   // Canonicalize a one-use integer compare with a non-canonical predicate by
1229   // inverting the predicate and swapping the select operands. This matches a
1230   // compare canonicalization for conditional branches.
1231   // TODO: Should we do the same for FP compares?
1232   CmpInst::Predicate Pred;
1233   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
1234       !isCanonicalPredicate(Pred)) {
1235     // Swap true/false values and condition.
1236     CmpInst *Cond = cast<CmpInst>(CondVal);
1237     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
1238     SI.setOperand(1, FalseVal);
1239     SI.setOperand(2, TrueVal);
1240     SI.swapProfMetadata();
1241     Worklist.Add(Cond);
1242     return &SI;
1243   }
1244 
1245   if (SelType->isIntOrIntVectorTy(1) &&
1246       TrueVal->getType() == CondVal->getType()) {
1247     if (match(TrueVal, m_One())) {
1248       // Change: A = select B, true, C --> A = or B, C
1249       return BinaryOperator::CreateOr(CondVal, FalseVal);
1250     }
1251     if (match(TrueVal, m_Zero())) {
1252       // Change: A = select B, false, C --> A = and !B, C
1253       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1254       return BinaryOperator::CreateAnd(NotCond, FalseVal);
1255     }
1256     if (match(FalseVal, m_Zero())) {
1257       // Change: A = select B, C, false --> A = and B, C
1258       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1259     }
1260     if (match(FalseVal, m_One())) {
1261       // Change: A = select B, C, true --> A = or !B, C
1262       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1263       return BinaryOperator::CreateOr(NotCond, TrueVal);
1264     }
1265 
1266     // select a, a, b  -> a | b
1267     // select a, b, a  -> a & b
1268     if (CondVal == TrueVal)
1269       return BinaryOperator::CreateOr(CondVal, FalseVal);
1270     if (CondVal == FalseVal)
1271       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1272 
1273     // select a, ~a, b -> (~a) & b
1274     // select a, b, ~a -> (~a) | b
1275     if (match(TrueVal, m_Not(m_Specific(CondVal))))
1276       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
1277     if (match(FalseVal, m_Not(m_Specific(CondVal))))
1278       return BinaryOperator::CreateOr(TrueVal, FalseVal);
1279   }
1280 
1281   // Selecting between two integer or vector splat integer constants?
1282   //
1283   // Note that we don't handle a scalar select of vectors:
1284   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
1285   // because that may need 3 instructions to splat the condition value:
1286   // extend, insertelement, shufflevector.
1287   if (SelType->isIntOrIntVectorTy() &&
1288       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
1289     // select C, 1, 0 -> zext C to int
1290     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
1291       return new ZExtInst(CondVal, SelType);
1292 
1293     // select C, -1, 0 -> sext C to int
1294     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
1295       return new SExtInst(CondVal, SelType);
1296 
1297     // select C, 0, 1 -> zext !C to int
1298     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
1299       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1300       return new ZExtInst(NotCond, SelType);
1301     }
1302 
1303     // select C, 0, -1 -> sext !C to int
1304     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
1305       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1306       return new SExtInst(NotCond, SelType);
1307     }
1308   }
1309 
1310   // See if we are selecting two values based on a comparison of the two values.
1311   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
1312     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
1313       // Transform (X == Y) ? X : Y  -> Y
1314       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1315         // This is not safe in general for floating point:
1316         // consider X== -0, Y== +0.
1317         // It becomes safe if either operand is a nonzero constant.
1318         ConstantFP *CFPt, *CFPf;
1319         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1320               !CFPt->getValueAPF().isZero()) ||
1321             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1322              !CFPf->getValueAPF().isZero()))
1323         return replaceInstUsesWith(SI, FalseVal);
1324       }
1325       // Transform (X une Y) ? X : Y  -> X
1326       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1327         // This is not safe in general for floating point:
1328         // consider X== -0, Y== +0.
1329         // It becomes safe if either operand is a nonzero constant.
1330         ConstantFP *CFPt, *CFPf;
1331         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1332               !CFPt->getValueAPF().isZero()) ||
1333             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1334              !CFPf->getValueAPF().isZero()))
1335         return replaceInstUsesWith(SI, TrueVal);
1336       }
1337 
1338       // Canonicalize to use ordered comparisons by swapping the select
1339       // operands.
1340       //
1341       // e.g.
1342       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1343       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1344         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1345         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1346         Builder.setFastMathFlags(FCI->getFastMathFlags());
1347         Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
1348                                             FCI->getName() + ".inv");
1349 
1350         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1351                                   SI.getName() + ".p");
1352       }
1353 
1354       // NOTE: if we wanted to, this is where to detect MIN/MAX
1355     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1356       // Transform (X == Y) ? Y : X  -> X
1357       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1358         // This is not safe in general for floating point:
1359         // consider X== -0, Y== +0.
1360         // It becomes safe if either operand is a nonzero constant.
1361         ConstantFP *CFPt, *CFPf;
1362         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1363               !CFPt->getValueAPF().isZero()) ||
1364             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1365              !CFPf->getValueAPF().isZero()))
1366           return replaceInstUsesWith(SI, FalseVal);
1367       }
1368       // Transform (X une Y) ? Y : X  -> Y
1369       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1370         // This is not safe in general for floating point:
1371         // consider X== -0, Y== +0.
1372         // It becomes safe if either operand is a nonzero constant.
1373         ConstantFP *CFPt, *CFPf;
1374         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1375               !CFPt->getValueAPF().isZero()) ||
1376             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1377              !CFPf->getValueAPF().isZero()))
1378           return replaceInstUsesWith(SI, TrueVal);
1379       }
1380 
1381       // Canonicalize to use ordered comparisons by swapping the select
1382       // operands.
1383       //
1384       // e.g.
1385       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1386       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1387         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1388         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1389         Builder.setFastMathFlags(FCI->getFastMathFlags());
1390         Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
1391                                             FCI->getName() + ".inv");
1392 
1393         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1394                                   SI.getName() + ".p");
1395       }
1396 
1397       // NOTE: if we wanted to, this is where to detect MIN/MAX
1398     }
1399     // NOTE: if we wanted to, this is where to detect ABS
1400   }
1401 
1402   // See if we are selecting two values based on a comparison of the two values.
1403   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1404     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
1405       return Result;
1406 
1407   if (Instruction *Add = foldAddSubSelect(SI, Builder))
1408     return Add;
1409 
1410   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1411   auto *TI = dyn_cast<Instruction>(TrueVal);
1412   auto *FI = dyn_cast<Instruction>(FalseVal);
1413   if (TI && FI && TI->getOpcode() == FI->getOpcode())
1414     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
1415       return IV;
1416 
1417   if (Instruction *I = foldSelectExtConst(SI))
1418     return I;
1419 
1420   // See if we can fold the select into one of our operands.
1421   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1422     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
1423       return FoldI;
1424 
1425     Value *LHS, *RHS, *LHS2, *RHS2;
1426     Instruction::CastOps CastOp;
1427     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1428     auto SPF = SPR.Flavor;
1429 
1430     if (SelectPatternResult::isMinOrMax(SPF)) {
1431       // Canonicalize so that
1432       // - type casts are outside select patterns.
1433       // - float clamp is transformed to min/max pattern
1434 
1435       bool IsCastNeeded = LHS->getType() != SelType;
1436       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
1437       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
1438       if (IsCastNeeded ||
1439           (LHS->getType()->isFPOrFPVectorTy() &&
1440            ((CmpLHS != LHS && CmpLHS != RHS) ||
1441             (CmpRHS != LHS && CmpRHS != RHS)))) {
1442         CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
1443 
1444         Value *Cmp;
1445         if (CmpInst::isIntPredicate(Pred)) {
1446           Cmp = Builder.CreateICmp(Pred, LHS, RHS);
1447         } else {
1448           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1449           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1450           Builder.setFastMathFlags(FMF);
1451           Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
1452         }
1453 
1454         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
1455         if (!IsCastNeeded)
1456           return replaceInstUsesWith(SI, NewSI);
1457 
1458         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
1459         return replaceInstUsesWith(SI, NewCast);
1460       }
1461     }
1462 
1463     if (SPF) {
1464       // MAX(MAX(a, b), a) -> MAX(a, b)
1465       // MIN(MIN(a, b), a) -> MIN(a, b)
1466       // MAX(MIN(a, b), a) -> a
1467       // MIN(MAX(a, b), a) -> a
1468       // ABS(ABS(a)) -> ABS(a)
1469       // NABS(NABS(a)) -> NABS(a)
1470       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1471         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
1472                                           SI, SPF, RHS))
1473           return R;
1474       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1475         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
1476                                           SI, SPF, LHS))
1477           return R;
1478     }
1479 
1480     // MAX(~a, ~b) -> ~MIN(a, b)
1481     if ((SPF == SPF_SMAX || SPF == SPF_UMAX) &&
1482         IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
1483         IsFreeToInvert(RHS, RHS->hasNUses(2))) {
1484       // For this transform to be profitable, we need to eliminate at least two
1485       // 'not' instructions if we're going to add one 'not' instruction.
1486       int NumberOfNots =
1487           (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) +
1488           (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) +
1489           (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
1490 
1491       if (NumberOfNots >= 2) {
1492         Value *NewLHS = Builder.CreateNot(LHS);
1493         Value *NewRHS = Builder.CreateNot(RHS);
1494         Value *NewCmp = SPF == SPF_SMAX ? Builder.CreateICmpSLT(NewLHS, NewRHS)
1495                                         : Builder.CreateICmpULT(NewLHS, NewRHS);
1496         Value *NewSI =
1497             Builder.CreateNot(Builder.CreateSelect(NewCmp, NewLHS, NewRHS));
1498         return replaceInstUsesWith(SI, NewSI);
1499       }
1500     }
1501 
1502     // TODO.
1503     // ABS(-X) -> ABS(X)
1504   }
1505 
1506   // See if we can fold the select into a phi node if the condition is a select.
1507   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
1508     // The true/false values have to be live in the PHI predecessor's blocks.
1509     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1510         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1511       if (Instruction *NV = foldOpIntoPhi(SI, PN))
1512         return NV;
1513 
1514   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1515     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1516       // select(C, select(C, a, b), c) -> select(C, a, c)
1517       if (TrueSI->getCondition() == CondVal) {
1518         if (SI.getTrueValue() == TrueSI->getTrueValue())
1519           return nullptr;
1520         SI.setOperand(1, TrueSI->getTrueValue());
1521         return &SI;
1522       }
1523       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1524       // We choose this as normal form to enable folding on the And and shortening
1525       // paths for the values (this helps GetUnderlyingObjects() for example).
1526       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1527         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
1528         SI.setOperand(0, And);
1529         SI.setOperand(1, TrueSI->getTrueValue());
1530         return &SI;
1531       }
1532     }
1533   }
1534   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1535     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1536       // select(C, a, select(C, b, c)) -> select(C, a, c)
1537       if (FalseSI->getCondition() == CondVal) {
1538         if (SI.getFalseValue() == FalseSI->getFalseValue())
1539           return nullptr;
1540         SI.setOperand(2, FalseSI->getFalseValue());
1541         return &SI;
1542       }
1543       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1544       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1545         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
1546         SI.setOperand(0, Or);
1547         SI.setOperand(2, FalseSI->getFalseValue());
1548         return &SI;
1549       }
1550     }
1551   }
1552 
1553   if (BinaryOperator::isNot(CondVal)) {
1554     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
1555     SI.setOperand(1, FalseVal);
1556     SI.setOperand(2, TrueVal);
1557     return &SI;
1558   }
1559 
1560   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
1561     unsigned VWidth = VecTy->getNumElements();
1562     APInt UndefElts(VWidth, 0);
1563     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1564     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
1565       if (V != &SI)
1566         return replaceInstUsesWith(SI, V);
1567       return &SI;
1568     }
1569   }
1570 
1571   // See if we can determine the result of this select based on a dominating
1572   // condition.
1573   BasicBlock *Parent = SI.getParent();
1574   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
1575     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
1576     if (PBI && PBI->isConditional() &&
1577         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
1578         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
1579       bool CondIsTrue = PBI->getSuccessor(0) == Parent;
1580       Optional<bool> Implication = isImpliedCondition(
1581           PBI->getCondition(), SI.getCondition(), DL, CondIsTrue);
1582       if (Implication) {
1583         Value *V = *Implication ? TrueVal : FalseVal;
1584         return replaceInstUsesWith(SI, V);
1585       }
1586     }
1587   }
1588 
1589   // If we can compute the condition, there's no need for a select.
1590   // Like the above fold, we are attempting to reduce compile-time cost by
1591   // putting this fold here with limitations rather than in InstSimplify.
1592   // The motivation for this call into value tracking is to take advantage of
1593   // the assumption cache, so make sure that is populated.
1594   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
1595     KnownBits Known(1);
1596     computeKnownBits(CondVal, Known, 0, &SI);
1597     if (Known.One.isOneValue())
1598       return replaceInstUsesWith(SI, TrueVal);
1599     if (Known.Zero.isOneValue())
1600       return replaceInstUsesWith(SI, FalseVal);
1601   }
1602 
1603   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
1604     return BitCastSel;
1605 
1606   return nullptr;
1607 }
1608