1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41 #include "llvm/Transforms/InstCombine/InstCombiner.h"
42 #include <cassert>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace PatternMatch;
47 
48 #define DEBUG_TYPE "instcombine"
49 
50 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
51                            SelectPatternFlavor SPF, Value *A, Value *B) {
52   CmpInst::Predicate Pred = getMinMaxPred(SPF);
53   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
54   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
55 }
56 
57 /// Replace a select operand based on an equality comparison with the identity
58 /// constant of a binop.
59 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
60                                             const TargetLibraryInfo &TLI,
61                                             InstCombinerImpl &IC) {
62   // The select condition must be an equality compare with a constant operand.
63   Value *X;
64   Constant *C;
65   CmpInst::Predicate Pred;
66   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
67     return nullptr;
68 
69   bool IsEq;
70   if (ICmpInst::isEquality(Pred))
71     IsEq = Pred == ICmpInst::ICMP_EQ;
72   else if (Pred == FCmpInst::FCMP_OEQ)
73     IsEq = true;
74   else if (Pred == FCmpInst::FCMP_UNE)
75     IsEq = false;
76   else
77     return nullptr;
78 
79   // A select operand must be a binop.
80   BinaryOperator *BO;
81   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
82     return nullptr;
83 
84   // The compare constant must be the identity constant for that binop.
85   // If this a floating-point compare with 0.0, any zero constant will do.
86   Type *Ty = BO->getType();
87   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
88   if (IdC != C) {
89     if (!IdC || !CmpInst::isFPPredicate(Pred))
90       return nullptr;
91     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
92       return nullptr;
93   }
94 
95   // Last, match the compare variable operand with a binop operand.
96   Value *Y;
97   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
98     return nullptr;
99   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
100     return nullptr;
101 
102   // +0.0 compares equal to -0.0, and so it does not behave as required for this
103   // transform. Bail out if we can not exclude that possibility.
104   if (isa<FPMathOperator>(BO))
105     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
106       return nullptr;
107 
108   // BO = binop Y, X
109   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
110   // =>
111   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
112   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
113 }
114 
115 /// This folds:
116 ///  select (icmp eq (and X, C1)), TC, FC
117 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
118 /// To something like:
119 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
120 /// Or:
121 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
122 /// With some variations depending if FC is larger than TC, or the shift
123 /// isn't needed, or the bit widths don't match.
124 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
125                                 InstCombiner::BuilderTy &Builder) {
126   const APInt *SelTC, *SelFC;
127   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
128       !match(Sel.getFalseValue(), m_APInt(SelFC)))
129     return nullptr;
130 
131   // If this is a vector select, we need a vector compare.
132   Type *SelType = Sel.getType();
133   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
134     return nullptr;
135 
136   Value *V;
137   APInt AndMask;
138   bool CreateAnd = false;
139   ICmpInst::Predicate Pred = Cmp->getPredicate();
140   if (ICmpInst::isEquality(Pred)) {
141     if (!match(Cmp->getOperand(1), m_Zero()))
142       return nullptr;
143 
144     V = Cmp->getOperand(0);
145     const APInt *AndRHS;
146     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
147       return nullptr;
148 
149     AndMask = *AndRHS;
150   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
151                                   Pred, V, AndMask)) {
152     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
153     if (!AndMask.isPowerOf2())
154       return nullptr;
155 
156     CreateAnd = true;
157   } else {
158     return nullptr;
159   }
160 
161   // In general, when both constants are non-zero, we would need an offset to
162   // replace the select. This would require more instructions than we started
163   // with. But there's one special-case that we handle here because it can
164   // simplify/reduce the instructions.
165   APInt TC = *SelTC;
166   APInt FC = *SelFC;
167   if (!TC.isNullValue() && !FC.isNullValue()) {
168     // If the select constants differ by exactly one bit and that's the same
169     // bit that is masked and checked by the select condition, the select can
170     // be replaced by bitwise logic to set/clear one bit of the constant result.
171     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
172       return nullptr;
173     if (CreateAnd) {
174       // If we have to create an 'and', then we must kill the cmp to not
175       // increase the instruction count.
176       if (!Cmp->hasOneUse())
177         return nullptr;
178       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
179     }
180     bool ExtraBitInTC = TC.ugt(FC);
181     if (Pred == ICmpInst::ICMP_EQ) {
182       // If the masked bit in V is clear, clear or set the bit in the result:
183       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
184       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
185       Constant *C = ConstantInt::get(SelType, TC);
186       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
187     }
188     if (Pred == ICmpInst::ICMP_NE) {
189       // If the masked bit in V is set, set or clear the bit in the result:
190       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
191       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
192       Constant *C = ConstantInt::get(SelType, FC);
193       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
194     }
195     llvm_unreachable("Only expecting equality predicates");
196   }
197 
198   // Make sure one of the select arms is a power-of-2.
199   if (!TC.isPowerOf2() && !FC.isPowerOf2())
200     return nullptr;
201 
202   // Determine which shift is needed to transform result of the 'and' into the
203   // desired result.
204   const APInt &ValC = !TC.isNullValue() ? TC : FC;
205   unsigned ValZeros = ValC.logBase2();
206   unsigned AndZeros = AndMask.logBase2();
207 
208   // Insert the 'and' instruction on the input to the truncate.
209   if (CreateAnd)
210     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
211 
212   // If types don't match, we can still convert the select by introducing a zext
213   // or a trunc of the 'and'.
214   if (ValZeros > AndZeros) {
215     V = Builder.CreateZExtOrTrunc(V, SelType);
216     V = Builder.CreateShl(V, ValZeros - AndZeros);
217   } else if (ValZeros < AndZeros) {
218     V = Builder.CreateLShr(V, AndZeros - ValZeros);
219     V = Builder.CreateZExtOrTrunc(V, SelType);
220   } else {
221     V = Builder.CreateZExtOrTrunc(V, SelType);
222   }
223 
224   // Okay, now we know that everything is set up, we just don't know whether we
225   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
226   bool ShouldNotVal = !TC.isNullValue();
227   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
228   if (ShouldNotVal)
229     V = Builder.CreateXor(V, ValC);
230 
231   return V;
232 }
233 
234 /// We want to turn code that looks like this:
235 ///   %C = or %A, %B
236 ///   %D = select %cond, %C, %A
237 /// into:
238 ///   %C = select %cond, %B, 0
239 ///   %D = or %A, %C
240 ///
241 /// Assuming that the specified instruction is an operand to the select, return
242 /// a bitmask indicating which operands of this instruction are foldable if they
243 /// equal the other incoming value of the select.
244 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
245   switch (I->getOpcode()) {
246   case Instruction::Add:
247   case Instruction::Mul:
248   case Instruction::And:
249   case Instruction::Or:
250   case Instruction::Xor:
251     return 3;              // Can fold through either operand.
252   case Instruction::Sub:   // Can only fold on the amount subtracted.
253   case Instruction::Shl:   // Can only fold on the shift amount.
254   case Instruction::LShr:
255   case Instruction::AShr:
256     return 1;
257   default:
258     return 0;              // Cannot fold
259   }
260 }
261 
262 /// For the same transformation as the previous function, return the identity
263 /// constant that goes into the select.
264 static APInt getSelectFoldableConstant(BinaryOperator *I) {
265   switch (I->getOpcode()) {
266   default: llvm_unreachable("This cannot happen!");
267   case Instruction::Add:
268   case Instruction::Sub:
269   case Instruction::Or:
270   case Instruction::Xor:
271   case Instruction::Shl:
272   case Instruction::LShr:
273   case Instruction::AShr:
274     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
275   case Instruction::And:
276     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
277   case Instruction::Mul:
278     return APInt(I->getType()->getScalarSizeInBits(), 1);
279   }
280 }
281 
282 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
283 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
284                                               Instruction *FI) {
285   // Don't break up min/max patterns. The hasOneUse checks below prevent that
286   // for most cases, but vector min/max with bitcasts can be transformed. If the
287   // one-use restrictions are eased for other patterns, we still don't want to
288   // obfuscate min/max.
289   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
290        match(&SI, m_SMax(m_Value(), m_Value())) ||
291        match(&SI, m_UMin(m_Value(), m_Value())) ||
292        match(&SI, m_UMax(m_Value(), m_Value()))))
293     return nullptr;
294 
295   // If this is a cast from the same type, merge.
296   Value *Cond = SI.getCondition();
297   Type *CondTy = Cond->getType();
298   if (TI->getNumOperands() == 1 && TI->isCast()) {
299     Type *FIOpndTy = FI->getOperand(0)->getType();
300     if (TI->getOperand(0)->getType() != FIOpndTy)
301       return nullptr;
302 
303     // The select condition may be a vector. We may only change the operand
304     // type if the vector width remains the same (and matches the condition).
305     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
306       if (!FIOpndTy->isVectorTy())
307         return nullptr;
308       if (CondVTy->getNumElements() !=
309           cast<VectorType>(FIOpndTy)->getNumElements())
310         return nullptr;
311 
312       // TODO: If the backend knew how to deal with casts better, we could
313       // remove this limitation. For now, there's too much potential to create
314       // worse codegen by promoting the select ahead of size-altering casts
315       // (PR28160).
316       //
317       // Note that ValueTracking's matchSelectPattern() looks through casts
318       // without checking 'hasOneUse' when it matches min/max patterns, so this
319       // transform may end up happening anyway.
320       if (TI->getOpcode() != Instruction::BitCast &&
321           (!TI->hasOneUse() || !FI->hasOneUse()))
322         return nullptr;
323     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
324       // TODO: The one-use restrictions for a scalar select could be eased if
325       // the fold of a select in visitLoadInst() was enhanced to match a pattern
326       // that includes a cast.
327       return nullptr;
328     }
329 
330     // Fold this by inserting a select from the input values.
331     Value *NewSI =
332         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
333                              SI.getName() + ".v", &SI);
334     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
335                             TI->getType());
336   }
337 
338   // Cond ? -X : -Y --> -(Cond ? X : Y)
339   Value *X, *Y;
340   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
341       (TI->hasOneUse() || FI->hasOneUse())) {
342     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
343     return UnaryOperator::CreateFNegFMF(NewSel, TI);
344   }
345 
346   // Only handle binary operators (including two-operand getelementptr) with
347   // one-use here. As with the cast case above, it may be possible to relax the
348   // one-use constraint, but that needs be examined carefully since it may not
349   // reduce the total number of instructions.
350   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
351       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
352       !TI->hasOneUse() || !FI->hasOneUse())
353     return nullptr;
354 
355   // Figure out if the operations have any operands in common.
356   Value *MatchOp, *OtherOpT, *OtherOpF;
357   bool MatchIsOpZero;
358   if (TI->getOperand(0) == FI->getOperand(0)) {
359     MatchOp  = TI->getOperand(0);
360     OtherOpT = TI->getOperand(1);
361     OtherOpF = FI->getOperand(1);
362     MatchIsOpZero = true;
363   } else if (TI->getOperand(1) == FI->getOperand(1)) {
364     MatchOp  = TI->getOperand(1);
365     OtherOpT = TI->getOperand(0);
366     OtherOpF = FI->getOperand(0);
367     MatchIsOpZero = false;
368   } else if (!TI->isCommutative()) {
369     return nullptr;
370   } else if (TI->getOperand(0) == FI->getOperand(1)) {
371     MatchOp  = TI->getOperand(0);
372     OtherOpT = TI->getOperand(1);
373     OtherOpF = FI->getOperand(0);
374     MatchIsOpZero = true;
375   } else if (TI->getOperand(1) == FI->getOperand(0)) {
376     MatchOp  = TI->getOperand(1);
377     OtherOpT = TI->getOperand(0);
378     OtherOpF = FI->getOperand(1);
379     MatchIsOpZero = true;
380   } else {
381     return nullptr;
382   }
383 
384   // If the select condition is a vector, the operands of the original select's
385   // operands also must be vectors. This may not be the case for getelementptr
386   // for example.
387   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
388                                !OtherOpF->getType()->isVectorTy()))
389     return nullptr;
390 
391   // If we reach here, they do have operations in common.
392   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
393                                       SI.getName() + ".v", &SI);
394   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
395   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
396   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
397     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
398     NewBO->copyIRFlags(TI);
399     NewBO->andIRFlags(FI);
400     return NewBO;
401   }
402   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
403     auto *FGEP = cast<GetElementPtrInst>(FI);
404     Type *ElementType = TGEP->getResultElementType();
405     return TGEP->isInBounds() && FGEP->isInBounds()
406                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
407                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
408   }
409   llvm_unreachable("Expected BinaryOperator or GEP");
410   return nullptr;
411 }
412 
413 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
414   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
415     return false;
416   return C1I.isOneValue() || C1I.isAllOnesValue() ||
417          C2I.isOneValue() || C2I.isAllOnesValue();
418 }
419 
420 /// Try to fold the select into one of the operands to allow further
421 /// optimization.
422 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
423                                                 Value *FalseVal) {
424   // See the comment above GetSelectFoldableOperands for a description of the
425   // transformation we are doing here.
426   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
427     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
428       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
429         unsigned OpToFold = 0;
430         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
431           OpToFold = 1;
432         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
433           OpToFold = 2;
434         }
435 
436         if (OpToFold) {
437           APInt CI = getSelectFoldableConstant(TVI);
438           Value *OOp = TVI->getOperand(2-OpToFold);
439           // Avoid creating select between 2 constants unless it's selecting
440           // between 0, 1 and -1.
441           const APInt *OOpC;
442           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
443           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
444             Value *C = ConstantInt::get(OOp->getType(), CI);
445             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
446             NewSel->takeName(TVI);
447             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
448                                                         FalseVal, NewSel);
449             BO->copyIRFlags(TVI);
450             return BO;
451           }
452         }
453       }
454     }
455   }
456 
457   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
458     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
459       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
460         unsigned OpToFold = 0;
461         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
462           OpToFold = 1;
463         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
464           OpToFold = 2;
465         }
466 
467         if (OpToFold) {
468           APInt CI = getSelectFoldableConstant(FVI);
469           Value *OOp = FVI->getOperand(2-OpToFold);
470           // Avoid creating select between 2 constants unless it's selecting
471           // between 0, 1 and -1.
472           const APInt *OOpC;
473           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
474           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
475             Value *C = ConstantInt::get(OOp->getType(), CI);
476             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
477             NewSel->takeName(FVI);
478             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
479                                                         TrueVal, NewSel);
480             BO->copyIRFlags(FVI);
481             return BO;
482           }
483         }
484       }
485     }
486   }
487 
488   return nullptr;
489 }
490 
491 /// We want to turn:
492 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
493 /// into:
494 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
495 /// Note:
496 ///   Z may be 0 if lshr is missing.
497 /// Worst-case scenario is that we will replace 5 instructions with 5 different
498 /// instructions, but we got rid of select.
499 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
500                                          Value *TVal, Value *FVal,
501                                          InstCombiner::BuilderTy &Builder) {
502   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
503         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
504         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
505     return nullptr;
506 
507   // The TrueVal has general form of:  and %B, 1
508   Value *B;
509   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
510     return nullptr;
511 
512   // Where %B may be optionally shifted:  lshr %X, %Z.
513   Value *X, *Z;
514   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
515   if (!HasShift)
516     X = B;
517 
518   Value *Y;
519   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
520     return nullptr;
521 
522   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
523   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
524   Constant *One = ConstantInt::get(SelType, 1);
525   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
526   Value *FullMask = Builder.CreateOr(Y, MaskB);
527   Value *MaskedX = Builder.CreateAnd(X, FullMask);
528   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
529   return new ZExtInst(ICmpNeZero, SelType);
530 }
531 
532 /// We want to turn:
533 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
534 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
535 /// into:
536 ///   ashr (X, Y)
537 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
538                                      Value *FalseVal,
539                                      InstCombiner::BuilderTy &Builder) {
540   ICmpInst::Predicate Pred = IC->getPredicate();
541   Value *CmpLHS = IC->getOperand(0);
542   Value *CmpRHS = IC->getOperand(1);
543   if (!CmpRHS->getType()->isIntOrIntVectorTy())
544     return nullptr;
545 
546   Value *X, *Y;
547   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
548   if ((Pred != ICmpInst::ICMP_SGT ||
549        !match(CmpRHS,
550               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
551       (Pred != ICmpInst::ICMP_SLT ||
552        !match(CmpRHS,
553               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
554     return nullptr;
555 
556   // Canonicalize so that ashr is in FalseVal.
557   if (Pred == ICmpInst::ICMP_SLT)
558     std::swap(TrueVal, FalseVal);
559 
560   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
561       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
562       match(CmpLHS, m_Specific(X))) {
563     const auto *Ashr = cast<Instruction>(FalseVal);
564     // if lshr is not exact and ashr is, this new ashr must not be exact.
565     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
566     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
567   }
568 
569   return nullptr;
570 }
571 
572 /// We want to turn:
573 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
574 /// into:
575 ///   (or (shl (and X, C1), C3), Y)
576 /// iff:
577 ///   C1 and C2 are both powers of 2
578 /// where:
579 ///   C3 = Log(C2) - Log(C1)
580 ///
581 /// This transform handles cases where:
582 /// 1. The icmp predicate is inverted
583 /// 2. The select operands are reversed
584 /// 3. The magnitude of C2 and C1 are flipped
585 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
586                                   Value *FalseVal,
587                                   InstCombiner::BuilderTy &Builder) {
588   // Only handle integer compares. Also, if this is a vector select, we need a
589   // vector compare.
590   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
591       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
592     return nullptr;
593 
594   Value *CmpLHS = IC->getOperand(0);
595   Value *CmpRHS = IC->getOperand(1);
596 
597   Value *V;
598   unsigned C1Log;
599   bool IsEqualZero;
600   bool NeedAnd = false;
601   if (IC->isEquality()) {
602     if (!match(CmpRHS, m_Zero()))
603       return nullptr;
604 
605     const APInt *C1;
606     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
607       return nullptr;
608 
609     V = CmpLHS;
610     C1Log = C1->logBase2();
611     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
612   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
613              IC->getPredicate() == ICmpInst::ICMP_SGT) {
614     // We also need to recognize (icmp slt (trunc (X)), 0) and
615     // (icmp sgt (trunc (X)), -1).
616     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
617     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
618         (!IsEqualZero && !match(CmpRHS, m_Zero())))
619       return nullptr;
620 
621     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
622       return nullptr;
623 
624     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
625     NeedAnd = true;
626   } else {
627     return nullptr;
628   }
629 
630   const APInt *C2;
631   bool OrOnTrueVal = false;
632   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
633   if (!OrOnFalseVal)
634     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
635 
636   if (!OrOnFalseVal && !OrOnTrueVal)
637     return nullptr;
638 
639   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
640 
641   unsigned C2Log = C2->logBase2();
642 
643   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
644   bool NeedShift = C1Log != C2Log;
645   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
646                        V->getType()->getScalarSizeInBits();
647 
648   // Make sure we don't create more instructions than we save.
649   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
650   if ((NeedShift + NeedXor + NeedZExtTrunc) >
651       (IC->hasOneUse() + Or->hasOneUse()))
652     return nullptr;
653 
654   if (NeedAnd) {
655     // Insert the AND instruction on the input to the truncate.
656     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
657     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
658   }
659 
660   if (C2Log > C1Log) {
661     V = Builder.CreateZExtOrTrunc(V, Y->getType());
662     V = Builder.CreateShl(V, C2Log - C1Log);
663   } else if (C1Log > C2Log) {
664     V = Builder.CreateLShr(V, C1Log - C2Log);
665     V = Builder.CreateZExtOrTrunc(V, Y->getType());
666   } else
667     V = Builder.CreateZExtOrTrunc(V, Y->getType());
668 
669   if (NeedXor)
670     V = Builder.CreateXor(V, *C2);
671 
672   return Builder.CreateOr(V, Y);
673 }
674 
675 /// Canonicalize a set or clear of a masked set of constant bits to
676 /// select-of-constants form.
677 static Instruction *foldSetClearBits(SelectInst &Sel,
678                                      InstCombiner::BuilderTy &Builder) {
679   Value *Cond = Sel.getCondition();
680   Value *T = Sel.getTrueValue();
681   Value *F = Sel.getFalseValue();
682   Type *Ty = Sel.getType();
683   Value *X;
684   const APInt *NotC, *C;
685 
686   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
687   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
688       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
689     Constant *Zero = ConstantInt::getNullValue(Ty);
690     Constant *OrC = ConstantInt::get(Ty, *C);
691     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
692     return BinaryOperator::CreateOr(T, NewSel);
693   }
694 
695   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
696   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
697       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
698     Constant *Zero = ConstantInt::getNullValue(Ty);
699     Constant *OrC = ConstantInt::get(Ty, *C);
700     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
701     return BinaryOperator::CreateOr(F, NewSel);
702   }
703 
704   return nullptr;
705 }
706 
707 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
708 /// There are 8 commuted/swapped variants of this pattern.
709 /// TODO: Also support a - UMIN(a,b) patterns.
710 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
711                                             const Value *TrueVal,
712                                             const Value *FalseVal,
713                                             InstCombiner::BuilderTy &Builder) {
714   ICmpInst::Predicate Pred = ICI->getPredicate();
715   if (!ICmpInst::isUnsigned(Pred))
716     return nullptr;
717 
718   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
719   if (match(TrueVal, m_Zero())) {
720     Pred = ICmpInst::getInversePredicate(Pred);
721     std::swap(TrueVal, FalseVal);
722   }
723   if (!match(FalseVal, m_Zero()))
724     return nullptr;
725 
726   Value *A = ICI->getOperand(0);
727   Value *B = ICI->getOperand(1);
728   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
729     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
730     std::swap(A, B);
731     Pred = ICmpInst::getSwappedPredicate(Pred);
732   }
733 
734   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
735          "Unexpected isUnsigned predicate!");
736 
737   // Ensure the sub is of the form:
738   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
739   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
740   // Checking for both a-b and a+(-b) as a constant.
741   bool IsNegative = false;
742   const APInt *C;
743   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
744       (match(A, m_APInt(C)) &&
745        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
746     IsNegative = true;
747   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
748            !(match(B, m_APInt(C)) &&
749              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
750     return nullptr;
751 
752   // If we are adding a negate and the sub and icmp are used anywhere else, we
753   // would end up with more instructions.
754   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
755     return nullptr;
756 
757   // (a > b) ? a - b : 0 -> usub.sat(a, b)
758   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
759   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
760   if (IsNegative)
761     Result = Builder.CreateNeg(Result);
762   return Result;
763 }
764 
765 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
766                                        InstCombiner::BuilderTy &Builder) {
767   if (!Cmp->hasOneUse())
768     return nullptr;
769 
770   // Match unsigned saturated add with constant.
771   Value *Cmp0 = Cmp->getOperand(0);
772   Value *Cmp1 = Cmp->getOperand(1);
773   ICmpInst::Predicate Pred = Cmp->getPredicate();
774   Value *X;
775   const APInt *C, *CmpC;
776   if (Pred == ICmpInst::ICMP_ULT &&
777       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
778       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
779     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
780     return Builder.CreateBinaryIntrinsic(
781         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
782   }
783 
784   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
785   // There are 8 commuted variants.
786   // Canonicalize -1 (saturated result) to true value of the select. Just
787   // swapping the compare operands is legal, because the selected value is the
788   // same in case of equality, so we can interchange u< and u<=.
789   if (match(FVal, m_AllOnes())) {
790     std::swap(TVal, FVal);
791     std::swap(Cmp0, Cmp1);
792   }
793   if (!match(TVal, m_AllOnes()))
794     return nullptr;
795 
796   // Canonicalize predicate to 'ULT'.
797   if (Pred == ICmpInst::ICMP_UGT) {
798     Pred = ICmpInst::ICMP_ULT;
799     std::swap(Cmp0, Cmp1);
800   }
801   if (Pred != ICmpInst::ICMP_ULT)
802     return nullptr;
803 
804   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
805   Value *Y;
806   if (match(Cmp0, m_Not(m_Value(X))) &&
807       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
808     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
809     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
810     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
811   }
812   // The 'not' op may be included in the sum but not the compare.
813   X = Cmp0;
814   Y = Cmp1;
815   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
816     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
817     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
818     BinaryOperator *BO = cast<BinaryOperator>(FVal);
819     return Builder.CreateBinaryIntrinsic(
820         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
821   }
822   // The overflow may be detected via the add wrapping round.
823   if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
824       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
825     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
826     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
827     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
828   }
829 
830   return nullptr;
831 }
832 
833 /// Fold the following code sequence:
834 /// \code
835 ///   int a = ctlz(x & -x);
836 //    x ? 31 - a : a;
837 /// \code
838 ///
839 /// into:
840 ///   cttz(x)
841 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
842                                          Value *FalseVal,
843                                          InstCombiner::BuilderTy &Builder) {
844   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
845   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
846     return nullptr;
847 
848   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
849     std::swap(TrueVal, FalseVal);
850 
851   if (!match(FalseVal,
852              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
853     return nullptr;
854 
855   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
856     return nullptr;
857 
858   Value *X = ICI->getOperand(0);
859   auto *II = cast<IntrinsicInst>(TrueVal);
860   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
861     return nullptr;
862 
863   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
864                                           II->getType());
865   return CallInst::Create(F, {X, II->getArgOperand(1)});
866 }
867 
868 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
869 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
870 ///
871 /// For example, we can fold the following code sequence:
872 /// \code
873 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
874 ///   %1 = icmp ne i32 %x, 0
875 ///   %2 = select i1 %1, i32 %0, i32 32
876 /// \code
877 ///
878 /// into:
879 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
880 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
881                                  InstCombiner::BuilderTy &Builder) {
882   ICmpInst::Predicate Pred = ICI->getPredicate();
883   Value *CmpLHS = ICI->getOperand(0);
884   Value *CmpRHS = ICI->getOperand(1);
885 
886   // Check if the condition value compares a value for equality against zero.
887   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
888     return nullptr;
889 
890   Value *SelectArg = FalseVal;
891   Value *ValueOnZero = TrueVal;
892   if (Pred == ICmpInst::ICMP_NE)
893     std::swap(SelectArg, ValueOnZero);
894 
895   // Skip zero extend/truncate.
896   Value *Count = nullptr;
897   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
898       !match(SelectArg, m_Trunc(m_Value(Count))))
899     Count = SelectArg;
900 
901   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
902   // input to the cttz/ctlz is used as LHS for the compare instruction.
903   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
904       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
905     return nullptr;
906 
907   IntrinsicInst *II = cast<IntrinsicInst>(Count);
908 
909   // Check if the value propagated on zero is a constant number equal to the
910   // sizeof in bits of 'Count'.
911   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
912   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
913     // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
914     // true to false on this flag, so we can replace it for all users.
915     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
916     return SelectArg;
917   }
918 
919   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
920   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
921   // not be used if the input is zero. Relax to 'undef_on_zero' for that case.
922   if (II->hasOneUse() && SelectArg->hasOneUse() &&
923       !match(II->getArgOperand(1), m_One()))
924     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
925 
926   return nullptr;
927 }
928 
929 /// Return true if we find and adjust an icmp+select pattern where the compare
930 /// is with a constant that can be incremented or decremented to match the
931 /// minimum or maximum idiom.
932 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
933   ICmpInst::Predicate Pred = Cmp.getPredicate();
934   Value *CmpLHS = Cmp.getOperand(0);
935   Value *CmpRHS = Cmp.getOperand(1);
936   Value *TrueVal = Sel.getTrueValue();
937   Value *FalseVal = Sel.getFalseValue();
938 
939   // We may move or edit the compare, so make sure the select is the only user.
940   const APInt *CmpC;
941   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
942     return false;
943 
944   // These transforms only work for selects of integers or vector selects of
945   // integer vectors.
946   Type *SelTy = Sel.getType();
947   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
948   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
949     return false;
950 
951   Constant *AdjustedRHS;
952   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
953     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
954   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
955     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
956   else
957     return false;
958 
959   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
960   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
961   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
962       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
963     ; // Nothing to do here. Values match without any sign/zero extension.
964   }
965   // Types do not match. Instead of calculating this with mixed types, promote
966   // all to the larger type. This enables scalar evolution to analyze this
967   // expression.
968   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
969     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
970 
971     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
972     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
973     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
974     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
975     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
976       CmpLHS = TrueVal;
977       AdjustedRHS = SextRHS;
978     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
979                SextRHS == TrueVal) {
980       CmpLHS = FalseVal;
981       AdjustedRHS = SextRHS;
982     } else if (Cmp.isUnsigned()) {
983       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
984       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
985       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
986       // zext + signed compare cannot be changed:
987       //    0xff <s 0x00, but 0x00ff >s 0x0000
988       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
989         CmpLHS = TrueVal;
990         AdjustedRHS = ZextRHS;
991       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
992                  ZextRHS == TrueVal) {
993         CmpLHS = FalseVal;
994         AdjustedRHS = ZextRHS;
995       } else {
996         return false;
997       }
998     } else {
999       return false;
1000     }
1001   } else {
1002     return false;
1003   }
1004 
1005   Pred = ICmpInst::getSwappedPredicate(Pred);
1006   CmpRHS = AdjustedRHS;
1007   std::swap(FalseVal, TrueVal);
1008   Cmp.setPredicate(Pred);
1009   Cmp.setOperand(0, CmpLHS);
1010   Cmp.setOperand(1, CmpRHS);
1011   Sel.setOperand(1, TrueVal);
1012   Sel.setOperand(2, FalseVal);
1013   Sel.swapProfMetadata();
1014 
1015   // Move the compare instruction right before the select instruction. Otherwise
1016   // the sext/zext value may be defined after the compare instruction uses it.
1017   Cmp.moveBefore(&Sel);
1018 
1019   return true;
1020 }
1021 
1022 /// If this is an integer min/max (icmp + select) with a constant operand,
1023 /// create the canonical icmp for the min/max operation and canonicalize the
1024 /// constant to the 'false' operand of the select:
1025 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
1026 /// Note: if C1 != C2, this will change the icmp constant to the existing
1027 /// constant operand of the select.
1028 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel,
1029                                                    ICmpInst &Cmp,
1030                                                    InstCombinerImpl &IC) {
1031   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1032     return nullptr;
1033 
1034   // Canonicalize the compare predicate based on whether we have min or max.
1035   Value *LHS, *RHS;
1036   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1037   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1038     return nullptr;
1039 
1040   // Is this already canonical?
1041   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1042   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1043       Cmp.getPredicate() == CanonicalPred)
1044     return nullptr;
1045 
1046   // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1047   // as this may cause an infinite combine loop. Let the sub be folded first.
1048   if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
1049       match(RHS, m_Sub(m_Value(), m_Zero())))
1050     return nullptr;
1051 
1052   // Create the canonical compare and plug it into the select.
1053   IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
1054 
1055   // If the select operands did not change, we're done.
1056   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1057     return &Sel;
1058 
1059   // If we are swapping the select operands, swap the metadata too.
1060   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1061          "Unexpected results from matchSelectPattern");
1062   Sel.swapValues();
1063   Sel.swapProfMetadata();
1064   return &Sel;
1065 }
1066 
1067 /// There are many select variants for each of ABS/NABS.
1068 /// In matchSelectPattern(), there are different compare constants, compare
1069 /// predicates/operands and select operands.
1070 /// In isKnownNegation(), there are different formats of negated operands.
1071 /// Canonicalize all these variants to 1 pattern.
1072 /// This makes CSE more likely.
1073 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1074                                         InstCombinerImpl &IC) {
1075   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1076     return nullptr;
1077 
1078   // Choose a sign-bit check for the compare (likely simpler for codegen).
1079   // ABS:  (X <s 0) ? -X : X
1080   // NABS: (X <s 0) ? X : -X
1081   Value *LHS, *RHS;
1082   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1083   if (SPF != SelectPatternFlavor::SPF_ABS &&
1084       SPF != SelectPatternFlavor::SPF_NABS)
1085     return nullptr;
1086 
1087   Value *TVal = Sel.getTrueValue();
1088   Value *FVal = Sel.getFalseValue();
1089   assert(isKnownNegation(TVal, FVal) &&
1090          "Unexpected result from matchSelectPattern");
1091 
1092   // The compare may use the negated abs()/nabs() operand, or it may use
1093   // negation in non-canonical form such as: sub A, B.
1094   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1095                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1096 
1097   bool CmpCanonicalized = !CmpUsesNegatedOp &&
1098                           match(Cmp.getOperand(1), m_ZeroInt()) &&
1099                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1100   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1101 
1102   // Is this already canonical?
1103   if (CmpCanonicalized && RHSCanonicalized)
1104     return nullptr;
1105 
1106   // If RHS is not canonical but is used by other instructions, don't
1107   // canonicalize it and potentially increase the instruction count.
1108   if (!RHSCanonicalized)
1109     if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1110       return nullptr;
1111 
1112   // Create the canonical compare: icmp slt LHS 0.
1113   if (!CmpCanonicalized) {
1114     Cmp.setPredicate(ICmpInst::ICMP_SLT);
1115     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1116     if (CmpUsesNegatedOp)
1117       Cmp.setOperand(0, LHS);
1118   }
1119 
1120   // Create the canonical RHS: RHS = sub (0, LHS).
1121   if (!RHSCanonicalized) {
1122     assert(RHS->hasOneUse() && "RHS use number is not right");
1123     RHS = IC.Builder.CreateNeg(LHS);
1124     if (TVal == LHS) {
1125       // Replace false value.
1126       IC.replaceOperand(Sel, 2, RHS);
1127       FVal = RHS;
1128     } else {
1129       // Replace true value.
1130       IC.replaceOperand(Sel, 1, RHS);
1131       TVal = RHS;
1132     }
1133   }
1134 
1135   // If the select operands do not change, we're done.
1136   if (SPF == SelectPatternFlavor::SPF_NABS) {
1137     if (TVal == LHS)
1138       return &Sel;
1139     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1140   } else {
1141     if (FVal == LHS)
1142       return &Sel;
1143     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1144   }
1145 
1146   // We are swapping the select operands, so swap the metadata too.
1147   Sel.swapValues();
1148   Sel.swapProfMetadata();
1149   return &Sel;
1150 }
1151 
1152 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp,
1153                                      const SimplifyQuery &Q) {
1154   // If this is a binary operator, try to simplify it with the replaced op
1155   // because we know Op and ReplaceOp are equivalant.
1156   // For example: V = X + 1, Op = X, ReplaceOp = 42
1157   // Simplifies as: add(42, 1) --> 43
1158   if (auto *BO = dyn_cast<BinaryOperator>(V)) {
1159     if (BO->getOperand(0) == Op)
1160       return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q);
1161     if (BO->getOperand(1) == Op)
1162       return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q);
1163   }
1164 
1165   return nullptr;
1166 }
1167 
1168 /// If we have a select with an equality comparison, then we know the value in
1169 /// one of the arms of the select. See if substituting this value into an arm
1170 /// and simplifying the result yields the same value as the other arm.
1171 ///
1172 /// To make this transform safe, we must drop poison-generating flags
1173 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1174 /// that poison from propagating. If the existing binop already had no
1175 /// poison-generating flags, then this transform can be done by instsimplify.
1176 ///
1177 /// Consider:
1178 ///   %cmp = icmp eq i32 %x, 2147483647
1179 ///   %add = add nsw i32 %x, 1
1180 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1181 ///
1182 /// We can't replace %sel with %add unless we strip away the flags.
1183 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1184 static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
1185                                          const SimplifyQuery &Q) {
1186   if (!Cmp.isEquality())
1187     return nullptr;
1188 
1189   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1190   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1191   if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1192     std::swap(TrueVal, FalseVal);
1193 
1194   // Try each equivalence substitution possibility.
1195   // We have an 'EQ' comparison, so the select's false value will propagate.
1196   // Example:
1197   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1198   // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43
1199   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1200   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal ||
1201       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal ||
1202       simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal ||
1203       simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) {
1204     if (auto *FalseInst = dyn_cast<Instruction>(FalseVal))
1205       FalseInst->dropPoisonGeneratingFlags();
1206     return FalseVal;
1207   }
1208   return nullptr;
1209 }
1210 
1211 // See if this is a pattern like:
1212 //   %old_cmp1 = icmp slt i32 %x, C2
1213 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1214 //   %old_x_offseted = add i32 %x, C1
1215 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1216 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1217 // This can be rewritten as more canonical pattern:
1218 //   %new_cmp1 = icmp slt i32 %x, -C1
1219 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1220 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1221 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1222 // Iff -C1 s<= C2 s<= C0-C1
1223 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1224 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1225 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1226                                           InstCombiner::BuilderTy &Builder) {
1227   Value *X = Sel0.getTrueValue();
1228   Value *Sel1 = Sel0.getFalseValue();
1229 
1230   // First match the condition of the outermost select.
1231   // Said condition must be one-use.
1232   if (!Cmp0.hasOneUse())
1233     return nullptr;
1234   Value *Cmp00 = Cmp0.getOperand(0);
1235   Constant *C0;
1236   if (!match(Cmp0.getOperand(1),
1237              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1238     return nullptr;
1239   // Canonicalize Cmp0 into the form we expect.
1240   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1241   switch (Cmp0.getPredicate()) {
1242   case ICmpInst::Predicate::ICMP_ULT:
1243     break; // Great!
1244   case ICmpInst::Predicate::ICMP_ULE:
1245     // We'd have to increment C0 by one, and for that it must not have all-ones
1246     // element, but then it would have been canonicalized to 'ult' before
1247     // we get here. So we can't do anything useful with 'ule'.
1248     return nullptr;
1249   case ICmpInst::Predicate::ICMP_UGT:
1250     // We want to canonicalize it to 'ult', so we'll need to increment C0,
1251     // which again means it must not have any all-ones elements.
1252     if (!match(C0,
1253                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1254                                   APInt::getAllOnesValue(
1255                                       C0->getType()->getScalarSizeInBits()))))
1256       return nullptr; // Can't do, have all-ones element[s].
1257     C0 = InstCombiner::AddOne(C0);
1258     std::swap(X, Sel1);
1259     break;
1260   case ICmpInst::Predicate::ICMP_UGE:
1261     // The only way we'd get this predicate if this `icmp` has extra uses,
1262     // but then we won't be able to do this fold.
1263     return nullptr;
1264   default:
1265     return nullptr; // Unknown predicate.
1266   }
1267 
1268   // Now that we've canonicalized the ICmp, we know the X we expect;
1269   // the select in other hand should be one-use.
1270   if (!Sel1->hasOneUse())
1271     return nullptr;
1272 
1273   // We now can finish matching the condition of the outermost select:
1274   // it should either be the X itself, or an addition of some constant to X.
1275   Constant *C1;
1276   if (Cmp00 == X)
1277     C1 = ConstantInt::getNullValue(Sel0.getType());
1278   else if (!match(Cmp00,
1279                   m_Add(m_Specific(X),
1280                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1281     return nullptr;
1282 
1283   Value *Cmp1;
1284   ICmpInst::Predicate Pred1;
1285   Constant *C2;
1286   Value *ReplacementLow, *ReplacementHigh;
1287   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1288                             m_Value(ReplacementHigh))) ||
1289       !match(Cmp1,
1290              m_ICmp(Pred1, m_Specific(X),
1291                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1292     return nullptr;
1293 
1294   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1295     return nullptr; // Not enough one-use instructions for the fold.
1296   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1297   //        two comparisons we'll need to build.
1298 
1299   // Canonicalize Cmp1 into the form we expect.
1300   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1301   switch (Pred1) {
1302   case ICmpInst::Predicate::ICMP_SLT:
1303     break;
1304   case ICmpInst::Predicate::ICMP_SLE:
1305     // We'd have to increment C2 by one, and for that it must not have signed
1306     // max element, but then it would have been canonicalized to 'slt' before
1307     // we get here. So we can't do anything useful with 'sle'.
1308     return nullptr;
1309   case ICmpInst::Predicate::ICMP_SGT:
1310     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1311     // which again means it must not have any signed max elements.
1312     if (!match(C2,
1313                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1314                                   APInt::getSignedMaxValue(
1315                                       C2->getType()->getScalarSizeInBits()))))
1316       return nullptr; // Can't do, have signed max element[s].
1317     C2 = InstCombiner::AddOne(C2);
1318     LLVM_FALLTHROUGH;
1319   case ICmpInst::Predicate::ICMP_SGE:
1320     // Also non-canonical, but here we don't need to change C2,
1321     // so we don't have any restrictions on C2, so we can just handle it.
1322     std::swap(ReplacementLow, ReplacementHigh);
1323     break;
1324   default:
1325     return nullptr; // Unknown predicate.
1326   }
1327 
1328   // The thresholds of this clamp-like pattern.
1329   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1330   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1331 
1332   // The fold has a precondition 1: C2 s>= ThresholdLow
1333   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1334                                          ThresholdLowIncl);
1335   if (!match(Precond1, m_One()))
1336     return nullptr;
1337   // The fold has a precondition 2: C2 s<= ThresholdHigh
1338   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1339                                          ThresholdHighExcl);
1340   if (!match(Precond2, m_One()))
1341     return nullptr;
1342 
1343   // All good, finally emit the new pattern.
1344   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1345   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1346   Value *MaybeReplacedLow =
1347       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1348   Instruction *MaybeReplacedHigh =
1349       SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1350 
1351   return MaybeReplacedHigh;
1352 }
1353 
1354 // If we have
1355 //  %cmp = icmp [canonical predicate] i32 %x, C0
1356 //  %r = select i1 %cmp, i32 %y, i32 C1
1357 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1358 // will have if we flip the strictness of the predicate (i.e. without changing
1359 // the result) is identical to the C1 in select. If it matches we can change
1360 // original comparison to one with swapped predicate, reuse the constant,
1361 // and swap the hands of select.
1362 static Instruction *
1363 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1364                                          InstCombinerImpl &IC) {
1365   ICmpInst::Predicate Pred;
1366   Value *X;
1367   Constant *C0;
1368   if (!match(&Cmp, m_OneUse(m_ICmp(
1369                        Pred, m_Value(X),
1370                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1371     return nullptr;
1372 
1373   // If comparison predicate is non-relational, we won't be able to do anything.
1374   if (ICmpInst::isEquality(Pred))
1375     return nullptr;
1376 
1377   // If comparison predicate is non-canonical, then we certainly won't be able
1378   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1379   if (!InstCombiner::isCanonicalPredicate(Pred))
1380     return nullptr;
1381 
1382   // If the [input] type of comparison and select type are different, lets abort
1383   // for now. We could try to compare constants with trunc/[zs]ext though.
1384   if (C0->getType() != Sel.getType())
1385     return nullptr;
1386 
1387   // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1388 
1389   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1390   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1391   // At least one of these values we are selecting between must be a constant
1392   // else we'll never succeed.
1393   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1394       !match(SelVal1, m_AnyIntegralConstant()))
1395     return nullptr;
1396 
1397   // Does this constant C match any of the `select` values?
1398   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1399     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1400   };
1401 
1402   // If C0 *already* matches true/false value of select, we are done.
1403   if (MatchesSelectValue(C0))
1404     return nullptr;
1405 
1406   // Check the constant we'd have with flipped-strictness predicate.
1407   auto FlippedStrictness =
1408       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1409   if (!FlippedStrictness)
1410     return nullptr;
1411 
1412   // If said constant doesn't match either, then there is no hope,
1413   if (!MatchesSelectValue(FlippedStrictness->second))
1414     return nullptr;
1415 
1416   // It matched! Lets insert the new comparison just before select.
1417   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1418   IC.Builder.SetInsertPoint(&Sel);
1419 
1420   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1421   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1422                                         Cmp.getName() + ".inv");
1423   IC.replaceOperand(Sel, 0, NewCmp);
1424   Sel.swapValues();
1425   Sel.swapProfMetadata();
1426 
1427   return &Sel;
1428 }
1429 
1430 /// Visit a SelectInst that has an ICmpInst as its first operand.
1431 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1432                                                       ICmpInst *ICI) {
1433   if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
1434     return replaceInstUsesWith(SI, V);
1435 
1436   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
1437     return NewSel;
1438 
1439   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this))
1440     return NewAbs;
1441 
1442   if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1443     return NewAbs;
1444 
1445   if (Instruction *NewSel =
1446           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1447     return NewSel;
1448 
1449   bool Changed = adjustMinMax(SI, *ICI);
1450 
1451   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1452     return replaceInstUsesWith(SI, V);
1453 
1454   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1455   Value *TrueVal = SI.getTrueValue();
1456   Value *FalseVal = SI.getFalseValue();
1457   ICmpInst::Predicate Pred = ICI->getPredicate();
1458   Value *CmpLHS = ICI->getOperand(0);
1459   Value *CmpRHS = ICI->getOperand(1);
1460   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1461     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1462       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1463       SI.setOperand(1, CmpRHS);
1464       Changed = true;
1465     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1466       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1467       SI.setOperand(2, CmpRHS);
1468       Changed = true;
1469     }
1470   }
1471 
1472   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1473   // decomposeBitTestICmp() might help.
1474   {
1475     unsigned BitWidth =
1476         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1477     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1478     Value *X;
1479     const APInt *Y, *C;
1480     bool TrueWhenUnset;
1481     bool IsBitTest = false;
1482     if (ICmpInst::isEquality(Pred) &&
1483         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1484         match(CmpRHS, m_Zero())) {
1485       IsBitTest = true;
1486       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1487     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1488       X = CmpLHS;
1489       Y = &MinSignedValue;
1490       IsBitTest = true;
1491       TrueWhenUnset = false;
1492     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1493       X = CmpLHS;
1494       Y = &MinSignedValue;
1495       IsBitTest = true;
1496       TrueWhenUnset = true;
1497     }
1498     if (IsBitTest) {
1499       Value *V = nullptr;
1500       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1501       if (TrueWhenUnset && TrueVal == X &&
1502           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1503         V = Builder.CreateAnd(X, ~(*Y));
1504       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1505       else if (!TrueWhenUnset && FalseVal == X &&
1506                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1507         V = Builder.CreateAnd(X, ~(*Y));
1508       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1509       else if (TrueWhenUnset && FalseVal == X &&
1510                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1511         V = Builder.CreateOr(X, *Y);
1512       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1513       else if (!TrueWhenUnset && TrueVal == X &&
1514                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1515         V = Builder.CreateOr(X, *Y);
1516 
1517       if (V)
1518         return replaceInstUsesWith(SI, V);
1519     }
1520   }
1521 
1522   if (Instruction *V =
1523           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1524     return V;
1525 
1526   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1527     return V;
1528 
1529   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1530     return replaceInstUsesWith(SI, V);
1531 
1532   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1533     return replaceInstUsesWith(SI, V);
1534 
1535   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1536     return replaceInstUsesWith(SI, V);
1537 
1538   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1539     return replaceInstUsesWith(SI, V);
1540 
1541   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1542     return replaceInstUsesWith(SI, V);
1543 
1544   return Changed ? &SI : nullptr;
1545 }
1546 
1547 /// SI is a select whose condition is a PHI node (but the two may be in
1548 /// different blocks). See if the true/false values (V) are live in all of the
1549 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1550 ///
1551 ///   X = phi [ C1, BB1], [C2, BB2]
1552 ///   Y = add
1553 ///   Z = select X, Y, 0
1554 ///
1555 /// because Y is not live in BB1/BB2.
1556 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1557                                                    const SelectInst &SI) {
1558   // If the value is a non-instruction value like a constant or argument, it
1559   // can always be mapped.
1560   const Instruction *I = dyn_cast<Instruction>(V);
1561   if (!I) return true;
1562 
1563   // If V is a PHI node defined in the same block as the condition PHI, we can
1564   // map the arguments.
1565   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1566 
1567   if (const PHINode *VP = dyn_cast<PHINode>(I))
1568     if (VP->getParent() == CondPHI->getParent())
1569       return true;
1570 
1571   // Otherwise, if the PHI and select are defined in the same block and if V is
1572   // defined in a different block, then we can transform it.
1573   if (SI.getParent() == CondPHI->getParent() &&
1574       I->getParent() != CondPHI->getParent())
1575     return true;
1576 
1577   // Otherwise we have a 'hard' case and we can't tell without doing more
1578   // detailed dominator based analysis, punt.
1579   return false;
1580 }
1581 
1582 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1583 ///   SPF2(SPF1(A, B), C)
1584 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1585                                             SelectPatternFlavor SPF1, Value *A,
1586                                             Value *B, Instruction &Outer,
1587                                             SelectPatternFlavor SPF2,
1588                                             Value *C) {
1589   if (Outer.getType() != Inner->getType())
1590     return nullptr;
1591 
1592   if (C == A || C == B) {
1593     // MAX(MAX(A, B), B) -> MAX(A, B)
1594     // MIN(MIN(a, b), a) -> MIN(a, b)
1595     // TODO: This could be done in instsimplify.
1596     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1597       return replaceInstUsesWith(Outer, Inner);
1598 
1599     // MAX(MIN(a, b), a) -> a
1600     // MIN(MAX(a, b), a) -> a
1601     // TODO: This could be done in instsimplify.
1602     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1603         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1604         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1605         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1606       return replaceInstUsesWith(Outer, C);
1607   }
1608 
1609   if (SPF1 == SPF2) {
1610     const APInt *CB, *CC;
1611     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1612       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1613       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1614       // TODO: This could be done in instsimplify.
1615       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1616           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1617           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1618           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1619         return replaceInstUsesWith(Outer, Inner);
1620 
1621       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1622       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1623       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1624           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1625           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1626           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1627         Outer.replaceUsesOfWith(Inner, A);
1628         return &Outer;
1629       }
1630     }
1631   }
1632 
1633   // max(max(A, B), min(A, B)) --> max(A, B)
1634   // min(min(A, B), max(A, B)) --> min(A, B)
1635   // TODO: This could be done in instsimplify.
1636   if (SPF1 == SPF2 &&
1637       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1638        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1639        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1640        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1641     return replaceInstUsesWith(Outer, Inner);
1642 
1643   // ABS(ABS(X)) -> ABS(X)
1644   // NABS(NABS(X)) -> NABS(X)
1645   // TODO: This could be done in instsimplify.
1646   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1647     return replaceInstUsesWith(Outer, Inner);
1648   }
1649 
1650   // ABS(NABS(X)) -> ABS(X)
1651   // NABS(ABS(X)) -> NABS(X)
1652   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1653       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1654     SelectInst *SI = cast<SelectInst>(Inner);
1655     Value *NewSI =
1656         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1657                              SI->getTrueValue(), SI->getName(), SI);
1658     return replaceInstUsesWith(Outer, NewSI);
1659   }
1660 
1661   auto IsFreeOrProfitableToInvert =
1662       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1663     if (match(V, m_Not(m_Value(NotV)))) {
1664       // If V has at most 2 uses then we can get rid of the xor operation
1665       // entirely.
1666       ElidesXor |= !V->hasNUsesOrMore(3);
1667       return true;
1668     }
1669 
1670     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1671       NotV = nullptr;
1672       return true;
1673     }
1674 
1675     return false;
1676   };
1677 
1678   Value *NotA, *NotB, *NotC;
1679   bool ElidesXor = false;
1680 
1681   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1682   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1683   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1684   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1685   //
1686   // This transform is performance neutral if we can elide at least one xor from
1687   // the set of three operands, since we'll be tacking on an xor at the very
1688   // end.
1689   if (SelectPatternResult::isMinOrMax(SPF1) &&
1690       SelectPatternResult::isMinOrMax(SPF2) &&
1691       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1692       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1693       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1694     if (!NotA)
1695       NotA = Builder.CreateNot(A);
1696     if (!NotB)
1697       NotB = Builder.CreateNot(B);
1698     if (!NotC)
1699       NotC = Builder.CreateNot(C);
1700 
1701     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1702                                    NotB);
1703     Value *NewOuter = Builder.CreateNot(
1704         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1705     return replaceInstUsesWith(Outer, NewOuter);
1706   }
1707 
1708   return nullptr;
1709 }
1710 
1711 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1712 /// This is even legal for FP.
1713 static Instruction *foldAddSubSelect(SelectInst &SI,
1714                                      InstCombiner::BuilderTy &Builder) {
1715   Value *CondVal = SI.getCondition();
1716   Value *TrueVal = SI.getTrueValue();
1717   Value *FalseVal = SI.getFalseValue();
1718   auto *TI = dyn_cast<Instruction>(TrueVal);
1719   auto *FI = dyn_cast<Instruction>(FalseVal);
1720   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1721     return nullptr;
1722 
1723   Instruction *AddOp = nullptr, *SubOp = nullptr;
1724   if ((TI->getOpcode() == Instruction::Sub &&
1725        FI->getOpcode() == Instruction::Add) ||
1726       (TI->getOpcode() == Instruction::FSub &&
1727        FI->getOpcode() == Instruction::FAdd)) {
1728     AddOp = FI;
1729     SubOp = TI;
1730   } else if ((FI->getOpcode() == Instruction::Sub &&
1731               TI->getOpcode() == Instruction::Add) ||
1732              (FI->getOpcode() == Instruction::FSub &&
1733               TI->getOpcode() == Instruction::FAdd)) {
1734     AddOp = TI;
1735     SubOp = FI;
1736   }
1737 
1738   if (AddOp) {
1739     Value *OtherAddOp = nullptr;
1740     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1741       OtherAddOp = AddOp->getOperand(1);
1742     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1743       OtherAddOp = AddOp->getOperand(0);
1744     }
1745 
1746     if (OtherAddOp) {
1747       // So at this point we know we have (Y -> OtherAddOp):
1748       //        select C, (add X, Y), (sub X, Z)
1749       Value *NegVal; // Compute -Z
1750       if (SI.getType()->isFPOrFPVectorTy()) {
1751         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1752         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1753           FastMathFlags Flags = AddOp->getFastMathFlags();
1754           Flags &= SubOp->getFastMathFlags();
1755           NegInst->setFastMathFlags(Flags);
1756         }
1757       } else {
1758         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1759       }
1760 
1761       Value *NewTrueOp = OtherAddOp;
1762       Value *NewFalseOp = NegVal;
1763       if (AddOp != TI)
1764         std::swap(NewTrueOp, NewFalseOp);
1765       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1766                                            SI.getName() + ".p", &SI);
1767 
1768       if (SI.getType()->isFPOrFPVectorTy()) {
1769         Instruction *RI =
1770             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1771 
1772         FastMathFlags Flags = AddOp->getFastMathFlags();
1773         Flags &= SubOp->getFastMathFlags();
1774         RI->setFastMathFlags(Flags);
1775         return RI;
1776       } else
1777         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1778     }
1779   }
1780   return nullptr;
1781 }
1782 
1783 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1784 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1785 /// Along with a number of patterns similar to:
1786 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1787 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1788 static Instruction *
1789 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1790   Value *CondVal = SI.getCondition();
1791   Value *TrueVal = SI.getTrueValue();
1792   Value *FalseVal = SI.getFalseValue();
1793 
1794   WithOverflowInst *II;
1795   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1796       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1797     return nullptr;
1798 
1799   Value *X = II->getLHS();
1800   Value *Y = II->getRHS();
1801 
1802   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1803     Type *Ty = Limit->getType();
1804 
1805     ICmpInst::Predicate Pred;
1806     Value *TrueVal, *FalseVal, *Op;
1807     const APInt *C;
1808     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1809                                m_Value(TrueVal), m_Value(FalseVal))))
1810       return false;
1811 
1812     auto IsZeroOrOne = [](const APInt &C) {
1813       return C.isNullValue() || C.isOneValue();
1814     };
1815     auto IsMinMax = [&](Value *Min, Value *Max) {
1816       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1817       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1818       return match(Min, m_SpecificInt(MinVal)) &&
1819              match(Max, m_SpecificInt(MaxVal));
1820     };
1821 
1822     if (Op != X && Op != Y)
1823       return false;
1824 
1825     if (IsAdd) {
1826       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1827       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1828       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1829       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1830       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1831           IsMinMax(TrueVal, FalseVal))
1832         return true;
1833       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1834       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1835       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1836       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1837       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1838           IsMinMax(FalseVal, TrueVal))
1839         return true;
1840     } else {
1841       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1842       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1843       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1844           IsMinMax(TrueVal, FalseVal))
1845         return true;
1846       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1847       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1848       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1849           IsMinMax(FalseVal, TrueVal))
1850         return true;
1851       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1852       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1853       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1854           IsMinMax(FalseVal, TrueVal))
1855         return true;
1856       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1857       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1858       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1859           IsMinMax(TrueVal, FalseVal))
1860         return true;
1861     }
1862 
1863     return false;
1864   };
1865 
1866   Intrinsic::ID NewIntrinsicID;
1867   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1868       match(TrueVal, m_AllOnes()))
1869     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1870     NewIntrinsicID = Intrinsic::uadd_sat;
1871   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1872            match(TrueVal, m_Zero()))
1873     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1874     NewIntrinsicID = Intrinsic::usub_sat;
1875   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1876            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1877     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1878     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1879     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1880     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1881     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1882     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1883     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1884     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1885     NewIntrinsicID = Intrinsic::sadd_sat;
1886   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1887            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1888     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1889     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1890     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1891     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1892     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1893     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1894     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1895     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1896     NewIntrinsicID = Intrinsic::ssub_sat;
1897   else
1898     return nullptr;
1899 
1900   Function *F =
1901       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1902   return CallInst::Create(F, {X, Y});
1903 }
1904 
1905 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
1906   Constant *C;
1907   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1908       !match(Sel.getFalseValue(), m_Constant(C)))
1909     return nullptr;
1910 
1911   Instruction *ExtInst;
1912   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1913       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1914     return nullptr;
1915 
1916   auto ExtOpcode = ExtInst->getOpcode();
1917   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1918     return nullptr;
1919 
1920   // If we are extending from a boolean type or if we can create a select that
1921   // has the same size operands as its condition, try to narrow the select.
1922   Value *X = ExtInst->getOperand(0);
1923   Type *SmallType = X->getType();
1924   Value *Cond = Sel.getCondition();
1925   auto *Cmp = dyn_cast<CmpInst>(Cond);
1926   if (!SmallType->isIntOrIntVectorTy(1) &&
1927       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1928     return nullptr;
1929 
1930   // If the constant is the same after truncation to the smaller type and
1931   // extension to the original type, we can narrow the select.
1932   Type *SelType = Sel.getType();
1933   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1934   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1935   if (ExtC == C && ExtInst->hasOneUse()) {
1936     Value *TruncCVal = cast<Value>(TruncC);
1937     if (ExtInst == Sel.getFalseValue())
1938       std::swap(X, TruncCVal);
1939 
1940     // select Cond, (ext X), C --> ext(select Cond, X, C')
1941     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1942     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1943     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1944   }
1945 
1946   // If one arm of the select is the extend of the condition, replace that arm
1947   // with the extension of the appropriate known bool value.
1948   if (Cond == X) {
1949     if (ExtInst == Sel.getTrueValue()) {
1950       // select X, (sext X), C --> select X, -1, C
1951       // select X, (zext X), C --> select X,  1, C
1952       Constant *One = ConstantInt::getTrue(SmallType);
1953       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1954       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1955     } else {
1956       // select X, C, (sext X) --> select X, C, 0
1957       // select X, C, (zext X) --> select X, C, 0
1958       Constant *Zero = ConstantInt::getNullValue(SelType);
1959       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1960     }
1961   }
1962 
1963   return nullptr;
1964 }
1965 
1966 /// Try to transform a vector select with a constant condition vector into a
1967 /// shuffle for easier combining with other shuffles and insert/extract.
1968 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1969   Value *CondVal = SI.getCondition();
1970   Constant *CondC;
1971   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1972     return nullptr;
1973 
1974   unsigned NumElts = cast<VectorType>(CondVal->getType())->getNumElements();
1975   SmallVector<int, 16> Mask;
1976   Mask.reserve(NumElts);
1977   for (unsigned i = 0; i != NumElts; ++i) {
1978     Constant *Elt = CondC->getAggregateElement(i);
1979     if (!Elt)
1980       return nullptr;
1981 
1982     if (Elt->isOneValue()) {
1983       // If the select condition element is true, choose from the 1st vector.
1984       Mask.push_back(i);
1985     } else if (Elt->isNullValue()) {
1986       // If the select condition element is false, choose from the 2nd vector.
1987       Mask.push_back(i + NumElts);
1988     } else if (isa<UndefValue>(Elt)) {
1989       // Undef in a select condition (choose one of the operands) does not mean
1990       // the same thing as undef in a shuffle mask (any value is acceptable), so
1991       // give up.
1992       return nullptr;
1993     } else {
1994       // Bail out on a constant expression.
1995       return nullptr;
1996     }
1997   }
1998 
1999   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2000 }
2001 
2002 /// If we have a select of vectors with a scalar condition, try to convert that
2003 /// to a vector select by splatting the condition. A splat may get folded with
2004 /// other operations in IR and having all operands of a select be vector types
2005 /// is likely better for vector codegen.
2006 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2007                                                    InstCombinerImpl &IC) {
2008   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2009   if (!Ty)
2010     return nullptr;
2011 
2012   // We can replace a single-use extract with constant index.
2013   Value *Cond = Sel.getCondition();
2014   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2015     return nullptr;
2016 
2017   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2018   // Splatting the extracted condition reduces code (we could directly create a
2019   // splat shuffle of the source vector to eliminate the intermediate step).
2020   return IC.replaceOperand(
2021       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2022 }
2023 
2024 /// Reuse bitcasted operands between a compare and select:
2025 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2026 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2027 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2028                                           InstCombiner::BuilderTy &Builder) {
2029   Value *Cond = Sel.getCondition();
2030   Value *TVal = Sel.getTrueValue();
2031   Value *FVal = Sel.getFalseValue();
2032 
2033   CmpInst::Predicate Pred;
2034   Value *A, *B;
2035   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2036     return nullptr;
2037 
2038   // The select condition is a compare instruction. If the select's true/false
2039   // values are already the same as the compare operands, there's nothing to do.
2040   if (TVal == A || TVal == B || FVal == A || FVal == B)
2041     return nullptr;
2042 
2043   Value *C, *D;
2044   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2045     return nullptr;
2046 
2047   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2048   Value *TSrc, *FSrc;
2049   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2050       !match(FVal, m_BitCast(m_Value(FSrc))))
2051     return nullptr;
2052 
2053   // If the select true/false values are *different bitcasts* of the same source
2054   // operands, make the select operands the same as the compare operands and
2055   // cast the result. This is the canonical select form for min/max.
2056   Value *NewSel;
2057   if (TSrc == C && FSrc == D) {
2058     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2059     // bitcast (select (cmp A, B), A, B)
2060     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2061   } else if (TSrc == D && FSrc == C) {
2062     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2063     // bitcast (select (cmp A, B), B, A)
2064     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2065   } else {
2066     return nullptr;
2067   }
2068   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2069 }
2070 
2071 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2072 /// instructions.
2073 ///
2074 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2075 /// selects between the returned value of the cmpxchg instruction its compare
2076 /// operand, the result of the select will always be equal to its false value.
2077 /// For example:
2078 ///
2079 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2080 ///   %1 = extractvalue { i64, i1 } %0, 1
2081 ///   %2 = extractvalue { i64, i1 } %0, 0
2082 ///   %3 = select i1 %1, i64 %compare, i64 %2
2083 ///   ret i64 %3
2084 ///
2085 /// The returned value of the cmpxchg instruction (%2) is the original value
2086 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2087 /// must have been equal to %compare. Thus, the result of the select is always
2088 /// equal to %2, and the code can be simplified to:
2089 ///
2090 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2091 ///   %1 = extractvalue { i64, i1 } %0, 0
2092 ///   ret i64 %1
2093 ///
2094 static Value *foldSelectCmpXchg(SelectInst &SI) {
2095   // A helper that determines if V is an extractvalue instruction whose
2096   // aggregate operand is a cmpxchg instruction and whose single index is equal
2097   // to I. If such conditions are true, the helper returns the cmpxchg
2098   // instruction; otherwise, a nullptr is returned.
2099   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2100     auto *Extract = dyn_cast<ExtractValueInst>(V);
2101     if (!Extract)
2102       return nullptr;
2103     if (Extract->getIndices()[0] != I)
2104       return nullptr;
2105     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2106   };
2107 
2108   // If the select has a single user, and this user is a select instruction that
2109   // we can simplify, skip the cmpxchg simplification for now.
2110   if (SI.hasOneUse())
2111     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2112       if (Select->getCondition() == SI.getCondition())
2113         if (Select->getFalseValue() == SI.getTrueValue() ||
2114             Select->getTrueValue() == SI.getFalseValue())
2115           return nullptr;
2116 
2117   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2118   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2119   if (!CmpXchg)
2120     return nullptr;
2121 
2122   // Check the true value case: The true value of the select is the returned
2123   // value of the same cmpxchg used by the condition, and the false value is the
2124   // cmpxchg instruction's compare operand.
2125   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2126     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2127       return SI.getFalseValue();
2128 
2129   // Check the false value case: The false value of the select is the returned
2130   // value of the same cmpxchg used by the condition, and the true value is the
2131   // cmpxchg instruction's compare operand.
2132   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2133     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2134       return SI.getFalseValue();
2135 
2136   return nullptr;
2137 }
2138 
2139 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2140                                        Value *Y,
2141                                        InstCombiner::BuilderTy &Builder) {
2142   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2143   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2144                     SPF == SelectPatternFlavor::SPF_UMAX;
2145   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2146   // the constant value check to an assert.
2147   Value *A;
2148   const APInt *C1, *C2;
2149   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2150       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2151     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2152     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2153     Value *NewMinMax = createMinMax(Builder, SPF, A,
2154                                     ConstantInt::get(X->getType(), *C2 - *C1));
2155     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2156                                      ConstantInt::get(X->getType(), *C1));
2157   }
2158 
2159   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2160       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2161     bool Overflow;
2162     APInt Diff = C2->ssub_ov(*C1, Overflow);
2163     if (!Overflow) {
2164       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2165       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2166       Value *NewMinMax = createMinMax(Builder, SPF, A,
2167                                       ConstantInt::get(X->getType(), Diff));
2168       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2169                                        ConstantInt::get(X->getType(), *C1));
2170     }
2171   }
2172 
2173   return nullptr;
2174 }
2175 
2176 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2177 Instruction *InstCombinerImpl::matchSAddSubSat(SelectInst &MinMax1) {
2178   Type *Ty = MinMax1.getType();
2179 
2180   // We are looking for a tree of:
2181   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2182   // Where the min and max could be reversed
2183   Instruction *MinMax2;
2184   BinaryOperator *AddSub;
2185   const APInt *MinValue, *MaxValue;
2186   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2187     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2188       return nullptr;
2189   } else if (match(&MinMax1,
2190                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2191     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2192       return nullptr;
2193   } else
2194     return nullptr;
2195 
2196   // Check that the constants clamp a saturate, and that the new type would be
2197   // sensible to convert to.
2198   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2199     return nullptr;
2200   // In what bitwidth can this be treated as saturating arithmetics?
2201   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2202   // FIXME: This isn't quite right for vectors, but using the scalar type is a
2203   // good first approximation for what should be done there.
2204   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2205     return nullptr;
2206 
2207   // Also make sure that the number of uses is as expected. The "3"s are for the
2208   // the two items of min/max (the compare and the select).
2209   if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
2210     return nullptr;
2211 
2212   // Create the new type (which can be a vector type)
2213   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2214   // Match the two extends from the add/sub
2215   Value *A, *B;
2216   if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2217     return nullptr;
2218   // And check the incoming values are of a type smaller than or equal to the
2219   // size of the saturation. Otherwise the higher bits can cause different
2220   // results.
2221   if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2222       B->getType()->getScalarSizeInBits() > NewBitWidth)
2223     return nullptr;
2224 
2225   Intrinsic::ID IntrinsicID;
2226   if (AddSub->getOpcode() == Instruction::Add)
2227     IntrinsicID = Intrinsic::sadd_sat;
2228   else if (AddSub->getOpcode() == Instruction::Sub)
2229     IntrinsicID = Intrinsic::ssub_sat;
2230   else
2231     return nullptr;
2232 
2233   // Finally create and return the sat intrinsic, truncated to the new type
2234   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2235   Value *AT = Builder.CreateSExt(A, NewTy);
2236   Value *BT = Builder.CreateSExt(B, NewTy);
2237   Value *Sat = Builder.CreateCall(F, {AT, BT});
2238   return CastInst::Create(Instruction::SExt, Sat, Ty);
2239 }
2240 
2241 /// Reduce a sequence of min/max with a common operand.
2242 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2243                                         Value *RHS,
2244                                         InstCombiner::BuilderTy &Builder) {
2245   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2246   // TODO: Allow FP min/max with nnan/nsz.
2247   if (!LHS->getType()->isIntOrIntVectorTy())
2248     return nullptr;
2249 
2250   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2251   Value *A, *B, *C, *D;
2252   SelectPatternResult L = matchSelectPattern(LHS, A, B);
2253   SelectPatternResult R = matchSelectPattern(RHS, C, D);
2254   if (SPF != L.Flavor || L.Flavor != R.Flavor)
2255     return nullptr;
2256 
2257   // Look for a common operand. The use checks are different than usual because
2258   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2259   // the select.
2260   Value *MinMaxOp = nullptr;
2261   Value *ThirdOp = nullptr;
2262   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2263     // If the LHS is only used in this chain and the RHS is used outside of it,
2264     // reuse the RHS min/max because that will eliminate the LHS.
2265     if (D == A || C == A) {
2266       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2267       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2268       MinMaxOp = RHS;
2269       ThirdOp = B;
2270     } else if (D == B || C == B) {
2271       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2272       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2273       MinMaxOp = RHS;
2274       ThirdOp = A;
2275     }
2276   } else if (!RHS->hasNUsesOrMore(3)) {
2277     // Reuse the LHS. This will eliminate the RHS.
2278     if (D == A || D == B) {
2279       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2280       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2281       MinMaxOp = LHS;
2282       ThirdOp = C;
2283     } else if (C == A || C == B) {
2284       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2285       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2286       MinMaxOp = LHS;
2287       ThirdOp = D;
2288     }
2289   }
2290   if (!MinMaxOp || !ThirdOp)
2291     return nullptr;
2292 
2293   CmpInst::Predicate P = getMinMaxPred(SPF);
2294   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2295   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2296 }
2297 
2298 /// Try to reduce a rotate pattern that includes a compare and select into a
2299 /// funnel shift intrinsic. Example:
2300 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2301 ///              --> call llvm.fshl.i32(a, a, b)
2302 static Instruction *foldSelectRotate(SelectInst &Sel,
2303                                      InstCombiner::BuilderTy &Builder) {
2304   // The false value of the select must be a rotate of the true value.
2305   Value *Or0, *Or1;
2306   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
2307     return nullptr;
2308 
2309   Value *TVal = Sel.getTrueValue();
2310   Value *SA0, *SA1;
2311   if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal),
2312                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2313       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal),
2314                                           m_ZExtOrSelf(m_Value(SA1))))))
2315     return nullptr;
2316 
2317   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
2318   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
2319   if (ShiftOpcode0 == ShiftOpcode1)
2320     return nullptr;
2321 
2322   // We have one of these patterns so far:
2323   // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
2324   // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
2325   // This must be a power-of-2 rotate for a bitmasking transform to be valid.
2326   unsigned Width = Sel.getType()->getScalarSizeInBits();
2327   if (!isPowerOf2_32(Width))
2328     return nullptr;
2329 
2330   // Check the shift amounts to see if they are an opposite pair.
2331   Value *ShAmt;
2332   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2333     ShAmt = SA0;
2334   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2335     ShAmt = SA1;
2336   else
2337     return nullptr;
2338 
2339   // Finally, see if the select is filtering out a shift-by-zero.
2340   Value *Cond = Sel.getCondition();
2341   ICmpInst::Predicate Pred;
2342   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2343       Pred != ICmpInst::ICMP_EQ)
2344     return nullptr;
2345 
2346   // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2347   // Convert to funnel shift intrinsic.
2348   bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
2349                 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
2350   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2351   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2352   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2353   return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
2354 }
2355 
2356 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2357                                          InstCombiner::BuilderTy &Builder) {
2358   Value *Cond = Sel.getCondition();
2359   Value *TVal = Sel.getTrueValue();
2360   Value *FVal = Sel.getFalseValue();
2361   Type *SelType = Sel.getType();
2362 
2363   // Match select ?, TC, FC where the constants are equal but negated.
2364   // TODO: Generalize to handle a negated variable operand?
2365   const APFloat *TC, *FC;
2366   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2367       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2368     return nullptr;
2369 
2370   assert(TC != FC && "Expected equal select arms to simplify");
2371 
2372   Value *X;
2373   const APInt *C;
2374   bool IsTrueIfSignSet;
2375   ICmpInst::Predicate Pred;
2376   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2377       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2378       X->getType() != SelType)
2379     return nullptr;
2380 
2381   // If needed, negate the value that will be the sign argument of the copysign:
2382   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2383   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2384   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2385   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2386   if (IsTrueIfSignSet ^ TC->isNegative())
2387     X = Builder.CreateFNegFMF(X, &Sel);
2388 
2389   // Canonicalize the magnitude argument as the positive constant since we do
2390   // not care about its sign.
2391   Value *MagArg = TC->isNegative() ? FVal : TVal;
2392   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2393                                           Sel.getType());
2394   Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X });
2395   CopySign->setFastMathFlags(Sel.getFastMathFlags());
2396   return CopySign;
2397 }
2398 
2399 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2400   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2401   if (!VecTy)
2402     return nullptr;
2403 
2404   unsigned NumElts = VecTy->getNumElements();
2405   APInt UndefElts(NumElts, 0);
2406   APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts));
2407   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2408     if (V != &Sel)
2409       return replaceInstUsesWith(Sel, V);
2410     return &Sel;
2411   }
2412 
2413   // A select of a "select shuffle" with a common operand can be rearranged
2414   // to select followed by "select shuffle". Because of poison, this only works
2415   // in the case of a shuffle with no undefined mask elements.
2416   Value *Cond = Sel.getCondition();
2417   Value *TVal = Sel.getTrueValue();
2418   Value *FVal = Sel.getFalseValue();
2419   Value *X, *Y;
2420   ArrayRef<int> Mask;
2421   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2422       !is_contained(Mask, UndefMaskElem) &&
2423       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2424     if (X == FVal) {
2425       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2426       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2427       return new ShuffleVectorInst(X, NewSel, Mask);
2428     }
2429     if (Y == FVal) {
2430       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2431       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2432       return new ShuffleVectorInst(NewSel, Y, Mask);
2433     }
2434   }
2435   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2436       !is_contained(Mask, UndefMaskElem) &&
2437       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2438     if (X == TVal) {
2439       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2440       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2441       return new ShuffleVectorInst(X, NewSel, Mask);
2442     }
2443     if (Y == TVal) {
2444       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2445       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2446       return new ShuffleVectorInst(NewSel, Y, Mask);
2447     }
2448   }
2449 
2450   return nullptr;
2451 }
2452 
2453 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2454                                         const DominatorTree &DT,
2455                                         InstCombiner::BuilderTy &Builder) {
2456   // Find the block's immediate dominator that ends with a conditional branch
2457   // that matches select's condition (maybe inverted).
2458   auto *IDomNode = DT[BB]->getIDom();
2459   if (!IDomNode)
2460     return nullptr;
2461   BasicBlock *IDom = IDomNode->getBlock();
2462 
2463   Value *Cond = Sel.getCondition();
2464   Value *IfTrue, *IfFalse;
2465   BasicBlock *TrueSucc, *FalseSucc;
2466   if (match(IDom->getTerminator(),
2467             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2468                  m_BasicBlock(FalseSucc)))) {
2469     IfTrue = Sel.getTrueValue();
2470     IfFalse = Sel.getFalseValue();
2471   } else if (match(IDom->getTerminator(),
2472                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2473                         m_BasicBlock(FalseSucc)))) {
2474     IfTrue = Sel.getFalseValue();
2475     IfFalse = Sel.getTrueValue();
2476   } else
2477     return nullptr;
2478 
2479   // Make sure the branches are actually different.
2480   if (TrueSucc == FalseSucc)
2481     return nullptr;
2482 
2483   // We want to replace select %cond, %a, %b with a phi that takes value %a
2484   // for all incoming edges that are dominated by condition `%cond == true`,
2485   // and value %b for edges dominated by condition `%cond == false`. If %a
2486   // or %b are also phis from the same basic block, we can go further and take
2487   // their incoming values from the corresponding blocks.
2488   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2489   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2490   DenseMap<BasicBlock *, Value *> Inputs;
2491   for (auto *Pred : predecessors(BB)) {
2492     // Check implication.
2493     BasicBlockEdge Incoming(Pred, BB);
2494     if (DT.dominates(TrueEdge, Incoming))
2495       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2496     else if (DT.dominates(FalseEdge, Incoming))
2497       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2498     else
2499       return nullptr;
2500     // Check availability.
2501     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2502       if (!DT.dominates(Insn, Pred->getTerminator()))
2503         return nullptr;
2504   }
2505 
2506   Builder.SetInsertPoint(&*BB->begin());
2507   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2508   for (auto *Pred : predecessors(BB))
2509     PN->addIncoming(Inputs[Pred], Pred);
2510   PN->takeName(&Sel);
2511   return PN;
2512 }
2513 
2514 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2515                                     InstCombiner::BuilderTy &Builder) {
2516   // Try to replace this select with Phi in one of these blocks.
2517   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2518   CandidateBlocks.insert(Sel.getParent());
2519   for (Value *V : Sel.operands())
2520     if (auto *I = dyn_cast<Instruction>(V))
2521       CandidateBlocks.insert(I->getParent());
2522 
2523   for (BasicBlock *BB : CandidateBlocks)
2524     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2525       return PN;
2526   return nullptr;
2527 }
2528 
2529 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2530   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2531   if (!FI)
2532     return nullptr;
2533 
2534   Value *Cond = FI->getOperand(0);
2535   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2536 
2537   //   select (freeze(x == y)), x, y --> y
2538   //   select (freeze(x != y)), x, y --> x
2539   // The freeze should be only used by this select. Otherwise, remaining uses of
2540   // the freeze can observe a contradictory value.
2541   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2542   //   a = select c, x, y   ;
2543   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2544   //                        ; to y, this can happen.
2545   CmpInst::Predicate Pred;
2546   if (FI->hasOneUse() &&
2547       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2548       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2549     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2550   }
2551 
2552   return nullptr;
2553 }
2554 
2555 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2556   Value *CondVal = SI.getCondition();
2557   Value *TrueVal = SI.getTrueValue();
2558   Value *FalseVal = SI.getFalseValue();
2559   Type *SelType = SI.getType();
2560 
2561   // FIXME: Remove this workaround when freeze related patches are done.
2562   // For select with undef operand which feeds into an equality comparison,
2563   // don't simplify it so loop unswitch can know the equality comparison
2564   // may have an undef operand. This is a workaround for PR31652 caused by
2565   // descrepancy about branch on undef between LoopUnswitch and GVN.
2566   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
2567     if (llvm::any_of(SI.users(), [&](User *U) {
2568           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2569           if (CI && CI->isEquality())
2570             return true;
2571           return false;
2572         })) {
2573       return nullptr;
2574     }
2575   }
2576 
2577   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2578                                     SQ.getWithInstruction(&SI)))
2579     return replaceInstUsesWith(SI, V);
2580 
2581   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2582     return I;
2583 
2584   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2585     return I;
2586 
2587   CmpInst::Predicate Pred;
2588 
2589   if (SelType->isIntOrIntVectorTy(1) &&
2590       TrueVal->getType() == CondVal->getType()) {
2591     if (match(TrueVal, m_One())) {
2592       // Change: A = select B, true, C --> A = or B, C
2593       return BinaryOperator::CreateOr(CondVal, FalseVal);
2594     }
2595     if (match(TrueVal, m_Zero())) {
2596       // Change: A = select B, false, C --> A = and !B, C
2597       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2598       return BinaryOperator::CreateAnd(NotCond, FalseVal);
2599     }
2600     if (match(FalseVal, m_Zero())) {
2601       // Change: A = select B, C, false --> A = and B, C
2602       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2603     }
2604     if (match(FalseVal, m_One())) {
2605       // Change: A = select B, C, true --> A = or !B, C
2606       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2607       return BinaryOperator::CreateOr(NotCond, TrueVal);
2608     }
2609 
2610     // select a, a, b  -> a | b
2611     // select a, b, a  -> a & b
2612     if (CondVal == TrueVal)
2613       return BinaryOperator::CreateOr(CondVal, FalseVal);
2614     if (CondVal == FalseVal)
2615       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2616 
2617     // select a, ~a, b -> (~a) & b
2618     // select a, b, ~a -> (~a) | b
2619     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2620       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
2621     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2622       return BinaryOperator::CreateOr(TrueVal, FalseVal);
2623   }
2624 
2625   // Selecting between two integer or vector splat integer constants?
2626   //
2627   // Note that we don't handle a scalar select of vectors:
2628   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2629   // because that may need 3 instructions to splat the condition value:
2630   // extend, insertelement, shufflevector.
2631   if (SelType->isIntOrIntVectorTy() &&
2632       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2633     // select C, 1, 0 -> zext C to int
2634     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2635       return new ZExtInst(CondVal, SelType);
2636 
2637     // select C, -1, 0 -> sext C to int
2638     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2639       return new SExtInst(CondVal, SelType);
2640 
2641     // select C, 0, 1 -> zext !C to int
2642     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2643       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2644       return new ZExtInst(NotCond, SelType);
2645     }
2646 
2647     // select C, 0, -1 -> sext !C to int
2648     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2649       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2650       return new SExtInst(NotCond, SelType);
2651     }
2652   }
2653 
2654   // See if we are selecting two values based on a comparison of the two values.
2655   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
2656     Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1);
2657     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2658         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2659       // Canonicalize to use ordered comparisons by swapping the select
2660       // operands.
2661       //
2662       // e.g.
2663       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2664       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2665         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2666         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2667         // FIXME: The FMF should propagate from the select, not the fcmp.
2668         Builder.setFastMathFlags(FCI->getFastMathFlags());
2669         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2670                                             FCI->getName() + ".inv");
2671         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2672         return replaceInstUsesWith(SI, NewSel);
2673       }
2674 
2675       // NOTE: if we wanted to, this is where to detect MIN/MAX
2676     }
2677   }
2678 
2679   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2680   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2681   // also require nnan because we do not want to unintentionally change the
2682   // sign of a NaN value.
2683   // FIXME: These folds should test/propagate FMF from the select, not the
2684   //        fsub or fneg.
2685   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2686   Instruction *FSub;
2687   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2688       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2689       match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2690       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2691     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2692     return replaceInstUsesWith(SI, Fabs);
2693   }
2694   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2695   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2696       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2697       match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2698       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2699     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2700     return replaceInstUsesWith(SI, Fabs);
2701   }
2702   // With nnan and nsz:
2703   // (X <  +/-0.0) ? -X : X --> fabs(X)
2704   // (X <= +/-0.0) ? -X : X --> fabs(X)
2705   Instruction *FNeg;
2706   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2707       match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2708       match(TrueVal, m_Instruction(FNeg)) &&
2709       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2710       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2711        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2712     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2713     return replaceInstUsesWith(SI, Fabs);
2714   }
2715   // With nnan and nsz:
2716   // (X >  +/-0.0) ? X : -X --> fabs(X)
2717   // (X >= +/-0.0) ? X : -X --> fabs(X)
2718   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2719       match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2720       match(FalseVal, m_Instruction(FNeg)) &&
2721       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2722       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2723        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2724     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2725     return replaceInstUsesWith(SI, Fabs);
2726   }
2727 
2728   // See if we are selecting two values based on a comparison of the two values.
2729   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2730     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2731       return Result;
2732 
2733   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2734     return Add;
2735   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2736     return Add;
2737   if (Instruction *Or = foldSetClearBits(SI, Builder))
2738     return Or;
2739 
2740   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2741   auto *TI = dyn_cast<Instruction>(TrueVal);
2742   auto *FI = dyn_cast<Instruction>(FalseVal);
2743   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2744     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2745       return IV;
2746 
2747   if (Instruction *I = foldSelectExtConst(SI))
2748     return I;
2749 
2750   // See if we can fold the select into one of our operands.
2751   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2752     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2753       return FoldI;
2754 
2755     Value *LHS, *RHS;
2756     Instruction::CastOps CastOp;
2757     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2758     auto SPF = SPR.Flavor;
2759     if (SPF) {
2760       Value *LHS2, *RHS2;
2761       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2762         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2763                                           RHS2, SI, SPF, RHS))
2764           return R;
2765       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2766         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2767                                           RHS2, SI, SPF, LHS))
2768           return R;
2769       // TODO.
2770       // ABS(-X) -> ABS(X)
2771     }
2772 
2773     if (SelectPatternResult::isMinOrMax(SPF)) {
2774       // Canonicalize so that
2775       // - type casts are outside select patterns.
2776       // - float clamp is transformed to min/max pattern
2777 
2778       bool IsCastNeeded = LHS->getType() != SelType;
2779       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2780       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2781       if (IsCastNeeded ||
2782           (LHS->getType()->isFPOrFPVectorTy() &&
2783            ((CmpLHS != LHS && CmpLHS != RHS) ||
2784             (CmpRHS != LHS && CmpRHS != RHS)))) {
2785         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2786 
2787         Value *Cmp;
2788         if (CmpInst::isIntPredicate(MinMaxPred)) {
2789           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2790         } else {
2791           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2792           auto FMF =
2793               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2794           Builder.setFastMathFlags(FMF);
2795           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2796         }
2797 
2798         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2799         if (!IsCastNeeded)
2800           return replaceInstUsesWith(SI, NewSI);
2801 
2802         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2803         return replaceInstUsesWith(SI, NewCast);
2804       }
2805 
2806       // MAX(~a, ~b) -> ~MIN(a, b)
2807       // MAX(~a, C)  -> ~MIN(a, ~C)
2808       // MIN(~a, ~b) -> ~MAX(a, b)
2809       // MIN(~a, C)  -> ~MAX(a, ~C)
2810       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2811         Value *A;
2812         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2813             !isFreeToInvert(A, A->hasOneUse()) &&
2814             // Passing false to only consider m_Not and constants.
2815             isFreeToInvert(Y, false)) {
2816           Value *B = Builder.CreateNot(Y);
2817           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2818                                           A, B);
2819           // Copy the profile metadata.
2820           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2821             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2822             // Swap the metadata if the operands are swapped.
2823             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2824               cast<SelectInst>(NewMinMax)->swapProfMetadata();
2825           }
2826 
2827           return BinaryOperator::CreateNot(NewMinMax);
2828         }
2829 
2830         return nullptr;
2831       };
2832 
2833       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2834         return I;
2835       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2836         return I;
2837 
2838       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2839         return I;
2840 
2841       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2842         return I;
2843       if (Instruction *I = matchSAddSubSat(SI))
2844         return I;
2845     }
2846   }
2847 
2848   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2849   // minnum/maxnum intrinsics.
2850   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2851     Value *X, *Y;
2852     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2853       return replaceInstUsesWith(
2854           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2855 
2856     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2857       return replaceInstUsesWith(
2858           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2859   }
2860 
2861   // See if we can fold the select into a phi node if the condition is a select.
2862   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2863     // The true/false values have to be live in the PHI predecessor's blocks.
2864     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2865         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2866       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2867         return NV;
2868 
2869   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2870     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2871       // select(C, select(C, a, b), c) -> select(C, a, c)
2872       if (TrueSI->getCondition() == CondVal) {
2873         if (SI.getTrueValue() == TrueSI->getTrueValue())
2874           return nullptr;
2875         return replaceOperand(SI, 1, TrueSI->getTrueValue());
2876       }
2877       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2878       // We choose this as normal form to enable folding on the And and
2879       // shortening paths for the values (this helps getUnderlyingObjects() for
2880       // example).
2881       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2882         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2883         replaceOperand(SI, 0, And);
2884         replaceOperand(SI, 1, TrueSI->getTrueValue());
2885         return &SI;
2886       }
2887     }
2888   }
2889   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2890     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2891       // select(C, a, select(C, b, c)) -> select(C, a, c)
2892       if (FalseSI->getCondition() == CondVal) {
2893         if (SI.getFalseValue() == FalseSI->getFalseValue())
2894           return nullptr;
2895         return replaceOperand(SI, 2, FalseSI->getFalseValue());
2896       }
2897       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2898       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2899         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2900         replaceOperand(SI, 0, Or);
2901         replaceOperand(SI, 2, FalseSI->getFalseValue());
2902         return &SI;
2903       }
2904     }
2905   }
2906 
2907   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2908     // The select might be preventing a division by 0.
2909     switch (BO->getOpcode()) {
2910     default:
2911       return true;
2912     case Instruction::SRem:
2913     case Instruction::URem:
2914     case Instruction::SDiv:
2915     case Instruction::UDiv:
2916       return false;
2917     }
2918   };
2919 
2920   // Try to simplify a binop sandwiched between 2 selects with the same
2921   // condition.
2922   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2923   BinaryOperator *TrueBO;
2924   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2925       canMergeSelectThroughBinop(TrueBO)) {
2926     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2927       if (TrueBOSI->getCondition() == CondVal) {
2928         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
2929         Worklist.push(TrueBO);
2930         return &SI;
2931       }
2932     }
2933     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2934       if (TrueBOSI->getCondition() == CondVal) {
2935         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
2936         Worklist.push(TrueBO);
2937         return &SI;
2938       }
2939     }
2940   }
2941 
2942   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2943   BinaryOperator *FalseBO;
2944   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2945       canMergeSelectThroughBinop(FalseBO)) {
2946     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2947       if (FalseBOSI->getCondition() == CondVal) {
2948         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
2949         Worklist.push(FalseBO);
2950         return &SI;
2951       }
2952     }
2953     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2954       if (FalseBOSI->getCondition() == CondVal) {
2955         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
2956         Worklist.push(FalseBO);
2957         return &SI;
2958       }
2959     }
2960   }
2961 
2962   Value *NotCond;
2963   if (match(CondVal, m_Not(m_Value(NotCond)))) {
2964     replaceOperand(SI, 0, NotCond);
2965     SI.swapValues();
2966     SI.swapProfMetadata();
2967     return &SI;
2968   }
2969 
2970   if (Instruction *I = foldVectorSelect(SI))
2971     return I;
2972 
2973   // If we can compute the condition, there's no need for a select.
2974   // Like the above fold, we are attempting to reduce compile-time cost by
2975   // putting this fold here with limitations rather than in InstSimplify.
2976   // The motivation for this call into value tracking is to take advantage of
2977   // the assumption cache, so make sure that is populated.
2978   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2979     KnownBits Known(1);
2980     computeKnownBits(CondVal, Known, 0, &SI);
2981     if (Known.One.isOneValue())
2982       return replaceInstUsesWith(SI, TrueVal);
2983     if (Known.Zero.isOneValue())
2984       return replaceInstUsesWith(SI, FalseVal);
2985   }
2986 
2987   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2988     return BitCastSel;
2989 
2990   // Simplify selects that test the returned flag of cmpxchg instructions.
2991   if (Value *V = foldSelectCmpXchg(SI))
2992     return replaceInstUsesWith(SI, V);
2993 
2994   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
2995     return Select;
2996 
2997   if (Instruction *Rot = foldSelectRotate(SI, Builder))
2998     return Rot;
2999 
3000   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3001     return Copysign;
3002 
3003   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3004     return replaceInstUsesWith(SI, PN);
3005 
3006   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3007     return replaceInstUsesWith(SI, Fr);
3008 
3009   return nullptr;
3010 }
3011