1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include "llvm/Transforms/InstCombine/InstCombiner.h" 42 #include <cassert> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 51 SelectPatternFlavor SPF, Value *A, Value *B) { 52 CmpInst::Predicate Pred = getMinMaxPred(SPF); 53 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 54 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 55 } 56 57 /// Replace a select operand based on an equality comparison with the identity 58 /// constant of a binop. 59 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 60 const TargetLibraryInfo &TLI, 61 InstCombinerImpl &IC) { 62 // The select condition must be an equality compare with a constant operand. 63 Value *X; 64 Constant *C; 65 CmpInst::Predicate Pred; 66 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 67 return nullptr; 68 69 bool IsEq; 70 if (ICmpInst::isEquality(Pred)) 71 IsEq = Pred == ICmpInst::ICMP_EQ; 72 else if (Pred == FCmpInst::FCMP_OEQ) 73 IsEq = true; 74 else if (Pred == FCmpInst::FCMP_UNE) 75 IsEq = false; 76 else 77 return nullptr; 78 79 // A select operand must be a binop. 80 BinaryOperator *BO; 81 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 82 return nullptr; 83 84 // The compare constant must be the identity constant for that binop. 85 // If this a floating-point compare with 0.0, any zero constant will do. 86 Type *Ty = BO->getType(); 87 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 88 if (IdC != C) { 89 if (!IdC || !CmpInst::isFPPredicate(Pred)) 90 return nullptr; 91 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 92 return nullptr; 93 } 94 95 // Last, match the compare variable operand with a binop operand. 96 Value *Y; 97 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 98 return nullptr; 99 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 100 return nullptr; 101 102 // +0.0 compares equal to -0.0, and so it does not behave as required for this 103 // transform. Bail out if we can not exclude that possibility. 104 if (isa<FPMathOperator>(BO)) 105 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 106 return nullptr; 107 108 // BO = binop Y, X 109 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 110 // => 111 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 112 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 113 } 114 115 /// This folds: 116 /// select (icmp eq (and X, C1)), TC, FC 117 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 118 /// To something like: 119 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 120 /// Or: 121 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 122 /// With some variations depending if FC is larger than TC, or the shift 123 /// isn't needed, or the bit widths don't match. 124 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 125 InstCombiner::BuilderTy &Builder) { 126 const APInt *SelTC, *SelFC; 127 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 128 !match(Sel.getFalseValue(), m_APInt(SelFC))) 129 return nullptr; 130 131 // If this is a vector select, we need a vector compare. 132 Type *SelType = Sel.getType(); 133 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 134 return nullptr; 135 136 Value *V; 137 APInt AndMask; 138 bool CreateAnd = false; 139 ICmpInst::Predicate Pred = Cmp->getPredicate(); 140 if (ICmpInst::isEquality(Pred)) { 141 if (!match(Cmp->getOperand(1), m_Zero())) 142 return nullptr; 143 144 V = Cmp->getOperand(0); 145 const APInt *AndRHS; 146 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 147 return nullptr; 148 149 AndMask = *AndRHS; 150 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 151 Pred, V, AndMask)) { 152 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 153 if (!AndMask.isPowerOf2()) 154 return nullptr; 155 156 CreateAnd = true; 157 } else { 158 return nullptr; 159 } 160 161 // In general, when both constants are non-zero, we would need an offset to 162 // replace the select. This would require more instructions than we started 163 // with. But there's one special-case that we handle here because it can 164 // simplify/reduce the instructions. 165 APInt TC = *SelTC; 166 APInt FC = *SelFC; 167 if (!TC.isNullValue() && !FC.isNullValue()) { 168 // If the select constants differ by exactly one bit and that's the same 169 // bit that is masked and checked by the select condition, the select can 170 // be replaced by bitwise logic to set/clear one bit of the constant result. 171 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 172 return nullptr; 173 if (CreateAnd) { 174 // If we have to create an 'and', then we must kill the cmp to not 175 // increase the instruction count. 176 if (!Cmp->hasOneUse()) 177 return nullptr; 178 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 179 } 180 bool ExtraBitInTC = TC.ugt(FC); 181 if (Pred == ICmpInst::ICMP_EQ) { 182 // If the masked bit in V is clear, clear or set the bit in the result: 183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 184 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 185 Constant *C = ConstantInt::get(SelType, TC); 186 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 187 } 188 if (Pred == ICmpInst::ICMP_NE) { 189 // If the masked bit in V is set, set or clear the bit in the result: 190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 191 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 192 Constant *C = ConstantInt::get(SelType, FC); 193 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 194 } 195 llvm_unreachable("Only expecting equality predicates"); 196 } 197 198 // Make sure one of the select arms is a power-of-2. 199 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 200 return nullptr; 201 202 // Determine which shift is needed to transform result of the 'and' into the 203 // desired result. 204 const APInt &ValC = !TC.isNullValue() ? TC : FC; 205 unsigned ValZeros = ValC.logBase2(); 206 unsigned AndZeros = AndMask.logBase2(); 207 208 // Insert the 'and' instruction on the input to the truncate. 209 if (CreateAnd) 210 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 211 212 // If types don't match, we can still convert the select by introducing a zext 213 // or a trunc of the 'and'. 214 if (ValZeros > AndZeros) { 215 V = Builder.CreateZExtOrTrunc(V, SelType); 216 V = Builder.CreateShl(V, ValZeros - AndZeros); 217 } else if (ValZeros < AndZeros) { 218 V = Builder.CreateLShr(V, AndZeros - ValZeros); 219 V = Builder.CreateZExtOrTrunc(V, SelType); 220 } else { 221 V = Builder.CreateZExtOrTrunc(V, SelType); 222 } 223 224 // Okay, now we know that everything is set up, we just don't know whether we 225 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 226 bool ShouldNotVal = !TC.isNullValue(); 227 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 228 if (ShouldNotVal) 229 V = Builder.CreateXor(V, ValC); 230 231 return V; 232 } 233 234 /// We want to turn code that looks like this: 235 /// %C = or %A, %B 236 /// %D = select %cond, %C, %A 237 /// into: 238 /// %C = select %cond, %B, 0 239 /// %D = or %A, %C 240 /// 241 /// Assuming that the specified instruction is an operand to the select, return 242 /// a bitmask indicating which operands of this instruction are foldable if they 243 /// equal the other incoming value of the select. 244 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 245 switch (I->getOpcode()) { 246 case Instruction::Add: 247 case Instruction::Mul: 248 case Instruction::And: 249 case Instruction::Or: 250 case Instruction::Xor: 251 return 3; // Can fold through either operand. 252 case Instruction::Sub: // Can only fold on the amount subtracted. 253 case Instruction::Shl: // Can only fold on the shift amount. 254 case Instruction::LShr: 255 case Instruction::AShr: 256 return 1; 257 default: 258 return 0; // Cannot fold 259 } 260 } 261 262 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 263 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 264 Instruction *FI) { 265 // Don't break up min/max patterns. The hasOneUse checks below prevent that 266 // for most cases, but vector min/max with bitcasts can be transformed. If the 267 // one-use restrictions are eased for other patterns, we still don't want to 268 // obfuscate min/max. 269 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 270 match(&SI, m_SMax(m_Value(), m_Value())) || 271 match(&SI, m_UMin(m_Value(), m_Value())) || 272 match(&SI, m_UMax(m_Value(), m_Value())))) 273 return nullptr; 274 275 // If this is a cast from the same type, merge. 276 Value *Cond = SI.getCondition(); 277 Type *CondTy = Cond->getType(); 278 if (TI->getNumOperands() == 1 && TI->isCast()) { 279 Type *FIOpndTy = FI->getOperand(0)->getType(); 280 if (TI->getOperand(0)->getType() != FIOpndTy) 281 return nullptr; 282 283 // The select condition may be a vector. We may only change the operand 284 // type if the vector width remains the same (and matches the condition). 285 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 286 if (!FIOpndTy->isVectorTy() || 287 CondVTy->getElementCount() != 288 cast<VectorType>(FIOpndTy)->getElementCount()) 289 return nullptr; 290 291 // TODO: If the backend knew how to deal with casts better, we could 292 // remove this limitation. For now, there's too much potential to create 293 // worse codegen by promoting the select ahead of size-altering casts 294 // (PR28160). 295 // 296 // Note that ValueTracking's matchSelectPattern() looks through casts 297 // without checking 'hasOneUse' when it matches min/max patterns, so this 298 // transform may end up happening anyway. 299 if (TI->getOpcode() != Instruction::BitCast && 300 (!TI->hasOneUse() || !FI->hasOneUse())) 301 return nullptr; 302 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 303 // TODO: The one-use restrictions for a scalar select could be eased if 304 // the fold of a select in visitLoadInst() was enhanced to match a pattern 305 // that includes a cast. 306 return nullptr; 307 } 308 309 // Fold this by inserting a select from the input values. 310 Value *NewSI = 311 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 312 SI.getName() + ".v", &SI); 313 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 314 TI->getType()); 315 } 316 317 // Cond ? -X : -Y --> -(Cond ? X : Y) 318 Value *X, *Y; 319 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 320 (TI->hasOneUse() || FI->hasOneUse())) { 321 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 322 return UnaryOperator::CreateFNegFMF(NewSel, TI); 323 } 324 325 // Only handle binary operators (including two-operand getelementptr) with 326 // one-use here. As with the cast case above, it may be possible to relax the 327 // one-use constraint, but that needs be examined carefully since it may not 328 // reduce the total number of instructions. 329 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 330 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 331 !TI->hasOneUse() || !FI->hasOneUse()) 332 return nullptr; 333 334 // Figure out if the operations have any operands in common. 335 Value *MatchOp, *OtherOpT, *OtherOpF; 336 bool MatchIsOpZero; 337 if (TI->getOperand(0) == FI->getOperand(0)) { 338 MatchOp = TI->getOperand(0); 339 OtherOpT = TI->getOperand(1); 340 OtherOpF = FI->getOperand(1); 341 MatchIsOpZero = true; 342 } else if (TI->getOperand(1) == FI->getOperand(1)) { 343 MatchOp = TI->getOperand(1); 344 OtherOpT = TI->getOperand(0); 345 OtherOpF = FI->getOperand(0); 346 MatchIsOpZero = false; 347 } else if (!TI->isCommutative()) { 348 return nullptr; 349 } else if (TI->getOperand(0) == FI->getOperand(1)) { 350 MatchOp = TI->getOperand(0); 351 OtherOpT = TI->getOperand(1); 352 OtherOpF = FI->getOperand(0); 353 MatchIsOpZero = true; 354 } else if (TI->getOperand(1) == FI->getOperand(0)) { 355 MatchOp = TI->getOperand(1); 356 OtherOpT = TI->getOperand(0); 357 OtherOpF = FI->getOperand(1); 358 MatchIsOpZero = true; 359 } else { 360 return nullptr; 361 } 362 363 // If the select condition is a vector, the operands of the original select's 364 // operands also must be vectors. This may not be the case for getelementptr 365 // for example. 366 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 367 !OtherOpF->getType()->isVectorTy())) 368 return nullptr; 369 370 // If we reach here, they do have operations in common. 371 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 372 SI.getName() + ".v", &SI); 373 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 374 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 375 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 376 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 377 NewBO->copyIRFlags(TI); 378 NewBO->andIRFlags(FI); 379 return NewBO; 380 } 381 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 382 auto *FGEP = cast<GetElementPtrInst>(FI); 383 Type *ElementType = TGEP->getResultElementType(); 384 return TGEP->isInBounds() && FGEP->isInBounds() 385 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 386 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 387 } 388 llvm_unreachable("Expected BinaryOperator or GEP"); 389 return nullptr; 390 } 391 392 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 393 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 394 return false; 395 return C1I.isOneValue() || C1I.isAllOnesValue() || 396 C2I.isOneValue() || C2I.isAllOnesValue(); 397 } 398 399 /// Try to fold the select into one of the operands to allow further 400 /// optimization. 401 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 402 Value *FalseVal) { 403 // See the comment above GetSelectFoldableOperands for a description of the 404 // transformation we are doing here. 405 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 406 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 407 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 408 unsigned OpToFold = 0; 409 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 410 OpToFold = 1; 411 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 412 OpToFold = 2; 413 } 414 415 if (OpToFold) { 416 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(), 417 TVI->getType(), true); 418 Value *OOp = TVI->getOperand(2-OpToFold); 419 // Avoid creating select between 2 constants unless it's selecting 420 // between 0, 1 and -1. 421 const APInt *OOpC; 422 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 423 if (!isa<Constant>(OOp) || 424 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 425 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 426 NewSel->takeName(TVI); 427 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 428 FalseVal, NewSel); 429 BO->copyIRFlags(TVI); 430 return BO; 431 } 432 } 433 } 434 } 435 } 436 437 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 438 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 439 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 440 unsigned OpToFold = 0; 441 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 442 OpToFold = 1; 443 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 444 OpToFold = 2; 445 } 446 447 if (OpToFold) { 448 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(), 449 FVI->getType(), true); 450 Value *OOp = FVI->getOperand(2-OpToFold); 451 // Avoid creating select between 2 constants unless it's selecting 452 // between 0, 1 and -1. 453 const APInt *OOpC; 454 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 455 if (!isa<Constant>(OOp) || 456 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 457 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 458 NewSel->takeName(FVI); 459 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 460 TrueVal, NewSel); 461 BO->copyIRFlags(FVI); 462 return BO; 463 } 464 } 465 } 466 } 467 } 468 469 return nullptr; 470 } 471 472 /// We want to turn: 473 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 474 /// into: 475 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 476 /// Note: 477 /// Z may be 0 if lshr is missing. 478 /// Worst-case scenario is that we will replace 5 instructions with 5 different 479 /// instructions, but we got rid of select. 480 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 481 Value *TVal, Value *FVal, 482 InstCombiner::BuilderTy &Builder) { 483 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 484 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 485 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 486 return nullptr; 487 488 // The TrueVal has general form of: and %B, 1 489 Value *B; 490 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 491 return nullptr; 492 493 // Where %B may be optionally shifted: lshr %X, %Z. 494 Value *X, *Z; 495 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 496 if (!HasShift) 497 X = B; 498 499 Value *Y; 500 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 501 return nullptr; 502 503 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 504 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 505 Constant *One = ConstantInt::get(SelType, 1); 506 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 507 Value *FullMask = Builder.CreateOr(Y, MaskB); 508 Value *MaskedX = Builder.CreateAnd(X, FullMask); 509 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 510 return new ZExtInst(ICmpNeZero, SelType); 511 } 512 513 /// We want to turn: 514 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 515 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 516 /// into: 517 /// ashr (X, Y) 518 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 519 Value *FalseVal, 520 InstCombiner::BuilderTy &Builder) { 521 ICmpInst::Predicate Pred = IC->getPredicate(); 522 Value *CmpLHS = IC->getOperand(0); 523 Value *CmpRHS = IC->getOperand(1); 524 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 525 return nullptr; 526 527 Value *X, *Y; 528 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 529 if ((Pred != ICmpInst::ICMP_SGT || 530 !match(CmpRHS, 531 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 532 (Pred != ICmpInst::ICMP_SLT || 533 !match(CmpRHS, 534 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 535 return nullptr; 536 537 // Canonicalize so that ashr is in FalseVal. 538 if (Pred == ICmpInst::ICMP_SLT) 539 std::swap(TrueVal, FalseVal); 540 541 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 542 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 543 match(CmpLHS, m_Specific(X))) { 544 const auto *Ashr = cast<Instruction>(FalseVal); 545 // if lshr is not exact and ashr is, this new ashr must not be exact. 546 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 547 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 548 } 549 550 return nullptr; 551 } 552 553 /// We want to turn: 554 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 555 /// into: 556 /// (or (shl (and X, C1), C3), Y) 557 /// iff: 558 /// C1 and C2 are both powers of 2 559 /// where: 560 /// C3 = Log(C2) - Log(C1) 561 /// 562 /// This transform handles cases where: 563 /// 1. The icmp predicate is inverted 564 /// 2. The select operands are reversed 565 /// 3. The magnitude of C2 and C1 are flipped 566 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 567 Value *FalseVal, 568 InstCombiner::BuilderTy &Builder) { 569 // Only handle integer compares. Also, if this is a vector select, we need a 570 // vector compare. 571 if (!TrueVal->getType()->isIntOrIntVectorTy() || 572 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 573 return nullptr; 574 575 Value *CmpLHS = IC->getOperand(0); 576 Value *CmpRHS = IC->getOperand(1); 577 578 Value *V; 579 unsigned C1Log; 580 bool IsEqualZero; 581 bool NeedAnd = false; 582 if (IC->isEquality()) { 583 if (!match(CmpRHS, m_Zero())) 584 return nullptr; 585 586 const APInt *C1; 587 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 588 return nullptr; 589 590 V = CmpLHS; 591 C1Log = C1->logBase2(); 592 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 593 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 594 IC->getPredicate() == ICmpInst::ICMP_SGT) { 595 // We also need to recognize (icmp slt (trunc (X)), 0) and 596 // (icmp sgt (trunc (X)), -1). 597 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 598 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 599 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 600 return nullptr; 601 602 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 603 return nullptr; 604 605 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 606 NeedAnd = true; 607 } else { 608 return nullptr; 609 } 610 611 const APInt *C2; 612 bool OrOnTrueVal = false; 613 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 614 if (!OrOnFalseVal) 615 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 616 617 if (!OrOnFalseVal && !OrOnTrueVal) 618 return nullptr; 619 620 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 621 622 unsigned C2Log = C2->logBase2(); 623 624 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 625 bool NeedShift = C1Log != C2Log; 626 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 627 V->getType()->getScalarSizeInBits(); 628 629 // Make sure we don't create more instructions than we save. 630 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 631 if ((NeedShift + NeedXor + NeedZExtTrunc) > 632 (IC->hasOneUse() + Or->hasOneUse())) 633 return nullptr; 634 635 if (NeedAnd) { 636 // Insert the AND instruction on the input to the truncate. 637 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 638 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 639 } 640 641 if (C2Log > C1Log) { 642 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 643 V = Builder.CreateShl(V, C2Log - C1Log); 644 } else if (C1Log > C2Log) { 645 V = Builder.CreateLShr(V, C1Log - C2Log); 646 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 647 } else 648 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 649 650 if (NeedXor) 651 V = Builder.CreateXor(V, *C2); 652 653 return Builder.CreateOr(V, Y); 654 } 655 656 /// Canonicalize a set or clear of a masked set of constant bits to 657 /// select-of-constants form. 658 static Instruction *foldSetClearBits(SelectInst &Sel, 659 InstCombiner::BuilderTy &Builder) { 660 Value *Cond = Sel.getCondition(); 661 Value *T = Sel.getTrueValue(); 662 Value *F = Sel.getFalseValue(); 663 Type *Ty = Sel.getType(); 664 Value *X; 665 const APInt *NotC, *C; 666 667 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 668 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 669 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 670 Constant *Zero = ConstantInt::getNullValue(Ty); 671 Constant *OrC = ConstantInt::get(Ty, *C); 672 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 673 return BinaryOperator::CreateOr(T, NewSel); 674 } 675 676 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 677 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 678 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 679 Constant *Zero = ConstantInt::getNullValue(Ty); 680 Constant *OrC = ConstantInt::get(Ty, *C); 681 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 682 return BinaryOperator::CreateOr(F, NewSel); 683 } 684 685 return nullptr; 686 } 687 688 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 689 /// There are 8 commuted/swapped variants of this pattern. 690 /// TODO: Also support a - UMIN(a,b) patterns. 691 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 692 const Value *TrueVal, 693 const Value *FalseVal, 694 InstCombiner::BuilderTy &Builder) { 695 ICmpInst::Predicate Pred = ICI->getPredicate(); 696 if (!ICmpInst::isUnsigned(Pred)) 697 return nullptr; 698 699 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 700 if (match(TrueVal, m_Zero())) { 701 Pred = ICmpInst::getInversePredicate(Pred); 702 std::swap(TrueVal, FalseVal); 703 } 704 if (!match(FalseVal, m_Zero())) 705 return nullptr; 706 707 Value *A = ICI->getOperand(0); 708 Value *B = ICI->getOperand(1); 709 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 710 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 711 std::swap(A, B); 712 Pred = ICmpInst::getSwappedPredicate(Pred); 713 } 714 715 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 716 "Unexpected isUnsigned predicate!"); 717 718 // Ensure the sub is of the form: 719 // (a > b) ? a - b : 0 -> usub.sat(a, b) 720 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 721 // Checking for both a-b and a+(-b) as a constant. 722 bool IsNegative = false; 723 const APInt *C; 724 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 725 (match(A, m_APInt(C)) && 726 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 727 IsNegative = true; 728 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 729 !(match(B, m_APInt(C)) && 730 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 731 return nullptr; 732 733 // If we are adding a negate and the sub and icmp are used anywhere else, we 734 // would end up with more instructions. 735 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 736 return nullptr; 737 738 // (a > b) ? a - b : 0 -> usub.sat(a, b) 739 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 740 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 741 if (IsNegative) 742 Result = Builder.CreateNeg(Result); 743 return Result; 744 } 745 746 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 747 InstCombiner::BuilderTy &Builder) { 748 if (!Cmp->hasOneUse()) 749 return nullptr; 750 751 // Match unsigned saturated add with constant. 752 Value *Cmp0 = Cmp->getOperand(0); 753 Value *Cmp1 = Cmp->getOperand(1); 754 ICmpInst::Predicate Pred = Cmp->getPredicate(); 755 Value *X; 756 const APInt *C, *CmpC; 757 if (Pred == ICmpInst::ICMP_ULT && 758 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 759 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 760 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 761 return Builder.CreateBinaryIntrinsic( 762 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 763 } 764 765 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 766 // There are 8 commuted variants. 767 // Canonicalize -1 (saturated result) to true value of the select. 768 if (match(FVal, m_AllOnes())) { 769 std::swap(TVal, FVal); 770 Pred = CmpInst::getInversePredicate(Pred); 771 } 772 if (!match(TVal, m_AllOnes())) 773 return nullptr; 774 775 // Canonicalize predicate to less-than or less-or-equal-than. 776 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 777 std::swap(Cmp0, Cmp1); 778 Pred = CmpInst::getSwappedPredicate(Pred); 779 } 780 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 781 return nullptr; 782 783 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 784 // Strictness of the comparison is irrelevant. 785 Value *Y; 786 if (match(Cmp0, m_Not(m_Value(X))) && 787 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 788 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 789 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 790 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 791 } 792 // The 'not' op may be included in the sum but not the compare. 793 // Strictness of the comparison is irrelevant. 794 X = Cmp0; 795 Y = Cmp1; 796 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 797 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 798 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 799 BinaryOperator *BO = cast<BinaryOperator>(FVal); 800 return Builder.CreateBinaryIntrinsic( 801 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 802 } 803 // The overflow may be detected via the add wrapping round. 804 // This is only valid for strict comparison! 805 if (Pred == ICmpInst::ICMP_ULT && 806 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 807 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 808 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 809 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 810 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 811 } 812 813 return nullptr; 814 } 815 816 /// Fold the following code sequence: 817 /// \code 818 /// int a = ctlz(x & -x); 819 // x ? 31 - a : a; 820 /// \code 821 /// 822 /// into: 823 /// cttz(x) 824 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 825 Value *FalseVal, 826 InstCombiner::BuilderTy &Builder) { 827 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 828 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 829 return nullptr; 830 831 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 832 std::swap(TrueVal, FalseVal); 833 834 if (!match(FalseVal, 835 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 836 return nullptr; 837 838 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 839 return nullptr; 840 841 Value *X = ICI->getOperand(0); 842 auto *II = cast<IntrinsicInst>(TrueVal); 843 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 844 return nullptr; 845 846 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 847 II->getType()); 848 return CallInst::Create(F, {X, II->getArgOperand(1)}); 849 } 850 851 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 852 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 853 /// 854 /// For example, we can fold the following code sequence: 855 /// \code 856 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 857 /// %1 = icmp ne i32 %x, 0 858 /// %2 = select i1 %1, i32 %0, i32 32 859 /// \code 860 /// 861 /// into: 862 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 863 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 864 InstCombiner::BuilderTy &Builder) { 865 ICmpInst::Predicate Pred = ICI->getPredicate(); 866 Value *CmpLHS = ICI->getOperand(0); 867 Value *CmpRHS = ICI->getOperand(1); 868 869 // Check if the condition value compares a value for equality against zero. 870 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 871 return nullptr; 872 873 Value *SelectArg = FalseVal; 874 Value *ValueOnZero = TrueVal; 875 if (Pred == ICmpInst::ICMP_NE) 876 std::swap(SelectArg, ValueOnZero); 877 878 // Skip zero extend/truncate. 879 Value *Count = nullptr; 880 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 881 !match(SelectArg, m_Trunc(m_Value(Count)))) 882 Count = SelectArg; 883 884 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 885 // input to the cttz/ctlz is used as LHS for the compare instruction. 886 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 887 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 888 return nullptr; 889 890 IntrinsicInst *II = cast<IntrinsicInst>(Count); 891 892 // Check if the value propagated on zero is a constant number equal to the 893 // sizeof in bits of 'Count'. 894 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 895 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 896 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from 897 // true to false on this flag, so we can replace it for all users. 898 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 899 return SelectArg; 900 } 901 902 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 903 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 904 // not be used if the input is zero. Relax to 'undef_on_zero' for that case. 905 if (II->hasOneUse() && SelectArg->hasOneUse() && 906 !match(II->getArgOperand(1), m_One())) 907 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 908 909 return nullptr; 910 } 911 912 /// Return true if we find and adjust an icmp+select pattern where the compare 913 /// is with a constant that can be incremented or decremented to match the 914 /// minimum or maximum idiom. 915 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 916 ICmpInst::Predicate Pred = Cmp.getPredicate(); 917 Value *CmpLHS = Cmp.getOperand(0); 918 Value *CmpRHS = Cmp.getOperand(1); 919 Value *TrueVal = Sel.getTrueValue(); 920 Value *FalseVal = Sel.getFalseValue(); 921 922 // We may move or edit the compare, so make sure the select is the only user. 923 const APInt *CmpC; 924 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 925 return false; 926 927 // These transforms only work for selects of integers or vector selects of 928 // integer vectors. 929 Type *SelTy = Sel.getType(); 930 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 931 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 932 return false; 933 934 Constant *AdjustedRHS; 935 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 936 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 937 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 938 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 939 else 940 return false; 941 942 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 943 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 944 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 945 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 946 ; // Nothing to do here. Values match without any sign/zero extension. 947 } 948 // Types do not match. Instead of calculating this with mixed types, promote 949 // all to the larger type. This enables scalar evolution to analyze this 950 // expression. 951 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 952 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 953 954 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 955 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 956 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 957 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 958 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 959 CmpLHS = TrueVal; 960 AdjustedRHS = SextRHS; 961 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 962 SextRHS == TrueVal) { 963 CmpLHS = FalseVal; 964 AdjustedRHS = SextRHS; 965 } else if (Cmp.isUnsigned()) { 966 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 967 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 968 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 969 // zext + signed compare cannot be changed: 970 // 0xff <s 0x00, but 0x00ff >s 0x0000 971 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 972 CmpLHS = TrueVal; 973 AdjustedRHS = ZextRHS; 974 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 975 ZextRHS == TrueVal) { 976 CmpLHS = FalseVal; 977 AdjustedRHS = ZextRHS; 978 } else { 979 return false; 980 } 981 } else { 982 return false; 983 } 984 } else { 985 return false; 986 } 987 988 Pred = ICmpInst::getSwappedPredicate(Pred); 989 CmpRHS = AdjustedRHS; 990 std::swap(FalseVal, TrueVal); 991 Cmp.setPredicate(Pred); 992 Cmp.setOperand(0, CmpLHS); 993 Cmp.setOperand(1, CmpRHS); 994 Sel.setOperand(1, TrueVal); 995 Sel.setOperand(2, FalseVal); 996 Sel.swapProfMetadata(); 997 998 // Move the compare instruction right before the select instruction. Otherwise 999 // the sext/zext value may be defined after the compare instruction uses it. 1000 Cmp.moveBefore(&Sel); 1001 1002 return true; 1003 } 1004 1005 /// If this is an integer min/max (icmp + select) with a constant operand, 1006 /// create the canonical icmp for the min/max operation and canonicalize the 1007 /// constant to the 'false' operand of the select: 1008 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1009 /// Note: if C1 != C2, this will change the icmp constant to the existing 1010 /// constant operand of the select. 1011 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1012 ICmpInst &Cmp, 1013 InstCombinerImpl &IC) { 1014 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1015 return nullptr; 1016 1017 // Canonicalize the compare predicate based on whether we have min or max. 1018 Value *LHS, *RHS; 1019 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1020 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1021 return nullptr; 1022 1023 // Is this already canonical? 1024 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1025 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1026 Cmp.getPredicate() == CanonicalPred) 1027 return nullptr; 1028 1029 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1030 // as this may cause an infinite combine loop. Let the sub be folded first. 1031 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1032 match(RHS, m_Sub(m_Value(), m_Zero()))) 1033 return nullptr; 1034 1035 // Create the canonical compare and plug it into the select. 1036 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1037 1038 // If the select operands did not change, we're done. 1039 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1040 return &Sel; 1041 1042 // If we are swapping the select operands, swap the metadata too. 1043 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1044 "Unexpected results from matchSelectPattern"); 1045 Sel.swapValues(); 1046 Sel.swapProfMetadata(); 1047 return &Sel; 1048 } 1049 1050 /// There are many select variants for each of ABS/NABS. 1051 /// In matchSelectPattern(), there are different compare constants, compare 1052 /// predicates/operands and select operands. 1053 /// In isKnownNegation(), there are different formats of negated operands. 1054 /// Canonicalize all these variants to 1 pattern. 1055 /// This makes CSE more likely. 1056 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1057 InstCombinerImpl &IC) { 1058 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1059 return nullptr; 1060 1061 // Choose a sign-bit check for the compare (likely simpler for codegen). 1062 // ABS: (X <s 0) ? -X : X 1063 // NABS: (X <s 0) ? X : -X 1064 Value *LHS, *RHS; 1065 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1066 if (SPF != SelectPatternFlavor::SPF_ABS && 1067 SPF != SelectPatternFlavor::SPF_NABS) 1068 return nullptr; 1069 1070 Value *TVal = Sel.getTrueValue(); 1071 Value *FVal = Sel.getFalseValue(); 1072 assert(isKnownNegation(TVal, FVal) && 1073 "Unexpected result from matchSelectPattern"); 1074 1075 // The compare may use the negated abs()/nabs() operand, or it may use 1076 // negation in non-canonical form such as: sub A, B. 1077 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 1078 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 1079 1080 bool CmpCanonicalized = !CmpUsesNegatedOp && 1081 match(Cmp.getOperand(1), m_ZeroInt()) && 1082 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 1083 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 1084 1085 // Is this already canonical? 1086 if (CmpCanonicalized && RHSCanonicalized) 1087 return nullptr; 1088 1089 // If RHS is not canonical but is used by other instructions, don't 1090 // canonicalize it and potentially increase the instruction count. 1091 if (!RHSCanonicalized) 1092 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 1093 return nullptr; 1094 1095 // Create the canonical compare: icmp slt LHS 0. 1096 if (!CmpCanonicalized) { 1097 Cmp.setPredicate(ICmpInst::ICMP_SLT); 1098 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 1099 if (CmpUsesNegatedOp) 1100 Cmp.setOperand(0, LHS); 1101 } 1102 1103 // Create the canonical RHS: RHS = sub (0, LHS). 1104 if (!RHSCanonicalized) { 1105 assert(RHS->hasOneUse() && "RHS use number is not right"); 1106 RHS = IC.Builder.CreateNeg(LHS); 1107 if (TVal == LHS) { 1108 // Replace false value. 1109 IC.replaceOperand(Sel, 2, RHS); 1110 FVal = RHS; 1111 } else { 1112 // Replace true value. 1113 IC.replaceOperand(Sel, 1, RHS); 1114 TVal = RHS; 1115 } 1116 } 1117 1118 // If the select operands do not change, we're done. 1119 if (SPF == SelectPatternFlavor::SPF_NABS) { 1120 if (TVal == LHS) 1121 return &Sel; 1122 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 1123 } else { 1124 if (FVal == LHS) 1125 return &Sel; 1126 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 1127 } 1128 1129 // We are swapping the select operands, so swap the metadata too. 1130 Sel.swapValues(); 1131 Sel.swapProfMetadata(); 1132 return &Sel; 1133 } 1134 1135 /// If we have a select with an equality comparison, then we know the value in 1136 /// one of the arms of the select. See if substituting this value into an arm 1137 /// and simplifying the result yields the same value as the other arm. 1138 /// 1139 /// To make this transform safe, we must drop poison-generating flags 1140 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1141 /// that poison from propagating. If the existing binop already had no 1142 /// poison-generating flags, then this transform can be done by instsimplify. 1143 /// 1144 /// Consider: 1145 /// %cmp = icmp eq i32 %x, 2147483647 1146 /// %add = add nsw i32 %x, 1 1147 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1148 /// 1149 /// We can't replace %sel with %add unless we strip away the flags. 1150 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1151 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1152 ICmpInst &Cmp) { 1153 if (!Cmp.isEquality()) 1154 return nullptr; 1155 1156 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1157 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1158 bool Swapped = false; 1159 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1160 std::swap(TrueVal, FalseVal); 1161 Swapped = true; 1162 } 1163 1164 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1165 // Make sure Y cannot be undef though, as we might pick different values for 1166 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1167 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1168 // replacement cycle. 1169 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1170 if (TrueVal != CmpLHS && 1171 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) 1172 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1173 /* AllowRefinement */ true)) 1174 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1175 if (TrueVal != CmpRHS && 1176 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1177 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1178 /* AllowRefinement */ true)) 1179 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1180 1181 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1182 if (!FalseInst) 1183 return nullptr; 1184 1185 // InstSimplify already performed this fold if it was possible subject to 1186 // current poison-generating flags. Try the transform again with 1187 // poison-generating flags temporarily dropped. 1188 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1189 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1190 WasNUW = OBO->hasNoUnsignedWrap(); 1191 WasNSW = OBO->hasNoSignedWrap(); 1192 FalseInst->setHasNoUnsignedWrap(false); 1193 FalseInst->setHasNoSignedWrap(false); 1194 } 1195 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1196 WasExact = PEO->isExact(); 1197 FalseInst->setIsExact(false); 1198 } 1199 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1200 WasInBounds = GEP->isInBounds(); 1201 GEP->setIsInBounds(false); 1202 } 1203 1204 // Try each equivalence substitution possibility. 1205 // We have an 'EQ' comparison, so the select's false value will propagate. 1206 // Example: 1207 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1208 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1209 /* AllowRefinement */ false) == TrueVal || 1210 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1211 /* AllowRefinement */ false) == TrueVal) { 1212 return replaceInstUsesWith(Sel, FalseVal); 1213 } 1214 1215 // Restore poison-generating flags if the transform did not apply. 1216 if (WasNUW) 1217 FalseInst->setHasNoUnsignedWrap(); 1218 if (WasNSW) 1219 FalseInst->setHasNoSignedWrap(); 1220 if (WasExact) 1221 FalseInst->setIsExact(); 1222 if (WasInBounds) 1223 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1224 1225 return nullptr; 1226 } 1227 1228 // See if this is a pattern like: 1229 // %old_cmp1 = icmp slt i32 %x, C2 1230 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1231 // %old_x_offseted = add i32 %x, C1 1232 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1233 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1234 // This can be rewritten as more canonical pattern: 1235 // %new_cmp1 = icmp slt i32 %x, -C1 1236 // %new_cmp2 = icmp sge i32 %x, C0-C1 1237 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1238 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1239 // Iff -C1 s<= C2 s<= C0-C1 1240 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1241 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1242 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1243 InstCombiner::BuilderTy &Builder) { 1244 Value *X = Sel0.getTrueValue(); 1245 Value *Sel1 = Sel0.getFalseValue(); 1246 1247 // First match the condition of the outermost select. 1248 // Said condition must be one-use. 1249 if (!Cmp0.hasOneUse()) 1250 return nullptr; 1251 Value *Cmp00 = Cmp0.getOperand(0); 1252 Constant *C0; 1253 if (!match(Cmp0.getOperand(1), 1254 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1255 return nullptr; 1256 // Canonicalize Cmp0 into the form we expect. 1257 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1258 switch (Cmp0.getPredicate()) { 1259 case ICmpInst::Predicate::ICMP_ULT: 1260 break; // Great! 1261 case ICmpInst::Predicate::ICMP_ULE: 1262 // We'd have to increment C0 by one, and for that it must not have all-ones 1263 // element, but then it would have been canonicalized to 'ult' before 1264 // we get here. So we can't do anything useful with 'ule'. 1265 return nullptr; 1266 case ICmpInst::Predicate::ICMP_UGT: 1267 // We want to canonicalize it to 'ult', so we'll need to increment C0, 1268 // which again means it must not have any all-ones elements. 1269 if (!match(C0, 1270 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1271 APInt::getAllOnesValue( 1272 C0->getType()->getScalarSizeInBits())))) 1273 return nullptr; // Can't do, have all-ones element[s]. 1274 C0 = InstCombiner::AddOne(C0); 1275 std::swap(X, Sel1); 1276 break; 1277 case ICmpInst::Predicate::ICMP_UGE: 1278 // The only way we'd get this predicate if this `icmp` has extra uses, 1279 // but then we won't be able to do this fold. 1280 return nullptr; 1281 default: 1282 return nullptr; // Unknown predicate. 1283 } 1284 1285 // Now that we've canonicalized the ICmp, we know the X we expect; 1286 // the select in other hand should be one-use. 1287 if (!Sel1->hasOneUse()) 1288 return nullptr; 1289 1290 // We now can finish matching the condition of the outermost select: 1291 // it should either be the X itself, or an addition of some constant to X. 1292 Constant *C1; 1293 if (Cmp00 == X) 1294 C1 = ConstantInt::getNullValue(Sel0.getType()); 1295 else if (!match(Cmp00, 1296 m_Add(m_Specific(X), 1297 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1298 return nullptr; 1299 1300 Value *Cmp1; 1301 ICmpInst::Predicate Pred1; 1302 Constant *C2; 1303 Value *ReplacementLow, *ReplacementHigh; 1304 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1305 m_Value(ReplacementHigh))) || 1306 !match(Cmp1, 1307 m_ICmp(Pred1, m_Specific(X), 1308 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1309 return nullptr; 1310 1311 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1312 return nullptr; // Not enough one-use instructions for the fold. 1313 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1314 // two comparisons we'll need to build. 1315 1316 // Canonicalize Cmp1 into the form we expect. 1317 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1318 switch (Pred1) { 1319 case ICmpInst::Predicate::ICMP_SLT: 1320 break; 1321 case ICmpInst::Predicate::ICMP_SLE: 1322 // We'd have to increment C2 by one, and for that it must not have signed 1323 // max element, but then it would have been canonicalized to 'slt' before 1324 // we get here. So we can't do anything useful with 'sle'. 1325 return nullptr; 1326 case ICmpInst::Predicate::ICMP_SGT: 1327 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1328 // which again means it must not have any signed max elements. 1329 if (!match(C2, 1330 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1331 APInt::getSignedMaxValue( 1332 C2->getType()->getScalarSizeInBits())))) 1333 return nullptr; // Can't do, have signed max element[s]. 1334 C2 = InstCombiner::AddOne(C2); 1335 LLVM_FALLTHROUGH; 1336 case ICmpInst::Predicate::ICMP_SGE: 1337 // Also non-canonical, but here we don't need to change C2, 1338 // so we don't have any restrictions on C2, so we can just handle it. 1339 std::swap(ReplacementLow, ReplacementHigh); 1340 break; 1341 default: 1342 return nullptr; // Unknown predicate. 1343 } 1344 1345 // The thresholds of this clamp-like pattern. 1346 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1347 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1348 1349 // The fold has a precondition 1: C2 s>= ThresholdLow 1350 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1351 ThresholdLowIncl); 1352 if (!match(Precond1, m_One())) 1353 return nullptr; 1354 // The fold has a precondition 2: C2 s<= ThresholdHigh 1355 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1356 ThresholdHighExcl); 1357 if (!match(Precond2, m_One())) 1358 return nullptr; 1359 1360 // All good, finally emit the new pattern. 1361 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1362 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1363 Value *MaybeReplacedLow = 1364 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1365 Instruction *MaybeReplacedHigh = 1366 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1367 1368 return MaybeReplacedHigh; 1369 } 1370 1371 // If we have 1372 // %cmp = icmp [canonical predicate] i32 %x, C0 1373 // %r = select i1 %cmp, i32 %y, i32 C1 1374 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1375 // will have if we flip the strictness of the predicate (i.e. without changing 1376 // the result) is identical to the C1 in select. If it matches we can change 1377 // original comparison to one with swapped predicate, reuse the constant, 1378 // and swap the hands of select. 1379 static Instruction * 1380 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1381 InstCombinerImpl &IC) { 1382 ICmpInst::Predicate Pred; 1383 Value *X; 1384 Constant *C0; 1385 if (!match(&Cmp, m_OneUse(m_ICmp( 1386 Pred, m_Value(X), 1387 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1388 return nullptr; 1389 1390 // If comparison predicate is non-relational, we won't be able to do anything. 1391 if (ICmpInst::isEquality(Pred)) 1392 return nullptr; 1393 1394 // If comparison predicate is non-canonical, then we certainly won't be able 1395 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1396 if (!InstCombiner::isCanonicalPredicate(Pred)) 1397 return nullptr; 1398 1399 // If the [input] type of comparison and select type are different, lets abort 1400 // for now. We could try to compare constants with trunc/[zs]ext though. 1401 if (C0->getType() != Sel.getType()) 1402 return nullptr; 1403 1404 // FIXME: are there any magic icmp predicate+constant pairs we must not touch? 1405 1406 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1407 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1408 // At least one of these values we are selecting between must be a constant 1409 // else we'll never succeed. 1410 if (!match(SelVal0, m_AnyIntegralConstant()) && 1411 !match(SelVal1, m_AnyIntegralConstant())) 1412 return nullptr; 1413 1414 // Does this constant C match any of the `select` values? 1415 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1416 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1417 }; 1418 1419 // If C0 *already* matches true/false value of select, we are done. 1420 if (MatchesSelectValue(C0)) 1421 return nullptr; 1422 1423 // Check the constant we'd have with flipped-strictness predicate. 1424 auto FlippedStrictness = 1425 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1426 if (!FlippedStrictness) 1427 return nullptr; 1428 1429 // If said constant doesn't match either, then there is no hope, 1430 if (!MatchesSelectValue(FlippedStrictness->second)) 1431 return nullptr; 1432 1433 // It matched! Lets insert the new comparison just before select. 1434 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1435 IC.Builder.SetInsertPoint(&Sel); 1436 1437 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1438 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1439 Cmp.getName() + ".inv"); 1440 IC.replaceOperand(Sel, 0, NewCmp); 1441 Sel.swapValues(); 1442 Sel.swapProfMetadata(); 1443 1444 return &Sel; 1445 } 1446 1447 /// Visit a SelectInst that has an ICmpInst as its first operand. 1448 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1449 ICmpInst *ICI) { 1450 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1451 return NewSel; 1452 1453 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1454 return NewSel; 1455 1456 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1457 return NewAbs; 1458 1459 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) 1460 return NewAbs; 1461 1462 if (Instruction *NewSel = 1463 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1464 return NewSel; 1465 1466 bool Changed = adjustMinMax(SI, *ICI); 1467 1468 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1469 return replaceInstUsesWith(SI, V); 1470 1471 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1472 Value *TrueVal = SI.getTrueValue(); 1473 Value *FalseVal = SI.getFalseValue(); 1474 ICmpInst::Predicate Pred = ICI->getPredicate(); 1475 Value *CmpLHS = ICI->getOperand(0); 1476 Value *CmpRHS = ICI->getOperand(1); 1477 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1478 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1479 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1480 SI.setOperand(1, CmpRHS); 1481 Changed = true; 1482 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1483 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1484 SI.setOperand(2, CmpRHS); 1485 Changed = true; 1486 } 1487 } 1488 1489 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1490 // decomposeBitTestICmp() might help. 1491 { 1492 unsigned BitWidth = 1493 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1494 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1495 Value *X; 1496 const APInt *Y, *C; 1497 bool TrueWhenUnset; 1498 bool IsBitTest = false; 1499 if (ICmpInst::isEquality(Pred) && 1500 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1501 match(CmpRHS, m_Zero())) { 1502 IsBitTest = true; 1503 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1504 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1505 X = CmpLHS; 1506 Y = &MinSignedValue; 1507 IsBitTest = true; 1508 TrueWhenUnset = false; 1509 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1510 X = CmpLHS; 1511 Y = &MinSignedValue; 1512 IsBitTest = true; 1513 TrueWhenUnset = true; 1514 } 1515 if (IsBitTest) { 1516 Value *V = nullptr; 1517 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1518 if (TrueWhenUnset && TrueVal == X && 1519 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1520 V = Builder.CreateAnd(X, ~(*Y)); 1521 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1522 else if (!TrueWhenUnset && FalseVal == X && 1523 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1524 V = Builder.CreateAnd(X, ~(*Y)); 1525 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1526 else if (TrueWhenUnset && FalseVal == X && 1527 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1528 V = Builder.CreateOr(X, *Y); 1529 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1530 else if (!TrueWhenUnset && TrueVal == X && 1531 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1532 V = Builder.CreateOr(X, *Y); 1533 1534 if (V) 1535 return replaceInstUsesWith(SI, V); 1536 } 1537 } 1538 1539 if (Instruction *V = 1540 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1541 return V; 1542 1543 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1544 return V; 1545 1546 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1547 return replaceInstUsesWith(SI, V); 1548 1549 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1550 return replaceInstUsesWith(SI, V); 1551 1552 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1553 return replaceInstUsesWith(SI, V); 1554 1555 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1556 return replaceInstUsesWith(SI, V); 1557 1558 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1559 return replaceInstUsesWith(SI, V); 1560 1561 return Changed ? &SI : nullptr; 1562 } 1563 1564 /// SI is a select whose condition is a PHI node (but the two may be in 1565 /// different blocks). See if the true/false values (V) are live in all of the 1566 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1567 /// 1568 /// X = phi [ C1, BB1], [C2, BB2] 1569 /// Y = add 1570 /// Z = select X, Y, 0 1571 /// 1572 /// because Y is not live in BB1/BB2. 1573 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1574 const SelectInst &SI) { 1575 // If the value is a non-instruction value like a constant or argument, it 1576 // can always be mapped. 1577 const Instruction *I = dyn_cast<Instruction>(V); 1578 if (!I) return true; 1579 1580 // If V is a PHI node defined in the same block as the condition PHI, we can 1581 // map the arguments. 1582 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1583 1584 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1585 if (VP->getParent() == CondPHI->getParent()) 1586 return true; 1587 1588 // Otherwise, if the PHI and select are defined in the same block and if V is 1589 // defined in a different block, then we can transform it. 1590 if (SI.getParent() == CondPHI->getParent() && 1591 I->getParent() != CondPHI->getParent()) 1592 return true; 1593 1594 // Otherwise we have a 'hard' case and we can't tell without doing more 1595 // detailed dominator based analysis, punt. 1596 return false; 1597 } 1598 1599 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1600 /// SPF2(SPF1(A, B), C) 1601 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1602 SelectPatternFlavor SPF1, Value *A, 1603 Value *B, Instruction &Outer, 1604 SelectPatternFlavor SPF2, 1605 Value *C) { 1606 if (Outer.getType() != Inner->getType()) 1607 return nullptr; 1608 1609 if (C == A || C == B) { 1610 // MAX(MAX(A, B), B) -> MAX(A, B) 1611 // MIN(MIN(a, b), a) -> MIN(a, b) 1612 // TODO: This could be done in instsimplify. 1613 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1614 return replaceInstUsesWith(Outer, Inner); 1615 1616 // MAX(MIN(a, b), a) -> a 1617 // MIN(MAX(a, b), a) -> a 1618 // TODO: This could be done in instsimplify. 1619 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1620 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1621 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1622 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1623 return replaceInstUsesWith(Outer, C); 1624 } 1625 1626 if (SPF1 == SPF2) { 1627 const APInt *CB, *CC; 1628 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1629 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1630 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1631 // TODO: This could be done in instsimplify. 1632 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1633 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1634 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1635 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1636 return replaceInstUsesWith(Outer, Inner); 1637 1638 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1639 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1640 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1641 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1642 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1643 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1644 Outer.replaceUsesOfWith(Inner, A); 1645 return &Outer; 1646 } 1647 } 1648 } 1649 1650 // max(max(A, B), min(A, B)) --> max(A, B) 1651 // min(min(A, B), max(A, B)) --> min(A, B) 1652 // TODO: This could be done in instsimplify. 1653 if (SPF1 == SPF2 && 1654 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1655 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1656 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1657 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1658 return replaceInstUsesWith(Outer, Inner); 1659 1660 // ABS(ABS(X)) -> ABS(X) 1661 // NABS(NABS(X)) -> NABS(X) 1662 // TODO: This could be done in instsimplify. 1663 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1664 return replaceInstUsesWith(Outer, Inner); 1665 } 1666 1667 // ABS(NABS(X)) -> ABS(X) 1668 // NABS(ABS(X)) -> NABS(X) 1669 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1670 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1671 SelectInst *SI = cast<SelectInst>(Inner); 1672 Value *NewSI = 1673 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1674 SI->getTrueValue(), SI->getName(), SI); 1675 return replaceInstUsesWith(Outer, NewSI); 1676 } 1677 1678 auto IsFreeOrProfitableToInvert = 1679 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1680 if (match(V, m_Not(m_Value(NotV)))) { 1681 // If V has at most 2 uses then we can get rid of the xor operation 1682 // entirely. 1683 ElidesXor |= !V->hasNUsesOrMore(3); 1684 return true; 1685 } 1686 1687 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1688 NotV = nullptr; 1689 return true; 1690 } 1691 1692 return false; 1693 }; 1694 1695 Value *NotA, *NotB, *NotC; 1696 bool ElidesXor = false; 1697 1698 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1699 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1700 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1701 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1702 // 1703 // This transform is performance neutral if we can elide at least one xor from 1704 // the set of three operands, since we'll be tacking on an xor at the very 1705 // end. 1706 if (SelectPatternResult::isMinOrMax(SPF1) && 1707 SelectPatternResult::isMinOrMax(SPF2) && 1708 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1709 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1710 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1711 if (!NotA) 1712 NotA = Builder.CreateNot(A); 1713 if (!NotB) 1714 NotB = Builder.CreateNot(B); 1715 if (!NotC) 1716 NotC = Builder.CreateNot(C); 1717 1718 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1719 NotB); 1720 Value *NewOuter = Builder.CreateNot( 1721 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1722 return replaceInstUsesWith(Outer, NewOuter); 1723 } 1724 1725 return nullptr; 1726 } 1727 1728 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1729 /// This is even legal for FP. 1730 static Instruction *foldAddSubSelect(SelectInst &SI, 1731 InstCombiner::BuilderTy &Builder) { 1732 Value *CondVal = SI.getCondition(); 1733 Value *TrueVal = SI.getTrueValue(); 1734 Value *FalseVal = SI.getFalseValue(); 1735 auto *TI = dyn_cast<Instruction>(TrueVal); 1736 auto *FI = dyn_cast<Instruction>(FalseVal); 1737 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1738 return nullptr; 1739 1740 Instruction *AddOp = nullptr, *SubOp = nullptr; 1741 if ((TI->getOpcode() == Instruction::Sub && 1742 FI->getOpcode() == Instruction::Add) || 1743 (TI->getOpcode() == Instruction::FSub && 1744 FI->getOpcode() == Instruction::FAdd)) { 1745 AddOp = FI; 1746 SubOp = TI; 1747 } else if ((FI->getOpcode() == Instruction::Sub && 1748 TI->getOpcode() == Instruction::Add) || 1749 (FI->getOpcode() == Instruction::FSub && 1750 TI->getOpcode() == Instruction::FAdd)) { 1751 AddOp = TI; 1752 SubOp = FI; 1753 } 1754 1755 if (AddOp) { 1756 Value *OtherAddOp = nullptr; 1757 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1758 OtherAddOp = AddOp->getOperand(1); 1759 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1760 OtherAddOp = AddOp->getOperand(0); 1761 } 1762 1763 if (OtherAddOp) { 1764 // So at this point we know we have (Y -> OtherAddOp): 1765 // select C, (add X, Y), (sub X, Z) 1766 Value *NegVal; // Compute -Z 1767 if (SI.getType()->isFPOrFPVectorTy()) { 1768 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1769 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1770 FastMathFlags Flags = AddOp->getFastMathFlags(); 1771 Flags &= SubOp->getFastMathFlags(); 1772 NegInst->setFastMathFlags(Flags); 1773 } 1774 } else { 1775 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1776 } 1777 1778 Value *NewTrueOp = OtherAddOp; 1779 Value *NewFalseOp = NegVal; 1780 if (AddOp != TI) 1781 std::swap(NewTrueOp, NewFalseOp); 1782 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1783 SI.getName() + ".p", &SI); 1784 1785 if (SI.getType()->isFPOrFPVectorTy()) { 1786 Instruction *RI = 1787 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1788 1789 FastMathFlags Flags = AddOp->getFastMathFlags(); 1790 Flags &= SubOp->getFastMathFlags(); 1791 RI->setFastMathFlags(Flags); 1792 return RI; 1793 } else 1794 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1795 } 1796 } 1797 return nullptr; 1798 } 1799 1800 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1801 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1802 /// Along with a number of patterns similar to: 1803 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1804 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1805 static Instruction * 1806 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1807 Value *CondVal = SI.getCondition(); 1808 Value *TrueVal = SI.getTrueValue(); 1809 Value *FalseVal = SI.getFalseValue(); 1810 1811 WithOverflowInst *II; 1812 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1813 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1814 return nullptr; 1815 1816 Value *X = II->getLHS(); 1817 Value *Y = II->getRHS(); 1818 1819 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1820 Type *Ty = Limit->getType(); 1821 1822 ICmpInst::Predicate Pred; 1823 Value *TrueVal, *FalseVal, *Op; 1824 const APInt *C; 1825 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1826 m_Value(TrueVal), m_Value(FalseVal)))) 1827 return false; 1828 1829 auto IsZeroOrOne = [](const APInt &C) { 1830 return C.isNullValue() || C.isOneValue(); 1831 }; 1832 auto IsMinMax = [&](Value *Min, Value *Max) { 1833 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1834 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1835 return match(Min, m_SpecificInt(MinVal)) && 1836 match(Max, m_SpecificInt(MaxVal)); 1837 }; 1838 1839 if (Op != X && Op != Y) 1840 return false; 1841 1842 if (IsAdd) { 1843 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1844 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1845 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1846 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1847 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1848 IsMinMax(TrueVal, FalseVal)) 1849 return true; 1850 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1851 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1852 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1853 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1854 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1855 IsMinMax(FalseVal, TrueVal)) 1856 return true; 1857 } else { 1858 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1859 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1860 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1861 IsMinMax(TrueVal, FalseVal)) 1862 return true; 1863 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1864 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1865 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1866 IsMinMax(FalseVal, TrueVal)) 1867 return true; 1868 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1869 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1870 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1871 IsMinMax(FalseVal, TrueVal)) 1872 return true; 1873 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1874 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1875 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1876 IsMinMax(TrueVal, FalseVal)) 1877 return true; 1878 } 1879 1880 return false; 1881 }; 1882 1883 Intrinsic::ID NewIntrinsicID; 1884 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1885 match(TrueVal, m_AllOnes())) 1886 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1887 NewIntrinsicID = Intrinsic::uadd_sat; 1888 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1889 match(TrueVal, m_Zero())) 1890 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1891 NewIntrinsicID = Intrinsic::usub_sat; 1892 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1893 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1894 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1895 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1896 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1897 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1898 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1899 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1900 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1901 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1902 NewIntrinsicID = Intrinsic::sadd_sat; 1903 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1904 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1905 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1906 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1907 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1908 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1909 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1910 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1911 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1912 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1913 NewIntrinsicID = Intrinsic::ssub_sat; 1914 else 1915 return nullptr; 1916 1917 Function *F = 1918 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1919 return CallInst::Create(F, {X, Y}); 1920 } 1921 1922 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 1923 Constant *C; 1924 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1925 !match(Sel.getFalseValue(), m_Constant(C))) 1926 return nullptr; 1927 1928 Instruction *ExtInst; 1929 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1930 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1931 return nullptr; 1932 1933 auto ExtOpcode = ExtInst->getOpcode(); 1934 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1935 return nullptr; 1936 1937 // If we are extending from a boolean type or if we can create a select that 1938 // has the same size operands as its condition, try to narrow the select. 1939 Value *X = ExtInst->getOperand(0); 1940 Type *SmallType = X->getType(); 1941 Value *Cond = Sel.getCondition(); 1942 auto *Cmp = dyn_cast<CmpInst>(Cond); 1943 if (!SmallType->isIntOrIntVectorTy(1) && 1944 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1945 return nullptr; 1946 1947 // If the constant is the same after truncation to the smaller type and 1948 // extension to the original type, we can narrow the select. 1949 Type *SelType = Sel.getType(); 1950 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1951 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1952 if (ExtC == C && ExtInst->hasOneUse()) { 1953 Value *TruncCVal = cast<Value>(TruncC); 1954 if (ExtInst == Sel.getFalseValue()) 1955 std::swap(X, TruncCVal); 1956 1957 // select Cond, (ext X), C --> ext(select Cond, X, C') 1958 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1959 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1960 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1961 } 1962 1963 // If one arm of the select is the extend of the condition, replace that arm 1964 // with the extension of the appropriate known bool value. 1965 if (Cond == X) { 1966 if (ExtInst == Sel.getTrueValue()) { 1967 // select X, (sext X), C --> select X, -1, C 1968 // select X, (zext X), C --> select X, 1, C 1969 Constant *One = ConstantInt::getTrue(SmallType); 1970 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1971 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1972 } else { 1973 // select X, C, (sext X) --> select X, C, 0 1974 // select X, C, (zext X) --> select X, C, 0 1975 Constant *Zero = ConstantInt::getNullValue(SelType); 1976 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1977 } 1978 } 1979 1980 return nullptr; 1981 } 1982 1983 /// Try to transform a vector select with a constant condition vector into a 1984 /// shuffle for easier combining with other shuffles and insert/extract. 1985 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1986 Value *CondVal = SI.getCondition(); 1987 Constant *CondC; 1988 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 1989 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 1990 return nullptr; 1991 1992 unsigned NumElts = CondValTy->getNumElements(); 1993 SmallVector<int, 16> Mask; 1994 Mask.reserve(NumElts); 1995 for (unsigned i = 0; i != NumElts; ++i) { 1996 Constant *Elt = CondC->getAggregateElement(i); 1997 if (!Elt) 1998 return nullptr; 1999 2000 if (Elt->isOneValue()) { 2001 // If the select condition element is true, choose from the 1st vector. 2002 Mask.push_back(i); 2003 } else if (Elt->isNullValue()) { 2004 // If the select condition element is false, choose from the 2nd vector. 2005 Mask.push_back(i + NumElts); 2006 } else if (isa<UndefValue>(Elt)) { 2007 // Undef in a select condition (choose one of the operands) does not mean 2008 // the same thing as undef in a shuffle mask (any value is acceptable), so 2009 // give up. 2010 return nullptr; 2011 } else { 2012 // Bail out on a constant expression. 2013 return nullptr; 2014 } 2015 } 2016 2017 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2018 } 2019 2020 /// If we have a select of vectors with a scalar condition, try to convert that 2021 /// to a vector select by splatting the condition. A splat may get folded with 2022 /// other operations in IR and having all operands of a select be vector types 2023 /// is likely better for vector codegen. 2024 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2025 InstCombinerImpl &IC) { 2026 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2027 if (!Ty) 2028 return nullptr; 2029 2030 // We can replace a single-use extract with constant index. 2031 Value *Cond = Sel.getCondition(); 2032 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2033 return nullptr; 2034 2035 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2036 // Splatting the extracted condition reduces code (we could directly create a 2037 // splat shuffle of the source vector to eliminate the intermediate step). 2038 return IC.replaceOperand( 2039 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2040 } 2041 2042 /// Reuse bitcasted operands between a compare and select: 2043 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2044 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2045 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2046 InstCombiner::BuilderTy &Builder) { 2047 Value *Cond = Sel.getCondition(); 2048 Value *TVal = Sel.getTrueValue(); 2049 Value *FVal = Sel.getFalseValue(); 2050 2051 CmpInst::Predicate Pred; 2052 Value *A, *B; 2053 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2054 return nullptr; 2055 2056 // The select condition is a compare instruction. If the select's true/false 2057 // values are already the same as the compare operands, there's nothing to do. 2058 if (TVal == A || TVal == B || FVal == A || FVal == B) 2059 return nullptr; 2060 2061 Value *C, *D; 2062 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2063 return nullptr; 2064 2065 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2066 Value *TSrc, *FSrc; 2067 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2068 !match(FVal, m_BitCast(m_Value(FSrc)))) 2069 return nullptr; 2070 2071 // If the select true/false values are *different bitcasts* of the same source 2072 // operands, make the select operands the same as the compare operands and 2073 // cast the result. This is the canonical select form for min/max. 2074 Value *NewSel; 2075 if (TSrc == C && FSrc == D) { 2076 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2077 // bitcast (select (cmp A, B), A, B) 2078 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2079 } else if (TSrc == D && FSrc == C) { 2080 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2081 // bitcast (select (cmp A, B), B, A) 2082 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2083 } else { 2084 return nullptr; 2085 } 2086 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2087 } 2088 2089 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2090 /// instructions. 2091 /// 2092 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2093 /// selects between the returned value of the cmpxchg instruction its compare 2094 /// operand, the result of the select will always be equal to its false value. 2095 /// For example: 2096 /// 2097 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2098 /// %1 = extractvalue { i64, i1 } %0, 1 2099 /// %2 = extractvalue { i64, i1 } %0, 0 2100 /// %3 = select i1 %1, i64 %compare, i64 %2 2101 /// ret i64 %3 2102 /// 2103 /// The returned value of the cmpxchg instruction (%2) is the original value 2104 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2105 /// must have been equal to %compare. Thus, the result of the select is always 2106 /// equal to %2, and the code can be simplified to: 2107 /// 2108 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2109 /// %1 = extractvalue { i64, i1 } %0, 0 2110 /// ret i64 %1 2111 /// 2112 static Value *foldSelectCmpXchg(SelectInst &SI) { 2113 // A helper that determines if V is an extractvalue instruction whose 2114 // aggregate operand is a cmpxchg instruction and whose single index is equal 2115 // to I. If such conditions are true, the helper returns the cmpxchg 2116 // instruction; otherwise, a nullptr is returned. 2117 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2118 auto *Extract = dyn_cast<ExtractValueInst>(V); 2119 if (!Extract) 2120 return nullptr; 2121 if (Extract->getIndices()[0] != I) 2122 return nullptr; 2123 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2124 }; 2125 2126 // If the select has a single user, and this user is a select instruction that 2127 // we can simplify, skip the cmpxchg simplification for now. 2128 if (SI.hasOneUse()) 2129 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2130 if (Select->getCondition() == SI.getCondition()) 2131 if (Select->getFalseValue() == SI.getTrueValue() || 2132 Select->getTrueValue() == SI.getFalseValue()) 2133 return nullptr; 2134 2135 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2136 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2137 if (!CmpXchg) 2138 return nullptr; 2139 2140 // Check the true value case: The true value of the select is the returned 2141 // value of the same cmpxchg used by the condition, and the false value is the 2142 // cmpxchg instruction's compare operand. 2143 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2144 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2145 return SI.getFalseValue(); 2146 2147 // Check the false value case: The false value of the select is the returned 2148 // value of the same cmpxchg used by the condition, and the true value is the 2149 // cmpxchg instruction's compare operand. 2150 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2151 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2152 return SI.getFalseValue(); 2153 2154 return nullptr; 2155 } 2156 2157 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2158 Value *Y, 2159 InstCombiner::BuilderTy &Builder) { 2160 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2161 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2162 SPF == SelectPatternFlavor::SPF_UMAX; 2163 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2164 // the constant value check to an assert. 2165 Value *A; 2166 const APInt *C1, *C2; 2167 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2168 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2169 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2170 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2171 Value *NewMinMax = createMinMax(Builder, SPF, A, 2172 ConstantInt::get(X->getType(), *C2 - *C1)); 2173 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2174 ConstantInt::get(X->getType(), *C1)); 2175 } 2176 2177 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2178 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2179 bool Overflow; 2180 APInt Diff = C2->ssub_ov(*C1, Overflow); 2181 if (!Overflow) { 2182 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2183 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2184 Value *NewMinMax = createMinMax(Builder, SPF, A, 2185 ConstantInt::get(X->getType(), Diff)); 2186 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2187 ConstantInt::get(X->getType(), *C1)); 2188 } 2189 } 2190 2191 return nullptr; 2192 } 2193 2194 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2195 Instruction *InstCombinerImpl::matchSAddSubSat(SelectInst &MinMax1) { 2196 Type *Ty = MinMax1.getType(); 2197 2198 // We are looking for a tree of: 2199 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2200 // Where the min and max could be reversed 2201 Instruction *MinMax2; 2202 BinaryOperator *AddSub; 2203 const APInt *MinValue, *MaxValue; 2204 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2205 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2206 return nullptr; 2207 } else if (match(&MinMax1, 2208 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2209 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2210 return nullptr; 2211 } else 2212 return nullptr; 2213 2214 // Check that the constants clamp a saturate, and that the new type would be 2215 // sensible to convert to. 2216 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2217 return nullptr; 2218 // In what bitwidth can this be treated as saturating arithmetics? 2219 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2220 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2221 // good first approximation for what should be done there. 2222 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2223 return nullptr; 2224 2225 // Also make sure that the number of uses is as expected. The "3"s are for the 2226 // the two items of min/max (the compare and the select). 2227 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3)) 2228 return nullptr; 2229 2230 // Create the new type (which can be a vector type) 2231 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2232 // Match the two extends from the add/sub 2233 Value *A, *B; 2234 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B))))) 2235 return nullptr; 2236 // And check the incoming values are of a type smaller than or equal to the 2237 // size of the saturation. Otherwise the higher bits can cause different 2238 // results. 2239 if (A->getType()->getScalarSizeInBits() > NewBitWidth || 2240 B->getType()->getScalarSizeInBits() > NewBitWidth) 2241 return nullptr; 2242 2243 Intrinsic::ID IntrinsicID; 2244 if (AddSub->getOpcode() == Instruction::Add) 2245 IntrinsicID = Intrinsic::sadd_sat; 2246 else if (AddSub->getOpcode() == Instruction::Sub) 2247 IntrinsicID = Intrinsic::ssub_sat; 2248 else 2249 return nullptr; 2250 2251 // Finally create and return the sat intrinsic, truncated to the new type 2252 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2253 Value *AT = Builder.CreateSExt(A, NewTy); 2254 Value *BT = Builder.CreateSExt(B, NewTy); 2255 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2256 return CastInst::Create(Instruction::SExt, Sat, Ty); 2257 } 2258 2259 /// Reduce a sequence of min/max with a common operand. 2260 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2261 Value *RHS, 2262 InstCombiner::BuilderTy &Builder) { 2263 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2264 // TODO: Allow FP min/max with nnan/nsz. 2265 if (!LHS->getType()->isIntOrIntVectorTy()) 2266 return nullptr; 2267 2268 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2269 Value *A, *B, *C, *D; 2270 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2271 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2272 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2273 return nullptr; 2274 2275 // Look for a common operand. The use checks are different than usual because 2276 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2277 // the select. 2278 Value *MinMaxOp = nullptr; 2279 Value *ThirdOp = nullptr; 2280 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2281 // If the LHS is only used in this chain and the RHS is used outside of it, 2282 // reuse the RHS min/max because that will eliminate the LHS. 2283 if (D == A || C == A) { 2284 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2285 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2286 MinMaxOp = RHS; 2287 ThirdOp = B; 2288 } else if (D == B || C == B) { 2289 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2290 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2291 MinMaxOp = RHS; 2292 ThirdOp = A; 2293 } 2294 } else if (!RHS->hasNUsesOrMore(3)) { 2295 // Reuse the LHS. This will eliminate the RHS. 2296 if (D == A || D == B) { 2297 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2298 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2299 MinMaxOp = LHS; 2300 ThirdOp = C; 2301 } else if (C == A || C == B) { 2302 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2303 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2304 MinMaxOp = LHS; 2305 ThirdOp = D; 2306 } 2307 } 2308 if (!MinMaxOp || !ThirdOp) 2309 return nullptr; 2310 2311 CmpInst::Predicate P = getMinMaxPred(SPF); 2312 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2313 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2314 } 2315 2316 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2317 /// into a funnel shift intrinsic. Example: 2318 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2319 /// --> call llvm.fshl.i32(a, a, b) 2320 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2321 /// --> call llvm.fshl.i32(a, b, c) 2322 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2323 /// --> call llvm.fshr.i32(a, b, c) 2324 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2325 InstCombiner::BuilderTy &Builder) { 2326 // This must be a power-of-2 type for a bitmasking transform to be valid. 2327 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2328 if (!isPowerOf2_32(Width)) 2329 return nullptr; 2330 2331 BinaryOperator *Or0, *Or1; 2332 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2333 return nullptr; 2334 2335 Value *SV0, *SV1, *SA0, *SA1; 2336 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2337 m_ZExtOrSelf(m_Value(SA0))))) || 2338 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2339 m_ZExtOrSelf(m_Value(SA1))))) || 2340 Or0->getOpcode() == Or1->getOpcode()) 2341 return nullptr; 2342 2343 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2344 if (Or0->getOpcode() == BinaryOperator::LShr) { 2345 std::swap(Or0, Or1); 2346 std::swap(SV0, SV1); 2347 std::swap(SA0, SA1); 2348 } 2349 assert(Or0->getOpcode() == BinaryOperator::Shl && 2350 Or1->getOpcode() == BinaryOperator::LShr && 2351 "Illegal or(shift,shift) pair"); 2352 2353 // Check the shift amounts to see if they are an opposite pair. 2354 Value *ShAmt; 2355 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2356 ShAmt = SA0; 2357 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2358 ShAmt = SA1; 2359 else 2360 return nullptr; 2361 2362 // We should now have this pattern: 2363 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2364 // The false value of the select must be a funnel-shift of the true value: 2365 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2366 bool IsFshl = (ShAmt == SA0); 2367 Value *TVal = Sel.getTrueValue(); 2368 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2369 return nullptr; 2370 2371 // Finally, see if the select is filtering out a shift-by-zero. 2372 Value *Cond = Sel.getCondition(); 2373 ICmpInst::Predicate Pred; 2374 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2375 Pred != ICmpInst::ICMP_EQ) 2376 return nullptr; 2377 2378 // If this is not a rotate then the select was blocking poison from the 2379 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2380 if (SV0 != SV1) { 2381 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2382 SV1 = Builder.CreateFreeze(SV1); 2383 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2384 SV0 = Builder.CreateFreeze(SV0); 2385 } 2386 2387 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2388 // Convert to funnel shift intrinsic. 2389 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2390 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2391 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2392 return IntrinsicInst::Create(F, { SV0, SV1, ShAmt }); 2393 } 2394 2395 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2396 InstCombiner::BuilderTy &Builder) { 2397 Value *Cond = Sel.getCondition(); 2398 Value *TVal = Sel.getTrueValue(); 2399 Value *FVal = Sel.getFalseValue(); 2400 Type *SelType = Sel.getType(); 2401 2402 // Match select ?, TC, FC where the constants are equal but negated. 2403 // TODO: Generalize to handle a negated variable operand? 2404 const APFloat *TC, *FC; 2405 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2406 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2407 return nullptr; 2408 2409 assert(TC != FC && "Expected equal select arms to simplify"); 2410 2411 Value *X; 2412 const APInt *C; 2413 bool IsTrueIfSignSet; 2414 ICmpInst::Predicate Pred; 2415 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2416 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2417 X->getType() != SelType) 2418 return nullptr; 2419 2420 // If needed, negate the value that will be the sign argument of the copysign: 2421 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2422 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2423 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2424 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2425 if (IsTrueIfSignSet ^ TC->isNegative()) 2426 X = Builder.CreateFNegFMF(X, &Sel); 2427 2428 // Canonicalize the magnitude argument as the positive constant since we do 2429 // not care about its sign. 2430 Value *MagArg = TC->isNegative() ? FVal : TVal; 2431 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2432 Sel.getType()); 2433 Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X }); 2434 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2435 return CopySign; 2436 } 2437 2438 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2439 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2440 if (!VecTy) 2441 return nullptr; 2442 2443 unsigned NumElts = VecTy->getNumElements(); 2444 APInt UndefElts(NumElts, 0); 2445 APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts)); 2446 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2447 if (V != &Sel) 2448 return replaceInstUsesWith(Sel, V); 2449 return &Sel; 2450 } 2451 2452 // A select of a "select shuffle" with a common operand can be rearranged 2453 // to select followed by "select shuffle". Because of poison, this only works 2454 // in the case of a shuffle with no undefined mask elements. 2455 Value *Cond = Sel.getCondition(); 2456 Value *TVal = Sel.getTrueValue(); 2457 Value *FVal = Sel.getFalseValue(); 2458 Value *X, *Y; 2459 ArrayRef<int> Mask; 2460 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2461 !is_contained(Mask, UndefMaskElem) && 2462 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2463 if (X == FVal) { 2464 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2465 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2466 return new ShuffleVectorInst(X, NewSel, Mask); 2467 } 2468 if (Y == FVal) { 2469 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2470 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2471 return new ShuffleVectorInst(NewSel, Y, Mask); 2472 } 2473 } 2474 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2475 !is_contained(Mask, UndefMaskElem) && 2476 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2477 if (X == TVal) { 2478 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2479 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2480 return new ShuffleVectorInst(X, NewSel, Mask); 2481 } 2482 if (Y == TVal) { 2483 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2484 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2485 return new ShuffleVectorInst(NewSel, Y, Mask); 2486 } 2487 } 2488 2489 return nullptr; 2490 } 2491 2492 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2493 const DominatorTree &DT, 2494 InstCombiner::BuilderTy &Builder) { 2495 // Find the block's immediate dominator that ends with a conditional branch 2496 // that matches select's condition (maybe inverted). 2497 auto *IDomNode = DT[BB]->getIDom(); 2498 if (!IDomNode) 2499 return nullptr; 2500 BasicBlock *IDom = IDomNode->getBlock(); 2501 2502 Value *Cond = Sel.getCondition(); 2503 Value *IfTrue, *IfFalse; 2504 BasicBlock *TrueSucc, *FalseSucc; 2505 if (match(IDom->getTerminator(), 2506 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2507 m_BasicBlock(FalseSucc)))) { 2508 IfTrue = Sel.getTrueValue(); 2509 IfFalse = Sel.getFalseValue(); 2510 } else if (match(IDom->getTerminator(), 2511 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2512 m_BasicBlock(FalseSucc)))) { 2513 IfTrue = Sel.getFalseValue(); 2514 IfFalse = Sel.getTrueValue(); 2515 } else 2516 return nullptr; 2517 2518 // Make sure the branches are actually different. 2519 if (TrueSucc == FalseSucc) 2520 return nullptr; 2521 2522 // We want to replace select %cond, %a, %b with a phi that takes value %a 2523 // for all incoming edges that are dominated by condition `%cond == true`, 2524 // and value %b for edges dominated by condition `%cond == false`. If %a 2525 // or %b are also phis from the same basic block, we can go further and take 2526 // their incoming values from the corresponding blocks. 2527 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2528 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2529 DenseMap<BasicBlock *, Value *> Inputs; 2530 for (auto *Pred : predecessors(BB)) { 2531 // Check implication. 2532 BasicBlockEdge Incoming(Pred, BB); 2533 if (DT.dominates(TrueEdge, Incoming)) 2534 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2535 else if (DT.dominates(FalseEdge, Incoming)) 2536 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2537 else 2538 return nullptr; 2539 // Check availability. 2540 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2541 if (!DT.dominates(Insn, Pred->getTerminator())) 2542 return nullptr; 2543 } 2544 2545 Builder.SetInsertPoint(&*BB->begin()); 2546 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2547 for (auto *Pred : predecessors(BB)) 2548 PN->addIncoming(Inputs[Pred], Pred); 2549 PN->takeName(&Sel); 2550 return PN; 2551 } 2552 2553 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2554 InstCombiner::BuilderTy &Builder) { 2555 // Try to replace this select with Phi in one of these blocks. 2556 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2557 CandidateBlocks.insert(Sel.getParent()); 2558 for (Value *V : Sel.operands()) 2559 if (auto *I = dyn_cast<Instruction>(V)) 2560 CandidateBlocks.insert(I->getParent()); 2561 2562 for (BasicBlock *BB : CandidateBlocks) 2563 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2564 return PN; 2565 return nullptr; 2566 } 2567 2568 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2569 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2570 if (!FI) 2571 return nullptr; 2572 2573 Value *Cond = FI->getOperand(0); 2574 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2575 2576 // select (freeze(x == y)), x, y --> y 2577 // select (freeze(x != y)), x, y --> x 2578 // The freeze should be only used by this select. Otherwise, remaining uses of 2579 // the freeze can observe a contradictory value. 2580 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2581 // a = select c, x, y ; 2582 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2583 // ; to y, this can happen. 2584 CmpInst::Predicate Pred; 2585 if (FI->hasOneUse() && 2586 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2587 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2588 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2589 } 2590 2591 return nullptr; 2592 } 2593 2594 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2595 Value *CondVal = SI.getCondition(); 2596 Value *TrueVal = SI.getTrueValue(); 2597 Value *FalseVal = SI.getFalseValue(); 2598 Type *SelType = SI.getType(); 2599 2600 // FIXME: Remove this workaround when freeze related patches are done. 2601 // For select with undef operand which feeds into an equality comparison, 2602 // don't simplify it so loop unswitch can know the equality comparison 2603 // may have an undef operand. This is a workaround for PR31652 caused by 2604 // descrepancy about branch on undef between LoopUnswitch and GVN. 2605 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 2606 if (llvm::any_of(SI.users(), [&](User *U) { 2607 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2608 if (CI && CI->isEquality()) 2609 return true; 2610 return false; 2611 })) { 2612 return nullptr; 2613 } 2614 } 2615 2616 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2617 SQ.getWithInstruction(&SI))) 2618 return replaceInstUsesWith(SI, V); 2619 2620 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2621 return I; 2622 2623 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2624 return I; 2625 2626 CmpInst::Predicate Pred; 2627 2628 if (SelType->isIntOrIntVectorTy(1) && 2629 TrueVal->getType() == CondVal->getType()) { 2630 if (match(TrueVal, m_One())) { 2631 // Change: A = select B, true, C --> A = or B, C 2632 return BinaryOperator::CreateOr(CondVal, FalseVal); 2633 } 2634 if (match(TrueVal, m_Zero())) { 2635 // Change: A = select B, false, C --> A = and !B, C 2636 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2637 return BinaryOperator::CreateAnd(NotCond, FalseVal); 2638 } 2639 if (match(FalseVal, m_Zero())) { 2640 // Change: A = select B, C, false --> A = and B, C 2641 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2642 } 2643 if (match(FalseVal, m_One())) { 2644 // Change: A = select B, C, true --> A = or !B, C 2645 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2646 return BinaryOperator::CreateOr(NotCond, TrueVal); 2647 } 2648 2649 // select a, a, b -> a | b 2650 // select a, b, a -> a & b 2651 if (CondVal == TrueVal) 2652 return BinaryOperator::CreateOr(CondVal, FalseVal); 2653 if (CondVal == FalseVal) 2654 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2655 2656 // select a, ~a, b -> (~a) & b 2657 // select a, b, ~a -> (~a) | b 2658 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2659 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 2660 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2661 return BinaryOperator::CreateOr(TrueVal, FalseVal); 2662 } 2663 2664 // Selecting between two integer or vector splat integer constants? 2665 // 2666 // Note that we don't handle a scalar select of vectors: 2667 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2668 // because that may need 3 instructions to splat the condition value: 2669 // extend, insertelement, shufflevector. 2670 if (SelType->isIntOrIntVectorTy() && 2671 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2672 // select C, 1, 0 -> zext C to int 2673 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2674 return new ZExtInst(CondVal, SelType); 2675 2676 // select C, -1, 0 -> sext C to int 2677 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2678 return new SExtInst(CondVal, SelType); 2679 2680 // select C, 0, 1 -> zext !C to int 2681 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2682 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2683 return new ZExtInst(NotCond, SelType); 2684 } 2685 2686 // select C, 0, -1 -> sext !C to int 2687 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2688 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2689 return new SExtInst(NotCond, SelType); 2690 } 2691 } 2692 2693 // See if we are selecting two values based on a comparison of the two values. 2694 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 2695 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1); 2696 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2697 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2698 // Canonicalize to use ordered comparisons by swapping the select 2699 // operands. 2700 // 2701 // e.g. 2702 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2703 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 2704 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 2705 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2706 // FIXME: The FMF should propagate from the select, not the fcmp. 2707 Builder.setFastMathFlags(FCI->getFastMathFlags()); 2708 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2709 FCI->getName() + ".inv"); 2710 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2711 return replaceInstUsesWith(SI, NewSel); 2712 } 2713 2714 // NOTE: if we wanted to, this is where to detect MIN/MAX 2715 } 2716 } 2717 2718 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2719 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 2720 // also require nnan because we do not want to unintentionally change the 2721 // sign of a NaN value. 2722 // FIXME: These folds should test/propagate FMF from the select, not the 2723 // fsub or fneg. 2724 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2725 Instruction *FSub; 2726 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2727 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2728 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2729 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2730 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub); 2731 return replaceInstUsesWith(SI, Fabs); 2732 } 2733 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2734 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2735 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2736 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2737 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2738 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub); 2739 return replaceInstUsesWith(SI, Fabs); 2740 } 2741 // With nnan and nsz: 2742 // (X < +/-0.0) ? -X : X --> fabs(X) 2743 // (X <= +/-0.0) ? -X : X --> fabs(X) 2744 Instruction *FNeg; 2745 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2746 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && 2747 match(TrueVal, m_Instruction(FNeg)) && 2748 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2749 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2750 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2751 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg); 2752 return replaceInstUsesWith(SI, Fabs); 2753 } 2754 // With nnan and nsz: 2755 // (X > +/-0.0) ? X : -X --> fabs(X) 2756 // (X >= +/-0.0) ? X : -X --> fabs(X) 2757 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2758 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && 2759 match(FalseVal, m_Instruction(FNeg)) && 2760 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2761 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2762 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2763 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg); 2764 return replaceInstUsesWith(SI, Fabs); 2765 } 2766 2767 // See if we are selecting two values based on a comparison of the two values. 2768 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2769 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2770 return Result; 2771 2772 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2773 return Add; 2774 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2775 return Add; 2776 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2777 return Or; 2778 2779 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2780 auto *TI = dyn_cast<Instruction>(TrueVal); 2781 auto *FI = dyn_cast<Instruction>(FalseVal); 2782 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2783 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2784 return IV; 2785 2786 if (Instruction *I = foldSelectExtConst(SI)) 2787 return I; 2788 2789 // See if we can fold the select into one of our operands. 2790 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2791 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2792 return FoldI; 2793 2794 Value *LHS, *RHS; 2795 Instruction::CastOps CastOp; 2796 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2797 auto SPF = SPR.Flavor; 2798 if (SPF) { 2799 Value *LHS2, *RHS2; 2800 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2801 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2802 RHS2, SI, SPF, RHS)) 2803 return R; 2804 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2805 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2806 RHS2, SI, SPF, LHS)) 2807 return R; 2808 // TODO. 2809 // ABS(-X) -> ABS(X) 2810 } 2811 2812 if (SelectPatternResult::isMinOrMax(SPF)) { 2813 // Canonicalize so that 2814 // - type casts are outside select patterns. 2815 // - float clamp is transformed to min/max pattern 2816 2817 bool IsCastNeeded = LHS->getType() != SelType; 2818 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2819 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2820 if (IsCastNeeded || 2821 (LHS->getType()->isFPOrFPVectorTy() && 2822 ((CmpLHS != LHS && CmpLHS != RHS) || 2823 (CmpRHS != LHS && CmpRHS != RHS)))) { 2824 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2825 2826 Value *Cmp; 2827 if (CmpInst::isIntPredicate(MinMaxPred)) { 2828 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2829 } else { 2830 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2831 auto FMF = 2832 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2833 Builder.setFastMathFlags(FMF); 2834 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2835 } 2836 2837 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2838 if (!IsCastNeeded) 2839 return replaceInstUsesWith(SI, NewSI); 2840 2841 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2842 return replaceInstUsesWith(SI, NewCast); 2843 } 2844 2845 // MAX(~a, ~b) -> ~MIN(a, b) 2846 // MAX(~a, C) -> ~MIN(a, ~C) 2847 // MIN(~a, ~b) -> ~MAX(a, b) 2848 // MIN(~a, C) -> ~MAX(a, ~C) 2849 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 2850 Value *A; 2851 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 2852 !isFreeToInvert(A, A->hasOneUse()) && 2853 // Passing false to only consider m_Not and constants. 2854 isFreeToInvert(Y, false)) { 2855 Value *B = Builder.CreateNot(Y); 2856 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 2857 A, B); 2858 // Copy the profile metadata. 2859 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 2860 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 2861 // Swap the metadata if the operands are swapped. 2862 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 2863 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 2864 } 2865 2866 return BinaryOperator::CreateNot(NewMinMax); 2867 } 2868 2869 return nullptr; 2870 }; 2871 2872 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 2873 return I; 2874 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2875 return I; 2876 2877 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2878 return I; 2879 2880 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2881 return I; 2882 if (Instruction *I = matchSAddSubSat(SI)) 2883 return I; 2884 } 2885 } 2886 2887 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2888 // minnum/maxnum intrinsics. 2889 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2890 Value *X, *Y; 2891 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2892 return replaceInstUsesWith( 2893 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2894 2895 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2896 return replaceInstUsesWith( 2897 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 2898 } 2899 2900 // See if we can fold the select into a phi node if the condition is a select. 2901 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2902 // The true/false values have to be live in the PHI predecessor's blocks. 2903 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2904 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2905 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2906 return NV; 2907 2908 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2909 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2910 // select(C, select(C, a, b), c) -> select(C, a, c) 2911 if (TrueSI->getCondition() == CondVal) { 2912 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2913 return nullptr; 2914 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 2915 } 2916 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2917 // We choose this as normal form to enable folding on the And and 2918 // shortening paths for the values (this helps getUnderlyingObjects() for 2919 // example). 2920 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2921 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 2922 replaceOperand(SI, 0, And); 2923 replaceOperand(SI, 1, TrueSI->getTrueValue()); 2924 return &SI; 2925 } 2926 } 2927 } 2928 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2929 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2930 // select(C, a, select(C, b, c)) -> select(C, a, c) 2931 if (FalseSI->getCondition() == CondVal) { 2932 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2933 return nullptr; 2934 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 2935 } 2936 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2937 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2938 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 2939 replaceOperand(SI, 0, Or); 2940 replaceOperand(SI, 2, FalseSI->getFalseValue()); 2941 return &SI; 2942 } 2943 } 2944 } 2945 2946 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2947 // The select might be preventing a division by 0. 2948 switch (BO->getOpcode()) { 2949 default: 2950 return true; 2951 case Instruction::SRem: 2952 case Instruction::URem: 2953 case Instruction::SDiv: 2954 case Instruction::UDiv: 2955 return false; 2956 } 2957 }; 2958 2959 // Try to simplify a binop sandwiched between 2 selects with the same 2960 // condition. 2961 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 2962 BinaryOperator *TrueBO; 2963 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 2964 canMergeSelectThroughBinop(TrueBO)) { 2965 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 2966 if (TrueBOSI->getCondition() == CondVal) { 2967 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 2968 Worklist.push(TrueBO); 2969 return &SI; 2970 } 2971 } 2972 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 2973 if (TrueBOSI->getCondition() == CondVal) { 2974 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 2975 Worklist.push(TrueBO); 2976 return &SI; 2977 } 2978 } 2979 } 2980 2981 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2982 BinaryOperator *FalseBO; 2983 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2984 canMergeSelectThroughBinop(FalseBO)) { 2985 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2986 if (FalseBOSI->getCondition() == CondVal) { 2987 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 2988 Worklist.push(FalseBO); 2989 return &SI; 2990 } 2991 } 2992 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2993 if (FalseBOSI->getCondition() == CondVal) { 2994 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 2995 Worklist.push(FalseBO); 2996 return &SI; 2997 } 2998 } 2999 } 3000 3001 Value *NotCond; 3002 if (match(CondVal, m_Not(m_Value(NotCond)))) { 3003 replaceOperand(SI, 0, NotCond); 3004 SI.swapValues(); 3005 SI.swapProfMetadata(); 3006 return &SI; 3007 } 3008 3009 if (Instruction *I = foldVectorSelect(SI)) 3010 return I; 3011 3012 // If we can compute the condition, there's no need for a select. 3013 // Like the above fold, we are attempting to reduce compile-time cost by 3014 // putting this fold here with limitations rather than in InstSimplify. 3015 // The motivation for this call into value tracking is to take advantage of 3016 // the assumption cache, so make sure that is populated. 3017 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3018 KnownBits Known(1); 3019 computeKnownBits(CondVal, Known, 0, &SI); 3020 if (Known.One.isOneValue()) 3021 return replaceInstUsesWith(SI, TrueVal); 3022 if (Known.Zero.isOneValue()) 3023 return replaceInstUsesWith(SI, FalseVal); 3024 } 3025 3026 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3027 return BitCastSel; 3028 3029 // Simplify selects that test the returned flag of cmpxchg instructions. 3030 if (Value *V = foldSelectCmpXchg(SI)) 3031 return replaceInstUsesWith(SI, V); 3032 3033 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3034 return Select; 3035 3036 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3037 return Funnel; 3038 3039 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3040 return Copysign; 3041 3042 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3043 return replaceInstUsesWith(SI, PN); 3044 3045 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3046 return replaceInstUsesWith(SI, Fr); 3047 3048 return nullptr; 3049 } 3050