1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CmpInstAnalysis.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
42 #include <cassert>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace PatternMatch;
47 
48 #define DEBUG_TYPE "instcombine"
49 
50 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
51                            SelectPatternFlavor SPF, Value *A, Value *B) {
52   CmpInst::Predicate Pred = getMinMaxPred(SPF);
53   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
54   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
55 }
56 
57 /// If one of the constants is zero (we know they can't both be) and we have an
58 /// icmp instruction with zero, and we have an 'and' with the non-constant value
59 /// and a power of two we can turn the select into a shift on the result of the
60 /// 'and'.
61 /// This folds:
62 ///  select (icmp eq (and X, C1)), C2, C3
63 ///    iff C1 is a power 2 and the difference between C2 and C3 is a power of 2.
64 /// To something like:
65 ///  (shr (and (X, C1)), (log2(C1) - log2(C2-C3))) + C3
66 /// Or:
67 ///  (shl (and (X, C1)), (log2(C2-C3) - log2(C1))) + C3
68 /// With some variations depending if C3 is larger than C2, or the shift
69 /// isn't needed, or the bit widths don't match.
70 static Value *foldSelectICmpAnd(Type *SelType, const ICmpInst *IC,
71                                 APInt TrueVal, APInt FalseVal,
72                                 InstCombiner::BuilderTy &Builder) {
73   assert(SelType->isIntOrIntVectorTy() && "Not an integer select?");
74 
75   // If this is a vector select, we need a vector compare.
76   if (SelType->isVectorTy() != IC->getType()->isVectorTy())
77     return nullptr;
78 
79   Value *V;
80   APInt AndMask;
81   bool CreateAnd = false;
82   ICmpInst::Predicate Pred = IC->getPredicate();
83   if (ICmpInst::isEquality(Pred)) {
84     if (!match(IC->getOperand(1), m_Zero()))
85       return nullptr;
86 
87     V = IC->getOperand(0);
88 
89     const APInt *AndRHS;
90     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
91       return nullptr;
92 
93     AndMask = *AndRHS;
94   } else if (decomposeBitTestICmp(IC->getOperand(0), IC->getOperand(1),
95                                   Pred, V, AndMask)) {
96     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
97 
98     if (!AndMask.isPowerOf2())
99       return nullptr;
100 
101     CreateAnd = true;
102   } else {
103     return nullptr;
104   }
105 
106   // If both select arms are non-zero see if we have a select of the form
107   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
108   // for 'x ? 2^n : 0' and fix the thing up at the end.
109   APInt Offset(TrueVal.getBitWidth(), 0);
110   if (!TrueVal.isNullValue() && !FalseVal.isNullValue()) {
111     if ((TrueVal - FalseVal).isPowerOf2())
112       Offset = FalseVal;
113     else if ((FalseVal - TrueVal).isPowerOf2())
114       Offset = TrueVal;
115     else
116       return nullptr;
117 
118     // Adjust TrueVal and FalseVal to the offset.
119     TrueVal -= Offset;
120     FalseVal -= Offset;
121   }
122 
123   // Make sure one of the select arms is a power of 2.
124   if (!TrueVal.isPowerOf2() && !FalseVal.isPowerOf2())
125     return nullptr;
126 
127   // Determine which shift is needed to transform result of the 'and' into the
128   // desired result.
129   const APInt &ValC = !TrueVal.isNullValue() ? TrueVal : FalseVal;
130   unsigned ValZeros = ValC.logBase2();
131   unsigned AndZeros = AndMask.logBase2();
132 
133   if (CreateAnd) {
134     // Insert the AND instruction on the input to the truncate.
135     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
136   }
137 
138   // If types don't match we can still convert the select by introducing a zext
139   // or a trunc of the 'and'.
140   if (ValZeros > AndZeros) {
141     V = Builder.CreateZExtOrTrunc(V, SelType);
142     V = Builder.CreateShl(V, ValZeros - AndZeros);
143   } else if (ValZeros < AndZeros) {
144     V = Builder.CreateLShr(V, AndZeros - ValZeros);
145     V = Builder.CreateZExtOrTrunc(V, SelType);
146   } else
147     V = Builder.CreateZExtOrTrunc(V, SelType);
148 
149   // Okay, now we know that everything is set up, we just don't know whether we
150   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
151   bool ShouldNotVal = !TrueVal.isNullValue();
152   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
153   if (ShouldNotVal)
154     V = Builder.CreateXor(V, ValC);
155 
156   // Apply an offset if needed.
157   if (!Offset.isNullValue())
158     V = Builder.CreateAdd(V, ConstantInt::get(V->getType(), Offset));
159   return V;
160 }
161 
162 /// We want to turn code that looks like this:
163 ///   %C = or %A, %B
164 ///   %D = select %cond, %C, %A
165 /// into:
166 ///   %C = select %cond, %B, 0
167 ///   %D = or %A, %C
168 ///
169 /// Assuming that the specified instruction is an operand to the select, return
170 /// a bitmask indicating which operands of this instruction are foldable if they
171 /// equal the other incoming value of the select.
172 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
173   switch (I->getOpcode()) {
174   case Instruction::Add:
175   case Instruction::Mul:
176   case Instruction::And:
177   case Instruction::Or:
178   case Instruction::Xor:
179     return 3;              // Can fold through either operand.
180   case Instruction::Sub:   // Can only fold on the amount subtracted.
181   case Instruction::Shl:   // Can only fold on the shift amount.
182   case Instruction::LShr:
183   case Instruction::AShr:
184     return 1;
185   default:
186     return 0;              // Cannot fold
187   }
188 }
189 
190 /// For the same transformation as the previous function, return the identity
191 /// constant that goes into the select.
192 static APInt getSelectFoldableConstant(BinaryOperator *I) {
193   switch (I->getOpcode()) {
194   default: llvm_unreachable("This cannot happen!");
195   case Instruction::Add:
196   case Instruction::Sub:
197   case Instruction::Or:
198   case Instruction::Xor:
199   case Instruction::Shl:
200   case Instruction::LShr:
201   case Instruction::AShr:
202     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
203   case Instruction::And:
204     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
205   case Instruction::Mul:
206     return APInt(I->getType()->getScalarSizeInBits(), 1);
207   }
208 }
209 
210 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
211 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
212                                           Instruction *FI) {
213   // Don't break up min/max patterns. The hasOneUse checks below prevent that
214   // for most cases, but vector min/max with bitcasts can be transformed. If the
215   // one-use restrictions are eased for other patterns, we still don't want to
216   // obfuscate min/max.
217   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
218        match(&SI, m_SMax(m_Value(), m_Value())) ||
219        match(&SI, m_UMin(m_Value(), m_Value())) ||
220        match(&SI, m_UMax(m_Value(), m_Value()))))
221     return nullptr;
222 
223   // If this is a cast from the same type, merge.
224   if (TI->getNumOperands() == 1 && TI->isCast()) {
225     Type *FIOpndTy = FI->getOperand(0)->getType();
226     if (TI->getOperand(0)->getType() != FIOpndTy)
227       return nullptr;
228 
229     // The select condition may be a vector. We may only change the operand
230     // type if the vector width remains the same (and matches the condition).
231     Type *CondTy = SI.getCondition()->getType();
232     if (CondTy->isVectorTy()) {
233       if (!FIOpndTy->isVectorTy())
234         return nullptr;
235       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
236         return nullptr;
237 
238       // TODO: If the backend knew how to deal with casts better, we could
239       // remove this limitation. For now, there's too much potential to create
240       // worse codegen by promoting the select ahead of size-altering casts
241       // (PR28160).
242       //
243       // Note that ValueTracking's matchSelectPattern() looks through casts
244       // without checking 'hasOneUse' when it matches min/max patterns, so this
245       // transform may end up happening anyway.
246       if (TI->getOpcode() != Instruction::BitCast &&
247           (!TI->hasOneUse() || !FI->hasOneUse()))
248         return nullptr;
249     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
250       // TODO: The one-use restrictions for a scalar select could be eased if
251       // the fold of a select in visitLoadInst() was enhanced to match a pattern
252       // that includes a cast.
253       return nullptr;
254     }
255 
256     // Fold this by inserting a select from the input values.
257     Value *NewSI =
258         Builder.CreateSelect(SI.getCondition(), TI->getOperand(0),
259                              FI->getOperand(0), SI.getName() + ".v", &SI);
260     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
261                             TI->getType());
262   }
263 
264   // Only handle binary operators (including two-operand getelementptr) with
265   // one-use here. As with the cast case above, it may be possible to relax the
266   // one-use constraint, but that needs be examined carefully since it may not
267   // reduce the total number of instructions.
268   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
269       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
270       !TI->hasOneUse() || !FI->hasOneUse())
271     return nullptr;
272 
273   // Figure out if the operations have any operands in common.
274   Value *MatchOp, *OtherOpT, *OtherOpF;
275   bool MatchIsOpZero;
276   if (TI->getOperand(0) == FI->getOperand(0)) {
277     MatchOp  = TI->getOperand(0);
278     OtherOpT = TI->getOperand(1);
279     OtherOpF = FI->getOperand(1);
280     MatchIsOpZero = true;
281   } else if (TI->getOperand(1) == FI->getOperand(1)) {
282     MatchOp  = TI->getOperand(1);
283     OtherOpT = TI->getOperand(0);
284     OtherOpF = FI->getOperand(0);
285     MatchIsOpZero = false;
286   } else if (!TI->isCommutative()) {
287     return nullptr;
288   } else if (TI->getOperand(0) == FI->getOperand(1)) {
289     MatchOp  = TI->getOperand(0);
290     OtherOpT = TI->getOperand(1);
291     OtherOpF = FI->getOperand(0);
292     MatchIsOpZero = true;
293   } else if (TI->getOperand(1) == FI->getOperand(0)) {
294     MatchOp  = TI->getOperand(1);
295     OtherOpT = TI->getOperand(0);
296     OtherOpF = FI->getOperand(1);
297     MatchIsOpZero = true;
298   } else {
299     return nullptr;
300   }
301 
302   // If we reach here, they do have operations in common.
303   Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
304                                       SI.getName() + ".v", &SI);
305   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
306   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
307   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
308     return BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
309   }
310   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
311     auto *FGEP = cast<GetElementPtrInst>(FI);
312     Type *ElementType = TGEP->getResultElementType();
313     return TGEP->isInBounds() && FGEP->isInBounds()
314                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
315                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
316   }
317   llvm_unreachable("Expected BinaryOperator or GEP");
318   return nullptr;
319 }
320 
321 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
322   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
323     return false;
324   return C1I.isOneValue() || C1I.isAllOnesValue() ||
325          C2I.isOneValue() || C2I.isAllOnesValue();
326 }
327 
328 /// Try to fold the select into one of the operands to allow further
329 /// optimization.
330 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
331                                             Value *FalseVal) {
332   // See the comment above GetSelectFoldableOperands for a description of the
333   // transformation we are doing here.
334   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
335     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
336       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
337         unsigned OpToFold = 0;
338         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
339           OpToFold = 1;
340         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
341           OpToFold = 2;
342         }
343 
344         if (OpToFold) {
345           APInt CI = getSelectFoldableConstant(TVI);
346           Value *OOp = TVI->getOperand(2-OpToFold);
347           // Avoid creating select between 2 constants unless it's selecting
348           // between 0, 1 and -1.
349           const APInt *OOpC;
350           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
351           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
352             Value *C = ConstantInt::get(OOp->getType(), CI);
353             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
354             NewSel->takeName(TVI);
355             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
356                                                         FalseVal, NewSel);
357             BO->copyIRFlags(TVI);
358             return BO;
359           }
360         }
361       }
362     }
363   }
364 
365   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
366     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
367       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
368         unsigned OpToFold = 0;
369         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
370           OpToFold = 1;
371         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
372           OpToFold = 2;
373         }
374 
375         if (OpToFold) {
376           APInt CI = getSelectFoldableConstant(FVI);
377           Value *OOp = FVI->getOperand(2-OpToFold);
378           // Avoid creating select between 2 constants unless it's selecting
379           // between 0, 1 and -1.
380           const APInt *OOpC;
381           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
382           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
383             Value *C = ConstantInt::get(OOp->getType(), CI);
384             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
385             NewSel->takeName(FVI);
386             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
387                                                         TrueVal, NewSel);
388             BO->copyIRFlags(FVI);
389             return BO;
390           }
391         }
392       }
393     }
394   }
395 
396   return nullptr;
397 }
398 
399 /// We want to turn:
400 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
401 /// into:
402 ///   (or (shl (and X, C1), C3), Y)
403 /// iff:
404 ///   C1 and C2 are both powers of 2
405 /// where:
406 ///   C3 = Log(C2) - Log(C1)
407 ///
408 /// This transform handles cases where:
409 /// 1. The icmp predicate is inverted
410 /// 2. The select operands are reversed
411 /// 3. The magnitude of C2 and C1 are flipped
412 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
413                                   Value *FalseVal,
414                                   InstCombiner::BuilderTy &Builder) {
415   // Only handle integer compares. Also, if this is a vector select, we need a
416   // vector compare.
417   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
418       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
419     return nullptr;
420 
421   Value *CmpLHS = IC->getOperand(0);
422   Value *CmpRHS = IC->getOperand(1);
423 
424   Value *V;
425   unsigned C1Log;
426   bool IsEqualZero;
427   bool NeedAnd = false;
428   if (IC->isEquality()) {
429     if (!match(CmpRHS, m_Zero()))
430       return nullptr;
431 
432     const APInt *C1;
433     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
434       return nullptr;
435 
436     V = CmpLHS;
437     C1Log = C1->logBase2();
438     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
439   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
440              IC->getPredicate() == ICmpInst::ICMP_SGT) {
441     // We also need to recognize (icmp slt (trunc (X)), 0) and
442     // (icmp sgt (trunc (X)), -1).
443     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
444     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
445         (!IsEqualZero && !match(CmpRHS, m_Zero())))
446       return nullptr;
447 
448     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
449       return nullptr;
450 
451     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
452     NeedAnd = true;
453   } else {
454     return nullptr;
455   }
456 
457   const APInt *C2;
458   bool OrOnTrueVal = false;
459   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
460   if (!OrOnFalseVal)
461     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
462 
463   if (!OrOnFalseVal && !OrOnTrueVal)
464     return nullptr;
465 
466   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
467 
468   unsigned C2Log = C2->logBase2();
469 
470   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
471   bool NeedShift = C1Log != C2Log;
472   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
473                        V->getType()->getScalarSizeInBits();
474 
475   // Make sure we don't create more instructions than we save.
476   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
477   if ((NeedShift + NeedXor + NeedZExtTrunc) >
478       (IC->hasOneUse() + Or->hasOneUse()))
479     return nullptr;
480 
481   if (NeedAnd) {
482     // Insert the AND instruction on the input to the truncate.
483     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
484     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
485   }
486 
487   if (C2Log > C1Log) {
488     V = Builder.CreateZExtOrTrunc(V, Y->getType());
489     V = Builder.CreateShl(V, C2Log - C1Log);
490   } else if (C1Log > C2Log) {
491     V = Builder.CreateLShr(V, C1Log - C2Log);
492     V = Builder.CreateZExtOrTrunc(V, Y->getType());
493   } else
494     V = Builder.CreateZExtOrTrunc(V, Y->getType());
495 
496   if (NeedXor)
497     V = Builder.CreateXor(V, *C2);
498 
499   return Builder.CreateOr(V, Y);
500 }
501 
502 /// Transform patterns such as: (a > b) ? a - b : 0
503 /// into: ((a > b) ? a : b) - b)
504 /// This produces a canonical max pattern that is more easily recognized by the
505 /// backend and converted into saturated subtraction instructions if those
506 /// exist.
507 /// There are 8 commuted/swapped variants of this pattern.
508 /// TODO: Also support a - UMIN(a,b) patterns.
509 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
510                                             const Value *TrueVal,
511                                             const Value *FalseVal,
512                                             InstCombiner::BuilderTy &Builder) {
513   ICmpInst::Predicate Pred = ICI->getPredicate();
514   if (!ICmpInst::isUnsigned(Pred))
515     return nullptr;
516 
517   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
518   if (match(TrueVal, m_Zero())) {
519     Pred = ICmpInst::getInversePredicate(Pred);
520     std::swap(TrueVal, FalseVal);
521   }
522   if (!match(FalseVal, m_Zero()))
523     return nullptr;
524 
525   Value *A = ICI->getOperand(0);
526   Value *B = ICI->getOperand(1);
527   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
528     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
529     std::swap(A, B);
530     Pred = ICmpInst::getSwappedPredicate(Pred);
531   }
532 
533   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
534          "Unexpected isUnsigned predicate!");
535 
536   // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
537   bool IsNegative = false;
538   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
539     IsNegative = true;
540   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
541     return nullptr;
542 
543   // If sub is used anywhere else, we wouldn't be able to eliminate it
544   // afterwards.
545   if (!TrueVal->hasOneUse())
546     return nullptr;
547 
548   // All checks passed, convert to canonical unsigned saturated subtraction
549   // form: sub(max()).
550   // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b)
551   Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
552   return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B);
553 }
554 
555 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
556 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
557 ///
558 /// For example, we can fold the following code sequence:
559 /// \code
560 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
561 ///   %1 = icmp ne i32 %x, 0
562 ///   %2 = select i1 %1, i32 %0, i32 32
563 /// \code
564 ///
565 /// into:
566 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
567 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
568                                  InstCombiner::BuilderTy &Builder) {
569   ICmpInst::Predicate Pred = ICI->getPredicate();
570   Value *CmpLHS = ICI->getOperand(0);
571   Value *CmpRHS = ICI->getOperand(1);
572 
573   // Check if the condition value compares a value for equality against zero.
574   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
575     return nullptr;
576 
577   Value *Count = FalseVal;
578   Value *ValueOnZero = TrueVal;
579   if (Pred == ICmpInst::ICMP_NE)
580     std::swap(Count, ValueOnZero);
581 
582   // Skip zero extend/truncate.
583   Value *V = nullptr;
584   if (match(Count, m_ZExt(m_Value(V))) ||
585       match(Count, m_Trunc(m_Value(V))))
586     Count = V;
587 
588   // Check if the value propagated on zero is a constant number equal to the
589   // sizeof in bits of 'Count'.
590   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
591   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
592     return nullptr;
593 
594   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
595   // input to the cttz/ctlz is used as LHS for the compare instruction.
596   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
597       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
598     IntrinsicInst *II = cast<IntrinsicInst>(Count);
599     // Explicitly clear the 'undef_on_zero' flag.
600     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
601     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
602     Builder.Insert(NewI);
603     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
604   }
605 
606   return nullptr;
607 }
608 
609 /// Return true if we find and adjust an icmp+select pattern where the compare
610 /// is with a constant that can be incremented or decremented to match the
611 /// minimum or maximum idiom.
612 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
613   ICmpInst::Predicate Pred = Cmp.getPredicate();
614   Value *CmpLHS = Cmp.getOperand(0);
615   Value *CmpRHS = Cmp.getOperand(1);
616   Value *TrueVal = Sel.getTrueValue();
617   Value *FalseVal = Sel.getFalseValue();
618 
619   // We may move or edit the compare, so make sure the select is the only user.
620   const APInt *CmpC;
621   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
622     return false;
623 
624   // These transforms only work for selects of integers or vector selects of
625   // integer vectors.
626   Type *SelTy = Sel.getType();
627   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
628   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
629     return false;
630 
631   Constant *AdjustedRHS;
632   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
633     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
634   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
635     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
636   else
637     return false;
638 
639   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
640   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
641   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
642       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
643     ; // Nothing to do here. Values match without any sign/zero extension.
644   }
645   // Types do not match. Instead of calculating this with mixed types, promote
646   // all to the larger type. This enables scalar evolution to analyze this
647   // expression.
648   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
649     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
650 
651     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
652     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
653     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
654     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
655     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
656       CmpLHS = TrueVal;
657       AdjustedRHS = SextRHS;
658     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
659                SextRHS == TrueVal) {
660       CmpLHS = FalseVal;
661       AdjustedRHS = SextRHS;
662     } else if (Cmp.isUnsigned()) {
663       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
664       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
665       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
666       // zext + signed compare cannot be changed:
667       //    0xff <s 0x00, but 0x00ff >s 0x0000
668       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
669         CmpLHS = TrueVal;
670         AdjustedRHS = ZextRHS;
671       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
672                  ZextRHS == TrueVal) {
673         CmpLHS = FalseVal;
674         AdjustedRHS = ZextRHS;
675       } else {
676         return false;
677       }
678     } else {
679       return false;
680     }
681   } else {
682     return false;
683   }
684 
685   Pred = ICmpInst::getSwappedPredicate(Pred);
686   CmpRHS = AdjustedRHS;
687   std::swap(FalseVal, TrueVal);
688   Cmp.setPredicate(Pred);
689   Cmp.setOperand(0, CmpLHS);
690   Cmp.setOperand(1, CmpRHS);
691   Sel.setOperand(1, TrueVal);
692   Sel.setOperand(2, FalseVal);
693   Sel.swapProfMetadata();
694 
695   // Move the compare instruction right before the select instruction. Otherwise
696   // the sext/zext value may be defined after the compare instruction uses it.
697   Cmp.moveBefore(&Sel);
698 
699   return true;
700 }
701 
702 /// If this is an integer min/max (icmp + select) with a constant operand,
703 /// create the canonical icmp for the min/max operation and canonicalize the
704 /// constant to the 'false' operand of the select:
705 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
706 /// Note: if C1 != C2, this will change the icmp constant to the existing
707 /// constant operand of the select.
708 static Instruction *
709 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
710                                InstCombiner::BuilderTy &Builder) {
711   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
712     return nullptr;
713 
714   // Canonicalize the compare predicate based on whether we have min or max.
715   Value *LHS, *RHS;
716   ICmpInst::Predicate NewPred;
717   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
718   switch (SPR.Flavor) {
719   case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break;
720   case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break;
721   case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break;
722   case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break;
723   default: return nullptr;
724   }
725 
726   // Is this already canonical?
727   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
728       Cmp.getPredicate() == NewPred)
729     return nullptr;
730 
731   // Create the canonical compare and plug it into the select.
732   Sel.setCondition(Builder.CreateICmp(NewPred, LHS, RHS));
733 
734   // If the select operands did not change, we're done.
735   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
736     return &Sel;
737 
738   // If we are swapping the select operands, swap the metadata too.
739   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
740          "Unexpected results from matchSelectPattern");
741   Sel.setTrueValue(LHS);
742   Sel.setFalseValue(RHS);
743   Sel.swapProfMetadata();
744   return &Sel;
745 }
746 
747 /// Visit a SelectInst that has an ICmpInst as its first operand.
748 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
749                                                   ICmpInst *ICI) {
750   Value *TrueVal = SI.getTrueValue();
751   Value *FalseVal = SI.getFalseValue();
752 
753   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
754     return NewSel;
755 
756   bool Changed = adjustMinMax(SI, *ICI);
757 
758   ICmpInst::Predicate Pred = ICI->getPredicate();
759   Value *CmpLHS = ICI->getOperand(0);
760   Value *CmpRHS = ICI->getOperand(1);
761 
762   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
763   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
764   // FIXME: Type and constness constraints could be lifted, but we have to
765   //        watch code size carefully. We should consider xor instead of
766   //        sub/add when we decide to do that.
767   // TODO: Merge this with foldSelectICmpAnd somehow.
768   if (CmpLHS->getType()->isIntOrIntVectorTy() &&
769       CmpLHS->getType() == TrueVal->getType()) {
770     const APInt *C1, *C2;
771     if (match(TrueVal, m_APInt(C1)) && match(FalseVal, m_APInt(C2))) {
772       ICmpInst::Predicate Pred = ICI->getPredicate();
773       Value *X;
774       APInt Mask;
775       if (decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask, false)) {
776         if (Mask.isSignMask()) {
777           assert(X == CmpLHS && "Expected to use the compare input directly");
778           assert(ICmpInst::isEquality(Pred) && "Expected equality predicate");
779 
780           if (Pred == ICmpInst::ICMP_NE)
781             std::swap(C1, C2);
782 
783           // This shift results in either -1 or 0.
784           Value *AShr = Builder.CreateAShr(X, Mask.getBitWidth() - 1);
785 
786           // Check if we can express the operation with a single or.
787           if (C2->isAllOnesValue())
788             return replaceInstUsesWith(SI, Builder.CreateOr(AShr, *C1));
789 
790           Value *And = Builder.CreateAnd(AShr, *C2 - *C1);
791           return replaceInstUsesWith(SI, Builder.CreateAdd(And,
792                                         ConstantInt::get(And->getType(), *C1)));
793         }
794       }
795     }
796   }
797 
798   {
799     const APInt *TrueValC, *FalseValC;
800     if (match(TrueVal, m_APInt(TrueValC)) &&
801         match(FalseVal, m_APInt(FalseValC)))
802       if (Value *V = foldSelectICmpAnd(SI.getType(), ICI, *TrueValC,
803                                        *FalseValC, Builder))
804         return replaceInstUsesWith(SI, V);
805   }
806 
807   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
808 
809   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
810     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
811       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
812       SI.setOperand(1, CmpRHS);
813       Changed = true;
814     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
815       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
816       SI.setOperand(2, CmpRHS);
817       Changed = true;
818     }
819   }
820 
821   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
822   // decomposeBitTestICmp() might help.
823   {
824     unsigned BitWidth =
825         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
826     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
827     Value *X;
828     const APInt *Y, *C;
829     bool TrueWhenUnset;
830     bool IsBitTest = false;
831     if (ICmpInst::isEquality(Pred) &&
832         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
833         match(CmpRHS, m_Zero())) {
834       IsBitTest = true;
835       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
836     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
837       X = CmpLHS;
838       Y = &MinSignedValue;
839       IsBitTest = true;
840       TrueWhenUnset = false;
841     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
842       X = CmpLHS;
843       Y = &MinSignedValue;
844       IsBitTest = true;
845       TrueWhenUnset = true;
846     }
847     if (IsBitTest) {
848       Value *V = nullptr;
849       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
850       if (TrueWhenUnset && TrueVal == X &&
851           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
852         V = Builder.CreateAnd(X, ~(*Y));
853       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
854       else if (!TrueWhenUnset && FalseVal == X &&
855                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
856         V = Builder.CreateAnd(X, ~(*Y));
857       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
858       else if (TrueWhenUnset && FalseVal == X &&
859                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
860         V = Builder.CreateOr(X, *Y);
861       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
862       else if (!TrueWhenUnset && TrueVal == X &&
863                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
864         V = Builder.CreateOr(X, *Y);
865 
866       if (V)
867         return replaceInstUsesWith(SI, V);
868     }
869   }
870 
871   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
872     return replaceInstUsesWith(SI, V);
873 
874   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
875     return replaceInstUsesWith(SI, V);
876 
877   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
878     return replaceInstUsesWith(SI, V);
879 
880   return Changed ? &SI : nullptr;
881 }
882 
883 /// SI is a select whose condition is a PHI node (but the two may be in
884 /// different blocks). See if the true/false values (V) are live in all of the
885 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
886 ///
887 ///   X = phi [ C1, BB1], [C2, BB2]
888 ///   Y = add
889 ///   Z = select X, Y, 0
890 ///
891 /// because Y is not live in BB1/BB2.
892 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
893                                                    const SelectInst &SI) {
894   // If the value is a non-instruction value like a constant or argument, it
895   // can always be mapped.
896   const Instruction *I = dyn_cast<Instruction>(V);
897   if (!I) return true;
898 
899   // If V is a PHI node defined in the same block as the condition PHI, we can
900   // map the arguments.
901   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
902 
903   if (const PHINode *VP = dyn_cast<PHINode>(I))
904     if (VP->getParent() == CondPHI->getParent())
905       return true;
906 
907   // Otherwise, if the PHI and select are defined in the same block and if V is
908   // defined in a different block, then we can transform it.
909   if (SI.getParent() == CondPHI->getParent() &&
910       I->getParent() != CondPHI->getParent())
911     return true;
912 
913   // Otherwise we have a 'hard' case and we can't tell without doing more
914   // detailed dominator based analysis, punt.
915   return false;
916 }
917 
918 /// We have an SPF (e.g. a min or max) of an SPF of the form:
919 ///   SPF2(SPF1(A, B), C)
920 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
921                                         SelectPatternFlavor SPF1,
922                                         Value *A, Value *B,
923                                         Instruction &Outer,
924                                         SelectPatternFlavor SPF2, Value *C) {
925   if (Outer.getType() != Inner->getType())
926     return nullptr;
927 
928   if (C == A || C == B) {
929     // MAX(MAX(A, B), B) -> MAX(A, B)
930     // MIN(MIN(a, b), a) -> MIN(a, b)
931     if (SPF1 == SPF2)
932       return replaceInstUsesWith(Outer, Inner);
933 
934     // MAX(MIN(a, b), a) -> a
935     // MIN(MAX(a, b), a) -> a
936     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
937         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
938         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
939         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
940       return replaceInstUsesWith(Outer, C);
941   }
942 
943   if (SPF1 == SPF2) {
944     const APInt *CB, *CC;
945     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
946       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
947       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
948       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
949           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
950           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
951           (SPF1 == SPF_SMAX && CB->sge(*CC)))
952         return replaceInstUsesWith(Outer, Inner);
953 
954       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
955       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
956       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
957           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
958           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
959           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
960         Outer.replaceUsesOfWith(Inner, A);
961         return &Outer;
962       }
963     }
964   }
965 
966   // ABS(ABS(X)) -> ABS(X)
967   // NABS(NABS(X)) -> NABS(X)
968   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
969     return replaceInstUsesWith(Outer, Inner);
970   }
971 
972   // ABS(NABS(X)) -> ABS(X)
973   // NABS(ABS(X)) -> NABS(X)
974   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
975       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
976     SelectInst *SI = cast<SelectInst>(Inner);
977     Value *NewSI =
978         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
979                              SI->getTrueValue(), SI->getName(), SI);
980     return replaceInstUsesWith(Outer, NewSI);
981   }
982 
983   auto IsFreeOrProfitableToInvert =
984       [&](Value *V, Value *&NotV, bool &ElidesXor) {
985     if (match(V, m_Not(m_Value(NotV)))) {
986       // If V has at most 2 uses then we can get rid of the xor operation
987       // entirely.
988       ElidesXor |= !V->hasNUsesOrMore(3);
989       return true;
990     }
991 
992     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
993       NotV = nullptr;
994       return true;
995     }
996 
997     return false;
998   };
999 
1000   Value *NotA, *NotB, *NotC;
1001   bool ElidesXor = false;
1002 
1003   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1004   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1005   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1006   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1007   //
1008   // This transform is performance neutral if we can elide at least one xor from
1009   // the set of three operands, since we'll be tacking on an xor at the very
1010   // end.
1011   if (SelectPatternResult::isMinOrMax(SPF1) &&
1012       SelectPatternResult::isMinOrMax(SPF2) &&
1013       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1014       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1015       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1016     if (!NotA)
1017       NotA = Builder.CreateNot(A);
1018     if (!NotB)
1019       NotB = Builder.CreateNot(B);
1020     if (!NotC)
1021       NotC = Builder.CreateNot(C);
1022 
1023     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1024                                    NotB);
1025     Value *NewOuter = Builder.CreateNot(
1026         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1027     return replaceInstUsesWith(Outer, NewOuter);
1028   }
1029 
1030   return nullptr;
1031 }
1032 
1033 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1034 /// This is even legal for FP.
1035 static Instruction *foldAddSubSelect(SelectInst &SI,
1036                                      InstCombiner::BuilderTy &Builder) {
1037   Value *CondVal = SI.getCondition();
1038   Value *TrueVal = SI.getTrueValue();
1039   Value *FalseVal = SI.getFalseValue();
1040   auto *TI = dyn_cast<Instruction>(TrueVal);
1041   auto *FI = dyn_cast<Instruction>(FalseVal);
1042   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1043     return nullptr;
1044 
1045   Instruction *AddOp = nullptr, *SubOp = nullptr;
1046   if ((TI->getOpcode() == Instruction::Sub &&
1047        FI->getOpcode() == Instruction::Add) ||
1048       (TI->getOpcode() == Instruction::FSub &&
1049        FI->getOpcode() == Instruction::FAdd)) {
1050     AddOp = FI;
1051     SubOp = TI;
1052   } else if ((FI->getOpcode() == Instruction::Sub &&
1053               TI->getOpcode() == Instruction::Add) ||
1054              (FI->getOpcode() == Instruction::FSub &&
1055               TI->getOpcode() == Instruction::FAdd)) {
1056     AddOp = TI;
1057     SubOp = FI;
1058   }
1059 
1060   if (AddOp) {
1061     Value *OtherAddOp = nullptr;
1062     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1063       OtherAddOp = AddOp->getOperand(1);
1064     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1065       OtherAddOp = AddOp->getOperand(0);
1066     }
1067 
1068     if (OtherAddOp) {
1069       // So at this point we know we have (Y -> OtherAddOp):
1070       //        select C, (add X, Y), (sub X, Z)
1071       Value *NegVal; // Compute -Z
1072       if (SI.getType()->isFPOrFPVectorTy()) {
1073         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1074         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1075           FastMathFlags Flags = AddOp->getFastMathFlags();
1076           Flags &= SubOp->getFastMathFlags();
1077           NegInst->setFastMathFlags(Flags);
1078         }
1079       } else {
1080         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1081       }
1082 
1083       Value *NewTrueOp = OtherAddOp;
1084       Value *NewFalseOp = NegVal;
1085       if (AddOp != TI)
1086         std::swap(NewTrueOp, NewFalseOp);
1087       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1088                                            SI.getName() + ".p", &SI);
1089 
1090       if (SI.getType()->isFPOrFPVectorTy()) {
1091         Instruction *RI =
1092             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1093 
1094         FastMathFlags Flags = AddOp->getFastMathFlags();
1095         Flags &= SubOp->getFastMathFlags();
1096         RI->setFastMathFlags(Flags);
1097         return RI;
1098       } else
1099         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1100     }
1101   }
1102   return nullptr;
1103 }
1104 
1105 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1106   Instruction *ExtInst;
1107   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1108       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1109     return nullptr;
1110 
1111   auto ExtOpcode = ExtInst->getOpcode();
1112   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1113     return nullptr;
1114 
1115   // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too.
1116   Value *X = ExtInst->getOperand(0);
1117   Type *SmallType = X->getType();
1118   if (!SmallType->isIntOrIntVectorTy(1))
1119     return nullptr;
1120 
1121   Constant *C;
1122   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1123       !match(Sel.getFalseValue(), m_Constant(C)))
1124     return nullptr;
1125 
1126   // If the constant is the same after truncation to the smaller type and
1127   // extension to the original type, we can narrow the select.
1128   Value *Cond = Sel.getCondition();
1129   Type *SelType = Sel.getType();
1130   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1131   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1132   if (ExtC == C) {
1133     Value *TruncCVal = cast<Value>(TruncC);
1134     if (ExtInst == Sel.getFalseValue())
1135       std::swap(X, TruncCVal);
1136 
1137     // select Cond, (ext X), C --> ext(select Cond, X, C')
1138     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1139     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1140     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1141   }
1142 
1143   // If one arm of the select is the extend of the condition, replace that arm
1144   // with the extension of the appropriate known bool value.
1145   if (Cond == X) {
1146     if (ExtInst == Sel.getTrueValue()) {
1147       // select X, (sext X), C --> select X, -1, C
1148       // select X, (zext X), C --> select X,  1, C
1149       Constant *One = ConstantInt::getTrue(SmallType);
1150       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1151       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1152     } else {
1153       // select X, C, (sext X) --> select X, C, 0
1154       // select X, C, (zext X) --> select X, C, 0
1155       Constant *Zero = ConstantInt::getNullValue(SelType);
1156       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1157     }
1158   }
1159 
1160   return nullptr;
1161 }
1162 
1163 /// Try to transform a vector select with a constant condition vector into a
1164 /// shuffle for easier combining with other shuffles and insert/extract.
1165 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1166   Value *CondVal = SI.getCondition();
1167   Constant *CondC;
1168   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1169     return nullptr;
1170 
1171   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1172   SmallVector<Constant *, 16> Mask;
1173   Mask.reserve(NumElts);
1174   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1175   for (unsigned i = 0; i != NumElts; ++i) {
1176     Constant *Elt = CondC->getAggregateElement(i);
1177     if (!Elt)
1178       return nullptr;
1179 
1180     if (Elt->isOneValue()) {
1181       // If the select condition element is true, choose from the 1st vector.
1182       Mask.push_back(ConstantInt::get(Int32Ty, i));
1183     } else if (Elt->isNullValue()) {
1184       // If the select condition element is false, choose from the 2nd vector.
1185       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1186     } else if (isa<UndefValue>(Elt)) {
1187       // Undef in a select condition (choose one of the operands) does not mean
1188       // the same thing as undef in a shuffle mask (any value is acceptable), so
1189       // give up.
1190       return nullptr;
1191     } else {
1192       // Bail out on a constant expression.
1193       return nullptr;
1194     }
1195   }
1196 
1197   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1198                                ConstantVector::get(Mask));
1199 }
1200 
1201 /// Reuse bitcasted operands between a compare and select:
1202 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1203 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1204 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1205                                           InstCombiner::BuilderTy &Builder) {
1206   Value *Cond = Sel.getCondition();
1207   Value *TVal = Sel.getTrueValue();
1208   Value *FVal = Sel.getFalseValue();
1209 
1210   CmpInst::Predicate Pred;
1211   Value *A, *B;
1212   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1213     return nullptr;
1214 
1215   // The select condition is a compare instruction. If the select's true/false
1216   // values are already the same as the compare operands, there's nothing to do.
1217   if (TVal == A || TVal == B || FVal == A || FVal == B)
1218     return nullptr;
1219 
1220   Value *C, *D;
1221   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1222     return nullptr;
1223 
1224   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1225   Value *TSrc, *FSrc;
1226   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1227       !match(FVal, m_BitCast(m_Value(FSrc))))
1228     return nullptr;
1229 
1230   // If the select true/false values are *different bitcasts* of the same source
1231   // operands, make the select operands the same as the compare operands and
1232   // cast the result. This is the canonical select form for min/max.
1233   Value *NewSel;
1234   if (TSrc == C && FSrc == D) {
1235     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1236     // bitcast (select (cmp A, B), A, B)
1237     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1238   } else if (TSrc == D && FSrc == C) {
1239     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1240     // bitcast (select (cmp A, B), B, A)
1241     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1242   } else {
1243     return nullptr;
1244   }
1245   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1246 }
1247 
1248 /// Try to eliminate select instructions that test the returned flag of cmpxchg
1249 /// instructions.
1250 ///
1251 /// If a select instruction tests the returned flag of a cmpxchg instruction and
1252 /// selects between the returned value of the cmpxchg instruction its compare
1253 /// operand, the result of the select will always be equal to its false value.
1254 /// For example:
1255 ///
1256 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1257 ///   %1 = extractvalue { i64, i1 } %0, 1
1258 ///   %2 = extractvalue { i64, i1 } %0, 0
1259 ///   %3 = select i1 %1, i64 %compare, i64 %2
1260 ///   ret i64 %3
1261 ///
1262 /// The returned value of the cmpxchg instruction (%2) is the original value
1263 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
1264 /// must have been equal to %compare. Thus, the result of the select is always
1265 /// equal to %2, and the code can be simplified to:
1266 ///
1267 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1268 ///   %1 = extractvalue { i64, i1 } %0, 0
1269 ///   ret i64 %1
1270 ///
1271 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
1272   // A helper that determines if V is an extractvalue instruction whose
1273   // aggregate operand is a cmpxchg instruction and whose single index is equal
1274   // to I. If such conditions are true, the helper returns the cmpxchg
1275   // instruction; otherwise, a nullptr is returned.
1276   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
1277     auto *Extract = dyn_cast<ExtractValueInst>(V);
1278     if (!Extract)
1279       return nullptr;
1280     if (Extract->getIndices()[0] != I)
1281       return nullptr;
1282     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
1283   };
1284 
1285   // If the select has a single user, and this user is a select instruction that
1286   // we can simplify, skip the cmpxchg simplification for now.
1287   if (SI.hasOneUse())
1288     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
1289       if (Select->getCondition() == SI.getCondition())
1290         if (Select->getFalseValue() == SI.getTrueValue() ||
1291             Select->getTrueValue() == SI.getFalseValue())
1292           return nullptr;
1293 
1294   // Ensure the select condition is the returned flag of a cmpxchg instruction.
1295   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
1296   if (!CmpXchg)
1297     return nullptr;
1298 
1299   // Check the true value case: The true value of the select is the returned
1300   // value of the same cmpxchg used by the condition, and the false value is the
1301   // cmpxchg instruction's compare operand.
1302   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
1303     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
1304       SI.setTrueValue(SI.getFalseValue());
1305       return &SI;
1306     }
1307 
1308   // Check the false value case: The false value of the select is the returned
1309   // value of the same cmpxchg used by the condition, and the true value is the
1310   // cmpxchg instruction's compare operand.
1311   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
1312     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
1313       SI.setTrueValue(SI.getFalseValue());
1314       return &SI;
1315     }
1316 
1317   return nullptr;
1318 }
1319 
1320 /// Reduce a sequence of min/max with a common operand.
1321 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
1322                                         Value *RHS,
1323                                         InstCombiner::BuilderTy &Builder) {
1324   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
1325   // TODO: Allow FP min/max with nnan/nsz.
1326   if (!LHS->getType()->isIntOrIntVectorTy())
1327     return nullptr;
1328 
1329   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1330   Value *A, *B, *C, *D;
1331   SelectPatternResult L = matchSelectPattern(LHS, A, B);
1332   SelectPatternResult R = matchSelectPattern(RHS, C, D);
1333   if (SPF != L.Flavor || L.Flavor != R.Flavor)
1334     return nullptr;
1335 
1336   // Look for a common operand. The use checks are different than usual because
1337   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
1338   // the select.
1339   Value *MinMaxOp = nullptr;
1340   Value *ThirdOp = nullptr;
1341   if (LHS->getNumUses() <= 2 && RHS->getNumUses() > 2) {
1342     // If the LHS is only used in this chain and the RHS is used outside of it,
1343     // reuse the RHS min/max because that will eliminate the LHS.
1344     if (D == A || C == A) {
1345       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1346       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1347       MinMaxOp = RHS;
1348       ThirdOp = B;
1349     } else if (D == B || C == B) {
1350       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1351       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1352       MinMaxOp = RHS;
1353       ThirdOp = A;
1354     }
1355   } else if (RHS->getNumUses() <= 2) {
1356     // Reuse the LHS. This will eliminate the RHS.
1357     if (D == A || D == B) {
1358       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1359       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1360       MinMaxOp = LHS;
1361       ThirdOp = C;
1362     } else if (C == A || C == B) {
1363       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1364       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1365       MinMaxOp = LHS;
1366       ThirdOp = D;
1367     }
1368   }
1369   if (!MinMaxOp || !ThirdOp)
1370     return nullptr;
1371 
1372   CmpInst::Predicate P = getMinMaxPred(SPF);
1373   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
1374   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
1375 }
1376 
1377 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
1378   Value *CondVal = SI.getCondition();
1379   Value *TrueVal = SI.getTrueValue();
1380   Value *FalseVal = SI.getFalseValue();
1381   Type *SelType = SI.getType();
1382 
1383   // FIXME: Remove this workaround when freeze related patches are done.
1384   // For select with undef operand which feeds into an equality comparison,
1385   // don't simplify it so loop unswitch can know the equality comparison
1386   // may have an undef operand. This is a workaround for PR31652 caused by
1387   // descrepancy about branch on undef between LoopUnswitch and GVN.
1388   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
1389     if (llvm::any_of(SI.users(), [&](User *U) {
1390           ICmpInst *CI = dyn_cast<ICmpInst>(U);
1391           if (CI && CI->isEquality())
1392             return true;
1393           return false;
1394         })) {
1395       return nullptr;
1396     }
1397   }
1398 
1399   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
1400                                     SQ.getWithInstruction(&SI)))
1401     return replaceInstUsesWith(SI, V);
1402 
1403   if (Instruction *I = canonicalizeSelectToShuffle(SI))
1404     return I;
1405 
1406   // Canonicalize a one-use integer compare with a non-canonical predicate by
1407   // inverting the predicate and swapping the select operands. This matches a
1408   // compare canonicalization for conditional branches.
1409   // TODO: Should we do the same for FP compares?
1410   CmpInst::Predicate Pred;
1411   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
1412       !isCanonicalPredicate(Pred)) {
1413     // Swap true/false values and condition.
1414     CmpInst *Cond = cast<CmpInst>(CondVal);
1415     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
1416     SI.setOperand(1, FalseVal);
1417     SI.setOperand(2, TrueVal);
1418     SI.swapProfMetadata();
1419     Worklist.Add(Cond);
1420     return &SI;
1421   }
1422 
1423   if (SelType->isIntOrIntVectorTy(1) &&
1424       TrueVal->getType() == CondVal->getType()) {
1425     if (match(TrueVal, m_One())) {
1426       // Change: A = select B, true, C --> A = or B, C
1427       return BinaryOperator::CreateOr(CondVal, FalseVal);
1428     }
1429     if (match(TrueVal, m_Zero())) {
1430       // Change: A = select B, false, C --> A = and !B, C
1431       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1432       return BinaryOperator::CreateAnd(NotCond, FalseVal);
1433     }
1434     if (match(FalseVal, m_Zero())) {
1435       // Change: A = select B, C, false --> A = and B, C
1436       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1437     }
1438     if (match(FalseVal, m_One())) {
1439       // Change: A = select B, C, true --> A = or !B, C
1440       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1441       return BinaryOperator::CreateOr(NotCond, TrueVal);
1442     }
1443 
1444     // select a, a, b  -> a | b
1445     // select a, b, a  -> a & b
1446     if (CondVal == TrueVal)
1447       return BinaryOperator::CreateOr(CondVal, FalseVal);
1448     if (CondVal == FalseVal)
1449       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1450 
1451     // select a, ~a, b -> (~a) & b
1452     // select a, b, ~a -> (~a) | b
1453     if (match(TrueVal, m_Not(m_Specific(CondVal))))
1454       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
1455     if (match(FalseVal, m_Not(m_Specific(CondVal))))
1456       return BinaryOperator::CreateOr(TrueVal, FalseVal);
1457   }
1458 
1459   // Selecting between two integer or vector splat integer constants?
1460   //
1461   // Note that we don't handle a scalar select of vectors:
1462   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
1463   // because that may need 3 instructions to splat the condition value:
1464   // extend, insertelement, shufflevector.
1465   if (SelType->isIntOrIntVectorTy() &&
1466       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
1467     // select C, 1, 0 -> zext C to int
1468     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
1469       return new ZExtInst(CondVal, SelType);
1470 
1471     // select C, -1, 0 -> sext C to int
1472     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
1473       return new SExtInst(CondVal, SelType);
1474 
1475     // select C, 0, 1 -> zext !C to int
1476     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
1477       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1478       return new ZExtInst(NotCond, SelType);
1479     }
1480 
1481     // select C, 0, -1 -> sext !C to int
1482     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
1483       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1484       return new SExtInst(NotCond, SelType);
1485     }
1486   }
1487 
1488   // See if we are selecting two values based on a comparison of the two values.
1489   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
1490     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
1491       // Transform (X == Y) ? X : Y  -> Y
1492       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1493         // This is not safe in general for floating point:
1494         // consider X== -0, Y== +0.
1495         // It becomes safe if either operand is a nonzero constant.
1496         ConstantFP *CFPt, *CFPf;
1497         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1498               !CFPt->getValueAPF().isZero()) ||
1499             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1500              !CFPf->getValueAPF().isZero()))
1501         return replaceInstUsesWith(SI, FalseVal);
1502       }
1503       // Transform (X une Y) ? X : Y  -> X
1504       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1505         // This is not safe in general for floating point:
1506         // consider X== -0, Y== +0.
1507         // It becomes safe if either operand is a nonzero constant.
1508         ConstantFP *CFPt, *CFPf;
1509         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1510               !CFPt->getValueAPF().isZero()) ||
1511             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1512              !CFPf->getValueAPF().isZero()))
1513         return replaceInstUsesWith(SI, TrueVal);
1514       }
1515 
1516       // Canonicalize to use ordered comparisons by swapping the select
1517       // operands.
1518       //
1519       // e.g.
1520       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1521       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1522         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1523         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1524         Builder.setFastMathFlags(FCI->getFastMathFlags());
1525         Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
1526                                             FCI->getName() + ".inv");
1527 
1528         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1529                                   SI.getName() + ".p");
1530       }
1531 
1532       // NOTE: if we wanted to, this is where to detect MIN/MAX
1533     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1534       // Transform (X == Y) ? Y : X  -> X
1535       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1536         // This is not safe in general for floating point:
1537         // consider X== -0, Y== +0.
1538         // It becomes safe if either operand is a nonzero constant.
1539         ConstantFP *CFPt, *CFPf;
1540         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1541               !CFPt->getValueAPF().isZero()) ||
1542             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1543              !CFPf->getValueAPF().isZero()))
1544           return replaceInstUsesWith(SI, FalseVal);
1545       }
1546       // Transform (X une Y) ? Y : X  -> Y
1547       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1548         // This is not safe in general for floating point:
1549         // consider X== -0, Y== +0.
1550         // It becomes safe if either operand is a nonzero constant.
1551         ConstantFP *CFPt, *CFPf;
1552         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1553               !CFPt->getValueAPF().isZero()) ||
1554             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1555              !CFPf->getValueAPF().isZero()))
1556           return replaceInstUsesWith(SI, TrueVal);
1557       }
1558 
1559       // Canonicalize to use ordered comparisons by swapping the select
1560       // operands.
1561       //
1562       // e.g.
1563       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1564       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1565         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1566         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1567         Builder.setFastMathFlags(FCI->getFastMathFlags());
1568         Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
1569                                             FCI->getName() + ".inv");
1570 
1571         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1572                                   SI.getName() + ".p");
1573       }
1574 
1575       // NOTE: if we wanted to, this is where to detect MIN/MAX
1576     }
1577     // NOTE: if we wanted to, this is where to detect ABS
1578   }
1579 
1580   // See if we are selecting two values based on a comparison of the two values.
1581   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1582     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
1583       return Result;
1584 
1585   if (Instruction *Add = foldAddSubSelect(SI, Builder))
1586     return Add;
1587 
1588   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1589   auto *TI = dyn_cast<Instruction>(TrueVal);
1590   auto *FI = dyn_cast<Instruction>(FalseVal);
1591   if (TI && FI && TI->getOpcode() == FI->getOpcode())
1592     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
1593       return IV;
1594 
1595   if (Instruction *I = foldSelectExtConst(SI))
1596     return I;
1597 
1598   // See if we can fold the select into one of our operands.
1599   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1600     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
1601       return FoldI;
1602 
1603     Value *LHS, *RHS, *LHS2, *RHS2;
1604     Instruction::CastOps CastOp;
1605     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1606     auto SPF = SPR.Flavor;
1607 
1608     if (SelectPatternResult::isMinOrMax(SPF)) {
1609       // Canonicalize so that
1610       // - type casts are outside select patterns.
1611       // - float clamp is transformed to min/max pattern
1612 
1613       bool IsCastNeeded = LHS->getType() != SelType;
1614       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
1615       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
1616       if (IsCastNeeded ||
1617           (LHS->getType()->isFPOrFPVectorTy() &&
1618            ((CmpLHS != LHS && CmpLHS != RHS) ||
1619             (CmpRHS != LHS && CmpRHS != RHS)))) {
1620         CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered);
1621 
1622         Value *Cmp;
1623         if (CmpInst::isIntPredicate(Pred)) {
1624           Cmp = Builder.CreateICmp(Pred, LHS, RHS);
1625         } else {
1626           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1627           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1628           Builder.setFastMathFlags(FMF);
1629           Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
1630         }
1631 
1632         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
1633         if (!IsCastNeeded)
1634           return replaceInstUsesWith(SI, NewSI);
1635 
1636         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
1637         return replaceInstUsesWith(SI, NewCast);
1638       }
1639 
1640       // MAX(~a, ~b) -> ~MIN(a, b)
1641       // MIN(~a, ~b) -> ~MAX(a, b)
1642       Value *A, *B;
1643       if (match(LHS, m_Not(m_Value(A))) && match(RHS, m_Not(m_Value(B))) &&
1644           (LHS->getNumUses() <= 2 || RHS->getNumUses() <= 2)) {
1645         CmpInst::Predicate InvertedPred = getInverseMinMaxPred(SPF);
1646         Value *InvertedCmp = Builder.CreateICmp(InvertedPred, A, B);
1647         Value *NewSel = Builder.CreateSelect(InvertedCmp, A, B);
1648         return BinaryOperator::CreateNot(NewSel);
1649       }
1650 
1651       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
1652         return I;
1653     }
1654 
1655     if (SPF) {
1656       // MAX(MAX(a, b), a) -> MAX(a, b)
1657       // MIN(MIN(a, b), a) -> MIN(a, b)
1658       // MAX(MIN(a, b), a) -> a
1659       // MIN(MAX(a, b), a) -> a
1660       // ABS(ABS(a)) -> ABS(a)
1661       // NABS(NABS(a)) -> NABS(a)
1662       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1663         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
1664                                           SI, SPF, RHS))
1665           return R;
1666       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1667         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
1668                                           SI, SPF, LHS))
1669           return R;
1670     }
1671 
1672     // TODO.
1673     // ABS(-X) -> ABS(X)
1674   }
1675 
1676   // See if we can fold the select into a phi node if the condition is a select.
1677   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
1678     // The true/false values have to be live in the PHI predecessor's blocks.
1679     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1680         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1681       if (Instruction *NV = foldOpIntoPhi(SI, PN))
1682         return NV;
1683 
1684   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1685     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1686       // select(C, select(C, a, b), c) -> select(C, a, c)
1687       if (TrueSI->getCondition() == CondVal) {
1688         if (SI.getTrueValue() == TrueSI->getTrueValue())
1689           return nullptr;
1690         SI.setOperand(1, TrueSI->getTrueValue());
1691         return &SI;
1692       }
1693       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1694       // We choose this as normal form to enable folding on the And and shortening
1695       // paths for the values (this helps GetUnderlyingObjects() for example).
1696       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1697         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
1698         SI.setOperand(0, And);
1699         SI.setOperand(1, TrueSI->getTrueValue());
1700         return &SI;
1701       }
1702     }
1703   }
1704   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1705     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1706       // select(C, a, select(C, b, c)) -> select(C, a, c)
1707       if (FalseSI->getCondition() == CondVal) {
1708         if (SI.getFalseValue() == FalseSI->getFalseValue())
1709           return nullptr;
1710         SI.setOperand(2, FalseSI->getFalseValue());
1711         return &SI;
1712       }
1713       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1714       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1715         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
1716         SI.setOperand(0, Or);
1717         SI.setOperand(2, FalseSI->getFalseValue());
1718         return &SI;
1719       }
1720     }
1721   }
1722 
1723   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
1724     // The select might be preventing a division by 0.
1725     switch (BO->getOpcode()) {
1726     default:
1727       return true;
1728     case Instruction::SRem:
1729     case Instruction::URem:
1730     case Instruction::SDiv:
1731     case Instruction::UDiv:
1732       return false;
1733     }
1734   };
1735 
1736   // Try to simplify a binop sandwiched between 2 selects with the same
1737   // condition.
1738   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
1739   BinaryOperator *TrueBO;
1740   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
1741       canMergeSelectThroughBinop(TrueBO)) {
1742     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
1743       if (TrueBOSI->getCondition() == CondVal) {
1744         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
1745         Worklist.Add(TrueBO);
1746         return &SI;
1747       }
1748     }
1749     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
1750       if (TrueBOSI->getCondition() == CondVal) {
1751         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
1752         Worklist.Add(TrueBO);
1753         return &SI;
1754       }
1755     }
1756   }
1757 
1758   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
1759   BinaryOperator *FalseBO;
1760   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
1761       canMergeSelectThroughBinop(FalseBO)) {
1762     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
1763       if (FalseBOSI->getCondition() == CondVal) {
1764         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
1765         Worklist.Add(FalseBO);
1766         return &SI;
1767       }
1768     }
1769     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
1770       if (FalseBOSI->getCondition() == CondVal) {
1771         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
1772         Worklist.Add(FalseBO);
1773         return &SI;
1774       }
1775     }
1776   }
1777 
1778   if (BinaryOperator::isNot(CondVal)) {
1779     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
1780     SI.setOperand(1, FalseVal);
1781     SI.setOperand(2, TrueVal);
1782     return &SI;
1783   }
1784 
1785   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
1786     unsigned VWidth = VecTy->getNumElements();
1787     APInt UndefElts(VWidth, 0);
1788     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1789     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
1790       if (V != &SI)
1791         return replaceInstUsesWith(SI, V);
1792       return &SI;
1793     }
1794   }
1795 
1796   // See if we can determine the result of this select based on a dominating
1797   // condition.
1798   BasicBlock *Parent = SI.getParent();
1799   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
1800     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
1801     if (PBI && PBI->isConditional() &&
1802         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
1803         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
1804       bool CondIsTrue = PBI->getSuccessor(0) == Parent;
1805       Optional<bool> Implication = isImpliedCondition(
1806           PBI->getCondition(), SI.getCondition(), DL, CondIsTrue);
1807       if (Implication) {
1808         Value *V = *Implication ? TrueVal : FalseVal;
1809         return replaceInstUsesWith(SI, V);
1810       }
1811     }
1812   }
1813 
1814   // If we can compute the condition, there's no need for a select.
1815   // Like the above fold, we are attempting to reduce compile-time cost by
1816   // putting this fold here with limitations rather than in InstSimplify.
1817   // The motivation for this call into value tracking is to take advantage of
1818   // the assumption cache, so make sure that is populated.
1819   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
1820     KnownBits Known(1);
1821     computeKnownBits(CondVal, Known, 0, &SI);
1822     if (Known.One.isOneValue())
1823       return replaceInstUsesWith(SI, TrueVal);
1824     if (Known.Zero.isOneValue())
1825       return replaceInstUsesWith(SI, FalseVal);
1826   }
1827 
1828   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
1829     return BitCastSel;
1830 
1831   // Simplify selects that test the returned flag of cmpxchg instructions.
1832   if (Instruction *Select = foldSelectCmpXchg(SI))
1833     return Select;
1834 
1835   return nullptr;
1836 }
1837