1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/OverflowInstAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombiner.h"
42 #include <cassert>
43 #include <utility>
44 
45 #define DEBUG_TYPE "instcombine"
46 #include "llvm/Transforms/Utils/InstructionWorklist.h"
47 
48 using namespace llvm;
49 using namespace PatternMatch;
50 
51 
52 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
53                            SelectPatternFlavor SPF, Value *A, Value *B) {
54   CmpInst::Predicate Pred = getMinMaxPred(SPF);
55   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
56   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
57 }
58 
59 /// Replace a select operand based on an equality comparison with the identity
60 /// constant of a binop.
61 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
62                                             const TargetLibraryInfo &TLI,
63                                             InstCombinerImpl &IC) {
64   // The select condition must be an equality compare with a constant operand.
65   Value *X;
66   Constant *C;
67   CmpInst::Predicate Pred;
68   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
69     return nullptr;
70 
71   bool IsEq;
72   if (ICmpInst::isEquality(Pred))
73     IsEq = Pred == ICmpInst::ICMP_EQ;
74   else if (Pred == FCmpInst::FCMP_OEQ)
75     IsEq = true;
76   else if (Pred == FCmpInst::FCMP_UNE)
77     IsEq = false;
78   else
79     return nullptr;
80 
81   // A select operand must be a binop.
82   BinaryOperator *BO;
83   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
84     return nullptr;
85 
86   // The compare constant must be the identity constant for that binop.
87   // If this a floating-point compare with 0.0, any zero constant will do.
88   Type *Ty = BO->getType();
89   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
90   if (IdC != C) {
91     if (!IdC || !CmpInst::isFPPredicate(Pred))
92       return nullptr;
93     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
94       return nullptr;
95   }
96 
97   // Last, match the compare variable operand with a binop operand.
98   Value *Y;
99   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
100     return nullptr;
101   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
102     return nullptr;
103 
104   // +0.0 compares equal to -0.0, and so it does not behave as required for this
105   // transform. Bail out if we can not exclude that possibility.
106   if (isa<FPMathOperator>(BO))
107     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
108       return nullptr;
109 
110   // BO = binop Y, X
111   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
112   // =>
113   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
114   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
115 }
116 
117 /// This folds:
118 ///  select (icmp eq (and X, C1)), TC, FC
119 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
120 /// To something like:
121 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
122 /// Or:
123 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
124 /// With some variations depending if FC is larger than TC, or the shift
125 /// isn't needed, or the bit widths don't match.
126 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
127                                 InstCombiner::BuilderTy &Builder) {
128   const APInt *SelTC, *SelFC;
129   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
130       !match(Sel.getFalseValue(), m_APInt(SelFC)))
131     return nullptr;
132 
133   // If this is a vector select, we need a vector compare.
134   Type *SelType = Sel.getType();
135   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
136     return nullptr;
137 
138   Value *V;
139   APInt AndMask;
140   bool CreateAnd = false;
141   ICmpInst::Predicate Pred = Cmp->getPredicate();
142   if (ICmpInst::isEquality(Pred)) {
143     if (!match(Cmp->getOperand(1), m_Zero()))
144       return nullptr;
145 
146     V = Cmp->getOperand(0);
147     const APInt *AndRHS;
148     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
149       return nullptr;
150 
151     AndMask = *AndRHS;
152   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
153                                   Pred, V, AndMask)) {
154     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
155     if (!AndMask.isPowerOf2())
156       return nullptr;
157 
158     CreateAnd = true;
159   } else {
160     return nullptr;
161   }
162 
163   // In general, when both constants are non-zero, we would need an offset to
164   // replace the select. This would require more instructions than we started
165   // with. But there's one special-case that we handle here because it can
166   // simplify/reduce the instructions.
167   APInt TC = *SelTC;
168   APInt FC = *SelFC;
169   if (!TC.isZero() && !FC.isZero()) {
170     // If the select constants differ by exactly one bit and that's the same
171     // bit that is masked and checked by the select condition, the select can
172     // be replaced by bitwise logic to set/clear one bit of the constant result.
173     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
174       return nullptr;
175     if (CreateAnd) {
176       // If we have to create an 'and', then we must kill the cmp to not
177       // increase the instruction count.
178       if (!Cmp->hasOneUse())
179         return nullptr;
180       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
181     }
182     bool ExtraBitInTC = TC.ugt(FC);
183     if (Pred == ICmpInst::ICMP_EQ) {
184       // If the masked bit in V is clear, clear or set the bit in the result:
185       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
186       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
187       Constant *C = ConstantInt::get(SelType, TC);
188       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
189     }
190     if (Pred == ICmpInst::ICMP_NE) {
191       // If the masked bit in V is set, set or clear the bit in the result:
192       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
193       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
194       Constant *C = ConstantInt::get(SelType, FC);
195       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
196     }
197     llvm_unreachable("Only expecting equality predicates");
198   }
199 
200   // Make sure one of the select arms is a power-of-2.
201   if (!TC.isPowerOf2() && !FC.isPowerOf2())
202     return nullptr;
203 
204   // Determine which shift is needed to transform result of the 'and' into the
205   // desired result.
206   const APInt &ValC = !TC.isZero() ? TC : FC;
207   unsigned ValZeros = ValC.logBase2();
208   unsigned AndZeros = AndMask.logBase2();
209 
210   // Insert the 'and' instruction on the input to the truncate.
211   if (CreateAnd)
212     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
213 
214   // If types don't match, we can still convert the select by introducing a zext
215   // or a trunc of the 'and'.
216   if (ValZeros > AndZeros) {
217     V = Builder.CreateZExtOrTrunc(V, SelType);
218     V = Builder.CreateShl(V, ValZeros - AndZeros);
219   } else if (ValZeros < AndZeros) {
220     V = Builder.CreateLShr(V, AndZeros - ValZeros);
221     V = Builder.CreateZExtOrTrunc(V, SelType);
222   } else {
223     V = Builder.CreateZExtOrTrunc(V, SelType);
224   }
225 
226   // Okay, now we know that everything is set up, we just don't know whether we
227   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
228   bool ShouldNotVal = !TC.isZero();
229   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
230   if (ShouldNotVal)
231     V = Builder.CreateXor(V, ValC);
232 
233   return V;
234 }
235 
236 /// We want to turn code that looks like this:
237 ///   %C = or %A, %B
238 ///   %D = select %cond, %C, %A
239 /// into:
240 ///   %C = select %cond, %B, 0
241 ///   %D = or %A, %C
242 ///
243 /// Assuming that the specified instruction is an operand to the select, return
244 /// a bitmask indicating which operands of this instruction are foldable if they
245 /// equal the other incoming value of the select.
246 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
247   switch (I->getOpcode()) {
248   case Instruction::Add:
249   case Instruction::Mul:
250   case Instruction::And:
251   case Instruction::Or:
252   case Instruction::Xor:
253     return 3;              // Can fold through either operand.
254   case Instruction::Sub:   // Can only fold on the amount subtracted.
255   case Instruction::Shl:   // Can only fold on the shift amount.
256   case Instruction::LShr:
257   case Instruction::AShr:
258     return 1;
259   default:
260     return 0;              // Cannot fold
261   }
262 }
263 
264 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
265 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
266                                               Instruction *FI) {
267   // Don't break up min/max patterns. The hasOneUse checks below prevent that
268   // for most cases, but vector min/max with bitcasts can be transformed. If the
269   // one-use restrictions are eased for other patterns, we still don't want to
270   // obfuscate min/max.
271   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
272        match(&SI, m_SMax(m_Value(), m_Value())) ||
273        match(&SI, m_UMin(m_Value(), m_Value())) ||
274        match(&SI, m_UMax(m_Value(), m_Value()))))
275     return nullptr;
276 
277   // If this is a cast from the same type, merge.
278   Value *Cond = SI.getCondition();
279   Type *CondTy = Cond->getType();
280   if (TI->getNumOperands() == 1 && TI->isCast()) {
281     Type *FIOpndTy = FI->getOperand(0)->getType();
282     if (TI->getOperand(0)->getType() != FIOpndTy)
283       return nullptr;
284 
285     // The select condition may be a vector. We may only change the operand
286     // type if the vector width remains the same (and matches the condition).
287     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
288       if (!FIOpndTy->isVectorTy() ||
289           CondVTy->getElementCount() !=
290               cast<VectorType>(FIOpndTy)->getElementCount())
291         return nullptr;
292 
293       // TODO: If the backend knew how to deal with casts better, we could
294       // remove this limitation. For now, there's too much potential to create
295       // worse codegen by promoting the select ahead of size-altering casts
296       // (PR28160).
297       //
298       // Note that ValueTracking's matchSelectPattern() looks through casts
299       // without checking 'hasOneUse' when it matches min/max patterns, so this
300       // transform may end up happening anyway.
301       if (TI->getOpcode() != Instruction::BitCast &&
302           (!TI->hasOneUse() || !FI->hasOneUse()))
303         return nullptr;
304     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
305       // TODO: The one-use restrictions for a scalar select could be eased if
306       // the fold of a select in visitLoadInst() was enhanced to match a pattern
307       // that includes a cast.
308       return nullptr;
309     }
310 
311     // Fold this by inserting a select from the input values.
312     Value *NewSI =
313         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
314                              SI.getName() + ".v", &SI);
315     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
316                             TI->getType());
317   }
318 
319   // Cond ? -X : -Y --> -(Cond ? X : Y)
320   Value *X, *Y;
321   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
322       (TI->hasOneUse() || FI->hasOneUse())) {
323     // Intersect FMF from the fneg instructions and union those with the select.
324     FastMathFlags FMF = TI->getFastMathFlags();
325     FMF &= FI->getFastMathFlags();
326     FMF |= SI.getFastMathFlags();
327     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
328     if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
329       NewSelI->setFastMathFlags(FMF);
330     Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
331     NewFNeg->setFastMathFlags(FMF);
332     return NewFNeg;
333   }
334 
335   // Min/max intrinsic with a common operand can have the common operand pulled
336   // after the select. This is the same transform as below for binops, but
337   // specialized for intrinsic matching and without the restrictive uses clause.
338   auto *TII = dyn_cast<IntrinsicInst>(TI);
339   auto *FII = dyn_cast<IntrinsicInst>(FI);
340   if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() &&
341       (TII->hasOneUse() || FII->hasOneUse())) {
342     Value *T0, *T1, *F0, *F1;
343     if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) &&
344         match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) {
345       if (T0 == F0) {
346         Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI);
347         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
348       }
349       if (T0 == F1) {
350         Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI);
351         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
352       }
353       if (T1 == F0) {
354         Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI);
355         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
356       }
357       if (T1 == F1) {
358         Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI);
359         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
360       }
361     }
362   }
363 
364   // Only handle binary operators (including two-operand getelementptr) with
365   // one-use here. As with the cast case above, it may be possible to relax the
366   // one-use constraint, but that needs be examined carefully since it may not
367   // reduce the total number of instructions.
368   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
369       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
370       !TI->hasOneUse() || !FI->hasOneUse())
371     return nullptr;
372 
373   // Figure out if the operations have any operands in common.
374   Value *MatchOp, *OtherOpT, *OtherOpF;
375   bool MatchIsOpZero;
376   if (TI->getOperand(0) == FI->getOperand(0)) {
377     MatchOp  = TI->getOperand(0);
378     OtherOpT = TI->getOperand(1);
379     OtherOpF = FI->getOperand(1);
380     MatchIsOpZero = true;
381   } else if (TI->getOperand(1) == FI->getOperand(1)) {
382     MatchOp  = TI->getOperand(1);
383     OtherOpT = TI->getOperand(0);
384     OtherOpF = FI->getOperand(0);
385     MatchIsOpZero = false;
386   } else if (!TI->isCommutative()) {
387     return nullptr;
388   } else if (TI->getOperand(0) == FI->getOperand(1)) {
389     MatchOp  = TI->getOperand(0);
390     OtherOpT = TI->getOperand(1);
391     OtherOpF = FI->getOperand(0);
392     MatchIsOpZero = true;
393   } else if (TI->getOperand(1) == FI->getOperand(0)) {
394     MatchOp  = TI->getOperand(1);
395     OtherOpT = TI->getOperand(0);
396     OtherOpF = FI->getOperand(1);
397     MatchIsOpZero = true;
398   } else {
399     return nullptr;
400   }
401 
402   // If the select condition is a vector, the operands of the original select's
403   // operands also must be vectors. This may not be the case for getelementptr
404   // for example.
405   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
406                                !OtherOpF->getType()->isVectorTy()))
407     return nullptr;
408 
409   // If we reach here, they do have operations in common.
410   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
411                                       SI.getName() + ".v", &SI);
412   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
413   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
414   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
415     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
416     NewBO->copyIRFlags(TI);
417     NewBO->andIRFlags(FI);
418     return NewBO;
419   }
420   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
421     auto *FGEP = cast<GetElementPtrInst>(FI);
422     Type *ElementType = TGEP->getResultElementType();
423     return TGEP->isInBounds() && FGEP->isInBounds()
424                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
425                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
426   }
427   llvm_unreachable("Expected BinaryOperator or GEP");
428   return nullptr;
429 }
430 
431 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
432   if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
433     return false;
434   return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
435 }
436 
437 /// Try to fold the select into one of the operands to allow further
438 /// optimization.
439 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
440                                                 Value *FalseVal) {
441   // See the comment above GetSelectFoldableOperands for a description of the
442   // transformation we are doing here.
443   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
444     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
445       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
446         unsigned OpToFold = 0;
447         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
448           OpToFold = 1;
449         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
450           OpToFold = 2;
451         }
452 
453         if (OpToFold) {
454           Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
455                                                        TVI->getType(), true);
456           Value *OOp = TVI->getOperand(2-OpToFold);
457           // Avoid creating select between 2 constants unless it's selecting
458           // between 0, 1 and -1.
459           const APInt *OOpC;
460           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
461           if (!isa<Constant>(OOp) ||
462               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
463             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
464             NewSel->takeName(TVI);
465             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
466                                                         FalseVal, NewSel);
467             BO->copyIRFlags(TVI);
468             return BO;
469           }
470         }
471       }
472     }
473   }
474 
475   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
476     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
477       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
478         unsigned OpToFold = 0;
479         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
480           OpToFold = 1;
481         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
482           OpToFold = 2;
483         }
484 
485         if (OpToFold) {
486           Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
487                                                        FVI->getType(), true);
488           Value *OOp = FVI->getOperand(2-OpToFold);
489           // Avoid creating select between 2 constants unless it's selecting
490           // between 0, 1 and -1.
491           const APInt *OOpC;
492           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
493           if (!isa<Constant>(OOp) ||
494               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
495             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
496             NewSel->takeName(FVI);
497             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
498                                                         TrueVal, NewSel);
499             BO->copyIRFlags(FVI);
500             return BO;
501           }
502         }
503       }
504     }
505   }
506 
507   return nullptr;
508 }
509 
510 /// We want to turn:
511 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
512 /// into:
513 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
514 /// Note:
515 ///   Z may be 0 if lshr is missing.
516 /// Worst-case scenario is that we will replace 5 instructions with 5 different
517 /// instructions, but we got rid of select.
518 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
519                                          Value *TVal, Value *FVal,
520                                          InstCombiner::BuilderTy &Builder) {
521   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
522         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
523         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
524     return nullptr;
525 
526   // The TrueVal has general form of:  and %B, 1
527   Value *B;
528   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
529     return nullptr;
530 
531   // Where %B may be optionally shifted:  lshr %X, %Z.
532   Value *X, *Z;
533   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
534   if (!HasShift)
535     X = B;
536 
537   Value *Y;
538   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
539     return nullptr;
540 
541   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
542   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
543   Constant *One = ConstantInt::get(SelType, 1);
544   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
545   Value *FullMask = Builder.CreateOr(Y, MaskB);
546   Value *MaskedX = Builder.CreateAnd(X, FullMask);
547   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
548   return new ZExtInst(ICmpNeZero, SelType);
549 }
550 
551 /// We want to turn:
552 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
553 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
554 /// into:
555 ///   ashr (X, Y)
556 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
557                                      Value *FalseVal,
558                                      InstCombiner::BuilderTy &Builder) {
559   ICmpInst::Predicate Pred = IC->getPredicate();
560   Value *CmpLHS = IC->getOperand(0);
561   Value *CmpRHS = IC->getOperand(1);
562   if (!CmpRHS->getType()->isIntOrIntVectorTy())
563     return nullptr;
564 
565   Value *X, *Y;
566   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
567   if ((Pred != ICmpInst::ICMP_SGT ||
568        !match(CmpRHS,
569               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
570       (Pred != ICmpInst::ICMP_SLT ||
571        !match(CmpRHS,
572               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
573     return nullptr;
574 
575   // Canonicalize so that ashr is in FalseVal.
576   if (Pred == ICmpInst::ICMP_SLT)
577     std::swap(TrueVal, FalseVal);
578 
579   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
580       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
581       match(CmpLHS, m_Specific(X))) {
582     const auto *Ashr = cast<Instruction>(FalseVal);
583     // if lshr is not exact and ashr is, this new ashr must not be exact.
584     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
585     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
586   }
587 
588   return nullptr;
589 }
590 
591 /// We want to turn:
592 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
593 /// into:
594 ///   (or (shl (and X, C1), C3), Y)
595 /// iff:
596 ///   C1 and C2 are both powers of 2
597 /// where:
598 ///   C3 = Log(C2) - Log(C1)
599 ///
600 /// This transform handles cases where:
601 /// 1. The icmp predicate is inverted
602 /// 2. The select operands are reversed
603 /// 3. The magnitude of C2 and C1 are flipped
604 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
605                                   Value *FalseVal,
606                                   InstCombiner::BuilderTy &Builder) {
607   // Only handle integer compares. Also, if this is a vector select, we need a
608   // vector compare.
609   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
610       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
611     return nullptr;
612 
613   Value *CmpLHS = IC->getOperand(0);
614   Value *CmpRHS = IC->getOperand(1);
615 
616   Value *V;
617   unsigned C1Log;
618   bool IsEqualZero;
619   bool NeedAnd = false;
620   if (IC->isEquality()) {
621     if (!match(CmpRHS, m_Zero()))
622       return nullptr;
623 
624     const APInt *C1;
625     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
626       return nullptr;
627 
628     V = CmpLHS;
629     C1Log = C1->logBase2();
630     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
631   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
632              IC->getPredicate() == ICmpInst::ICMP_SGT) {
633     // We also need to recognize (icmp slt (trunc (X)), 0) and
634     // (icmp sgt (trunc (X)), -1).
635     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
636     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
637         (!IsEqualZero && !match(CmpRHS, m_Zero())))
638       return nullptr;
639 
640     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
641       return nullptr;
642 
643     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
644     NeedAnd = true;
645   } else {
646     return nullptr;
647   }
648 
649   const APInt *C2;
650   bool OrOnTrueVal = false;
651   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
652   if (!OrOnFalseVal)
653     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
654 
655   if (!OrOnFalseVal && !OrOnTrueVal)
656     return nullptr;
657 
658   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
659 
660   unsigned C2Log = C2->logBase2();
661 
662   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
663   bool NeedShift = C1Log != C2Log;
664   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
665                        V->getType()->getScalarSizeInBits();
666 
667   // Make sure we don't create more instructions than we save.
668   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
669   if ((NeedShift + NeedXor + NeedZExtTrunc) >
670       (IC->hasOneUse() + Or->hasOneUse()))
671     return nullptr;
672 
673   if (NeedAnd) {
674     // Insert the AND instruction on the input to the truncate.
675     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
676     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
677   }
678 
679   if (C2Log > C1Log) {
680     V = Builder.CreateZExtOrTrunc(V, Y->getType());
681     V = Builder.CreateShl(V, C2Log - C1Log);
682   } else if (C1Log > C2Log) {
683     V = Builder.CreateLShr(V, C1Log - C2Log);
684     V = Builder.CreateZExtOrTrunc(V, Y->getType());
685   } else
686     V = Builder.CreateZExtOrTrunc(V, Y->getType());
687 
688   if (NeedXor)
689     V = Builder.CreateXor(V, *C2);
690 
691   return Builder.CreateOr(V, Y);
692 }
693 
694 /// Canonicalize a set or clear of a masked set of constant bits to
695 /// select-of-constants form.
696 static Instruction *foldSetClearBits(SelectInst &Sel,
697                                      InstCombiner::BuilderTy &Builder) {
698   Value *Cond = Sel.getCondition();
699   Value *T = Sel.getTrueValue();
700   Value *F = Sel.getFalseValue();
701   Type *Ty = Sel.getType();
702   Value *X;
703   const APInt *NotC, *C;
704 
705   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
706   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
707       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
708     Constant *Zero = ConstantInt::getNullValue(Ty);
709     Constant *OrC = ConstantInt::get(Ty, *C);
710     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
711     return BinaryOperator::CreateOr(T, NewSel);
712   }
713 
714   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
715   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
716       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
717     Constant *Zero = ConstantInt::getNullValue(Ty);
718     Constant *OrC = ConstantInt::get(Ty, *C);
719     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
720     return BinaryOperator::CreateOr(F, NewSel);
721   }
722 
723   return nullptr;
724 }
725 
726 //   select (x == 0), 0, x * y --> freeze(y) * x
727 //   select (y == 0), 0, x * y --> freeze(x) * y
728 //   select (x == 0), undef, x * y --> freeze(y) * x
729 //   select (x == undef), 0, x * y --> freeze(y) * x
730 // Usage of mul instead of 0 will make the result more poisonous,
731 // so the operand that was not checked in the condition should be frozen.
732 // The latter folding is applied only when a constant compared with x is
733 // is a vector consisting of 0 and undefs. If a constant compared with x
734 // is a scalar undefined value or undefined vector then an expression
735 // should be already folded into a constant.
736 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
737   auto *CondVal = SI.getCondition();
738   auto *TrueVal = SI.getTrueValue();
739   auto *FalseVal = SI.getFalseValue();
740   Value *X, *Y;
741   ICmpInst::Predicate Predicate;
742 
743   // Assuming that constant compared with zero is not undef (but it may be
744   // a vector with some undef elements). Otherwise (when a constant is undef)
745   // the select expression should be already simplified.
746   if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
747       !ICmpInst::isEquality(Predicate))
748     return nullptr;
749 
750   if (Predicate == ICmpInst::ICMP_NE)
751     std::swap(TrueVal, FalseVal);
752 
753   // Check that TrueVal is a constant instead of matching it with m_Zero()
754   // to handle the case when it is a scalar undef value or a vector containing
755   // non-zero elements that are masked by undef elements in the compare
756   // constant.
757   auto *TrueValC = dyn_cast<Constant>(TrueVal);
758   if (TrueValC == nullptr ||
759       !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
760       !isa<Instruction>(FalseVal))
761     return nullptr;
762 
763   auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
764   auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
765   // If X is compared with 0 then TrueVal could be either zero or undef.
766   // m_Zero match vectors containing some undef elements, but for scalars
767   // m_Undef should be used explicitly.
768   if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
769     return nullptr;
770 
771   auto *FalseValI = cast<Instruction>(FalseVal);
772   auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
773                                      *FalseValI);
774   IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
775   return IC.replaceInstUsesWith(SI, FalseValI);
776 }
777 
778 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
779 /// There are 8 commuted/swapped variants of this pattern.
780 /// TODO: Also support a - UMIN(a,b) patterns.
781 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
782                                             const Value *TrueVal,
783                                             const Value *FalseVal,
784                                             InstCombiner::BuilderTy &Builder) {
785   ICmpInst::Predicate Pred = ICI->getPredicate();
786   if (!ICmpInst::isUnsigned(Pred))
787     return nullptr;
788 
789   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
790   if (match(TrueVal, m_Zero())) {
791     Pred = ICmpInst::getInversePredicate(Pred);
792     std::swap(TrueVal, FalseVal);
793   }
794   if (!match(FalseVal, m_Zero()))
795     return nullptr;
796 
797   Value *A = ICI->getOperand(0);
798   Value *B = ICI->getOperand(1);
799   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
800     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
801     std::swap(A, B);
802     Pred = ICmpInst::getSwappedPredicate(Pred);
803   }
804 
805   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
806          "Unexpected isUnsigned predicate!");
807 
808   // Ensure the sub is of the form:
809   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
810   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
811   // Checking for both a-b and a+(-b) as a constant.
812   bool IsNegative = false;
813   const APInt *C;
814   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
815       (match(A, m_APInt(C)) &&
816        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
817     IsNegative = true;
818   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
819            !(match(B, m_APInt(C)) &&
820              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
821     return nullptr;
822 
823   // If we are adding a negate and the sub and icmp are used anywhere else, we
824   // would end up with more instructions.
825   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
826     return nullptr;
827 
828   // (a > b) ? a - b : 0 -> usub.sat(a, b)
829   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
830   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
831   if (IsNegative)
832     Result = Builder.CreateNeg(Result);
833   return Result;
834 }
835 
836 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
837                                        InstCombiner::BuilderTy &Builder) {
838   if (!Cmp->hasOneUse())
839     return nullptr;
840 
841   // Match unsigned saturated add with constant.
842   Value *Cmp0 = Cmp->getOperand(0);
843   Value *Cmp1 = Cmp->getOperand(1);
844   ICmpInst::Predicate Pred = Cmp->getPredicate();
845   Value *X;
846   const APInt *C, *CmpC;
847   if (Pred == ICmpInst::ICMP_ULT &&
848       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
849       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
850     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
851     return Builder.CreateBinaryIntrinsic(
852         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
853   }
854 
855   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
856   // There are 8 commuted variants.
857   // Canonicalize -1 (saturated result) to true value of the select.
858   if (match(FVal, m_AllOnes())) {
859     std::swap(TVal, FVal);
860     Pred = CmpInst::getInversePredicate(Pred);
861   }
862   if (!match(TVal, m_AllOnes()))
863     return nullptr;
864 
865   // Canonicalize predicate to less-than or less-or-equal-than.
866   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
867     std::swap(Cmp0, Cmp1);
868     Pred = CmpInst::getSwappedPredicate(Pred);
869   }
870   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
871     return nullptr;
872 
873   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
874   // Strictness of the comparison is irrelevant.
875   Value *Y;
876   if (match(Cmp0, m_Not(m_Value(X))) &&
877       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
878     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
879     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
880     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
881   }
882   // The 'not' op may be included in the sum but not the compare.
883   // Strictness of the comparison is irrelevant.
884   X = Cmp0;
885   Y = Cmp1;
886   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
887     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
888     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
889     BinaryOperator *BO = cast<BinaryOperator>(FVal);
890     return Builder.CreateBinaryIntrinsic(
891         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
892   }
893   // The overflow may be detected via the add wrapping round.
894   // This is only valid for strict comparison!
895   if (Pred == ICmpInst::ICMP_ULT &&
896       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
897       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
898     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
899     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
900     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
901   }
902 
903   return nullptr;
904 }
905 
906 /// Fold the following code sequence:
907 /// \code
908 ///   int a = ctlz(x & -x);
909 //    x ? 31 - a : a;
910 /// \code
911 ///
912 /// into:
913 ///   cttz(x)
914 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
915                                          Value *FalseVal,
916                                          InstCombiner::BuilderTy &Builder) {
917   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
918   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
919     return nullptr;
920 
921   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
922     std::swap(TrueVal, FalseVal);
923 
924   if (!match(FalseVal,
925              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
926     return nullptr;
927 
928   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
929     return nullptr;
930 
931   Value *X = ICI->getOperand(0);
932   auto *II = cast<IntrinsicInst>(TrueVal);
933   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
934     return nullptr;
935 
936   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
937                                           II->getType());
938   return CallInst::Create(F, {X, II->getArgOperand(1)});
939 }
940 
941 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
942 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
943 ///
944 /// For example, we can fold the following code sequence:
945 /// \code
946 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
947 ///   %1 = icmp ne i32 %x, 0
948 ///   %2 = select i1 %1, i32 %0, i32 32
949 /// \code
950 ///
951 /// into:
952 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
953 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
954                                  InstCombiner::BuilderTy &Builder) {
955   ICmpInst::Predicate Pred = ICI->getPredicate();
956   Value *CmpLHS = ICI->getOperand(0);
957   Value *CmpRHS = ICI->getOperand(1);
958 
959   // Check if the condition value compares a value for equality against zero.
960   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
961     return nullptr;
962 
963   Value *SelectArg = FalseVal;
964   Value *ValueOnZero = TrueVal;
965   if (Pred == ICmpInst::ICMP_NE)
966     std::swap(SelectArg, ValueOnZero);
967 
968   // Skip zero extend/truncate.
969   Value *Count = nullptr;
970   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
971       !match(SelectArg, m_Trunc(m_Value(Count))))
972     Count = SelectArg;
973 
974   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
975   // input to the cttz/ctlz is used as LHS for the compare instruction.
976   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
977       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
978     return nullptr;
979 
980   IntrinsicInst *II = cast<IntrinsicInst>(Count);
981 
982   // Check if the value propagated on zero is a constant number equal to the
983   // sizeof in bits of 'Count'.
984   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
985   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
986     // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
987     // true to false on this flag, so we can replace it for all users.
988     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
989     return SelectArg;
990   }
991 
992   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
993   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
994   // not be used if the input is zero. Relax to 'undef_on_zero' for that case.
995   if (II->hasOneUse() && SelectArg->hasOneUse() &&
996       !match(II->getArgOperand(1), m_One()))
997     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
998 
999   return nullptr;
1000 }
1001 
1002 /// Return true if we find and adjust an icmp+select pattern where the compare
1003 /// is with a constant that can be incremented or decremented to match the
1004 /// minimum or maximum idiom.
1005 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
1006   ICmpInst::Predicate Pred = Cmp.getPredicate();
1007   Value *CmpLHS = Cmp.getOperand(0);
1008   Value *CmpRHS = Cmp.getOperand(1);
1009   Value *TrueVal = Sel.getTrueValue();
1010   Value *FalseVal = Sel.getFalseValue();
1011 
1012   // We may move or edit the compare, so make sure the select is the only user.
1013   const APInt *CmpC;
1014   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
1015     return false;
1016 
1017   // These transforms only work for selects of integers or vector selects of
1018   // integer vectors.
1019   Type *SelTy = Sel.getType();
1020   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
1021   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
1022     return false;
1023 
1024   Constant *AdjustedRHS;
1025   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
1026     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
1027   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
1028     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
1029   else
1030     return false;
1031 
1032   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
1033   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
1034   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
1035       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
1036     ; // Nothing to do here. Values match without any sign/zero extension.
1037   }
1038   // Types do not match. Instead of calculating this with mixed types, promote
1039   // all to the larger type. This enables scalar evolution to analyze this
1040   // expression.
1041   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
1042     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
1043 
1044     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
1045     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
1046     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
1047     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
1048     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
1049       CmpLHS = TrueVal;
1050       AdjustedRHS = SextRHS;
1051     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
1052                SextRHS == TrueVal) {
1053       CmpLHS = FalseVal;
1054       AdjustedRHS = SextRHS;
1055     } else if (Cmp.isUnsigned()) {
1056       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
1057       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
1058       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
1059       // zext + signed compare cannot be changed:
1060       //    0xff <s 0x00, but 0x00ff >s 0x0000
1061       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
1062         CmpLHS = TrueVal;
1063         AdjustedRHS = ZextRHS;
1064       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
1065                  ZextRHS == TrueVal) {
1066         CmpLHS = FalseVal;
1067         AdjustedRHS = ZextRHS;
1068       } else {
1069         return false;
1070       }
1071     } else {
1072       return false;
1073     }
1074   } else {
1075     return false;
1076   }
1077 
1078   Pred = ICmpInst::getSwappedPredicate(Pred);
1079   CmpRHS = AdjustedRHS;
1080   std::swap(FalseVal, TrueVal);
1081   Cmp.setPredicate(Pred);
1082   Cmp.setOperand(0, CmpLHS);
1083   Cmp.setOperand(1, CmpRHS);
1084   Sel.setOperand(1, TrueVal);
1085   Sel.setOperand(2, FalseVal);
1086   Sel.swapProfMetadata();
1087 
1088   // Move the compare instruction right before the select instruction. Otherwise
1089   // the sext/zext value may be defined after the compare instruction uses it.
1090   Cmp.moveBefore(&Sel);
1091 
1092   return true;
1093 }
1094 
1095 /// If this is an integer min/max (icmp + select) with a constant operand,
1096 /// create the canonical icmp for the min/max operation and canonicalize the
1097 /// constant to the 'false' operand of the select:
1098 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
1099 /// Note: if C1 != C2, this will change the icmp constant to the existing
1100 /// constant operand of the select.
1101 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel,
1102                                                    ICmpInst &Cmp,
1103                                                    InstCombinerImpl &IC) {
1104   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1105     return nullptr;
1106 
1107   // Canonicalize the compare predicate based on whether we have min or max.
1108   Value *LHS, *RHS;
1109   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1110   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1111     return nullptr;
1112 
1113   // Is this already canonical?
1114   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1115   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1116       Cmp.getPredicate() == CanonicalPred)
1117     return nullptr;
1118 
1119   // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1120   // as this may cause an infinite combine loop. Let the sub be folded first.
1121   if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
1122       match(RHS, m_Sub(m_Value(), m_Zero())))
1123     return nullptr;
1124 
1125   // Create the canonical compare and plug it into the select.
1126   IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
1127 
1128   // If the select operands did not change, we're done.
1129   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1130     return &Sel;
1131 
1132   // If we are swapping the select operands, swap the metadata too.
1133   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1134          "Unexpected results from matchSelectPattern");
1135   Sel.swapValues();
1136   Sel.swapProfMetadata();
1137   return &Sel;
1138 }
1139 
1140 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1141                                         InstCombinerImpl &IC) {
1142   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1143     return nullptr;
1144 
1145   Value *LHS, *RHS;
1146   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1147   if (SPF != SelectPatternFlavor::SPF_ABS &&
1148       SPF != SelectPatternFlavor::SPF_NABS)
1149     return nullptr;
1150 
1151   // Note that NSW flag can only be propagated for normal, non-negated abs!
1152   bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1153                         match(RHS, m_NSWNeg(m_Specific(LHS)));
1154   Constant *IntMinIsPoisonC =
1155       ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1156   Instruction *Abs =
1157       IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1158 
1159   if (SPF == SelectPatternFlavor::SPF_NABS)
1160     return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1161 
1162   return IC.replaceInstUsesWith(Sel, Abs);
1163 }
1164 
1165 /// If we have a select with an equality comparison, then we know the value in
1166 /// one of the arms of the select. See if substituting this value into an arm
1167 /// and simplifying the result yields the same value as the other arm.
1168 ///
1169 /// To make this transform safe, we must drop poison-generating flags
1170 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1171 /// that poison from propagating. If the existing binop already had no
1172 /// poison-generating flags, then this transform can be done by instsimplify.
1173 ///
1174 /// Consider:
1175 ///   %cmp = icmp eq i32 %x, 2147483647
1176 ///   %add = add nsw i32 %x, 1
1177 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1178 ///
1179 /// We can't replace %sel with %add unless we strip away the flags.
1180 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1181 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1182                                                           ICmpInst &Cmp) {
1183   // Value equivalence substitution requires an all-or-nothing replacement.
1184   // It does not make sense for a vector compare where each lane is chosen
1185   // independently.
1186   if (!Cmp.isEquality() || Cmp.getType()->isVectorTy())
1187     return nullptr;
1188 
1189   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1190   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1191   bool Swapped = false;
1192   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1193     std::swap(TrueVal, FalseVal);
1194     Swapped = true;
1195   }
1196 
1197   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1198   // Make sure Y cannot be undef though, as we might pick different values for
1199   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1200   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1201   // replacement cycle.
1202   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1203   if (TrueVal != CmpLHS &&
1204       isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1205     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1206                                           /* AllowRefinement */ true))
1207       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1208 
1209     // Even if TrueVal does not simplify, we can directly replace a use of
1210     // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1211     // else and is safe to speculatively execute (we may end up executing it
1212     // with different operands, which should not cause side-effects or trigger
1213     // undefined behavior). Only do this if CmpRHS is a constant, as
1214     // profitability is not clear for other cases.
1215     // FIXME: The replacement could be performed recursively.
1216     if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()))
1217       if (auto *I = dyn_cast<Instruction>(TrueVal))
1218         if (I->hasOneUse() && isSafeToSpeculativelyExecute(I))
1219           for (Use &U : I->operands())
1220             if (U == CmpLHS) {
1221               replaceUse(U, CmpRHS);
1222               return &Sel;
1223             }
1224   }
1225   if (TrueVal != CmpRHS &&
1226       isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1227     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1228                                           /* AllowRefinement */ true))
1229       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1230 
1231   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1232   if (!FalseInst)
1233     return nullptr;
1234 
1235   // InstSimplify already performed this fold if it was possible subject to
1236   // current poison-generating flags. Try the transform again with
1237   // poison-generating flags temporarily dropped.
1238   bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1239   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1240     WasNUW = OBO->hasNoUnsignedWrap();
1241     WasNSW = OBO->hasNoSignedWrap();
1242     FalseInst->setHasNoUnsignedWrap(false);
1243     FalseInst->setHasNoSignedWrap(false);
1244   }
1245   if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1246     WasExact = PEO->isExact();
1247     FalseInst->setIsExact(false);
1248   }
1249   if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1250     WasInBounds = GEP->isInBounds();
1251     GEP->setIsInBounds(false);
1252   }
1253 
1254   // Try each equivalence substitution possibility.
1255   // We have an 'EQ' comparison, so the select's false value will propagate.
1256   // Example:
1257   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1258   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1259                              /* AllowRefinement */ false) == TrueVal ||
1260       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1261                              /* AllowRefinement */ false) == TrueVal) {
1262     return replaceInstUsesWith(Sel, FalseVal);
1263   }
1264 
1265   // Restore poison-generating flags if the transform did not apply.
1266   if (WasNUW)
1267     FalseInst->setHasNoUnsignedWrap();
1268   if (WasNSW)
1269     FalseInst->setHasNoSignedWrap();
1270   if (WasExact)
1271     FalseInst->setIsExact();
1272   if (WasInBounds)
1273     cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1274 
1275   return nullptr;
1276 }
1277 
1278 // See if this is a pattern like:
1279 //   %old_cmp1 = icmp slt i32 %x, C2
1280 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1281 //   %old_x_offseted = add i32 %x, C1
1282 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1283 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1284 // This can be rewritten as more canonical pattern:
1285 //   %new_cmp1 = icmp slt i32 %x, -C1
1286 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1287 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1288 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1289 // Iff -C1 s<= C2 s<= C0-C1
1290 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1291 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1292 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1293                                     InstCombiner::BuilderTy &Builder) {
1294   Value *X = Sel0.getTrueValue();
1295   Value *Sel1 = Sel0.getFalseValue();
1296 
1297   // First match the condition of the outermost select.
1298   // Said condition must be one-use.
1299   if (!Cmp0.hasOneUse())
1300     return nullptr;
1301   Value *Cmp00 = Cmp0.getOperand(0);
1302   Constant *C0;
1303   if (!match(Cmp0.getOperand(1),
1304              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1305     return nullptr;
1306   // Canonicalize Cmp0 into the form we expect.
1307   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1308   switch (Cmp0.getPredicate()) {
1309   case ICmpInst::Predicate::ICMP_ULT:
1310     // Although icmp ult %x, 0 is an unusual thing to try and should generally
1311     // have been simplified, it does not verify with undef inputs so ensure we
1312     // are not in a strange state.
1313     if (!match(C0, m_SpecificInt_ICMP(
1314                        ICmpInst::Predicate::ICMP_NE,
1315                        APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1316       return nullptr;
1317     break; // Great!
1318   case ICmpInst::Predicate::ICMP_ULE:
1319     // We'd have to increment C0 by one, and for that it must not have all-ones
1320     // element, but then it would have been canonicalized to 'ult' before
1321     // we get here. So we can't do anything useful with 'ule'.
1322     return nullptr;
1323   case ICmpInst::Predicate::ICMP_UGT:
1324     // We want to canonicalize it to 'ult', so we'll need to increment C0,
1325     // which again means it must not have any all-ones elements.
1326     if (!match(C0,
1327                m_SpecificInt_ICMP(
1328                    ICmpInst::Predicate::ICMP_NE,
1329                    APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1330       return nullptr; // Can't do, have all-ones element[s].
1331     C0 = InstCombiner::AddOne(C0);
1332     std::swap(X, Sel1);
1333     break;
1334   case ICmpInst::Predicate::ICMP_UGE:
1335     // The only way we'd get this predicate if this `icmp` has extra uses,
1336     // but then we won't be able to do this fold.
1337     return nullptr;
1338   default:
1339     return nullptr; // Unknown predicate.
1340   }
1341 
1342   // Now that we've canonicalized the ICmp, we know the X we expect;
1343   // the select in other hand should be one-use.
1344   if (!Sel1->hasOneUse())
1345     return nullptr;
1346 
1347   // If the types do not match, look through any truncs to the underlying
1348   // instruction.
1349   if (Cmp00->getType() != X->getType() && X->hasOneUse())
1350     match(X, m_TruncOrSelf(m_Value(X)));
1351 
1352   // We now can finish matching the condition of the outermost select:
1353   // it should either be the X itself, or an addition of some constant to X.
1354   Constant *C1;
1355   if (Cmp00 == X)
1356     C1 = ConstantInt::getNullValue(X->getType());
1357   else if (!match(Cmp00,
1358                   m_Add(m_Specific(X),
1359                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1360     return nullptr;
1361 
1362   Value *Cmp1;
1363   ICmpInst::Predicate Pred1;
1364   Constant *C2;
1365   Value *ReplacementLow, *ReplacementHigh;
1366   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1367                             m_Value(ReplacementHigh))) ||
1368       !match(Cmp1,
1369              m_ICmp(Pred1, m_Specific(X),
1370                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1371     return nullptr;
1372 
1373   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1374     return nullptr; // Not enough one-use instructions for the fold.
1375   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1376   //        two comparisons we'll need to build.
1377 
1378   // Canonicalize Cmp1 into the form we expect.
1379   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1380   switch (Pred1) {
1381   case ICmpInst::Predicate::ICMP_SLT:
1382     break;
1383   case ICmpInst::Predicate::ICMP_SLE:
1384     // We'd have to increment C2 by one, and for that it must not have signed
1385     // max element, but then it would have been canonicalized to 'slt' before
1386     // we get here. So we can't do anything useful with 'sle'.
1387     return nullptr;
1388   case ICmpInst::Predicate::ICMP_SGT:
1389     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1390     // which again means it must not have any signed max elements.
1391     if (!match(C2,
1392                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1393                                   APInt::getSignedMaxValue(
1394                                       C2->getType()->getScalarSizeInBits()))))
1395       return nullptr; // Can't do, have signed max element[s].
1396     C2 = InstCombiner::AddOne(C2);
1397     LLVM_FALLTHROUGH;
1398   case ICmpInst::Predicate::ICMP_SGE:
1399     // Also non-canonical, but here we don't need to change C2,
1400     // so we don't have any restrictions on C2, so we can just handle it.
1401     std::swap(ReplacementLow, ReplacementHigh);
1402     break;
1403   default:
1404     return nullptr; // Unknown predicate.
1405   }
1406 
1407   // The thresholds of this clamp-like pattern.
1408   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1409   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1410 
1411   // The fold has a precondition 1: C2 s>= ThresholdLow
1412   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1413                                          ThresholdLowIncl);
1414   if (!match(Precond1, m_One()))
1415     return nullptr;
1416   // The fold has a precondition 2: C2 s<= ThresholdHigh
1417   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1418                                          ThresholdHighExcl);
1419   if (!match(Precond2, m_One()))
1420     return nullptr;
1421 
1422   // If we are matching from a truncated input, we need to sext the
1423   // ReplacementLow and ReplacementHigh values. Only do the transform if they
1424   // are free to extend due to being constants.
1425   if (X->getType() != Sel0.getType()) {
1426     Constant *LowC, *HighC;
1427     if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1428         !match(ReplacementHigh, m_ImmConstant(HighC)))
1429       return nullptr;
1430     ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
1431     ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
1432   }
1433 
1434   // All good, finally emit the new pattern.
1435   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1436   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1437   Value *MaybeReplacedLow =
1438       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1439 
1440   // Create the final select. If we looked through a truncate above, we will
1441   // need to retruncate the result.
1442   Value *MaybeReplacedHigh = Builder.CreateSelect(
1443       ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1444   return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1445 }
1446 
1447 // If we have
1448 //  %cmp = icmp [canonical predicate] i32 %x, C0
1449 //  %r = select i1 %cmp, i32 %y, i32 C1
1450 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1451 // will have if we flip the strictness of the predicate (i.e. without changing
1452 // the result) is identical to the C1 in select. If it matches we can change
1453 // original comparison to one with swapped predicate, reuse the constant,
1454 // and swap the hands of select.
1455 static Instruction *
1456 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1457                                          InstCombinerImpl &IC) {
1458   ICmpInst::Predicate Pred;
1459   Value *X;
1460   Constant *C0;
1461   if (!match(&Cmp, m_OneUse(m_ICmp(
1462                        Pred, m_Value(X),
1463                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1464     return nullptr;
1465 
1466   // If comparison predicate is non-relational, we won't be able to do anything.
1467   if (ICmpInst::isEquality(Pred))
1468     return nullptr;
1469 
1470   // If comparison predicate is non-canonical, then we certainly won't be able
1471   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1472   if (!InstCombiner::isCanonicalPredicate(Pred))
1473     return nullptr;
1474 
1475   // If the [input] type of comparison and select type are different, lets abort
1476   // for now. We could try to compare constants with trunc/[zs]ext though.
1477   if (C0->getType() != Sel.getType())
1478     return nullptr;
1479 
1480   // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1481 
1482   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1483   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1484   // At least one of these values we are selecting between must be a constant
1485   // else we'll never succeed.
1486   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1487       !match(SelVal1, m_AnyIntegralConstant()))
1488     return nullptr;
1489 
1490   // Does this constant C match any of the `select` values?
1491   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1492     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1493   };
1494 
1495   // If C0 *already* matches true/false value of select, we are done.
1496   if (MatchesSelectValue(C0))
1497     return nullptr;
1498 
1499   // Check the constant we'd have with flipped-strictness predicate.
1500   auto FlippedStrictness =
1501       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1502   if (!FlippedStrictness)
1503     return nullptr;
1504 
1505   // If said constant doesn't match either, then there is no hope,
1506   if (!MatchesSelectValue(FlippedStrictness->second))
1507     return nullptr;
1508 
1509   // It matched! Lets insert the new comparison just before select.
1510   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1511   IC.Builder.SetInsertPoint(&Sel);
1512 
1513   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1514   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1515                                         Cmp.getName() + ".inv");
1516   IC.replaceOperand(Sel, 0, NewCmp);
1517   Sel.swapValues();
1518   Sel.swapProfMetadata();
1519 
1520   return &Sel;
1521 }
1522 
1523 /// Visit a SelectInst that has an ICmpInst as its first operand.
1524 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1525                                                       ICmpInst *ICI) {
1526   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1527     return NewSel;
1528 
1529   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
1530     return NewSel;
1531 
1532   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this))
1533     return NewAbs;
1534 
1535   if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1536     return replaceInstUsesWith(SI, V);
1537 
1538   if (Instruction *NewSel =
1539           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1540     return NewSel;
1541 
1542   bool Changed = adjustMinMax(SI, *ICI);
1543 
1544   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1545     return replaceInstUsesWith(SI, V);
1546 
1547   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1548   Value *TrueVal = SI.getTrueValue();
1549   Value *FalseVal = SI.getFalseValue();
1550   ICmpInst::Predicate Pred = ICI->getPredicate();
1551   Value *CmpLHS = ICI->getOperand(0);
1552   Value *CmpRHS = ICI->getOperand(1);
1553   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1554     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1555       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1556       SI.setOperand(1, CmpRHS);
1557       Changed = true;
1558     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1559       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1560       SI.setOperand(2, CmpRHS);
1561       Changed = true;
1562     }
1563   }
1564 
1565   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1566   // decomposeBitTestICmp() might help.
1567   {
1568     unsigned BitWidth =
1569         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1570     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1571     Value *X;
1572     const APInt *Y, *C;
1573     bool TrueWhenUnset;
1574     bool IsBitTest = false;
1575     if (ICmpInst::isEquality(Pred) &&
1576         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1577         match(CmpRHS, m_Zero())) {
1578       IsBitTest = true;
1579       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1580     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1581       X = CmpLHS;
1582       Y = &MinSignedValue;
1583       IsBitTest = true;
1584       TrueWhenUnset = false;
1585     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1586       X = CmpLHS;
1587       Y = &MinSignedValue;
1588       IsBitTest = true;
1589       TrueWhenUnset = true;
1590     }
1591     if (IsBitTest) {
1592       Value *V = nullptr;
1593       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1594       if (TrueWhenUnset && TrueVal == X &&
1595           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1596         V = Builder.CreateAnd(X, ~(*Y));
1597       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1598       else if (!TrueWhenUnset && FalseVal == X &&
1599                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1600         V = Builder.CreateAnd(X, ~(*Y));
1601       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1602       else if (TrueWhenUnset && FalseVal == X &&
1603                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1604         V = Builder.CreateOr(X, *Y);
1605       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1606       else if (!TrueWhenUnset && TrueVal == X &&
1607                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1608         V = Builder.CreateOr(X, *Y);
1609 
1610       if (V)
1611         return replaceInstUsesWith(SI, V);
1612     }
1613   }
1614 
1615   if (Instruction *V =
1616           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1617     return V;
1618 
1619   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1620     return V;
1621 
1622   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1623     return replaceInstUsesWith(SI, V);
1624 
1625   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1626     return replaceInstUsesWith(SI, V);
1627 
1628   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1629     return replaceInstUsesWith(SI, V);
1630 
1631   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1632     return replaceInstUsesWith(SI, V);
1633 
1634   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1635     return replaceInstUsesWith(SI, V);
1636 
1637   return Changed ? &SI : nullptr;
1638 }
1639 
1640 /// SI is a select whose condition is a PHI node (but the two may be in
1641 /// different blocks). See if the true/false values (V) are live in all of the
1642 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1643 ///
1644 ///   X = phi [ C1, BB1], [C2, BB2]
1645 ///   Y = add
1646 ///   Z = select X, Y, 0
1647 ///
1648 /// because Y is not live in BB1/BB2.
1649 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1650                                                    const SelectInst &SI) {
1651   // If the value is a non-instruction value like a constant or argument, it
1652   // can always be mapped.
1653   const Instruction *I = dyn_cast<Instruction>(V);
1654   if (!I) return true;
1655 
1656   // If V is a PHI node defined in the same block as the condition PHI, we can
1657   // map the arguments.
1658   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1659 
1660   if (const PHINode *VP = dyn_cast<PHINode>(I))
1661     if (VP->getParent() == CondPHI->getParent())
1662       return true;
1663 
1664   // Otherwise, if the PHI and select are defined in the same block and if V is
1665   // defined in a different block, then we can transform it.
1666   if (SI.getParent() == CondPHI->getParent() &&
1667       I->getParent() != CondPHI->getParent())
1668     return true;
1669 
1670   // Otherwise we have a 'hard' case and we can't tell without doing more
1671   // detailed dominator based analysis, punt.
1672   return false;
1673 }
1674 
1675 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1676 ///   SPF2(SPF1(A, B), C)
1677 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1678                                             SelectPatternFlavor SPF1, Value *A,
1679                                             Value *B, Instruction &Outer,
1680                                             SelectPatternFlavor SPF2,
1681                                             Value *C) {
1682   if (Outer.getType() != Inner->getType())
1683     return nullptr;
1684 
1685   if (C == A || C == B) {
1686     // MAX(MAX(A, B), B) -> MAX(A, B)
1687     // MIN(MIN(a, b), a) -> MIN(a, b)
1688     // TODO: This could be done in instsimplify.
1689     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1690       return replaceInstUsesWith(Outer, Inner);
1691 
1692     // MAX(MIN(a, b), a) -> a
1693     // MIN(MAX(a, b), a) -> a
1694     // TODO: This could be done in instsimplify.
1695     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1696         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1697         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1698         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1699       return replaceInstUsesWith(Outer, C);
1700   }
1701 
1702   if (SPF1 == SPF2) {
1703     const APInt *CB, *CC;
1704     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1705       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1706       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1707       // TODO: This could be done in instsimplify.
1708       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1709           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1710           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1711           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1712         return replaceInstUsesWith(Outer, Inner);
1713 
1714       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1715       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1716       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1717           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1718           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1719           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1720         Outer.replaceUsesOfWith(Inner, A);
1721         return &Outer;
1722       }
1723     }
1724   }
1725 
1726   // max(max(A, B), min(A, B)) --> max(A, B)
1727   // min(min(A, B), max(A, B)) --> min(A, B)
1728   // TODO: This could be done in instsimplify.
1729   if (SPF1 == SPF2 &&
1730       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1731        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1732        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1733        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1734     return replaceInstUsesWith(Outer, Inner);
1735 
1736   // ABS(ABS(X)) -> ABS(X)
1737   // NABS(NABS(X)) -> NABS(X)
1738   // TODO: This could be done in instsimplify.
1739   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1740     return replaceInstUsesWith(Outer, Inner);
1741   }
1742 
1743   // ABS(NABS(X)) -> ABS(X)
1744   // NABS(ABS(X)) -> NABS(X)
1745   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1746       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1747     SelectInst *SI = cast<SelectInst>(Inner);
1748     Value *NewSI =
1749         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1750                              SI->getTrueValue(), SI->getName(), SI);
1751     return replaceInstUsesWith(Outer, NewSI);
1752   }
1753 
1754   auto IsFreeOrProfitableToInvert =
1755       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1756     if (match(V, m_Not(m_Value(NotV)))) {
1757       // If V has at most 2 uses then we can get rid of the xor operation
1758       // entirely.
1759       ElidesXor |= !V->hasNUsesOrMore(3);
1760       return true;
1761     }
1762 
1763     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1764       NotV = nullptr;
1765       return true;
1766     }
1767 
1768     return false;
1769   };
1770 
1771   Value *NotA, *NotB, *NotC;
1772   bool ElidesXor = false;
1773 
1774   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1775   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1776   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1777   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1778   //
1779   // This transform is performance neutral if we can elide at least one xor from
1780   // the set of three operands, since we'll be tacking on an xor at the very
1781   // end.
1782   if (SelectPatternResult::isMinOrMax(SPF1) &&
1783       SelectPatternResult::isMinOrMax(SPF2) &&
1784       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1785       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1786       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1787     if (!NotA)
1788       NotA = Builder.CreateNot(A);
1789     if (!NotB)
1790       NotB = Builder.CreateNot(B);
1791     if (!NotC)
1792       NotC = Builder.CreateNot(C);
1793 
1794     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1795                                    NotB);
1796     Value *NewOuter = Builder.CreateNot(
1797         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1798     return replaceInstUsesWith(Outer, NewOuter);
1799   }
1800 
1801   return nullptr;
1802 }
1803 
1804 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1805 /// This is even legal for FP.
1806 static Instruction *foldAddSubSelect(SelectInst &SI,
1807                                      InstCombiner::BuilderTy &Builder) {
1808   Value *CondVal = SI.getCondition();
1809   Value *TrueVal = SI.getTrueValue();
1810   Value *FalseVal = SI.getFalseValue();
1811   auto *TI = dyn_cast<Instruction>(TrueVal);
1812   auto *FI = dyn_cast<Instruction>(FalseVal);
1813   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1814     return nullptr;
1815 
1816   Instruction *AddOp = nullptr, *SubOp = nullptr;
1817   if ((TI->getOpcode() == Instruction::Sub &&
1818        FI->getOpcode() == Instruction::Add) ||
1819       (TI->getOpcode() == Instruction::FSub &&
1820        FI->getOpcode() == Instruction::FAdd)) {
1821     AddOp = FI;
1822     SubOp = TI;
1823   } else if ((FI->getOpcode() == Instruction::Sub &&
1824               TI->getOpcode() == Instruction::Add) ||
1825              (FI->getOpcode() == Instruction::FSub &&
1826               TI->getOpcode() == Instruction::FAdd)) {
1827     AddOp = TI;
1828     SubOp = FI;
1829   }
1830 
1831   if (AddOp) {
1832     Value *OtherAddOp = nullptr;
1833     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1834       OtherAddOp = AddOp->getOperand(1);
1835     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1836       OtherAddOp = AddOp->getOperand(0);
1837     }
1838 
1839     if (OtherAddOp) {
1840       // So at this point we know we have (Y -> OtherAddOp):
1841       //        select C, (add X, Y), (sub X, Z)
1842       Value *NegVal; // Compute -Z
1843       if (SI.getType()->isFPOrFPVectorTy()) {
1844         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1845         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1846           FastMathFlags Flags = AddOp->getFastMathFlags();
1847           Flags &= SubOp->getFastMathFlags();
1848           NegInst->setFastMathFlags(Flags);
1849         }
1850       } else {
1851         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1852       }
1853 
1854       Value *NewTrueOp = OtherAddOp;
1855       Value *NewFalseOp = NegVal;
1856       if (AddOp != TI)
1857         std::swap(NewTrueOp, NewFalseOp);
1858       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1859                                            SI.getName() + ".p", &SI);
1860 
1861       if (SI.getType()->isFPOrFPVectorTy()) {
1862         Instruction *RI =
1863             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1864 
1865         FastMathFlags Flags = AddOp->getFastMathFlags();
1866         Flags &= SubOp->getFastMathFlags();
1867         RI->setFastMathFlags(Flags);
1868         return RI;
1869       } else
1870         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1871     }
1872   }
1873   return nullptr;
1874 }
1875 
1876 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1877 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1878 /// Along with a number of patterns similar to:
1879 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1880 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1881 static Instruction *
1882 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1883   Value *CondVal = SI.getCondition();
1884   Value *TrueVal = SI.getTrueValue();
1885   Value *FalseVal = SI.getFalseValue();
1886 
1887   WithOverflowInst *II;
1888   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1889       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1890     return nullptr;
1891 
1892   Value *X = II->getLHS();
1893   Value *Y = II->getRHS();
1894 
1895   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1896     Type *Ty = Limit->getType();
1897 
1898     ICmpInst::Predicate Pred;
1899     Value *TrueVal, *FalseVal, *Op;
1900     const APInt *C;
1901     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1902                                m_Value(TrueVal), m_Value(FalseVal))))
1903       return false;
1904 
1905     auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1906     auto IsMinMax = [&](Value *Min, Value *Max) {
1907       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1908       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1909       return match(Min, m_SpecificInt(MinVal)) &&
1910              match(Max, m_SpecificInt(MaxVal));
1911     };
1912 
1913     if (Op != X && Op != Y)
1914       return false;
1915 
1916     if (IsAdd) {
1917       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1918       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1919       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1920       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1921       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1922           IsMinMax(TrueVal, FalseVal))
1923         return true;
1924       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1925       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1926       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1927       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1928       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1929           IsMinMax(FalseVal, TrueVal))
1930         return true;
1931     } else {
1932       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1933       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1934       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1935           IsMinMax(TrueVal, FalseVal))
1936         return true;
1937       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1938       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1939       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1940           IsMinMax(FalseVal, TrueVal))
1941         return true;
1942       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1943       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1944       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1945           IsMinMax(FalseVal, TrueVal))
1946         return true;
1947       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1948       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1949       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1950           IsMinMax(TrueVal, FalseVal))
1951         return true;
1952     }
1953 
1954     return false;
1955   };
1956 
1957   Intrinsic::ID NewIntrinsicID;
1958   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1959       match(TrueVal, m_AllOnes()))
1960     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1961     NewIntrinsicID = Intrinsic::uadd_sat;
1962   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1963            match(TrueVal, m_Zero()))
1964     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1965     NewIntrinsicID = Intrinsic::usub_sat;
1966   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1967            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1968     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1969     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1970     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1971     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1972     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1973     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1974     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1975     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1976     NewIntrinsicID = Intrinsic::sadd_sat;
1977   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1978            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1979     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1980     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1981     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1982     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1983     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1984     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1985     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1986     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1987     NewIntrinsicID = Intrinsic::ssub_sat;
1988   else
1989     return nullptr;
1990 
1991   Function *F =
1992       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1993   return CallInst::Create(F, {X, Y});
1994 }
1995 
1996 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
1997   Constant *C;
1998   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1999       !match(Sel.getFalseValue(), m_Constant(C)))
2000     return nullptr;
2001 
2002   Instruction *ExtInst;
2003   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2004       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2005     return nullptr;
2006 
2007   auto ExtOpcode = ExtInst->getOpcode();
2008   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2009     return nullptr;
2010 
2011   // If we are extending from a boolean type or if we can create a select that
2012   // has the same size operands as its condition, try to narrow the select.
2013   Value *X = ExtInst->getOperand(0);
2014   Type *SmallType = X->getType();
2015   Value *Cond = Sel.getCondition();
2016   auto *Cmp = dyn_cast<CmpInst>(Cond);
2017   if (!SmallType->isIntOrIntVectorTy(1) &&
2018       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2019     return nullptr;
2020 
2021   // If the constant is the same after truncation to the smaller type and
2022   // extension to the original type, we can narrow the select.
2023   Type *SelType = Sel.getType();
2024   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
2025   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
2026   if (ExtC == C && ExtInst->hasOneUse()) {
2027     Value *TruncCVal = cast<Value>(TruncC);
2028     if (ExtInst == Sel.getFalseValue())
2029       std::swap(X, TruncCVal);
2030 
2031     // select Cond, (ext X), C --> ext(select Cond, X, C')
2032     // select Cond, C, (ext X) --> ext(select Cond, C', X)
2033     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2034     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2035   }
2036 
2037   // If one arm of the select is the extend of the condition, replace that arm
2038   // with the extension of the appropriate known bool value.
2039   if (Cond == X) {
2040     if (ExtInst == Sel.getTrueValue()) {
2041       // select X, (sext X), C --> select X, -1, C
2042       // select X, (zext X), C --> select X,  1, C
2043       Constant *One = ConstantInt::getTrue(SmallType);
2044       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
2045       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
2046     } else {
2047       // select X, C, (sext X) --> select X, C, 0
2048       // select X, C, (zext X) --> select X, C, 0
2049       Constant *Zero = ConstantInt::getNullValue(SelType);
2050       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
2051     }
2052   }
2053 
2054   return nullptr;
2055 }
2056 
2057 /// Try to transform a vector select with a constant condition vector into a
2058 /// shuffle for easier combining with other shuffles and insert/extract.
2059 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2060   Value *CondVal = SI.getCondition();
2061   Constant *CondC;
2062   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2063   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2064     return nullptr;
2065 
2066   unsigned NumElts = CondValTy->getNumElements();
2067   SmallVector<int, 16> Mask;
2068   Mask.reserve(NumElts);
2069   for (unsigned i = 0; i != NumElts; ++i) {
2070     Constant *Elt = CondC->getAggregateElement(i);
2071     if (!Elt)
2072       return nullptr;
2073 
2074     if (Elt->isOneValue()) {
2075       // If the select condition element is true, choose from the 1st vector.
2076       Mask.push_back(i);
2077     } else if (Elt->isNullValue()) {
2078       // If the select condition element is false, choose from the 2nd vector.
2079       Mask.push_back(i + NumElts);
2080     } else if (isa<UndefValue>(Elt)) {
2081       // Undef in a select condition (choose one of the operands) does not mean
2082       // the same thing as undef in a shuffle mask (any value is acceptable), so
2083       // give up.
2084       return nullptr;
2085     } else {
2086       // Bail out on a constant expression.
2087       return nullptr;
2088     }
2089   }
2090 
2091   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2092 }
2093 
2094 /// If we have a select of vectors with a scalar condition, try to convert that
2095 /// to a vector select by splatting the condition. A splat may get folded with
2096 /// other operations in IR and having all operands of a select be vector types
2097 /// is likely better for vector codegen.
2098 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2099                                                    InstCombinerImpl &IC) {
2100   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2101   if (!Ty)
2102     return nullptr;
2103 
2104   // We can replace a single-use extract with constant index.
2105   Value *Cond = Sel.getCondition();
2106   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2107     return nullptr;
2108 
2109   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2110   // Splatting the extracted condition reduces code (we could directly create a
2111   // splat shuffle of the source vector to eliminate the intermediate step).
2112   return IC.replaceOperand(
2113       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2114 }
2115 
2116 /// Reuse bitcasted operands between a compare and select:
2117 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2118 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2119 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2120                                           InstCombiner::BuilderTy &Builder) {
2121   Value *Cond = Sel.getCondition();
2122   Value *TVal = Sel.getTrueValue();
2123   Value *FVal = Sel.getFalseValue();
2124 
2125   CmpInst::Predicate Pred;
2126   Value *A, *B;
2127   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2128     return nullptr;
2129 
2130   // The select condition is a compare instruction. If the select's true/false
2131   // values are already the same as the compare operands, there's nothing to do.
2132   if (TVal == A || TVal == B || FVal == A || FVal == B)
2133     return nullptr;
2134 
2135   Value *C, *D;
2136   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2137     return nullptr;
2138 
2139   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2140   Value *TSrc, *FSrc;
2141   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2142       !match(FVal, m_BitCast(m_Value(FSrc))))
2143     return nullptr;
2144 
2145   // If the select true/false values are *different bitcasts* of the same source
2146   // operands, make the select operands the same as the compare operands and
2147   // cast the result. This is the canonical select form for min/max.
2148   Value *NewSel;
2149   if (TSrc == C && FSrc == D) {
2150     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2151     // bitcast (select (cmp A, B), A, B)
2152     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2153   } else if (TSrc == D && FSrc == C) {
2154     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2155     // bitcast (select (cmp A, B), B, A)
2156     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2157   } else {
2158     return nullptr;
2159   }
2160   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2161 }
2162 
2163 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2164 /// instructions.
2165 ///
2166 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2167 /// selects between the returned value of the cmpxchg instruction its compare
2168 /// operand, the result of the select will always be equal to its false value.
2169 /// For example:
2170 ///
2171 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2172 ///   %1 = extractvalue { i64, i1 } %0, 1
2173 ///   %2 = extractvalue { i64, i1 } %0, 0
2174 ///   %3 = select i1 %1, i64 %compare, i64 %2
2175 ///   ret i64 %3
2176 ///
2177 /// The returned value of the cmpxchg instruction (%2) is the original value
2178 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2179 /// must have been equal to %compare. Thus, the result of the select is always
2180 /// equal to %2, and the code can be simplified to:
2181 ///
2182 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2183 ///   %1 = extractvalue { i64, i1 } %0, 0
2184 ///   ret i64 %1
2185 ///
2186 static Value *foldSelectCmpXchg(SelectInst &SI) {
2187   // A helper that determines if V is an extractvalue instruction whose
2188   // aggregate operand is a cmpxchg instruction and whose single index is equal
2189   // to I. If such conditions are true, the helper returns the cmpxchg
2190   // instruction; otherwise, a nullptr is returned.
2191   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2192     auto *Extract = dyn_cast<ExtractValueInst>(V);
2193     if (!Extract)
2194       return nullptr;
2195     if (Extract->getIndices()[0] != I)
2196       return nullptr;
2197     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2198   };
2199 
2200   // If the select has a single user, and this user is a select instruction that
2201   // we can simplify, skip the cmpxchg simplification for now.
2202   if (SI.hasOneUse())
2203     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2204       if (Select->getCondition() == SI.getCondition())
2205         if (Select->getFalseValue() == SI.getTrueValue() ||
2206             Select->getTrueValue() == SI.getFalseValue())
2207           return nullptr;
2208 
2209   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2210   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2211   if (!CmpXchg)
2212     return nullptr;
2213 
2214   // Check the true value case: The true value of the select is the returned
2215   // value of the same cmpxchg used by the condition, and the false value is the
2216   // cmpxchg instruction's compare operand.
2217   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2218     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2219       return SI.getFalseValue();
2220 
2221   // Check the false value case: The false value of the select is the returned
2222   // value of the same cmpxchg used by the condition, and the true value is the
2223   // cmpxchg instruction's compare operand.
2224   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2225     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2226       return SI.getFalseValue();
2227 
2228   return nullptr;
2229 }
2230 
2231 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2232                                        Value *Y,
2233                                        InstCombiner::BuilderTy &Builder) {
2234   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2235   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2236                     SPF == SelectPatternFlavor::SPF_UMAX;
2237   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2238   // the constant value check to an assert.
2239   Value *A;
2240   const APInt *C1, *C2;
2241   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2242       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2243     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2244     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2245     Value *NewMinMax = createMinMax(Builder, SPF, A,
2246                                     ConstantInt::get(X->getType(), *C2 - *C1));
2247     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2248                                      ConstantInt::get(X->getType(), *C1));
2249   }
2250 
2251   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2252       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2253     bool Overflow;
2254     APInt Diff = C2->ssub_ov(*C1, Overflow);
2255     if (!Overflow) {
2256       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2257       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2258       Value *NewMinMax = createMinMax(Builder, SPF, A,
2259                                       ConstantInt::get(X->getType(), Diff));
2260       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2261                                        ConstantInt::get(X->getType(), *C1));
2262     }
2263   }
2264 
2265   return nullptr;
2266 }
2267 
2268 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2269 Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) {
2270   Type *Ty = MinMax1.getType();
2271 
2272   // We are looking for a tree of:
2273   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2274   // Where the min and max could be reversed
2275   Instruction *MinMax2;
2276   BinaryOperator *AddSub;
2277   const APInt *MinValue, *MaxValue;
2278   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2279     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2280       return nullptr;
2281   } else if (match(&MinMax1,
2282                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2283     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2284       return nullptr;
2285   } else
2286     return nullptr;
2287 
2288   // Check that the constants clamp a saturate, and that the new type would be
2289   // sensible to convert to.
2290   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2291     return nullptr;
2292   // In what bitwidth can this be treated as saturating arithmetics?
2293   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2294   // FIXME: This isn't quite right for vectors, but using the scalar type is a
2295   // good first approximation for what should be done there.
2296   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2297     return nullptr;
2298 
2299   // Also make sure that the number of uses is as expected. The 3 is for the
2300   // the two items of the compare and the select, or 2 from a min/max.
2301   unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3;
2302   if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses))
2303     return nullptr;
2304 
2305   // Create the new type (which can be a vector type)
2306   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2307   // Match the two extends from the add/sub
2308   Value *A, *B;
2309   if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2310     return nullptr;
2311   // And check the incoming values are of a type smaller than or equal to the
2312   // size of the saturation. Otherwise the higher bits can cause different
2313   // results.
2314   if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2315       B->getType()->getScalarSizeInBits() > NewBitWidth)
2316     return nullptr;
2317 
2318   Intrinsic::ID IntrinsicID;
2319   if (AddSub->getOpcode() == Instruction::Add)
2320     IntrinsicID = Intrinsic::sadd_sat;
2321   else if (AddSub->getOpcode() == Instruction::Sub)
2322     IntrinsicID = Intrinsic::ssub_sat;
2323   else
2324     return nullptr;
2325 
2326   // Finally create and return the sat intrinsic, truncated to the new type
2327   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2328   Value *AT = Builder.CreateSExt(A, NewTy);
2329   Value *BT = Builder.CreateSExt(B, NewTy);
2330   Value *Sat = Builder.CreateCall(F, {AT, BT});
2331   return CastInst::Create(Instruction::SExt, Sat, Ty);
2332 }
2333 
2334 /// Reduce a sequence of min/max with a common operand.
2335 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2336                                         Value *RHS,
2337                                         InstCombiner::BuilderTy &Builder) {
2338   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2339   // TODO: Allow FP min/max with nnan/nsz.
2340   if (!LHS->getType()->isIntOrIntVectorTy())
2341     return nullptr;
2342 
2343   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2344   Value *A, *B, *C, *D;
2345   SelectPatternResult L = matchSelectPattern(LHS, A, B);
2346   SelectPatternResult R = matchSelectPattern(RHS, C, D);
2347   if (SPF != L.Flavor || L.Flavor != R.Flavor)
2348     return nullptr;
2349 
2350   // Look for a common operand. The use checks are different than usual because
2351   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2352   // the select.
2353   Value *MinMaxOp = nullptr;
2354   Value *ThirdOp = nullptr;
2355   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2356     // If the LHS is only used in this chain and the RHS is used outside of it,
2357     // reuse the RHS min/max because that will eliminate the LHS.
2358     if (D == A || C == A) {
2359       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2360       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2361       MinMaxOp = RHS;
2362       ThirdOp = B;
2363     } else if (D == B || C == B) {
2364       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2365       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2366       MinMaxOp = RHS;
2367       ThirdOp = A;
2368     }
2369   } else if (!RHS->hasNUsesOrMore(3)) {
2370     // Reuse the LHS. This will eliminate the RHS.
2371     if (D == A || D == B) {
2372       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2373       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2374       MinMaxOp = LHS;
2375       ThirdOp = C;
2376     } else if (C == A || C == B) {
2377       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2378       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2379       MinMaxOp = LHS;
2380       ThirdOp = D;
2381     }
2382   }
2383   if (!MinMaxOp || !ThirdOp)
2384     return nullptr;
2385 
2386   CmpInst::Predicate P = getMinMaxPred(SPF);
2387   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2388   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2389 }
2390 
2391 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2392 /// into a funnel shift intrinsic. Example:
2393 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2394 ///              --> call llvm.fshl.i32(a, a, b)
2395 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2396 ///                 --> call llvm.fshl.i32(a, b, c)
2397 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2398 ///                 --> call llvm.fshr.i32(a, b, c)
2399 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2400                                           InstCombiner::BuilderTy &Builder) {
2401   // This must be a power-of-2 type for a bitmasking transform to be valid.
2402   unsigned Width = Sel.getType()->getScalarSizeInBits();
2403   if (!isPowerOf2_32(Width))
2404     return nullptr;
2405 
2406   BinaryOperator *Or0, *Or1;
2407   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2408     return nullptr;
2409 
2410   Value *SV0, *SV1, *SA0, *SA1;
2411   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2412                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2413       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2414                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2415       Or0->getOpcode() == Or1->getOpcode())
2416     return nullptr;
2417 
2418   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2419   if (Or0->getOpcode() == BinaryOperator::LShr) {
2420     std::swap(Or0, Or1);
2421     std::swap(SV0, SV1);
2422     std::swap(SA0, SA1);
2423   }
2424   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2425          Or1->getOpcode() == BinaryOperator::LShr &&
2426          "Illegal or(shift,shift) pair");
2427 
2428   // Check the shift amounts to see if they are an opposite pair.
2429   Value *ShAmt;
2430   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2431     ShAmt = SA0;
2432   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2433     ShAmt = SA1;
2434   else
2435     return nullptr;
2436 
2437   // We should now have this pattern:
2438   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2439   // The false value of the select must be a funnel-shift of the true value:
2440   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2441   bool IsFshl = (ShAmt == SA0);
2442   Value *TVal = Sel.getTrueValue();
2443   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2444     return nullptr;
2445 
2446   // Finally, see if the select is filtering out a shift-by-zero.
2447   Value *Cond = Sel.getCondition();
2448   ICmpInst::Predicate Pred;
2449   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2450       Pred != ICmpInst::ICMP_EQ)
2451     return nullptr;
2452 
2453   // If this is not a rotate then the select was blocking poison from the
2454   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2455   if (SV0 != SV1) {
2456     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2457       SV1 = Builder.CreateFreeze(SV1);
2458     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2459       SV0 = Builder.CreateFreeze(SV0);
2460   }
2461 
2462   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2463   // Convert to funnel shift intrinsic.
2464   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2465   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2466   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2467   return CallInst::Create(F, { SV0, SV1, ShAmt });
2468 }
2469 
2470 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2471                                          InstCombiner::BuilderTy &Builder) {
2472   Value *Cond = Sel.getCondition();
2473   Value *TVal = Sel.getTrueValue();
2474   Value *FVal = Sel.getFalseValue();
2475   Type *SelType = Sel.getType();
2476 
2477   // Match select ?, TC, FC where the constants are equal but negated.
2478   // TODO: Generalize to handle a negated variable operand?
2479   const APFloat *TC, *FC;
2480   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2481       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2482     return nullptr;
2483 
2484   assert(TC != FC && "Expected equal select arms to simplify");
2485 
2486   Value *X;
2487   const APInt *C;
2488   bool IsTrueIfSignSet;
2489   ICmpInst::Predicate Pred;
2490   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2491       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2492       X->getType() != SelType)
2493     return nullptr;
2494 
2495   // If needed, negate the value that will be the sign argument of the copysign:
2496   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2497   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2498   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2499   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2500   if (IsTrueIfSignSet ^ TC->isNegative())
2501     X = Builder.CreateFNegFMF(X, &Sel);
2502 
2503   // Canonicalize the magnitude argument as the positive constant since we do
2504   // not care about its sign.
2505   Value *MagArg = TC->isNegative() ? FVal : TVal;
2506   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2507                                           Sel.getType());
2508   Instruction *CopySign = CallInst::Create(F, { MagArg, X });
2509   CopySign->setFastMathFlags(Sel.getFastMathFlags());
2510   return CopySign;
2511 }
2512 
2513 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2514   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2515   if (!VecTy)
2516     return nullptr;
2517 
2518   unsigned NumElts = VecTy->getNumElements();
2519   APInt UndefElts(NumElts, 0);
2520   APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2521   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2522     if (V != &Sel)
2523       return replaceInstUsesWith(Sel, V);
2524     return &Sel;
2525   }
2526 
2527   // A select of a "select shuffle" with a common operand can be rearranged
2528   // to select followed by "select shuffle". Because of poison, this only works
2529   // in the case of a shuffle with no undefined mask elements.
2530   Value *Cond = Sel.getCondition();
2531   Value *TVal = Sel.getTrueValue();
2532   Value *FVal = Sel.getFalseValue();
2533   Value *X, *Y;
2534   ArrayRef<int> Mask;
2535   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2536       !is_contained(Mask, UndefMaskElem) &&
2537       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2538     if (X == FVal) {
2539       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2540       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2541       return new ShuffleVectorInst(X, NewSel, Mask);
2542     }
2543     if (Y == FVal) {
2544       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2545       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2546       return new ShuffleVectorInst(NewSel, Y, Mask);
2547     }
2548   }
2549   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2550       !is_contained(Mask, UndefMaskElem) &&
2551       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2552     if (X == TVal) {
2553       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2554       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2555       return new ShuffleVectorInst(X, NewSel, Mask);
2556     }
2557     if (Y == TVal) {
2558       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2559       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2560       return new ShuffleVectorInst(NewSel, Y, Mask);
2561     }
2562   }
2563 
2564   return nullptr;
2565 }
2566 
2567 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2568                                         const DominatorTree &DT,
2569                                         InstCombiner::BuilderTy &Builder) {
2570   // Find the block's immediate dominator that ends with a conditional branch
2571   // that matches select's condition (maybe inverted).
2572   auto *IDomNode = DT[BB]->getIDom();
2573   if (!IDomNode)
2574     return nullptr;
2575   BasicBlock *IDom = IDomNode->getBlock();
2576 
2577   Value *Cond = Sel.getCondition();
2578   Value *IfTrue, *IfFalse;
2579   BasicBlock *TrueSucc, *FalseSucc;
2580   if (match(IDom->getTerminator(),
2581             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2582                  m_BasicBlock(FalseSucc)))) {
2583     IfTrue = Sel.getTrueValue();
2584     IfFalse = Sel.getFalseValue();
2585   } else if (match(IDom->getTerminator(),
2586                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2587                         m_BasicBlock(FalseSucc)))) {
2588     IfTrue = Sel.getFalseValue();
2589     IfFalse = Sel.getTrueValue();
2590   } else
2591     return nullptr;
2592 
2593   // Make sure the branches are actually different.
2594   if (TrueSucc == FalseSucc)
2595     return nullptr;
2596 
2597   // We want to replace select %cond, %a, %b with a phi that takes value %a
2598   // for all incoming edges that are dominated by condition `%cond == true`,
2599   // and value %b for edges dominated by condition `%cond == false`. If %a
2600   // or %b are also phis from the same basic block, we can go further and take
2601   // their incoming values from the corresponding blocks.
2602   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2603   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2604   DenseMap<BasicBlock *, Value *> Inputs;
2605   for (auto *Pred : predecessors(BB)) {
2606     // Check implication.
2607     BasicBlockEdge Incoming(Pred, BB);
2608     if (DT.dominates(TrueEdge, Incoming))
2609       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2610     else if (DT.dominates(FalseEdge, Incoming))
2611       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2612     else
2613       return nullptr;
2614     // Check availability.
2615     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2616       if (!DT.dominates(Insn, Pred->getTerminator()))
2617         return nullptr;
2618   }
2619 
2620   Builder.SetInsertPoint(&*BB->begin());
2621   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2622   for (auto *Pred : predecessors(BB))
2623     PN->addIncoming(Inputs[Pred], Pred);
2624   PN->takeName(&Sel);
2625   return PN;
2626 }
2627 
2628 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2629                                     InstCombiner::BuilderTy &Builder) {
2630   // Try to replace this select with Phi in one of these blocks.
2631   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2632   CandidateBlocks.insert(Sel.getParent());
2633   for (Value *V : Sel.operands())
2634     if (auto *I = dyn_cast<Instruction>(V))
2635       CandidateBlocks.insert(I->getParent());
2636 
2637   for (BasicBlock *BB : CandidateBlocks)
2638     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2639       return PN;
2640   return nullptr;
2641 }
2642 
2643 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2644   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2645   if (!FI)
2646     return nullptr;
2647 
2648   Value *Cond = FI->getOperand(0);
2649   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2650 
2651   //   select (freeze(x == y)), x, y --> y
2652   //   select (freeze(x != y)), x, y --> x
2653   // The freeze should be only used by this select. Otherwise, remaining uses of
2654   // the freeze can observe a contradictory value.
2655   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2656   //   a = select c, x, y   ;
2657   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2658   //                        ; to y, this can happen.
2659   CmpInst::Predicate Pred;
2660   if (FI->hasOneUse() &&
2661       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2662       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2663     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2664   }
2665 
2666   return nullptr;
2667 }
2668 
2669 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2670                                                                  SelectInst &SI,
2671                                                                  bool IsAnd) {
2672   Value *CondVal = SI.getCondition();
2673   Value *A = SI.getTrueValue();
2674   Value *B = SI.getFalseValue();
2675 
2676   assert(Op->getType()->isIntOrIntVectorTy(1) &&
2677          "Op must be either i1 or vector of i1.");
2678 
2679   Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2680   if (!Res)
2681     return nullptr;
2682 
2683   Value *Zero = Constant::getNullValue(A->getType());
2684   Value *One = Constant::getAllOnesValue(A->getType());
2685 
2686   if (*Res == true) {
2687     if (IsAnd)
2688       // select op, (select cond, A, B), false => select op, A, false
2689       // and    op, (select cond, A, B)        => select op, A, false
2690       //   if op = true implies condval = true.
2691       return SelectInst::Create(Op, A, Zero);
2692     else
2693       // select op, true, (select cond, A, B) => select op, true, A
2694       // or     op, (select cond, A, B)       => select op, true, A
2695       //   if op = false implies condval = true.
2696       return SelectInst::Create(Op, One, A);
2697   } else {
2698     if (IsAnd)
2699       // select op, (select cond, A, B), false => select op, B, false
2700       // and    op, (select cond, A, B)        => select op, B, false
2701       //   if op = true implies condval = false.
2702       return SelectInst::Create(Op, B, Zero);
2703     else
2704       // select op, true, (select cond, A, B) => select op, true, B
2705       // or     op, (select cond, A, B)       => select op, true, B
2706       //   if op = false implies condval = false.
2707       return SelectInst::Create(Op, One, B);
2708   }
2709 }
2710 
2711 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2712   Value *CondVal = SI.getCondition();
2713   Value *TrueVal = SI.getTrueValue();
2714   Value *FalseVal = SI.getFalseValue();
2715   Type *SelType = SI.getType();
2716 
2717   // FIXME: Remove this workaround when freeze related patches are done.
2718   // For select with undef operand which feeds into an equality comparison,
2719   // don't simplify it so loop unswitch can know the equality comparison
2720   // may have an undef operand. This is a workaround for PR31652 caused by
2721   // descrepancy about branch on undef between LoopUnswitch and GVN.
2722   if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) {
2723     if (llvm::any_of(SI.users(), [&](User *U) {
2724           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2725           if (CI && CI->isEquality())
2726             return true;
2727           return false;
2728         })) {
2729       return nullptr;
2730     }
2731   }
2732 
2733   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2734                                     SQ.getWithInstruction(&SI)))
2735     return replaceInstUsesWith(SI, V);
2736 
2737   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2738     return I;
2739 
2740   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2741     return I;
2742 
2743   CmpInst::Predicate Pred;
2744 
2745   // Avoid potential infinite loops by checking for non-constant condition.
2746   // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2747   //       Scalar select must have simplified?
2748   if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) &&
2749       TrueVal->getType() == CondVal->getType()) {
2750     // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2751     // checks whether folding it does not convert a well-defined value into
2752     // poison.
2753     if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) {
2754       // Change: A = select B, true, C --> A = or B, C
2755       return BinaryOperator::CreateOr(CondVal, FalseVal);
2756     }
2757     if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) {
2758       // Change: A = select B, C, false --> A = and B, C
2759       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2760     }
2761 
2762     auto *One = ConstantInt::getTrue(SelType);
2763     auto *Zero = ConstantInt::getFalse(SelType);
2764 
2765     // We match the "full" 0 or 1 constant here to avoid a potential infinite
2766     // loop with vectors that may have undefined/poison elements.
2767     // select a, false, b -> select !a, b, false
2768     if (match(TrueVal, m_Specific(Zero))) {
2769       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2770       return SelectInst::Create(NotCond, FalseVal, Zero);
2771     }
2772     // select a, b, true -> select !a, true, b
2773     if (match(FalseVal, m_Specific(One))) {
2774       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2775       return SelectInst::Create(NotCond, One, TrueVal);
2776     }
2777 
2778     // select a, a, b -> select a, true, b
2779     if (CondVal == TrueVal)
2780       return replaceOperand(SI, 1, One);
2781     // select a, b, a -> select a, b, false
2782     if (CondVal == FalseVal)
2783       return replaceOperand(SI, 2, Zero);
2784 
2785     // select a, !a, b -> select !a, b, false
2786     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2787       return SelectInst::Create(TrueVal, FalseVal, Zero);
2788     // select a, b, !a -> select !a, true, b
2789     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2790       return SelectInst::Create(FalseVal, One, TrueVal);
2791 
2792     Value *A, *B;
2793 
2794     // DeMorgan in select form: !a && !b --> !(a || b)
2795     // select !a, !b, false --> not (select a, true, b)
2796     if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2797         (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
2798         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2799       return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
2800 
2801     // DeMorgan in select form: !a || !b --> !(a && b)
2802     // select !a, true, !b --> not (select a, b, false)
2803     if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2804         (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
2805         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2806       return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
2807 
2808     // select (select a, true, b), true, b -> select a, true, b
2809     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2810         match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
2811       return replaceOperand(SI, 0, A);
2812     // select (select a, b, false), b, false -> select a, b, false
2813     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2814         match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
2815       return replaceOperand(SI, 0, A);
2816 
2817     if (!SelType->isVectorTy()) {
2818       if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ,
2819                                             /* AllowRefinement */ true))
2820         return replaceOperand(SI, 1, S);
2821       if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
2822                                             /* AllowRefinement */ true))
2823         return replaceOperand(SI, 2, S);
2824     }
2825 
2826     if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
2827       Use *Y = nullptr;
2828       bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
2829       Value *Op1 = IsAnd ? TrueVal : FalseVal;
2830       if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
2831         auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
2832         InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
2833         replaceUse(*Y, FI);
2834         return replaceInstUsesWith(SI, Op1);
2835       }
2836 
2837       if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
2838         if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
2839                                                         /* IsAnd */ IsAnd))
2840           return I;
2841 
2842       if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) {
2843         if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) {
2844           if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd,
2845                                                       /* IsLogical */ true))
2846             return replaceInstUsesWith(SI, V);
2847 
2848           if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd))
2849             return replaceInstUsesWith(SI, V);
2850         }
2851       }
2852     }
2853 
2854     // select (select a, true, b), c, false -> select a, c, false
2855     // select c, (select a, true, b), false -> select c, a, false
2856     //   if c implies that b is false.
2857     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2858         match(FalseVal, m_Zero())) {
2859       Optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
2860       if (Res && *Res == false)
2861         return replaceOperand(SI, 0, A);
2862     }
2863     if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2864         match(FalseVal, m_Zero())) {
2865       Optional<bool> Res = isImpliedCondition(CondVal, B, DL);
2866       if (Res && *Res == false)
2867         return replaceOperand(SI, 1, A);
2868     }
2869     // select c, true, (select a, b, false)  -> select c, true, a
2870     // select (select a, b, false), true, c  -> select a, true, c
2871     //   if c = false implies that b = true
2872     if (match(TrueVal, m_One()) &&
2873         match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) {
2874       Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
2875       if (Res && *Res == true)
2876         return replaceOperand(SI, 2, A);
2877     }
2878     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2879         match(TrueVal, m_One())) {
2880       Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
2881       if (Res && *Res == true)
2882         return replaceOperand(SI, 0, A);
2883     }
2884 
2885     // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
2886     // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
2887     Value *C1, *C2;
2888     if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) &&
2889         match(TrueVal, m_One()) &&
2890         match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) {
2891       if (match(C2, m_Not(m_Specific(C1)))) // first case
2892         return SelectInst::Create(C1, A, B);
2893       else if (match(C1, m_Not(m_Specific(C2)))) // second case
2894         return SelectInst::Create(C2, B, A);
2895     }
2896   }
2897 
2898   // Selecting between two integer or vector splat integer constants?
2899   //
2900   // Note that we don't handle a scalar select of vectors:
2901   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2902   // because that may need 3 instructions to splat the condition value:
2903   // extend, insertelement, shufflevector.
2904   //
2905   // Do not handle i1 TrueVal and FalseVal otherwise would result in
2906   // zext/sext i1 to i1.
2907   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
2908       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2909     // select C, 1, 0 -> zext C to int
2910     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2911       return new ZExtInst(CondVal, SelType);
2912 
2913     // select C, -1, 0 -> sext C to int
2914     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2915       return new SExtInst(CondVal, SelType);
2916 
2917     // select C, 0, 1 -> zext !C to int
2918     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2919       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2920       return new ZExtInst(NotCond, SelType);
2921     }
2922 
2923     // select C, 0, -1 -> sext !C to int
2924     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2925       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2926       return new SExtInst(NotCond, SelType);
2927     }
2928   }
2929 
2930   if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
2931     Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
2932     // Are we selecting a value based on a comparison of the two values?
2933     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2934         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2935       // Canonicalize to use ordered comparisons by swapping the select
2936       // operands.
2937       //
2938       // e.g.
2939       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2940       if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
2941         FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
2942         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2943         // FIXME: The FMF should propagate from the select, not the fcmp.
2944         Builder.setFastMathFlags(FCmp->getFastMathFlags());
2945         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2946                                             FCmp->getName() + ".inv");
2947         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2948         return replaceInstUsesWith(SI, NewSel);
2949       }
2950 
2951       // NOTE: if we wanted to, this is where to detect MIN/MAX
2952     }
2953   }
2954 
2955   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2956   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2957   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2958   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2959       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2960       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2961     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2962     return replaceInstUsesWith(SI, Fabs);
2963   }
2964   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2965   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2966       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2967       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2968     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2969     return replaceInstUsesWith(SI, Fabs);
2970   }
2971   // With nnan and nsz:
2972   // (X <  +/-0.0) ? -X : X --> fabs(X)
2973   // (X <= +/-0.0) ? -X : X --> fabs(X)
2974   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2975       match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() &&
2976       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2977        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2978     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2979     return replaceInstUsesWith(SI, Fabs);
2980   }
2981   // With nnan and nsz:
2982   // (X >  +/-0.0) ? X : -X --> fabs(X)
2983   // (X >= +/-0.0) ? X : -X --> fabs(X)
2984   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2985       match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() &&
2986       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2987        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2988     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2989     return replaceInstUsesWith(SI, Fabs);
2990   }
2991 
2992   // See if we are selecting two values based on a comparison of the two values.
2993   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2994     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2995       return Result;
2996 
2997   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2998     return Add;
2999   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
3000     return Add;
3001   if (Instruction *Or = foldSetClearBits(SI, Builder))
3002     return Or;
3003   if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
3004     return Mul;
3005 
3006   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
3007   auto *TI = dyn_cast<Instruction>(TrueVal);
3008   auto *FI = dyn_cast<Instruction>(FalseVal);
3009   if (TI && FI && TI->getOpcode() == FI->getOpcode())
3010     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
3011       return IV;
3012 
3013   if (Instruction *I = foldSelectExtConst(SI))
3014     return I;
3015 
3016   // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3017   // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3018   auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3019                                bool Swap) -> GetElementPtrInst * {
3020     Value *Ptr = Gep->getPointerOperand();
3021     if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3022         !Gep->hasOneUse())
3023       return nullptr;
3024     Value *Idx = Gep->getOperand(1);
3025     if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3026       return nullptr;
3027     Type *ElementType = Gep->getResultElementType();
3028     Value *NewT = Idx;
3029     Value *NewF = Constant::getNullValue(Idx->getType());
3030     if (Swap)
3031       std::swap(NewT, NewF);
3032     Value *NewSI =
3033         Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3034     return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
3035   };
3036   if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3037     if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3038       return NewGep;
3039   if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3040     if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3041       return NewGep;
3042 
3043   // See if we can fold the select into one of our operands.
3044   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3045     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3046       return FoldI;
3047 
3048     Value *LHS, *RHS;
3049     Instruction::CastOps CastOp;
3050     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3051     auto SPF = SPR.Flavor;
3052     if (SPF) {
3053       Value *LHS2, *RHS2;
3054       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3055         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3056                                           RHS2, SI, SPF, RHS))
3057           return R;
3058       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3059         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3060                                           RHS2, SI, SPF, LHS))
3061           return R;
3062       // TODO.
3063       // ABS(-X) -> ABS(X)
3064     }
3065 
3066     if (SelectPatternResult::isMinOrMax(SPF)) {
3067       // Canonicalize so that
3068       // - type casts are outside select patterns.
3069       // - float clamp is transformed to min/max pattern
3070 
3071       bool IsCastNeeded = LHS->getType() != SelType;
3072       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3073       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3074       if (IsCastNeeded ||
3075           (LHS->getType()->isFPOrFPVectorTy() &&
3076            ((CmpLHS != LHS && CmpLHS != RHS) ||
3077             (CmpRHS != LHS && CmpRHS != RHS)))) {
3078         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3079 
3080         Value *Cmp;
3081         if (CmpInst::isIntPredicate(MinMaxPred)) {
3082           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3083         } else {
3084           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3085           auto FMF =
3086               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3087           Builder.setFastMathFlags(FMF);
3088           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3089         }
3090 
3091         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3092         if (!IsCastNeeded)
3093           return replaceInstUsesWith(SI, NewSI);
3094 
3095         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3096         return replaceInstUsesWith(SI, NewCast);
3097       }
3098 
3099       // MAX(~a, ~b) -> ~MIN(a, b)
3100       // MAX(~a, C)  -> ~MIN(a, ~C)
3101       // MIN(~a, ~b) -> ~MAX(a, b)
3102       // MIN(~a, C)  -> ~MAX(a, ~C)
3103       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
3104         Value *A;
3105         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
3106             !isFreeToInvert(A, A->hasOneUse()) &&
3107             // Passing false to only consider m_Not and constants.
3108             isFreeToInvert(Y, false)) {
3109           Value *B = Builder.CreateNot(Y);
3110           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
3111                                           A, B);
3112           // Copy the profile metadata.
3113           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
3114             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
3115             // Swap the metadata if the operands are swapped.
3116             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
3117               cast<SelectInst>(NewMinMax)->swapProfMetadata();
3118           }
3119 
3120           return BinaryOperator::CreateNot(NewMinMax);
3121         }
3122 
3123         return nullptr;
3124       };
3125 
3126       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
3127         return I;
3128       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
3129         return I;
3130 
3131       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
3132         return I;
3133 
3134       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
3135         return I;
3136       if (Instruction *I = matchSAddSubSat(SI))
3137         return I;
3138     }
3139   }
3140 
3141   // Canonicalize select of FP values where NaN and -0.0 are not valid as
3142   // minnum/maxnum intrinsics.
3143   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
3144     Value *X, *Y;
3145     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3146       return replaceInstUsesWith(
3147           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3148 
3149     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3150       return replaceInstUsesWith(
3151           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3152   }
3153 
3154   // See if we can fold the select into a phi node if the condition is a select.
3155   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3156     // The true/false values have to be live in the PHI predecessor's blocks.
3157     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3158         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3159       if (Instruction *NV = foldOpIntoPhi(SI, PN))
3160         return NV;
3161 
3162   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3163     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3164       // select(C, select(C, a, b), c) -> select(C, a, c)
3165       if (TrueSI->getCondition() == CondVal) {
3166         if (SI.getTrueValue() == TrueSI->getTrueValue())
3167           return nullptr;
3168         return replaceOperand(SI, 1, TrueSI->getTrueValue());
3169       }
3170       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3171       // We choose this as normal form to enable folding on the And and
3172       // shortening paths for the values (this helps getUnderlyingObjects() for
3173       // example).
3174       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3175         Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3176         replaceOperand(SI, 0, And);
3177         replaceOperand(SI, 1, TrueSI->getTrueValue());
3178         return &SI;
3179       }
3180     }
3181   }
3182   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3183     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3184       // select(C, a, select(C, b, c)) -> select(C, a, c)
3185       if (FalseSI->getCondition() == CondVal) {
3186         if (SI.getFalseValue() == FalseSI->getFalseValue())
3187           return nullptr;
3188         return replaceOperand(SI, 2, FalseSI->getFalseValue());
3189       }
3190       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3191       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3192         Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3193         replaceOperand(SI, 0, Or);
3194         replaceOperand(SI, 2, FalseSI->getFalseValue());
3195         return &SI;
3196       }
3197     }
3198   }
3199 
3200   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
3201     // The select might be preventing a division by 0.
3202     switch (BO->getOpcode()) {
3203     default:
3204       return true;
3205     case Instruction::SRem:
3206     case Instruction::URem:
3207     case Instruction::SDiv:
3208     case Instruction::UDiv:
3209       return false;
3210     }
3211   };
3212 
3213   // Try to simplify a binop sandwiched between 2 selects with the same
3214   // condition.
3215   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3216   BinaryOperator *TrueBO;
3217   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
3218       canMergeSelectThroughBinop(TrueBO)) {
3219     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3220       if (TrueBOSI->getCondition() == CondVal) {
3221         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3222         Worklist.push(TrueBO);
3223         return &SI;
3224       }
3225     }
3226     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3227       if (TrueBOSI->getCondition() == CondVal) {
3228         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3229         Worklist.push(TrueBO);
3230         return &SI;
3231       }
3232     }
3233   }
3234 
3235   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3236   BinaryOperator *FalseBO;
3237   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
3238       canMergeSelectThroughBinop(FalseBO)) {
3239     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3240       if (FalseBOSI->getCondition() == CondVal) {
3241         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3242         Worklist.push(FalseBO);
3243         return &SI;
3244       }
3245     }
3246     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3247       if (FalseBOSI->getCondition() == CondVal) {
3248         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3249         Worklist.push(FalseBO);
3250         return &SI;
3251       }
3252     }
3253   }
3254 
3255   Value *NotCond;
3256   if (match(CondVal, m_Not(m_Value(NotCond))) &&
3257       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3258     replaceOperand(SI, 0, NotCond);
3259     SI.swapValues();
3260     SI.swapProfMetadata();
3261     return &SI;
3262   }
3263 
3264   if (Instruction *I = foldVectorSelect(SI))
3265     return I;
3266 
3267   // If we can compute the condition, there's no need for a select.
3268   // Like the above fold, we are attempting to reduce compile-time cost by
3269   // putting this fold here with limitations rather than in InstSimplify.
3270   // The motivation for this call into value tracking is to take advantage of
3271   // the assumption cache, so make sure that is populated.
3272   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3273     KnownBits Known(1);
3274     computeKnownBits(CondVal, Known, 0, &SI);
3275     if (Known.One.isOne())
3276       return replaceInstUsesWith(SI, TrueVal);
3277     if (Known.Zero.isOne())
3278       return replaceInstUsesWith(SI, FalseVal);
3279   }
3280 
3281   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3282     return BitCastSel;
3283 
3284   // Simplify selects that test the returned flag of cmpxchg instructions.
3285   if (Value *V = foldSelectCmpXchg(SI))
3286     return replaceInstUsesWith(SI, V);
3287 
3288   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3289     return Select;
3290 
3291   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3292     return Funnel;
3293 
3294   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3295     return Copysign;
3296 
3297   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3298     return replaceInstUsesWith(SI, PN);
3299 
3300   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3301     return replaceInstUsesWith(SI, Fr);
3302 
3303   // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3304   // Load inst is intentionally not checked for hasOneUse()
3305   if (match(FalseVal, m_Zero()) &&
3306       match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3307                                   m_CombineOr(m_Undef(), m_Zero())))) {
3308     auto *MaskedLoad = cast<IntrinsicInst>(TrueVal);
3309     if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3310       MaskedLoad->setArgOperand(3, FalseVal /* Zero */);
3311     return replaceInstUsesWith(SI, MaskedLoad);
3312   }
3313 
3314   Value *Mask;
3315   if (match(TrueVal, m_Zero()) &&
3316       match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3317                                    m_CombineOr(m_Undef(), m_Zero()))) &&
3318       (CondVal->getType() == Mask->getType())) {
3319     // We can remove the select by ensuring the load zeros all lanes the
3320     // select would have.  We determine this by proving there is no overlap
3321     // between the load and select masks.
3322     // (i.e (load_mask & select_mask) == 0 == no overlap)
3323     bool CanMergeSelectIntoLoad = false;
3324     if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3325       CanMergeSelectIntoLoad = match(V, m_Zero());
3326 
3327     if (CanMergeSelectIntoLoad) {
3328       auto *MaskedLoad = cast<IntrinsicInst>(FalseVal);
3329       if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3330         MaskedLoad->setArgOperand(3, TrueVal /* Zero */);
3331       return replaceInstUsesWith(SI, MaskedLoad);
3332     }
3333   }
3334 
3335   return nullptr;
3336 }
3337