1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41 #include "llvm/Transforms/InstCombine/InstCombiner.h"
42 #include <cassert>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace PatternMatch;
47 
48 #define DEBUG_TYPE "instcombine"
49 
50 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
51                            SelectPatternFlavor SPF, Value *A, Value *B) {
52   CmpInst::Predicate Pred = getMinMaxPred(SPF);
53   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
54   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
55 }
56 
57 /// Replace a select operand based on an equality comparison with the identity
58 /// constant of a binop.
59 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
60                                             const TargetLibraryInfo &TLI,
61                                             InstCombinerImpl &IC) {
62   // The select condition must be an equality compare with a constant operand.
63   Value *X;
64   Constant *C;
65   CmpInst::Predicate Pred;
66   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
67     return nullptr;
68 
69   bool IsEq;
70   if (ICmpInst::isEquality(Pred))
71     IsEq = Pred == ICmpInst::ICMP_EQ;
72   else if (Pred == FCmpInst::FCMP_OEQ)
73     IsEq = true;
74   else if (Pred == FCmpInst::FCMP_UNE)
75     IsEq = false;
76   else
77     return nullptr;
78 
79   // A select operand must be a binop.
80   BinaryOperator *BO;
81   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
82     return nullptr;
83 
84   // The compare constant must be the identity constant for that binop.
85   // If this a floating-point compare with 0.0, any zero constant will do.
86   Type *Ty = BO->getType();
87   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
88   if (IdC != C) {
89     if (!IdC || !CmpInst::isFPPredicate(Pred))
90       return nullptr;
91     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
92       return nullptr;
93   }
94 
95   // Last, match the compare variable operand with a binop operand.
96   Value *Y;
97   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
98     return nullptr;
99   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
100     return nullptr;
101 
102   // +0.0 compares equal to -0.0, and so it does not behave as required for this
103   // transform. Bail out if we can not exclude that possibility.
104   if (isa<FPMathOperator>(BO))
105     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
106       return nullptr;
107 
108   // BO = binop Y, X
109   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
110   // =>
111   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
112   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
113 }
114 
115 /// This folds:
116 ///  select (icmp eq (and X, C1)), TC, FC
117 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
118 /// To something like:
119 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
120 /// Or:
121 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
122 /// With some variations depending if FC is larger than TC, or the shift
123 /// isn't needed, or the bit widths don't match.
124 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
125                                 InstCombiner::BuilderTy &Builder) {
126   const APInt *SelTC, *SelFC;
127   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
128       !match(Sel.getFalseValue(), m_APInt(SelFC)))
129     return nullptr;
130 
131   // If this is a vector select, we need a vector compare.
132   Type *SelType = Sel.getType();
133   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
134     return nullptr;
135 
136   Value *V;
137   APInt AndMask;
138   bool CreateAnd = false;
139   ICmpInst::Predicate Pred = Cmp->getPredicate();
140   if (ICmpInst::isEquality(Pred)) {
141     if (!match(Cmp->getOperand(1), m_Zero()))
142       return nullptr;
143 
144     V = Cmp->getOperand(0);
145     const APInt *AndRHS;
146     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
147       return nullptr;
148 
149     AndMask = *AndRHS;
150   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
151                                   Pred, V, AndMask)) {
152     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
153     if (!AndMask.isPowerOf2())
154       return nullptr;
155 
156     CreateAnd = true;
157   } else {
158     return nullptr;
159   }
160 
161   // In general, when both constants are non-zero, we would need an offset to
162   // replace the select. This would require more instructions than we started
163   // with. But there's one special-case that we handle here because it can
164   // simplify/reduce the instructions.
165   APInt TC = *SelTC;
166   APInt FC = *SelFC;
167   if (!TC.isNullValue() && !FC.isNullValue()) {
168     // If the select constants differ by exactly one bit and that's the same
169     // bit that is masked and checked by the select condition, the select can
170     // be replaced by bitwise logic to set/clear one bit of the constant result.
171     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
172       return nullptr;
173     if (CreateAnd) {
174       // If we have to create an 'and', then we must kill the cmp to not
175       // increase the instruction count.
176       if (!Cmp->hasOneUse())
177         return nullptr;
178       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
179     }
180     bool ExtraBitInTC = TC.ugt(FC);
181     if (Pred == ICmpInst::ICMP_EQ) {
182       // If the masked bit in V is clear, clear or set the bit in the result:
183       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
184       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
185       Constant *C = ConstantInt::get(SelType, TC);
186       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
187     }
188     if (Pred == ICmpInst::ICMP_NE) {
189       // If the masked bit in V is set, set or clear the bit in the result:
190       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
191       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
192       Constant *C = ConstantInt::get(SelType, FC);
193       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
194     }
195     llvm_unreachable("Only expecting equality predicates");
196   }
197 
198   // Make sure one of the select arms is a power-of-2.
199   if (!TC.isPowerOf2() && !FC.isPowerOf2())
200     return nullptr;
201 
202   // Determine which shift is needed to transform result of the 'and' into the
203   // desired result.
204   const APInt &ValC = !TC.isNullValue() ? TC : FC;
205   unsigned ValZeros = ValC.logBase2();
206   unsigned AndZeros = AndMask.logBase2();
207 
208   // Insert the 'and' instruction on the input to the truncate.
209   if (CreateAnd)
210     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
211 
212   // If types don't match, we can still convert the select by introducing a zext
213   // or a trunc of the 'and'.
214   if (ValZeros > AndZeros) {
215     V = Builder.CreateZExtOrTrunc(V, SelType);
216     V = Builder.CreateShl(V, ValZeros - AndZeros);
217   } else if (ValZeros < AndZeros) {
218     V = Builder.CreateLShr(V, AndZeros - ValZeros);
219     V = Builder.CreateZExtOrTrunc(V, SelType);
220   } else {
221     V = Builder.CreateZExtOrTrunc(V, SelType);
222   }
223 
224   // Okay, now we know that everything is set up, we just don't know whether we
225   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
226   bool ShouldNotVal = !TC.isNullValue();
227   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
228   if (ShouldNotVal)
229     V = Builder.CreateXor(V, ValC);
230 
231   return V;
232 }
233 
234 /// We want to turn code that looks like this:
235 ///   %C = or %A, %B
236 ///   %D = select %cond, %C, %A
237 /// into:
238 ///   %C = select %cond, %B, 0
239 ///   %D = or %A, %C
240 ///
241 /// Assuming that the specified instruction is an operand to the select, return
242 /// a bitmask indicating which operands of this instruction are foldable if they
243 /// equal the other incoming value of the select.
244 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
245   switch (I->getOpcode()) {
246   case Instruction::Add:
247   case Instruction::Mul:
248   case Instruction::And:
249   case Instruction::Or:
250   case Instruction::Xor:
251     return 3;              // Can fold through either operand.
252   case Instruction::Sub:   // Can only fold on the amount subtracted.
253   case Instruction::Shl:   // Can only fold on the shift amount.
254   case Instruction::LShr:
255   case Instruction::AShr:
256     return 1;
257   default:
258     return 0;              // Cannot fold
259   }
260 }
261 
262 /// For the same transformation as the previous function, return the identity
263 /// constant that goes into the select.
264 static APInt getSelectFoldableConstant(BinaryOperator *I) {
265   switch (I->getOpcode()) {
266   default: llvm_unreachable("This cannot happen!");
267   case Instruction::Add:
268   case Instruction::Sub:
269   case Instruction::Or:
270   case Instruction::Xor:
271   case Instruction::Shl:
272   case Instruction::LShr:
273   case Instruction::AShr:
274     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
275   case Instruction::And:
276     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
277   case Instruction::Mul:
278     return APInt(I->getType()->getScalarSizeInBits(), 1);
279   }
280 }
281 
282 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
283 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
284                                               Instruction *FI) {
285   // Don't break up min/max patterns. The hasOneUse checks below prevent that
286   // for most cases, but vector min/max with bitcasts can be transformed. If the
287   // one-use restrictions are eased for other patterns, we still don't want to
288   // obfuscate min/max.
289   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
290        match(&SI, m_SMax(m_Value(), m_Value())) ||
291        match(&SI, m_UMin(m_Value(), m_Value())) ||
292        match(&SI, m_UMax(m_Value(), m_Value()))))
293     return nullptr;
294 
295   // If this is a cast from the same type, merge.
296   Value *Cond = SI.getCondition();
297   Type *CondTy = Cond->getType();
298   if (TI->getNumOperands() == 1 && TI->isCast()) {
299     Type *FIOpndTy = FI->getOperand(0)->getType();
300     if (TI->getOperand(0)->getType() != FIOpndTy)
301       return nullptr;
302 
303     // The select condition may be a vector. We may only change the operand
304     // type if the vector width remains the same (and matches the condition).
305     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
306       if (!FIOpndTy->isVectorTy())
307         return nullptr;
308       if (cast<FixedVectorType>(CondVTy)->getNumElements() !=
309           cast<FixedVectorType>(FIOpndTy)->getNumElements())
310         return nullptr;
311 
312       // TODO: If the backend knew how to deal with casts better, we could
313       // remove this limitation. For now, there's too much potential to create
314       // worse codegen by promoting the select ahead of size-altering casts
315       // (PR28160).
316       //
317       // Note that ValueTracking's matchSelectPattern() looks through casts
318       // without checking 'hasOneUse' when it matches min/max patterns, so this
319       // transform may end up happening anyway.
320       if (TI->getOpcode() != Instruction::BitCast &&
321           (!TI->hasOneUse() || !FI->hasOneUse()))
322         return nullptr;
323     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
324       // TODO: The one-use restrictions for a scalar select could be eased if
325       // the fold of a select in visitLoadInst() was enhanced to match a pattern
326       // that includes a cast.
327       return nullptr;
328     }
329 
330     // Fold this by inserting a select from the input values.
331     Value *NewSI =
332         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
333                              SI.getName() + ".v", &SI);
334     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
335                             TI->getType());
336   }
337 
338   // Cond ? -X : -Y --> -(Cond ? X : Y)
339   Value *X, *Y;
340   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
341       (TI->hasOneUse() || FI->hasOneUse())) {
342     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
343     return UnaryOperator::CreateFNegFMF(NewSel, TI);
344   }
345 
346   // Only handle binary operators (including two-operand getelementptr) with
347   // one-use here. As with the cast case above, it may be possible to relax the
348   // one-use constraint, but that needs be examined carefully since it may not
349   // reduce the total number of instructions.
350   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
351       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
352       !TI->hasOneUse() || !FI->hasOneUse())
353     return nullptr;
354 
355   // Figure out if the operations have any operands in common.
356   Value *MatchOp, *OtherOpT, *OtherOpF;
357   bool MatchIsOpZero;
358   if (TI->getOperand(0) == FI->getOperand(0)) {
359     MatchOp  = TI->getOperand(0);
360     OtherOpT = TI->getOperand(1);
361     OtherOpF = FI->getOperand(1);
362     MatchIsOpZero = true;
363   } else if (TI->getOperand(1) == FI->getOperand(1)) {
364     MatchOp  = TI->getOperand(1);
365     OtherOpT = TI->getOperand(0);
366     OtherOpF = FI->getOperand(0);
367     MatchIsOpZero = false;
368   } else if (!TI->isCommutative()) {
369     return nullptr;
370   } else if (TI->getOperand(0) == FI->getOperand(1)) {
371     MatchOp  = TI->getOperand(0);
372     OtherOpT = TI->getOperand(1);
373     OtherOpF = FI->getOperand(0);
374     MatchIsOpZero = true;
375   } else if (TI->getOperand(1) == FI->getOperand(0)) {
376     MatchOp  = TI->getOperand(1);
377     OtherOpT = TI->getOperand(0);
378     OtherOpF = FI->getOperand(1);
379     MatchIsOpZero = true;
380   } else {
381     return nullptr;
382   }
383 
384   // If the select condition is a vector, the operands of the original select's
385   // operands also must be vectors. This may not be the case for getelementptr
386   // for example.
387   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
388                                !OtherOpF->getType()->isVectorTy()))
389     return nullptr;
390 
391   // If we reach here, they do have operations in common.
392   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
393                                       SI.getName() + ".v", &SI);
394   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
395   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
396   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
397     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
398     NewBO->copyIRFlags(TI);
399     NewBO->andIRFlags(FI);
400     return NewBO;
401   }
402   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
403     auto *FGEP = cast<GetElementPtrInst>(FI);
404     Type *ElementType = TGEP->getResultElementType();
405     return TGEP->isInBounds() && FGEP->isInBounds()
406                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
407                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
408   }
409   llvm_unreachable("Expected BinaryOperator or GEP");
410   return nullptr;
411 }
412 
413 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
414   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
415     return false;
416   return C1I.isOneValue() || C1I.isAllOnesValue() ||
417          C2I.isOneValue() || C2I.isAllOnesValue();
418 }
419 
420 /// Try to fold the select into one of the operands to allow further
421 /// optimization.
422 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
423                                                 Value *FalseVal) {
424   // See the comment above GetSelectFoldableOperands for a description of the
425   // transformation we are doing here.
426   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
427     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
428       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
429         unsigned OpToFold = 0;
430         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
431           OpToFold = 1;
432         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
433           OpToFold = 2;
434         }
435 
436         if (OpToFold) {
437           APInt CI = getSelectFoldableConstant(TVI);
438           Value *OOp = TVI->getOperand(2-OpToFold);
439           // Avoid creating select between 2 constants unless it's selecting
440           // between 0, 1 and -1.
441           const APInt *OOpC;
442           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
443           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
444             Value *C = ConstantInt::get(OOp->getType(), CI);
445             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
446             NewSel->takeName(TVI);
447             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
448                                                         FalseVal, NewSel);
449             BO->copyIRFlags(TVI);
450             return BO;
451           }
452         }
453       }
454     }
455   }
456 
457   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
458     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
459       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
460         unsigned OpToFold = 0;
461         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
462           OpToFold = 1;
463         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
464           OpToFold = 2;
465         }
466 
467         if (OpToFold) {
468           APInt CI = getSelectFoldableConstant(FVI);
469           Value *OOp = FVI->getOperand(2-OpToFold);
470           // Avoid creating select between 2 constants unless it's selecting
471           // between 0, 1 and -1.
472           const APInt *OOpC;
473           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
474           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
475             Value *C = ConstantInt::get(OOp->getType(), CI);
476             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
477             NewSel->takeName(FVI);
478             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
479                                                         TrueVal, NewSel);
480             BO->copyIRFlags(FVI);
481             return BO;
482           }
483         }
484       }
485     }
486   }
487 
488   return nullptr;
489 }
490 
491 /// We want to turn:
492 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
493 /// into:
494 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
495 /// Note:
496 ///   Z may be 0 if lshr is missing.
497 /// Worst-case scenario is that we will replace 5 instructions with 5 different
498 /// instructions, but we got rid of select.
499 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
500                                          Value *TVal, Value *FVal,
501                                          InstCombiner::BuilderTy &Builder) {
502   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
503         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
504         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
505     return nullptr;
506 
507   // The TrueVal has general form of:  and %B, 1
508   Value *B;
509   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
510     return nullptr;
511 
512   // Where %B may be optionally shifted:  lshr %X, %Z.
513   Value *X, *Z;
514   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
515   if (!HasShift)
516     X = B;
517 
518   Value *Y;
519   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
520     return nullptr;
521 
522   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
523   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
524   Constant *One = ConstantInt::get(SelType, 1);
525   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
526   Value *FullMask = Builder.CreateOr(Y, MaskB);
527   Value *MaskedX = Builder.CreateAnd(X, FullMask);
528   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
529   return new ZExtInst(ICmpNeZero, SelType);
530 }
531 
532 /// We want to turn:
533 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
534 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
535 /// into:
536 ///   ashr (X, Y)
537 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
538                                      Value *FalseVal,
539                                      InstCombiner::BuilderTy &Builder) {
540   ICmpInst::Predicate Pred = IC->getPredicate();
541   Value *CmpLHS = IC->getOperand(0);
542   Value *CmpRHS = IC->getOperand(1);
543   if (!CmpRHS->getType()->isIntOrIntVectorTy())
544     return nullptr;
545 
546   Value *X, *Y;
547   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
548   if ((Pred != ICmpInst::ICMP_SGT ||
549        !match(CmpRHS,
550               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
551       (Pred != ICmpInst::ICMP_SLT ||
552        !match(CmpRHS,
553               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
554     return nullptr;
555 
556   // Canonicalize so that ashr is in FalseVal.
557   if (Pred == ICmpInst::ICMP_SLT)
558     std::swap(TrueVal, FalseVal);
559 
560   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
561       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
562       match(CmpLHS, m_Specific(X))) {
563     const auto *Ashr = cast<Instruction>(FalseVal);
564     // if lshr is not exact and ashr is, this new ashr must not be exact.
565     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
566     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
567   }
568 
569   return nullptr;
570 }
571 
572 /// We want to turn:
573 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
574 /// into:
575 ///   (or (shl (and X, C1), C3), Y)
576 /// iff:
577 ///   C1 and C2 are both powers of 2
578 /// where:
579 ///   C3 = Log(C2) - Log(C1)
580 ///
581 /// This transform handles cases where:
582 /// 1. The icmp predicate is inverted
583 /// 2. The select operands are reversed
584 /// 3. The magnitude of C2 and C1 are flipped
585 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
586                                   Value *FalseVal,
587                                   InstCombiner::BuilderTy &Builder) {
588   // Only handle integer compares. Also, if this is a vector select, we need a
589   // vector compare.
590   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
591       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
592     return nullptr;
593 
594   Value *CmpLHS = IC->getOperand(0);
595   Value *CmpRHS = IC->getOperand(1);
596 
597   Value *V;
598   unsigned C1Log;
599   bool IsEqualZero;
600   bool NeedAnd = false;
601   if (IC->isEquality()) {
602     if (!match(CmpRHS, m_Zero()))
603       return nullptr;
604 
605     const APInt *C1;
606     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
607       return nullptr;
608 
609     V = CmpLHS;
610     C1Log = C1->logBase2();
611     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
612   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
613              IC->getPredicate() == ICmpInst::ICMP_SGT) {
614     // We also need to recognize (icmp slt (trunc (X)), 0) and
615     // (icmp sgt (trunc (X)), -1).
616     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
617     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
618         (!IsEqualZero && !match(CmpRHS, m_Zero())))
619       return nullptr;
620 
621     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
622       return nullptr;
623 
624     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
625     NeedAnd = true;
626   } else {
627     return nullptr;
628   }
629 
630   const APInt *C2;
631   bool OrOnTrueVal = false;
632   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
633   if (!OrOnFalseVal)
634     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
635 
636   if (!OrOnFalseVal && !OrOnTrueVal)
637     return nullptr;
638 
639   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
640 
641   unsigned C2Log = C2->logBase2();
642 
643   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
644   bool NeedShift = C1Log != C2Log;
645   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
646                        V->getType()->getScalarSizeInBits();
647 
648   // Make sure we don't create more instructions than we save.
649   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
650   if ((NeedShift + NeedXor + NeedZExtTrunc) >
651       (IC->hasOneUse() + Or->hasOneUse()))
652     return nullptr;
653 
654   if (NeedAnd) {
655     // Insert the AND instruction on the input to the truncate.
656     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
657     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
658   }
659 
660   if (C2Log > C1Log) {
661     V = Builder.CreateZExtOrTrunc(V, Y->getType());
662     V = Builder.CreateShl(V, C2Log - C1Log);
663   } else if (C1Log > C2Log) {
664     V = Builder.CreateLShr(V, C1Log - C2Log);
665     V = Builder.CreateZExtOrTrunc(V, Y->getType());
666   } else
667     V = Builder.CreateZExtOrTrunc(V, Y->getType());
668 
669   if (NeedXor)
670     V = Builder.CreateXor(V, *C2);
671 
672   return Builder.CreateOr(V, Y);
673 }
674 
675 /// Canonicalize a set or clear of a masked set of constant bits to
676 /// select-of-constants form.
677 static Instruction *foldSetClearBits(SelectInst &Sel,
678                                      InstCombiner::BuilderTy &Builder) {
679   Value *Cond = Sel.getCondition();
680   Value *T = Sel.getTrueValue();
681   Value *F = Sel.getFalseValue();
682   Type *Ty = Sel.getType();
683   Value *X;
684   const APInt *NotC, *C;
685 
686   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
687   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
688       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
689     Constant *Zero = ConstantInt::getNullValue(Ty);
690     Constant *OrC = ConstantInt::get(Ty, *C);
691     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
692     return BinaryOperator::CreateOr(T, NewSel);
693   }
694 
695   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
696   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
697       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
698     Constant *Zero = ConstantInt::getNullValue(Ty);
699     Constant *OrC = ConstantInt::get(Ty, *C);
700     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
701     return BinaryOperator::CreateOr(F, NewSel);
702   }
703 
704   return nullptr;
705 }
706 
707 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
708 /// There are 8 commuted/swapped variants of this pattern.
709 /// TODO: Also support a - UMIN(a,b) patterns.
710 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
711                                             const Value *TrueVal,
712                                             const Value *FalseVal,
713                                             InstCombiner::BuilderTy &Builder) {
714   ICmpInst::Predicate Pred = ICI->getPredicate();
715   if (!ICmpInst::isUnsigned(Pred))
716     return nullptr;
717 
718   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
719   if (match(TrueVal, m_Zero())) {
720     Pred = ICmpInst::getInversePredicate(Pred);
721     std::swap(TrueVal, FalseVal);
722   }
723   if (!match(FalseVal, m_Zero()))
724     return nullptr;
725 
726   Value *A = ICI->getOperand(0);
727   Value *B = ICI->getOperand(1);
728   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
729     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
730     std::swap(A, B);
731     Pred = ICmpInst::getSwappedPredicate(Pred);
732   }
733 
734   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
735          "Unexpected isUnsigned predicate!");
736 
737   // Ensure the sub is of the form:
738   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
739   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
740   // Checking for both a-b and a+(-b) as a constant.
741   bool IsNegative = false;
742   const APInt *C;
743   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
744       (match(A, m_APInt(C)) &&
745        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
746     IsNegative = true;
747   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
748            !(match(B, m_APInt(C)) &&
749              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
750     return nullptr;
751 
752   // If we are adding a negate and the sub and icmp are used anywhere else, we
753   // would end up with more instructions.
754   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
755     return nullptr;
756 
757   // (a > b) ? a - b : 0 -> usub.sat(a, b)
758   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
759   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
760   if (IsNegative)
761     Result = Builder.CreateNeg(Result);
762   return Result;
763 }
764 
765 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
766                                        InstCombiner::BuilderTy &Builder) {
767   if (!Cmp->hasOneUse())
768     return nullptr;
769 
770   // Match unsigned saturated add with constant.
771   Value *Cmp0 = Cmp->getOperand(0);
772   Value *Cmp1 = Cmp->getOperand(1);
773   ICmpInst::Predicate Pred = Cmp->getPredicate();
774   Value *X;
775   const APInt *C, *CmpC;
776   if (Pred == ICmpInst::ICMP_ULT &&
777       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
778       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
779     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
780     return Builder.CreateBinaryIntrinsic(
781         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
782   }
783 
784   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
785   // There are 8 commuted variants.
786   // Canonicalize -1 (saturated result) to true value of the select. Just
787   // swapping the compare operands is legal, because the selected value is the
788   // same in case of equality, so we can interchange u< and u<=.
789   if (match(FVal, m_AllOnes())) {
790     std::swap(TVal, FVal);
791     std::swap(Cmp0, Cmp1);
792   }
793   if (!match(TVal, m_AllOnes()))
794     return nullptr;
795 
796   // Canonicalize predicate to 'ULT'.
797   if (Pred == ICmpInst::ICMP_UGT) {
798     Pred = ICmpInst::ICMP_ULT;
799     std::swap(Cmp0, Cmp1);
800   }
801   if (Pred != ICmpInst::ICMP_ULT)
802     return nullptr;
803 
804   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
805   Value *Y;
806   if (match(Cmp0, m_Not(m_Value(X))) &&
807       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
808     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
809     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
810     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
811   }
812   // The 'not' op may be included in the sum but not the compare.
813   X = Cmp0;
814   Y = Cmp1;
815   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
816     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
817     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
818     BinaryOperator *BO = cast<BinaryOperator>(FVal);
819     return Builder.CreateBinaryIntrinsic(
820         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
821   }
822   // The overflow may be detected via the add wrapping round.
823   if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
824       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
825     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
826     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
827     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
828   }
829 
830   return nullptr;
831 }
832 
833 /// Fold the following code sequence:
834 /// \code
835 ///   int a = ctlz(x & -x);
836 //    x ? 31 - a : a;
837 /// \code
838 ///
839 /// into:
840 ///   cttz(x)
841 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
842                                          Value *FalseVal,
843                                          InstCombiner::BuilderTy &Builder) {
844   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
845   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
846     return nullptr;
847 
848   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
849     std::swap(TrueVal, FalseVal);
850 
851   if (!match(FalseVal,
852              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
853     return nullptr;
854 
855   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
856     return nullptr;
857 
858   Value *X = ICI->getOperand(0);
859   auto *II = cast<IntrinsicInst>(TrueVal);
860   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
861     return nullptr;
862 
863   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
864                                           II->getType());
865   return CallInst::Create(F, {X, II->getArgOperand(1)});
866 }
867 
868 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
869 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
870 ///
871 /// For example, we can fold the following code sequence:
872 /// \code
873 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
874 ///   %1 = icmp ne i32 %x, 0
875 ///   %2 = select i1 %1, i32 %0, i32 32
876 /// \code
877 ///
878 /// into:
879 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
880 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
881                                  InstCombiner::BuilderTy &Builder) {
882   ICmpInst::Predicate Pred = ICI->getPredicate();
883   Value *CmpLHS = ICI->getOperand(0);
884   Value *CmpRHS = ICI->getOperand(1);
885 
886   // Check if the condition value compares a value for equality against zero.
887   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
888     return nullptr;
889 
890   Value *SelectArg = FalseVal;
891   Value *ValueOnZero = TrueVal;
892   if (Pred == ICmpInst::ICMP_NE)
893     std::swap(SelectArg, ValueOnZero);
894 
895   // Skip zero extend/truncate.
896   Value *Count = nullptr;
897   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
898       !match(SelectArg, m_Trunc(m_Value(Count))))
899     Count = SelectArg;
900 
901   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
902   // input to the cttz/ctlz is used as LHS for the compare instruction.
903   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
904       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
905     return nullptr;
906 
907   IntrinsicInst *II = cast<IntrinsicInst>(Count);
908 
909   // Check if the value propagated on zero is a constant number equal to the
910   // sizeof in bits of 'Count'.
911   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
912   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
913     // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
914     // true to false on this flag, so we can replace it for all users.
915     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
916     return SelectArg;
917   }
918 
919   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
920   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
921   // not be used if the input is zero. Relax to 'undef_on_zero' for that case.
922   if (II->hasOneUse() && SelectArg->hasOneUse() &&
923       !match(II->getArgOperand(1), m_One()))
924     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
925 
926   return nullptr;
927 }
928 
929 /// Return true if we find and adjust an icmp+select pattern where the compare
930 /// is with a constant that can be incremented or decremented to match the
931 /// minimum or maximum idiom.
932 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
933   ICmpInst::Predicate Pred = Cmp.getPredicate();
934   Value *CmpLHS = Cmp.getOperand(0);
935   Value *CmpRHS = Cmp.getOperand(1);
936   Value *TrueVal = Sel.getTrueValue();
937   Value *FalseVal = Sel.getFalseValue();
938 
939   // We may move or edit the compare, so make sure the select is the only user.
940   const APInt *CmpC;
941   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
942     return false;
943 
944   // These transforms only work for selects of integers or vector selects of
945   // integer vectors.
946   Type *SelTy = Sel.getType();
947   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
948   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
949     return false;
950 
951   Constant *AdjustedRHS;
952   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
953     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
954   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
955     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
956   else
957     return false;
958 
959   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
960   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
961   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
962       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
963     ; // Nothing to do here. Values match without any sign/zero extension.
964   }
965   // Types do not match. Instead of calculating this with mixed types, promote
966   // all to the larger type. This enables scalar evolution to analyze this
967   // expression.
968   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
969     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
970 
971     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
972     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
973     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
974     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
975     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
976       CmpLHS = TrueVal;
977       AdjustedRHS = SextRHS;
978     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
979                SextRHS == TrueVal) {
980       CmpLHS = FalseVal;
981       AdjustedRHS = SextRHS;
982     } else if (Cmp.isUnsigned()) {
983       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
984       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
985       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
986       // zext + signed compare cannot be changed:
987       //    0xff <s 0x00, but 0x00ff >s 0x0000
988       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
989         CmpLHS = TrueVal;
990         AdjustedRHS = ZextRHS;
991       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
992                  ZextRHS == TrueVal) {
993         CmpLHS = FalseVal;
994         AdjustedRHS = ZextRHS;
995       } else {
996         return false;
997       }
998     } else {
999       return false;
1000     }
1001   } else {
1002     return false;
1003   }
1004 
1005   Pred = ICmpInst::getSwappedPredicate(Pred);
1006   CmpRHS = AdjustedRHS;
1007   std::swap(FalseVal, TrueVal);
1008   Cmp.setPredicate(Pred);
1009   Cmp.setOperand(0, CmpLHS);
1010   Cmp.setOperand(1, CmpRHS);
1011   Sel.setOperand(1, TrueVal);
1012   Sel.setOperand(2, FalseVal);
1013   Sel.swapProfMetadata();
1014 
1015   // Move the compare instruction right before the select instruction. Otherwise
1016   // the sext/zext value may be defined after the compare instruction uses it.
1017   Cmp.moveBefore(&Sel);
1018 
1019   return true;
1020 }
1021 
1022 /// If this is an integer min/max (icmp + select) with a constant operand,
1023 /// create the canonical icmp for the min/max operation and canonicalize the
1024 /// constant to the 'false' operand of the select:
1025 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
1026 /// Note: if C1 != C2, this will change the icmp constant to the existing
1027 /// constant operand of the select.
1028 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel,
1029                                                    ICmpInst &Cmp,
1030                                                    InstCombinerImpl &IC) {
1031   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1032     return nullptr;
1033 
1034   // Canonicalize the compare predicate based on whether we have min or max.
1035   Value *LHS, *RHS;
1036   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1037   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1038     return nullptr;
1039 
1040   // Is this already canonical?
1041   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1042   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1043       Cmp.getPredicate() == CanonicalPred)
1044     return nullptr;
1045 
1046   // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1047   // as this may cause an infinite combine loop. Let the sub be folded first.
1048   if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
1049       match(RHS, m_Sub(m_Value(), m_Zero())))
1050     return nullptr;
1051 
1052   // Create the canonical compare and plug it into the select.
1053   IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
1054 
1055   // If the select operands did not change, we're done.
1056   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1057     return &Sel;
1058 
1059   // If we are swapping the select operands, swap the metadata too.
1060   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1061          "Unexpected results from matchSelectPattern");
1062   Sel.swapValues();
1063   Sel.swapProfMetadata();
1064   return &Sel;
1065 }
1066 
1067 /// There are many select variants for each of ABS/NABS.
1068 /// In matchSelectPattern(), there are different compare constants, compare
1069 /// predicates/operands and select operands.
1070 /// In isKnownNegation(), there are different formats of negated operands.
1071 /// Canonicalize all these variants to 1 pattern.
1072 /// This makes CSE more likely.
1073 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1074                                         InstCombinerImpl &IC) {
1075   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1076     return nullptr;
1077 
1078   // Choose a sign-bit check for the compare (likely simpler for codegen).
1079   // ABS:  (X <s 0) ? -X : X
1080   // NABS: (X <s 0) ? X : -X
1081   Value *LHS, *RHS;
1082   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1083   if (SPF != SelectPatternFlavor::SPF_ABS &&
1084       SPF != SelectPatternFlavor::SPF_NABS)
1085     return nullptr;
1086 
1087   Value *TVal = Sel.getTrueValue();
1088   Value *FVal = Sel.getFalseValue();
1089   assert(isKnownNegation(TVal, FVal) &&
1090          "Unexpected result from matchSelectPattern");
1091 
1092   // The compare may use the negated abs()/nabs() operand, or it may use
1093   // negation in non-canonical form such as: sub A, B.
1094   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1095                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1096 
1097   bool CmpCanonicalized = !CmpUsesNegatedOp &&
1098                           match(Cmp.getOperand(1), m_ZeroInt()) &&
1099                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1100   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1101 
1102   // Is this already canonical?
1103   if (CmpCanonicalized && RHSCanonicalized)
1104     return nullptr;
1105 
1106   // If RHS is not canonical but is used by other instructions, don't
1107   // canonicalize it and potentially increase the instruction count.
1108   if (!RHSCanonicalized)
1109     if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1110       return nullptr;
1111 
1112   // Create the canonical compare: icmp slt LHS 0.
1113   if (!CmpCanonicalized) {
1114     Cmp.setPredicate(ICmpInst::ICMP_SLT);
1115     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1116     if (CmpUsesNegatedOp)
1117       Cmp.setOperand(0, LHS);
1118   }
1119 
1120   // Create the canonical RHS: RHS = sub (0, LHS).
1121   if (!RHSCanonicalized) {
1122     assert(RHS->hasOneUse() && "RHS use number is not right");
1123     RHS = IC.Builder.CreateNeg(LHS);
1124     if (TVal == LHS) {
1125       // Replace false value.
1126       IC.replaceOperand(Sel, 2, RHS);
1127       FVal = RHS;
1128     } else {
1129       // Replace true value.
1130       IC.replaceOperand(Sel, 1, RHS);
1131       TVal = RHS;
1132     }
1133   }
1134 
1135   // If the select operands do not change, we're done.
1136   if (SPF == SelectPatternFlavor::SPF_NABS) {
1137     if (TVal == LHS)
1138       return &Sel;
1139     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1140   } else {
1141     if (FVal == LHS)
1142       return &Sel;
1143     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1144   }
1145 
1146   // We are swapping the select operands, so swap the metadata too.
1147   Sel.swapValues();
1148   Sel.swapProfMetadata();
1149   return &Sel;
1150 }
1151 
1152 /// If we have a select with an equality comparison, then we know the value in
1153 /// one of the arms of the select. See if substituting this value into an arm
1154 /// and simplifying the result yields the same value as the other arm.
1155 ///
1156 /// To make this transform safe, we must drop poison-generating flags
1157 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1158 /// that poison from propagating. If the existing binop already had no
1159 /// poison-generating flags, then this transform can be done by instsimplify.
1160 ///
1161 /// Consider:
1162 ///   %cmp = icmp eq i32 %x, 2147483647
1163 ///   %add = add nsw i32 %x, 1
1164 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1165 ///
1166 /// We can't replace %sel with %add unless we strip away the flags.
1167 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1168 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1169                                                           ICmpInst &Cmp) {
1170   if (!Cmp.isEquality())
1171     return nullptr;
1172 
1173   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1174   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1175   bool Swapped = false;
1176   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1177     std::swap(TrueVal, FalseVal);
1178     Swapped = true;
1179   }
1180 
1181   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1182   // Make sure Y cannot be undef though, as we might pick different values for
1183   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1184   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1185   // replacement cycle.
1186   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1187   if (TrueVal != CmpLHS && isGuaranteedNotToBeUndefOrPoison(CmpRHS, &Sel, &DT))
1188     if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1189                                           /* AllowRefinement */ true))
1190       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1191   if (TrueVal != CmpRHS && isGuaranteedNotToBeUndefOrPoison(CmpLHS, &Sel, &DT))
1192     if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1193                                           /* AllowRefinement */ true))
1194       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1195 
1196   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1197   if (!FalseInst)
1198     return nullptr;
1199 
1200   // InstSimplify already performed this fold if it was possible subject to
1201   // current poison-generating flags. Try the transform again with
1202   // poison-generating flags temporarily dropped.
1203   bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1204   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1205     WasNUW = OBO->hasNoUnsignedWrap();
1206     WasNSW = OBO->hasNoSignedWrap();
1207     FalseInst->setHasNoUnsignedWrap(false);
1208     FalseInst->setHasNoSignedWrap(false);
1209   }
1210   if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1211     WasExact = PEO->isExact();
1212     FalseInst->setIsExact(false);
1213   }
1214   if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1215     WasInBounds = GEP->isInBounds();
1216     GEP->setIsInBounds(false);
1217   }
1218 
1219   // Try each equivalence substitution possibility.
1220   // We have an 'EQ' comparison, so the select's false value will propagate.
1221   // Example:
1222   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1223   if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1224                              /* AllowRefinement */ false) == TrueVal ||
1225       SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1226                              /* AllowRefinement */ false) == TrueVal) {
1227     return replaceInstUsesWith(Sel, FalseVal);
1228   }
1229 
1230   // Restore poison-generating flags if the transform did not apply.
1231   if (WasNUW)
1232     FalseInst->setHasNoUnsignedWrap();
1233   if (WasNSW)
1234     FalseInst->setHasNoSignedWrap();
1235   if (WasExact)
1236     FalseInst->setIsExact();
1237   if (WasInBounds)
1238     cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1239 
1240   return nullptr;
1241 }
1242 
1243 // See if this is a pattern like:
1244 //   %old_cmp1 = icmp slt i32 %x, C2
1245 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1246 //   %old_x_offseted = add i32 %x, C1
1247 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1248 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1249 // This can be rewritten as more canonical pattern:
1250 //   %new_cmp1 = icmp slt i32 %x, -C1
1251 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1252 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1253 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1254 // Iff -C1 s<= C2 s<= C0-C1
1255 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1256 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1257 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1258                                           InstCombiner::BuilderTy &Builder) {
1259   Value *X = Sel0.getTrueValue();
1260   Value *Sel1 = Sel0.getFalseValue();
1261 
1262   // First match the condition of the outermost select.
1263   // Said condition must be one-use.
1264   if (!Cmp0.hasOneUse())
1265     return nullptr;
1266   Value *Cmp00 = Cmp0.getOperand(0);
1267   Constant *C0;
1268   if (!match(Cmp0.getOperand(1),
1269              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1270     return nullptr;
1271   // Canonicalize Cmp0 into the form we expect.
1272   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1273   switch (Cmp0.getPredicate()) {
1274   case ICmpInst::Predicate::ICMP_ULT:
1275     break; // Great!
1276   case ICmpInst::Predicate::ICMP_ULE:
1277     // We'd have to increment C0 by one, and for that it must not have all-ones
1278     // element, but then it would have been canonicalized to 'ult' before
1279     // we get here. So we can't do anything useful with 'ule'.
1280     return nullptr;
1281   case ICmpInst::Predicate::ICMP_UGT:
1282     // We want to canonicalize it to 'ult', so we'll need to increment C0,
1283     // which again means it must not have any all-ones elements.
1284     if (!match(C0,
1285                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1286                                   APInt::getAllOnesValue(
1287                                       C0->getType()->getScalarSizeInBits()))))
1288       return nullptr; // Can't do, have all-ones element[s].
1289     C0 = InstCombiner::AddOne(C0);
1290     std::swap(X, Sel1);
1291     break;
1292   case ICmpInst::Predicate::ICMP_UGE:
1293     // The only way we'd get this predicate if this `icmp` has extra uses,
1294     // but then we won't be able to do this fold.
1295     return nullptr;
1296   default:
1297     return nullptr; // Unknown predicate.
1298   }
1299 
1300   // Now that we've canonicalized the ICmp, we know the X we expect;
1301   // the select in other hand should be one-use.
1302   if (!Sel1->hasOneUse())
1303     return nullptr;
1304 
1305   // We now can finish matching the condition of the outermost select:
1306   // it should either be the X itself, or an addition of some constant to X.
1307   Constant *C1;
1308   if (Cmp00 == X)
1309     C1 = ConstantInt::getNullValue(Sel0.getType());
1310   else if (!match(Cmp00,
1311                   m_Add(m_Specific(X),
1312                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1313     return nullptr;
1314 
1315   Value *Cmp1;
1316   ICmpInst::Predicate Pred1;
1317   Constant *C2;
1318   Value *ReplacementLow, *ReplacementHigh;
1319   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1320                             m_Value(ReplacementHigh))) ||
1321       !match(Cmp1,
1322              m_ICmp(Pred1, m_Specific(X),
1323                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1324     return nullptr;
1325 
1326   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1327     return nullptr; // Not enough one-use instructions for the fold.
1328   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1329   //        two comparisons we'll need to build.
1330 
1331   // Canonicalize Cmp1 into the form we expect.
1332   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1333   switch (Pred1) {
1334   case ICmpInst::Predicate::ICMP_SLT:
1335     break;
1336   case ICmpInst::Predicate::ICMP_SLE:
1337     // We'd have to increment C2 by one, and for that it must not have signed
1338     // max element, but then it would have been canonicalized to 'slt' before
1339     // we get here. So we can't do anything useful with 'sle'.
1340     return nullptr;
1341   case ICmpInst::Predicate::ICMP_SGT:
1342     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1343     // which again means it must not have any signed max elements.
1344     if (!match(C2,
1345                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1346                                   APInt::getSignedMaxValue(
1347                                       C2->getType()->getScalarSizeInBits()))))
1348       return nullptr; // Can't do, have signed max element[s].
1349     C2 = InstCombiner::AddOne(C2);
1350     LLVM_FALLTHROUGH;
1351   case ICmpInst::Predicate::ICMP_SGE:
1352     // Also non-canonical, but here we don't need to change C2,
1353     // so we don't have any restrictions on C2, so we can just handle it.
1354     std::swap(ReplacementLow, ReplacementHigh);
1355     break;
1356   default:
1357     return nullptr; // Unknown predicate.
1358   }
1359 
1360   // The thresholds of this clamp-like pattern.
1361   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1362   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1363 
1364   // The fold has a precondition 1: C2 s>= ThresholdLow
1365   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1366                                          ThresholdLowIncl);
1367   if (!match(Precond1, m_One()))
1368     return nullptr;
1369   // The fold has a precondition 2: C2 s<= ThresholdHigh
1370   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1371                                          ThresholdHighExcl);
1372   if (!match(Precond2, m_One()))
1373     return nullptr;
1374 
1375   // All good, finally emit the new pattern.
1376   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1377   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1378   Value *MaybeReplacedLow =
1379       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1380   Instruction *MaybeReplacedHigh =
1381       SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1382 
1383   return MaybeReplacedHigh;
1384 }
1385 
1386 // If we have
1387 //  %cmp = icmp [canonical predicate] i32 %x, C0
1388 //  %r = select i1 %cmp, i32 %y, i32 C1
1389 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1390 // will have if we flip the strictness of the predicate (i.e. without changing
1391 // the result) is identical to the C1 in select. If it matches we can change
1392 // original comparison to one with swapped predicate, reuse the constant,
1393 // and swap the hands of select.
1394 static Instruction *
1395 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1396                                          InstCombinerImpl &IC) {
1397   ICmpInst::Predicate Pred;
1398   Value *X;
1399   Constant *C0;
1400   if (!match(&Cmp, m_OneUse(m_ICmp(
1401                        Pred, m_Value(X),
1402                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1403     return nullptr;
1404 
1405   // If comparison predicate is non-relational, we won't be able to do anything.
1406   if (ICmpInst::isEquality(Pred))
1407     return nullptr;
1408 
1409   // If comparison predicate is non-canonical, then we certainly won't be able
1410   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1411   if (!InstCombiner::isCanonicalPredicate(Pred))
1412     return nullptr;
1413 
1414   // If the [input] type of comparison and select type are different, lets abort
1415   // for now. We could try to compare constants with trunc/[zs]ext though.
1416   if (C0->getType() != Sel.getType())
1417     return nullptr;
1418 
1419   // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1420 
1421   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1422   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1423   // At least one of these values we are selecting between must be a constant
1424   // else we'll never succeed.
1425   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1426       !match(SelVal1, m_AnyIntegralConstant()))
1427     return nullptr;
1428 
1429   // Does this constant C match any of the `select` values?
1430   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1431     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1432   };
1433 
1434   // If C0 *already* matches true/false value of select, we are done.
1435   if (MatchesSelectValue(C0))
1436     return nullptr;
1437 
1438   // Check the constant we'd have with flipped-strictness predicate.
1439   auto FlippedStrictness =
1440       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1441   if (!FlippedStrictness)
1442     return nullptr;
1443 
1444   // If said constant doesn't match either, then there is no hope,
1445   if (!MatchesSelectValue(FlippedStrictness->second))
1446     return nullptr;
1447 
1448   // It matched! Lets insert the new comparison just before select.
1449   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1450   IC.Builder.SetInsertPoint(&Sel);
1451 
1452   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1453   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1454                                         Cmp.getName() + ".inv");
1455   IC.replaceOperand(Sel, 0, NewCmp);
1456   Sel.swapValues();
1457   Sel.swapProfMetadata();
1458 
1459   return &Sel;
1460 }
1461 
1462 /// Visit a SelectInst that has an ICmpInst as its first operand.
1463 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1464                                                       ICmpInst *ICI) {
1465   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1466     return NewSel;
1467 
1468   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
1469     return NewSel;
1470 
1471   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this))
1472     return NewAbs;
1473 
1474   if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1475     return NewAbs;
1476 
1477   if (Instruction *NewSel =
1478           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1479     return NewSel;
1480 
1481   bool Changed = adjustMinMax(SI, *ICI);
1482 
1483   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1484     return replaceInstUsesWith(SI, V);
1485 
1486   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1487   Value *TrueVal = SI.getTrueValue();
1488   Value *FalseVal = SI.getFalseValue();
1489   ICmpInst::Predicate Pred = ICI->getPredicate();
1490   Value *CmpLHS = ICI->getOperand(0);
1491   Value *CmpRHS = ICI->getOperand(1);
1492   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1493     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1494       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1495       SI.setOperand(1, CmpRHS);
1496       Changed = true;
1497     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1498       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1499       SI.setOperand(2, CmpRHS);
1500       Changed = true;
1501     }
1502   }
1503 
1504   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1505   // decomposeBitTestICmp() might help.
1506   {
1507     unsigned BitWidth =
1508         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1509     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1510     Value *X;
1511     const APInt *Y, *C;
1512     bool TrueWhenUnset;
1513     bool IsBitTest = false;
1514     if (ICmpInst::isEquality(Pred) &&
1515         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1516         match(CmpRHS, m_Zero())) {
1517       IsBitTest = true;
1518       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1519     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1520       X = CmpLHS;
1521       Y = &MinSignedValue;
1522       IsBitTest = true;
1523       TrueWhenUnset = false;
1524     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1525       X = CmpLHS;
1526       Y = &MinSignedValue;
1527       IsBitTest = true;
1528       TrueWhenUnset = true;
1529     }
1530     if (IsBitTest) {
1531       Value *V = nullptr;
1532       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1533       if (TrueWhenUnset && TrueVal == X &&
1534           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1535         V = Builder.CreateAnd(X, ~(*Y));
1536       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1537       else if (!TrueWhenUnset && FalseVal == X &&
1538                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1539         V = Builder.CreateAnd(X, ~(*Y));
1540       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1541       else if (TrueWhenUnset && FalseVal == X &&
1542                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1543         V = Builder.CreateOr(X, *Y);
1544       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1545       else if (!TrueWhenUnset && TrueVal == X &&
1546                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1547         V = Builder.CreateOr(X, *Y);
1548 
1549       if (V)
1550         return replaceInstUsesWith(SI, V);
1551     }
1552   }
1553 
1554   if (Instruction *V =
1555           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1556     return V;
1557 
1558   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1559     return V;
1560 
1561   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1562     return replaceInstUsesWith(SI, V);
1563 
1564   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1565     return replaceInstUsesWith(SI, V);
1566 
1567   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1568     return replaceInstUsesWith(SI, V);
1569 
1570   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1571     return replaceInstUsesWith(SI, V);
1572 
1573   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1574     return replaceInstUsesWith(SI, V);
1575 
1576   return Changed ? &SI : nullptr;
1577 }
1578 
1579 /// SI is a select whose condition is a PHI node (but the two may be in
1580 /// different blocks). See if the true/false values (V) are live in all of the
1581 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1582 ///
1583 ///   X = phi [ C1, BB1], [C2, BB2]
1584 ///   Y = add
1585 ///   Z = select X, Y, 0
1586 ///
1587 /// because Y is not live in BB1/BB2.
1588 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1589                                                    const SelectInst &SI) {
1590   // If the value is a non-instruction value like a constant or argument, it
1591   // can always be mapped.
1592   const Instruction *I = dyn_cast<Instruction>(V);
1593   if (!I) return true;
1594 
1595   // If V is a PHI node defined in the same block as the condition PHI, we can
1596   // map the arguments.
1597   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1598 
1599   if (const PHINode *VP = dyn_cast<PHINode>(I))
1600     if (VP->getParent() == CondPHI->getParent())
1601       return true;
1602 
1603   // Otherwise, if the PHI and select are defined in the same block and if V is
1604   // defined in a different block, then we can transform it.
1605   if (SI.getParent() == CondPHI->getParent() &&
1606       I->getParent() != CondPHI->getParent())
1607     return true;
1608 
1609   // Otherwise we have a 'hard' case and we can't tell without doing more
1610   // detailed dominator based analysis, punt.
1611   return false;
1612 }
1613 
1614 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1615 ///   SPF2(SPF1(A, B), C)
1616 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1617                                             SelectPatternFlavor SPF1, Value *A,
1618                                             Value *B, Instruction &Outer,
1619                                             SelectPatternFlavor SPF2,
1620                                             Value *C) {
1621   if (Outer.getType() != Inner->getType())
1622     return nullptr;
1623 
1624   if (C == A || C == B) {
1625     // MAX(MAX(A, B), B) -> MAX(A, B)
1626     // MIN(MIN(a, b), a) -> MIN(a, b)
1627     // TODO: This could be done in instsimplify.
1628     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1629       return replaceInstUsesWith(Outer, Inner);
1630 
1631     // MAX(MIN(a, b), a) -> a
1632     // MIN(MAX(a, b), a) -> a
1633     // TODO: This could be done in instsimplify.
1634     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1635         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1636         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1637         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1638       return replaceInstUsesWith(Outer, C);
1639   }
1640 
1641   if (SPF1 == SPF2) {
1642     const APInt *CB, *CC;
1643     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1644       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1645       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1646       // TODO: This could be done in instsimplify.
1647       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1648           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1649           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1650           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1651         return replaceInstUsesWith(Outer, Inner);
1652 
1653       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1654       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1655       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1656           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1657           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1658           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1659         Outer.replaceUsesOfWith(Inner, A);
1660         return &Outer;
1661       }
1662     }
1663   }
1664 
1665   // max(max(A, B), min(A, B)) --> max(A, B)
1666   // min(min(A, B), max(A, B)) --> min(A, B)
1667   // TODO: This could be done in instsimplify.
1668   if (SPF1 == SPF2 &&
1669       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1670        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1671        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1672        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1673     return replaceInstUsesWith(Outer, Inner);
1674 
1675   // ABS(ABS(X)) -> ABS(X)
1676   // NABS(NABS(X)) -> NABS(X)
1677   // TODO: This could be done in instsimplify.
1678   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1679     return replaceInstUsesWith(Outer, Inner);
1680   }
1681 
1682   // ABS(NABS(X)) -> ABS(X)
1683   // NABS(ABS(X)) -> NABS(X)
1684   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1685       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1686     SelectInst *SI = cast<SelectInst>(Inner);
1687     Value *NewSI =
1688         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1689                              SI->getTrueValue(), SI->getName(), SI);
1690     return replaceInstUsesWith(Outer, NewSI);
1691   }
1692 
1693   auto IsFreeOrProfitableToInvert =
1694       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1695     if (match(V, m_Not(m_Value(NotV)))) {
1696       // If V has at most 2 uses then we can get rid of the xor operation
1697       // entirely.
1698       ElidesXor |= !V->hasNUsesOrMore(3);
1699       return true;
1700     }
1701 
1702     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1703       NotV = nullptr;
1704       return true;
1705     }
1706 
1707     return false;
1708   };
1709 
1710   Value *NotA, *NotB, *NotC;
1711   bool ElidesXor = false;
1712 
1713   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1714   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1715   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1716   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1717   //
1718   // This transform is performance neutral if we can elide at least one xor from
1719   // the set of three operands, since we'll be tacking on an xor at the very
1720   // end.
1721   if (SelectPatternResult::isMinOrMax(SPF1) &&
1722       SelectPatternResult::isMinOrMax(SPF2) &&
1723       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1724       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1725       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1726     if (!NotA)
1727       NotA = Builder.CreateNot(A);
1728     if (!NotB)
1729       NotB = Builder.CreateNot(B);
1730     if (!NotC)
1731       NotC = Builder.CreateNot(C);
1732 
1733     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1734                                    NotB);
1735     Value *NewOuter = Builder.CreateNot(
1736         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1737     return replaceInstUsesWith(Outer, NewOuter);
1738   }
1739 
1740   return nullptr;
1741 }
1742 
1743 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1744 /// This is even legal for FP.
1745 static Instruction *foldAddSubSelect(SelectInst &SI,
1746                                      InstCombiner::BuilderTy &Builder) {
1747   Value *CondVal = SI.getCondition();
1748   Value *TrueVal = SI.getTrueValue();
1749   Value *FalseVal = SI.getFalseValue();
1750   auto *TI = dyn_cast<Instruction>(TrueVal);
1751   auto *FI = dyn_cast<Instruction>(FalseVal);
1752   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1753     return nullptr;
1754 
1755   Instruction *AddOp = nullptr, *SubOp = nullptr;
1756   if ((TI->getOpcode() == Instruction::Sub &&
1757        FI->getOpcode() == Instruction::Add) ||
1758       (TI->getOpcode() == Instruction::FSub &&
1759        FI->getOpcode() == Instruction::FAdd)) {
1760     AddOp = FI;
1761     SubOp = TI;
1762   } else if ((FI->getOpcode() == Instruction::Sub &&
1763               TI->getOpcode() == Instruction::Add) ||
1764              (FI->getOpcode() == Instruction::FSub &&
1765               TI->getOpcode() == Instruction::FAdd)) {
1766     AddOp = TI;
1767     SubOp = FI;
1768   }
1769 
1770   if (AddOp) {
1771     Value *OtherAddOp = nullptr;
1772     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1773       OtherAddOp = AddOp->getOperand(1);
1774     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1775       OtherAddOp = AddOp->getOperand(0);
1776     }
1777 
1778     if (OtherAddOp) {
1779       // So at this point we know we have (Y -> OtherAddOp):
1780       //        select C, (add X, Y), (sub X, Z)
1781       Value *NegVal; // Compute -Z
1782       if (SI.getType()->isFPOrFPVectorTy()) {
1783         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1784         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1785           FastMathFlags Flags = AddOp->getFastMathFlags();
1786           Flags &= SubOp->getFastMathFlags();
1787           NegInst->setFastMathFlags(Flags);
1788         }
1789       } else {
1790         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1791       }
1792 
1793       Value *NewTrueOp = OtherAddOp;
1794       Value *NewFalseOp = NegVal;
1795       if (AddOp != TI)
1796         std::swap(NewTrueOp, NewFalseOp);
1797       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1798                                            SI.getName() + ".p", &SI);
1799 
1800       if (SI.getType()->isFPOrFPVectorTy()) {
1801         Instruction *RI =
1802             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1803 
1804         FastMathFlags Flags = AddOp->getFastMathFlags();
1805         Flags &= SubOp->getFastMathFlags();
1806         RI->setFastMathFlags(Flags);
1807         return RI;
1808       } else
1809         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1810     }
1811   }
1812   return nullptr;
1813 }
1814 
1815 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1816 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1817 /// Along with a number of patterns similar to:
1818 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1819 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1820 static Instruction *
1821 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1822   Value *CondVal = SI.getCondition();
1823   Value *TrueVal = SI.getTrueValue();
1824   Value *FalseVal = SI.getFalseValue();
1825 
1826   WithOverflowInst *II;
1827   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1828       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1829     return nullptr;
1830 
1831   Value *X = II->getLHS();
1832   Value *Y = II->getRHS();
1833 
1834   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1835     Type *Ty = Limit->getType();
1836 
1837     ICmpInst::Predicate Pred;
1838     Value *TrueVal, *FalseVal, *Op;
1839     const APInt *C;
1840     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1841                                m_Value(TrueVal), m_Value(FalseVal))))
1842       return false;
1843 
1844     auto IsZeroOrOne = [](const APInt &C) {
1845       return C.isNullValue() || C.isOneValue();
1846     };
1847     auto IsMinMax = [&](Value *Min, Value *Max) {
1848       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1849       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1850       return match(Min, m_SpecificInt(MinVal)) &&
1851              match(Max, m_SpecificInt(MaxVal));
1852     };
1853 
1854     if (Op != X && Op != Y)
1855       return false;
1856 
1857     if (IsAdd) {
1858       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1859       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1860       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1861       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1862       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1863           IsMinMax(TrueVal, FalseVal))
1864         return true;
1865       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1866       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1867       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1868       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1869       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1870           IsMinMax(FalseVal, TrueVal))
1871         return true;
1872     } else {
1873       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1874       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1875       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1876           IsMinMax(TrueVal, FalseVal))
1877         return true;
1878       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1879       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1880       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1881           IsMinMax(FalseVal, TrueVal))
1882         return true;
1883       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1884       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1885       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1886           IsMinMax(FalseVal, TrueVal))
1887         return true;
1888       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1889       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1890       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1891           IsMinMax(TrueVal, FalseVal))
1892         return true;
1893     }
1894 
1895     return false;
1896   };
1897 
1898   Intrinsic::ID NewIntrinsicID;
1899   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1900       match(TrueVal, m_AllOnes()))
1901     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1902     NewIntrinsicID = Intrinsic::uadd_sat;
1903   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1904            match(TrueVal, m_Zero()))
1905     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1906     NewIntrinsicID = Intrinsic::usub_sat;
1907   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1908            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1909     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1910     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1911     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1912     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1913     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1914     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1915     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1916     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1917     NewIntrinsicID = Intrinsic::sadd_sat;
1918   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1919            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1920     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1921     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1922     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1923     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1924     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1925     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1926     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1927     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1928     NewIntrinsicID = Intrinsic::ssub_sat;
1929   else
1930     return nullptr;
1931 
1932   Function *F =
1933       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1934   return CallInst::Create(F, {X, Y});
1935 }
1936 
1937 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
1938   Constant *C;
1939   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1940       !match(Sel.getFalseValue(), m_Constant(C)))
1941     return nullptr;
1942 
1943   Instruction *ExtInst;
1944   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1945       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1946     return nullptr;
1947 
1948   auto ExtOpcode = ExtInst->getOpcode();
1949   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1950     return nullptr;
1951 
1952   // If we are extending from a boolean type or if we can create a select that
1953   // has the same size operands as its condition, try to narrow the select.
1954   Value *X = ExtInst->getOperand(0);
1955   Type *SmallType = X->getType();
1956   Value *Cond = Sel.getCondition();
1957   auto *Cmp = dyn_cast<CmpInst>(Cond);
1958   if (!SmallType->isIntOrIntVectorTy(1) &&
1959       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1960     return nullptr;
1961 
1962   // If the constant is the same after truncation to the smaller type and
1963   // extension to the original type, we can narrow the select.
1964   Type *SelType = Sel.getType();
1965   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1966   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1967   if (ExtC == C && ExtInst->hasOneUse()) {
1968     Value *TruncCVal = cast<Value>(TruncC);
1969     if (ExtInst == Sel.getFalseValue())
1970       std::swap(X, TruncCVal);
1971 
1972     // select Cond, (ext X), C --> ext(select Cond, X, C')
1973     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1974     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1975     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1976   }
1977 
1978   // If one arm of the select is the extend of the condition, replace that arm
1979   // with the extension of the appropriate known bool value.
1980   if (Cond == X) {
1981     if (ExtInst == Sel.getTrueValue()) {
1982       // select X, (sext X), C --> select X, -1, C
1983       // select X, (zext X), C --> select X,  1, C
1984       Constant *One = ConstantInt::getTrue(SmallType);
1985       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1986       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1987     } else {
1988       // select X, C, (sext X) --> select X, C, 0
1989       // select X, C, (zext X) --> select X, C, 0
1990       Constant *Zero = ConstantInt::getNullValue(SelType);
1991       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1992     }
1993   }
1994 
1995   return nullptr;
1996 }
1997 
1998 /// Try to transform a vector select with a constant condition vector into a
1999 /// shuffle for easier combining with other shuffles and insert/extract.
2000 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2001   Value *CondVal = SI.getCondition();
2002   Constant *CondC;
2003   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
2004     return nullptr;
2005 
2006   unsigned NumElts =
2007       cast<FixedVectorType>(CondVal->getType())->getNumElements();
2008   SmallVector<int, 16> Mask;
2009   Mask.reserve(NumElts);
2010   for (unsigned i = 0; i != NumElts; ++i) {
2011     Constant *Elt = CondC->getAggregateElement(i);
2012     if (!Elt)
2013       return nullptr;
2014 
2015     if (Elt->isOneValue()) {
2016       // If the select condition element is true, choose from the 1st vector.
2017       Mask.push_back(i);
2018     } else if (Elt->isNullValue()) {
2019       // If the select condition element is false, choose from the 2nd vector.
2020       Mask.push_back(i + NumElts);
2021     } else if (isa<UndefValue>(Elt)) {
2022       // Undef in a select condition (choose one of the operands) does not mean
2023       // the same thing as undef in a shuffle mask (any value is acceptable), so
2024       // give up.
2025       return nullptr;
2026     } else {
2027       // Bail out on a constant expression.
2028       return nullptr;
2029     }
2030   }
2031 
2032   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2033 }
2034 
2035 /// If we have a select of vectors with a scalar condition, try to convert that
2036 /// to a vector select by splatting the condition. A splat may get folded with
2037 /// other operations in IR and having all operands of a select be vector types
2038 /// is likely better for vector codegen.
2039 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2040                                                    InstCombinerImpl &IC) {
2041   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2042   if (!Ty)
2043     return nullptr;
2044 
2045   // We can replace a single-use extract with constant index.
2046   Value *Cond = Sel.getCondition();
2047   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2048     return nullptr;
2049 
2050   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2051   // Splatting the extracted condition reduces code (we could directly create a
2052   // splat shuffle of the source vector to eliminate the intermediate step).
2053   return IC.replaceOperand(
2054       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2055 }
2056 
2057 /// Reuse bitcasted operands between a compare and select:
2058 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2059 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2060 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2061                                           InstCombiner::BuilderTy &Builder) {
2062   Value *Cond = Sel.getCondition();
2063   Value *TVal = Sel.getTrueValue();
2064   Value *FVal = Sel.getFalseValue();
2065 
2066   CmpInst::Predicate Pred;
2067   Value *A, *B;
2068   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2069     return nullptr;
2070 
2071   // The select condition is a compare instruction. If the select's true/false
2072   // values are already the same as the compare operands, there's nothing to do.
2073   if (TVal == A || TVal == B || FVal == A || FVal == B)
2074     return nullptr;
2075 
2076   Value *C, *D;
2077   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2078     return nullptr;
2079 
2080   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2081   Value *TSrc, *FSrc;
2082   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2083       !match(FVal, m_BitCast(m_Value(FSrc))))
2084     return nullptr;
2085 
2086   // If the select true/false values are *different bitcasts* of the same source
2087   // operands, make the select operands the same as the compare operands and
2088   // cast the result. This is the canonical select form for min/max.
2089   Value *NewSel;
2090   if (TSrc == C && FSrc == D) {
2091     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2092     // bitcast (select (cmp A, B), A, B)
2093     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2094   } else if (TSrc == D && FSrc == C) {
2095     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2096     // bitcast (select (cmp A, B), B, A)
2097     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2098   } else {
2099     return nullptr;
2100   }
2101   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2102 }
2103 
2104 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2105 /// instructions.
2106 ///
2107 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2108 /// selects between the returned value of the cmpxchg instruction its compare
2109 /// operand, the result of the select will always be equal to its false value.
2110 /// For example:
2111 ///
2112 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2113 ///   %1 = extractvalue { i64, i1 } %0, 1
2114 ///   %2 = extractvalue { i64, i1 } %0, 0
2115 ///   %3 = select i1 %1, i64 %compare, i64 %2
2116 ///   ret i64 %3
2117 ///
2118 /// The returned value of the cmpxchg instruction (%2) is the original value
2119 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2120 /// must have been equal to %compare. Thus, the result of the select is always
2121 /// equal to %2, and the code can be simplified to:
2122 ///
2123 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2124 ///   %1 = extractvalue { i64, i1 } %0, 0
2125 ///   ret i64 %1
2126 ///
2127 static Value *foldSelectCmpXchg(SelectInst &SI) {
2128   // A helper that determines if V is an extractvalue instruction whose
2129   // aggregate operand is a cmpxchg instruction and whose single index is equal
2130   // to I. If such conditions are true, the helper returns the cmpxchg
2131   // instruction; otherwise, a nullptr is returned.
2132   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2133     auto *Extract = dyn_cast<ExtractValueInst>(V);
2134     if (!Extract)
2135       return nullptr;
2136     if (Extract->getIndices()[0] != I)
2137       return nullptr;
2138     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2139   };
2140 
2141   // If the select has a single user, and this user is a select instruction that
2142   // we can simplify, skip the cmpxchg simplification for now.
2143   if (SI.hasOneUse())
2144     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2145       if (Select->getCondition() == SI.getCondition())
2146         if (Select->getFalseValue() == SI.getTrueValue() ||
2147             Select->getTrueValue() == SI.getFalseValue())
2148           return nullptr;
2149 
2150   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2151   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2152   if (!CmpXchg)
2153     return nullptr;
2154 
2155   // Check the true value case: The true value of the select is the returned
2156   // value of the same cmpxchg used by the condition, and the false value is the
2157   // cmpxchg instruction's compare operand.
2158   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2159     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2160       return SI.getFalseValue();
2161 
2162   // Check the false value case: The false value of the select is the returned
2163   // value of the same cmpxchg used by the condition, and the true value is the
2164   // cmpxchg instruction's compare operand.
2165   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2166     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2167       return SI.getFalseValue();
2168 
2169   return nullptr;
2170 }
2171 
2172 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2173                                        Value *Y,
2174                                        InstCombiner::BuilderTy &Builder) {
2175   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2176   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2177                     SPF == SelectPatternFlavor::SPF_UMAX;
2178   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2179   // the constant value check to an assert.
2180   Value *A;
2181   const APInt *C1, *C2;
2182   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2183       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2184     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2185     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2186     Value *NewMinMax = createMinMax(Builder, SPF, A,
2187                                     ConstantInt::get(X->getType(), *C2 - *C1));
2188     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2189                                      ConstantInt::get(X->getType(), *C1));
2190   }
2191 
2192   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2193       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2194     bool Overflow;
2195     APInt Diff = C2->ssub_ov(*C1, Overflow);
2196     if (!Overflow) {
2197       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2198       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2199       Value *NewMinMax = createMinMax(Builder, SPF, A,
2200                                       ConstantInt::get(X->getType(), Diff));
2201       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2202                                        ConstantInt::get(X->getType(), *C1));
2203     }
2204   }
2205 
2206   return nullptr;
2207 }
2208 
2209 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2210 Instruction *InstCombinerImpl::matchSAddSubSat(SelectInst &MinMax1) {
2211   Type *Ty = MinMax1.getType();
2212 
2213   // We are looking for a tree of:
2214   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2215   // Where the min and max could be reversed
2216   Instruction *MinMax2;
2217   BinaryOperator *AddSub;
2218   const APInt *MinValue, *MaxValue;
2219   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2220     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2221       return nullptr;
2222   } else if (match(&MinMax1,
2223                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2224     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2225       return nullptr;
2226   } else
2227     return nullptr;
2228 
2229   // Check that the constants clamp a saturate, and that the new type would be
2230   // sensible to convert to.
2231   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2232     return nullptr;
2233   // In what bitwidth can this be treated as saturating arithmetics?
2234   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2235   // FIXME: This isn't quite right for vectors, but using the scalar type is a
2236   // good first approximation for what should be done there.
2237   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2238     return nullptr;
2239 
2240   // Also make sure that the number of uses is as expected. The "3"s are for the
2241   // the two items of min/max (the compare and the select).
2242   if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
2243     return nullptr;
2244 
2245   // Create the new type (which can be a vector type)
2246   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2247   // Match the two extends from the add/sub
2248   Value *A, *B;
2249   if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2250     return nullptr;
2251   // And check the incoming values are of a type smaller than or equal to the
2252   // size of the saturation. Otherwise the higher bits can cause different
2253   // results.
2254   if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2255       B->getType()->getScalarSizeInBits() > NewBitWidth)
2256     return nullptr;
2257 
2258   Intrinsic::ID IntrinsicID;
2259   if (AddSub->getOpcode() == Instruction::Add)
2260     IntrinsicID = Intrinsic::sadd_sat;
2261   else if (AddSub->getOpcode() == Instruction::Sub)
2262     IntrinsicID = Intrinsic::ssub_sat;
2263   else
2264     return nullptr;
2265 
2266   // Finally create and return the sat intrinsic, truncated to the new type
2267   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2268   Value *AT = Builder.CreateSExt(A, NewTy);
2269   Value *BT = Builder.CreateSExt(B, NewTy);
2270   Value *Sat = Builder.CreateCall(F, {AT, BT});
2271   return CastInst::Create(Instruction::SExt, Sat, Ty);
2272 }
2273 
2274 /// Reduce a sequence of min/max with a common operand.
2275 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2276                                         Value *RHS,
2277                                         InstCombiner::BuilderTy &Builder) {
2278   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2279   // TODO: Allow FP min/max with nnan/nsz.
2280   if (!LHS->getType()->isIntOrIntVectorTy())
2281     return nullptr;
2282 
2283   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2284   Value *A, *B, *C, *D;
2285   SelectPatternResult L = matchSelectPattern(LHS, A, B);
2286   SelectPatternResult R = matchSelectPattern(RHS, C, D);
2287   if (SPF != L.Flavor || L.Flavor != R.Flavor)
2288     return nullptr;
2289 
2290   // Look for a common operand. The use checks are different than usual because
2291   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2292   // the select.
2293   Value *MinMaxOp = nullptr;
2294   Value *ThirdOp = nullptr;
2295   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2296     // If the LHS is only used in this chain and the RHS is used outside of it,
2297     // reuse the RHS min/max because that will eliminate the LHS.
2298     if (D == A || C == A) {
2299       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2300       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2301       MinMaxOp = RHS;
2302       ThirdOp = B;
2303     } else if (D == B || C == B) {
2304       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2305       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2306       MinMaxOp = RHS;
2307       ThirdOp = A;
2308     }
2309   } else if (!RHS->hasNUsesOrMore(3)) {
2310     // Reuse the LHS. This will eliminate the RHS.
2311     if (D == A || D == B) {
2312       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2313       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2314       MinMaxOp = LHS;
2315       ThirdOp = C;
2316     } else if (C == A || C == B) {
2317       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2318       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2319       MinMaxOp = LHS;
2320       ThirdOp = D;
2321     }
2322   }
2323   if (!MinMaxOp || !ThirdOp)
2324     return nullptr;
2325 
2326   CmpInst::Predicate P = getMinMaxPred(SPF);
2327   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2328   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2329 }
2330 
2331 /// Try to reduce a rotate pattern that includes a compare and select into a
2332 /// funnel shift intrinsic. Example:
2333 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2334 ///              --> call llvm.fshl.i32(a, a, b)
2335 static Instruction *foldSelectRotate(SelectInst &Sel,
2336                                      InstCombiner::BuilderTy &Builder) {
2337   // The false value of the select must be a rotate of the true value.
2338   Value *Or0, *Or1;
2339   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
2340     return nullptr;
2341 
2342   Value *TVal = Sel.getTrueValue();
2343   Value *SA0, *SA1;
2344   if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal),
2345                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2346       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal),
2347                                           m_ZExtOrSelf(m_Value(SA1))))))
2348     return nullptr;
2349 
2350   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
2351   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
2352   if (ShiftOpcode0 == ShiftOpcode1)
2353     return nullptr;
2354 
2355   // We have one of these patterns so far:
2356   // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
2357   // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
2358   // This must be a power-of-2 rotate for a bitmasking transform to be valid.
2359   unsigned Width = Sel.getType()->getScalarSizeInBits();
2360   if (!isPowerOf2_32(Width))
2361     return nullptr;
2362 
2363   // Check the shift amounts to see if they are an opposite pair.
2364   Value *ShAmt;
2365   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2366     ShAmt = SA0;
2367   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2368     ShAmt = SA1;
2369   else
2370     return nullptr;
2371 
2372   // Finally, see if the select is filtering out a shift-by-zero.
2373   Value *Cond = Sel.getCondition();
2374   ICmpInst::Predicate Pred;
2375   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2376       Pred != ICmpInst::ICMP_EQ)
2377     return nullptr;
2378 
2379   // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2380   // Convert to funnel shift intrinsic.
2381   bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
2382                 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
2383   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2384   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2385   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2386   return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
2387 }
2388 
2389 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2390                                          InstCombiner::BuilderTy &Builder) {
2391   Value *Cond = Sel.getCondition();
2392   Value *TVal = Sel.getTrueValue();
2393   Value *FVal = Sel.getFalseValue();
2394   Type *SelType = Sel.getType();
2395 
2396   // Match select ?, TC, FC where the constants are equal but negated.
2397   // TODO: Generalize to handle a negated variable operand?
2398   const APFloat *TC, *FC;
2399   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2400       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2401     return nullptr;
2402 
2403   assert(TC != FC && "Expected equal select arms to simplify");
2404 
2405   Value *X;
2406   const APInt *C;
2407   bool IsTrueIfSignSet;
2408   ICmpInst::Predicate Pred;
2409   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2410       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2411       X->getType() != SelType)
2412     return nullptr;
2413 
2414   // If needed, negate the value that will be the sign argument of the copysign:
2415   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2416   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2417   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2418   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2419   if (IsTrueIfSignSet ^ TC->isNegative())
2420     X = Builder.CreateFNegFMF(X, &Sel);
2421 
2422   // Canonicalize the magnitude argument as the positive constant since we do
2423   // not care about its sign.
2424   Value *MagArg = TC->isNegative() ? FVal : TVal;
2425   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2426                                           Sel.getType());
2427   Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X });
2428   CopySign->setFastMathFlags(Sel.getFastMathFlags());
2429   return CopySign;
2430 }
2431 
2432 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2433   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2434   if (!VecTy)
2435     return nullptr;
2436 
2437   unsigned NumElts = VecTy->getNumElements();
2438   APInt UndefElts(NumElts, 0);
2439   APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts));
2440   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2441     if (V != &Sel)
2442       return replaceInstUsesWith(Sel, V);
2443     return &Sel;
2444   }
2445 
2446   // A select of a "select shuffle" with a common operand can be rearranged
2447   // to select followed by "select shuffle". Because of poison, this only works
2448   // in the case of a shuffle with no undefined mask elements.
2449   Value *Cond = Sel.getCondition();
2450   Value *TVal = Sel.getTrueValue();
2451   Value *FVal = Sel.getFalseValue();
2452   Value *X, *Y;
2453   ArrayRef<int> Mask;
2454   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2455       !is_contained(Mask, UndefMaskElem) &&
2456       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2457     if (X == FVal) {
2458       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2459       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2460       return new ShuffleVectorInst(X, NewSel, Mask);
2461     }
2462     if (Y == FVal) {
2463       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2464       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2465       return new ShuffleVectorInst(NewSel, Y, Mask);
2466     }
2467   }
2468   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2469       !is_contained(Mask, UndefMaskElem) &&
2470       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2471     if (X == TVal) {
2472       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2473       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2474       return new ShuffleVectorInst(X, NewSel, Mask);
2475     }
2476     if (Y == TVal) {
2477       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2478       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2479       return new ShuffleVectorInst(NewSel, Y, Mask);
2480     }
2481   }
2482 
2483   return nullptr;
2484 }
2485 
2486 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2487                                         const DominatorTree &DT,
2488                                         InstCombiner::BuilderTy &Builder) {
2489   // Find the block's immediate dominator that ends with a conditional branch
2490   // that matches select's condition (maybe inverted).
2491   auto *IDomNode = DT[BB]->getIDom();
2492   if (!IDomNode)
2493     return nullptr;
2494   BasicBlock *IDom = IDomNode->getBlock();
2495 
2496   Value *Cond = Sel.getCondition();
2497   Value *IfTrue, *IfFalse;
2498   BasicBlock *TrueSucc, *FalseSucc;
2499   if (match(IDom->getTerminator(),
2500             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2501                  m_BasicBlock(FalseSucc)))) {
2502     IfTrue = Sel.getTrueValue();
2503     IfFalse = Sel.getFalseValue();
2504   } else if (match(IDom->getTerminator(),
2505                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2506                         m_BasicBlock(FalseSucc)))) {
2507     IfTrue = Sel.getFalseValue();
2508     IfFalse = Sel.getTrueValue();
2509   } else
2510     return nullptr;
2511 
2512   // Make sure the branches are actually different.
2513   if (TrueSucc == FalseSucc)
2514     return nullptr;
2515 
2516   // We want to replace select %cond, %a, %b with a phi that takes value %a
2517   // for all incoming edges that are dominated by condition `%cond == true`,
2518   // and value %b for edges dominated by condition `%cond == false`. If %a
2519   // or %b are also phis from the same basic block, we can go further and take
2520   // their incoming values from the corresponding blocks.
2521   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2522   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2523   DenseMap<BasicBlock *, Value *> Inputs;
2524   for (auto *Pred : predecessors(BB)) {
2525     // Check implication.
2526     BasicBlockEdge Incoming(Pred, BB);
2527     if (DT.dominates(TrueEdge, Incoming))
2528       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2529     else if (DT.dominates(FalseEdge, Incoming))
2530       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2531     else
2532       return nullptr;
2533     // Check availability.
2534     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2535       if (!DT.dominates(Insn, Pred->getTerminator()))
2536         return nullptr;
2537   }
2538 
2539   Builder.SetInsertPoint(&*BB->begin());
2540   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2541   for (auto *Pred : predecessors(BB))
2542     PN->addIncoming(Inputs[Pred], Pred);
2543   PN->takeName(&Sel);
2544   return PN;
2545 }
2546 
2547 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2548                                     InstCombiner::BuilderTy &Builder) {
2549   // Try to replace this select with Phi in one of these blocks.
2550   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2551   CandidateBlocks.insert(Sel.getParent());
2552   for (Value *V : Sel.operands())
2553     if (auto *I = dyn_cast<Instruction>(V))
2554       CandidateBlocks.insert(I->getParent());
2555 
2556   for (BasicBlock *BB : CandidateBlocks)
2557     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2558       return PN;
2559   return nullptr;
2560 }
2561 
2562 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2563   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2564   if (!FI)
2565     return nullptr;
2566 
2567   Value *Cond = FI->getOperand(0);
2568   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2569 
2570   //   select (freeze(x == y)), x, y --> y
2571   //   select (freeze(x != y)), x, y --> x
2572   // The freeze should be only used by this select. Otherwise, remaining uses of
2573   // the freeze can observe a contradictory value.
2574   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2575   //   a = select c, x, y   ;
2576   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2577   //                        ; to y, this can happen.
2578   CmpInst::Predicate Pred;
2579   if (FI->hasOneUse() &&
2580       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2581       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2582     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2583   }
2584 
2585   return nullptr;
2586 }
2587 
2588 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2589   Value *CondVal = SI.getCondition();
2590   Value *TrueVal = SI.getTrueValue();
2591   Value *FalseVal = SI.getFalseValue();
2592   Type *SelType = SI.getType();
2593 
2594   // FIXME: Remove this workaround when freeze related patches are done.
2595   // For select with undef operand which feeds into an equality comparison,
2596   // don't simplify it so loop unswitch can know the equality comparison
2597   // may have an undef operand. This is a workaround for PR31652 caused by
2598   // descrepancy about branch on undef between LoopUnswitch and GVN.
2599   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
2600     if (llvm::any_of(SI.users(), [&](User *U) {
2601           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2602           if (CI && CI->isEquality())
2603             return true;
2604           return false;
2605         })) {
2606       return nullptr;
2607     }
2608   }
2609 
2610   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2611                                     SQ.getWithInstruction(&SI)))
2612     return replaceInstUsesWith(SI, V);
2613 
2614   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2615     return I;
2616 
2617   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2618     return I;
2619 
2620   CmpInst::Predicate Pred;
2621 
2622   if (SelType->isIntOrIntVectorTy(1) &&
2623       TrueVal->getType() == CondVal->getType()) {
2624     if (match(TrueVal, m_One())) {
2625       // Change: A = select B, true, C --> A = or B, C
2626       return BinaryOperator::CreateOr(CondVal, FalseVal);
2627     }
2628     if (match(TrueVal, m_Zero())) {
2629       // Change: A = select B, false, C --> A = and !B, C
2630       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2631       return BinaryOperator::CreateAnd(NotCond, FalseVal);
2632     }
2633     if (match(FalseVal, m_Zero())) {
2634       // Change: A = select B, C, false --> A = and B, C
2635       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2636     }
2637     if (match(FalseVal, m_One())) {
2638       // Change: A = select B, C, true --> A = or !B, C
2639       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2640       return BinaryOperator::CreateOr(NotCond, TrueVal);
2641     }
2642 
2643     // select a, a, b  -> a | b
2644     // select a, b, a  -> a & b
2645     if (CondVal == TrueVal)
2646       return BinaryOperator::CreateOr(CondVal, FalseVal);
2647     if (CondVal == FalseVal)
2648       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2649 
2650     // select a, ~a, b -> (~a) & b
2651     // select a, b, ~a -> (~a) | b
2652     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2653       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
2654     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2655       return BinaryOperator::CreateOr(TrueVal, FalseVal);
2656   }
2657 
2658   // Selecting between two integer or vector splat integer constants?
2659   //
2660   // Note that we don't handle a scalar select of vectors:
2661   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2662   // because that may need 3 instructions to splat the condition value:
2663   // extend, insertelement, shufflevector.
2664   if (SelType->isIntOrIntVectorTy() &&
2665       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2666     // select C, 1, 0 -> zext C to int
2667     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2668       return new ZExtInst(CondVal, SelType);
2669 
2670     // select C, -1, 0 -> sext C to int
2671     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2672       return new SExtInst(CondVal, SelType);
2673 
2674     // select C, 0, 1 -> zext !C to int
2675     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2676       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2677       return new ZExtInst(NotCond, SelType);
2678     }
2679 
2680     // select C, 0, -1 -> sext !C to int
2681     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2682       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2683       return new SExtInst(NotCond, SelType);
2684     }
2685   }
2686 
2687   // See if we are selecting two values based on a comparison of the two values.
2688   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
2689     Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1);
2690     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2691         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2692       // Canonicalize to use ordered comparisons by swapping the select
2693       // operands.
2694       //
2695       // e.g.
2696       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2697       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2698         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2699         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2700         // FIXME: The FMF should propagate from the select, not the fcmp.
2701         Builder.setFastMathFlags(FCI->getFastMathFlags());
2702         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2703                                             FCI->getName() + ".inv");
2704         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2705         return replaceInstUsesWith(SI, NewSel);
2706       }
2707 
2708       // NOTE: if we wanted to, this is where to detect MIN/MAX
2709     }
2710   }
2711 
2712   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2713   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2714   // also require nnan because we do not want to unintentionally change the
2715   // sign of a NaN value.
2716   // FIXME: These folds should test/propagate FMF from the select, not the
2717   //        fsub or fneg.
2718   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2719   Instruction *FSub;
2720   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2721       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2722       match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2723       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2724     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2725     return replaceInstUsesWith(SI, Fabs);
2726   }
2727   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2728   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2729       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2730       match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2731       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2732     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2733     return replaceInstUsesWith(SI, Fabs);
2734   }
2735   // With nnan and nsz:
2736   // (X <  +/-0.0) ? -X : X --> fabs(X)
2737   // (X <= +/-0.0) ? -X : X --> fabs(X)
2738   Instruction *FNeg;
2739   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2740       match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2741       match(TrueVal, m_Instruction(FNeg)) &&
2742       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2743       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2744        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2745     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2746     return replaceInstUsesWith(SI, Fabs);
2747   }
2748   // With nnan and nsz:
2749   // (X >  +/-0.0) ? X : -X --> fabs(X)
2750   // (X >= +/-0.0) ? X : -X --> fabs(X)
2751   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2752       match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2753       match(FalseVal, m_Instruction(FNeg)) &&
2754       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2755       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2756        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2757     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2758     return replaceInstUsesWith(SI, Fabs);
2759   }
2760 
2761   // See if we are selecting two values based on a comparison of the two values.
2762   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2763     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2764       return Result;
2765 
2766   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2767     return Add;
2768   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2769     return Add;
2770   if (Instruction *Or = foldSetClearBits(SI, Builder))
2771     return Or;
2772 
2773   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2774   auto *TI = dyn_cast<Instruction>(TrueVal);
2775   auto *FI = dyn_cast<Instruction>(FalseVal);
2776   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2777     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2778       return IV;
2779 
2780   if (Instruction *I = foldSelectExtConst(SI))
2781     return I;
2782 
2783   // See if we can fold the select into one of our operands.
2784   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2785     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2786       return FoldI;
2787 
2788     Value *LHS, *RHS;
2789     Instruction::CastOps CastOp;
2790     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2791     auto SPF = SPR.Flavor;
2792     if (SPF) {
2793       Value *LHS2, *RHS2;
2794       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2795         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2796                                           RHS2, SI, SPF, RHS))
2797           return R;
2798       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2799         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2800                                           RHS2, SI, SPF, LHS))
2801           return R;
2802       // TODO.
2803       // ABS(-X) -> ABS(X)
2804     }
2805 
2806     if (SelectPatternResult::isMinOrMax(SPF)) {
2807       // Canonicalize so that
2808       // - type casts are outside select patterns.
2809       // - float clamp is transformed to min/max pattern
2810 
2811       bool IsCastNeeded = LHS->getType() != SelType;
2812       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2813       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2814       if (IsCastNeeded ||
2815           (LHS->getType()->isFPOrFPVectorTy() &&
2816            ((CmpLHS != LHS && CmpLHS != RHS) ||
2817             (CmpRHS != LHS && CmpRHS != RHS)))) {
2818         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2819 
2820         Value *Cmp;
2821         if (CmpInst::isIntPredicate(MinMaxPred)) {
2822           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2823         } else {
2824           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2825           auto FMF =
2826               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2827           Builder.setFastMathFlags(FMF);
2828           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2829         }
2830 
2831         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2832         if (!IsCastNeeded)
2833           return replaceInstUsesWith(SI, NewSI);
2834 
2835         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2836         return replaceInstUsesWith(SI, NewCast);
2837       }
2838 
2839       // MAX(~a, ~b) -> ~MIN(a, b)
2840       // MAX(~a, C)  -> ~MIN(a, ~C)
2841       // MIN(~a, ~b) -> ~MAX(a, b)
2842       // MIN(~a, C)  -> ~MAX(a, ~C)
2843       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2844         Value *A;
2845         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2846             !isFreeToInvert(A, A->hasOneUse()) &&
2847             // Passing false to only consider m_Not and constants.
2848             isFreeToInvert(Y, false)) {
2849           Value *B = Builder.CreateNot(Y);
2850           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2851                                           A, B);
2852           // Copy the profile metadata.
2853           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2854             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2855             // Swap the metadata if the operands are swapped.
2856             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2857               cast<SelectInst>(NewMinMax)->swapProfMetadata();
2858           }
2859 
2860           return BinaryOperator::CreateNot(NewMinMax);
2861         }
2862 
2863         return nullptr;
2864       };
2865 
2866       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2867         return I;
2868       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2869         return I;
2870 
2871       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2872         return I;
2873 
2874       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2875         return I;
2876       if (Instruction *I = matchSAddSubSat(SI))
2877         return I;
2878     }
2879   }
2880 
2881   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2882   // minnum/maxnum intrinsics.
2883   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2884     Value *X, *Y;
2885     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2886       return replaceInstUsesWith(
2887           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2888 
2889     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2890       return replaceInstUsesWith(
2891           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2892   }
2893 
2894   // See if we can fold the select into a phi node if the condition is a select.
2895   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2896     // The true/false values have to be live in the PHI predecessor's blocks.
2897     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2898         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2899       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2900         return NV;
2901 
2902   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2903     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2904       // select(C, select(C, a, b), c) -> select(C, a, c)
2905       if (TrueSI->getCondition() == CondVal) {
2906         if (SI.getTrueValue() == TrueSI->getTrueValue())
2907           return nullptr;
2908         return replaceOperand(SI, 1, TrueSI->getTrueValue());
2909       }
2910       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2911       // We choose this as normal form to enable folding on the And and
2912       // shortening paths for the values (this helps getUnderlyingObjects() for
2913       // example).
2914       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2915         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2916         replaceOperand(SI, 0, And);
2917         replaceOperand(SI, 1, TrueSI->getTrueValue());
2918         return &SI;
2919       }
2920     }
2921   }
2922   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2923     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2924       // select(C, a, select(C, b, c)) -> select(C, a, c)
2925       if (FalseSI->getCondition() == CondVal) {
2926         if (SI.getFalseValue() == FalseSI->getFalseValue())
2927           return nullptr;
2928         return replaceOperand(SI, 2, FalseSI->getFalseValue());
2929       }
2930       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2931       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2932         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2933         replaceOperand(SI, 0, Or);
2934         replaceOperand(SI, 2, FalseSI->getFalseValue());
2935         return &SI;
2936       }
2937     }
2938   }
2939 
2940   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2941     // The select might be preventing a division by 0.
2942     switch (BO->getOpcode()) {
2943     default:
2944       return true;
2945     case Instruction::SRem:
2946     case Instruction::URem:
2947     case Instruction::SDiv:
2948     case Instruction::UDiv:
2949       return false;
2950     }
2951   };
2952 
2953   // Try to simplify a binop sandwiched between 2 selects with the same
2954   // condition.
2955   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2956   BinaryOperator *TrueBO;
2957   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2958       canMergeSelectThroughBinop(TrueBO)) {
2959     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2960       if (TrueBOSI->getCondition() == CondVal) {
2961         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
2962         Worklist.push(TrueBO);
2963         return &SI;
2964       }
2965     }
2966     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2967       if (TrueBOSI->getCondition() == CondVal) {
2968         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
2969         Worklist.push(TrueBO);
2970         return &SI;
2971       }
2972     }
2973   }
2974 
2975   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2976   BinaryOperator *FalseBO;
2977   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2978       canMergeSelectThroughBinop(FalseBO)) {
2979     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2980       if (FalseBOSI->getCondition() == CondVal) {
2981         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
2982         Worklist.push(FalseBO);
2983         return &SI;
2984       }
2985     }
2986     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2987       if (FalseBOSI->getCondition() == CondVal) {
2988         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
2989         Worklist.push(FalseBO);
2990         return &SI;
2991       }
2992     }
2993   }
2994 
2995   Value *NotCond;
2996   if (match(CondVal, m_Not(m_Value(NotCond)))) {
2997     replaceOperand(SI, 0, NotCond);
2998     SI.swapValues();
2999     SI.swapProfMetadata();
3000     return &SI;
3001   }
3002 
3003   if (Instruction *I = foldVectorSelect(SI))
3004     return I;
3005 
3006   // If we can compute the condition, there's no need for a select.
3007   // Like the above fold, we are attempting to reduce compile-time cost by
3008   // putting this fold here with limitations rather than in InstSimplify.
3009   // The motivation for this call into value tracking is to take advantage of
3010   // the assumption cache, so make sure that is populated.
3011   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3012     KnownBits Known(1);
3013     computeKnownBits(CondVal, Known, 0, &SI);
3014     if (Known.One.isOneValue())
3015       return replaceInstUsesWith(SI, TrueVal);
3016     if (Known.Zero.isOneValue())
3017       return replaceInstUsesWith(SI, FalseVal);
3018   }
3019 
3020   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3021     return BitCastSel;
3022 
3023   // Simplify selects that test the returned flag of cmpxchg instructions.
3024   if (Value *V = foldSelectCmpXchg(SI))
3025     return replaceInstUsesWith(SI, V);
3026 
3027   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3028     return Select;
3029 
3030   if (Instruction *Rot = foldSelectRotate(SI, Builder))
3031     return Rot;
3032 
3033   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3034     return Copysign;
3035 
3036   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3037     return replaceInstUsesWith(SI, PN);
3038 
3039   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3040     return replaceInstUsesWith(SI, Fr);
3041 
3042   return nullptr;
3043 }
3044