1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41 #include <cassert>
42 #include <utility>
43 
44 using namespace llvm;
45 using namespace PatternMatch;
46 
47 #define DEBUG_TYPE "instcombine"
48 
49 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
50                            SelectPatternFlavor SPF, Value *A, Value *B) {
51   CmpInst::Predicate Pred = getMinMaxPred(SPF);
52   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
53   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
54 }
55 
56 /// Replace a select operand based on an equality comparison with the identity
57 /// constant of a binop.
58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
59                                             const TargetLibraryInfo &TLI) {
60   // The select condition must be an equality compare with a constant operand.
61   Value *X;
62   Constant *C;
63   CmpInst::Predicate Pred;
64   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
65     return nullptr;
66 
67   bool IsEq;
68   if (ICmpInst::isEquality(Pred))
69     IsEq = Pred == ICmpInst::ICMP_EQ;
70   else if (Pred == FCmpInst::FCMP_OEQ)
71     IsEq = true;
72   else if (Pred == FCmpInst::FCMP_UNE)
73     IsEq = false;
74   else
75     return nullptr;
76 
77   // A select operand must be a binop.
78   BinaryOperator *BO;
79   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
80     return nullptr;
81 
82   // The compare constant must be the identity constant for that binop.
83   // If this a floating-point compare with 0.0, any zero constant will do.
84   Type *Ty = BO->getType();
85   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
86   if (IdC != C) {
87     if (!IdC || !CmpInst::isFPPredicate(Pred))
88       return nullptr;
89     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
90       return nullptr;
91   }
92 
93   // Last, match the compare variable operand with a binop operand.
94   Value *Y;
95   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
96     return nullptr;
97   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
98     return nullptr;
99 
100   // +0.0 compares equal to -0.0, and so it does not behave as required for this
101   // transform. Bail out if we can not exclude that possibility.
102   if (isa<FPMathOperator>(BO))
103     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
104       return nullptr;
105 
106   // BO = binop Y, X
107   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
108   // =>
109   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
110   Sel.setOperand(IsEq ? 1 : 2, Y);
111   return &Sel;
112 }
113 
114 /// This folds:
115 ///  select (icmp eq (and X, C1)), TC, FC
116 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
117 /// To something like:
118 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
119 /// Or:
120 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
121 /// With some variations depending if FC is larger than TC, or the shift
122 /// isn't needed, or the bit widths don't match.
123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
124                                 InstCombiner::BuilderTy &Builder) {
125   const APInt *SelTC, *SelFC;
126   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
127       !match(Sel.getFalseValue(), m_APInt(SelFC)))
128     return nullptr;
129 
130   // If this is a vector select, we need a vector compare.
131   Type *SelType = Sel.getType();
132   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
133     return nullptr;
134 
135   Value *V;
136   APInt AndMask;
137   bool CreateAnd = false;
138   ICmpInst::Predicate Pred = Cmp->getPredicate();
139   if (ICmpInst::isEquality(Pred)) {
140     if (!match(Cmp->getOperand(1), m_Zero()))
141       return nullptr;
142 
143     V = Cmp->getOperand(0);
144     const APInt *AndRHS;
145     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
146       return nullptr;
147 
148     AndMask = *AndRHS;
149   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
150                                   Pred, V, AndMask)) {
151     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
152     if (!AndMask.isPowerOf2())
153       return nullptr;
154 
155     CreateAnd = true;
156   } else {
157     return nullptr;
158   }
159 
160   // In general, when both constants are non-zero, we would need an offset to
161   // replace the select. This would require more instructions than we started
162   // with. But there's one special-case that we handle here because it can
163   // simplify/reduce the instructions.
164   APInt TC = *SelTC;
165   APInt FC = *SelFC;
166   if (!TC.isNullValue() && !FC.isNullValue()) {
167     // If the select constants differ by exactly one bit and that's the same
168     // bit that is masked and checked by the select condition, the select can
169     // be replaced by bitwise logic to set/clear one bit of the constant result.
170     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
171       return nullptr;
172     if (CreateAnd) {
173       // If we have to create an 'and', then we must kill the cmp to not
174       // increase the instruction count.
175       if (!Cmp->hasOneUse())
176         return nullptr;
177       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
178     }
179     bool ExtraBitInTC = TC.ugt(FC);
180     if (Pred == ICmpInst::ICMP_EQ) {
181       // If the masked bit in V is clear, clear or set the bit in the result:
182       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
183       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
184       Constant *C = ConstantInt::get(SelType, TC);
185       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
186     }
187     if (Pred == ICmpInst::ICMP_NE) {
188       // If the masked bit in V is set, set or clear the bit in the result:
189       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
190       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
191       Constant *C = ConstantInt::get(SelType, FC);
192       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
193     }
194     llvm_unreachable("Only expecting equality predicates");
195   }
196 
197   // Make sure one of the select arms is a power-of-2.
198   if (!TC.isPowerOf2() && !FC.isPowerOf2())
199     return nullptr;
200 
201   // Determine which shift is needed to transform result of the 'and' into the
202   // desired result.
203   const APInt &ValC = !TC.isNullValue() ? TC : FC;
204   unsigned ValZeros = ValC.logBase2();
205   unsigned AndZeros = AndMask.logBase2();
206 
207   // Insert the 'and' instruction on the input to the truncate.
208   if (CreateAnd)
209     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
210 
211   // If types don't match, we can still convert the select by introducing a zext
212   // or a trunc of the 'and'.
213   if (ValZeros > AndZeros) {
214     V = Builder.CreateZExtOrTrunc(V, SelType);
215     V = Builder.CreateShl(V, ValZeros - AndZeros);
216   } else if (ValZeros < AndZeros) {
217     V = Builder.CreateLShr(V, AndZeros - ValZeros);
218     V = Builder.CreateZExtOrTrunc(V, SelType);
219   } else {
220     V = Builder.CreateZExtOrTrunc(V, SelType);
221   }
222 
223   // Okay, now we know that everything is set up, we just don't know whether we
224   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
225   bool ShouldNotVal = !TC.isNullValue();
226   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
227   if (ShouldNotVal)
228     V = Builder.CreateXor(V, ValC);
229 
230   return V;
231 }
232 
233 /// We want to turn code that looks like this:
234 ///   %C = or %A, %B
235 ///   %D = select %cond, %C, %A
236 /// into:
237 ///   %C = select %cond, %B, 0
238 ///   %D = or %A, %C
239 ///
240 /// Assuming that the specified instruction is an operand to the select, return
241 /// a bitmask indicating which operands of this instruction are foldable if they
242 /// equal the other incoming value of the select.
243 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
244   switch (I->getOpcode()) {
245   case Instruction::Add:
246   case Instruction::Mul:
247   case Instruction::And:
248   case Instruction::Or:
249   case Instruction::Xor:
250     return 3;              // Can fold through either operand.
251   case Instruction::Sub:   // Can only fold on the amount subtracted.
252   case Instruction::Shl:   // Can only fold on the shift amount.
253   case Instruction::LShr:
254   case Instruction::AShr:
255     return 1;
256   default:
257     return 0;              // Cannot fold
258   }
259 }
260 
261 /// For the same transformation as the previous function, return the identity
262 /// constant that goes into the select.
263 static APInt getSelectFoldableConstant(BinaryOperator *I) {
264   switch (I->getOpcode()) {
265   default: llvm_unreachable("This cannot happen!");
266   case Instruction::Add:
267   case Instruction::Sub:
268   case Instruction::Or:
269   case Instruction::Xor:
270   case Instruction::Shl:
271   case Instruction::LShr:
272   case Instruction::AShr:
273     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
274   case Instruction::And:
275     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
276   case Instruction::Mul:
277     return APInt(I->getType()->getScalarSizeInBits(), 1);
278   }
279 }
280 
281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
283                                           Instruction *FI) {
284   // Don't break up min/max patterns. The hasOneUse checks below prevent that
285   // for most cases, but vector min/max with bitcasts can be transformed. If the
286   // one-use restrictions are eased for other patterns, we still don't want to
287   // obfuscate min/max.
288   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
289        match(&SI, m_SMax(m_Value(), m_Value())) ||
290        match(&SI, m_UMin(m_Value(), m_Value())) ||
291        match(&SI, m_UMax(m_Value(), m_Value()))))
292     return nullptr;
293 
294   // If this is a cast from the same type, merge.
295   Value *Cond = SI.getCondition();
296   Type *CondTy = Cond->getType();
297   if (TI->getNumOperands() == 1 && TI->isCast()) {
298     Type *FIOpndTy = FI->getOperand(0)->getType();
299     if (TI->getOperand(0)->getType() != FIOpndTy)
300       return nullptr;
301 
302     // The select condition may be a vector. We may only change the operand
303     // type if the vector width remains the same (and matches the condition).
304     if (CondTy->isVectorTy()) {
305       if (!FIOpndTy->isVectorTy())
306         return nullptr;
307       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308         return nullptr;
309 
310       // TODO: If the backend knew how to deal with casts better, we could
311       // remove this limitation. For now, there's too much potential to create
312       // worse codegen by promoting the select ahead of size-altering casts
313       // (PR28160).
314       //
315       // Note that ValueTracking's matchSelectPattern() looks through casts
316       // without checking 'hasOneUse' when it matches min/max patterns, so this
317       // transform may end up happening anyway.
318       if (TI->getOpcode() != Instruction::BitCast &&
319           (!TI->hasOneUse() || !FI->hasOneUse()))
320         return nullptr;
321     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322       // TODO: The one-use restrictions for a scalar select could be eased if
323       // the fold of a select in visitLoadInst() was enhanced to match a pattern
324       // that includes a cast.
325       return nullptr;
326     }
327 
328     // Fold this by inserting a select from the input values.
329     Value *NewSI =
330         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
331                              SI.getName() + ".v", &SI);
332     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333                             TI->getType());
334   }
335 
336   // Cond ? -X : -Y --> -(Cond ? X : Y)
337   Value *X, *Y;
338   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
339       (TI->hasOneUse() || FI->hasOneUse())) {
340     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
341     // TODO: Remove the hack for the binop form when the unary op is optimized
342     //       properly with all IR passes.
343     if (TI->getOpcode() != Instruction::FNeg)
344       return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI));
345     return UnaryOperator::CreateFNeg(NewSel);
346   }
347 
348   // Only handle binary operators (including two-operand getelementptr) with
349   // one-use here. As with the cast case above, it may be possible to relax the
350   // one-use constraint, but that needs be examined carefully since it may not
351   // reduce the total number of instructions.
352   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
353       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
354       !TI->hasOneUse() || !FI->hasOneUse())
355     return nullptr;
356 
357   // Figure out if the operations have any operands in common.
358   Value *MatchOp, *OtherOpT, *OtherOpF;
359   bool MatchIsOpZero;
360   if (TI->getOperand(0) == FI->getOperand(0)) {
361     MatchOp  = TI->getOperand(0);
362     OtherOpT = TI->getOperand(1);
363     OtherOpF = FI->getOperand(1);
364     MatchIsOpZero = true;
365   } else if (TI->getOperand(1) == FI->getOperand(1)) {
366     MatchOp  = TI->getOperand(1);
367     OtherOpT = TI->getOperand(0);
368     OtherOpF = FI->getOperand(0);
369     MatchIsOpZero = false;
370   } else if (!TI->isCommutative()) {
371     return nullptr;
372   } else if (TI->getOperand(0) == FI->getOperand(1)) {
373     MatchOp  = TI->getOperand(0);
374     OtherOpT = TI->getOperand(1);
375     OtherOpF = FI->getOperand(0);
376     MatchIsOpZero = true;
377   } else if (TI->getOperand(1) == FI->getOperand(0)) {
378     MatchOp  = TI->getOperand(1);
379     OtherOpT = TI->getOperand(0);
380     OtherOpF = FI->getOperand(1);
381     MatchIsOpZero = true;
382   } else {
383     return nullptr;
384   }
385 
386   // If the select condition is a vector, the operands of the original select's
387   // operands also must be vectors. This may not be the case for getelementptr
388   // for example.
389   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
390                                !OtherOpF->getType()->isVectorTy()))
391     return nullptr;
392 
393   // If we reach here, they do have operations in common.
394   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
395                                       SI.getName() + ".v", &SI);
396   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
397   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
398   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
399     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
400     NewBO->copyIRFlags(TI);
401     NewBO->andIRFlags(FI);
402     return NewBO;
403   }
404   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
405     auto *FGEP = cast<GetElementPtrInst>(FI);
406     Type *ElementType = TGEP->getResultElementType();
407     return TGEP->isInBounds() && FGEP->isInBounds()
408                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
409                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
410   }
411   llvm_unreachable("Expected BinaryOperator or GEP");
412   return nullptr;
413 }
414 
415 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
416   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
417     return false;
418   return C1I.isOneValue() || C1I.isAllOnesValue() ||
419          C2I.isOneValue() || C2I.isAllOnesValue();
420 }
421 
422 /// Try to fold the select into one of the operands to allow further
423 /// optimization.
424 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
425                                             Value *FalseVal) {
426   // See the comment above GetSelectFoldableOperands for a description of the
427   // transformation we are doing here.
428   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
429     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
430       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
431         unsigned OpToFold = 0;
432         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
433           OpToFold = 1;
434         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
435           OpToFold = 2;
436         }
437 
438         if (OpToFold) {
439           APInt CI = getSelectFoldableConstant(TVI);
440           Value *OOp = TVI->getOperand(2-OpToFold);
441           // Avoid creating select between 2 constants unless it's selecting
442           // between 0, 1 and -1.
443           const APInt *OOpC;
444           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
445           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
446             Value *C = ConstantInt::get(OOp->getType(), CI);
447             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
448             NewSel->takeName(TVI);
449             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
450                                                         FalseVal, NewSel);
451             BO->copyIRFlags(TVI);
452             return BO;
453           }
454         }
455       }
456     }
457   }
458 
459   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
460     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
461       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
462         unsigned OpToFold = 0;
463         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
464           OpToFold = 1;
465         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
466           OpToFold = 2;
467         }
468 
469         if (OpToFold) {
470           APInt CI = getSelectFoldableConstant(FVI);
471           Value *OOp = FVI->getOperand(2-OpToFold);
472           // Avoid creating select between 2 constants unless it's selecting
473           // between 0, 1 and -1.
474           const APInt *OOpC;
475           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
476           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
477             Value *C = ConstantInt::get(OOp->getType(), CI);
478             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
479             NewSel->takeName(FVI);
480             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
481                                                         TrueVal, NewSel);
482             BO->copyIRFlags(FVI);
483             return BO;
484           }
485         }
486       }
487     }
488   }
489 
490   return nullptr;
491 }
492 
493 /// We want to turn:
494 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
495 /// into:
496 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
497 /// Note:
498 ///   Z may be 0 if lshr is missing.
499 /// Worst-case scenario is that we will replace 5 instructions with 5 different
500 /// instructions, but we got rid of select.
501 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
502                                          Value *TVal, Value *FVal,
503                                          InstCombiner::BuilderTy &Builder) {
504   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
505         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
506         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
507     return nullptr;
508 
509   // The TrueVal has general form of:  and %B, 1
510   Value *B;
511   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
512     return nullptr;
513 
514   // Where %B may be optionally shifted:  lshr %X, %Z.
515   Value *X, *Z;
516   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
517   if (!HasShift)
518     X = B;
519 
520   Value *Y;
521   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
522     return nullptr;
523 
524   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
525   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
526   Constant *One = ConstantInt::get(SelType, 1);
527   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
528   Value *FullMask = Builder.CreateOr(Y, MaskB);
529   Value *MaskedX = Builder.CreateAnd(X, FullMask);
530   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
531   return new ZExtInst(ICmpNeZero, SelType);
532 }
533 
534 /// We want to turn:
535 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
536 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
537 /// into:
538 ///   ashr (X, Y)
539 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
540                                      Value *FalseVal,
541                                      InstCombiner::BuilderTy &Builder) {
542   ICmpInst::Predicate Pred = IC->getPredicate();
543   Value *CmpLHS = IC->getOperand(0);
544   Value *CmpRHS = IC->getOperand(1);
545   if (!CmpRHS->getType()->isIntOrIntVectorTy())
546     return nullptr;
547 
548   Value *X, *Y;
549   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
550   if ((Pred != ICmpInst::ICMP_SGT ||
551        !match(CmpRHS,
552               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
553       (Pred != ICmpInst::ICMP_SLT ||
554        !match(CmpRHS,
555               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
556     return nullptr;
557 
558   // Canonicalize so that ashr is in FalseVal.
559   if (Pred == ICmpInst::ICMP_SLT)
560     std::swap(TrueVal, FalseVal);
561 
562   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
563       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
564       match(CmpLHS, m_Specific(X))) {
565     const auto *Ashr = cast<Instruction>(FalseVal);
566     // if lshr is not exact and ashr is, this new ashr must not be exact.
567     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
568     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
569   }
570 
571   return nullptr;
572 }
573 
574 /// We want to turn:
575 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
576 /// into:
577 ///   (or (shl (and X, C1), C3), Y)
578 /// iff:
579 ///   C1 and C2 are both powers of 2
580 /// where:
581 ///   C3 = Log(C2) - Log(C1)
582 ///
583 /// This transform handles cases where:
584 /// 1. The icmp predicate is inverted
585 /// 2. The select operands are reversed
586 /// 3. The magnitude of C2 and C1 are flipped
587 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
588                                   Value *FalseVal,
589                                   InstCombiner::BuilderTy &Builder) {
590   // Only handle integer compares. Also, if this is a vector select, we need a
591   // vector compare.
592   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
593       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
594     return nullptr;
595 
596   Value *CmpLHS = IC->getOperand(0);
597   Value *CmpRHS = IC->getOperand(1);
598 
599   Value *V;
600   unsigned C1Log;
601   bool IsEqualZero;
602   bool NeedAnd = false;
603   if (IC->isEquality()) {
604     if (!match(CmpRHS, m_Zero()))
605       return nullptr;
606 
607     const APInt *C1;
608     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
609       return nullptr;
610 
611     V = CmpLHS;
612     C1Log = C1->logBase2();
613     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
614   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
615              IC->getPredicate() == ICmpInst::ICMP_SGT) {
616     // We also need to recognize (icmp slt (trunc (X)), 0) and
617     // (icmp sgt (trunc (X)), -1).
618     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
619     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
620         (!IsEqualZero && !match(CmpRHS, m_Zero())))
621       return nullptr;
622 
623     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
624       return nullptr;
625 
626     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
627     NeedAnd = true;
628   } else {
629     return nullptr;
630   }
631 
632   const APInt *C2;
633   bool OrOnTrueVal = false;
634   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
635   if (!OrOnFalseVal)
636     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
637 
638   if (!OrOnFalseVal && !OrOnTrueVal)
639     return nullptr;
640 
641   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
642 
643   unsigned C2Log = C2->logBase2();
644 
645   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
646   bool NeedShift = C1Log != C2Log;
647   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
648                        V->getType()->getScalarSizeInBits();
649 
650   // Make sure we don't create more instructions than we save.
651   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
652   if ((NeedShift + NeedXor + NeedZExtTrunc) >
653       (IC->hasOneUse() + Or->hasOneUse()))
654     return nullptr;
655 
656   if (NeedAnd) {
657     // Insert the AND instruction on the input to the truncate.
658     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
659     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
660   }
661 
662   if (C2Log > C1Log) {
663     V = Builder.CreateZExtOrTrunc(V, Y->getType());
664     V = Builder.CreateShl(V, C2Log - C1Log);
665   } else if (C1Log > C2Log) {
666     V = Builder.CreateLShr(V, C1Log - C2Log);
667     V = Builder.CreateZExtOrTrunc(V, Y->getType());
668   } else
669     V = Builder.CreateZExtOrTrunc(V, Y->getType());
670 
671   if (NeedXor)
672     V = Builder.CreateXor(V, *C2);
673 
674   return Builder.CreateOr(V, Y);
675 }
676 
677 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
678 /// There are 8 commuted/swapped variants of this pattern.
679 /// TODO: Also support a - UMIN(a,b) patterns.
680 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
681                                             const Value *TrueVal,
682                                             const Value *FalseVal,
683                                             InstCombiner::BuilderTy &Builder) {
684   ICmpInst::Predicate Pred = ICI->getPredicate();
685   if (!ICmpInst::isUnsigned(Pred))
686     return nullptr;
687 
688   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
689   if (match(TrueVal, m_Zero())) {
690     Pred = ICmpInst::getInversePredicate(Pred);
691     std::swap(TrueVal, FalseVal);
692   }
693   if (!match(FalseVal, m_Zero()))
694     return nullptr;
695 
696   Value *A = ICI->getOperand(0);
697   Value *B = ICI->getOperand(1);
698   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
699     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
700     std::swap(A, B);
701     Pred = ICmpInst::getSwappedPredicate(Pred);
702   }
703 
704   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
705          "Unexpected isUnsigned predicate!");
706 
707   // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
708   bool IsNegative = false;
709   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
710     IsNegative = true;
711   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
712     return nullptr;
713 
714   // If sub is used anywhere else, we wouldn't be able to eliminate it
715   // afterwards.
716   if (!TrueVal->hasOneUse())
717     return nullptr;
718 
719   // (a > b) ? a - b : 0 -> usub.sat(a, b)
720   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
721   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
722   if (IsNegative)
723     Result = Builder.CreateNeg(Result);
724   return Result;
725 }
726 
727 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
728                                        InstCombiner::BuilderTy &Builder) {
729   if (!Cmp->hasOneUse())
730     return nullptr;
731 
732   // Match unsigned saturated add with constant.
733   Value *Cmp0 = Cmp->getOperand(0);
734   Value *Cmp1 = Cmp->getOperand(1);
735   ICmpInst::Predicate Pred = Cmp->getPredicate();
736   Value *X;
737   const APInt *C, *CmpC;
738   if (Pred == ICmpInst::ICMP_ULT &&
739       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
740       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
741     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
742     return Builder.CreateBinaryIntrinsic(
743         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
744   }
745 
746   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
747   // There are 8 commuted variants.
748   // Canonicalize -1 (saturated result) to true value of the select. Just
749   // swapping the compare operands is legal, because the selected value is the
750   // same in case of equality, so we can interchange u< and u<=.
751   if (match(FVal, m_AllOnes())) {
752     std::swap(TVal, FVal);
753     std::swap(Cmp0, Cmp1);
754   }
755   if (!match(TVal, m_AllOnes()))
756     return nullptr;
757 
758   // Canonicalize predicate to 'ULT'.
759   if (Pred == ICmpInst::ICMP_UGT) {
760     Pred = ICmpInst::ICMP_ULT;
761     std::swap(Cmp0, Cmp1);
762   }
763   if (Pred != ICmpInst::ICMP_ULT)
764     return nullptr;
765 
766   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
767   Value *Y;
768   if (match(Cmp0, m_Not(m_Value(X))) &&
769       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
770     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
771     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
772     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
773   }
774   // The 'not' op may be included in the sum but not the compare.
775   X = Cmp0;
776   Y = Cmp1;
777   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
778     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
779     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
780     BinaryOperator *BO = cast<BinaryOperator>(FVal);
781     return Builder.CreateBinaryIntrinsic(
782         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
783   }
784   // The overflow may be detected via the add wrapping round.
785   if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
786       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
787     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
788     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
789     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
790   }
791 
792   return nullptr;
793 }
794 
795 /// Fold the following code sequence:
796 /// \code
797 ///   int a = ctlz(x & -x);
798 //    x ? 31 - a : a;
799 /// \code
800 ///
801 /// into:
802 ///   cttz(x)
803 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
804                                          Value *FalseVal,
805                                          InstCombiner::BuilderTy &Builder) {
806   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
807   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
808     return nullptr;
809 
810   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
811     std::swap(TrueVal, FalseVal);
812 
813   if (!match(FalseVal,
814              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
815     return nullptr;
816 
817   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
818     return nullptr;
819 
820   Value *X = ICI->getOperand(0);
821   auto *II = cast<IntrinsicInst>(TrueVal);
822   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
823     return nullptr;
824 
825   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
826                                           II->getType());
827   return CallInst::Create(F, {X, II->getArgOperand(1)});
828 }
829 
830 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
831 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
832 ///
833 /// For example, we can fold the following code sequence:
834 /// \code
835 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
836 ///   %1 = icmp ne i32 %x, 0
837 ///   %2 = select i1 %1, i32 %0, i32 32
838 /// \code
839 ///
840 /// into:
841 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
842 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
843                                  InstCombiner::BuilderTy &Builder) {
844   ICmpInst::Predicate Pred = ICI->getPredicate();
845   Value *CmpLHS = ICI->getOperand(0);
846   Value *CmpRHS = ICI->getOperand(1);
847 
848   // Check if the condition value compares a value for equality against zero.
849   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
850     return nullptr;
851 
852   Value *Count = FalseVal;
853   Value *ValueOnZero = TrueVal;
854   if (Pred == ICmpInst::ICMP_NE)
855     std::swap(Count, ValueOnZero);
856 
857   // Skip zero extend/truncate.
858   Value *V = nullptr;
859   if (match(Count, m_ZExt(m_Value(V))) ||
860       match(Count, m_Trunc(m_Value(V))))
861     Count = V;
862 
863   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
864   // input to the cttz/ctlz is used as LHS for the compare instruction.
865   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
866       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
867     return nullptr;
868 
869   IntrinsicInst *II = cast<IntrinsicInst>(Count);
870 
871   // Check if the value propagated on zero is a constant number equal to the
872   // sizeof in bits of 'Count'.
873   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
874   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
875     // Explicitly clear the 'undef_on_zero' flag.
876     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
877     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
878     Builder.Insert(NewI);
879     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
880   }
881 
882   // If the ValueOnZero is not the bitwidth, we can at least make use of the
883   // fact that the cttz/ctlz result will not be used if the input is zero, so
884   // it's okay to relax it to undef for that case.
885   if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
886     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
887 
888   return nullptr;
889 }
890 
891 /// Return true if we find and adjust an icmp+select pattern where the compare
892 /// is with a constant that can be incremented or decremented to match the
893 /// minimum or maximum idiom.
894 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
895   ICmpInst::Predicate Pred = Cmp.getPredicate();
896   Value *CmpLHS = Cmp.getOperand(0);
897   Value *CmpRHS = Cmp.getOperand(1);
898   Value *TrueVal = Sel.getTrueValue();
899   Value *FalseVal = Sel.getFalseValue();
900 
901   // We may move or edit the compare, so make sure the select is the only user.
902   const APInt *CmpC;
903   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
904     return false;
905 
906   // These transforms only work for selects of integers or vector selects of
907   // integer vectors.
908   Type *SelTy = Sel.getType();
909   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
910   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
911     return false;
912 
913   Constant *AdjustedRHS;
914   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
915     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
916   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
917     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
918   else
919     return false;
920 
921   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
922   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
923   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
924       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
925     ; // Nothing to do here. Values match without any sign/zero extension.
926   }
927   // Types do not match. Instead of calculating this with mixed types, promote
928   // all to the larger type. This enables scalar evolution to analyze this
929   // expression.
930   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
931     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
932 
933     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
934     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
935     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
936     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
937     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
938       CmpLHS = TrueVal;
939       AdjustedRHS = SextRHS;
940     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
941                SextRHS == TrueVal) {
942       CmpLHS = FalseVal;
943       AdjustedRHS = SextRHS;
944     } else if (Cmp.isUnsigned()) {
945       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
946       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
947       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
948       // zext + signed compare cannot be changed:
949       //    0xff <s 0x00, but 0x00ff >s 0x0000
950       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
951         CmpLHS = TrueVal;
952         AdjustedRHS = ZextRHS;
953       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
954                  ZextRHS == TrueVal) {
955         CmpLHS = FalseVal;
956         AdjustedRHS = ZextRHS;
957       } else {
958         return false;
959       }
960     } else {
961       return false;
962     }
963   } else {
964     return false;
965   }
966 
967   Pred = ICmpInst::getSwappedPredicate(Pred);
968   CmpRHS = AdjustedRHS;
969   std::swap(FalseVal, TrueVal);
970   Cmp.setPredicate(Pred);
971   Cmp.setOperand(0, CmpLHS);
972   Cmp.setOperand(1, CmpRHS);
973   Sel.setOperand(1, TrueVal);
974   Sel.setOperand(2, FalseVal);
975   Sel.swapProfMetadata();
976 
977   // Move the compare instruction right before the select instruction. Otherwise
978   // the sext/zext value may be defined after the compare instruction uses it.
979   Cmp.moveBefore(&Sel);
980 
981   return true;
982 }
983 
984 /// If this is an integer min/max (icmp + select) with a constant operand,
985 /// create the canonical icmp for the min/max operation and canonicalize the
986 /// constant to the 'false' operand of the select:
987 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
988 /// Note: if C1 != C2, this will change the icmp constant to the existing
989 /// constant operand of the select.
990 static Instruction *
991 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
992                                InstCombiner::BuilderTy &Builder) {
993   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
994     return nullptr;
995 
996   // Canonicalize the compare predicate based on whether we have min or max.
997   Value *LHS, *RHS;
998   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
999   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1000     return nullptr;
1001 
1002   // Is this already canonical?
1003   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1004   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1005       Cmp.getPredicate() == CanonicalPred)
1006     return nullptr;
1007 
1008   // Create the canonical compare and plug it into the select.
1009   Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
1010 
1011   // If the select operands did not change, we're done.
1012   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1013     return &Sel;
1014 
1015   // If we are swapping the select operands, swap the metadata too.
1016   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1017          "Unexpected results from matchSelectPattern");
1018   Sel.swapValues();
1019   Sel.swapProfMetadata();
1020   return &Sel;
1021 }
1022 
1023 /// There are many select variants for each of ABS/NABS.
1024 /// In matchSelectPattern(), there are different compare constants, compare
1025 /// predicates/operands and select operands.
1026 /// In isKnownNegation(), there are different formats of negated operands.
1027 /// Canonicalize all these variants to 1 pattern.
1028 /// This makes CSE more likely.
1029 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1030                                         InstCombiner::BuilderTy &Builder) {
1031   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1032     return nullptr;
1033 
1034   // Choose a sign-bit check for the compare (likely simpler for codegen).
1035   // ABS:  (X <s 0) ? -X : X
1036   // NABS: (X <s 0) ? X : -X
1037   Value *LHS, *RHS;
1038   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1039   if (SPF != SelectPatternFlavor::SPF_ABS &&
1040       SPF != SelectPatternFlavor::SPF_NABS)
1041     return nullptr;
1042 
1043   Value *TVal = Sel.getTrueValue();
1044   Value *FVal = Sel.getFalseValue();
1045   assert(isKnownNegation(TVal, FVal) &&
1046          "Unexpected result from matchSelectPattern");
1047 
1048   // The compare may use the negated abs()/nabs() operand, or it may use
1049   // negation in non-canonical form such as: sub A, B.
1050   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1051                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1052 
1053   bool CmpCanonicalized = !CmpUsesNegatedOp &&
1054                           match(Cmp.getOperand(1), m_ZeroInt()) &&
1055                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1056   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1057 
1058   // Is this already canonical?
1059   if (CmpCanonicalized && RHSCanonicalized)
1060     return nullptr;
1061 
1062   // If RHS is used by other instructions except compare and select, don't
1063   // canonicalize it to not increase the instruction count.
1064   if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1065     return nullptr;
1066 
1067   // Create the canonical compare: icmp slt LHS 0.
1068   if (!CmpCanonicalized) {
1069     Cmp.setPredicate(ICmpInst::ICMP_SLT);
1070     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1071     if (CmpUsesNegatedOp)
1072       Cmp.setOperand(0, LHS);
1073   }
1074 
1075   // Create the canonical RHS: RHS = sub (0, LHS).
1076   if (!RHSCanonicalized) {
1077     assert(RHS->hasOneUse() && "RHS use number is not right");
1078     RHS = Builder.CreateNeg(LHS);
1079     if (TVal == LHS) {
1080       Sel.setFalseValue(RHS);
1081       FVal = RHS;
1082     } else {
1083       Sel.setTrueValue(RHS);
1084       TVal = RHS;
1085     }
1086   }
1087 
1088   // If the select operands do not change, we're done.
1089   if (SPF == SelectPatternFlavor::SPF_NABS) {
1090     if (TVal == LHS)
1091       return &Sel;
1092     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1093   } else {
1094     if (FVal == LHS)
1095       return &Sel;
1096     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1097   }
1098 
1099   // We are swapping the select operands, so swap the metadata too.
1100   Sel.swapValues();
1101   Sel.swapProfMetadata();
1102   return &Sel;
1103 }
1104 
1105 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp,
1106                                      const SimplifyQuery &Q) {
1107   // If this is a binary operator, try to simplify it with the replaced op
1108   // because we know Op and ReplaceOp are equivalant.
1109   // For example: V = X + 1, Op = X, ReplaceOp = 42
1110   // Simplifies as: add(42, 1) --> 43
1111   if (auto *BO = dyn_cast<BinaryOperator>(V)) {
1112     if (BO->getOperand(0) == Op)
1113       return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q);
1114     if (BO->getOperand(1) == Op)
1115       return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q);
1116   }
1117 
1118   return nullptr;
1119 }
1120 
1121 /// If we have a select with an equality comparison, then we know the value in
1122 /// one of the arms of the select. See if substituting this value into an arm
1123 /// and simplifying the result yields the same value as the other arm.
1124 ///
1125 /// To make this transform safe, we must drop poison-generating flags
1126 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1127 /// that poison from propagating. If the existing binop already had no
1128 /// poison-generating flags, then this transform can be done by instsimplify.
1129 ///
1130 /// Consider:
1131 ///   %cmp = icmp eq i32 %x, 2147483647
1132 ///   %add = add nsw i32 %x, 1
1133 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1134 ///
1135 /// We can't replace %sel with %add unless we strip away the flags.
1136 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1137 static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
1138                                          const SimplifyQuery &Q) {
1139   if (!Cmp.isEquality())
1140     return nullptr;
1141 
1142   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1143   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1144   if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1145     std::swap(TrueVal, FalseVal);
1146 
1147   // Try each equivalence substitution possibility.
1148   // We have an 'EQ' comparison, so the select's false value will propagate.
1149   // Example:
1150   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1151   // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43
1152   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1153   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal ||
1154       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal ||
1155       simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal ||
1156       simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) {
1157     if (auto *FalseInst = dyn_cast<Instruction>(FalseVal))
1158       FalseInst->dropPoisonGeneratingFlags();
1159     return FalseVal;
1160   }
1161   return nullptr;
1162 }
1163 
1164 // See if this is a pattern like:
1165 //   %old_cmp1 = icmp slt i32 %x, C2
1166 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1167 //   %old_x_offseted = add i32 %x, C1
1168 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1169 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1170 // This can be rewritten as more canonical pattern:
1171 //   %new_cmp1 = icmp slt i32 %x, -C1
1172 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1173 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1174 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1175 // Iff -C1 s<= C2 s<= C0-C1
1176 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1177 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1178 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1179                                           InstCombiner::BuilderTy &Builder) {
1180   Value *X = Sel0.getTrueValue();
1181   Value *Sel1 = Sel0.getFalseValue();
1182 
1183   // First match the condition of the outermost select.
1184   // Said condition must be one-use.
1185   if (!Cmp0.hasOneUse())
1186     return nullptr;
1187   Value *Cmp00 = Cmp0.getOperand(0);
1188   Constant *C0;
1189   if (!match(Cmp0.getOperand(1),
1190              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1191     return nullptr;
1192   // Canonicalize Cmp0 into the form we expect.
1193   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1194   switch (Cmp0.getPredicate()) {
1195   case ICmpInst::Predicate::ICMP_ULT:
1196     break; // Great!
1197   case ICmpInst::Predicate::ICMP_ULE:
1198     // We'd have to increment C0 by one, and for that it must not have all-ones
1199     // element, but then it would have been canonicalized to 'ult' before
1200     // we get here. So we can't do anything useful with 'ule'.
1201     return nullptr;
1202   case ICmpInst::Predicate::ICMP_UGT:
1203     // We want to canonicalize it to 'ult', so we'll need to increment C0,
1204     // which again means it must not have any all-ones elements.
1205     if (!match(C0,
1206                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1207                                   APInt::getAllOnesValue(
1208                                       C0->getType()->getScalarSizeInBits()))))
1209       return nullptr; // Can't do, have all-ones element[s].
1210     C0 = AddOne(C0);
1211     std::swap(X, Sel1);
1212     break;
1213   case ICmpInst::Predicate::ICMP_UGE:
1214     // The only way we'd get this predicate if this `icmp` has extra uses,
1215     // but then we won't be able to do this fold.
1216     return nullptr;
1217   default:
1218     return nullptr; // Unknown predicate.
1219   }
1220 
1221   // Now that we've canonicalized the ICmp, we know the X we expect;
1222   // the select in other hand should be one-use.
1223   if (!Sel1->hasOneUse())
1224     return nullptr;
1225 
1226   // We now can finish matching the condition of the outermost select:
1227   // it should either be the X itself, or an addition of some constant to X.
1228   Constant *C1;
1229   if (Cmp00 == X)
1230     C1 = ConstantInt::getNullValue(Sel0.getType());
1231   else if (!match(Cmp00,
1232                   m_Add(m_Specific(X),
1233                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1234     return nullptr;
1235 
1236   Value *Cmp1;
1237   ICmpInst::Predicate Pred1;
1238   Constant *C2;
1239   Value *ReplacementLow, *ReplacementHigh;
1240   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1241                             m_Value(ReplacementHigh))) ||
1242       !match(Cmp1,
1243              m_ICmp(Pred1, m_Specific(X),
1244                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1245     return nullptr;
1246 
1247   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1248     return nullptr; // Not enough one-use instructions for the fold.
1249   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1250   //        two comparisons we'll need to build.
1251 
1252   // Canonicalize Cmp1 into the form we expect.
1253   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1254   switch (Pred1) {
1255   case ICmpInst::Predicate::ICMP_SLT:
1256     break;
1257   case ICmpInst::Predicate::ICMP_SLE:
1258     // We'd have to increment C2 by one, and for that it must not have signed
1259     // max element, but then it would have been canonicalized to 'slt' before
1260     // we get here. So we can't do anything useful with 'sle'.
1261     return nullptr;
1262   case ICmpInst::Predicate::ICMP_SGT:
1263     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1264     // which again means it must not have any signed max elements.
1265     if (!match(C2,
1266                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1267                                   APInt::getSignedMaxValue(
1268                                       C2->getType()->getScalarSizeInBits()))))
1269       return nullptr; // Can't do, have signed max element[s].
1270     C2 = AddOne(C2);
1271     LLVM_FALLTHROUGH;
1272   case ICmpInst::Predicate::ICMP_SGE:
1273     // Also non-canonical, but here we don't need to change C2,
1274     // so we don't have any restrictions on C2, so we can just handle it.
1275     std::swap(ReplacementLow, ReplacementHigh);
1276     break;
1277   default:
1278     return nullptr; // Unknown predicate.
1279   }
1280 
1281   // The thresholds of this clamp-like pattern.
1282   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1283   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1284 
1285   // The fold has a precondition 1: C2 s>= ThresholdLow
1286   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1287                                          ThresholdLowIncl);
1288   if (!match(Precond1, m_One()))
1289     return nullptr;
1290   // The fold has a precondition 2: C2 s<= ThresholdHigh
1291   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1292                                          ThresholdHighExcl);
1293   if (!match(Precond2, m_One()))
1294     return nullptr;
1295 
1296   // All good, finally emit the new pattern.
1297   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1298   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1299   Value *MaybeReplacedLow =
1300       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1301   Instruction *MaybeReplacedHigh =
1302       SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1303 
1304   return MaybeReplacedHigh;
1305 }
1306 
1307 // If we have
1308 //  %cmp = icmp [canonical predicate] i32 %x, C0
1309 //  %r = select i1 %cmp, i32 %y, i32 C1
1310 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1311 // will have if we flip the strictness of the predicate (i.e. without changing
1312 // the result) is identical to the C1 in select. If it matches we can change
1313 // original comparison to one with swapped predicate, reuse the constant,
1314 // and swap the hands of select.
1315 static Instruction *
1316 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1317                                          InstCombiner::BuilderTy &Builder) {
1318   ICmpInst::Predicate Pred;
1319   Value *X;
1320   Constant *C0;
1321   if (!match(&Cmp, m_OneUse(m_ICmp(
1322                        Pred, m_Value(X),
1323                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1324     return nullptr;
1325 
1326   // If comparison predicate is non-relational, we won't be able to do anything.
1327   if (ICmpInst::isEquality(Pred))
1328     return nullptr;
1329 
1330   // If comparison predicate is non-canonical, then we certainly won't be able
1331   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1332   if (!isCanonicalPredicate(Pred))
1333     return nullptr;
1334 
1335   // If the [input] type of comparison and select type are different, lets abort
1336   // for now. We could try to compare constants with trunc/[zs]ext though.
1337   if (C0->getType() != Sel.getType())
1338     return nullptr;
1339 
1340   // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1341 
1342   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1343   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1344   // At least one of these values we are selecting between must be a constant
1345   // else we'll never succeed.
1346   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1347       !match(SelVal1, m_AnyIntegralConstant()))
1348     return nullptr;
1349 
1350   // Does this constant C match any of the `select` values?
1351   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1352     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1353   };
1354 
1355   // If C0 *already* matches true/false value of select, we are done.
1356   if (MatchesSelectValue(C0))
1357     return nullptr;
1358 
1359   // Check the constant we'd have with flipped-strictness predicate.
1360   auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0);
1361   if (!FlippedStrictness)
1362     return nullptr;
1363 
1364   // If said constant doesn't match either, then there is no hope,
1365   if (!MatchesSelectValue(FlippedStrictness->second))
1366     return nullptr;
1367 
1368   // It matched! Lets insert the new comparison just before select.
1369   InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1370   Builder.SetInsertPoint(&Sel);
1371 
1372   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1373   Value *NewCmp = Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1374                                      Cmp.getName() + ".inv");
1375   Sel.setCondition(NewCmp);
1376   Sel.swapValues();
1377   Sel.swapProfMetadata();
1378 
1379   return &Sel;
1380 }
1381 
1382 /// Visit a SelectInst that has an ICmpInst as its first operand.
1383 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
1384                                                   ICmpInst *ICI) {
1385   if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
1386     return replaceInstUsesWith(SI, V);
1387 
1388   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
1389     return NewSel;
1390 
1391   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
1392     return NewAbs;
1393 
1394   if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1395     return NewAbs;
1396 
1397   if (Instruction *NewSel =
1398           tryToReuseConstantFromSelectInComparison(SI, *ICI, Builder))
1399     return NewSel;
1400 
1401   bool Changed = adjustMinMax(SI, *ICI);
1402 
1403   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1404     return replaceInstUsesWith(SI, V);
1405 
1406   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1407   Value *TrueVal = SI.getTrueValue();
1408   Value *FalseVal = SI.getFalseValue();
1409   ICmpInst::Predicate Pred = ICI->getPredicate();
1410   Value *CmpLHS = ICI->getOperand(0);
1411   Value *CmpRHS = ICI->getOperand(1);
1412   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1413     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1414       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1415       SI.setOperand(1, CmpRHS);
1416       Changed = true;
1417     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1418       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1419       SI.setOperand(2, CmpRHS);
1420       Changed = true;
1421     }
1422   }
1423 
1424   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1425   // decomposeBitTestICmp() might help.
1426   {
1427     unsigned BitWidth =
1428         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1429     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1430     Value *X;
1431     const APInt *Y, *C;
1432     bool TrueWhenUnset;
1433     bool IsBitTest = false;
1434     if (ICmpInst::isEquality(Pred) &&
1435         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1436         match(CmpRHS, m_Zero())) {
1437       IsBitTest = true;
1438       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1439     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1440       X = CmpLHS;
1441       Y = &MinSignedValue;
1442       IsBitTest = true;
1443       TrueWhenUnset = false;
1444     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1445       X = CmpLHS;
1446       Y = &MinSignedValue;
1447       IsBitTest = true;
1448       TrueWhenUnset = true;
1449     }
1450     if (IsBitTest) {
1451       Value *V = nullptr;
1452       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1453       if (TrueWhenUnset && TrueVal == X &&
1454           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1455         V = Builder.CreateAnd(X, ~(*Y));
1456       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1457       else if (!TrueWhenUnset && FalseVal == X &&
1458                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1459         V = Builder.CreateAnd(X, ~(*Y));
1460       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1461       else if (TrueWhenUnset && FalseVal == X &&
1462                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1463         V = Builder.CreateOr(X, *Y);
1464       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1465       else if (!TrueWhenUnset && TrueVal == X &&
1466                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1467         V = Builder.CreateOr(X, *Y);
1468 
1469       if (V)
1470         return replaceInstUsesWith(SI, V);
1471     }
1472   }
1473 
1474   if (Instruction *V =
1475           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1476     return V;
1477 
1478   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1479     return V;
1480 
1481   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1482     return replaceInstUsesWith(SI, V);
1483 
1484   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1485     return replaceInstUsesWith(SI, V);
1486 
1487   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1488     return replaceInstUsesWith(SI, V);
1489 
1490   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1491     return replaceInstUsesWith(SI, V);
1492 
1493   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1494     return replaceInstUsesWith(SI, V);
1495 
1496   return Changed ? &SI : nullptr;
1497 }
1498 
1499 /// SI is a select whose condition is a PHI node (but the two may be in
1500 /// different blocks). See if the true/false values (V) are live in all of the
1501 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1502 ///
1503 ///   X = phi [ C1, BB1], [C2, BB2]
1504 ///   Y = add
1505 ///   Z = select X, Y, 0
1506 ///
1507 /// because Y is not live in BB1/BB2.
1508 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1509                                                    const SelectInst &SI) {
1510   // If the value is a non-instruction value like a constant or argument, it
1511   // can always be mapped.
1512   const Instruction *I = dyn_cast<Instruction>(V);
1513   if (!I) return true;
1514 
1515   // If V is a PHI node defined in the same block as the condition PHI, we can
1516   // map the arguments.
1517   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1518 
1519   if (const PHINode *VP = dyn_cast<PHINode>(I))
1520     if (VP->getParent() == CondPHI->getParent())
1521       return true;
1522 
1523   // Otherwise, if the PHI and select are defined in the same block and if V is
1524   // defined in a different block, then we can transform it.
1525   if (SI.getParent() == CondPHI->getParent() &&
1526       I->getParent() != CondPHI->getParent())
1527     return true;
1528 
1529   // Otherwise we have a 'hard' case and we can't tell without doing more
1530   // detailed dominator based analysis, punt.
1531   return false;
1532 }
1533 
1534 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1535 ///   SPF2(SPF1(A, B), C)
1536 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1537                                         SelectPatternFlavor SPF1,
1538                                         Value *A, Value *B,
1539                                         Instruction &Outer,
1540                                         SelectPatternFlavor SPF2, Value *C) {
1541   if (Outer.getType() != Inner->getType())
1542     return nullptr;
1543 
1544   if (C == A || C == B) {
1545     // MAX(MAX(A, B), B) -> MAX(A, B)
1546     // MIN(MIN(a, b), a) -> MIN(a, b)
1547     // TODO: This could be done in instsimplify.
1548     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1549       return replaceInstUsesWith(Outer, Inner);
1550 
1551     // MAX(MIN(a, b), a) -> a
1552     // MIN(MAX(a, b), a) -> a
1553     // TODO: This could be done in instsimplify.
1554     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1555         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1556         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1557         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1558       return replaceInstUsesWith(Outer, C);
1559   }
1560 
1561   if (SPF1 == SPF2) {
1562     const APInt *CB, *CC;
1563     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1564       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1565       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1566       // TODO: This could be done in instsimplify.
1567       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1568           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1569           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1570           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1571         return replaceInstUsesWith(Outer, Inner);
1572 
1573       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1574       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1575       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1576           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1577           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1578           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1579         Outer.replaceUsesOfWith(Inner, A);
1580         return &Outer;
1581       }
1582     }
1583   }
1584 
1585   // max(max(A, B), min(A, B)) --> max(A, B)
1586   // min(min(A, B), max(A, B)) --> min(A, B)
1587   // TODO: This could be done in instsimplify.
1588   if (SPF1 == SPF2 &&
1589       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1590        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1591        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1592        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1593     return replaceInstUsesWith(Outer, Inner);
1594 
1595   // ABS(ABS(X)) -> ABS(X)
1596   // NABS(NABS(X)) -> NABS(X)
1597   // TODO: This could be done in instsimplify.
1598   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1599     return replaceInstUsesWith(Outer, Inner);
1600   }
1601 
1602   // ABS(NABS(X)) -> ABS(X)
1603   // NABS(ABS(X)) -> NABS(X)
1604   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1605       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1606     SelectInst *SI = cast<SelectInst>(Inner);
1607     Value *NewSI =
1608         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1609                              SI->getTrueValue(), SI->getName(), SI);
1610     return replaceInstUsesWith(Outer, NewSI);
1611   }
1612 
1613   auto IsFreeOrProfitableToInvert =
1614       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1615     if (match(V, m_Not(m_Value(NotV)))) {
1616       // If V has at most 2 uses then we can get rid of the xor operation
1617       // entirely.
1618       ElidesXor |= !V->hasNUsesOrMore(3);
1619       return true;
1620     }
1621 
1622     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1623       NotV = nullptr;
1624       return true;
1625     }
1626 
1627     return false;
1628   };
1629 
1630   Value *NotA, *NotB, *NotC;
1631   bool ElidesXor = false;
1632 
1633   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1634   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1635   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1636   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1637   //
1638   // This transform is performance neutral if we can elide at least one xor from
1639   // the set of three operands, since we'll be tacking on an xor at the very
1640   // end.
1641   if (SelectPatternResult::isMinOrMax(SPF1) &&
1642       SelectPatternResult::isMinOrMax(SPF2) &&
1643       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1644       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1645       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1646     if (!NotA)
1647       NotA = Builder.CreateNot(A);
1648     if (!NotB)
1649       NotB = Builder.CreateNot(B);
1650     if (!NotC)
1651       NotC = Builder.CreateNot(C);
1652 
1653     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1654                                    NotB);
1655     Value *NewOuter = Builder.CreateNot(
1656         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1657     return replaceInstUsesWith(Outer, NewOuter);
1658   }
1659 
1660   return nullptr;
1661 }
1662 
1663 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1664 /// This is even legal for FP.
1665 static Instruction *foldAddSubSelect(SelectInst &SI,
1666                                      InstCombiner::BuilderTy &Builder) {
1667   Value *CondVal = SI.getCondition();
1668   Value *TrueVal = SI.getTrueValue();
1669   Value *FalseVal = SI.getFalseValue();
1670   auto *TI = dyn_cast<Instruction>(TrueVal);
1671   auto *FI = dyn_cast<Instruction>(FalseVal);
1672   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1673     return nullptr;
1674 
1675   Instruction *AddOp = nullptr, *SubOp = nullptr;
1676   if ((TI->getOpcode() == Instruction::Sub &&
1677        FI->getOpcode() == Instruction::Add) ||
1678       (TI->getOpcode() == Instruction::FSub &&
1679        FI->getOpcode() == Instruction::FAdd)) {
1680     AddOp = FI;
1681     SubOp = TI;
1682   } else if ((FI->getOpcode() == Instruction::Sub &&
1683               TI->getOpcode() == Instruction::Add) ||
1684              (FI->getOpcode() == Instruction::FSub &&
1685               TI->getOpcode() == Instruction::FAdd)) {
1686     AddOp = TI;
1687     SubOp = FI;
1688   }
1689 
1690   if (AddOp) {
1691     Value *OtherAddOp = nullptr;
1692     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1693       OtherAddOp = AddOp->getOperand(1);
1694     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1695       OtherAddOp = AddOp->getOperand(0);
1696     }
1697 
1698     if (OtherAddOp) {
1699       // So at this point we know we have (Y -> OtherAddOp):
1700       //        select C, (add X, Y), (sub X, Z)
1701       Value *NegVal; // Compute -Z
1702       if (SI.getType()->isFPOrFPVectorTy()) {
1703         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1704         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1705           FastMathFlags Flags = AddOp->getFastMathFlags();
1706           Flags &= SubOp->getFastMathFlags();
1707           NegInst->setFastMathFlags(Flags);
1708         }
1709       } else {
1710         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1711       }
1712 
1713       Value *NewTrueOp = OtherAddOp;
1714       Value *NewFalseOp = NegVal;
1715       if (AddOp != TI)
1716         std::swap(NewTrueOp, NewFalseOp);
1717       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1718                                            SI.getName() + ".p", &SI);
1719 
1720       if (SI.getType()->isFPOrFPVectorTy()) {
1721         Instruction *RI =
1722             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1723 
1724         FastMathFlags Flags = AddOp->getFastMathFlags();
1725         Flags &= SubOp->getFastMathFlags();
1726         RI->setFastMathFlags(Flags);
1727         return RI;
1728       } else
1729         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1730     }
1731   }
1732   return nullptr;
1733 }
1734 
1735 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1736 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1737 /// Along with a number of patterns similar to:
1738 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1739 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1740 static Instruction *
1741 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1742   Value *CondVal = SI.getCondition();
1743   Value *TrueVal = SI.getTrueValue();
1744   Value *FalseVal = SI.getFalseValue();
1745 
1746   WithOverflowInst *II;
1747   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1748       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1749     return nullptr;
1750 
1751   Value *X = II->getLHS();
1752   Value *Y = II->getRHS();
1753 
1754   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1755     Type *Ty = Limit->getType();
1756 
1757     ICmpInst::Predicate Pred;
1758     Value *TrueVal, *FalseVal, *Op;
1759     const APInt *C;
1760     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1761                                m_Value(TrueVal), m_Value(FalseVal))))
1762       return false;
1763 
1764     auto IsZeroOrOne = [](const APInt &C) {
1765       return C.isNullValue() || C.isOneValue();
1766     };
1767     auto IsMinMax = [&](Value *Min, Value *Max) {
1768       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1769       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1770       return match(Min, m_SpecificInt(MinVal)) &&
1771              match(Max, m_SpecificInt(MaxVal));
1772     };
1773 
1774     if (Op != X && Op != Y)
1775       return false;
1776 
1777     if (IsAdd) {
1778       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1779       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1780       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1781       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1782       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1783           IsMinMax(TrueVal, FalseVal))
1784         return true;
1785       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1786       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1787       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1788       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1789       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1790           IsMinMax(FalseVal, TrueVal))
1791         return true;
1792     } else {
1793       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1794       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1795       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1796           IsMinMax(TrueVal, FalseVal))
1797         return true;
1798       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1799       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1800       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1801           IsMinMax(FalseVal, TrueVal))
1802         return true;
1803       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1804       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1805       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1806           IsMinMax(FalseVal, TrueVal))
1807         return true;
1808       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1809       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1810       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1811           IsMinMax(TrueVal, FalseVal))
1812         return true;
1813     }
1814 
1815     return false;
1816   };
1817 
1818   Intrinsic::ID NewIntrinsicID;
1819   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1820       match(TrueVal, m_AllOnes()))
1821     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1822     NewIntrinsicID = Intrinsic::uadd_sat;
1823   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1824            match(TrueVal, m_Zero()))
1825     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1826     NewIntrinsicID = Intrinsic::usub_sat;
1827   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1828            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1829     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1830     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1831     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1832     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1833     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1834     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1835     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1836     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1837     NewIntrinsicID = Intrinsic::sadd_sat;
1838   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1839            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1840     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1841     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1842     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1843     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1844     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1845     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1846     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1847     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1848     NewIntrinsicID = Intrinsic::ssub_sat;
1849   else
1850     return nullptr;
1851 
1852   Function *F =
1853       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1854   return CallInst::Create(F, {X, Y});
1855 }
1856 
1857 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1858   Constant *C;
1859   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1860       !match(Sel.getFalseValue(), m_Constant(C)))
1861     return nullptr;
1862 
1863   Instruction *ExtInst;
1864   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1865       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1866     return nullptr;
1867 
1868   auto ExtOpcode = ExtInst->getOpcode();
1869   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1870     return nullptr;
1871 
1872   // If we are extending from a boolean type or if we can create a select that
1873   // has the same size operands as its condition, try to narrow the select.
1874   Value *X = ExtInst->getOperand(0);
1875   Type *SmallType = X->getType();
1876   Value *Cond = Sel.getCondition();
1877   auto *Cmp = dyn_cast<CmpInst>(Cond);
1878   if (!SmallType->isIntOrIntVectorTy(1) &&
1879       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1880     return nullptr;
1881 
1882   // If the constant is the same after truncation to the smaller type and
1883   // extension to the original type, we can narrow the select.
1884   Type *SelType = Sel.getType();
1885   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1886   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1887   if (ExtC == C) {
1888     Value *TruncCVal = cast<Value>(TruncC);
1889     if (ExtInst == Sel.getFalseValue())
1890       std::swap(X, TruncCVal);
1891 
1892     // select Cond, (ext X), C --> ext(select Cond, X, C')
1893     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1894     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1895     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1896   }
1897 
1898   // If one arm of the select is the extend of the condition, replace that arm
1899   // with the extension of the appropriate known bool value.
1900   if (Cond == X) {
1901     if (ExtInst == Sel.getTrueValue()) {
1902       // select X, (sext X), C --> select X, -1, C
1903       // select X, (zext X), C --> select X,  1, C
1904       Constant *One = ConstantInt::getTrue(SmallType);
1905       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1906       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1907     } else {
1908       // select X, C, (sext X) --> select X, C, 0
1909       // select X, C, (zext X) --> select X, C, 0
1910       Constant *Zero = ConstantInt::getNullValue(SelType);
1911       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1912     }
1913   }
1914 
1915   return nullptr;
1916 }
1917 
1918 /// Try to transform a vector select with a constant condition vector into a
1919 /// shuffle for easier combining with other shuffles and insert/extract.
1920 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1921   Value *CondVal = SI.getCondition();
1922   Constant *CondC;
1923   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1924     return nullptr;
1925 
1926   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1927   SmallVector<Constant *, 16> Mask;
1928   Mask.reserve(NumElts);
1929   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1930   for (unsigned i = 0; i != NumElts; ++i) {
1931     Constant *Elt = CondC->getAggregateElement(i);
1932     if (!Elt)
1933       return nullptr;
1934 
1935     if (Elt->isOneValue()) {
1936       // If the select condition element is true, choose from the 1st vector.
1937       Mask.push_back(ConstantInt::get(Int32Ty, i));
1938     } else if (Elt->isNullValue()) {
1939       // If the select condition element is false, choose from the 2nd vector.
1940       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1941     } else if (isa<UndefValue>(Elt)) {
1942       // Undef in a select condition (choose one of the operands) does not mean
1943       // the same thing as undef in a shuffle mask (any value is acceptable), so
1944       // give up.
1945       return nullptr;
1946     } else {
1947       // Bail out on a constant expression.
1948       return nullptr;
1949     }
1950   }
1951 
1952   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1953                                ConstantVector::get(Mask));
1954 }
1955 
1956 /// If we have a select of vectors with a scalar condition, try to convert that
1957 /// to a vector select by splatting the condition. A splat may get folded with
1958 /// other operations in IR and having all operands of a select be vector types
1959 /// is likely better for vector codegen.
1960 static Instruction *canonicalizeScalarSelectOfVecs(
1961     SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
1962   Type *Ty = Sel.getType();
1963   if (!Ty->isVectorTy())
1964     return nullptr;
1965 
1966   // We can replace a single-use extract with constant index.
1967   Value *Cond = Sel.getCondition();
1968   if (!match(Cond, m_OneUse(m_ExtractElement(m_Value(), m_ConstantInt()))))
1969     return nullptr;
1970 
1971   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
1972   // Splatting the extracted condition reduces code (we could directly create a
1973   // splat shuffle of the source vector to eliminate the intermediate step).
1974   unsigned NumElts = Ty->getVectorNumElements();
1975   Value *SplatCond = Builder.CreateVectorSplat(NumElts, Cond);
1976   Sel.setCondition(SplatCond);
1977   return &Sel;
1978 }
1979 
1980 /// Reuse bitcasted operands between a compare and select:
1981 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1982 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1983 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1984                                           InstCombiner::BuilderTy &Builder) {
1985   Value *Cond = Sel.getCondition();
1986   Value *TVal = Sel.getTrueValue();
1987   Value *FVal = Sel.getFalseValue();
1988 
1989   CmpInst::Predicate Pred;
1990   Value *A, *B;
1991   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1992     return nullptr;
1993 
1994   // The select condition is a compare instruction. If the select's true/false
1995   // values are already the same as the compare operands, there's nothing to do.
1996   if (TVal == A || TVal == B || FVal == A || FVal == B)
1997     return nullptr;
1998 
1999   Value *C, *D;
2000   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2001     return nullptr;
2002 
2003   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2004   Value *TSrc, *FSrc;
2005   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2006       !match(FVal, m_BitCast(m_Value(FSrc))))
2007     return nullptr;
2008 
2009   // If the select true/false values are *different bitcasts* of the same source
2010   // operands, make the select operands the same as the compare operands and
2011   // cast the result. This is the canonical select form for min/max.
2012   Value *NewSel;
2013   if (TSrc == C && FSrc == D) {
2014     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2015     // bitcast (select (cmp A, B), A, B)
2016     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2017   } else if (TSrc == D && FSrc == C) {
2018     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2019     // bitcast (select (cmp A, B), B, A)
2020     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2021   } else {
2022     return nullptr;
2023   }
2024   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2025 }
2026 
2027 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2028 /// instructions.
2029 ///
2030 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2031 /// selects between the returned value of the cmpxchg instruction its compare
2032 /// operand, the result of the select will always be equal to its false value.
2033 /// For example:
2034 ///
2035 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2036 ///   %1 = extractvalue { i64, i1 } %0, 1
2037 ///   %2 = extractvalue { i64, i1 } %0, 0
2038 ///   %3 = select i1 %1, i64 %compare, i64 %2
2039 ///   ret i64 %3
2040 ///
2041 /// The returned value of the cmpxchg instruction (%2) is the original value
2042 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2043 /// must have been equal to %compare. Thus, the result of the select is always
2044 /// equal to %2, and the code can be simplified to:
2045 ///
2046 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2047 ///   %1 = extractvalue { i64, i1 } %0, 0
2048 ///   ret i64 %1
2049 ///
2050 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
2051   // A helper that determines if V is an extractvalue instruction whose
2052   // aggregate operand is a cmpxchg instruction and whose single index is equal
2053   // to I. If such conditions are true, the helper returns the cmpxchg
2054   // instruction; otherwise, a nullptr is returned.
2055   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2056     auto *Extract = dyn_cast<ExtractValueInst>(V);
2057     if (!Extract)
2058       return nullptr;
2059     if (Extract->getIndices()[0] != I)
2060       return nullptr;
2061     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2062   };
2063 
2064   // If the select has a single user, and this user is a select instruction that
2065   // we can simplify, skip the cmpxchg simplification for now.
2066   if (SI.hasOneUse())
2067     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2068       if (Select->getCondition() == SI.getCondition())
2069         if (Select->getFalseValue() == SI.getTrueValue() ||
2070             Select->getTrueValue() == SI.getFalseValue())
2071           return nullptr;
2072 
2073   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2074   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2075   if (!CmpXchg)
2076     return nullptr;
2077 
2078   // Check the true value case: The true value of the select is the returned
2079   // value of the same cmpxchg used by the condition, and the false value is the
2080   // cmpxchg instruction's compare operand.
2081   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2082     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
2083       SI.setTrueValue(SI.getFalseValue());
2084       return &SI;
2085     }
2086 
2087   // Check the false value case: The false value of the select is the returned
2088   // value of the same cmpxchg used by the condition, and the true value is the
2089   // cmpxchg instruction's compare operand.
2090   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2091     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
2092       SI.setTrueValue(SI.getFalseValue());
2093       return &SI;
2094     }
2095 
2096   return nullptr;
2097 }
2098 
2099 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2100                                        Value *Y,
2101                                        InstCombiner::BuilderTy &Builder) {
2102   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2103   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2104                     SPF == SelectPatternFlavor::SPF_UMAX;
2105   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2106   // the constant value check to an assert.
2107   Value *A;
2108   const APInt *C1, *C2;
2109   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2110       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2111     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2112     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2113     Value *NewMinMax = createMinMax(Builder, SPF, A,
2114                                     ConstantInt::get(X->getType(), *C2 - *C1));
2115     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2116                                      ConstantInt::get(X->getType(), *C1));
2117   }
2118 
2119   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2120       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2121     bool Overflow;
2122     APInt Diff = C2->ssub_ov(*C1, Overflow);
2123     if (!Overflow) {
2124       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2125       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2126       Value *NewMinMax = createMinMax(Builder, SPF, A,
2127                                       ConstantInt::get(X->getType(), Diff));
2128       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2129                                        ConstantInt::get(X->getType(), *C1));
2130     }
2131   }
2132 
2133   return nullptr;
2134 }
2135 
2136 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2137 Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) {
2138   Type *Ty = MinMax1.getType();
2139 
2140   // We are looking for a tree of:
2141   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2142   // Where the min and max could be reversed
2143   Instruction *MinMax2;
2144   BinaryOperator *AddSub;
2145   const APInt *MinValue, *MaxValue;
2146   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2147     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2148       return nullptr;
2149   } else if (match(&MinMax1,
2150                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2151     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2152       return nullptr;
2153   } else
2154     return nullptr;
2155 
2156   // Check that the constants clamp a saturate, and that the new type would be
2157   // sensible to convert to.
2158   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2159     return nullptr;
2160   // In what bitwidth can this be treated as saturating arithmetics?
2161   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2162   // FIXME: This isn't quite right for vectors, but using the scalar type is a
2163   // good first approximation for what should be done there.
2164   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2165     return nullptr;
2166 
2167   // Also make sure that the number of uses is as expected. The "3"s are for the
2168   // the two items of min/max (the compare and the select).
2169   if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
2170     return nullptr;
2171 
2172   // Create the new type (which can be a vector type)
2173   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2174   // Match the two extends from the add/sub
2175   Value *A, *B;
2176   if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2177     return nullptr;
2178   // And check the incoming values are of a type smaller than or equal to the
2179   // size of the saturation. Otherwise the higher bits can cause different
2180   // results.
2181   if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2182       B->getType()->getScalarSizeInBits() > NewBitWidth)
2183     return nullptr;
2184 
2185   Intrinsic::ID IntrinsicID;
2186   if (AddSub->getOpcode() == Instruction::Add)
2187     IntrinsicID = Intrinsic::sadd_sat;
2188   else if (AddSub->getOpcode() == Instruction::Sub)
2189     IntrinsicID = Intrinsic::ssub_sat;
2190   else
2191     return nullptr;
2192 
2193   // Finally create and return the sat intrinsic, truncated to the new type
2194   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2195   Value *AT = Builder.CreateSExt(A, NewTy);
2196   Value *BT = Builder.CreateSExt(B, NewTy);
2197   Value *Sat = Builder.CreateCall(F, {AT, BT});
2198   return CastInst::Create(Instruction::SExt, Sat, Ty);
2199 }
2200 
2201 /// Reduce a sequence of min/max with a common operand.
2202 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2203                                         Value *RHS,
2204                                         InstCombiner::BuilderTy &Builder) {
2205   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2206   // TODO: Allow FP min/max with nnan/nsz.
2207   if (!LHS->getType()->isIntOrIntVectorTy())
2208     return nullptr;
2209 
2210   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2211   Value *A, *B, *C, *D;
2212   SelectPatternResult L = matchSelectPattern(LHS, A, B);
2213   SelectPatternResult R = matchSelectPattern(RHS, C, D);
2214   if (SPF != L.Flavor || L.Flavor != R.Flavor)
2215     return nullptr;
2216 
2217   // Look for a common operand. The use checks are different than usual because
2218   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2219   // the select.
2220   Value *MinMaxOp = nullptr;
2221   Value *ThirdOp = nullptr;
2222   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2223     // If the LHS is only used in this chain and the RHS is used outside of it,
2224     // reuse the RHS min/max because that will eliminate the LHS.
2225     if (D == A || C == A) {
2226       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2227       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2228       MinMaxOp = RHS;
2229       ThirdOp = B;
2230     } else if (D == B || C == B) {
2231       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2232       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2233       MinMaxOp = RHS;
2234       ThirdOp = A;
2235     }
2236   } else if (!RHS->hasNUsesOrMore(3)) {
2237     // Reuse the LHS. This will eliminate the RHS.
2238     if (D == A || D == B) {
2239       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2240       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2241       MinMaxOp = LHS;
2242       ThirdOp = C;
2243     } else if (C == A || C == B) {
2244       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2245       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2246       MinMaxOp = LHS;
2247       ThirdOp = D;
2248     }
2249   }
2250   if (!MinMaxOp || !ThirdOp)
2251     return nullptr;
2252 
2253   CmpInst::Predicate P = getMinMaxPred(SPF);
2254   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2255   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2256 }
2257 
2258 /// Try to reduce a rotate pattern that includes a compare and select into a
2259 /// funnel shift intrinsic. Example:
2260 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2261 ///              --> call llvm.fshl.i32(a, a, b)
2262 static Instruction *foldSelectRotate(SelectInst &Sel) {
2263   // The false value of the select must be a rotate of the true value.
2264   Value *Or0, *Or1;
2265   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
2266     return nullptr;
2267 
2268   Value *TVal = Sel.getTrueValue();
2269   Value *SA0, *SA1;
2270   if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
2271       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
2272     return nullptr;
2273 
2274   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
2275   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
2276   if (ShiftOpcode0 == ShiftOpcode1)
2277     return nullptr;
2278 
2279   // We have one of these patterns so far:
2280   // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
2281   // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
2282   // This must be a power-of-2 rotate for a bitmasking transform to be valid.
2283   unsigned Width = Sel.getType()->getScalarSizeInBits();
2284   if (!isPowerOf2_32(Width))
2285     return nullptr;
2286 
2287   // Check the shift amounts to see if they are an opposite pair.
2288   Value *ShAmt;
2289   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2290     ShAmt = SA0;
2291   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2292     ShAmt = SA1;
2293   else
2294     return nullptr;
2295 
2296   // Finally, see if the select is filtering out a shift-by-zero.
2297   Value *Cond = Sel.getCondition();
2298   ICmpInst::Predicate Pred;
2299   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2300       Pred != ICmpInst::ICMP_EQ)
2301     return nullptr;
2302 
2303   // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2304   // Convert to funnel shift intrinsic.
2305   bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
2306                 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
2307   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2308   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2309   return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
2310 }
2311 
2312 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
2313   Value *CondVal = SI.getCondition();
2314   Value *TrueVal = SI.getTrueValue();
2315   Value *FalseVal = SI.getFalseValue();
2316   Type *SelType = SI.getType();
2317 
2318   // FIXME: Remove this workaround when freeze related patches are done.
2319   // For select with undef operand which feeds into an equality comparison,
2320   // don't simplify it so loop unswitch can know the equality comparison
2321   // may have an undef operand. This is a workaround for PR31652 caused by
2322   // descrepancy about branch on undef between LoopUnswitch and GVN.
2323   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
2324     if (llvm::any_of(SI.users(), [&](User *U) {
2325           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2326           if (CI && CI->isEquality())
2327             return true;
2328           return false;
2329         })) {
2330       return nullptr;
2331     }
2332   }
2333 
2334   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2335                                     SQ.getWithInstruction(&SI)))
2336     return replaceInstUsesWith(SI, V);
2337 
2338   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2339     return I;
2340 
2341   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, Builder))
2342     return I;
2343 
2344   // Canonicalize a one-use integer compare with a non-canonical predicate by
2345   // inverting the predicate and swapping the select operands. This matches a
2346   // compare canonicalization for conditional branches.
2347   // TODO: Should we do the same for FP compares?
2348   CmpInst::Predicate Pred;
2349   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
2350       !isCanonicalPredicate(Pred)) {
2351     // Swap true/false values and condition.
2352     CmpInst *Cond = cast<CmpInst>(CondVal);
2353     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2354     SI.setOperand(1, FalseVal);
2355     SI.setOperand(2, TrueVal);
2356     SI.swapProfMetadata();
2357     Worklist.Add(Cond);
2358     return &SI;
2359   }
2360 
2361   if (SelType->isIntOrIntVectorTy(1) &&
2362       TrueVal->getType() == CondVal->getType()) {
2363     if (match(TrueVal, m_One())) {
2364       // Change: A = select B, true, C --> A = or B, C
2365       return BinaryOperator::CreateOr(CondVal, FalseVal);
2366     }
2367     if (match(TrueVal, m_Zero())) {
2368       // Change: A = select B, false, C --> A = and !B, C
2369       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2370       return BinaryOperator::CreateAnd(NotCond, FalseVal);
2371     }
2372     if (match(FalseVal, m_Zero())) {
2373       // Change: A = select B, C, false --> A = and B, C
2374       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2375     }
2376     if (match(FalseVal, m_One())) {
2377       // Change: A = select B, C, true --> A = or !B, C
2378       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2379       return BinaryOperator::CreateOr(NotCond, TrueVal);
2380     }
2381 
2382     // select a, a, b  -> a | b
2383     // select a, b, a  -> a & b
2384     if (CondVal == TrueVal)
2385       return BinaryOperator::CreateOr(CondVal, FalseVal);
2386     if (CondVal == FalseVal)
2387       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2388 
2389     // select a, ~a, b -> (~a) & b
2390     // select a, b, ~a -> (~a) | b
2391     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2392       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
2393     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2394       return BinaryOperator::CreateOr(TrueVal, FalseVal);
2395   }
2396 
2397   // Selecting between two integer or vector splat integer constants?
2398   //
2399   // Note that we don't handle a scalar select of vectors:
2400   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2401   // because that may need 3 instructions to splat the condition value:
2402   // extend, insertelement, shufflevector.
2403   if (SelType->isIntOrIntVectorTy() &&
2404       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2405     // select C, 1, 0 -> zext C to int
2406     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2407       return new ZExtInst(CondVal, SelType);
2408 
2409     // select C, -1, 0 -> sext C to int
2410     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2411       return new SExtInst(CondVal, SelType);
2412 
2413     // select C, 0, 1 -> zext !C to int
2414     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2415       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2416       return new ZExtInst(NotCond, SelType);
2417     }
2418 
2419     // select C, 0, -1 -> sext !C to int
2420     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2421       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2422       return new SExtInst(NotCond, SelType);
2423     }
2424   }
2425 
2426   // See if we are selecting two values based on a comparison of the two values.
2427   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
2428     Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1);
2429     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2430         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2431       // Canonicalize to use ordered comparisons by swapping the select
2432       // operands.
2433       //
2434       // e.g.
2435       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2436       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2437         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2438         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2439         // FIXME: The FMF should propagate from the select, not the fcmp.
2440         Builder.setFastMathFlags(FCI->getFastMathFlags());
2441         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2442                                             FCI->getName() + ".inv");
2443         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2444         return replaceInstUsesWith(SI, NewSel);
2445       }
2446 
2447       // NOTE: if we wanted to, this is where to detect MIN/MAX
2448     }
2449   }
2450 
2451   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2452   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2453   // also require nnan because we do not want to unintentionally change the
2454   // sign of a NaN value.
2455   // FIXME: These folds should test/propagate FMF from the select, not the
2456   //        fsub or fneg.
2457   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2458   Instruction *FSub;
2459   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2460       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2461       match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2462       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2463     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2464     return replaceInstUsesWith(SI, Fabs);
2465   }
2466   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2467   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2468       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2469       match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2470       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2471     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2472     return replaceInstUsesWith(SI, Fabs);
2473   }
2474   // With nnan and nsz:
2475   // (X <  +/-0.0) ? -X : X --> fabs(X)
2476   // (X <= +/-0.0) ? -X : X --> fabs(X)
2477   Instruction *FNeg;
2478   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2479       match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2480       match(TrueVal, m_Instruction(FNeg)) &&
2481       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2482       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2483        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2484     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2485     return replaceInstUsesWith(SI, Fabs);
2486   }
2487   // With nnan and nsz:
2488   // (X >  +/-0.0) ? X : -X --> fabs(X)
2489   // (X >= +/-0.0) ? X : -X --> fabs(X)
2490   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2491       match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2492       match(FalseVal, m_Instruction(FNeg)) &&
2493       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2494       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2495        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2496     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2497     return replaceInstUsesWith(SI, Fabs);
2498   }
2499 
2500   // See if we are selecting two values based on a comparison of the two values.
2501   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2502     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2503       return Result;
2504 
2505   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2506     return Add;
2507   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2508     return Add;
2509 
2510   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2511   auto *TI = dyn_cast<Instruction>(TrueVal);
2512   auto *FI = dyn_cast<Instruction>(FalseVal);
2513   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2514     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2515       return IV;
2516 
2517   if (Instruction *I = foldSelectExtConst(SI))
2518     return I;
2519 
2520   // See if we can fold the select into one of our operands.
2521   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2522     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2523       return FoldI;
2524 
2525     Value *LHS, *RHS;
2526     Instruction::CastOps CastOp;
2527     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2528     auto SPF = SPR.Flavor;
2529     if (SPF) {
2530       Value *LHS2, *RHS2;
2531       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2532         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2533                                           RHS2, SI, SPF, RHS))
2534           return R;
2535       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2536         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2537                                           RHS2, SI, SPF, LHS))
2538           return R;
2539       // TODO.
2540       // ABS(-X) -> ABS(X)
2541     }
2542 
2543     if (SelectPatternResult::isMinOrMax(SPF)) {
2544       // Canonicalize so that
2545       // - type casts are outside select patterns.
2546       // - float clamp is transformed to min/max pattern
2547 
2548       bool IsCastNeeded = LHS->getType() != SelType;
2549       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2550       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2551       if (IsCastNeeded ||
2552           (LHS->getType()->isFPOrFPVectorTy() &&
2553            ((CmpLHS != LHS && CmpLHS != RHS) ||
2554             (CmpRHS != LHS && CmpRHS != RHS)))) {
2555         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2556 
2557         Value *Cmp;
2558         if (CmpInst::isIntPredicate(MinMaxPred)) {
2559           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2560         } else {
2561           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2562           auto FMF =
2563               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2564           Builder.setFastMathFlags(FMF);
2565           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2566         }
2567 
2568         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2569         if (!IsCastNeeded)
2570           return replaceInstUsesWith(SI, NewSI);
2571 
2572         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2573         return replaceInstUsesWith(SI, NewCast);
2574       }
2575 
2576       // MAX(~a, ~b) -> ~MIN(a, b)
2577       // MAX(~a, C)  -> ~MIN(a, ~C)
2578       // MIN(~a, ~b) -> ~MAX(a, b)
2579       // MIN(~a, C)  -> ~MAX(a, ~C)
2580       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2581         Value *A;
2582         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2583             !isFreeToInvert(A, A->hasOneUse()) &&
2584             // Passing false to only consider m_Not and constants.
2585             isFreeToInvert(Y, false)) {
2586           Value *B = Builder.CreateNot(Y);
2587           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2588                                           A, B);
2589           // Copy the profile metadata.
2590           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2591             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2592             // Swap the metadata if the operands are swapped.
2593             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2594               cast<SelectInst>(NewMinMax)->swapProfMetadata();
2595           }
2596 
2597           return BinaryOperator::CreateNot(NewMinMax);
2598         }
2599 
2600         return nullptr;
2601       };
2602 
2603       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2604         return I;
2605       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2606         return I;
2607 
2608       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2609         return I;
2610 
2611       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2612         return I;
2613       if (Instruction *I = matchSAddSubSat(SI))
2614         return I;
2615     }
2616   }
2617 
2618   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2619   // minnum/maxnum intrinsics.
2620   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2621     Value *X, *Y;
2622     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2623       return replaceInstUsesWith(
2624           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2625 
2626     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2627       return replaceInstUsesWith(
2628           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2629   }
2630 
2631   // See if we can fold the select into a phi node if the condition is a select.
2632   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2633     // The true/false values have to be live in the PHI predecessor's blocks.
2634     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2635         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2636       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2637         return NV;
2638 
2639   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2640     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2641       // select(C, select(C, a, b), c) -> select(C, a, c)
2642       if (TrueSI->getCondition() == CondVal) {
2643         if (SI.getTrueValue() == TrueSI->getTrueValue())
2644           return nullptr;
2645         SI.setOperand(1, TrueSI->getTrueValue());
2646         return &SI;
2647       }
2648       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2649       // We choose this as normal form to enable folding on the And and shortening
2650       // paths for the values (this helps GetUnderlyingObjects() for example).
2651       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2652         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2653         SI.setOperand(0, And);
2654         SI.setOperand(1, TrueSI->getTrueValue());
2655         return &SI;
2656       }
2657     }
2658   }
2659   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2660     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2661       // select(C, a, select(C, b, c)) -> select(C, a, c)
2662       if (FalseSI->getCondition() == CondVal) {
2663         if (SI.getFalseValue() == FalseSI->getFalseValue())
2664           return nullptr;
2665         SI.setOperand(2, FalseSI->getFalseValue());
2666         return &SI;
2667       }
2668       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2669       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2670         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2671         SI.setOperand(0, Or);
2672         SI.setOperand(2, FalseSI->getFalseValue());
2673         return &SI;
2674       }
2675     }
2676   }
2677 
2678   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2679     // The select might be preventing a division by 0.
2680     switch (BO->getOpcode()) {
2681     default:
2682       return true;
2683     case Instruction::SRem:
2684     case Instruction::URem:
2685     case Instruction::SDiv:
2686     case Instruction::UDiv:
2687       return false;
2688     }
2689   };
2690 
2691   // Try to simplify a binop sandwiched between 2 selects with the same
2692   // condition.
2693   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2694   BinaryOperator *TrueBO;
2695   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2696       canMergeSelectThroughBinop(TrueBO)) {
2697     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2698       if (TrueBOSI->getCondition() == CondVal) {
2699         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
2700         Worklist.Add(TrueBO);
2701         return &SI;
2702       }
2703     }
2704     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2705       if (TrueBOSI->getCondition() == CondVal) {
2706         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
2707         Worklist.Add(TrueBO);
2708         return &SI;
2709       }
2710     }
2711   }
2712 
2713   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2714   BinaryOperator *FalseBO;
2715   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2716       canMergeSelectThroughBinop(FalseBO)) {
2717     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2718       if (FalseBOSI->getCondition() == CondVal) {
2719         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
2720         Worklist.Add(FalseBO);
2721         return &SI;
2722       }
2723     }
2724     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2725       if (FalseBOSI->getCondition() == CondVal) {
2726         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
2727         Worklist.Add(FalseBO);
2728         return &SI;
2729       }
2730     }
2731   }
2732 
2733   Value *NotCond;
2734   if (match(CondVal, m_Not(m_Value(NotCond)))) {
2735     SI.setOperand(0, NotCond);
2736     SI.setOperand(1, FalseVal);
2737     SI.setOperand(2, TrueVal);
2738     SI.swapProfMetadata();
2739     return &SI;
2740   }
2741 
2742   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2743     unsigned VWidth = VecTy->getNumElements();
2744     APInt UndefElts(VWidth, 0);
2745     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2746     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2747       if (V != &SI)
2748         return replaceInstUsesWith(SI, V);
2749       return &SI;
2750     }
2751   }
2752 
2753   // If we can compute the condition, there's no need for a select.
2754   // Like the above fold, we are attempting to reduce compile-time cost by
2755   // putting this fold here with limitations rather than in InstSimplify.
2756   // The motivation for this call into value tracking is to take advantage of
2757   // the assumption cache, so make sure that is populated.
2758   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2759     KnownBits Known(1);
2760     computeKnownBits(CondVal, Known, 0, &SI);
2761     if (Known.One.isOneValue())
2762       return replaceInstUsesWith(SI, TrueVal);
2763     if (Known.Zero.isOneValue())
2764       return replaceInstUsesWith(SI, FalseVal);
2765   }
2766 
2767   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2768     return BitCastSel;
2769 
2770   // Simplify selects that test the returned flag of cmpxchg instructions.
2771   if (Instruction *Select = foldSelectCmpXchg(SI))
2772     return Select;
2773 
2774   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2775     return Select;
2776 
2777   if (Instruction *Rot = foldSelectRotate(SI))
2778     return Rot;
2779 
2780   return nullptr;
2781 }
2782