1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/OverflowInstAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/InstCombine/InstCombiner.h" 42 #include <cassert> 43 #include <utility> 44 45 #define DEBUG_TYPE "instcombine" 46 #include "llvm/Transforms/Utils/InstructionWorklist.h" 47 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 52 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 53 SelectPatternFlavor SPF, Value *A, Value *B) { 54 CmpInst::Predicate Pred = getMinMaxPred(SPF); 55 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 56 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 57 } 58 59 /// Replace a select operand based on an equality comparison with the identity 60 /// constant of a binop. 61 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 62 const TargetLibraryInfo &TLI, 63 InstCombinerImpl &IC) { 64 // The select condition must be an equality compare with a constant operand. 65 Value *X; 66 Constant *C; 67 CmpInst::Predicate Pred; 68 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 69 return nullptr; 70 71 bool IsEq; 72 if (ICmpInst::isEquality(Pred)) 73 IsEq = Pred == ICmpInst::ICMP_EQ; 74 else if (Pred == FCmpInst::FCMP_OEQ) 75 IsEq = true; 76 else if (Pred == FCmpInst::FCMP_UNE) 77 IsEq = false; 78 else 79 return nullptr; 80 81 // A select operand must be a binop. 82 BinaryOperator *BO; 83 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 84 return nullptr; 85 86 // The compare constant must be the identity constant for that binop. 87 // If this a floating-point compare with 0.0, any zero constant will do. 88 Type *Ty = BO->getType(); 89 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 90 if (IdC != C) { 91 if (!IdC || !CmpInst::isFPPredicate(Pred)) 92 return nullptr; 93 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 94 return nullptr; 95 } 96 97 // Last, match the compare variable operand with a binop operand. 98 Value *Y; 99 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 100 return nullptr; 101 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 102 return nullptr; 103 104 // +0.0 compares equal to -0.0, and so it does not behave as required for this 105 // transform. Bail out if we can not exclude that possibility. 106 if (isa<FPMathOperator>(BO)) 107 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 108 return nullptr; 109 110 // BO = binop Y, X 111 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 112 // => 113 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 114 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 115 } 116 117 /// This folds: 118 /// select (icmp eq (and X, C1)), TC, FC 119 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 120 /// To something like: 121 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 122 /// Or: 123 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 124 /// With some variations depending if FC is larger than TC, or the shift 125 /// isn't needed, or the bit widths don't match. 126 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 127 InstCombiner::BuilderTy &Builder) { 128 const APInt *SelTC, *SelFC; 129 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 130 !match(Sel.getFalseValue(), m_APInt(SelFC))) 131 return nullptr; 132 133 // If this is a vector select, we need a vector compare. 134 Type *SelType = Sel.getType(); 135 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 136 return nullptr; 137 138 Value *V; 139 APInt AndMask; 140 bool CreateAnd = false; 141 ICmpInst::Predicate Pred = Cmp->getPredicate(); 142 if (ICmpInst::isEquality(Pred)) { 143 if (!match(Cmp->getOperand(1), m_Zero())) 144 return nullptr; 145 146 V = Cmp->getOperand(0); 147 const APInt *AndRHS; 148 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 149 return nullptr; 150 151 AndMask = *AndRHS; 152 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 153 Pred, V, AndMask)) { 154 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 155 if (!AndMask.isPowerOf2()) 156 return nullptr; 157 158 CreateAnd = true; 159 } else { 160 return nullptr; 161 } 162 163 // In general, when both constants are non-zero, we would need an offset to 164 // replace the select. This would require more instructions than we started 165 // with. But there's one special-case that we handle here because it can 166 // simplify/reduce the instructions. 167 APInt TC = *SelTC; 168 APInt FC = *SelFC; 169 if (!TC.isZero() && !FC.isZero()) { 170 // If the select constants differ by exactly one bit and that's the same 171 // bit that is masked and checked by the select condition, the select can 172 // be replaced by bitwise logic to set/clear one bit of the constant result. 173 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 174 return nullptr; 175 if (CreateAnd) { 176 // If we have to create an 'and', then we must kill the cmp to not 177 // increase the instruction count. 178 if (!Cmp->hasOneUse()) 179 return nullptr; 180 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 181 } 182 bool ExtraBitInTC = TC.ugt(FC); 183 if (Pred == ICmpInst::ICMP_EQ) { 184 // If the masked bit in V is clear, clear or set the bit in the result: 185 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 186 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 187 Constant *C = ConstantInt::get(SelType, TC); 188 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 189 } 190 if (Pred == ICmpInst::ICMP_NE) { 191 // If the masked bit in V is set, set or clear the bit in the result: 192 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 193 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 194 Constant *C = ConstantInt::get(SelType, FC); 195 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 196 } 197 llvm_unreachable("Only expecting equality predicates"); 198 } 199 200 // Make sure one of the select arms is a power-of-2. 201 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 202 return nullptr; 203 204 // Determine which shift is needed to transform result of the 'and' into the 205 // desired result. 206 const APInt &ValC = !TC.isZero() ? TC : FC; 207 unsigned ValZeros = ValC.logBase2(); 208 unsigned AndZeros = AndMask.logBase2(); 209 210 // Insert the 'and' instruction on the input to the truncate. 211 if (CreateAnd) 212 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 213 214 // If types don't match, we can still convert the select by introducing a zext 215 // or a trunc of the 'and'. 216 if (ValZeros > AndZeros) { 217 V = Builder.CreateZExtOrTrunc(V, SelType); 218 V = Builder.CreateShl(V, ValZeros - AndZeros); 219 } else if (ValZeros < AndZeros) { 220 V = Builder.CreateLShr(V, AndZeros - ValZeros); 221 V = Builder.CreateZExtOrTrunc(V, SelType); 222 } else { 223 V = Builder.CreateZExtOrTrunc(V, SelType); 224 } 225 226 // Okay, now we know that everything is set up, we just don't know whether we 227 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 228 bool ShouldNotVal = !TC.isZero(); 229 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 230 if (ShouldNotVal) 231 V = Builder.CreateXor(V, ValC); 232 233 return V; 234 } 235 236 /// We want to turn code that looks like this: 237 /// %C = or %A, %B 238 /// %D = select %cond, %C, %A 239 /// into: 240 /// %C = select %cond, %B, 0 241 /// %D = or %A, %C 242 /// 243 /// Assuming that the specified instruction is an operand to the select, return 244 /// a bitmask indicating which operands of this instruction are foldable if they 245 /// equal the other incoming value of the select. 246 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 247 switch (I->getOpcode()) { 248 case Instruction::Add: 249 case Instruction::FAdd: 250 case Instruction::Mul: 251 case Instruction::FMul: 252 case Instruction::And: 253 case Instruction::Or: 254 case Instruction::Xor: 255 return 3; // Can fold through either operand. 256 case Instruction::Sub: // Can only fold on the amount subtracted. 257 case Instruction::FSub: 258 case Instruction::FDiv: // Can only fold on the divisor amount. 259 case Instruction::Shl: // Can only fold on the shift amount. 260 case Instruction::LShr: 261 case Instruction::AShr: 262 return 1; 263 default: 264 return 0; // Cannot fold 265 } 266 } 267 268 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 269 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 270 Instruction *FI) { 271 // Don't break up min/max patterns. The hasOneUse checks below prevent that 272 // for most cases, but vector min/max with bitcasts can be transformed. If the 273 // one-use restrictions are eased for other patterns, we still don't want to 274 // obfuscate min/max. 275 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 276 match(&SI, m_SMax(m_Value(), m_Value())) || 277 match(&SI, m_UMin(m_Value(), m_Value())) || 278 match(&SI, m_UMax(m_Value(), m_Value())))) 279 return nullptr; 280 281 // If this is a cast from the same type, merge. 282 Value *Cond = SI.getCondition(); 283 Type *CondTy = Cond->getType(); 284 if (TI->getNumOperands() == 1 && TI->isCast()) { 285 Type *FIOpndTy = FI->getOperand(0)->getType(); 286 if (TI->getOperand(0)->getType() != FIOpndTy) 287 return nullptr; 288 289 // The select condition may be a vector. We may only change the operand 290 // type if the vector width remains the same (and matches the condition). 291 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 292 if (!FIOpndTy->isVectorTy() || 293 CondVTy->getElementCount() != 294 cast<VectorType>(FIOpndTy)->getElementCount()) 295 return nullptr; 296 297 // TODO: If the backend knew how to deal with casts better, we could 298 // remove this limitation. For now, there's too much potential to create 299 // worse codegen by promoting the select ahead of size-altering casts 300 // (PR28160). 301 // 302 // Note that ValueTracking's matchSelectPattern() looks through casts 303 // without checking 'hasOneUse' when it matches min/max patterns, so this 304 // transform may end up happening anyway. 305 if (TI->getOpcode() != Instruction::BitCast && 306 (!TI->hasOneUse() || !FI->hasOneUse())) 307 return nullptr; 308 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 309 // TODO: The one-use restrictions for a scalar select could be eased if 310 // the fold of a select in visitLoadInst() was enhanced to match a pattern 311 // that includes a cast. 312 return nullptr; 313 } 314 315 // Fold this by inserting a select from the input values. 316 Value *NewSI = 317 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 318 SI.getName() + ".v", &SI); 319 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 320 TI->getType()); 321 } 322 323 // Cond ? -X : -Y --> -(Cond ? X : Y) 324 Value *X, *Y; 325 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 326 (TI->hasOneUse() || FI->hasOneUse())) { 327 // Intersect FMF from the fneg instructions and union those with the select. 328 FastMathFlags FMF = TI->getFastMathFlags(); 329 FMF &= FI->getFastMathFlags(); 330 FMF |= SI.getFastMathFlags(); 331 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 332 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 333 NewSelI->setFastMathFlags(FMF); 334 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 335 NewFNeg->setFastMathFlags(FMF); 336 return NewFNeg; 337 } 338 339 // Min/max intrinsic with a common operand can have the common operand pulled 340 // after the select. This is the same transform as below for binops, but 341 // specialized for intrinsic matching and without the restrictive uses clause. 342 auto *TII = dyn_cast<IntrinsicInst>(TI); 343 auto *FII = dyn_cast<IntrinsicInst>(FI); 344 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() && 345 (TII->hasOneUse() || FII->hasOneUse())) { 346 Value *T0, *T1, *F0, *F1; 347 if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) && 348 match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) { 349 if (T0 == F0) { 350 Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI); 351 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 352 } 353 if (T0 == F1) { 354 Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI); 355 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 356 } 357 if (T1 == F0) { 358 Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI); 359 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 360 } 361 if (T1 == F1) { 362 Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI); 363 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 364 } 365 } 366 } 367 368 // Only handle binary operators (including two-operand getelementptr) with 369 // one-use here. As with the cast case above, it may be possible to relax the 370 // one-use constraint, but that needs be examined carefully since it may not 371 // reduce the total number of instructions. 372 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 373 !TI->isSameOperationAs(FI) || 374 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 375 !TI->hasOneUse() || !FI->hasOneUse()) 376 return nullptr; 377 378 // Figure out if the operations have any operands in common. 379 Value *MatchOp, *OtherOpT, *OtherOpF; 380 bool MatchIsOpZero; 381 if (TI->getOperand(0) == FI->getOperand(0)) { 382 MatchOp = TI->getOperand(0); 383 OtherOpT = TI->getOperand(1); 384 OtherOpF = FI->getOperand(1); 385 MatchIsOpZero = true; 386 } else if (TI->getOperand(1) == FI->getOperand(1)) { 387 MatchOp = TI->getOperand(1); 388 OtherOpT = TI->getOperand(0); 389 OtherOpF = FI->getOperand(0); 390 MatchIsOpZero = false; 391 } else if (!TI->isCommutative()) { 392 return nullptr; 393 } else if (TI->getOperand(0) == FI->getOperand(1)) { 394 MatchOp = TI->getOperand(0); 395 OtherOpT = TI->getOperand(1); 396 OtherOpF = FI->getOperand(0); 397 MatchIsOpZero = true; 398 } else if (TI->getOperand(1) == FI->getOperand(0)) { 399 MatchOp = TI->getOperand(1); 400 OtherOpT = TI->getOperand(0); 401 OtherOpF = FI->getOperand(1); 402 MatchIsOpZero = true; 403 } else { 404 return nullptr; 405 } 406 407 // If the select condition is a vector, the operands of the original select's 408 // operands also must be vectors. This may not be the case for getelementptr 409 // for example. 410 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 411 !OtherOpF->getType()->isVectorTy())) 412 return nullptr; 413 414 // If we reach here, they do have operations in common. 415 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 416 SI.getName() + ".v", &SI); 417 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 418 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 419 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 420 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 421 NewBO->copyIRFlags(TI); 422 NewBO->andIRFlags(FI); 423 return NewBO; 424 } 425 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 426 auto *FGEP = cast<GetElementPtrInst>(FI); 427 Type *ElementType = TGEP->getResultElementType(); 428 return TGEP->isInBounds() && FGEP->isInBounds() 429 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 430 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 431 } 432 llvm_unreachable("Expected BinaryOperator or GEP"); 433 return nullptr; 434 } 435 436 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 437 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. 438 return false; 439 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); 440 } 441 442 /// Try to fold the select into one of the operands to allow further 443 /// optimization. 444 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 445 Value *FalseVal) { 446 // See the comment above GetSelectFoldableOperands for a description of the 447 // transformation we are doing here. 448 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 449 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 450 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 451 unsigned OpToFold = 0; 452 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 453 OpToFold = 1; 454 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 455 OpToFold = 2; 456 } 457 458 if (OpToFold) { 459 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(), 460 TVI->getType(), true); 461 Value *OOp = TVI->getOperand(2-OpToFold); 462 // Avoid creating select between 2 constants unless it's selecting 463 // between 0, 1 and -1. 464 const APInt *OOpC; 465 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 466 if (!isa<Constant>(OOp) || 467 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 468 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 469 NewSel->takeName(TVI); 470 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 471 FalseVal, NewSel); 472 BO->copyIRFlags(TVI); 473 return BO; 474 } 475 } 476 } 477 } 478 } 479 480 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 481 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 482 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 483 unsigned OpToFold = 0; 484 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 485 OpToFold = 1; 486 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 487 OpToFold = 2; 488 } 489 490 if (OpToFold) { 491 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(), 492 FVI->getType(), true); 493 Value *OOp = FVI->getOperand(2-OpToFold); 494 // Avoid creating select between 2 constants unless it's selecting 495 // between 0, 1 and -1. 496 const APInt *OOpC; 497 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 498 if (!isa<Constant>(OOp) || 499 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 500 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 501 NewSel->takeName(FVI); 502 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 503 TrueVal, NewSel); 504 BO->copyIRFlags(FVI); 505 return BO; 506 } 507 } 508 } 509 } 510 } 511 512 return nullptr; 513 } 514 515 /// We want to turn: 516 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 517 /// into: 518 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 519 /// Note: 520 /// Z may be 0 if lshr is missing. 521 /// Worst-case scenario is that we will replace 5 instructions with 5 different 522 /// instructions, but we got rid of select. 523 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 524 Value *TVal, Value *FVal, 525 InstCombiner::BuilderTy &Builder) { 526 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 527 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 528 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 529 return nullptr; 530 531 // The TrueVal has general form of: and %B, 1 532 Value *B; 533 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 534 return nullptr; 535 536 // Where %B may be optionally shifted: lshr %X, %Z. 537 Value *X, *Z; 538 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 539 if (!HasShift) 540 X = B; 541 542 Value *Y; 543 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 544 return nullptr; 545 546 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 547 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 548 Constant *One = ConstantInt::get(SelType, 1); 549 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 550 Value *FullMask = Builder.CreateOr(Y, MaskB); 551 Value *MaskedX = Builder.CreateAnd(X, FullMask); 552 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 553 return new ZExtInst(ICmpNeZero, SelType); 554 } 555 556 /// We want to turn: 557 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 558 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 559 /// into: 560 /// ashr (X, Y) 561 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 562 Value *FalseVal, 563 InstCombiner::BuilderTy &Builder) { 564 ICmpInst::Predicate Pred = IC->getPredicate(); 565 Value *CmpLHS = IC->getOperand(0); 566 Value *CmpRHS = IC->getOperand(1); 567 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 568 return nullptr; 569 570 Value *X, *Y; 571 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 572 if ((Pred != ICmpInst::ICMP_SGT || 573 !match(CmpRHS, 574 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 575 (Pred != ICmpInst::ICMP_SLT || 576 !match(CmpRHS, 577 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 578 return nullptr; 579 580 // Canonicalize so that ashr is in FalseVal. 581 if (Pred == ICmpInst::ICMP_SLT) 582 std::swap(TrueVal, FalseVal); 583 584 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 585 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 586 match(CmpLHS, m_Specific(X))) { 587 const auto *Ashr = cast<Instruction>(FalseVal); 588 // if lshr is not exact and ashr is, this new ashr must not be exact. 589 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 590 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 591 } 592 593 return nullptr; 594 } 595 596 /// We want to turn: 597 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 598 /// into: 599 /// (or (shl (and X, C1), C3), Y) 600 /// iff: 601 /// C1 and C2 are both powers of 2 602 /// where: 603 /// C3 = Log(C2) - Log(C1) 604 /// 605 /// This transform handles cases where: 606 /// 1. The icmp predicate is inverted 607 /// 2. The select operands are reversed 608 /// 3. The magnitude of C2 and C1 are flipped 609 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 610 Value *FalseVal, 611 InstCombiner::BuilderTy &Builder) { 612 // Only handle integer compares. Also, if this is a vector select, we need a 613 // vector compare. 614 if (!TrueVal->getType()->isIntOrIntVectorTy() || 615 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 616 return nullptr; 617 618 Value *CmpLHS = IC->getOperand(0); 619 Value *CmpRHS = IC->getOperand(1); 620 621 Value *V; 622 unsigned C1Log; 623 bool IsEqualZero; 624 bool NeedAnd = false; 625 if (IC->isEquality()) { 626 if (!match(CmpRHS, m_Zero())) 627 return nullptr; 628 629 const APInt *C1; 630 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 631 return nullptr; 632 633 V = CmpLHS; 634 C1Log = C1->logBase2(); 635 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 636 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 637 IC->getPredicate() == ICmpInst::ICMP_SGT) { 638 // We also need to recognize (icmp slt (trunc (X)), 0) and 639 // (icmp sgt (trunc (X)), -1). 640 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 641 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 642 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 643 return nullptr; 644 645 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 646 return nullptr; 647 648 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 649 NeedAnd = true; 650 } else { 651 return nullptr; 652 } 653 654 const APInt *C2; 655 bool OrOnTrueVal = false; 656 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 657 if (!OrOnFalseVal) 658 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 659 660 if (!OrOnFalseVal && !OrOnTrueVal) 661 return nullptr; 662 663 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 664 665 unsigned C2Log = C2->logBase2(); 666 667 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 668 bool NeedShift = C1Log != C2Log; 669 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 670 V->getType()->getScalarSizeInBits(); 671 672 // Make sure we don't create more instructions than we save. 673 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 674 if ((NeedShift + NeedXor + NeedZExtTrunc) > 675 (IC->hasOneUse() + Or->hasOneUse())) 676 return nullptr; 677 678 if (NeedAnd) { 679 // Insert the AND instruction on the input to the truncate. 680 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 681 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 682 } 683 684 if (C2Log > C1Log) { 685 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 686 V = Builder.CreateShl(V, C2Log - C1Log); 687 } else if (C1Log > C2Log) { 688 V = Builder.CreateLShr(V, C1Log - C2Log); 689 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 690 } else 691 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 692 693 if (NeedXor) 694 V = Builder.CreateXor(V, *C2); 695 696 return Builder.CreateOr(V, Y); 697 } 698 699 /// Canonicalize a set or clear of a masked set of constant bits to 700 /// select-of-constants form. 701 static Instruction *foldSetClearBits(SelectInst &Sel, 702 InstCombiner::BuilderTy &Builder) { 703 Value *Cond = Sel.getCondition(); 704 Value *T = Sel.getTrueValue(); 705 Value *F = Sel.getFalseValue(); 706 Type *Ty = Sel.getType(); 707 Value *X; 708 const APInt *NotC, *C; 709 710 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 711 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 712 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 713 Constant *Zero = ConstantInt::getNullValue(Ty); 714 Constant *OrC = ConstantInt::get(Ty, *C); 715 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 716 return BinaryOperator::CreateOr(T, NewSel); 717 } 718 719 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 720 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 721 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 722 Constant *Zero = ConstantInt::getNullValue(Ty); 723 Constant *OrC = ConstantInt::get(Ty, *C); 724 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 725 return BinaryOperator::CreateOr(F, NewSel); 726 } 727 728 return nullptr; 729 } 730 731 // select (x == 0), 0, x * y --> freeze(y) * x 732 // select (y == 0), 0, x * y --> freeze(x) * y 733 // select (x == 0), undef, x * y --> freeze(y) * x 734 // select (x == undef), 0, x * y --> freeze(y) * x 735 // Usage of mul instead of 0 will make the result more poisonous, 736 // so the operand that was not checked in the condition should be frozen. 737 // The latter folding is applied only when a constant compared with x is 738 // is a vector consisting of 0 and undefs. If a constant compared with x 739 // is a scalar undefined value or undefined vector then an expression 740 // should be already folded into a constant. 741 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { 742 auto *CondVal = SI.getCondition(); 743 auto *TrueVal = SI.getTrueValue(); 744 auto *FalseVal = SI.getFalseValue(); 745 Value *X, *Y; 746 ICmpInst::Predicate Predicate; 747 748 // Assuming that constant compared with zero is not undef (but it may be 749 // a vector with some undef elements). Otherwise (when a constant is undef) 750 // the select expression should be already simplified. 751 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || 752 !ICmpInst::isEquality(Predicate)) 753 return nullptr; 754 755 if (Predicate == ICmpInst::ICMP_NE) 756 std::swap(TrueVal, FalseVal); 757 758 // Check that TrueVal is a constant instead of matching it with m_Zero() 759 // to handle the case when it is a scalar undef value or a vector containing 760 // non-zero elements that are masked by undef elements in the compare 761 // constant. 762 auto *TrueValC = dyn_cast<Constant>(TrueVal); 763 if (TrueValC == nullptr || 764 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || 765 !isa<Instruction>(FalseVal)) 766 return nullptr; 767 768 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); 769 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); 770 // If X is compared with 0 then TrueVal could be either zero or undef. 771 // m_Zero match vectors containing some undef elements, but for scalars 772 // m_Undef should be used explicitly. 773 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) 774 return nullptr; 775 776 auto *FalseValI = cast<Instruction>(FalseVal); 777 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), 778 *FalseValI); 779 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); 780 return IC.replaceInstUsesWith(SI, FalseValI); 781 } 782 783 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 784 /// There are 8 commuted/swapped variants of this pattern. 785 /// TODO: Also support a - UMIN(a,b) patterns. 786 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 787 const Value *TrueVal, 788 const Value *FalseVal, 789 InstCombiner::BuilderTy &Builder) { 790 ICmpInst::Predicate Pred = ICI->getPredicate(); 791 if (!ICmpInst::isUnsigned(Pred)) 792 return nullptr; 793 794 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 795 if (match(TrueVal, m_Zero())) { 796 Pred = ICmpInst::getInversePredicate(Pred); 797 std::swap(TrueVal, FalseVal); 798 } 799 if (!match(FalseVal, m_Zero())) 800 return nullptr; 801 802 Value *A = ICI->getOperand(0); 803 Value *B = ICI->getOperand(1); 804 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 805 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 806 std::swap(A, B); 807 Pred = ICmpInst::getSwappedPredicate(Pred); 808 } 809 810 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 811 "Unexpected isUnsigned predicate!"); 812 813 // Ensure the sub is of the form: 814 // (a > b) ? a - b : 0 -> usub.sat(a, b) 815 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 816 // Checking for both a-b and a+(-b) as a constant. 817 bool IsNegative = false; 818 const APInt *C; 819 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 820 (match(A, m_APInt(C)) && 821 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 822 IsNegative = true; 823 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 824 !(match(B, m_APInt(C)) && 825 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 826 return nullptr; 827 828 // If we are adding a negate and the sub and icmp are used anywhere else, we 829 // would end up with more instructions. 830 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 831 return nullptr; 832 833 // (a > b) ? a - b : 0 -> usub.sat(a, b) 834 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 835 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 836 if (IsNegative) 837 Result = Builder.CreateNeg(Result); 838 return Result; 839 } 840 841 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 842 InstCombiner::BuilderTy &Builder) { 843 if (!Cmp->hasOneUse()) 844 return nullptr; 845 846 // Match unsigned saturated add with constant. 847 Value *Cmp0 = Cmp->getOperand(0); 848 Value *Cmp1 = Cmp->getOperand(1); 849 ICmpInst::Predicate Pred = Cmp->getPredicate(); 850 Value *X; 851 const APInt *C, *CmpC; 852 if (Pred == ICmpInst::ICMP_ULT && 853 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 854 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 855 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 856 return Builder.CreateBinaryIntrinsic( 857 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 858 } 859 860 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 861 // There are 8 commuted variants. 862 // Canonicalize -1 (saturated result) to true value of the select. 863 if (match(FVal, m_AllOnes())) { 864 std::swap(TVal, FVal); 865 Pred = CmpInst::getInversePredicate(Pred); 866 } 867 if (!match(TVal, m_AllOnes())) 868 return nullptr; 869 870 // Canonicalize predicate to less-than or less-or-equal-than. 871 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 872 std::swap(Cmp0, Cmp1); 873 Pred = CmpInst::getSwappedPredicate(Pred); 874 } 875 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 876 return nullptr; 877 878 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 879 // Strictness of the comparison is irrelevant. 880 Value *Y; 881 if (match(Cmp0, m_Not(m_Value(X))) && 882 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 883 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 884 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 885 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 886 } 887 // The 'not' op may be included in the sum but not the compare. 888 // Strictness of the comparison is irrelevant. 889 X = Cmp0; 890 Y = Cmp1; 891 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 892 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 893 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 894 BinaryOperator *BO = cast<BinaryOperator>(FVal); 895 return Builder.CreateBinaryIntrinsic( 896 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 897 } 898 // The overflow may be detected via the add wrapping round. 899 // This is only valid for strict comparison! 900 if (Pred == ICmpInst::ICMP_ULT && 901 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 902 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 903 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 904 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 905 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 906 } 907 908 return nullptr; 909 } 910 911 /// Fold the following code sequence: 912 /// \code 913 /// int a = ctlz(x & -x); 914 // x ? 31 - a : a; 915 /// \code 916 /// 917 /// into: 918 /// cttz(x) 919 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 920 Value *FalseVal, 921 InstCombiner::BuilderTy &Builder) { 922 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 923 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 924 return nullptr; 925 926 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 927 std::swap(TrueVal, FalseVal); 928 929 if (!match(FalseVal, 930 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 931 return nullptr; 932 933 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 934 return nullptr; 935 936 Value *X = ICI->getOperand(0); 937 auto *II = cast<IntrinsicInst>(TrueVal); 938 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 939 return nullptr; 940 941 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 942 II->getType()); 943 return CallInst::Create(F, {X, II->getArgOperand(1)}); 944 } 945 946 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 947 /// call to cttz/ctlz with flag 'is_zero_poison' cleared. 948 /// 949 /// For example, we can fold the following code sequence: 950 /// \code 951 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 952 /// %1 = icmp ne i32 %x, 0 953 /// %2 = select i1 %1, i32 %0, i32 32 954 /// \code 955 /// 956 /// into: 957 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 958 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 959 InstCombiner::BuilderTy &Builder) { 960 ICmpInst::Predicate Pred = ICI->getPredicate(); 961 Value *CmpLHS = ICI->getOperand(0); 962 Value *CmpRHS = ICI->getOperand(1); 963 964 // Check if the condition value compares a value for equality against zero. 965 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 966 return nullptr; 967 968 Value *SelectArg = FalseVal; 969 Value *ValueOnZero = TrueVal; 970 if (Pred == ICmpInst::ICMP_NE) 971 std::swap(SelectArg, ValueOnZero); 972 973 // Skip zero extend/truncate. 974 Value *Count = nullptr; 975 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 976 !match(SelectArg, m_Trunc(m_Value(Count)))) 977 Count = SelectArg; 978 979 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 980 // input to the cttz/ctlz is used as LHS for the compare instruction. 981 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 982 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 983 return nullptr; 984 985 IntrinsicInst *II = cast<IntrinsicInst>(Count); 986 987 // Check if the value propagated on zero is a constant number equal to the 988 // sizeof in bits of 'Count'. 989 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 990 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 991 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from 992 // true to false on this flag, so we can replace it for all users. 993 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 994 return SelectArg; 995 } 996 997 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 998 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 999 // not be used if the input is zero. Relax to 'zero is poison' for that case. 1000 if (II->hasOneUse() && SelectArg->hasOneUse() && 1001 !match(II->getArgOperand(1), m_One())) 1002 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 1003 1004 return nullptr; 1005 } 1006 1007 /// Return true if we find and adjust an icmp+select pattern where the compare 1008 /// is with a constant that can be incremented or decremented to match the 1009 /// minimum or maximum idiom. 1010 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 1011 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1012 Value *CmpLHS = Cmp.getOperand(0); 1013 Value *CmpRHS = Cmp.getOperand(1); 1014 Value *TrueVal = Sel.getTrueValue(); 1015 Value *FalseVal = Sel.getFalseValue(); 1016 1017 // We may move or edit the compare, so make sure the select is the only user. 1018 const APInt *CmpC; 1019 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 1020 return false; 1021 1022 // These transforms only work for selects of integers or vector selects of 1023 // integer vectors. 1024 Type *SelTy = Sel.getType(); 1025 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 1026 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 1027 return false; 1028 1029 Constant *AdjustedRHS; 1030 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 1031 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 1032 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 1033 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 1034 else 1035 return false; 1036 1037 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 1038 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 1039 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 1040 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 1041 ; // Nothing to do here. Values match without any sign/zero extension. 1042 } 1043 // Types do not match. Instead of calculating this with mixed types, promote 1044 // all to the larger type. This enables scalar evolution to analyze this 1045 // expression. 1046 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 1047 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 1048 1049 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 1050 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 1051 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 1052 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 1053 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 1054 CmpLHS = TrueVal; 1055 AdjustedRHS = SextRHS; 1056 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 1057 SextRHS == TrueVal) { 1058 CmpLHS = FalseVal; 1059 AdjustedRHS = SextRHS; 1060 } else if (Cmp.isUnsigned()) { 1061 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 1062 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 1063 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 1064 // zext + signed compare cannot be changed: 1065 // 0xff <s 0x00, but 0x00ff >s 0x0000 1066 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 1067 CmpLHS = TrueVal; 1068 AdjustedRHS = ZextRHS; 1069 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 1070 ZextRHS == TrueVal) { 1071 CmpLHS = FalseVal; 1072 AdjustedRHS = ZextRHS; 1073 } else { 1074 return false; 1075 } 1076 } else { 1077 return false; 1078 } 1079 } else { 1080 return false; 1081 } 1082 1083 Pred = ICmpInst::getSwappedPredicate(Pred); 1084 CmpRHS = AdjustedRHS; 1085 std::swap(FalseVal, TrueVal); 1086 Cmp.setPredicate(Pred); 1087 Cmp.setOperand(0, CmpLHS); 1088 Cmp.setOperand(1, CmpRHS); 1089 Sel.setOperand(1, TrueVal); 1090 Sel.setOperand(2, FalseVal); 1091 Sel.swapProfMetadata(); 1092 1093 // Move the compare instruction right before the select instruction. Otherwise 1094 // the sext/zext value may be defined after the compare instruction uses it. 1095 Cmp.moveBefore(&Sel); 1096 1097 return true; 1098 } 1099 1100 /// If this is an integer min/max (icmp + select) with a constant operand, 1101 /// create the canonical icmp for the min/max operation and canonicalize the 1102 /// constant to the 'false' operand of the select: 1103 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1104 /// Note: if C1 != C2, this will change the icmp constant to the existing 1105 /// constant operand of the select. 1106 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1107 ICmpInst &Cmp, 1108 InstCombinerImpl &IC) { 1109 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1110 return nullptr; 1111 1112 // Canonicalize the compare predicate based on whether we have min or max. 1113 Value *LHS, *RHS; 1114 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1115 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1116 return nullptr; 1117 1118 // Is this already canonical? 1119 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1120 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1121 Cmp.getPredicate() == CanonicalPred) 1122 return nullptr; 1123 1124 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1125 // as this may cause an infinite combine loop. Let the sub be folded first. 1126 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1127 match(RHS, m_Sub(m_Value(), m_Zero()))) 1128 return nullptr; 1129 1130 // Create the canonical compare and plug it into the select. 1131 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1132 1133 // If the select operands did not change, we're done. 1134 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1135 return &Sel; 1136 1137 // If we are swapping the select operands, swap the metadata too. 1138 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1139 "Unexpected results from matchSelectPattern"); 1140 Sel.swapValues(); 1141 Sel.swapProfMetadata(); 1142 return &Sel; 1143 } 1144 1145 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp, 1146 InstCombinerImpl &IC) { 1147 Value *LHS, *RHS; 1148 // TODO: What to do with pointer min/max patterns? 1149 if (!Sel.getType()->isIntOrIntVectorTy()) 1150 return nullptr; 1151 1152 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1153 if (SPF == SelectPatternFlavor::SPF_ABS || 1154 SPF == SelectPatternFlavor::SPF_NABS) { 1155 if (!Cmp.hasOneUse()) 1156 return nullptr; // TODO: Relax this restriction. 1157 1158 // Note that NSW flag can only be propagated for normal, non-negated abs! 1159 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1160 match(RHS, m_NSWNeg(m_Specific(LHS))); 1161 Constant *IntMinIsPoisonC = 1162 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1163 Instruction *Abs = 1164 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1165 1166 if (SPF == SelectPatternFlavor::SPF_NABS) 1167 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1168 return IC.replaceInstUsesWith(Sel, Abs); 1169 } 1170 1171 if (SelectPatternResult::isMinOrMax(SPF)) { 1172 Intrinsic::ID IntrinsicID; 1173 switch (SPF) { 1174 case SelectPatternFlavor::SPF_UMIN: 1175 IntrinsicID = Intrinsic::umin; 1176 break; 1177 case SelectPatternFlavor::SPF_UMAX: 1178 IntrinsicID = Intrinsic::umax; 1179 break; 1180 case SelectPatternFlavor::SPF_SMIN: 1181 IntrinsicID = Intrinsic::smin; 1182 break; 1183 case SelectPatternFlavor::SPF_SMAX: 1184 IntrinsicID = Intrinsic::smax; 1185 break; 1186 default: 1187 llvm_unreachable("Unexpected SPF"); 1188 } 1189 return IC.replaceInstUsesWith( 1190 Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS)); 1191 } 1192 1193 return nullptr; 1194 } 1195 1196 /// If we have a select with an equality comparison, then we know the value in 1197 /// one of the arms of the select. See if substituting this value into an arm 1198 /// and simplifying the result yields the same value as the other arm. 1199 /// 1200 /// To make this transform safe, we must drop poison-generating flags 1201 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1202 /// that poison from propagating. If the existing binop already had no 1203 /// poison-generating flags, then this transform can be done by instsimplify. 1204 /// 1205 /// Consider: 1206 /// %cmp = icmp eq i32 %x, 2147483647 1207 /// %add = add nsw i32 %x, 1 1208 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1209 /// 1210 /// We can't replace %sel with %add unless we strip away the flags. 1211 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1212 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1213 ICmpInst &Cmp) { 1214 // Value equivalence substitution requires an all-or-nothing replacement. 1215 // It does not make sense for a vector compare where each lane is chosen 1216 // independently. 1217 if (!Cmp.isEquality() || Cmp.getType()->isVectorTy()) 1218 return nullptr; 1219 1220 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1221 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1222 bool Swapped = false; 1223 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1224 std::swap(TrueVal, FalseVal); 1225 Swapped = true; 1226 } 1227 1228 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1229 // Make sure Y cannot be undef though, as we might pick different values for 1230 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1231 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1232 // replacement cycle. 1233 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1234 if (TrueVal != CmpLHS && 1235 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1236 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1237 /* AllowRefinement */ true)) 1238 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1239 1240 // Even if TrueVal does not simplify, we can directly replace a use of 1241 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1242 // else and is safe to speculatively execute (we may end up executing it 1243 // with different operands, which should not cause side-effects or trigger 1244 // undefined behavior). Only do this if CmpRHS is a constant, as 1245 // profitability is not clear for other cases. 1246 // FIXME: The replacement could be performed recursively. 1247 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant())) 1248 if (auto *I = dyn_cast<Instruction>(TrueVal)) 1249 if (I->hasOneUse() && isSafeToSpeculativelyExecute(I)) 1250 for (Use &U : I->operands()) 1251 if (U == CmpLHS) { 1252 replaceUse(U, CmpRHS); 1253 return &Sel; 1254 } 1255 } 1256 if (TrueVal != CmpRHS && 1257 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1258 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1259 /* AllowRefinement */ true)) 1260 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1261 1262 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1263 if (!FalseInst) 1264 return nullptr; 1265 1266 // InstSimplify already performed this fold if it was possible subject to 1267 // current poison-generating flags. Try the transform again with 1268 // poison-generating flags temporarily dropped. 1269 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1270 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1271 WasNUW = OBO->hasNoUnsignedWrap(); 1272 WasNSW = OBO->hasNoSignedWrap(); 1273 FalseInst->setHasNoUnsignedWrap(false); 1274 FalseInst->setHasNoSignedWrap(false); 1275 } 1276 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1277 WasExact = PEO->isExact(); 1278 FalseInst->setIsExact(false); 1279 } 1280 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1281 WasInBounds = GEP->isInBounds(); 1282 GEP->setIsInBounds(false); 1283 } 1284 1285 // Try each equivalence substitution possibility. 1286 // We have an 'EQ' comparison, so the select's false value will propagate. 1287 // Example: 1288 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1289 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1290 /* AllowRefinement */ false) == TrueVal || 1291 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1292 /* AllowRefinement */ false) == TrueVal) { 1293 return replaceInstUsesWith(Sel, FalseVal); 1294 } 1295 1296 // Restore poison-generating flags if the transform did not apply. 1297 if (WasNUW) 1298 FalseInst->setHasNoUnsignedWrap(); 1299 if (WasNSW) 1300 FalseInst->setHasNoSignedWrap(); 1301 if (WasExact) 1302 FalseInst->setIsExact(); 1303 if (WasInBounds) 1304 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1305 1306 return nullptr; 1307 } 1308 1309 // See if this is a pattern like: 1310 // %old_cmp1 = icmp slt i32 %x, C2 1311 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1312 // %old_x_offseted = add i32 %x, C1 1313 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1314 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1315 // This can be rewritten as more canonical pattern: 1316 // %new_cmp1 = icmp slt i32 %x, -C1 1317 // %new_cmp2 = icmp sge i32 %x, C0-C1 1318 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1319 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1320 // Iff -C1 s<= C2 s<= C0-C1 1321 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1322 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1323 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1324 InstCombiner::BuilderTy &Builder) { 1325 Value *X = Sel0.getTrueValue(); 1326 Value *Sel1 = Sel0.getFalseValue(); 1327 1328 // First match the condition of the outermost select. 1329 // Said condition must be one-use. 1330 if (!Cmp0.hasOneUse()) 1331 return nullptr; 1332 ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); 1333 Value *Cmp00 = Cmp0.getOperand(0); 1334 Constant *C0; 1335 if (!match(Cmp0.getOperand(1), 1336 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1337 return nullptr; 1338 1339 if (!isa<SelectInst>(Sel1)) { 1340 Pred0 = ICmpInst::getInversePredicate(Pred0); 1341 std::swap(X, Sel1); 1342 } 1343 1344 // Canonicalize Cmp0 into ult or uge. 1345 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1346 switch (Pred0) { 1347 case ICmpInst::Predicate::ICMP_ULT: 1348 case ICmpInst::Predicate::ICMP_UGE: 1349 // Although icmp ult %x, 0 is an unusual thing to try and should generally 1350 // have been simplified, it does not verify with undef inputs so ensure we 1351 // are not in a strange state. 1352 if (!match(C0, m_SpecificInt_ICMP( 1353 ICmpInst::Predicate::ICMP_NE, 1354 APInt::getZero(C0->getType()->getScalarSizeInBits())))) 1355 return nullptr; 1356 break; // Great! 1357 case ICmpInst::Predicate::ICMP_ULE: 1358 case ICmpInst::Predicate::ICMP_UGT: 1359 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment 1360 // C0, which again means it must not have any all-ones elements. 1361 if (!match(C0, 1362 m_SpecificInt_ICMP( 1363 ICmpInst::Predicate::ICMP_NE, 1364 APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) 1365 return nullptr; // Can't do, have all-ones element[s]. 1366 C0 = InstCombiner::AddOne(C0); 1367 break; 1368 default: 1369 return nullptr; // Unknown predicate. 1370 } 1371 1372 // Now that we've canonicalized the ICmp, we know the X we expect; 1373 // the select in other hand should be one-use. 1374 if (!Sel1->hasOneUse()) 1375 return nullptr; 1376 1377 // If the types do not match, look through any truncs to the underlying 1378 // instruction. 1379 if (Cmp00->getType() != X->getType() && X->hasOneUse()) 1380 match(X, m_TruncOrSelf(m_Value(X))); 1381 1382 // We now can finish matching the condition of the outermost select: 1383 // it should either be the X itself, or an addition of some constant to X. 1384 Constant *C1; 1385 if (Cmp00 == X) 1386 C1 = ConstantInt::getNullValue(X->getType()); 1387 else if (!match(Cmp00, 1388 m_Add(m_Specific(X), 1389 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1390 return nullptr; 1391 1392 Value *Cmp1; 1393 ICmpInst::Predicate Pred1; 1394 Constant *C2; 1395 Value *ReplacementLow, *ReplacementHigh; 1396 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1397 m_Value(ReplacementHigh))) || 1398 !match(Cmp1, 1399 m_ICmp(Pred1, m_Specific(X), 1400 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1401 return nullptr; 1402 1403 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1404 return nullptr; // Not enough one-use instructions for the fold. 1405 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1406 // two comparisons we'll need to build. 1407 1408 // Canonicalize Cmp1 into the form we expect. 1409 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1410 switch (Pred1) { 1411 case ICmpInst::Predicate::ICMP_SLT: 1412 break; 1413 case ICmpInst::Predicate::ICMP_SLE: 1414 // We'd have to increment C2 by one, and for that it must not have signed 1415 // max element, but then it would have been canonicalized to 'slt' before 1416 // we get here. So we can't do anything useful with 'sle'. 1417 return nullptr; 1418 case ICmpInst::Predicate::ICMP_SGT: 1419 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1420 // which again means it must not have any signed max elements. 1421 if (!match(C2, 1422 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1423 APInt::getSignedMaxValue( 1424 C2->getType()->getScalarSizeInBits())))) 1425 return nullptr; // Can't do, have signed max element[s]. 1426 C2 = InstCombiner::AddOne(C2); 1427 LLVM_FALLTHROUGH; 1428 case ICmpInst::Predicate::ICMP_SGE: 1429 // Also non-canonical, but here we don't need to change C2, 1430 // so we don't have any restrictions on C2, so we can just handle it. 1431 std::swap(ReplacementLow, ReplacementHigh); 1432 break; 1433 default: 1434 return nullptr; // Unknown predicate. 1435 } 1436 1437 // The thresholds of this clamp-like pattern. 1438 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1439 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1440 if (Pred0 == ICmpInst::Predicate::ICMP_UGE) 1441 std::swap(ThresholdLowIncl, ThresholdHighExcl); 1442 1443 // The fold has a precondition 1: C2 s>= ThresholdLow 1444 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1445 ThresholdLowIncl); 1446 if (!match(Precond1, m_One())) 1447 return nullptr; 1448 // The fold has a precondition 2: C2 s<= ThresholdHigh 1449 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1450 ThresholdHighExcl); 1451 if (!match(Precond2, m_One())) 1452 return nullptr; 1453 1454 // If we are matching from a truncated input, we need to sext the 1455 // ReplacementLow and ReplacementHigh values. Only do the transform if they 1456 // are free to extend due to being constants. 1457 if (X->getType() != Sel0.getType()) { 1458 Constant *LowC, *HighC; 1459 if (!match(ReplacementLow, m_ImmConstant(LowC)) || 1460 !match(ReplacementHigh, m_ImmConstant(HighC))) 1461 return nullptr; 1462 ReplacementLow = ConstantExpr::getSExt(LowC, X->getType()); 1463 ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType()); 1464 } 1465 1466 // All good, finally emit the new pattern. 1467 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1468 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1469 Value *MaybeReplacedLow = 1470 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1471 1472 // Create the final select. If we looked through a truncate above, we will 1473 // need to retruncate the result. 1474 Value *MaybeReplacedHigh = Builder.CreateSelect( 1475 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1476 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); 1477 } 1478 1479 // If we have 1480 // %cmp = icmp [canonical predicate] i32 %x, C0 1481 // %r = select i1 %cmp, i32 %y, i32 C1 1482 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1483 // will have if we flip the strictness of the predicate (i.e. without changing 1484 // the result) is identical to the C1 in select. If it matches we can change 1485 // original comparison to one with swapped predicate, reuse the constant, 1486 // and swap the hands of select. 1487 static Instruction * 1488 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1489 InstCombinerImpl &IC) { 1490 ICmpInst::Predicate Pred; 1491 Value *X; 1492 Constant *C0; 1493 if (!match(&Cmp, m_OneUse(m_ICmp( 1494 Pred, m_Value(X), 1495 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1496 return nullptr; 1497 1498 // If comparison predicate is non-relational, we won't be able to do anything. 1499 if (ICmpInst::isEquality(Pred)) 1500 return nullptr; 1501 1502 // If comparison predicate is non-canonical, then we certainly won't be able 1503 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1504 if (!InstCombiner::isCanonicalPredicate(Pred)) 1505 return nullptr; 1506 1507 // If the [input] type of comparison and select type are different, lets abort 1508 // for now. We could try to compare constants with trunc/[zs]ext though. 1509 if (C0->getType() != Sel.getType()) 1510 return nullptr; 1511 1512 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). 1513 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? 1514 // Or should we just abandon this transform entirely? 1515 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) 1516 return nullptr; 1517 1518 1519 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1520 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1521 // At least one of these values we are selecting between must be a constant 1522 // else we'll never succeed. 1523 if (!match(SelVal0, m_AnyIntegralConstant()) && 1524 !match(SelVal1, m_AnyIntegralConstant())) 1525 return nullptr; 1526 1527 // Does this constant C match any of the `select` values? 1528 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1529 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1530 }; 1531 1532 // If C0 *already* matches true/false value of select, we are done. 1533 if (MatchesSelectValue(C0)) 1534 return nullptr; 1535 1536 // Check the constant we'd have with flipped-strictness predicate. 1537 auto FlippedStrictness = 1538 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1539 if (!FlippedStrictness) 1540 return nullptr; 1541 1542 // If said constant doesn't match either, then there is no hope, 1543 if (!MatchesSelectValue(FlippedStrictness->second)) 1544 return nullptr; 1545 1546 // It matched! Lets insert the new comparison just before select. 1547 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1548 IC.Builder.SetInsertPoint(&Sel); 1549 1550 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1551 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1552 Cmp.getName() + ".inv"); 1553 IC.replaceOperand(Sel, 0, NewCmp); 1554 Sel.swapValues(); 1555 Sel.swapProfMetadata(); 1556 1557 return &Sel; 1558 } 1559 1560 /// Visit a SelectInst that has an ICmpInst as its first operand. 1561 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1562 ICmpInst *ICI) { 1563 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1564 return NewSel; 1565 1566 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1567 return NewSel; 1568 1569 if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this)) 1570 return NewSPF; 1571 1572 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder)) 1573 return replaceInstUsesWith(SI, V); 1574 1575 if (Instruction *NewSel = 1576 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1577 return NewSel; 1578 1579 bool Changed = adjustMinMax(SI, *ICI); 1580 1581 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1582 return replaceInstUsesWith(SI, V); 1583 1584 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1585 Value *TrueVal = SI.getTrueValue(); 1586 Value *FalseVal = SI.getFalseValue(); 1587 ICmpInst::Predicate Pred = ICI->getPredicate(); 1588 Value *CmpLHS = ICI->getOperand(0); 1589 Value *CmpRHS = ICI->getOperand(1); 1590 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1591 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1592 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1593 SI.setOperand(1, CmpRHS); 1594 Changed = true; 1595 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1596 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1597 SI.setOperand(2, CmpRHS); 1598 Changed = true; 1599 } 1600 } 1601 1602 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1603 // decomposeBitTestICmp() might help. 1604 { 1605 unsigned BitWidth = 1606 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1607 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1608 Value *X; 1609 const APInt *Y, *C; 1610 bool TrueWhenUnset; 1611 bool IsBitTest = false; 1612 if (ICmpInst::isEquality(Pred) && 1613 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1614 match(CmpRHS, m_Zero())) { 1615 IsBitTest = true; 1616 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1617 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1618 X = CmpLHS; 1619 Y = &MinSignedValue; 1620 IsBitTest = true; 1621 TrueWhenUnset = false; 1622 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1623 X = CmpLHS; 1624 Y = &MinSignedValue; 1625 IsBitTest = true; 1626 TrueWhenUnset = true; 1627 } 1628 if (IsBitTest) { 1629 Value *V = nullptr; 1630 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1631 if (TrueWhenUnset && TrueVal == X && 1632 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1633 V = Builder.CreateAnd(X, ~(*Y)); 1634 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1635 else if (!TrueWhenUnset && FalseVal == X && 1636 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1637 V = Builder.CreateAnd(X, ~(*Y)); 1638 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1639 else if (TrueWhenUnset && FalseVal == X && 1640 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1641 V = Builder.CreateOr(X, *Y); 1642 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1643 else if (!TrueWhenUnset && TrueVal == X && 1644 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1645 V = Builder.CreateOr(X, *Y); 1646 1647 if (V) 1648 return replaceInstUsesWith(SI, V); 1649 } 1650 } 1651 1652 if (Instruction *V = 1653 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1654 return V; 1655 1656 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1657 return V; 1658 1659 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1660 return replaceInstUsesWith(SI, V); 1661 1662 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1663 return replaceInstUsesWith(SI, V); 1664 1665 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1666 return replaceInstUsesWith(SI, V); 1667 1668 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1669 return replaceInstUsesWith(SI, V); 1670 1671 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1672 return replaceInstUsesWith(SI, V); 1673 1674 return Changed ? &SI : nullptr; 1675 } 1676 1677 /// SI is a select whose condition is a PHI node (but the two may be in 1678 /// different blocks). See if the true/false values (V) are live in all of the 1679 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1680 /// 1681 /// X = phi [ C1, BB1], [C2, BB2] 1682 /// Y = add 1683 /// Z = select X, Y, 0 1684 /// 1685 /// because Y is not live in BB1/BB2. 1686 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1687 const SelectInst &SI) { 1688 // If the value is a non-instruction value like a constant or argument, it 1689 // can always be mapped. 1690 const Instruction *I = dyn_cast<Instruction>(V); 1691 if (!I) return true; 1692 1693 // If V is a PHI node defined in the same block as the condition PHI, we can 1694 // map the arguments. 1695 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1696 1697 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1698 if (VP->getParent() == CondPHI->getParent()) 1699 return true; 1700 1701 // Otherwise, if the PHI and select are defined in the same block and if V is 1702 // defined in a different block, then we can transform it. 1703 if (SI.getParent() == CondPHI->getParent() && 1704 I->getParent() != CondPHI->getParent()) 1705 return true; 1706 1707 // Otherwise we have a 'hard' case and we can't tell without doing more 1708 // detailed dominator based analysis, punt. 1709 return false; 1710 } 1711 1712 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1713 /// SPF2(SPF1(A, B), C) 1714 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1715 SelectPatternFlavor SPF1, Value *A, 1716 Value *B, Instruction &Outer, 1717 SelectPatternFlavor SPF2, 1718 Value *C) { 1719 if (Outer.getType() != Inner->getType()) 1720 return nullptr; 1721 1722 if (C == A || C == B) { 1723 // MAX(MAX(A, B), B) -> MAX(A, B) 1724 // MIN(MIN(a, b), a) -> MIN(a, b) 1725 // TODO: This could be done in instsimplify. 1726 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1727 return replaceInstUsesWith(Outer, Inner); 1728 1729 // MAX(MIN(a, b), a) -> a 1730 // MIN(MAX(a, b), a) -> a 1731 // TODO: This could be done in instsimplify. 1732 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1733 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1734 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1735 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1736 return replaceInstUsesWith(Outer, C); 1737 } 1738 1739 if (SPF1 == SPF2) { 1740 const APInt *CB, *CC; 1741 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1742 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1743 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1744 // TODO: This could be done in instsimplify. 1745 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1746 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1747 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1748 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1749 return replaceInstUsesWith(Outer, Inner); 1750 1751 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1752 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1753 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1754 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1755 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1756 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1757 Outer.replaceUsesOfWith(Inner, A); 1758 return &Outer; 1759 } 1760 } 1761 } 1762 1763 // max(max(A, B), min(A, B)) --> max(A, B) 1764 // min(min(A, B), max(A, B)) --> min(A, B) 1765 // TODO: This could be done in instsimplify. 1766 if (SPF1 == SPF2 && 1767 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1768 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1769 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1770 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1771 return replaceInstUsesWith(Outer, Inner); 1772 1773 // ABS(ABS(X)) -> ABS(X) 1774 // NABS(NABS(X)) -> NABS(X) 1775 // TODO: This could be done in instsimplify. 1776 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1777 return replaceInstUsesWith(Outer, Inner); 1778 } 1779 1780 // ABS(NABS(X)) -> ABS(X) 1781 // NABS(ABS(X)) -> NABS(X) 1782 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1783 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1784 SelectInst *SI = cast<SelectInst>(Inner); 1785 Value *NewSI = 1786 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1787 SI->getTrueValue(), SI->getName(), SI); 1788 return replaceInstUsesWith(Outer, NewSI); 1789 } 1790 1791 auto IsFreeOrProfitableToInvert = 1792 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1793 if (match(V, m_Not(m_Value(NotV)))) { 1794 // If V has at most 2 uses then we can get rid of the xor operation 1795 // entirely. 1796 ElidesXor |= !V->hasNUsesOrMore(3); 1797 return true; 1798 } 1799 1800 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1801 NotV = nullptr; 1802 return true; 1803 } 1804 1805 return false; 1806 }; 1807 1808 Value *NotA, *NotB, *NotC; 1809 bool ElidesXor = false; 1810 1811 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1812 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1813 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1814 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1815 // 1816 // This transform is performance neutral if we can elide at least one xor from 1817 // the set of three operands, since we'll be tacking on an xor at the very 1818 // end. 1819 if (SelectPatternResult::isMinOrMax(SPF1) && 1820 SelectPatternResult::isMinOrMax(SPF2) && 1821 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1822 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1823 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1824 if (!NotA) 1825 NotA = Builder.CreateNot(A); 1826 if (!NotB) 1827 NotB = Builder.CreateNot(B); 1828 if (!NotC) 1829 NotC = Builder.CreateNot(C); 1830 1831 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1832 NotB); 1833 Value *NewOuter = Builder.CreateNot( 1834 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1835 return replaceInstUsesWith(Outer, NewOuter); 1836 } 1837 1838 return nullptr; 1839 } 1840 1841 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1842 /// This is even legal for FP. 1843 static Instruction *foldAddSubSelect(SelectInst &SI, 1844 InstCombiner::BuilderTy &Builder) { 1845 Value *CondVal = SI.getCondition(); 1846 Value *TrueVal = SI.getTrueValue(); 1847 Value *FalseVal = SI.getFalseValue(); 1848 auto *TI = dyn_cast<Instruction>(TrueVal); 1849 auto *FI = dyn_cast<Instruction>(FalseVal); 1850 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1851 return nullptr; 1852 1853 Instruction *AddOp = nullptr, *SubOp = nullptr; 1854 if ((TI->getOpcode() == Instruction::Sub && 1855 FI->getOpcode() == Instruction::Add) || 1856 (TI->getOpcode() == Instruction::FSub && 1857 FI->getOpcode() == Instruction::FAdd)) { 1858 AddOp = FI; 1859 SubOp = TI; 1860 } else if ((FI->getOpcode() == Instruction::Sub && 1861 TI->getOpcode() == Instruction::Add) || 1862 (FI->getOpcode() == Instruction::FSub && 1863 TI->getOpcode() == Instruction::FAdd)) { 1864 AddOp = TI; 1865 SubOp = FI; 1866 } 1867 1868 if (AddOp) { 1869 Value *OtherAddOp = nullptr; 1870 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1871 OtherAddOp = AddOp->getOperand(1); 1872 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1873 OtherAddOp = AddOp->getOperand(0); 1874 } 1875 1876 if (OtherAddOp) { 1877 // So at this point we know we have (Y -> OtherAddOp): 1878 // select C, (add X, Y), (sub X, Z) 1879 Value *NegVal; // Compute -Z 1880 if (SI.getType()->isFPOrFPVectorTy()) { 1881 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1882 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1883 FastMathFlags Flags = AddOp->getFastMathFlags(); 1884 Flags &= SubOp->getFastMathFlags(); 1885 NegInst->setFastMathFlags(Flags); 1886 } 1887 } else { 1888 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1889 } 1890 1891 Value *NewTrueOp = OtherAddOp; 1892 Value *NewFalseOp = NegVal; 1893 if (AddOp != TI) 1894 std::swap(NewTrueOp, NewFalseOp); 1895 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1896 SI.getName() + ".p", &SI); 1897 1898 if (SI.getType()->isFPOrFPVectorTy()) { 1899 Instruction *RI = 1900 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1901 1902 FastMathFlags Flags = AddOp->getFastMathFlags(); 1903 Flags &= SubOp->getFastMathFlags(); 1904 RI->setFastMathFlags(Flags); 1905 return RI; 1906 } else 1907 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1908 } 1909 } 1910 return nullptr; 1911 } 1912 1913 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1914 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1915 /// Along with a number of patterns similar to: 1916 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1917 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1918 static Instruction * 1919 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1920 Value *CondVal = SI.getCondition(); 1921 Value *TrueVal = SI.getTrueValue(); 1922 Value *FalseVal = SI.getFalseValue(); 1923 1924 WithOverflowInst *II; 1925 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1926 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1927 return nullptr; 1928 1929 Value *X = II->getLHS(); 1930 Value *Y = II->getRHS(); 1931 1932 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1933 Type *Ty = Limit->getType(); 1934 1935 ICmpInst::Predicate Pred; 1936 Value *TrueVal, *FalseVal, *Op; 1937 const APInt *C; 1938 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1939 m_Value(TrueVal), m_Value(FalseVal)))) 1940 return false; 1941 1942 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; 1943 auto IsMinMax = [&](Value *Min, Value *Max) { 1944 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1945 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1946 return match(Min, m_SpecificInt(MinVal)) && 1947 match(Max, m_SpecificInt(MaxVal)); 1948 }; 1949 1950 if (Op != X && Op != Y) 1951 return false; 1952 1953 if (IsAdd) { 1954 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1955 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1956 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1957 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1958 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1959 IsMinMax(TrueVal, FalseVal)) 1960 return true; 1961 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1962 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1963 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1964 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1965 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1966 IsMinMax(FalseVal, TrueVal)) 1967 return true; 1968 } else { 1969 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1970 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1971 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1972 IsMinMax(TrueVal, FalseVal)) 1973 return true; 1974 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1975 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1976 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1977 IsMinMax(FalseVal, TrueVal)) 1978 return true; 1979 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1980 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1981 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1982 IsMinMax(FalseVal, TrueVal)) 1983 return true; 1984 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1985 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1986 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1987 IsMinMax(TrueVal, FalseVal)) 1988 return true; 1989 } 1990 1991 return false; 1992 }; 1993 1994 Intrinsic::ID NewIntrinsicID; 1995 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1996 match(TrueVal, m_AllOnes())) 1997 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1998 NewIntrinsicID = Intrinsic::uadd_sat; 1999 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 2000 match(TrueVal, m_Zero())) 2001 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 2002 NewIntrinsicID = Intrinsic::usub_sat; 2003 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 2004 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 2005 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2006 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2007 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2008 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2009 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2010 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2011 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2012 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2013 NewIntrinsicID = Intrinsic::sadd_sat; 2014 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 2015 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 2016 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2017 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2018 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2019 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2020 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2021 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2022 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2023 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2024 NewIntrinsicID = Intrinsic::ssub_sat; 2025 else 2026 return nullptr; 2027 2028 Function *F = 2029 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 2030 return CallInst::Create(F, {X, Y}); 2031 } 2032 2033 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 2034 Constant *C; 2035 if (!match(Sel.getTrueValue(), m_Constant(C)) && 2036 !match(Sel.getFalseValue(), m_Constant(C))) 2037 return nullptr; 2038 2039 Instruction *ExtInst; 2040 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 2041 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 2042 return nullptr; 2043 2044 auto ExtOpcode = ExtInst->getOpcode(); 2045 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 2046 return nullptr; 2047 2048 // If we are extending from a boolean type or if we can create a select that 2049 // has the same size operands as its condition, try to narrow the select. 2050 Value *X = ExtInst->getOperand(0); 2051 Type *SmallType = X->getType(); 2052 Value *Cond = Sel.getCondition(); 2053 auto *Cmp = dyn_cast<CmpInst>(Cond); 2054 if (!SmallType->isIntOrIntVectorTy(1) && 2055 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 2056 return nullptr; 2057 2058 // If the constant is the same after truncation to the smaller type and 2059 // extension to the original type, we can narrow the select. 2060 Type *SelType = Sel.getType(); 2061 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 2062 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 2063 if (ExtC == C && ExtInst->hasOneUse()) { 2064 Value *TruncCVal = cast<Value>(TruncC); 2065 if (ExtInst == Sel.getFalseValue()) 2066 std::swap(X, TruncCVal); 2067 2068 // select Cond, (ext X), C --> ext(select Cond, X, C') 2069 // select Cond, C, (ext X) --> ext(select Cond, C', X) 2070 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 2071 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 2072 } 2073 2074 // If one arm of the select is the extend of the condition, replace that arm 2075 // with the extension of the appropriate known bool value. 2076 if (Cond == X) { 2077 if (ExtInst == Sel.getTrueValue()) { 2078 // select X, (sext X), C --> select X, -1, C 2079 // select X, (zext X), C --> select X, 1, C 2080 Constant *One = ConstantInt::getTrue(SmallType); 2081 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 2082 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 2083 } else { 2084 // select X, C, (sext X) --> select X, C, 0 2085 // select X, C, (zext X) --> select X, C, 0 2086 Constant *Zero = ConstantInt::getNullValue(SelType); 2087 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 2088 } 2089 } 2090 2091 return nullptr; 2092 } 2093 2094 /// Try to transform a vector select with a constant condition vector into a 2095 /// shuffle for easier combining with other shuffles and insert/extract. 2096 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 2097 Value *CondVal = SI.getCondition(); 2098 Constant *CondC; 2099 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 2100 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 2101 return nullptr; 2102 2103 unsigned NumElts = CondValTy->getNumElements(); 2104 SmallVector<int, 16> Mask; 2105 Mask.reserve(NumElts); 2106 for (unsigned i = 0; i != NumElts; ++i) { 2107 Constant *Elt = CondC->getAggregateElement(i); 2108 if (!Elt) 2109 return nullptr; 2110 2111 if (Elt->isOneValue()) { 2112 // If the select condition element is true, choose from the 1st vector. 2113 Mask.push_back(i); 2114 } else if (Elt->isNullValue()) { 2115 // If the select condition element is false, choose from the 2nd vector. 2116 Mask.push_back(i + NumElts); 2117 } else if (isa<UndefValue>(Elt)) { 2118 // Undef in a select condition (choose one of the operands) does not mean 2119 // the same thing as undef in a shuffle mask (any value is acceptable), so 2120 // give up. 2121 return nullptr; 2122 } else { 2123 // Bail out on a constant expression. 2124 return nullptr; 2125 } 2126 } 2127 2128 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2129 } 2130 2131 /// If we have a select of vectors with a scalar condition, try to convert that 2132 /// to a vector select by splatting the condition. A splat may get folded with 2133 /// other operations in IR and having all operands of a select be vector types 2134 /// is likely better for vector codegen. 2135 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2136 InstCombinerImpl &IC) { 2137 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2138 if (!Ty) 2139 return nullptr; 2140 2141 // We can replace a single-use extract with constant index. 2142 Value *Cond = Sel.getCondition(); 2143 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2144 return nullptr; 2145 2146 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2147 // Splatting the extracted condition reduces code (we could directly create a 2148 // splat shuffle of the source vector to eliminate the intermediate step). 2149 return IC.replaceOperand( 2150 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2151 } 2152 2153 /// Reuse bitcasted operands between a compare and select: 2154 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2155 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2156 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2157 InstCombiner::BuilderTy &Builder) { 2158 Value *Cond = Sel.getCondition(); 2159 Value *TVal = Sel.getTrueValue(); 2160 Value *FVal = Sel.getFalseValue(); 2161 2162 CmpInst::Predicate Pred; 2163 Value *A, *B; 2164 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2165 return nullptr; 2166 2167 // The select condition is a compare instruction. If the select's true/false 2168 // values are already the same as the compare operands, there's nothing to do. 2169 if (TVal == A || TVal == B || FVal == A || FVal == B) 2170 return nullptr; 2171 2172 Value *C, *D; 2173 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2174 return nullptr; 2175 2176 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2177 Value *TSrc, *FSrc; 2178 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2179 !match(FVal, m_BitCast(m_Value(FSrc)))) 2180 return nullptr; 2181 2182 // If the select true/false values are *different bitcasts* of the same source 2183 // operands, make the select operands the same as the compare operands and 2184 // cast the result. This is the canonical select form for min/max. 2185 Value *NewSel; 2186 if (TSrc == C && FSrc == D) { 2187 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2188 // bitcast (select (cmp A, B), A, B) 2189 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2190 } else if (TSrc == D && FSrc == C) { 2191 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2192 // bitcast (select (cmp A, B), B, A) 2193 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2194 } else { 2195 return nullptr; 2196 } 2197 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2198 } 2199 2200 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2201 /// instructions. 2202 /// 2203 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2204 /// selects between the returned value of the cmpxchg instruction its compare 2205 /// operand, the result of the select will always be equal to its false value. 2206 /// For example: 2207 /// 2208 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2209 /// %1 = extractvalue { i64, i1 } %0, 1 2210 /// %2 = extractvalue { i64, i1 } %0, 0 2211 /// %3 = select i1 %1, i64 %compare, i64 %2 2212 /// ret i64 %3 2213 /// 2214 /// The returned value of the cmpxchg instruction (%2) is the original value 2215 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2216 /// must have been equal to %compare. Thus, the result of the select is always 2217 /// equal to %2, and the code can be simplified to: 2218 /// 2219 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2220 /// %1 = extractvalue { i64, i1 } %0, 0 2221 /// ret i64 %1 2222 /// 2223 static Value *foldSelectCmpXchg(SelectInst &SI) { 2224 // A helper that determines if V is an extractvalue instruction whose 2225 // aggregate operand is a cmpxchg instruction and whose single index is equal 2226 // to I. If such conditions are true, the helper returns the cmpxchg 2227 // instruction; otherwise, a nullptr is returned. 2228 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2229 auto *Extract = dyn_cast<ExtractValueInst>(V); 2230 if (!Extract) 2231 return nullptr; 2232 if (Extract->getIndices()[0] != I) 2233 return nullptr; 2234 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2235 }; 2236 2237 // If the select has a single user, and this user is a select instruction that 2238 // we can simplify, skip the cmpxchg simplification for now. 2239 if (SI.hasOneUse()) 2240 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2241 if (Select->getCondition() == SI.getCondition()) 2242 if (Select->getFalseValue() == SI.getTrueValue() || 2243 Select->getTrueValue() == SI.getFalseValue()) 2244 return nullptr; 2245 2246 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2247 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2248 if (!CmpXchg) 2249 return nullptr; 2250 2251 // Check the true value case: The true value of the select is the returned 2252 // value of the same cmpxchg used by the condition, and the false value is the 2253 // cmpxchg instruction's compare operand. 2254 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2255 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2256 return SI.getFalseValue(); 2257 2258 // Check the false value case: The false value of the select is the returned 2259 // value of the same cmpxchg used by the condition, and the true value is the 2260 // cmpxchg instruction's compare operand. 2261 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2262 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2263 return SI.getFalseValue(); 2264 2265 return nullptr; 2266 } 2267 2268 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2269 Value *Y, 2270 InstCombiner::BuilderTy &Builder) { 2271 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2272 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2273 SPF == SelectPatternFlavor::SPF_UMAX; 2274 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2275 // the constant value check to an assert. 2276 Value *A; 2277 const APInt *C1, *C2; 2278 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2279 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2280 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2281 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2282 Value *NewMinMax = createMinMax(Builder, SPF, A, 2283 ConstantInt::get(X->getType(), *C2 - *C1)); 2284 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2285 ConstantInt::get(X->getType(), *C1)); 2286 } 2287 2288 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2289 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2290 bool Overflow; 2291 APInt Diff = C2->ssub_ov(*C1, Overflow); 2292 if (!Overflow) { 2293 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2294 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2295 Value *NewMinMax = createMinMax(Builder, SPF, A, 2296 ConstantInt::get(X->getType(), Diff)); 2297 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2298 ConstantInt::get(X->getType(), *C1)); 2299 } 2300 } 2301 2302 return nullptr; 2303 } 2304 2305 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2306 Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) { 2307 Type *Ty = MinMax1.getType(); 2308 2309 // We are looking for a tree of: 2310 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2311 // Where the min and max could be reversed 2312 Instruction *MinMax2; 2313 BinaryOperator *AddSub; 2314 const APInt *MinValue, *MaxValue; 2315 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2316 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2317 return nullptr; 2318 } else if (match(&MinMax1, 2319 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2320 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2321 return nullptr; 2322 } else 2323 return nullptr; 2324 2325 // Check that the constants clamp a saturate, and that the new type would be 2326 // sensible to convert to. 2327 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2328 return nullptr; 2329 // In what bitwidth can this be treated as saturating arithmetics? 2330 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2331 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2332 // good first approximation for what should be done there. 2333 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2334 return nullptr; 2335 2336 // Also make sure that the number of uses is as expected. The 3 is for the 2337 // the two items of the compare and the select, or 2 from a min/max. 2338 unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3; 2339 if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses)) 2340 return nullptr; 2341 2342 // Create the new type (which can be a vector type) 2343 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2344 2345 Intrinsic::ID IntrinsicID; 2346 if (AddSub->getOpcode() == Instruction::Add) 2347 IntrinsicID = Intrinsic::sadd_sat; 2348 else if (AddSub->getOpcode() == Instruction::Sub) 2349 IntrinsicID = Intrinsic::ssub_sat; 2350 else 2351 return nullptr; 2352 2353 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This 2354 // is usually achieved via a sext from a smaller type. 2355 if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) > 2356 NewBitWidth || 2357 ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth) 2358 return nullptr; 2359 2360 // Finally create and return the sat intrinsic, truncated to the new type 2361 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2362 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy); 2363 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy); 2364 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2365 return CastInst::Create(Instruction::SExt, Sat, Ty); 2366 } 2367 2368 /// Reduce a sequence of min/max with a common operand. 2369 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2370 Value *RHS, 2371 InstCombiner::BuilderTy &Builder) { 2372 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2373 // TODO: Allow FP min/max with nnan/nsz. 2374 if (!LHS->getType()->isIntOrIntVectorTy()) 2375 return nullptr; 2376 2377 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2378 Value *A, *B, *C, *D; 2379 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2380 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2381 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2382 return nullptr; 2383 2384 // Look for a common operand. The use checks are different than usual because 2385 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2386 // the select. 2387 Value *MinMaxOp = nullptr; 2388 Value *ThirdOp = nullptr; 2389 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2390 // If the LHS is only used in this chain and the RHS is used outside of it, 2391 // reuse the RHS min/max because that will eliminate the LHS. 2392 if (D == A || C == A) { 2393 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2394 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2395 MinMaxOp = RHS; 2396 ThirdOp = B; 2397 } else if (D == B || C == B) { 2398 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2399 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2400 MinMaxOp = RHS; 2401 ThirdOp = A; 2402 } 2403 } else if (!RHS->hasNUsesOrMore(3)) { 2404 // Reuse the LHS. This will eliminate the RHS. 2405 if (D == A || D == B) { 2406 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2407 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2408 MinMaxOp = LHS; 2409 ThirdOp = C; 2410 } else if (C == A || C == B) { 2411 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2412 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2413 MinMaxOp = LHS; 2414 ThirdOp = D; 2415 } 2416 } 2417 if (!MinMaxOp || !ThirdOp) 2418 return nullptr; 2419 2420 CmpInst::Predicate P = getMinMaxPred(SPF); 2421 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2422 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2423 } 2424 2425 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2426 /// into a funnel shift intrinsic. Example: 2427 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2428 /// --> call llvm.fshl.i32(a, a, b) 2429 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2430 /// --> call llvm.fshl.i32(a, b, c) 2431 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2432 /// --> call llvm.fshr.i32(a, b, c) 2433 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2434 InstCombiner::BuilderTy &Builder) { 2435 // This must be a power-of-2 type for a bitmasking transform to be valid. 2436 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2437 if (!isPowerOf2_32(Width)) 2438 return nullptr; 2439 2440 BinaryOperator *Or0, *Or1; 2441 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2442 return nullptr; 2443 2444 Value *SV0, *SV1, *SA0, *SA1; 2445 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2446 m_ZExtOrSelf(m_Value(SA0))))) || 2447 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2448 m_ZExtOrSelf(m_Value(SA1))))) || 2449 Or0->getOpcode() == Or1->getOpcode()) 2450 return nullptr; 2451 2452 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2453 if (Or0->getOpcode() == BinaryOperator::LShr) { 2454 std::swap(Or0, Or1); 2455 std::swap(SV0, SV1); 2456 std::swap(SA0, SA1); 2457 } 2458 assert(Or0->getOpcode() == BinaryOperator::Shl && 2459 Or1->getOpcode() == BinaryOperator::LShr && 2460 "Illegal or(shift,shift) pair"); 2461 2462 // Check the shift amounts to see if they are an opposite pair. 2463 Value *ShAmt; 2464 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2465 ShAmt = SA0; 2466 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2467 ShAmt = SA1; 2468 else 2469 return nullptr; 2470 2471 // We should now have this pattern: 2472 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2473 // The false value of the select must be a funnel-shift of the true value: 2474 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2475 bool IsFshl = (ShAmt == SA0); 2476 Value *TVal = Sel.getTrueValue(); 2477 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2478 return nullptr; 2479 2480 // Finally, see if the select is filtering out a shift-by-zero. 2481 Value *Cond = Sel.getCondition(); 2482 ICmpInst::Predicate Pred; 2483 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2484 Pred != ICmpInst::ICMP_EQ) 2485 return nullptr; 2486 2487 // If this is not a rotate then the select was blocking poison from the 2488 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2489 if (SV0 != SV1) { 2490 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2491 SV1 = Builder.CreateFreeze(SV1); 2492 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2493 SV0 = Builder.CreateFreeze(SV0); 2494 } 2495 2496 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2497 // Convert to funnel shift intrinsic. 2498 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2499 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2500 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2501 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2502 } 2503 2504 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2505 InstCombiner::BuilderTy &Builder) { 2506 Value *Cond = Sel.getCondition(); 2507 Value *TVal = Sel.getTrueValue(); 2508 Value *FVal = Sel.getFalseValue(); 2509 Type *SelType = Sel.getType(); 2510 2511 // Match select ?, TC, FC where the constants are equal but negated. 2512 // TODO: Generalize to handle a negated variable operand? 2513 const APFloat *TC, *FC; 2514 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2515 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2516 return nullptr; 2517 2518 assert(TC != FC && "Expected equal select arms to simplify"); 2519 2520 Value *X; 2521 const APInt *C; 2522 bool IsTrueIfSignSet; 2523 ICmpInst::Predicate Pred; 2524 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2525 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2526 X->getType() != SelType) 2527 return nullptr; 2528 2529 // If needed, negate the value that will be the sign argument of the copysign: 2530 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2531 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2532 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2533 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2534 if (IsTrueIfSignSet ^ TC->isNegative()) 2535 X = Builder.CreateFNegFMF(X, &Sel); 2536 2537 // Canonicalize the magnitude argument as the positive constant since we do 2538 // not care about its sign. 2539 Value *MagArg = TC->isNegative() ? FVal : TVal; 2540 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2541 Sel.getType()); 2542 Instruction *CopySign = CallInst::Create(F, { MagArg, X }); 2543 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2544 return CopySign; 2545 } 2546 2547 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2548 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2549 if (!VecTy) 2550 return nullptr; 2551 2552 unsigned NumElts = VecTy->getNumElements(); 2553 APInt UndefElts(NumElts, 0); 2554 APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); 2555 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2556 if (V != &Sel) 2557 return replaceInstUsesWith(Sel, V); 2558 return &Sel; 2559 } 2560 2561 // A select of a "select shuffle" with a common operand can be rearranged 2562 // to select followed by "select shuffle". Because of poison, this only works 2563 // in the case of a shuffle with no undefined mask elements. 2564 Value *Cond = Sel.getCondition(); 2565 Value *TVal = Sel.getTrueValue(); 2566 Value *FVal = Sel.getFalseValue(); 2567 Value *X, *Y; 2568 ArrayRef<int> Mask; 2569 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2570 !is_contained(Mask, UndefMaskElem) && 2571 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2572 if (X == FVal) { 2573 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2574 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2575 return new ShuffleVectorInst(X, NewSel, Mask); 2576 } 2577 if (Y == FVal) { 2578 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2579 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2580 return new ShuffleVectorInst(NewSel, Y, Mask); 2581 } 2582 } 2583 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2584 !is_contained(Mask, UndefMaskElem) && 2585 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2586 if (X == TVal) { 2587 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2588 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2589 return new ShuffleVectorInst(X, NewSel, Mask); 2590 } 2591 if (Y == TVal) { 2592 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2593 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2594 return new ShuffleVectorInst(NewSel, Y, Mask); 2595 } 2596 } 2597 2598 return nullptr; 2599 } 2600 2601 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2602 const DominatorTree &DT, 2603 InstCombiner::BuilderTy &Builder) { 2604 // Find the block's immediate dominator that ends with a conditional branch 2605 // that matches select's condition (maybe inverted). 2606 auto *IDomNode = DT[BB]->getIDom(); 2607 if (!IDomNode) 2608 return nullptr; 2609 BasicBlock *IDom = IDomNode->getBlock(); 2610 2611 Value *Cond = Sel.getCondition(); 2612 Value *IfTrue, *IfFalse; 2613 BasicBlock *TrueSucc, *FalseSucc; 2614 if (match(IDom->getTerminator(), 2615 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2616 m_BasicBlock(FalseSucc)))) { 2617 IfTrue = Sel.getTrueValue(); 2618 IfFalse = Sel.getFalseValue(); 2619 } else if (match(IDom->getTerminator(), 2620 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2621 m_BasicBlock(FalseSucc)))) { 2622 IfTrue = Sel.getFalseValue(); 2623 IfFalse = Sel.getTrueValue(); 2624 } else 2625 return nullptr; 2626 2627 // Make sure the branches are actually different. 2628 if (TrueSucc == FalseSucc) 2629 return nullptr; 2630 2631 // We want to replace select %cond, %a, %b with a phi that takes value %a 2632 // for all incoming edges that are dominated by condition `%cond == true`, 2633 // and value %b for edges dominated by condition `%cond == false`. If %a 2634 // or %b are also phis from the same basic block, we can go further and take 2635 // their incoming values from the corresponding blocks. 2636 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2637 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2638 DenseMap<BasicBlock *, Value *> Inputs; 2639 for (auto *Pred : predecessors(BB)) { 2640 // Check implication. 2641 BasicBlockEdge Incoming(Pred, BB); 2642 if (DT.dominates(TrueEdge, Incoming)) 2643 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2644 else if (DT.dominates(FalseEdge, Incoming)) 2645 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2646 else 2647 return nullptr; 2648 // Check availability. 2649 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2650 if (!DT.dominates(Insn, Pred->getTerminator())) 2651 return nullptr; 2652 } 2653 2654 Builder.SetInsertPoint(&*BB->begin()); 2655 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2656 for (auto *Pred : predecessors(BB)) 2657 PN->addIncoming(Inputs[Pred], Pred); 2658 PN->takeName(&Sel); 2659 return PN; 2660 } 2661 2662 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2663 InstCombiner::BuilderTy &Builder) { 2664 // Try to replace this select with Phi in one of these blocks. 2665 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2666 CandidateBlocks.insert(Sel.getParent()); 2667 for (Value *V : Sel.operands()) 2668 if (auto *I = dyn_cast<Instruction>(V)) 2669 CandidateBlocks.insert(I->getParent()); 2670 2671 for (BasicBlock *BB : CandidateBlocks) 2672 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2673 return PN; 2674 return nullptr; 2675 } 2676 2677 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2678 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2679 if (!FI) 2680 return nullptr; 2681 2682 Value *Cond = FI->getOperand(0); 2683 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2684 2685 // select (freeze(x == y)), x, y --> y 2686 // select (freeze(x != y)), x, y --> x 2687 // The freeze should be only used by this select. Otherwise, remaining uses of 2688 // the freeze can observe a contradictory value. 2689 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2690 // a = select c, x, y ; 2691 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2692 // ; to y, this can happen. 2693 CmpInst::Predicate Pred; 2694 if (FI->hasOneUse() && 2695 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2696 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2697 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2698 } 2699 2700 return nullptr; 2701 } 2702 2703 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2704 SelectInst &SI, 2705 bool IsAnd) { 2706 Value *CondVal = SI.getCondition(); 2707 Value *A = SI.getTrueValue(); 2708 Value *B = SI.getFalseValue(); 2709 2710 assert(Op->getType()->isIntOrIntVectorTy(1) && 2711 "Op must be either i1 or vector of i1."); 2712 2713 Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd); 2714 if (!Res) 2715 return nullptr; 2716 2717 Value *Zero = Constant::getNullValue(A->getType()); 2718 Value *One = Constant::getAllOnesValue(A->getType()); 2719 2720 if (*Res == true) { 2721 if (IsAnd) 2722 // select op, (select cond, A, B), false => select op, A, false 2723 // and op, (select cond, A, B) => select op, A, false 2724 // if op = true implies condval = true. 2725 return SelectInst::Create(Op, A, Zero); 2726 else 2727 // select op, true, (select cond, A, B) => select op, true, A 2728 // or op, (select cond, A, B) => select op, true, A 2729 // if op = false implies condval = true. 2730 return SelectInst::Create(Op, One, A); 2731 } else { 2732 if (IsAnd) 2733 // select op, (select cond, A, B), false => select op, B, false 2734 // and op, (select cond, A, B) => select op, B, false 2735 // if op = true implies condval = false. 2736 return SelectInst::Create(Op, B, Zero); 2737 else 2738 // select op, true, (select cond, A, B) => select op, true, B 2739 // or op, (select cond, A, B) => select op, true, B 2740 // if op = false implies condval = false. 2741 return SelectInst::Create(Op, One, B); 2742 } 2743 } 2744 2745 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2746 Value *CondVal = SI.getCondition(); 2747 Value *TrueVal = SI.getTrueValue(); 2748 Value *FalseVal = SI.getFalseValue(); 2749 Type *SelType = SI.getType(); 2750 2751 // FIXME: Remove this workaround when freeze related patches are done. 2752 // For select with undef operand which feeds into an equality comparison, 2753 // don't simplify it so loop unswitch can know the equality comparison 2754 // may have an undef operand. This is a workaround for PR31652 caused by 2755 // descrepancy about branch on undef between LoopUnswitch and GVN. 2756 if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) { 2757 if (llvm::any_of(SI.users(), [&](User *U) { 2758 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2759 if (CI && CI->isEquality()) 2760 return true; 2761 return false; 2762 })) { 2763 return nullptr; 2764 } 2765 } 2766 2767 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2768 SQ.getWithInstruction(&SI))) 2769 return replaceInstUsesWith(SI, V); 2770 2771 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2772 return I; 2773 2774 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2775 return I; 2776 2777 CmpInst::Predicate Pred; 2778 2779 // Avoid potential infinite loops by checking for non-constant condition. 2780 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 2781 // Scalar select must have simplified? 2782 if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) && 2783 TrueVal->getType() == CondVal->getType()) { 2784 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 2785 // checks whether folding it does not convert a well-defined value into 2786 // poison. 2787 if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) { 2788 // Change: A = select B, true, C --> A = or B, C 2789 return BinaryOperator::CreateOr(CondVal, FalseVal); 2790 } 2791 if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) { 2792 // Change: A = select B, C, false --> A = and B, C 2793 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2794 } 2795 2796 auto *One = ConstantInt::getTrue(SelType); 2797 auto *Zero = ConstantInt::getFalse(SelType); 2798 2799 // We match the "full" 0 or 1 constant here to avoid a potential infinite 2800 // loop with vectors that may have undefined/poison elements. 2801 // select a, false, b -> select !a, b, false 2802 if (match(TrueVal, m_Specific(Zero))) { 2803 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2804 return SelectInst::Create(NotCond, FalseVal, Zero); 2805 } 2806 // select a, b, true -> select !a, true, b 2807 if (match(FalseVal, m_Specific(One))) { 2808 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2809 return SelectInst::Create(NotCond, One, TrueVal); 2810 } 2811 2812 // select a, a, b -> select a, true, b 2813 if (CondVal == TrueVal) 2814 return replaceOperand(SI, 1, One); 2815 // select a, b, a -> select a, b, false 2816 if (CondVal == FalseVal) 2817 return replaceOperand(SI, 2, Zero); 2818 2819 // select a, !a, b -> select !a, b, false 2820 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2821 return SelectInst::Create(TrueVal, FalseVal, Zero); 2822 // select a, b, !a -> select !a, true, b 2823 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2824 return SelectInst::Create(FalseVal, One, TrueVal); 2825 2826 Value *A, *B; 2827 2828 // DeMorgan in select form: !a && !b --> !(a || b) 2829 // select !a, !b, false --> not (select a, true, b) 2830 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2831 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 2832 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2833 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 2834 2835 // DeMorgan in select form: !a || !b --> !(a && b) 2836 // select !a, true, !b --> not (select a, b, false) 2837 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2838 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 2839 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2840 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 2841 2842 // select (select a, true, b), true, b -> select a, true, b 2843 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2844 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 2845 return replaceOperand(SI, 0, A); 2846 // select (select a, b, false), b, false -> select a, b, false 2847 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2848 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 2849 return replaceOperand(SI, 0, A); 2850 2851 if (!SelType->isVectorTy()) { 2852 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ, 2853 /* AllowRefinement */ true)) 2854 return replaceOperand(SI, 1, S); 2855 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ, 2856 /* AllowRefinement */ true)) 2857 return replaceOperand(SI, 2, S); 2858 } 2859 2860 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 2861 Use *Y = nullptr; 2862 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 2863 Value *Op1 = IsAnd ? TrueVal : FalseVal; 2864 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 2865 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 2866 InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser())); 2867 replaceUse(*Y, FI); 2868 return replaceInstUsesWith(SI, Op1); 2869 } 2870 2871 if (auto *Op1SI = dyn_cast<SelectInst>(Op1)) 2872 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI, 2873 /* IsAnd */ IsAnd)) 2874 return I; 2875 2876 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) { 2877 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) { 2878 if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd, 2879 /* IsLogical */ true)) 2880 return replaceInstUsesWith(SI, V); 2881 2882 if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd)) 2883 return replaceInstUsesWith(SI, V); 2884 } 2885 } 2886 } 2887 2888 // select (select a, true, b), c, false -> select a, c, false 2889 // select c, (select a, true, b), false -> select c, a, false 2890 // if c implies that b is false. 2891 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2892 match(FalseVal, m_Zero())) { 2893 Optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 2894 if (Res && *Res == false) 2895 return replaceOperand(SI, 0, A); 2896 } 2897 if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2898 match(FalseVal, m_Zero())) { 2899 Optional<bool> Res = isImpliedCondition(CondVal, B, DL); 2900 if (Res && *Res == false) 2901 return replaceOperand(SI, 1, A); 2902 } 2903 // select c, true, (select a, b, false) -> select c, true, a 2904 // select (select a, b, false), true, c -> select a, true, c 2905 // if c = false implies that b = true 2906 if (match(TrueVal, m_One()) && 2907 match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) { 2908 Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 2909 if (Res && *Res == true) 2910 return replaceOperand(SI, 2, A); 2911 } 2912 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2913 match(TrueVal, m_One())) { 2914 Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 2915 if (Res && *Res == true) 2916 return replaceOperand(SI, 0, A); 2917 } 2918 2919 // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b 2920 // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a 2921 Value *C1, *C2; 2922 if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) && 2923 match(TrueVal, m_One()) && 2924 match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) { 2925 if (match(C2, m_Not(m_Specific(C1)))) // first case 2926 return SelectInst::Create(C1, A, B); 2927 else if (match(C1, m_Not(m_Specific(C2)))) // second case 2928 return SelectInst::Create(C2, B, A); 2929 } 2930 } 2931 2932 // Selecting between two integer or vector splat integer constants? 2933 // 2934 // Note that we don't handle a scalar select of vectors: 2935 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2936 // because that may need 3 instructions to splat the condition value: 2937 // extend, insertelement, shufflevector. 2938 // 2939 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2940 // zext/sext i1 to i1. 2941 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2942 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2943 // select C, 1, 0 -> zext C to int 2944 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2945 return new ZExtInst(CondVal, SelType); 2946 2947 // select C, -1, 0 -> sext C to int 2948 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2949 return new SExtInst(CondVal, SelType); 2950 2951 // select C, 0, 1 -> zext !C to int 2952 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2953 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2954 return new ZExtInst(NotCond, SelType); 2955 } 2956 2957 // select C, 0, -1 -> sext !C to int 2958 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2959 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2960 return new SExtInst(NotCond, SelType); 2961 } 2962 } 2963 2964 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 2965 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 2966 // Are we selecting a value based on a comparison of the two values? 2967 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2968 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2969 // Canonicalize to use ordered comparisons by swapping the select 2970 // operands. 2971 // 2972 // e.g. 2973 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2974 if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) { 2975 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 2976 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2977 // FIXME: The FMF should propagate from the select, not the fcmp. 2978 Builder.setFastMathFlags(FCmp->getFastMathFlags()); 2979 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2980 FCmp->getName() + ".inv"); 2981 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2982 return replaceInstUsesWith(SI, NewSel); 2983 } 2984 2985 // NOTE: if we wanted to, this is where to detect MIN/MAX 2986 } 2987 } 2988 2989 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2990 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2991 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2992 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2993 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2994 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2995 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 2996 return replaceInstUsesWith(SI, Fabs); 2997 } 2998 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2999 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 3000 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 3001 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 3002 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 3003 return replaceInstUsesWith(SI, Fabs); 3004 } 3005 // With nnan and nsz: 3006 // (X < +/-0.0) ? -X : X --> fabs(X) 3007 // (X <= +/-0.0) ? -X : X --> fabs(X) 3008 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 3009 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() && 3010 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 3011 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 3012 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 3013 return replaceInstUsesWith(SI, Fabs); 3014 } 3015 // With nnan and nsz: 3016 // (X > +/-0.0) ? X : -X --> fabs(X) 3017 // (X >= +/-0.0) ? X : -X --> fabs(X) 3018 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 3019 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() && 3020 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 3021 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 3022 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 3023 return replaceInstUsesWith(SI, Fabs); 3024 } 3025 3026 // See if we are selecting two values based on a comparison of the two values. 3027 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 3028 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 3029 return Result; 3030 3031 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 3032 return Add; 3033 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 3034 return Add; 3035 if (Instruction *Or = foldSetClearBits(SI, Builder)) 3036 return Or; 3037 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) 3038 return Mul; 3039 3040 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 3041 auto *TI = dyn_cast<Instruction>(TrueVal); 3042 auto *FI = dyn_cast<Instruction>(FalseVal); 3043 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 3044 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 3045 return IV; 3046 3047 if (Instruction *I = foldSelectExtConst(SI)) 3048 return I; 3049 3050 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 3051 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 3052 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 3053 bool Swap) -> GetElementPtrInst * { 3054 Value *Ptr = Gep->getPointerOperand(); 3055 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 3056 !Gep->hasOneUse()) 3057 return nullptr; 3058 Value *Idx = Gep->getOperand(1); 3059 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType())) 3060 return nullptr; 3061 Type *ElementType = Gep->getResultElementType(); 3062 Value *NewT = Idx; 3063 Value *NewF = Constant::getNullValue(Idx->getType()); 3064 if (Swap) 3065 std::swap(NewT, NewF); 3066 Value *NewSI = 3067 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 3068 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI}); 3069 }; 3070 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 3071 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 3072 return NewGep; 3073 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 3074 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 3075 return NewGep; 3076 3077 // See if we can fold the select into one of our operands. 3078 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 3079 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 3080 return FoldI; 3081 3082 Value *LHS, *RHS; 3083 Instruction::CastOps CastOp; 3084 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 3085 auto SPF = SPR.Flavor; 3086 if (SPF) { 3087 Value *LHS2, *RHS2; 3088 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 3089 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 3090 RHS2, SI, SPF, RHS)) 3091 return R; 3092 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 3093 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 3094 RHS2, SI, SPF, LHS)) 3095 return R; 3096 // TODO. 3097 // ABS(-X) -> ABS(X) 3098 } 3099 3100 if (SelectPatternResult::isMinOrMax(SPF)) { 3101 // Canonicalize so that 3102 // - type casts are outside select patterns. 3103 // - float clamp is transformed to min/max pattern 3104 3105 bool IsCastNeeded = LHS->getType() != SelType; 3106 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 3107 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 3108 if (IsCastNeeded || 3109 (LHS->getType()->isFPOrFPVectorTy() && 3110 ((CmpLHS != LHS && CmpLHS != RHS) || 3111 (CmpRHS != LHS && CmpRHS != RHS)))) { 3112 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 3113 3114 Value *Cmp; 3115 if (CmpInst::isIntPredicate(MinMaxPred)) { 3116 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 3117 } else { 3118 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3119 auto FMF = 3120 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 3121 Builder.setFastMathFlags(FMF); 3122 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 3123 } 3124 3125 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 3126 if (!IsCastNeeded) 3127 return replaceInstUsesWith(SI, NewSI); 3128 3129 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 3130 return replaceInstUsesWith(SI, NewCast); 3131 } 3132 3133 // MAX(~a, ~b) -> ~MIN(a, b) 3134 // MAX(~a, C) -> ~MIN(a, ~C) 3135 // MIN(~a, ~b) -> ~MAX(a, b) 3136 // MIN(~a, C) -> ~MAX(a, ~C) 3137 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 3138 Value *A; 3139 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 3140 !isFreeToInvert(A, A->hasOneUse()) && 3141 // Passing false to only consider m_Not and constants. 3142 isFreeToInvert(Y, false)) { 3143 Value *B = Builder.CreateNot(Y); 3144 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 3145 A, B); 3146 // Copy the profile metadata. 3147 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 3148 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 3149 // Swap the metadata if the operands are swapped. 3150 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 3151 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 3152 } 3153 3154 return BinaryOperator::CreateNot(NewMinMax); 3155 } 3156 3157 return nullptr; 3158 }; 3159 3160 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 3161 return I; 3162 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 3163 return I; 3164 3165 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 3166 return I; 3167 3168 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 3169 return I; 3170 if (Instruction *I = matchSAddSubSat(SI)) 3171 return I; 3172 } 3173 } 3174 3175 // Canonicalize select of FP values where NaN and -0.0 are not valid as 3176 // minnum/maxnum intrinsics. 3177 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 3178 Value *X, *Y; 3179 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 3180 return replaceInstUsesWith( 3181 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 3182 3183 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 3184 return replaceInstUsesWith( 3185 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 3186 } 3187 3188 // See if we can fold the select into a phi node if the condition is a select. 3189 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 3190 // The true/false values have to be live in the PHI predecessor's blocks. 3191 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 3192 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 3193 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 3194 return NV; 3195 3196 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 3197 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 3198 // select(C, select(C, a, b), c) -> select(C, a, c) 3199 if (TrueSI->getCondition() == CondVal) { 3200 if (SI.getTrueValue() == TrueSI->getTrueValue()) 3201 return nullptr; 3202 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 3203 } 3204 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 3205 // We choose this as normal form to enable folding on the And and 3206 // shortening paths for the values (this helps getUnderlyingObjects() for 3207 // example). 3208 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 3209 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 3210 replaceOperand(SI, 0, And); 3211 replaceOperand(SI, 1, TrueSI->getTrueValue()); 3212 return &SI; 3213 } 3214 } 3215 } 3216 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 3217 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 3218 // select(C, a, select(C, b, c)) -> select(C, a, c) 3219 if (FalseSI->getCondition() == CondVal) { 3220 if (SI.getFalseValue() == FalseSI->getFalseValue()) 3221 return nullptr; 3222 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 3223 } 3224 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3225 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3226 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3227 replaceOperand(SI, 0, Or); 3228 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3229 return &SI; 3230 } 3231 } 3232 } 3233 3234 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 3235 // The select might be preventing a division by 0. 3236 switch (BO->getOpcode()) { 3237 default: 3238 return true; 3239 case Instruction::SRem: 3240 case Instruction::URem: 3241 case Instruction::SDiv: 3242 case Instruction::UDiv: 3243 return false; 3244 } 3245 }; 3246 3247 // Try to simplify a binop sandwiched between 2 selects with the same 3248 // condition. 3249 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3250 BinaryOperator *TrueBO; 3251 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 3252 canMergeSelectThroughBinop(TrueBO)) { 3253 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3254 if (TrueBOSI->getCondition() == CondVal) { 3255 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3256 Worklist.push(TrueBO); 3257 return &SI; 3258 } 3259 } 3260 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3261 if (TrueBOSI->getCondition() == CondVal) { 3262 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3263 Worklist.push(TrueBO); 3264 return &SI; 3265 } 3266 } 3267 } 3268 3269 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3270 BinaryOperator *FalseBO; 3271 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 3272 canMergeSelectThroughBinop(FalseBO)) { 3273 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3274 if (FalseBOSI->getCondition() == CondVal) { 3275 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3276 Worklist.push(FalseBO); 3277 return &SI; 3278 } 3279 } 3280 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3281 if (FalseBOSI->getCondition() == CondVal) { 3282 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3283 Worklist.push(FalseBO); 3284 return &SI; 3285 } 3286 } 3287 } 3288 3289 Value *NotCond; 3290 if (match(CondVal, m_Not(m_Value(NotCond))) && 3291 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3292 replaceOperand(SI, 0, NotCond); 3293 SI.swapValues(); 3294 SI.swapProfMetadata(); 3295 return &SI; 3296 } 3297 3298 if (Instruction *I = foldVectorSelect(SI)) 3299 return I; 3300 3301 // If we can compute the condition, there's no need for a select. 3302 // Like the above fold, we are attempting to reduce compile-time cost by 3303 // putting this fold here with limitations rather than in InstSimplify. 3304 // The motivation for this call into value tracking is to take advantage of 3305 // the assumption cache, so make sure that is populated. 3306 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3307 KnownBits Known(1); 3308 computeKnownBits(CondVal, Known, 0, &SI); 3309 if (Known.One.isOne()) 3310 return replaceInstUsesWith(SI, TrueVal); 3311 if (Known.Zero.isOne()) 3312 return replaceInstUsesWith(SI, FalseVal); 3313 } 3314 3315 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3316 return BitCastSel; 3317 3318 // Simplify selects that test the returned flag of cmpxchg instructions. 3319 if (Value *V = foldSelectCmpXchg(SI)) 3320 return replaceInstUsesWith(SI, V); 3321 3322 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3323 return Select; 3324 3325 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3326 return Funnel; 3327 3328 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3329 return Copysign; 3330 3331 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3332 return replaceInstUsesWith(SI, PN); 3333 3334 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3335 return replaceInstUsesWith(SI, Fr); 3336 3337 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 3338 // Load inst is intentionally not checked for hasOneUse() 3339 if (match(FalseVal, m_Zero()) && 3340 match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 3341 m_CombineOr(m_Undef(), m_Zero())))) { 3342 auto *MaskedLoad = cast<IntrinsicInst>(TrueVal); 3343 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3344 MaskedLoad->setArgOperand(3, FalseVal /* Zero */); 3345 return replaceInstUsesWith(SI, MaskedLoad); 3346 } 3347 3348 Value *Mask; 3349 if (match(TrueVal, m_Zero()) && 3350 match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 3351 m_CombineOr(m_Undef(), m_Zero()))) && 3352 (CondVal->getType() == Mask->getType())) { 3353 // We can remove the select by ensuring the load zeros all lanes the 3354 // select would have. We determine this by proving there is no overlap 3355 // between the load and select masks. 3356 // (i.e (load_mask & select_mask) == 0 == no overlap) 3357 bool CanMergeSelectIntoLoad = false; 3358 if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 3359 CanMergeSelectIntoLoad = match(V, m_Zero()); 3360 3361 if (CanMergeSelectIntoLoad) { 3362 auto *MaskedLoad = cast<IntrinsicInst>(FalseVal); 3363 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3364 MaskedLoad->setArgOperand(3, TrueVal /* Zero */); 3365 return replaceInstUsesWith(SI, MaskedLoad); 3366 } 3367 } 3368 3369 return nullptr; 3370 } 3371