1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include <cassert> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "instcombine" 48 49 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 50 SelectPatternFlavor SPF, Value *A, Value *B) { 51 CmpInst::Predicate Pred = getMinMaxPred(SPF); 52 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 53 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 54 } 55 56 /// Replace a select operand based on an equality comparison with the identity 57 /// constant of a binop. 58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 59 const TargetLibraryInfo &TLI) { 60 // The select condition must be an equality compare with a constant operand. 61 Value *X; 62 Constant *C; 63 CmpInst::Predicate Pred; 64 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 65 return nullptr; 66 67 bool IsEq; 68 if (ICmpInst::isEquality(Pred)) 69 IsEq = Pred == ICmpInst::ICMP_EQ; 70 else if (Pred == FCmpInst::FCMP_OEQ) 71 IsEq = true; 72 else if (Pred == FCmpInst::FCMP_UNE) 73 IsEq = false; 74 else 75 return nullptr; 76 77 // A select operand must be a binop. 78 BinaryOperator *BO; 79 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 80 return nullptr; 81 82 // The compare constant must be the identity constant for that binop. 83 // If this a floating-point compare with 0.0, any zero constant will do. 84 Type *Ty = BO->getType(); 85 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 86 if (IdC != C) { 87 if (!IdC || !CmpInst::isFPPredicate(Pred)) 88 return nullptr; 89 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 90 return nullptr; 91 } 92 93 // Last, match the compare variable operand with a binop operand. 94 Value *Y; 95 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 98 return nullptr; 99 100 // +0.0 compares equal to -0.0, and so it does not behave as required for this 101 // transform. Bail out if we can not exclude that possibility. 102 if (isa<FPMathOperator>(BO)) 103 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 104 return nullptr; 105 106 // BO = binop Y, X 107 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 108 // => 109 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 110 Sel.setOperand(IsEq ? 1 : 2, Y); 111 return &Sel; 112 } 113 114 /// This folds: 115 /// select (icmp eq (and X, C1)), TC, FC 116 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 117 /// To something like: 118 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 119 /// Or: 120 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 121 /// With some variations depending if FC is larger than TC, or the shift 122 /// isn't needed, or the bit widths don't match. 123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 124 InstCombiner::BuilderTy &Builder) { 125 const APInt *SelTC, *SelFC; 126 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 127 !match(Sel.getFalseValue(), m_APInt(SelFC))) 128 return nullptr; 129 130 // If this is a vector select, we need a vector compare. 131 Type *SelType = Sel.getType(); 132 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 133 return nullptr; 134 135 Value *V; 136 APInt AndMask; 137 bool CreateAnd = false; 138 ICmpInst::Predicate Pred = Cmp->getPredicate(); 139 if (ICmpInst::isEquality(Pred)) { 140 if (!match(Cmp->getOperand(1), m_Zero())) 141 return nullptr; 142 143 V = Cmp->getOperand(0); 144 const APInt *AndRHS; 145 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 146 return nullptr; 147 148 AndMask = *AndRHS; 149 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 150 Pred, V, AndMask)) { 151 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 152 if (!AndMask.isPowerOf2()) 153 return nullptr; 154 155 CreateAnd = true; 156 } else { 157 return nullptr; 158 } 159 160 // In general, when both constants are non-zero, we would need an offset to 161 // replace the select. This would require more instructions than we started 162 // with. But there's one special-case that we handle here because it can 163 // simplify/reduce the instructions. 164 APInt TC = *SelTC; 165 APInt FC = *SelFC; 166 if (!TC.isNullValue() && !FC.isNullValue()) { 167 // If the select constants differ by exactly one bit and that's the same 168 // bit that is masked and checked by the select condition, the select can 169 // be replaced by bitwise logic to set/clear one bit of the constant result. 170 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 171 return nullptr; 172 if (CreateAnd) { 173 // If we have to create an 'and', then we must kill the cmp to not 174 // increase the instruction count. 175 if (!Cmp->hasOneUse()) 176 return nullptr; 177 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 178 } 179 bool ExtraBitInTC = TC.ugt(FC); 180 if (Pred == ICmpInst::ICMP_EQ) { 181 // If the masked bit in V is clear, clear or set the bit in the result: 182 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 184 Constant *C = ConstantInt::get(SelType, TC); 185 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 186 } 187 if (Pred == ICmpInst::ICMP_NE) { 188 // If the masked bit in V is set, set or clear the bit in the result: 189 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 191 Constant *C = ConstantInt::get(SelType, FC); 192 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 193 } 194 llvm_unreachable("Only expecting equality predicates"); 195 } 196 197 // Make sure one of the select arms is a power-of-2. 198 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 199 return nullptr; 200 201 // Determine which shift is needed to transform result of the 'and' into the 202 // desired result. 203 const APInt &ValC = !TC.isNullValue() ? TC : FC; 204 unsigned ValZeros = ValC.logBase2(); 205 unsigned AndZeros = AndMask.logBase2(); 206 207 // Insert the 'and' instruction on the input to the truncate. 208 if (CreateAnd) 209 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 210 211 // If types don't match, we can still convert the select by introducing a zext 212 // or a trunc of the 'and'. 213 if (ValZeros > AndZeros) { 214 V = Builder.CreateZExtOrTrunc(V, SelType); 215 V = Builder.CreateShl(V, ValZeros - AndZeros); 216 } else if (ValZeros < AndZeros) { 217 V = Builder.CreateLShr(V, AndZeros - ValZeros); 218 V = Builder.CreateZExtOrTrunc(V, SelType); 219 } else { 220 V = Builder.CreateZExtOrTrunc(V, SelType); 221 } 222 223 // Okay, now we know that everything is set up, we just don't know whether we 224 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 225 bool ShouldNotVal = !TC.isNullValue(); 226 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 227 if (ShouldNotVal) 228 V = Builder.CreateXor(V, ValC); 229 230 return V; 231 } 232 233 /// We want to turn code that looks like this: 234 /// %C = or %A, %B 235 /// %D = select %cond, %C, %A 236 /// into: 237 /// %C = select %cond, %B, 0 238 /// %D = or %A, %C 239 /// 240 /// Assuming that the specified instruction is an operand to the select, return 241 /// a bitmask indicating which operands of this instruction are foldable if they 242 /// equal the other incoming value of the select. 243 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 244 switch (I->getOpcode()) { 245 case Instruction::Add: 246 case Instruction::Mul: 247 case Instruction::And: 248 case Instruction::Or: 249 case Instruction::Xor: 250 return 3; // Can fold through either operand. 251 case Instruction::Sub: // Can only fold on the amount subtracted. 252 case Instruction::Shl: // Can only fold on the shift amount. 253 case Instruction::LShr: 254 case Instruction::AShr: 255 return 1; 256 default: 257 return 0; // Cannot fold 258 } 259 } 260 261 /// For the same transformation as the previous function, return the identity 262 /// constant that goes into the select. 263 static APInt getSelectFoldableConstant(BinaryOperator *I) { 264 switch (I->getOpcode()) { 265 default: llvm_unreachable("This cannot happen!"); 266 case Instruction::Add: 267 case Instruction::Sub: 268 case Instruction::Or: 269 case Instruction::Xor: 270 case Instruction::Shl: 271 case Instruction::LShr: 272 case Instruction::AShr: 273 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 274 case Instruction::And: 275 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 276 case Instruction::Mul: 277 return APInt(I->getType()->getScalarSizeInBits(), 1); 278 } 279 } 280 281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 283 Instruction *FI) { 284 // Don't break up min/max patterns. The hasOneUse checks below prevent that 285 // for most cases, but vector min/max with bitcasts can be transformed. If the 286 // one-use restrictions are eased for other patterns, we still don't want to 287 // obfuscate min/max. 288 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 289 match(&SI, m_SMax(m_Value(), m_Value())) || 290 match(&SI, m_UMin(m_Value(), m_Value())) || 291 match(&SI, m_UMax(m_Value(), m_Value())))) 292 return nullptr; 293 294 // If this is a cast from the same type, merge. 295 if (TI->getNumOperands() == 1 && TI->isCast()) { 296 Type *FIOpndTy = FI->getOperand(0)->getType(); 297 if (TI->getOperand(0)->getType() != FIOpndTy) 298 return nullptr; 299 300 // The select condition may be a vector. We may only change the operand 301 // type if the vector width remains the same (and matches the condition). 302 Type *CondTy = SI.getCondition()->getType(); 303 if (CondTy->isVectorTy()) { 304 if (!FIOpndTy->isVectorTy()) 305 return nullptr; 306 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 307 return nullptr; 308 309 // TODO: If the backend knew how to deal with casts better, we could 310 // remove this limitation. For now, there's too much potential to create 311 // worse codegen by promoting the select ahead of size-altering casts 312 // (PR28160). 313 // 314 // Note that ValueTracking's matchSelectPattern() looks through casts 315 // without checking 'hasOneUse' when it matches min/max patterns, so this 316 // transform may end up happening anyway. 317 if (TI->getOpcode() != Instruction::BitCast && 318 (!TI->hasOneUse() || !FI->hasOneUse())) 319 return nullptr; 320 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 321 // TODO: The one-use restrictions for a scalar select could be eased if 322 // the fold of a select in visitLoadInst() was enhanced to match a pattern 323 // that includes a cast. 324 return nullptr; 325 } 326 327 // Fold this by inserting a select from the input values. 328 Value *NewSI = 329 Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), 330 FI->getOperand(0), SI.getName() + ".v", &SI); 331 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 332 TI->getType()); 333 } 334 335 // Only handle binary operators (including two-operand getelementptr) with 336 // one-use here. As with the cast case above, it may be possible to relax the 337 // one-use constraint, but that needs be examined carefully since it may not 338 // reduce the total number of instructions. 339 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 340 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 341 !TI->hasOneUse() || !FI->hasOneUse()) 342 return nullptr; 343 344 // Figure out if the operations have any operands in common. 345 Value *MatchOp, *OtherOpT, *OtherOpF; 346 bool MatchIsOpZero; 347 if (TI->getOperand(0) == FI->getOperand(0)) { 348 MatchOp = TI->getOperand(0); 349 OtherOpT = TI->getOperand(1); 350 OtherOpF = FI->getOperand(1); 351 MatchIsOpZero = true; 352 } else if (TI->getOperand(1) == FI->getOperand(1)) { 353 MatchOp = TI->getOperand(1); 354 OtherOpT = TI->getOperand(0); 355 OtherOpF = FI->getOperand(0); 356 MatchIsOpZero = false; 357 } else if (!TI->isCommutative()) { 358 return nullptr; 359 } else if (TI->getOperand(0) == FI->getOperand(1)) { 360 MatchOp = TI->getOperand(0); 361 OtherOpT = TI->getOperand(1); 362 OtherOpF = FI->getOperand(0); 363 MatchIsOpZero = true; 364 } else if (TI->getOperand(1) == FI->getOperand(0)) { 365 MatchOp = TI->getOperand(1); 366 OtherOpT = TI->getOperand(0); 367 OtherOpF = FI->getOperand(1); 368 MatchIsOpZero = true; 369 } else { 370 return nullptr; 371 } 372 373 // If the select condition is a vector, the operands of the original select's 374 // operands also must be vectors. This may not be the case for getelementptr 375 // for example. 376 if (SI.getCondition()->getType()->isVectorTy() && 377 (!OtherOpT->getType()->isVectorTy() || 378 !OtherOpF->getType()->isVectorTy())) 379 return nullptr; 380 381 // If we reach here, they do have operations in common. 382 Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 383 SI.getName() + ".v", &SI); 384 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 385 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 386 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 387 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 388 NewBO->copyIRFlags(TI); 389 NewBO->andIRFlags(FI); 390 return NewBO; 391 } 392 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 393 auto *FGEP = cast<GetElementPtrInst>(FI); 394 Type *ElementType = TGEP->getResultElementType(); 395 return TGEP->isInBounds() && FGEP->isInBounds() 396 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 397 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 398 } 399 llvm_unreachable("Expected BinaryOperator or GEP"); 400 return nullptr; 401 } 402 403 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 404 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 405 return false; 406 return C1I.isOneValue() || C1I.isAllOnesValue() || 407 C2I.isOneValue() || C2I.isAllOnesValue(); 408 } 409 410 /// Try to fold the select into one of the operands to allow further 411 /// optimization. 412 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 413 Value *FalseVal) { 414 // See the comment above GetSelectFoldableOperands for a description of the 415 // transformation we are doing here. 416 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 417 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 418 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 419 unsigned OpToFold = 0; 420 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 421 OpToFold = 1; 422 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 423 OpToFold = 2; 424 } 425 426 if (OpToFold) { 427 APInt CI = getSelectFoldableConstant(TVI); 428 Value *OOp = TVI->getOperand(2-OpToFold); 429 // Avoid creating select between 2 constants unless it's selecting 430 // between 0, 1 and -1. 431 const APInt *OOpC; 432 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 433 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 434 Value *C = ConstantInt::get(OOp->getType(), CI); 435 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 436 NewSel->takeName(TVI); 437 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 438 FalseVal, NewSel); 439 BO->copyIRFlags(TVI); 440 return BO; 441 } 442 } 443 } 444 } 445 } 446 447 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 448 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 449 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 450 unsigned OpToFold = 0; 451 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 452 OpToFold = 1; 453 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 454 OpToFold = 2; 455 } 456 457 if (OpToFold) { 458 APInt CI = getSelectFoldableConstant(FVI); 459 Value *OOp = FVI->getOperand(2-OpToFold); 460 // Avoid creating select between 2 constants unless it's selecting 461 // between 0, 1 and -1. 462 const APInt *OOpC; 463 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 464 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 465 Value *C = ConstantInt::get(OOp->getType(), CI); 466 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 467 NewSel->takeName(FVI); 468 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 469 TrueVal, NewSel); 470 BO->copyIRFlags(FVI); 471 return BO; 472 } 473 } 474 } 475 } 476 } 477 478 return nullptr; 479 } 480 481 /// We want to turn: 482 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 483 /// into: 484 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 485 /// Note: 486 /// Z may be 0 if lshr is missing. 487 /// Worst-case scenario is that we will replace 5 instructions with 5 different 488 /// instructions, but we got rid of select. 489 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 490 Value *TVal, Value *FVal, 491 InstCombiner::BuilderTy &Builder) { 492 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 493 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 494 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 495 return nullptr; 496 497 // The TrueVal has general form of: and %B, 1 498 Value *B; 499 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 500 return nullptr; 501 502 // Where %B may be optionally shifted: lshr %X, %Z. 503 Value *X, *Z; 504 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 505 if (!HasShift) 506 X = B; 507 508 Value *Y; 509 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 510 return nullptr; 511 512 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 513 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 514 Constant *One = ConstantInt::get(SelType, 1); 515 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 516 Value *FullMask = Builder.CreateOr(Y, MaskB); 517 Value *MaskedX = Builder.CreateAnd(X, FullMask); 518 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 519 return new ZExtInst(ICmpNeZero, SelType); 520 } 521 522 /// We want to turn: 523 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 524 /// into: 525 /// (or (shl (and X, C1), C3), Y) 526 /// iff: 527 /// C1 and C2 are both powers of 2 528 /// where: 529 /// C3 = Log(C2) - Log(C1) 530 /// 531 /// This transform handles cases where: 532 /// 1. The icmp predicate is inverted 533 /// 2. The select operands are reversed 534 /// 3. The magnitude of C2 and C1 are flipped 535 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 536 Value *FalseVal, 537 InstCombiner::BuilderTy &Builder) { 538 // Only handle integer compares. Also, if this is a vector select, we need a 539 // vector compare. 540 if (!TrueVal->getType()->isIntOrIntVectorTy() || 541 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 542 return nullptr; 543 544 Value *CmpLHS = IC->getOperand(0); 545 Value *CmpRHS = IC->getOperand(1); 546 547 Value *V; 548 unsigned C1Log; 549 bool IsEqualZero; 550 bool NeedAnd = false; 551 if (IC->isEquality()) { 552 if (!match(CmpRHS, m_Zero())) 553 return nullptr; 554 555 const APInt *C1; 556 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 557 return nullptr; 558 559 V = CmpLHS; 560 C1Log = C1->logBase2(); 561 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 562 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 563 IC->getPredicate() == ICmpInst::ICMP_SGT) { 564 // We also need to recognize (icmp slt (trunc (X)), 0) and 565 // (icmp sgt (trunc (X)), -1). 566 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 567 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 568 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 569 return nullptr; 570 571 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 572 return nullptr; 573 574 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 575 NeedAnd = true; 576 } else { 577 return nullptr; 578 } 579 580 const APInt *C2; 581 bool OrOnTrueVal = false; 582 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 583 if (!OrOnFalseVal) 584 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 585 586 if (!OrOnFalseVal && !OrOnTrueVal) 587 return nullptr; 588 589 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 590 591 unsigned C2Log = C2->logBase2(); 592 593 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 594 bool NeedShift = C1Log != C2Log; 595 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 596 V->getType()->getScalarSizeInBits(); 597 598 // Make sure we don't create more instructions than we save. 599 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 600 if ((NeedShift + NeedXor + NeedZExtTrunc) > 601 (IC->hasOneUse() + Or->hasOneUse())) 602 return nullptr; 603 604 if (NeedAnd) { 605 // Insert the AND instruction on the input to the truncate. 606 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 607 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 608 } 609 610 if (C2Log > C1Log) { 611 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 612 V = Builder.CreateShl(V, C2Log - C1Log); 613 } else if (C1Log > C2Log) { 614 V = Builder.CreateLShr(V, C1Log - C2Log); 615 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 616 } else 617 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 618 619 if (NeedXor) 620 V = Builder.CreateXor(V, *C2); 621 622 return Builder.CreateOr(V, Y); 623 } 624 625 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 626 /// There are 8 commuted/swapped variants of this pattern. 627 /// TODO: Also support a - UMIN(a,b) patterns. 628 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 629 const Value *TrueVal, 630 const Value *FalseVal, 631 InstCombiner::BuilderTy &Builder) { 632 ICmpInst::Predicate Pred = ICI->getPredicate(); 633 if (!ICmpInst::isUnsigned(Pred)) 634 return nullptr; 635 636 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 637 if (match(TrueVal, m_Zero())) { 638 Pred = ICmpInst::getInversePredicate(Pred); 639 std::swap(TrueVal, FalseVal); 640 } 641 if (!match(FalseVal, m_Zero())) 642 return nullptr; 643 644 Value *A = ICI->getOperand(0); 645 Value *B = ICI->getOperand(1); 646 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 647 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 648 std::swap(A, B); 649 Pred = ICmpInst::getSwappedPredicate(Pred); 650 } 651 652 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 653 "Unexpected isUnsigned predicate!"); 654 655 // Account for swapped form of subtraction: ((a > b) ? b - a : 0). 656 bool IsNegative = false; 657 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A)))) 658 IsNegative = true; 659 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B)))) 660 return nullptr; 661 662 // If sub is used anywhere else, we wouldn't be able to eliminate it 663 // afterwards. 664 if (!TrueVal->hasOneUse()) 665 return nullptr; 666 667 // (a > b) ? a - b : 0 -> usub.sat(a, b) 668 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 669 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 670 if (IsNegative) 671 Result = Builder.CreateNeg(Result); 672 return Result; 673 } 674 675 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 676 InstCombiner::BuilderTy &Builder) { 677 if (!Cmp->hasOneUse()) 678 return nullptr; 679 680 // Match unsigned saturated add with constant. 681 Value *Cmp0 = Cmp->getOperand(0); 682 Value *Cmp1 = Cmp->getOperand(1); 683 ICmpInst::Predicate Pred = Cmp->getPredicate(); 684 Value *X; 685 const APInt *C, *CmpC; 686 if (Pred == ICmpInst::ICMP_ULT && 687 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 688 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 689 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 690 return Builder.CreateBinaryIntrinsic( 691 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 692 } 693 694 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 695 // There are 8 commuted variants. 696 // Canonicalize -1 (saturated result) to true value of the select. Just 697 // swapping the compare operands is legal, because the selected value is the 698 // same in case of equality, so we can interchange u< and u<=. 699 if (match(FVal, m_AllOnes())) { 700 std::swap(TVal, FVal); 701 std::swap(Cmp0, Cmp1); 702 } 703 if (!match(TVal, m_AllOnes())) 704 return nullptr; 705 706 // Canonicalize predicate to 'ULT'. 707 if (Pred == ICmpInst::ICMP_UGT) { 708 Pred = ICmpInst::ICMP_ULT; 709 std::swap(Cmp0, Cmp1); 710 } 711 if (Pred != ICmpInst::ICMP_ULT) 712 return nullptr; 713 714 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 715 Value *Y; 716 if (match(Cmp0, m_Not(m_Value(X))) && 717 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 718 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 719 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 720 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 721 } 722 // The 'not' op may be included in the sum but not the compare. 723 X = Cmp0; 724 Y = Cmp1; 725 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 726 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 727 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 728 BinaryOperator *BO = cast<BinaryOperator>(FVal); 729 return Builder.CreateBinaryIntrinsic( 730 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 731 } 732 733 return nullptr; 734 } 735 736 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 737 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 738 /// 739 /// For example, we can fold the following code sequence: 740 /// \code 741 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 742 /// %1 = icmp ne i32 %x, 0 743 /// %2 = select i1 %1, i32 %0, i32 32 744 /// \code 745 /// 746 /// into: 747 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 748 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 749 InstCombiner::BuilderTy &Builder) { 750 ICmpInst::Predicate Pred = ICI->getPredicate(); 751 Value *CmpLHS = ICI->getOperand(0); 752 Value *CmpRHS = ICI->getOperand(1); 753 754 // Check if the condition value compares a value for equality against zero. 755 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 756 return nullptr; 757 758 Value *Count = FalseVal; 759 Value *ValueOnZero = TrueVal; 760 if (Pred == ICmpInst::ICMP_NE) 761 std::swap(Count, ValueOnZero); 762 763 // Skip zero extend/truncate. 764 Value *V = nullptr; 765 if (match(Count, m_ZExt(m_Value(V))) || 766 match(Count, m_Trunc(m_Value(V)))) 767 Count = V; 768 769 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 770 // input to the cttz/ctlz is used as LHS for the compare instruction. 771 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 772 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 773 return nullptr; 774 775 IntrinsicInst *II = cast<IntrinsicInst>(Count); 776 777 // Check if the value propagated on zero is a constant number equal to the 778 // sizeof in bits of 'Count'. 779 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 780 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 781 // Explicitly clear the 'undef_on_zero' flag. 782 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 783 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 784 Builder.Insert(NewI); 785 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 786 } 787 788 // If the ValueOnZero is not the bitwidth, we can at least make use of the 789 // fact that the cttz/ctlz result will not be used if the input is zero, so 790 // it's okay to relax it to undef for that case. 791 if (II->hasOneUse() && !match(II->getArgOperand(1), m_One())) 792 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 793 794 return nullptr; 795 } 796 797 /// Return true if we find and adjust an icmp+select pattern where the compare 798 /// is with a constant that can be incremented or decremented to match the 799 /// minimum or maximum idiom. 800 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 801 ICmpInst::Predicate Pred = Cmp.getPredicate(); 802 Value *CmpLHS = Cmp.getOperand(0); 803 Value *CmpRHS = Cmp.getOperand(1); 804 Value *TrueVal = Sel.getTrueValue(); 805 Value *FalseVal = Sel.getFalseValue(); 806 807 // We may move or edit the compare, so make sure the select is the only user. 808 const APInt *CmpC; 809 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 810 return false; 811 812 // These transforms only work for selects of integers or vector selects of 813 // integer vectors. 814 Type *SelTy = Sel.getType(); 815 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 816 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 817 return false; 818 819 Constant *AdjustedRHS; 820 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 821 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 822 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 823 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 824 else 825 return false; 826 827 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 828 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 829 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 830 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 831 ; // Nothing to do here. Values match without any sign/zero extension. 832 } 833 // Types do not match. Instead of calculating this with mixed types, promote 834 // all to the larger type. This enables scalar evolution to analyze this 835 // expression. 836 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 837 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 838 839 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 840 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 841 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 842 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 843 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 844 CmpLHS = TrueVal; 845 AdjustedRHS = SextRHS; 846 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 847 SextRHS == TrueVal) { 848 CmpLHS = FalseVal; 849 AdjustedRHS = SextRHS; 850 } else if (Cmp.isUnsigned()) { 851 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 852 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 853 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 854 // zext + signed compare cannot be changed: 855 // 0xff <s 0x00, but 0x00ff >s 0x0000 856 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 857 CmpLHS = TrueVal; 858 AdjustedRHS = ZextRHS; 859 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 860 ZextRHS == TrueVal) { 861 CmpLHS = FalseVal; 862 AdjustedRHS = ZextRHS; 863 } else { 864 return false; 865 } 866 } else { 867 return false; 868 } 869 } else { 870 return false; 871 } 872 873 Pred = ICmpInst::getSwappedPredicate(Pred); 874 CmpRHS = AdjustedRHS; 875 std::swap(FalseVal, TrueVal); 876 Cmp.setPredicate(Pred); 877 Cmp.setOperand(0, CmpLHS); 878 Cmp.setOperand(1, CmpRHS); 879 Sel.setOperand(1, TrueVal); 880 Sel.setOperand(2, FalseVal); 881 Sel.swapProfMetadata(); 882 883 // Move the compare instruction right before the select instruction. Otherwise 884 // the sext/zext value may be defined after the compare instruction uses it. 885 Cmp.moveBefore(&Sel); 886 887 return true; 888 } 889 890 /// If this is an integer min/max (icmp + select) with a constant operand, 891 /// create the canonical icmp for the min/max operation and canonicalize the 892 /// constant to the 'false' operand of the select: 893 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 894 /// Note: if C1 != C2, this will change the icmp constant to the existing 895 /// constant operand of the select. 896 static Instruction * 897 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 898 InstCombiner::BuilderTy &Builder) { 899 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 900 return nullptr; 901 902 // Canonicalize the compare predicate based on whether we have min or max. 903 Value *LHS, *RHS; 904 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 905 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 906 return nullptr; 907 908 // Is this already canonical? 909 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 910 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 911 Cmp.getPredicate() == CanonicalPred) 912 return nullptr; 913 914 // Create the canonical compare and plug it into the select. 915 Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); 916 917 // If the select operands did not change, we're done. 918 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 919 return &Sel; 920 921 // If we are swapping the select operands, swap the metadata too. 922 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 923 "Unexpected results from matchSelectPattern"); 924 Sel.setTrueValue(LHS); 925 Sel.setFalseValue(RHS); 926 Sel.swapProfMetadata(); 927 return &Sel; 928 } 929 930 /// There are many select variants for each of ABS/NABS. 931 /// In matchSelectPattern(), there are different compare constants, compare 932 /// predicates/operands and select operands. 933 /// In isKnownNegation(), there are different formats of negated operands. 934 /// Canonicalize all these variants to 1 pattern. 935 /// This makes CSE more likely. 936 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 937 InstCombiner::BuilderTy &Builder) { 938 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 939 return nullptr; 940 941 // Choose a sign-bit check for the compare (likely simpler for codegen). 942 // ABS: (X <s 0) ? -X : X 943 // NABS: (X <s 0) ? X : -X 944 Value *LHS, *RHS; 945 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 946 if (SPF != SelectPatternFlavor::SPF_ABS && 947 SPF != SelectPatternFlavor::SPF_NABS) 948 return nullptr; 949 950 Value *TVal = Sel.getTrueValue(); 951 Value *FVal = Sel.getFalseValue(); 952 assert(isKnownNegation(TVal, FVal) && 953 "Unexpected result from matchSelectPattern"); 954 955 // The compare may use the negated abs()/nabs() operand, or it may use 956 // negation in non-canonical form such as: sub A, B. 957 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 958 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 959 960 bool CmpCanonicalized = !CmpUsesNegatedOp && 961 match(Cmp.getOperand(1), m_ZeroInt()) && 962 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 963 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 964 965 // Is this already canonical? 966 if (CmpCanonicalized && RHSCanonicalized) 967 return nullptr; 968 969 // If RHS is used by other instructions except compare and select, don't 970 // canonicalize it to not increase the instruction count. 971 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 972 return nullptr; 973 974 // Create the canonical compare: icmp slt LHS 0. 975 if (!CmpCanonicalized) { 976 Cmp.setPredicate(ICmpInst::ICMP_SLT); 977 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 978 if (CmpUsesNegatedOp) 979 Cmp.setOperand(0, LHS); 980 } 981 982 // Create the canonical RHS: RHS = sub (0, LHS). 983 if (!RHSCanonicalized) { 984 assert(RHS->hasOneUse() && "RHS use number is not right"); 985 RHS = Builder.CreateNeg(LHS); 986 if (TVal == LHS) { 987 Sel.setFalseValue(RHS); 988 FVal = RHS; 989 } else { 990 Sel.setTrueValue(RHS); 991 TVal = RHS; 992 } 993 } 994 995 // If the select operands do not change, we're done. 996 if (SPF == SelectPatternFlavor::SPF_NABS) { 997 if (TVal == LHS) 998 return &Sel; 999 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 1000 } else { 1001 if (FVal == LHS) 1002 return &Sel; 1003 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 1004 } 1005 1006 // We are swapping the select operands, so swap the metadata too. 1007 Sel.setTrueValue(FVal); 1008 Sel.setFalseValue(TVal); 1009 Sel.swapProfMetadata(); 1010 return &Sel; 1011 } 1012 1013 /// Visit a SelectInst that has an ICmpInst as its first operand. 1014 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 1015 ICmpInst *ICI) { 1016 Value *TrueVal = SI.getTrueValue(); 1017 Value *FalseVal = SI.getFalseValue(); 1018 1019 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 1020 return NewSel; 1021 1022 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) 1023 return NewAbs; 1024 1025 bool Changed = adjustMinMax(SI, *ICI); 1026 1027 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1028 return replaceInstUsesWith(SI, V); 1029 1030 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1031 ICmpInst::Predicate Pred = ICI->getPredicate(); 1032 Value *CmpLHS = ICI->getOperand(0); 1033 Value *CmpRHS = ICI->getOperand(1); 1034 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1035 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1036 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1037 SI.setOperand(1, CmpRHS); 1038 Changed = true; 1039 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1040 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1041 SI.setOperand(2, CmpRHS); 1042 Changed = true; 1043 } 1044 } 1045 1046 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1047 // decomposeBitTestICmp() might help. 1048 { 1049 unsigned BitWidth = 1050 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1051 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1052 Value *X; 1053 const APInt *Y, *C; 1054 bool TrueWhenUnset; 1055 bool IsBitTest = false; 1056 if (ICmpInst::isEquality(Pred) && 1057 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1058 match(CmpRHS, m_Zero())) { 1059 IsBitTest = true; 1060 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1061 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1062 X = CmpLHS; 1063 Y = &MinSignedValue; 1064 IsBitTest = true; 1065 TrueWhenUnset = false; 1066 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1067 X = CmpLHS; 1068 Y = &MinSignedValue; 1069 IsBitTest = true; 1070 TrueWhenUnset = true; 1071 } 1072 if (IsBitTest) { 1073 Value *V = nullptr; 1074 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1075 if (TrueWhenUnset && TrueVal == X && 1076 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1077 V = Builder.CreateAnd(X, ~(*Y)); 1078 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1079 else if (!TrueWhenUnset && FalseVal == X && 1080 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1081 V = Builder.CreateAnd(X, ~(*Y)); 1082 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1083 else if (TrueWhenUnset && FalseVal == X && 1084 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1085 V = Builder.CreateOr(X, *Y); 1086 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1087 else if (!TrueWhenUnset && TrueVal == X && 1088 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1089 V = Builder.CreateOr(X, *Y); 1090 1091 if (V) 1092 return replaceInstUsesWith(SI, V); 1093 } 1094 } 1095 1096 if (Instruction *V = 1097 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1098 return V; 1099 1100 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1101 return replaceInstUsesWith(SI, V); 1102 1103 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1104 return replaceInstUsesWith(SI, V); 1105 1106 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1107 return replaceInstUsesWith(SI, V); 1108 1109 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1110 return replaceInstUsesWith(SI, V); 1111 1112 return Changed ? &SI : nullptr; 1113 } 1114 1115 /// SI is a select whose condition is a PHI node (but the two may be in 1116 /// different blocks). See if the true/false values (V) are live in all of the 1117 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1118 /// 1119 /// X = phi [ C1, BB1], [C2, BB2] 1120 /// Y = add 1121 /// Z = select X, Y, 0 1122 /// 1123 /// because Y is not live in BB1/BB2. 1124 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1125 const SelectInst &SI) { 1126 // If the value is a non-instruction value like a constant or argument, it 1127 // can always be mapped. 1128 const Instruction *I = dyn_cast<Instruction>(V); 1129 if (!I) return true; 1130 1131 // If V is a PHI node defined in the same block as the condition PHI, we can 1132 // map the arguments. 1133 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1134 1135 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1136 if (VP->getParent() == CondPHI->getParent()) 1137 return true; 1138 1139 // Otherwise, if the PHI and select are defined in the same block and if V is 1140 // defined in a different block, then we can transform it. 1141 if (SI.getParent() == CondPHI->getParent() && 1142 I->getParent() != CondPHI->getParent()) 1143 return true; 1144 1145 // Otherwise we have a 'hard' case and we can't tell without doing more 1146 // detailed dominator based analysis, punt. 1147 return false; 1148 } 1149 1150 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1151 /// SPF2(SPF1(A, B), C) 1152 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 1153 SelectPatternFlavor SPF1, 1154 Value *A, Value *B, 1155 Instruction &Outer, 1156 SelectPatternFlavor SPF2, Value *C) { 1157 if (Outer.getType() != Inner->getType()) 1158 return nullptr; 1159 1160 if (C == A || C == B) { 1161 // MAX(MAX(A, B), B) -> MAX(A, B) 1162 // MIN(MIN(a, b), a) -> MIN(a, b) 1163 // TODO: This could be done in instsimplify. 1164 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1165 return replaceInstUsesWith(Outer, Inner); 1166 1167 // MAX(MIN(a, b), a) -> a 1168 // MIN(MAX(a, b), a) -> a 1169 // TODO: This could be done in instsimplify. 1170 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1171 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1172 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1173 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1174 return replaceInstUsesWith(Outer, C); 1175 } 1176 1177 if (SPF1 == SPF2) { 1178 const APInt *CB, *CC; 1179 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1180 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1181 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1182 // TODO: This could be done in instsimplify. 1183 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1184 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1185 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1186 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1187 return replaceInstUsesWith(Outer, Inner); 1188 1189 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1190 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1191 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1192 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1193 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1194 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1195 Outer.replaceUsesOfWith(Inner, A); 1196 return &Outer; 1197 } 1198 } 1199 } 1200 1201 // ABS(ABS(X)) -> ABS(X) 1202 // NABS(NABS(X)) -> NABS(X) 1203 // TODO: This could be done in instsimplify. 1204 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1205 return replaceInstUsesWith(Outer, Inner); 1206 } 1207 1208 // ABS(NABS(X)) -> ABS(X) 1209 // NABS(ABS(X)) -> NABS(X) 1210 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1211 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1212 SelectInst *SI = cast<SelectInst>(Inner); 1213 Value *NewSI = 1214 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1215 SI->getTrueValue(), SI->getName(), SI); 1216 return replaceInstUsesWith(Outer, NewSI); 1217 } 1218 1219 auto IsFreeOrProfitableToInvert = 1220 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1221 if (match(V, m_Not(m_Value(NotV)))) { 1222 // If V has at most 2 uses then we can get rid of the xor operation 1223 // entirely. 1224 ElidesXor |= !V->hasNUsesOrMore(3); 1225 return true; 1226 } 1227 1228 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1229 NotV = nullptr; 1230 return true; 1231 } 1232 1233 return false; 1234 }; 1235 1236 Value *NotA, *NotB, *NotC; 1237 bool ElidesXor = false; 1238 1239 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1240 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1241 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1242 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1243 // 1244 // This transform is performance neutral if we can elide at least one xor from 1245 // the set of three operands, since we'll be tacking on an xor at the very 1246 // end. 1247 if (SelectPatternResult::isMinOrMax(SPF1) && 1248 SelectPatternResult::isMinOrMax(SPF2) && 1249 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1250 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1251 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1252 if (!NotA) 1253 NotA = Builder.CreateNot(A); 1254 if (!NotB) 1255 NotB = Builder.CreateNot(B); 1256 if (!NotC) 1257 NotC = Builder.CreateNot(C); 1258 1259 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1260 NotB); 1261 Value *NewOuter = Builder.CreateNot( 1262 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1263 return replaceInstUsesWith(Outer, NewOuter); 1264 } 1265 1266 return nullptr; 1267 } 1268 1269 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1270 /// This is even legal for FP. 1271 static Instruction *foldAddSubSelect(SelectInst &SI, 1272 InstCombiner::BuilderTy &Builder) { 1273 Value *CondVal = SI.getCondition(); 1274 Value *TrueVal = SI.getTrueValue(); 1275 Value *FalseVal = SI.getFalseValue(); 1276 auto *TI = dyn_cast<Instruction>(TrueVal); 1277 auto *FI = dyn_cast<Instruction>(FalseVal); 1278 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1279 return nullptr; 1280 1281 Instruction *AddOp = nullptr, *SubOp = nullptr; 1282 if ((TI->getOpcode() == Instruction::Sub && 1283 FI->getOpcode() == Instruction::Add) || 1284 (TI->getOpcode() == Instruction::FSub && 1285 FI->getOpcode() == Instruction::FAdd)) { 1286 AddOp = FI; 1287 SubOp = TI; 1288 } else if ((FI->getOpcode() == Instruction::Sub && 1289 TI->getOpcode() == Instruction::Add) || 1290 (FI->getOpcode() == Instruction::FSub && 1291 TI->getOpcode() == Instruction::FAdd)) { 1292 AddOp = TI; 1293 SubOp = FI; 1294 } 1295 1296 if (AddOp) { 1297 Value *OtherAddOp = nullptr; 1298 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1299 OtherAddOp = AddOp->getOperand(1); 1300 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1301 OtherAddOp = AddOp->getOperand(0); 1302 } 1303 1304 if (OtherAddOp) { 1305 // So at this point we know we have (Y -> OtherAddOp): 1306 // select C, (add X, Y), (sub X, Z) 1307 Value *NegVal; // Compute -Z 1308 if (SI.getType()->isFPOrFPVectorTy()) { 1309 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1310 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1311 FastMathFlags Flags = AddOp->getFastMathFlags(); 1312 Flags &= SubOp->getFastMathFlags(); 1313 NegInst->setFastMathFlags(Flags); 1314 } 1315 } else { 1316 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1317 } 1318 1319 Value *NewTrueOp = OtherAddOp; 1320 Value *NewFalseOp = NegVal; 1321 if (AddOp != TI) 1322 std::swap(NewTrueOp, NewFalseOp); 1323 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1324 SI.getName() + ".p", &SI); 1325 1326 if (SI.getType()->isFPOrFPVectorTy()) { 1327 Instruction *RI = 1328 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1329 1330 FastMathFlags Flags = AddOp->getFastMathFlags(); 1331 Flags &= SubOp->getFastMathFlags(); 1332 RI->setFastMathFlags(Flags); 1333 return RI; 1334 } else 1335 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1336 } 1337 } 1338 return nullptr; 1339 } 1340 1341 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1342 Constant *C; 1343 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1344 !match(Sel.getFalseValue(), m_Constant(C))) 1345 return nullptr; 1346 1347 Instruction *ExtInst; 1348 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1349 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1350 return nullptr; 1351 1352 auto ExtOpcode = ExtInst->getOpcode(); 1353 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1354 return nullptr; 1355 1356 // If we are extending from a boolean type or if we can create a select that 1357 // has the same size operands as its condition, try to narrow the select. 1358 Value *X = ExtInst->getOperand(0); 1359 Type *SmallType = X->getType(); 1360 Value *Cond = Sel.getCondition(); 1361 auto *Cmp = dyn_cast<CmpInst>(Cond); 1362 if (!SmallType->isIntOrIntVectorTy(1) && 1363 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1364 return nullptr; 1365 1366 // If the constant is the same after truncation to the smaller type and 1367 // extension to the original type, we can narrow the select. 1368 Type *SelType = Sel.getType(); 1369 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1370 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1371 if (ExtC == C) { 1372 Value *TruncCVal = cast<Value>(TruncC); 1373 if (ExtInst == Sel.getFalseValue()) 1374 std::swap(X, TruncCVal); 1375 1376 // select Cond, (ext X), C --> ext(select Cond, X, C') 1377 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1378 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1379 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1380 } 1381 1382 // If one arm of the select is the extend of the condition, replace that arm 1383 // with the extension of the appropriate known bool value. 1384 if (Cond == X) { 1385 if (ExtInst == Sel.getTrueValue()) { 1386 // select X, (sext X), C --> select X, -1, C 1387 // select X, (zext X), C --> select X, 1, C 1388 Constant *One = ConstantInt::getTrue(SmallType); 1389 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1390 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1391 } else { 1392 // select X, C, (sext X) --> select X, C, 0 1393 // select X, C, (zext X) --> select X, C, 0 1394 Constant *Zero = ConstantInt::getNullValue(SelType); 1395 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1396 } 1397 } 1398 1399 return nullptr; 1400 } 1401 1402 /// Try to transform a vector select with a constant condition vector into a 1403 /// shuffle for easier combining with other shuffles and insert/extract. 1404 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1405 Value *CondVal = SI.getCondition(); 1406 Constant *CondC; 1407 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1408 return nullptr; 1409 1410 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1411 SmallVector<Constant *, 16> Mask; 1412 Mask.reserve(NumElts); 1413 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1414 for (unsigned i = 0; i != NumElts; ++i) { 1415 Constant *Elt = CondC->getAggregateElement(i); 1416 if (!Elt) 1417 return nullptr; 1418 1419 if (Elt->isOneValue()) { 1420 // If the select condition element is true, choose from the 1st vector. 1421 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1422 } else if (Elt->isNullValue()) { 1423 // If the select condition element is false, choose from the 2nd vector. 1424 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1425 } else if (isa<UndefValue>(Elt)) { 1426 // Undef in a select condition (choose one of the operands) does not mean 1427 // the same thing as undef in a shuffle mask (any value is acceptable), so 1428 // give up. 1429 return nullptr; 1430 } else { 1431 // Bail out on a constant expression. 1432 return nullptr; 1433 } 1434 } 1435 1436 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1437 ConstantVector::get(Mask)); 1438 } 1439 1440 /// Reuse bitcasted operands between a compare and select: 1441 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1442 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1443 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1444 InstCombiner::BuilderTy &Builder) { 1445 Value *Cond = Sel.getCondition(); 1446 Value *TVal = Sel.getTrueValue(); 1447 Value *FVal = Sel.getFalseValue(); 1448 1449 CmpInst::Predicate Pred; 1450 Value *A, *B; 1451 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1452 return nullptr; 1453 1454 // The select condition is a compare instruction. If the select's true/false 1455 // values are already the same as the compare operands, there's nothing to do. 1456 if (TVal == A || TVal == B || FVal == A || FVal == B) 1457 return nullptr; 1458 1459 Value *C, *D; 1460 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1461 return nullptr; 1462 1463 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1464 Value *TSrc, *FSrc; 1465 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1466 !match(FVal, m_BitCast(m_Value(FSrc)))) 1467 return nullptr; 1468 1469 // If the select true/false values are *different bitcasts* of the same source 1470 // operands, make the select operands the same as the compare operands and 1471 // cast the result. This is the canonical select form for min/max. 1472 Value *NewSel; 1473 if (TSrc == C && FSrc == D) { 1474 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1475 // bitcast (select (cmp A, B), A, B) 1476 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1477 } else if (TSrc == D && FSrc == C) { 1478 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1479 // bitcast (select (cmp A, B), B, A) 1480 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1481 } else { 1482 return nullptr; 1483 } 1484 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1485 } 1486 1487 /// Try to eliminate select instructions that test the returned flag of cmpxchg 1488 /// instructions. 1489 /// 1490 /// If a select instruction tests the returned flag of a cmpxchg instruction and 1491 /// selects between the returned value of the cmpxchg instruction its compare 1492 /// operand, the result of the select will always be equal to its false value. 1493 /// For example: 1494 /// 1495 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1496 /// %1 = extractvalue { i64, i1 } %0, 1 1497 /// %2 = extractvalue { i64, i1 } %0, 0 1498 /// %3 = select i1 %1, i64 %compare, i64 %2 1499 /// ret i64 %3 1500 /// 1501 /// The returned value of the cmpxchg instruction (%2) is the original value 1502 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 1503 /// must have been equal to %compare. Thus, the result of the select is always 1504 /// equal to %2, and the code can be simplified to: 1505 /// 1506 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1507 /// %1 = extractvalue { i64, i1 } %0, 0 1508 /// ret i64 %1 1509 /// 1510 static Instruction *foldSelectCmpXchg(SelectInst &SI) { 1511 // A helper that determines if V is an extractvalue instruction whose 1512 // aggregate operand is a cmpxchg instruction and whose single index is equal 1513 // to I. If such conditions are true, the helper returns the cmpxchg 1514 // instruction; otherwise, a nullptr is returned. 1515 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 1516 auto *Extract = dyn_cast<ExtractValueInst>(V); 1517 if (!Extract) 1518 return nullptr; 1519 if (Extract->getIndices()[0] != I) 1520 return nullptr; 1521 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 1522 }; 1523 1524 // If the select has a single user, and this user is a select instruction that 1525 // we can simplify, skip the cmpxchg simplification for now. 1526 if (SI.hasOneUse()) 1527 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 1528 if (Select->getCondition() == SI.getCondition()) 1529 if (Select->getFalseValue() == SI.getTrueValue() || 1530 Select->getTrueValue() == SI.getFalseValue()) 1531 return nullptr; 1532 1533 // Ensure the select condition is the returned flag of a cmpxchg instruction. 1534 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 1535 if (!CmpXchg) 1536 return nullptr; 1537 1538 // Check the true value case: The true value of the select is the returned 1539 // value of the same cmpxchg used by the condition, and the false value is the 1540 // cmpxchg instruction's compare operand. 1541 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 1542 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { 1543 SI.setTrueValue(SI.getFalseValue()); 1544 return &SI; 1545 } 1546 1547 // Check the false value case: The false value of the select is the returned 1548 // value of the same cmpxchg used by the condition, and the true value is the 1549 // cmpxchg instruction's compare operand. 1550 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 1551 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { 1552 SI.setTrueValue(SI.getFalseValue()); 1553 return &SI; 1554 } 1555 1556 return nullptr; 1557 } 1558 1559 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 1560 Value *Y, 1561 InstCombiner::BuilderTy &Builder) { 1562 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 1563 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 1564 SPF == SelectPatternFlavor::SPF_UMAX; 1565 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 1566 // the constant value check to an assert. 1567 Value *A; 1568 const APInt *C1, *C2; 1569 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 1570 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 1571 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 1572 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 1573 Value *NewMinMax = createMinMax(Builder, SPF, A, 1574 ConstantInt::get(X->getType(), *C2 - *C1)); 1575 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 1576 ConstantInt::get(X->getType(), *C1)); 1577 } 1578 1579 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 1580 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 1581 bool Overflow; 1582 APInt Diff = C2->ssub_ov(*C1, Overflow); 1583 if (!Overflow) { 1584 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 1585 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 1586 Value *NewMinMax = createMinMax(Builder, SPF, A, 1587 ConstantInt::get(X->getType(), Diff)); 1588 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 1589 ConstantInt::get(X->getType(), *C1)); 1590 } 1591 } 1592 1593 return nullptr; 1594 } 1595 1596 /// Reduce a sequence of min/max with a common operand. 1597 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 1598 Value *RHS, 1599 InstCombiner::BuilderTy &Builder) { 1600 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 1601 // TODO: Allow FP min/max with nnan/nsz. 1602 if (!LHS->getType()->isIntOrIntVectorTy()) 1603 return nullptr; 1604 1605 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1606 Value *A, *B, *C, *D; 1607 SelectPatternResult L = matchSelectPattern(LHS, A, B); 1608 SelectPatternResult R = matchSelectPattern(RHS, C, D); 1609 if (SPF != L.Flavor || L.Flavor != R.Flavor) 1610 return nullptr; 1611 1612 // Look for a common operand. The use checks are different than usual because 1613 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 1614 // the select. 1615 Value *MinMaxOp = nullptr; 1616 Value *ThirdOp = nullptr; 1617 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 1618 // If the LHS is only used in this chain and the RHS is used outside of it, 1619 // reuse the RHS min/max because that will eliminate the LHS. 1620 if (D == A || C == A) { 1621 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1622 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1623 MinMaxOp = RHS; 1624 ThirdOp = B; 1625 } else if (D == B || C == B) { 1626 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1627 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1628 MinMaxOp = RHS; 1629 ThirdOp = A; 1630 } 1631 } else if (!RHS->hasNUsesOrMore(3)) { 1632 // Reuse the LHS. This will eliminate the RHS. 1633 if (D == A || D == B) { 1634 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1635 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1636 MinMaxOp = LHS; 1637 ThirdOp = C; 1638 } else if (C == A || C == B) { 1639 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1640 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1641 MinMaxOp = LHS; 1642 ThirdOp = D; 1643 } 1644 } 1645 if (!MinMaxOp || !ThirdOp) 1646 return nullptr; 1647 1648 CmpInst::Predicate P = getMinMaxPred(SPF); 1649 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 1650 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 1651 } 1652 1653 /// Try to reduce a rotate pattern that includes a compare and select into a 1654 /// funnel shift intrinsic. Example: 1655 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 1656 /// --> call llvm.fshl.i32(a, a, b) 1657 static Instruction *foldSelectRotate(SelectInst &Sel) { 1658 // The false value of the select must be a rotate of the true value. 1659 Value *Or0, *Or1; 1660 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 1661 return nullptr; 1662 1663 Value *TVal = Sel.getTrueValue(); 1664 Value *SA0, *SA1; 1665 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) || 1666 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1))))) 1667 return nullptr; 1668 1669 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 1670 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 1671 if (ShiftOpcode0 == ShiftOpcode1) 1672 return nullptr; 1673 1674 // We have one of these patterns so far: 1675 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) 1676 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) 1677 // This must be a power-of-2 rotate for a bitmasking transform to be valid. 1678 unsigned Width = Sel.getType()->getScalarSizeInBits(); 1679 if (!isPowerOf2_32(Width)) 1680 return nullptr; 1681 1682 // Check the shift amounts to see if they are an opposite pair. 1683 Value *ShAmt; 1684 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 1685 ShAmt = SA0; 1686 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 1687 ShAmt = SA1; 1688 else 1689 return nullptr; 1690 1691 // Finally, see if the select is filtering out a shift-by-zero. 1692 Value *Cond = Sel.getCondition(); 1693 ICmpInst::Predicate Pred; 1694 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 1695 Pred != ICmpInst::ICMP_EQ) 1696 return nullptr; 1697 1698 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. 1699 // Convert to funnel shift intrinsic. 1700 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || 1701 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); 1702 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 1703 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 1704 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); 1705 } 1706 1707 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1708 Value *CondVal = SI.getCondition(); 1709 Value *TrueVal = SI.getTrueValue(); 1710 Value *FalseVal = SI.getFalseValue(); 1711 Type *SelType = SI.getType(); 1712 1713 // FIXME: Remove this workaround when freeze related patches are done. 1714 // For select with undef operand which feeds into an equality comparison, 1715 // don't simplify it so loop unswitch can know the equality comparison 1716 // may have an undef operand. This is a workaround for PR31652 caused by 1717 // descrepancy about branch on undef between LoopUnswitch and GVN. 1718 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1719 if (llvm::any_of(SI.users(), [&](User *U) { 1720 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1721 if (CI && CI->isEquality()) 1722 return true; 1723 return false; 1724 })) { 1725 return nullptr; 1726 } 1727 } 1728 1729 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1730 SQ.getWithInstruction(&SI))) 1731 return replaceInstUsesWith(SI, V); 1732 1733 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1734 return I; 1735 1736 // Canonicalize a one-use integer compare with a non-canonical predicate by 1737 // inverting the predicate and swapping the select operands. This matches a 1738 // compare canonicalization for conditional branches. 1739 // TODO: Should we do the same for FP compares? 1740 CmpInst::Predicate Pred; 1741 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 1742 !isCanonicalPredicate(Pred)) { 1743 // Swap true/false values and condition. 1744 CmpInst *Cond = cast<CmpInst>(CondVal); 1745 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 1746 SI.setOperand(1, FalseVal); 1747 SI.setOperand(2, TrueVal); 1748 SI.swapProfMetadata(); 1749 Worklist.Add(Cond); 1750 return &SI; 1751 } 1752 1753 if (SelType->isIntOrIntVectorTy(1) && 1754 TrueVal->getType() == CondVal->getType()) { 1755 if (match(TrueVal, m_One())) { 1756 // Change: A = select B, true, C --> A = or B, C 1757 return BinaryOperator::CreateOr(CondVal, FalseVal); 1758 } 1759 if (match(TrueVal, m_Zero())) { 1760 // Change: A = select B, false, C --> A = and !B, C 1761 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1762 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1763 } 1764 if (match(FalseVal, m_Zero())) { 1765 // Change: A = select B, C, false --> A = and B, C 1766 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1767 } 1768 if (match(FalseVal, m_One())) { 1769 // Change: A = select B, C, true --> A = or !B, C 1770 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1771 return BinaryOperator::CreateOr(NotCond, TrueVal); 1772 } 1773 1774 // select a, a, b -> a | b 1775 // select a, b, a -> a & b 1776 if (CondVal == TrueVal) 1777 return BinaryOperator::CreateOr(CondVal, FalseVal); 1778 if (CondVal == FalseVal) 1779 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1780 1781 // select a, ~a, b -> (~a) & b 1782 // select a, b, ~a -> (~a) | b 1783 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1784 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1785 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1786 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1787 } 1788 1789 // Selecting between two integer or vector splat integer constants? 1790 // 1791 // Note that we don't handle a scalar select of vectors: 1792 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1793 // because that may need 3 instructions to splat the condition value: 1794 // extend, insertelement, shufflevector. 1795 if (SelType->isIntOrIntVectorTy() && 1796 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1797 // select C, 1, 0 -> zext C to int 1798 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1799 return new ZExtInst(CondVal, SelType); 1800 1801 // select C, -1, 0 -> sext C to int 1802 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1803 return new SExtInst(CondVal, SelType); 1804 1805 // select C, 0, 1 -> zext !C to int 1806 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1807 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1808 return new ZExtInst(NotCond, SelType); 1809 } 1810 1811 // select C, 0, -1 -> sext !C to int 1812 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1813 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1814 return new SExtInst(NotCond, SelType); 1815 } 1816 } 1817 1818 // See if we are selecting two values based on a comparison of the two values. 1819 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1820 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1821 // Canonicalize to use ordered comparisons by swapping the select 1822 // operands. 1823 // 1824 // e.g. 1825 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1826 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1827 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1828 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1829 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1830 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 1831 FCI->getName() + ".inv"); 1832 1833 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1834 SI.getName() + ".p"); 1835 } 1836 1837 // NOTE: if we wanted to, this is where to detect MIN/MAX 1838 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1839 // Canonicalize to use ordered comparisons by swapping the select 1840 // operands. 1841 // 1842 // e.g. 1843 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1844 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1845 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1846 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1847 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1848 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 1849 FCI->getName() + ".inv"); 1850 1851 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1852 SI.getName() + ".p"); 1853 } 1854 1855 // NOTE: if we wanted to, this is where to detect MIN/MAX 1856 } 1857 1858 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 1859 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 1860 // also require nnan because we do not want to unintentionally change the 1861 // sign of a NaN value. 1862 Value *X = FCI->getOperand(0); 1863 FCmpInst::Predicate Pred = FCI->getPredicate(); 1864 if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) { 1865 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 1866 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 1867 if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE && 1868 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) || 1869 (X == TrueVal && Pred == FCmpInst::FCMP_OGT && 1870 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) { 1871 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); 1872 return replaceInstUsesWith(SI, Fabs); 1873 } 1874 // With nsz: 1875 // (X < +/-0.0) ? -X : X --> fabs(X) 1876 // (X <= +/-0.0) ? -X : X --> fabs(X) 1877 // (X > +/-0.0) ? X : -X --> fabs(X) 1878 // (X >= +/-0.0) ? X : -X --> fabs(X) 1879 if (FCI->hasNoSignedZeros() && 1880 ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) && 1881 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) || 1882 (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) && 1883 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) { 1884 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); 1885 return replaceInstUsesWith(SI, Fabs); 1886 } 1887 } 1888 } 1889 1890 // See if we are selecting two values based on a comparison of the two values. 1891 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1892 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1893 return Result; 1894 1895 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 1896 return Add; 1897 1898 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1899 auto *TI = dyn_cast<Instruction>(TrueVal); 1900 auto *FI = dyn_cast<Instruction>(FalseVal); 1901 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1902 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1903 return IV; 1904 1905 if (Instruction *I = foldSelectExtConst(SI)) 1906 return I; 1907 1908 // See if we can fold the select into one of our operands. 1909 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1910 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1911 return FoldI; 1912 1913 Value *LHS, *RHS; 1914 Instruction::CastOps CastOp; 1915 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1916 auto SPF = SPR.Flavor; 1917 if (SPF) { 1918 Value *LHS2, *RHS2; 1919 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1920 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 1921 RHS2, SI, SPF, RHS)) 1922 return R; 1923 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1924 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 1925 RHS2, SI, SPF, LHS)) 1926 return R; 1927 // TODO. 1928 // ABS(-X) -> ABS(X) 1929 } 1930 1931 if (SelectPatternResult::isMinOrMax(SPF)) { 1932 // Canonicalize so that 1933 // - type casts are outside select patterns. 1934 // - float clamp is transformed to min/max pattern 1935 1936 bool IsCastNeeded = LHS->getType() != SelType; 1937 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 1938 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 1939 if (IsCastNeeded || 1940 (LHS->getType()->isFPOrFPVectorTy() && 1941 ((CmpLHS != LHS && CmpLHS != RHS) || 1942 (CmpRHS != LHS && CmpRHS != RHS)))) { 1943 CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered); 1944 1945 Value *Cmp; 1946 if (CmpInst::isIntPredicate(Pred)) { 1947 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 1948 } else { 1949 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1950 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1951 Builder.setFastMathFlags(FMF); 1952 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 1953 } 1954 1955 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 1956 if (!IsCastNeeded) 1957 return replaceInstUsesWith(SI, NewSI); 1958 1959 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 1960 return replaceInstUsesWith(SI, NewCast); 1961 } 1962 1963 // MAX(~a, ~b) -> ~MIN(a, b) 1964 // MAX(~a, C) -> ~MIN(a, ~C) 1965 // MIN(~a, ~b) -> ~MAX(a, b) 1966 // MIN(~a, C) -> ~MAX(a, ~C) 1967 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 1968 Value *A; 1969 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 1970 !IsFreeToInvert(A, A->hasOneUse()) && 1971 // Passing false to only consider m_Not and constants. 1972 IsFreeToInvert(Y, false)) { 1973 Value *B = Builder.CreateNot(Y); 1974 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 1975 A, B); 1976 // Copy the profile metadata. 1977 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 1978 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 1979 // Swap the metadata if the operands are swapped. 1980 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 1981 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 1982 } 1983 1984 return BinaryOperator::CreateNot(NewMinMax); 1985 } 1986 1987 return nullptr; 1988 }; 1989 1990 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 1991 return I; 1992 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 1993 return I; 1994 1995 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 1996 return I; 1997 1998 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 1999 return I; 2000 } 2001 } 2002 2003 // See if we can fold the select into a phi node if the condition is a select. 2004 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2005 // The true/false values have to be live in the PHI predecessor's blocks. 2006 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2007 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2008 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2009 return NV; 2010 2011 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2012 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2013 // select(C, select(C, a, b), c) -> select(C, a, c) 2014 if (TrueSI->getCondition() == CondVal) { 2015 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2016 return nullptr; 2017 SI.setOperand(1, TrueSI->getTrueValue()); 2018 return &SI; 2019 } 2020 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2021 // We choose this as normal form to enable folding on the And and shortening 2022 // paths for the values (this helps GetUnderlyingObjects() for example). 2023 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2024 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 2025 SI.setOperand(0, And); 2026 SI.setOperand(1, TrueSI->getTrueValue()); 2027 return &SI; 2028 } 2029 } 2030 } 2031 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2032 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2033 // select(C, a, select(C, b, c)) -> select(C, a, c) 2034 if (FalseSI->getCondition() == CondVal) { 2035 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2036 return nullptr; 2037 SI.setOperand(2, FalseSI->getFalseValue()); 2038 return &SI; 2039 } 2040 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2041 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2042 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 2043 SI.setOperand(0, Or); 2044 SI.setOperand(2, FalseSI->getFalseValue()); 2045 return &SI; 2046 } 2047 } 2048 } 2049 2050 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2051 // The select might be preventing a division by 0. 2052 switch (BO->getOpcode()) { 2053 default: 2054 return true; 2055 case Instruction::SRem: 2056 case Instruction::URem: 2057 case Instruction::SDiv: 2058 case Instruction::UDiv: 2059 return false; 2060 } 2061 }; 2062 2063 // Try to simplify a binop sandwiched between 2 selects with the same 2064 // condition. 2065 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 2066 BinaryOperator *TrueBO; 2067 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 2068 canMergeSelectThroughBinop(TrueBO)) { 2069 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 2070 if (TrueBOSI->getCondition() == CondVal) { 2071 TrueBO->setOperand(0, TrueBOSI->getTrueValue()); 2072 Worklist.Add(TrueBO); 2073 return &SI; 2074 } 2075 } 2076 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 2077 if (TrueBOSI->getCondition() == CondVal) { 2078 TrueBO->setOperand(1, TrueBOSI->getTrueValue()); 2079 Worklist.Add(TrueBO); 2080 return &SI; 2081 } 2082 } 2083 } 2084 2085 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2086 BinaryOperator *FalseBO; 2087 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2088 canMergeSelectThroughBinop(FalseBO)) { 2089 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2090 if (FalseBOSI->getCondition() == CondVal) { 2091 FalseBO->setOperand(0, FalseBOSI->getFalseValue()); 2092 Worklist.Add(FalseBO); 2093 return &SI; 2094 } 2095 } 2096 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2097 if (FalseBOSI->getCondition() == CondVal) { 2098 FalseBO->setOperand(1, FalseBOSI->getFalseValue()); 2099 Worklist.Add(FalseBO); 2100 return &SI; 2101 } 2102 } 2103 } 2104 2105 Value *NotCond; 2106 if (match(CondVal, m_Not(m_Value(NotCond)))) { 2107 SI.setOperand(0, NotCond); 2108 SI.setOperand(1, FalseVal); 2109 SI.setOperand(2, TrueVal); 2110 SI.swapProfMetadata(); 2111 return &SI; 2112 } 2113 2114 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 2115 unsigned VWidth = VecTy->getNumElements(); 2116 APInt UndefElts(VWidth, 0); 2117 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2118 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 2119 if (V != &SI) 2120 return replaceInstUsesWith(SI, V); 2121 return &SI; 2122 } 2123 } 2124 2125 // If we can compute the condition, there's no need for a select. 2126 // Like the above fold, we are attempting to reduce compile-time cost by 2127 // putting this fold here with limitations rather than in InstSimplify. 2128 // The motivation for this call into value tracking is to take advantage of 2129 // the assumption cache, so make sure that is populated. 2130 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 2131 KnownBits Known(1); 2132 computeKnownBits(CondVal, Known, 0, &SI); 2133 if (Known.One.isOneValue()) 2134 return replaceInstUsesWith(SI, TrueVal); 2135 if (Known.Zero.isOneValue()) 2136 return replaceInstUsesWith(SI, FalseVal); 2137 } 2138 2139 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 2140 return BitCastSel; 2141 2142 // Simplify selects that test the returned flag of cmpxchg instructions. 2143 if (Instruction *Select = foldSelectCmpXchg(SI)) 2144 return Select; 2145 2146 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI)) 2147 return Select; 2148 2149 if (Instruction *Rot = foldSelectRotate(SI)) 2150 return Rot; 2151 2152 return nullptr; 2153 } 2154