1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/CmpInstAnalysis.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/MDBuilder.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/Support/KnownBits.h" 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 static SelectPatternFlavor 28 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) { 29 switch (SPF) { 30 default: 31 llvm_unreachable("unhandled!"); 32 33 case SPF_SMIN: 34 return SPF_SMAX; 35 case SPF_UMIN: 36 return SPF_UMAX; 37 case SPF_SMAX: 38 return SPF_SMIN; 39 case SPF_UMAX: 40 return SPF_UMIN; 41 } 42 } 43 44 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF, 45 bool Ordered=false) { 46 switch (SPF) { 47 default: 48 llvm_unreachable("unhandled!"); 49 50 case SPF_SMIN: 51 return ICmpInst::ICMP_SLT; 52 case SPF_UMIN: 53 return ICmpInst::ICMP_ULT; 54 case SPF_SMAX: 55 return ICmpInst::ICMP_SGT; 56 case SPF_UMAX: 57 return ICmpInst::ICMP_UGT; 58 case SPF_FMINNUM: 59 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 60 case SPF_FMAXNUM: 61 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 62 } 63 } 64 65 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy &Builder, 66 SelectPatternFlavor SPF, Value *A, 67 Value *B) { 68 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF); 69 assert(CmpInst::isIntPredicate(Pred)); 70 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 71 } 72 73 /// If one of the constants is zero (we know they can't both be) and we have an 74 /// icmp instruction with zero, and we have an 'and' with the non-constant value 75 /// and a power of two we can turn the select into a shift on the result of the 76 /// 'and'. 77 /// This folds: 78 /// select (icmp eq (and X, C1)), C2, C3 79 /// iff C1 is a power 2 and the difference between C2 and C3 is a power of 2. 80 /// To something like: 81 /// (shr (and (X, C1)), (log2(C1) - log2(C2-C3))) + C3 82 /// Or: 83 /// (shl (and (X, C1)), (log2(C2-C3) - log2(C1))) + C3 84 /// With some variations depending if C3 is larger than C2, or the shift 85 /// isn't needed, or the bit widths don't match. 86 static Value *foldSelectICmpAnd(Type *SelType, const ICmpInst *IC, 87 APInt TrueVal, APInt FalseVal, 88 InstCombiner::BuilderTy &Builder) { 89 assert(SelType->isIntOrIntVectorTy() && "Not an integer select?"); 90 91 // If this is a vector select, we need a vector compare. 92 if (SelType->isVectorTy() != IC->getType()->isVectorTy()) 93 return nullptr; 94 95 Value *V; 96 APInt AndMask; 97 bool CreateAnd = false; 98 ICmpInst::Predicate Pred = IC->getPredicate(); 99 if (ICmpInst::isEquality(Pred)) { 100 if (!match(IC->getOperand(1), m_Zero())) 101 return nullptr; 102 103 V = IC->getOperand(0); 104 105 const APInt *AndRHS; 106 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 107 return nullptr; 108 109 AndMask = *AndRHS; 110 } else if (decomposeBitTestICmp(IC->getOperand(0), IC->getOperand(1), 111 Pred, V, AndMask)) { 112 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 113 114 if (!AndMask.isPowerOf2()) 115 return nullptr; 116 117 CreateAnd = true; 118 } else { 119 return nullptr; 120 } 121 122 // If both select arms are non-zero see if we have a select of the form 123 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic 124 // for 'x ? 2^n : 0' and fix the thing up at the end. 125 APInt Offset(TrueVal.getBitWidth(), 0); 126 if (!TrueVal.isNullValue() && !FalseVal.isNullValue()) { 127 if ((TrueVal - FalseVal).isPowerOf2()) 128 Offset = FalseVal; 129 else if ((FalseVal - TrueVal).isPowerOf2()) 130 Offset = TrueVal; 131 else 132 return nullptr; 133 134 // Adjust TrueVal and FalseVal to the offset. 135 TrueVal -= Offset; 136 FalseVal -= Offset; 137 } 138 139 // Make sure one of the select arms is a power of 2. 140 if (!TrueVal.isPowerOf2() && !FalseVal.isPowerOf2()) 141 return nullptr; 142 143 // Determine which shift is needed to transform result of the 'and' into the 144 // desired result. 145 const APInt &ValC = !TrueVal.isNullValue() ? TrueVal : FalseVal; 146 unsigned ValZeros = ValC.logBase2(); 147 unsigned AndZeros = AndMask.logBase2(); 148 149 if (CreateAnd) { 150 // Insert the AND instruction on the input to the truncate. 151 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 152 } 153 154 // If types don't match we can still convert the select by introducing a zext 155 // or a trunc of the 'and'. 156 if (ValZeros > AndZeros) { 157 V = Builder.CreateZExtOrTrunc(V, SelType); 158 V = Builder.CreateShl(V, ValZeros - AndZeros); 159 } else if (ValZeros < AndZeros) { 160 V = Builder.CreateLShr(V, AndZeros - ValZeros); 161 V = Builder.CreateZExtOrTrunc(V, SelType); 162 } else 163 V = Builder.CreateZExtOrTrunc(V, SelType); 164 165 // Okay, now we know that everything is set up, we just don't know whether we 166 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 167 bool ShouldNotVal = !TrueVal.isNullValue(); 168 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 169 if (ShouldNotVal) 170 V = Builder.CreateXor(V, ValC); 171 172 // Apply an offset if needed. 173 if (!Offset.isNullValue()) 174 V = Builder.CreateAdd(V, ConstantInt::get(V->getType(), Offset)); 175 return V; 176 } 177 178 /// We want to turn code that looks like this: 179 /// %C = or %A, %B 180 /// %D = select %cond, %C, %A 181 /// into: 182 /// %C = select %cond, %B, 0 183 /// %D = or %A, %C 184 /// 185 /// Assuming that the specified instruction is an operand to the select, return 186 /// a bitmask indicating which operands of this instruction are foldable if they 187 /// equal the other incoming value of the select. 188 /// 189 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 190 switch (I->getOpcode()) { 191 case Instruction::Add: 192 case Instruction::Mul: 193 case Instruction::And: 194 case Instruction::Or: 195 case Instruction::Xor: 196 return 3; // Can fold through either operand. 197 case Instruction::Sub: // Can only fold on the amount subtracted. 198 case Instruction::Shl: // Can only fold on the shift amount. 199 case Instruction::LShr: 200 case Instruction::AShr: 201 return 1; 202 default: 203 return 0; // Cannot fold 204 } 205 } 206 207 /// For the same transformation as the previous function, return the identity 208 /// constant that goes into the select. 209 static APInt getSelectFoldableConstant(BinaryOperator *I) { 210 switch (I->getOpcode()) { 211 default: llvm_unreachable("This cannot happen!"); 212 case Instruction::Add: 213 case Instruction::Sub: 214 case Instruction::Or: 215 case Instruction::Xor: 216 case Instruction::Shl: 217 case Instruction::LShr: 218 case Instruction::AShr: 219 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 220 case Instruction::And: 221 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 222 case Instruction::Mul: 223 return APInt(I->getType()->getScalarSizeInBits(), 1); 224 } 225 } 226 227 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 228 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 229 Instruction *FI) { 230 // Don't break up min/max patterns. The hasOneUse checks below prevent that 231 // for most cases, but vector min/max with bitcasts can be transformed. If the 232 // one-use restrictions are eased for other patterns, we still don't want to 233 // obfuscate min/max. 234 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 235 match(&SI, m_SMax(m_Value(), m_Value())) || 236 match(&SI, m_UMin(m_Value(), m_Value())) || 237 match(&SI, m_UMax(m_Value(), m_Value())))) 238 return nullptr; 239 240 // If this is a cast from the same type, merge. 241 if (TI->getNumOperands() == 1 && TI->isCast()) { 242 Type *FIOpndTy = FI->getOperand(0)->getType(); 243 if (TI->getOperand(0)->getType() != FIOpndTy) 244 return nullptr; 245 246 // The select condition may be a vector. We may only change the operand 247 // type if the vector width remains the same (and matches the condition). 248 Type *CondTy = SI.getCondition()->getType(); 249 if (CondTy->isVectorTy()) { 250 if (!FIOpndTy->isVectorTy()) 251 return nullptr; 252 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 253 return nullptr; 254 255 // TODO: If the backend knew how to deal with casts better, we could 256 // remove this limitation. For now, there's too much potential to create 257 // worse codegen by promoting the select ahead of size-altering casts 258 // (PR28160). 259 // 260 // Note that ValueTracking's matchSelectPattern() looks through casts 261 // without checking 'hasOneUse' when it matches min/max patterns, so this 262 // transform may end up happening anyway. 263 if (TI->getOpcode() != Instruction::BitCast && 264 (!TI->hasOneUse() || !FI->hasOneUse())) 265 return nullptr; 266 267 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 268 // TODO: The one-use restrictions for a scalar select could be eased if 269 // the fold of a select in visitLoadInst() was enhanced to match a pattern 270 // that includes a cast. 271 return nullptr; 272 } 273 274 // Fold this by inserting a select from the input values. 275 Value *NewSI = 276 Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), 277 FI->getOperand(0), SI.getName() + ".v", &SI); 278 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 279 TI->getType()); 280 } 281 282 // Only handle binary operators with one-use here. As with the cast case 283 // above, it may be possible to relax the one-use constraint, but that needs 284 // be examined carefully since it may not reduce the total number of 285 // instructions. 286 BinaryOperator *BO = dyn_cast<BinaryOperator>(TI); 287 if (!BO || !TI->hasOneUse() || !FI->hasOneUse()) 288 return nullptr; 289 290 // Figure out if the operations have any operands in common. 291 Value *MatchOp, *OtherOpT, *OtherOpF; 292 bool MatchIsOpZero; 293 if (TI->getOperand(0) == FI->getOperand(0)) { 294 MatchOp = TI->getOperand(0); 295 OtherOpT = TI->getOperand(1); 296 OtherOpF = FI->getOperand(1); 297 MatchIsOpZero = true; 298 } else if (TI->getOperand(1) == FI->getOperand(1)) { 299 MatchOp = TI->getOperand(1); 300 OtherOpT = TI->getOperand(0); 301 OtherOpF = FI->getOperand(0); 302 MatchIsOpZero = false; 303 } else if (!TI->isCommutative()) { 304 return nullptr; 305 } else if (TI->getOperand(0) == FI->getOperand(1)) { 306 MatchOp = TI->getOperand(0); 307 OtherOpT = TI->getOperand(1); 308 OtherOpF = FI->getOperand(0); 309 MatchIsOpZero = true; 310 } else if (TI->getOperand(1) == FI->getOperand(0)) { 311 MatchOp = TI->getOperand(1); 312 OtherOpT = TI->getOperand(0); 313 OtherOpF = FI->getOperand(1); 314 MatchIsOpZero = true; 315 } else { 316 return nullptr; 317 } 318 319 // If we reach here, they do have operations in common. 320 Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 321 SI.getName() + ".v", &SI); 322 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 323 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 324 return BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 325 } 326 327 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 328 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 329 return false; 330 return C1I.isOneValue() || C1I.isAllOnesValue() || 331 C2I.isOneValue() || C2I.isAllOnesValue(); 332 } 333 334 /// Try to fold the select into one of the operands to allow further 335 /// optimization. 336 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 337 Value *FalseVal) { 338 // See the comment above GetSelectFoldableOperands for a description of the 339 // transformation we are doing here. 340 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 341 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 342 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 343 unsigned OpToFold = 0; 344 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 345 OpToFold = 1; 346 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 347 OpToFold = 2; 348 } 349 350 if (OpToFold) { 351 APInt CI = getSelectFoldableConstant(TVI); 352 Value *OOp = TVI->getOperand(2-OpToFold); 353 // Avoid creating select between 2 constants unless it's selecting 354 // between 0, 1 and -1. 355 const APInt *OOpC; 356 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 357 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 358 Value *C = ConstantInt::get(OOp->getType(), CI); 359 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 360 NewSel->takeName(TVI); 361 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 362 FalseVal, NewSel); 363 BO->copyIRFlags(TVI); 364 return BO; 365 } 366 } 367 } 368 } 369 } 370 371 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 372 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 373 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 374 unsigned OpToFold = 0; 375 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 376 OpToFold = 1; 377 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 378 OpToFold = 2; 379 } 380 381 if (OpToFold) { 382 APInt CI = getSelectFoldableConstant(FVI); 383 Value *OOp = FVI->getOperand(2-OpToFold); 384 // Avoid creating select between 2 constants unless it's selecting 385 // between 0, 1 and -1. 386 const APInt *OOpC; 387 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 388 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 389 Value *C = ConstantInt::get(OOp->getType(), CI); 390 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 391 NewSel->takeName(FVI); 392 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 393 TrueVal, NewSel); 394 BO->copyIRFlags(FVI); 395 return BO; 396 } 397 } 398 } 399 } 400 } 401 402 return nullptr; 403 } 404 405 /// We want to turn: 406 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 407 /// into: 408 /// (or (shl (and X, C1), C3), Y) 409 /// iff: 410 /// C1 and C2 are both powers of 2 411 /// where: 412 /// C3 = Log(C2) - Log(C1) 413 /// 414 /// This transform handles cases where: 415 /// 1. The icmp predicate is inverted 416 /// 2. The select operands are reversed 417 /// 3. The magnitude of C2 and C1 are flipped 418 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 419 Value *FalseVal, 420 InstCombiner::BuilderTy &Builder) { 421 // Only handle integer compares. Also, if this is a vector select, we need a 422 // vector compare. 423 if (!TrueVal->getType()->isIntOrIntVectorTy() || 424 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 425 return nullptr; 426 427 Value *CmpLHS = IC->getOperand(0); 428 Value *CmpRHS = IC->getOperand(1); 429 430 Value *V; 431 unsigned C1Log; 432 bool IsEqualZero; 433 bool NeedAnd = false; 434 if (IC->isEquality()) { 435 if (!match(CmpRHS, m_Zero())) 436 return nullptr; 437 438 const APInt *C1; 439 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 440 return nullptr; 441 442 V = CmpLHS; 443 C1Log = C1->logBase2(); 444 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 445 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 446 IC->getPredicate() == ICmpInst::ICMP_SGT) { 447 // We also need to recognize (icmp slt (trunc (X)), 0) and 448 // (icmp sgt (trunc (X)), -1). 449 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 450 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 451 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 452 return nullptr; 453 454 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 455 return nullptr; 456 457 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 458 NeedAnd = true; 459 } else { 460 return nullptr; 461 } 462 463 const APInt *C2; 464 bool OrOnTrueVal = false; 465 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 466 if (!OrOnFalseVal) 467 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 468 469 if (!OrOnFalseVal && !OrOnTrueVal) 470 return nullptr; 471 472 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 473 474 unsigned C2Log = C2->logBase2(); 475 476 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 477 bool NeedShift = C1Log != C2Log; 478 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 479 V->getType()->getScalarSizeInBits(); 480 481 // Make sure we don't create more instructions than we save. 482 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 483 if ((NeedShift + NeedXor + NeedZExtTrunc) > 484 (IC->hasOneUse() + Or->hasOneUse())) 485 return nullptr; 486 487 if (NeedAnd) { 488 // Insert the AND instruction on the input to the truncate. 489 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 490 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 491 } 492 493 if (C2Log > C1Log) { 494 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 495 V = Builder.CreateShl(V, C2Log - C1Log); 496 } else if (C1Log > C2Log) { 497 V = Builder.CreateLShr(V, C1Log - C2Log); 498 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 499 } else 500 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 501 502 if (NeedXor) 503 V = Builder.CreateXor(V, *C2); 504 505 return Builder.CreateOr(V, Y); 506 } 507 508 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 509 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 510 /// 511 /// For example, we can fold the following code sequence: 512 /// \code 513 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 514 /// %1 = icmp ne i32 %x, 0 515 /// %2 = select i1 %1, i32 %0, i32 32 516 /// \code 517 /// 518 /// into: 519 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 520 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 521 InstCombiner::BuilderTy &Builder) { 522 ICmpInst::Predicate Pred = ICI->getPredicate(); 523 Value *CmpLHS = ICI->getOperand(0); 524 Value *CmpRHS = ICI->getOperand(1); 525 526 // Check if the condition value compares a value for equality against zero. 527 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 528 return nullptr; 529 530 Value *Count = FalseVal; 531 Value *ValueOnZero = TrueVal; 532 if (Pred == ICmpInst::ICMP_NE) 533 std::swap(Count, ValueOnZero); 534 535 // Skip zero extend/truncate. 536 Value *V = nullptr; 537 if (match(Count, m_ZExt(m_Value(V))) || 538 match(Count, m_Trunc(m_Value(V)))) 539 Count = V; 540 541 // Check if the value propagated on zero is a constant number equal to the 542 // sizeof in bits of 'Count'. 543 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 544 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 545 return nullptr; 546 547 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 548 // input to the cttz/ctlz is used as LHS for the compare instruction. 549 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 550 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 551 IntrinsicInst *II = cast<IntrinsicInst>(Count); 552 // Explicitly clear the 'undef_on_zero' flag. 553 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 554 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 555 Builder.Insert(NewI); 556 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 557 } 558 559 return nullptr; 560 } 561 562 /// Return true if we find and adjust an icmp+select pattern where the compare 563 /// is with a constant that can be incremented or decremented to match the 564 /// minimum or maximum idiom. 565 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 566 ICmpInst::Predicate Pred = Cmp.getPredicate(); 567 Value *CmpLHS = Cmp.getOperand(0); 568 Value *CmpRHS = Cmp.getOperand(1); 569 Value *TrueVal = Sel.getTrueValue(); 570 Value *FalseVal = Sel.getFalseValue(); 571 572 // We may move or edit the compare, so make sure the select is the only user. 573 const APInt *CmpC; 574 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 575 return false; 576 577 // These transforms only work for selects of integers or vector selects of 578 // integer vectors. 579 Type *SelTy = Sel.getType(); 580 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 581 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 582 return false; 583 584 Constant *AdjustedRHS; 585 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 586 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 587 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 588 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 589 else 590 return false; 591 592 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 593 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 594 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 595 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 596 ; // Nothing to do here. Values match without any sign/zero extension. 597 } 598 // Types do not match. Instead of calculating this with mixed types, promote 599 // all to the larger type. This enables scalar evolution to analyze this 600 // expression. 601 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 602 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 603 604 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 605 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 606 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 607 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 608 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 609 CmpLHS = TrueVal; 610 AdjustedRHS = SextRHS; 611 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 612 SextRHS == TrueVal) { 613 CmpLHS = FalseVal; 614 AdjustedRHS = SextRHS; 615 } else if (Cmp.isUnsigned()) { 616 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 617 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 618 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 619 // zext + signed compare cannot be changed: 620 // 0xff <s 0x00, but 0x00ff >s 0x0000 621 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 622 CmpLHS = TrueVal; 623 AdjustedRHS = ZextRHS; 624 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 625 ZextRHS == TrueVal) { 626 CmpLHS = FalseVal; 627 AdjustedRHS = ZextRHS; 628 } else { 629 return false; 630 } 631 } else { 632 return false; 633 } 634 } else { 635 return false; 636 } 637 638 Pred = ICmpInst::getSwappedPredicate(Pred); 639 CmpRHS = AdjustedRHS; 640 std::swap(FalseVal, TrueVal); 641 Cmp.setPredicate(Pred); 642 Cmp.setOperand(0, CmpLHS); 643 Cmp.setOperand(1, CmpRHS); 644 Sel.setOperand(1, TrueVal); 645 Sel.setOperand(2, FalseVal); 646 Sel.swapProfMetadata(); 647 648 // Move the compare instruction right before the select instruction. Otherwise 649 // the sext/zext value may be defined after the compare instruction uses it. 650 Cmp.moveBefore(&Sel); 651 652 return true; 653 } 654 655 /// If this is an integer min/max (icmp + select) with a constant operand, 656 /// create the canonical icmp for the min/max operation and canonicalize the 657 /// constant to the 'false' operand of the select: 658 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 659 /// Note: if C1 != C2, this will change the icmp constant to the existing 660 /// constant operand of the select. 661 static Instruction * 662 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 663 InstCombiner::BuilderTy &Builder) { 664 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 665 return nullptr; 666 667 // Canonicalize the compare predicate based on whether we have min or max. 668 Value *LHS, *RHS; 669 ICmpInst::Predicate NewPred; 670 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 671 switch (SPR.Flavor) { 672 case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break; 673 case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break; 674 case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break; 675 case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break; 676 default: return nullptr; 677 } 678 679 // Is this already canonical? 680 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 681 Cmp.getPredicate() == NewPred) 682 return nullptr; 683 684 // Create the canonical compare and plug it into the select. 685 Sel.setCondition(Builder.CreateICmp(NewPred, LHS, RHS)); 686 687 // If the select operands did not change, we're done. 688 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 689 return &Sel; 690 691 // If we are swapping the select operands, swap the metadata too. 692 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 693 "Unexpected results from matchSelectPattern"); 694 Sel.setTrueValue(LHS); 695 Sel.setFalseValue(RHS); 696 Sel.swapProfMetadata(); 697 return &Sel; 698 } 699 700 /// Visit a SelectInst that has an ICmpInst as its first operand. 701 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 702 ICmpInst *ICI) { 703 Value *TrueVal = SI.getTrueValue(); 704 Value *FalseVal = SI.getFalseValue(); 705 706 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 707 return NewSel; 708 709 bool Changed = adjustMinMax(SI, *ICI); 710 711 ICmpInst::Predicate Pred = ICI->getPredicate(); 712 Value *CmpLHS = ICI->getOperand(0); 713 Value *CmpRHS = ICI->getOperand(1); 714 715 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 716 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 717 // FIXME: Type and constness constraints could be lifted, but we have to 718 // watch code size carefully. We should consider xor instead of 719 // sub/add when we decide to do that. 720 // TODO: Merge this with foldSelectICmpAnd somehow. 721 if (CmpLHS->getType()->isIntOrIntVectorTy() && 722 CmpLHS->getType() == TrueVal->getType()) { 723 const APInt *C1, *C2; 724 if (match(TrueVal, m_APInt(C1)) && match(FalseVal, m_APInt(C2))) { 725 ICmpInst::Predicate Pred = ICI->getPredicate(); 726 Value *X; 727 APInt Mask; 728 if (decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask, false)) { 729 if (Mask.isSignMask()) { 730 assert(X == CmpLHS && "Expected to use the compare input directly"); 731 assert(ICmpInst::isEquality(Pred) && "Expected equality predicate"); 732 733 if (Pred == ICmpInst::ICMP_NE) 734 std::swap(C1, C2); 735 736 // This shift results in either -1 or 0. 737 Value *AShr = Builder.CreateAShr(X, Mask.getBitWidth() - 1); 738 739 // Check if we can express the operation with a single or. 740 if (C2->isAllOnesValue()) 741 return replaceInstUsesWith(SI, Builder.CreateOr(AShr, *C1)); 742 743 Value *And = Builder.CreateAnd(AShr, *C2 - *C1); 744 return replaceInstUsesWith(SI, Builder.CreateAdd(And, 745 ConstantInt::get(And->getType(), *C1))); 746 } 747 } 748 } 749 } 750 751 { 752 const APInt *TrueValC, *FalseValC; 753 if (match(TrueVal, m_APInt(TrueValC)) && 754 match(FalseVal, m_APInt(FalseValC))) 755 if (Value *V = foldSelectICmpAnd(SI.getType(), ICI, *TrueValC, 756 *FalseValC, Builder)) 757 return replaceInstUsesWith(SI, V); 758 } 759 760 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 761 762 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 763 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 764 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 765 SI.setOperand(1, CmpRHS); 766 Changed = true; 767 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 768 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 769 SI.setOperand(2, CmpRHS); 770 Changed = true; 771 } 772 } 773 774 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 775 // decomposeBitTestICmp() might help. 776 { 777 unsigned BitWidth = 778 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 779 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 780 Value *X; 781 const APInt *Y, *C; 782 bool TrueWhenUnset; 783 bool IsBitTest = false; 784 if (ICmpInst::isEquality(Pred) && 785 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 786 match(CmpRHS, m_Zero())) { 787 IsBitTest = true; 788 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 789 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 790 X = CmpLHS; 791 Y = &MinSignedValue; 792 IsBitTest = true; 793 TrueWhenUnset = false; 794 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 795 X = CmpLHS; 796 Y = &MinSignedValue; 797 IsBitTest = true; 798 TrueWhenUnset = true; 799 } 800 if (IsBitTest) { 801 Value *V = nullptr; 802 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 803 if (TrueWhenUnset && TrueVal == X && 804 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 805 V = Builder.CreateAnd(X, ~(*Y)); 806 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 807 else if (!TrueWhenUnset && FalseVal == X && 808 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 809 V = Builder.CreateAnd(X, ~(*Y)); 810 // (X & Y) == 0 ? X ^ Y : X --> X | Y 811 else if (TrueWhenUnset && FalseVal == X && 812 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 813 V = Builder.CreateOr(X, *Y); 814 // (X & Y) != 0 ? X : X ^ Y --> X | Y 815 else if (!TrueWhenUnset && TrueVal == X && 816 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 817 V = Builder.CreateOr(X, *Y); 818 819 if (V) 820 return replaceInstUsesWith(SI, V); 821 } 822 } 823 824 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 825 return replaceInstUsesWith(SI, V); 826 827 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 828 return replaceInstUsesWith(SI, V); 829 830 return Changed ? &SI : nullptr; 831 } 832 833 834 /// SI is a select whose condition is a PHI node (but the two may be in 835 /// different blocks). See if the true/false values (V) are live in all of the 836 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 837 /// 838 /// X = phi [ C1, BB1], [C2, BB2] 839 /// Y = add 840 /// Z = select X, Y, 0 841 /// 842 /// because Y is not live in BB1/BB2. 843 /// 844 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 845 const SelectInst &SI) { 846 // If the value is a non-instruction value like a constant or argument, it 847 // can always be mapped. 848 const Instruction *I = dyn_cast<Instruction>(V); 849 if (!I) return true; 850 851 // If V is a PHI node defined in the same block as the condition PHI, we can 852 // map the arguments. 853 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 854 855 if (const PHINode *VP = dyn_cast<PHINode>(I)) 856 if (VP->getParent() == CondPHI->getParent()) 857 return true; 858 859 // Otherwise, if the PHI and select are defined in the same block and if V is 860 // defined in a different block, then we can transform it. 861 if (SI.getParent() == CondPHI->getParent() && 862 I->getParent() != CondPHI->getParent()) 863 return true; 864 865 // Otherwise we have a 'hard' case and we can't tell without doing more 866 // detailed dominator based analysis, punt. 867 return false; 868 } 869 870 /// We have an SPF (e.g. a min or max) of an SPF of the form: 871 /// SPF2(SPF1(A, B), C) 872 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 873 SelectPatternFlavor SPF1, 874 Value *A, Value *B, 875 Instruction &Outer, 876 SelectPatternFlavor SPF2, Value *C) { 877 if (Outer.getType() != Inner->getType()) 878 return nullptr; 879 880 if (C == A || C == B) { 881 // MAX(MAX(A, B), B) -> MAX(A, B) 882 // MIN(MIN(a, b), a) -> MIN(a, b) 883 if (SPF1 == SPF2) 884 return replaceInstUsesWith(Outer, Inner); 885 886 // MAX(MIN(a, b), a) -> a 887 // MIN(MAX(a, b), a) -> a 888 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 889 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 890 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 891 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 892 return replaceInstUsesWith(Outer, C); 893 } 894 895 if (SPF1 == SPF2) { 896 const APInt *CB, *CC; 897 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 898 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 899 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 900 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 901 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 902 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 903 (SPF1 == SPF_SMAX && CB->sge(*CC))) 904 return replaceInstUsesWith(Outer, Inner); 905 906 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 907 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 908 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 909 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 910 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 911 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 912 Outer.replaceUsesOfWith(Inner, A); 913 return &Outer; 914 } 915 } 916 } 917 918 // ABS(ABS(X)) -> ABS(X) 919 // NABS(NABS(X)) -> NABS(X) 920 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 921 return replaceInstUsesWith(Outer, Inner); 922 } 923 924 // ABS(NABS(X)) -> ABS(X) 925 // NABS(ABS(X)) -> NABS(X) 926 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 927 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 928 SelectInst *SI = cast<SelectInst>(Inner); 929 Value *NewSI = 930 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 931 SI->getTrueValue(), SI->getName(), SI); 932 return replaceInstUsesWith(Outer, NewSI); 933 } 934 935 auto IsFreeOrProfitableToInvert = 936 [&](Value *V, Value *&NotV, bool &ElidesXor) { 937 if (match(V, m_Not(m_Value(NotV)))) { 938 // If V has at most 2 uses then we can get rid of the xor operation 939 // entirely. 940 ElidesXor |= !V->hasNUsesOrMore(3); 941 return true; 942 } 943 944 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 945 NotV = nullptr; 946 return true; 947 } 948 949 return false; 950 }; 951 952 Value *NotA, *NotB, *NotC; 953 bool ElidesXor = false; 954 955 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 956 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 957 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 958 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 959 // 960 // This transform is performance neutral if we can elide at least one xor from 961 // the set of three operands, since we'll be tacking on an xor at the very 962 // end. 963 if (SelectPatternResult::isMinOrMax(SPF1) && 964 SelectPatternResult::isMinOrMax(SPF2) && 965 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 966 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 967 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 968 if (!NotA) 969 NotA = Builder.CreateNot(A); 970 if (!NotB) 971 NotB = Builder.CreateNot(B); 972 if (!NotC) 973 NotC = Builder.CreateNot(C); 974 975 Value *NewInner = generateMinMaxSelectPattern( 976 Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB); 977 Value *NewOuter = Builder.CreateNot(generateMinMaxSelectPattern( 978 Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC)); 979 return replaceInstUsesWith(Outer, NewOuter); 980 } 981 982 return nullptr; 983 } 984 985 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 986 /// This is even legal for FP. 987 static Instruction *foldAddSubSelect(SelectInst &SI, 988 InstCombiner::BuilderTy &Builder) { 989 Value *CondVal = SI.getCondition(); 990 Value *TrueVal = SI.getTrueValue(); 991 Value *FalseVal = SI.getFalseValue(); 992 auto *TI = dyn_cast<Instruction>(TrueVal); 993 auto *FI = dyn_cast<Instruction>(FalseVal); 994 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 995 return nullptr; 996 997 Instruction *AddOp = nullptr, *SubOp = nullptr; 998 if ((TI->getOpcode() == Instruction::Sub && 999 FI->getOpcode() == Instruction::Add) || 1000 (TI->getOpcode() == Instruction::FSub && 1001 FI->getOpcode() == Instruction::FAdd)) { 1002 AddOp = FI; 1003 SubOp = TI; 1004 } else if ((FI->getOpcode() == Instruction::Sub && 1005 TI->getOpcode() == Instruction::Add) || 1006 (FI->getOpcode() == Instruction::FSub && 1007 TI->getOpcode() == Instruction::FAdd)) { 1008 AddOp = TI; 1009 SubOp = FI; 1010 } 1011 1012 if (AddOp) { 1013 Value *OtherAddOp = nullptr; 1014 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1015 OtherAddOp = AddOp->getOperand(1); 1016 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1017 OtherAddOp = AddOp->getOperand(0); 1018 } 1019 1020 if (OtherAddOp) { 1021 // So at this point we know we have (Y -> OtherAddOp): 1022 // select C, (add X, Y), (sub X, Z) 1023 Value *NegVal; // Compute -Z 1024 if (SI.getType()->isFPOrFPVectorTy()) { 1025 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1026 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1027 FastMathFlags Flags = AddOp->getFastMathFlags(); 1028 Flags &= SubOp->getFastMathFlags(); 1029 NegInst->setFastMathFlags(Flags); 1030 } 1031 } else { 1032 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1033 } 1034 1035 Value *NewTrueOp = OtherAddOp; 1036 Value *NewFalseOp = NegVal; 1037 if (AddOp != TI) 1038 std::swap(NewTrueOp, NewFalseOp); 1039 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1040 SI.getName() + ".p", &SI); 1041 1042 if (SI.getType()->isFPOrFPVectorTy()) { 1043 Instruction *RI = 1044 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1045 1046 FastMathFlags Flags = AddOp->getFastMathFlags(); 1047 Flags &= SubOp->getFastMathFlags(); 1048 RI->setFastMathFlags(Flags); 1049 return RI; 1050 } else 1051 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1052 } 1053 } 1054 return nullptr; 1055 } 1056 1057 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1058 Instruction *ExtInst; 1059 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1060 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1061 return nullptr; 1062 1063 auto ExtOpcode = ExtInst->getOpcode(); 1064 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1065 return nullptr; 1066 1067 // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too. 1068 Value *X = ExtInst->getOperand(0); 1069 Type *SmallType = X->getType(); 1070 if (!SmallType->isIntOrIntVectorTy(1)) 1071 return nullptr; 1072 1073 Constant *C; 1074 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1075 !match(Sel.getFalseValue(), m_Constant(C))) 1076 return nullptr; 1077 1078 // If the constant is the same after truncation to the smaller type and 1079 // extension to the original type, we can narrow the select. 1080 Value *Cond = Sel.getCondition(); 1081 Type *SelType = Sel.getType(); 1082 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1083 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1084 if (ExtC == C) { 1085 Value *TruncCVal = cast<Value>(TruncC); 1086 if (ExtInst == Sel.getFalseValue()) 1087 std::swap(X, TruncCVal); 1088 1089 // select Cond, (ext X), C --> ext(select Cond, X, C') 1090 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1091 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1092 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1093 } 1094 1095 // If one arm of the select is the extend of the condition, replace that arm 1096 // with the extension of the appropriate known bool value. 1097 if (Cond == X) { 1098 if (ExtInst == Sel.getTrueValue()) { 1099 // select X, (sext X), C --> select X, -1, C 1100 // select X, (zext X), C --> select X, 1, C 1101 Constant *One = ConstantInt::getTrue(SmallType); 1102 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1103 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1104 } else { 1105 // select X, C, (sext X) --> select X, C, 0 1106 // select X, C, (zext X) --> select X, C, 0 1107 Constant *Zero = ConstantInt::getNullValue(SelType); 1108 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1109 } 1110 } 1111 1112 return nullptr; 1113 } 1114 1115 /// Try to transform a vector select with a constant condition vector into a 1116 /// shuffle for easier combining with other shuffles and insert/extract. 1117 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1118 Value *CondVal = SI.getCondition(); 1119 Constant *CondC; 1120 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1121 return nullptr; 1122 1123 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1124 SmallVector<Constant *, 16> Mask; 1125 Mask.reserve(NumElts); 1126 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1127 for (unsigned i = 0; i != NumElts; ++i) { 1128 Constant *Elt = CondC->getAggregateElement(i); 1129 if (!Elt) 1130 return nullptr; 1131 1132 if (Elt->isOneValue()) { 1133 // If the select condition element is true, choose from the 1st vector. 1134 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1135 } else if (Elt->isNullValue()) { 1136 // If the select condition element is false, choose from the 2nd vector. 1137 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1138 } else if (isa<UndefValue>(Elt)) { 1139 // Undef in a select condition (choose one of the operands) does not mean 1140 // the same thing as undef in a shuffle mask (any value is acceptable), so 1141 // give up. 1142 return nullptr; 1143 } else { 1144 // Bail out on a constant expression. 1145 return nullptr; 1146 } 1147 } 1148 1149 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1150 ConstantVector::get(Mask)); 1151 } 1152 1153 /// Reuse bitcasted operands between a compare and select: 1154 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1155 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1156 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1157 InstCombiner::BuilderTy &Builder) { 1158 Value *Cond = Sel.getCondition(); 1159 Value *TVal = Sel.getTrueValue(); 1160 Value *FVal = Sel.getFalseValue(); 1161 1162 CmpInst::Predicate Pred; 1163 Value *A, *B; 1164 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1165 return nullptr; 1166 1167 // The select condition is a compare instruction. If the select's true/false 1168 // values are already the same as the compare operands, there's nothing to do. 1169 if (TVal == A || TVal == B || FVal == A || FVal == B) 1170 return nullptr; 1171 1172 Value *C, *D; 1173 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1174 return nullptr; 1175 1176 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1177 Value *TSrc, *FSrc; 1178 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1179 !match(FVal, m_BitCast(m_Value(FSrc)))) 1180 return nullptr; 1181 1182 // If the select true/false values are *different bitcasts* of the same source 1183 // operands, make the select operands the same as the compare operands and 1184 // cast the result. This is the canonical select form for min/max. 1185 Value *NewSel; 1186 if (TSrc == C && FSrc == D) { 1187 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1188 // bitcast (select (cmp A, B), A, B) 1189 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1190 } else if (TSrc == D && FSrc == C) { 1191 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1192 // bitcast (select (cmp A, B), B, A) 1193 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1194 } else { 1195 return nullptr; 1196 } 1197 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1198 } 1199 1200 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1201 Value *CondVal = SI.getCondition(); 1202 Value *TrueVal = SI.getTrueValue(); 1203 Value *FalseVal = SI.getFalseValue(); 1204 Type *SelType = SI.getType(); 1205 1206 // FIXME: Remove this workaround when freeze related patches are done. 1207 // For select with undef operand which feeds into an equality comparison, 1208 // don't simplify it so loop unswitch can know the equality comparison 1209 // may have an undef operand. This is a workaround for PR31652 caused by 1210 // descrepancy about branch on undef between LoopUnswitch and GVN. 1211 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1212 if (any_of(SI.users(), [&](User *U) { 1213 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1214 if (CI && CI->isEquality()) 1215 return true; 1216 return false; 1217 })) { 1218 return nullptr; 1219 } 1220 } 1221 1222 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1223 SQ.getWithInstruction(&SI))) 1224 return replaceInstUsesWith(SI, V); 1225 1226 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1227 return I; 1228 1229 // Canonicalize a one-use integer compare with a non-canonical predicate by 1230 // inverting the predicate and swapping the select operands. This matches a 1231 // compare canonicalization for conditional branches. 1232 // TODO: Should we do the same for FP compares? 1233 CmpInst::Predicate Pred; 1234 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 1235 !isCanonicalPredicate(Pred)) { 1236 // Swap true/false values and condition. 1237 CmpInst *Cond = cast<CmpInst>(CondVal); 1238 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 1239 SI.setOperand(1, FalseVal); 1240 SI.setOperand(2, TrueVal); 1241 SI.swapProfMetadata(); 1242 Worklist.Add(Cond); 1243 return &SI; 1244 } 1245 1246 if (SelType->isIntOrIntVectorTy(1) && 1247 TrueVal->getType() == CondVal->getType()) { 1248 if (match(TrueVal, m_One())) { 1249 // Change: A = select B, true, C --> A = or B, C 1250 return BinaryOperator::CreateOr(CondVal, FalseVal); 1251 } 1252 if (match(TrueVal, m_Zero())) { 1253 // Change: A = select B, false, C --> A = and !B, C 1254 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1255 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1256 } 1257 if (match(FalseVal, m_Zero())) { 1258 // Change: A = select B, C, false --> A = and B, C 1259 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1260 } 1261 if (match(FalseVal, m_One())) { 1262 // Change: A = select B, C, true --> A = or !B, C 1263 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1264 return BinaryOperator::CreateOr(NotCond, TrueVal); 1265 } 1266 1267 // select a, a, b -> a | b 1268 // select a, b, a -> a & b 1269 if (CondVal == TrueVal) 1270 return BinaryOperator::CreateOr(CondVal, FalseVal); 1271 if (CondVal == FalseVal) 1272 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1273 1274 // select a, ~a, b -> (~a) & b 1275 // select a, b, ~a -> (~a) | b 1276 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1277 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1278 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1279 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1280 } 1281 1282 // Selecting between two integer or vector splat integer constants? 1283 // 1284 // Note that we don't handle a scalar select of vectors: 1285 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1286 // because that may need 3 instructions to splat the condition value: 1287 // extend, insertelement, shufflevector. 1288 if (SelType->isIntOrIntVectorTy() && 1289 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1290 // select C, 1, 0 -> zext C to int 1291 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1292 return new ZExtInst(CondVal, SelType); 1293 1294 // select C, -1, 0 -> sext C to int 1295 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1296 return new SExtInst(CondVal, SelType); 1297 1298 // select C, 0, 1 -> zext !C to int 1299 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1300 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1301 return new ZExtInst(NotCond, SelType); 1302 } 1303 1304 // select C, 0, -1 -> sext !C to int 1305 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1306 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1307 return new SExtInst(NotCond, SelType); 1308 } 1309 } 1310 1311 // See if we are selecting two values based on a comparison of the two values. 1312 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1313 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1314 // Transform (X == Y) ? X : Y -> Y 1315 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1316 // This is not safe in general for floating point: 1317 // consider X== -0, Y== +0. 1318 // It becomes safe if either operand is a nonzero constant. 1319 ConstantFP *CFPt, *CFPf; 1320 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1321 !CFPt->getValueAPF().isZero()) || 1322 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1323 !CFPf->getValueAPF().isZero())) 1324 return replaceInstUsesWith(SI, FalseVal); 1325 } 1326 // Transform (X une Y) ? X : Y -> X 1327 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1328 // This is not safe in general for floating point: 1329 // consider X== -0, Y== +0. 1330 // It becomes safe if either operand is a nonzero constant. 1331 ConstantFP *CFPt, *CFPf; 1332 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1333 !CFPt->getValueAPF().isZero()) || 1334 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1335 !CFPf->getValueAPF().isZero())) 1336 return replaceInstUsesWith(SI, TrueVal); 1337 } 1338 1339 // Canonicalize to use ordered comparisons by swapping the select 1340 // operands. 1341 // 1342 // e.g. 1343 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1344 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1345 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1346 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1347 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1348 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 1349 FCI->getName() + ".inv"); 1350 1351 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1352 SI.getName() + ".p"); 1353 } 1354 1355 // NOTE: if we wanted to, this is where to detect MIN/MAX 1356 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1357 // Transform (X == Y) ? Y : X -> X 1358 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1359 // This is not safe in general for floating point: 1360 // consider X== -0, Y== +0. 1361 // It becomes safe if either operand is a nonzero constant. 1362 ConstantFP *CFPt, *CFPf; 1363 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1364 !CFPt->getValueAPF().isZero()) || 1365 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1366 !CFPf->getValueAPF().isZero())) 1367 return replaceInstUsesWith(SI, FalseVal); 1368 } 1369 // Transform (X une Y) ? Y : X -> Y 1370 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1371 // This is not safe in general for floating point: 1372 // consider X== -0, Y== +0. 1373 // It becomes safe if either operand is a nonzero constant. 1374 ConstantFP *CFPt, *CFPf; 1375 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1376 !CFPt->getValueAPF().isZero()) || 1377 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1378 !CFPf->getValueAPF().isZero())) 1379 return replaceInstUsesWith(SI, TrueVal); 1380 } 1381 1382 // Canonicalize to use ordered comparisons by swapping the select 1383 // operands. 1384 // 1385 // e.g. 1386 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1387 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1388 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1389 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1390 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1391 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 1392 FCI->getName() + ".inv"); 1393 1394 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1395 SI.getName() + ".p"); 1396 } 1397 1398 // NOTE: if we wanted to, this is where to detect MIN/MAX 1399 } 1400 // NOTE: if we wanted to, this is where to detect ABS 1401 } 1402 1403 // See if we are selecting two values based on a comparison of the two values. 1404 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1405 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1406 return Result; 1407 1408 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 1409 return Add; 1410 1411 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1412 auto *TI = dyn_cast<Instruction>(TrueVal); 1413 auto *FI = dyn_cast<Instruction>(FalseVal); 1414 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1415 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1416 return IV; 1417 1418 if (Instruction *I = foldSelectExtConst(SI)) 1419 return I; 1420 1421 // See if we can fold the select into one of our operands. 1422 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1423 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1424 return FoldI; 1425 1426 Value *LHS, *RHS, *LHS2, *RHS2; 1427 Instruction::CastOps CastOp; 1428 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1429 auto SPF = SPR.Flavor; 1430 1431 if (SelectPatternResult::isMinOrMax(SPF)) { 1432 // Canonicalize so that 1433 // - type casts are outside select patterns. 1434 // - float clamp is transformed to min/max pattern 1435 1436 bool IsCastNeeded = LHS->getType() != SelType; 1437 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 1438 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 1439 if (IsCastNeeded || 1440 (LHS->getType()->isFPOrFPVectorTy() && 1441 ((CmpLHS != LHS && CmpLHS != RHS) || 1442 (CmpRHS != LHS && CmpRHS != RHS)))) { 1443 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered); 1444 1445 Value *Cmp; 1446 if (CmpInst::isIntPredicate(Pred)) { 1447 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 1448 } else { 1449 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1450 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1451 Builder.setFastMathFlags(FMF); 1452 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 1453 } 1454 1455 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 1456 if (!IsCastNeeded) 1457 return replaceInstUsesWith(SI, NewSI); 1458 1459 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 1460 return replaceInstUsesWith(SI, NewCast); 1461 } 1462 } 1463 1464 if (SPF) { 1465 // MAX(MAX(a, b), a) -> MAX(a, b) 1466 // MIN(MIN(a, b), a) -> MIN(a, b) 1467 // MAX(MIN(a, b), a) -> a 1468 // MIN(MAX(a, b), a) -> a 1469 // ABS(ABS(a)) -> ABS(a) 1470 // NABS(NABS(a)) -> NABS(a) 1471 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1472 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 1473 SI, SPF, RHS)) 1474 return R; 1475 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1476 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 1477 SI, SPF, LHS)) 1478 return R; 1479 } 1480 1481 // MAX(~a, ~b) -> ~MIN(a, b) 1482 if ((SPF == SPF_SMAX || SPF == SPF_UMAX) && 1483 IsFreeToInvert(LHS, LHS->hasNUses(2)) && 1484 IsFreeToInvert(RHS, RHS->hasNUses(2))) { 1485 // For this transform to be profitable, we need to eliminate at least two 1486 // 'not' instructions if we're going to add one 'not' instruction. 1487 int NumberOfNots = 1488 (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) + 1489 (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) + 1490 (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value()))); 1491 1492 if (NumberOfNots >= 2) { 1493 Value *NewLHS = Builder.CreateNot(LHS); 1494 Value *NewRHS = Builder.CreateNot(RHS); 1495 Value *NewCmp = SPF == SPF_SMAX ? Builder.CreateICmpSLT(NewLHS, NewRHS) 1496 : Builder.CreateICmpULT(NewLHS, NewRHS); 1497 Value *NewSI = 1498 Builder.CreateNot(Builder.CreateSelect(NewCmp, NewLHS, NewRHS)); 1499 return replaceInstUsesWith(SI, NewSI); 1500 } 1501 } 1502 1503 // TODO. 1504 // ABS(-X) -> ABS(X) 1505 } 1506 1507 // See if we can fold the select into a phi node if the condition is a select. 1508 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 1509 // The true/false values have to be live in the PHI predecessor's blocks. 1510 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1511 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1512 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 1513 return NV; 1514 1515 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1516 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1517 // select(C, select(C, a, b), c) -> select(C, a, c) 1518 if (TrueSI->getCondition() == CondVal) { 1519 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1520 return nullptr; 1521 SI.setOperand(1, TrueSI->getTrueValue()); 1522 return &SI; 1523 } 1524 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1525 // We choose this as normal form to enable folding on the And and shortening 1526 // paths for the values (this helps GetUnderlyingObjects() for example). 1527 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1528 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 1529 SI.setOperand(0, And); 1530 SI.setOperand(1, TrueSI->getTrueValue()); 1531 return &SI; 1532 } 1533 } 1534 } 1535 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1536 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1537 // select(C, a, select(C, b, c)) -> select(C, a, c) 1538 if (FalseSI->getCondition() == CondVal) { 1539 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1540 return nullptr; 1541 SI.setOperand(2, FalseSI->getFalseValue()); 1542 return &SI; 1543 } 1544 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1545 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1546 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 1547 SI.setOperand(0, Or); 1548 SI.setOperand(2, FalseSI->getFalseValue()); 1549 return &SI; 1550 } 1551 } 1552 } 1553 1554 if (BinaryOperator::isNot(CondVal)) { 1555 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1556 SI.setOperand(1, FalseVal); 1557 SI.setOperand(2, TrueVal); 1558 return &SI; 1559 } 1560 1561 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 1562 unsigned VWidth = VecTy->getNumElements(); 1563 APInt UndefElts(VWidth, 0); 1564 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1565 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 1566 if (V != &SI) 1567 return replaceInstUsesWith(SI, V); 1568 return &SI; 1569 } 1570 } 1571 1572 // See if we can determine the result of this select based on a dominating 1573 // condition. 1574 BasicBlock *Parent = SI.getParent(); 1575 if (BasicBlock *Dom = Parent->getSinglePredecessor()) { 1576 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 1577 if (PBI && PBI->isConditional() && 1578 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 1579 (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { 1580 bool CondIsTrue = PBI->getSuccessor(0) == Parent; 1581 Optional<bool> Implication = isImpliedCondition( 1582 PBI->getCondition(), SI.getCondition(), DL, CondIsTrue); 1583 if (Implication) { 1584 Value *V = *Implication ? TrueVal : FalseVal; 1585 return replaceInstUsesWith(SI, V); 1586 } 1587 } 1588 } 1589 1590 // If we can compute the condition, there's no need for a select. 1591 // Like the above fold, we are attempting to reduce compile-time cost by 1592 // putting this fold here with limitations rather than in InstSimplify. 1593 // The motivation for this call into value tracking is to take advantage of 1594 // the assumption cache, so make sure that is populated. 1595 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 1596 KnownBits Known(1); 1597 computeKnownBits(CondVal, Known, 0, &SI); 1598 if (Known.One.isOneValue()) 1599 return replaceInstUsesWith(SI, TrueVal); 1600 if (Known.Zero.isOneValue()) 1601 return replaceInstUsesWith(SI, FalseVal); 1602 } 1603 1604 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 1605 return BitCastSel; 1606 1607 return nullptr; 1608 } 1609