1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include "llvm/Transforms/InstCombine/InstCombiner.h" 42 #include <cassert> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 51 SelectPatternFlavor SPF, Value *A, Value *B) { 52 CmpInst::Predicate Pred = getMinMaxPred(SPF); 53 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 54 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 55 } 56 57 /// Replace a select operand based on an equality comparison with the identity 58 /// constant of a binop. 59 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 60 const TargetLibraryInfo &TLI, 61 InstCombinerImpl &IC) { 62 // The select condition must be an equality compare with a constant operand. 63 Value *X; 64 Constant *C; 65 CmpInst::Predicate Pred; 66 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 67 return nullptr; 68 69 bool IsEq; 70 if (ICmpInst::isEquality(Pred)) 71 IsEq = Pred == ICmpInst::ICMP_EQ; 72 else if (Pred == FCmpInst::FCMP_OEQ) 73 IsEq = true; 74 else if (Pred == FCmpInst::FCMP_UNE) 75 IsEq = false; 76 else 77 return nullptr; 78 79 // A select operand must be a binop. 80 BinaryOperator *BO; 81 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 82 return nullptr; 83 84 // The compare constant must be the identity constant for that binop. 85 // If this a floating-point compare with 0.0, any zero constant will do. 86 Type *Ty = BO->getType(); 87 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 88 if (IdC != C) { 89 if (!IdC || !CmpInst::isFPPredicate(Pred)) 90 return nullptr; 91 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 92 return nullptr; 93 } 94 95 // Last, match the compare variable operand with a binop operand. 96 Value *Y; 97 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 98 return nullptr; 99 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 100 return nullptr; 101 102 // +0.0 compares equal to -0.0, and so it does not behave as required for this 103 // transform. Bail out if we can not exclude that possibility. 104 if (isa<FPMathOperator>(BO)) 105 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 106 return nullptr; 107 108 // BO = binop Y, X 109 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 110 // => 111 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 112 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 113 } 114 115 /// This folds: 116 /// select (icmp eq (and X, C1)), TC, FC 117 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 118 /// To something like: 119 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 120 /// Or: 121 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 122 /// With some variations depending if FC is larger than TC, or the shift 123 /// isn't needed, or the bit widths don't match. 124 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 125 InstCombiner::BuilderTy &Builder) { 126 const APInt *SelTC, *SelFC; 127 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 128 !match(Sel.getFalseValue(), m_APInt(SelFC))) 129 return nullptr; 130 131 // If this is a vector select, we need a vector compare. 132 Type *SelType = Sel.getType(); 133 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 134 return nullptr; 135 136 Value *V; 137 APInt AndMask; 138 bool CreateAnd = false; 139 ICmpInst::Predicate Pred = Cmp->getPredicate(); 140 if (ICmpInst::isEquality(Pred)) { 141 if (!match(Cmp->getOperand(1), m_Zero())) 142 return nullptr; 143 144 V = Cmp->getOperand(0); 145 const APInt *AndRHS; 146 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 147 return nullptr; 148 149 AndMask = *AndRHS; 150 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 151 Pred, V, AndMask)) { 152 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 153 if (!AndMask.isPowerOf2()) 154 return nullptr; 155 156 CreateAnd = true; 157 } else { 158 return nullptr; 159 } 160 161 // In general, when both constants are non-zero, we would need an offset to 162 // replace the select. This would require more instructions than we started 163 // with. But there's one special-case that we handle here because it can 164 // simplify/reduce the instructions. 165 APInt TC = *SelTC; 166 APInt FC = *SelFC; 167 if (!TC.isNullValue() && !FC.isNullValue()) { 168 // If the select constants differ by exactly one bit and that's the same 169 // bit that is masked and checked by the select condition, the select can 170 // be replaced by bitwise logic to set/clear one bit of the constant result. 171 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 172 return nullptr; 173 if (CreateAnd) { 174 // If we have to create an 'and', then we must kill the cmp to not 175 // increase the instruction count. 176 if (!Cmp->hasOneUse()) 177 return nullptr; 178 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 179 } 180 bool ExtraBitInTC = TC.ugt(FC); 181 if (Pred == ICmpInst::ICMP_EQ) { 182 // If the masked bit in V is clear, clear or set the bit in the result: 183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 184 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 185 Constant *C = ConstantInt::get(SelType, TC); 186 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 187 } 188 if (Pred == ICmpInst::ICMP_NE) { 189 // If the masked bit in V is set, set or clear the bit in the result: 190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 191 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 192 Constant *C = ConstantInt::get(SelType, FC); 193 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 194 } 195 llvm_unreachable("Only expecting equality predicates"); 196 } 197 198 // Make sure one of the select arms is a power-of-2. 199 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 200 return nullptr; 201 202 // Determine which shift is needed to transform result of the 'and' into the 203 // desired result. 204 const APInt &ValC = !TC.isNullValue() ? TC : FC; 205 unsigned ValZeros = ValC.logBase2(); 206 unsigned AndZeros = AndMask.logBase2(); 207 208 // Insert the 'and' instruction on the input to the truncate. 209 if (CreateAnd) 210 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 211 212 // If types don't match, we can still convert the select by introducing a zext 213 // or a trunc of the 'and'. 214 if (ValZeros > AndZeros) { 215 V = Builder.CreateZExtOrTrunc(V, SelType); 216 V = Builder.CreateShl(V, ValZeros - AndZeros); 217 } else if (ValZeros < AndZeros) { 218 V = Builder.CreateLShr(V, AndZeros - ValZeros); 219 V = Builder.CreateZExtOrTrunc(V, SelType); 220 } else { 221 V = Builder.CreateZExtOrTrunc(V, SelType); 222 } 223 224 // Okay, now we know that everything is set up, we just don't know whether we 225 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 226 bool ShouldNotVal = !TC.isNullValue(); 227 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 228 if (ShouldNotVal) 229 V = Builder.CreateXor(V, ValC); 230 231 return V; 232 } 233 234 /// We want to turn code that looks like this: 235 /// %C = or %A, %B 236 /// %D = select %cond, %C, %A 237 /// into: 238 /// %C = select %cond, %B, 0 239 /// %D = or %A, %C 240 /// 241 /// Assuming that the specified instruction is an operand to the select, return 242 /// a bitmask indicating which operands of this instruction are foldable if they 243 /// equal the other incoming value of the select. 244 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 245 switch (I->getOpcode()) { 246 case Instruction::Add: 247 case Instruction::Mul: 248 case Instruction::And: 249 case Instruction::Or: 250 case Instruction::Xor: 251 return 3; // Can fold through either operand. 252 case Instruction::Sub: // Can only fold on the amount subtracted. 253 case Instruction::Shl: // Can only fold on the shift amount. 254 case Instruction::LShr: 255 case Instruction::AShr: 256 return 1; 257 default: 258 return 0; // Cannot fold 259 } 260 } 261 262 /// For the same transformation as the previous function, return the identity 263 /// constant that goes into the select. 264 static APInt getSelectFoldableConstant(BinaryOperator *I) { 265 switch (I->getOpcode()) { 266 default: llvm_unreachable("This cannot happen!"); 267 case Instruction::Add: 268 case Instruction::Sub: 269 case Instruction::Or: 270 case Instruction::Xor: 271 case Instruction::Shl: 272 case Instruction::LShr: 273 case Instruction::AShr: 274 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 275 case Instruction::And: 276 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 277 case Instruction::Mul: 278 return APInt(I->getType()->getScalarSizeInBits(), 1); 279 } 280 } 281 282 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 283 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 284 Instruction *FI) { 285 // Don't break up min/max patterns. The hasOneUse checks below prevent that 286 // for most cases, but vector min/max with bitcasts can be transformed. If the 287 // one-use restrictions are eased for other patterns, we still don't want to 288 // obfuscate min/max. 289 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 290 match(&SI, m_SMax(m_Value(), m_Value())) || 291 match(&SI, m_UMin(m_Value(), m_Value())) || 292 match(&SI, m_UMax(m_Value(), m_Value())))) 293 return nullptr; 294 295 // If this is a cast from the same type, merge. 296 Value *Cond = SI.getCondition(); 297 Type *CondTy = Cond->getType(); 298 if (TI->getNumOperands() == 1 && TI->isCast()) { 299 Type *FIOpndTy = FI->getOperand(0)->getType(); 300 if (TI->getOperand(0)->getType() != FIOpndTy) 301 return nullptr; 302 303 // The select condition may be a vector. We may only change the operand 304 // type if the vector width remains the same (and matches the condition). 305 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 306 if (!FIOpndTy->isVectorTy()) 307 return nullptr; 308 if (cast<FixedVectorType>(CondVTy)->getNumElements() != 309 cast<FixedVectorType>(FIOpndTy)->getNumElements()) 310 return nullptr; 311 312 // TODO: If the backend knew how to deal with casts better, we could 313 // remove this limitation. For now, there's too much potential to create 314 // worse codegen by promoting the select ahead of size-altering casts 315 // (PR28160). 316 // 317 // Note that ValueTracking's matchSelectPattern() looks through casts 318 // without checking 'hasOneUse' when it matches min/max patterns, so this 319 // transform may end up happening anyway. 320 if (TI->getOpcode() != Instruction::BitCast && 321 (!TI->hasOneUse() || !FI->hasOneUse())) 322 return nullptr; 323 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 324 // TODO: The one-use restrictions for a scalar select could be eased if 325 // the fold of a select in visitLoadInst() was enhanced to match a pattern 326 // that includes a cast. 327 return nullptr; 328 } 329 330 // Fold this by inserting a select from the input values. 331 Value *NewSI = 332 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 333 SI.getName() + ".v", &SI); 334 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 335 TI->getType()); 336 } 337 338 // Cond ? -X : -Y --> -(Cond ? X : Y) 339 Value *X, *Y; 340 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 341 (TI->hasOneUse() || FI->hasOneUse())) { 342 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 343 return UnaryOperator::CreateFNegFMF(NewSel, TI); 344 } 345 346 // Only handle binary operators (including two-operand getelementptr) with 347 // one-use here. As with the cast case above, it may be possible to relax the 348 // one-use constraint, but that needs be examined carefully since it may not 349 // reduce the total number of instructions. 350 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 351 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 352 !TI->hasOneUse() || !FI->hasOneUse()) 353 return nullptr; 354 355 // Figure out if the operations have any operands in common. 356 Value *MatchOp, *OtherOpT, *OtherOpF; 357 bool MatchIsOpZero; 358 if (TI->getOperand(0) == FI->getOperand(0)) { 359 MatchOp = TI->getOperand(0); 360 OtherOpT = TI->getOperand(1); 361 OtherOpF = FI->getOperand(1); 362 MatchIsOpZero = true; 363 } else if (TI->getOperand(1) == FI->getOperand(1)) { 364 MatchOp = TI->getOperand(1); 365 OtherOpT = TI->getOperand(0); 366 OtherOpF = FI->getOperand(0); 367 MatchIsOpZero = false; 368 } else if (!TI->isCommutative()) { 369 return nullptr; 370 } else if (TI->getOperand(0) == FI->getOperand(1)) { 371 MatchOp = TI->getOperand(0); 372 OtherOpT = TI->getOperand(1); 373 OtherOpF = FI->getOperand(0); 374 MatchIsOpZero = true; 375 } else if (TI->getOperand(1) == FI->getOperand(0)) { 376 MatchOp = TI->getOperand(1); 377 OtherOpT = TI->getOperand(0); 378 OtherOpF = FI->getOperand(1); 379 MatchIsOpZero = true; 380 } else { 381 return nullptr; 382 } 383 384 // If the select condition is a vector, the operands of the original select's 385 // operands also must be vectors. This may not be the case for getelementptr 386 // for example. 387 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 388 !OtherOpF->getType()->isVectorTy())) 389 return nullptr; 390 391 // If we reach here, they do have operations in common. 392 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 393 SI.getName() + ".v", &SI); 394 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 395 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 396 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 397 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 398 NewBO->copyIRFlags(TI); 399 NewBO->andIRFlags(FI); 400 return NewBO; 401 } 402 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 403 auto *FGEP = cast<GetElementPtrInst>(FI); 404 Type *ElementType = TGEP->getResultElementType(); 405 return TGEP->isInBounds() && FGEP->isInBounds() 406 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 407 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 408 } 409 llvm_unreachable("Expected BinaryOperator or GEP"); 410 return nullptr; 411 } 412 413 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 414 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 415 return false; 416 return C1I.isOneValue() || C1I.isAllOnesValue() || 417 C2I.isOneValue() || C2I.isAllOnesValue(); 418 } 419 420 /// Try to fold the select into one of the operands to allow further 421 /// optimization. 422 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 423 Value *FalseVal) { 424 // See the comment above GetSelectFoldableOperands for a description of the 425 // transformation we are doing here. 426 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 427 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 428 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 429 unsigned OpToFold = 0; 430 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 431 OpToFold = 1; 432 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 433 OpToFold = 2; 434 } 435 436 if (OpToFold) { 437 APInt CI = getSelectFoldableConstant(TVI); 438 Value *OOp = TVI->getOperand(2-OpToFold); 439 // Avoid creating select between 2 constants unless it's selecting 440 // between 0, 1 and -1. 441 const APInt *OOpC; 442 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 443 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 444 Value *C = ConstantInt::get(OOp->getType(), CI); 445 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 446 NewSel->takeName(TVI); 447 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 448 FalseVal, NewSel); 449 BO->copyIRFlags(TVI); 450 return BO; 451 } 452 } 453 } 454 } 455 } 456 457 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 458 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 459 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 460 unsigned OpToFold = 0; 461 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 462 OpToFold = 1; 463 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 464 OpToFold = 2; 465 } 466 467 if (OpToFold) { 468 APInt CI = getSelectFoldableConstant(FVI); 469 Value *OOp = FVI->getOperand(2-OpToFold); 470 // Avoid creating select between 2 constants unless it's selecting 471 // between 0, 1 and -1. 472 const APInt *OOpC; 473 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 474 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 475 Value *C = ConstantInt::get(OOp->getType(), CI); 476 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 477 NewSel->takeName(FVI); 478 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 479 TrueVal, NewSel); 480 BO->copyIRFlags(FVI); 481 return BO; 482 } 483 } 484 } 485 } 486 } 487 488 return nullptr; 489 } 490 491 /// We want to turn: 492 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 493 /// into: 494 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 495 /// Note: 496 /// Z may be 0 if lshr is missing. 497 /// Worst-case scenario is that we will replace 5 instructions with 5 different 498 /// instructions, but we got rid of select. 499 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 500 Value *TVal, Value *FVal, 501 InstCombiner::BuilderTy &Builder) { 502 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 503 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 504 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 505 return nullptr; 506 507 // The TrueVal has general form of: and %B, 1 508 Value *B; 509 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 510 return nullptr; 511 512 // Where %B may be optionally shifted: lshr %X, %Z. 513 Value *X, *Z; 514 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 515 if (!HasShift) 516 X = B; 517 518 Value *Y; 519 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 520 return nullptr; 521 522 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 523 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 524 Constant *One = ConstantInt::get(SelType, 1); 525 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 526 Value *FullMask = Builder.CreateOr(Y, MaskB); 527 Value *MaskedX = Builder.CreateAnd(X, FullMask); 528 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 529 return new ZExtInst(ICmpNeZero, SelType); 530 } 531 532 /// We want to turn: 533 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 534 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 535 /// into: 536 /// ashr (X, Y) 537 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 538 Value *FalseVal, 539 InstCombiner::BuilderTy &Builder) { 540 ICmpInst::Predicate Pred = IC->getPredicate(); 541 Value *CmpLHS = IC->getOperand(0); 542 Value *CmpRHS = IC->getOperand(1); 543 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 544 return nullptr; 545 546 Value *X, *Y; 547 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 548 if ((Pred != ICmpInst::ICMP_SGT || 549 !match(CmpRHS, 550 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 551 (Pred != ICmpInst::ICMP_SLT || 552 !match(CmpRHS, 553 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 554 return nullptr; 555 556 // Canonicalize so that ashr is in FalseVal. 557 if (Pred == ICmpInst::ICMP_SLT) 558 std::swap(TrueVal, FalseVal); 559 560 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 561 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 562 match(CmpLHS, m_Specific(X))) { 563 const auto *Ashr = cast<Instruction>(FalseVal); 564 // if lshr is not exact and ashr is, this new ashr must not be exact. 565 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 566 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 567 } 568 569 return nullptr; 570 } 571 572 /// We want to turn: 573 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 574 /// into: 575 /// (or (shl (and X, C1), C3), Y) 576 /// iff: 577 /// C1 and C2 are both powers of 2 578 /// where: 579 /// C3 = Log(C2) - Log(C1) 580 /// 581 /// This transform handles cases where: 582 /// 1. The icmp predicate is inverted 583 /// 2. The select operands are reversed 584 /// 3. The magnitude of C2 and C1 are flipped 585 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 586 Value *FalseVal, 587 InstCombiner::BuilderTy &Builder) { 588 // Only handle integer compares. Also, if this is a vector select, we need a 589 // vector compare. 590 if (!TrueVal->getType()->isIntOrIntVectorTy() || 591 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 592 return nullptr; 593 594 Value *CmpLHS = IC->getOperand(0); 595 Value *CmpRHS = IC->getOperand(1); 596 597 Value *V; 598 unsigned C1Log; 599 bool IsEqualZero; 600 bool NeedAnd = false; 601 if (IC->isEquality()) { 602 if (!match(CmpRHS, m_Zero())) 603 return nullptr; 604 605 const APInt *C1; 606 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 607 return nullptr; 608 609 V = CmpLHS; 610 C1Log = C1->logBase2(); 611 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 612 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 613 IC->getPredicate() == ICmpInst::ICMP_SGT) { 614 // We also need to recognize (icmp slt (trunc (X)), 0) and 615 // (icmp sgt (trunc (X)), -1). 616 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 617 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 618 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 619 return nullptr; 620 621 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 622 return nullptr; 623 624 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 625 NeedAnd = true; 626 } else { 627 return nullptr; 628 } 629 630 const APInt *C2; 631 bool OrOnTrueVal = false; 632 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 633 if (!OrOnFalseVal) 634 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 635 636 if (!OrOnFalseVal && !OrOnTrueVal) 637 return nullptr; 638 639 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 640 641 unsigned C2Log = C2->logBase2(); 642 643 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 644 bool NeedShift = C1Log != C2Log; 645 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 646 V->getType()->getScalarSizeInBits(); 647 648 // Make sure we don't create more instructions than we save. 649 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 650 if ((NeedShift + NeedXor + NeedZExtTrunc) > 651 (IC->hasOneUse() + Or->hasOneUse())) 652 return nullptr; 653 654 if (NeedAnd) { 655 // Insert the AND instruction on the input to the truncate. 656 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 657 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 658 } 659 660 if (C2Log > C1Log) { 661 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 662 V = Builder.CreateShl(V, C2Log - C1Log); 663 } else if (C1Log > C2Log) { 664 V = Builder.CreateLShr(V, C1Log - C2Log); 665 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 666 } else 667 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 668 669 if (NeedXor) 670 V = Builder.CreateXor(V, *C2); 671 672 return Builder.CreateOr(V, Y); 673 } 674 675 /// Canonicalize a set or clear of a masked set of constant bits to 676 /// select-of-constants form. 677 static Instruction *foldSetClearBits(SelectInst &Sel, 678 InstCombiner::BuilderTy &Builder) { 679 Value *Cond = Sel.getCondition(); 680 Value *T = Sel.getTrueValue(); 681 Value *F = Sel.getFalseValue(); 682 Type *Ty = Sel.getType(); 683 Value *X; 684 const APInt *NotC, *C; 685 686 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 687 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 688 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 689 Constant *Zero = ConstantInt::getNullValue(Ty); 690 Constant *OrC = ConstantInt::get(Ty, *C); 691 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 692 return BinaryOperator::CreateOr(T, NewSel); 693 } 694 695 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 696 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 697 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 698 Constant *Zero = ConstantInt::getNullValue(Ty); 699 Constant *OrC = ConstantInt::get(Ty, *C); 700 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 701 return BinaryOperator::CreateOr(F, NewSel); 702 } 703 704 return nullptr; 705 } 706 707 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 708 /// There are 8 commuted/swapped variants of this pattern. 709 /// TODO: Also support a - UMIN(a,b) patterns. 710 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 711 const Value *TrueVal, 712 const Value *FalseVal, 713 InstCombiner::BuilderTy &Builder) { 714 ICmpInst::Predicate Pred = ICI->getPredicate(); 715 if (!ICmpInst::isUnsigned(Pred)) 716 return nullptr; 717 718 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 719 if (match(TrueVal, m_Zero())) { 720 Pred = ICmpInst::getInversePredicate(Pred); 721 std::swap(TrueVal, FalseVal); 722 } 723 if (!match(FalseVal, m_Zero())) 724 return nullptr; 725 726 Value *A = ICI->getOperand(0); 727 Value *B = ICI->getOperand(1); 728 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 729 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 730 std::swap(A, B); 731 Pred = ICmpInst::getSwappedPredicate(Pred); 732 } 733 734 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 735 "Unexpected isUnsigned predicate!"); 736 737 // Ensure the sub is of the form: 738 // (a > b) ? a - b : 0 -> usub.sat(a, b) 739 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 740 // Checking for both a-b and a+(-b) as a constant. 741 bool IsNegative = false; 742 const APInt *C; 743 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 744 (match(A, m_APInt(C)) && 745 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 746 IsNegative = true; 747 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 748 !(match(B, m_APInt(C)) && 749 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 750 return nullptr; 751 752 // If we are adding a negate and the sub and icmp are used anywhere else, we 753 // would end up with more instructions. 754 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 755 return nullptr; 756 757 // (a > b) ? a - b : 0 -> usub.sat(a, b) 758 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 759 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 760 if (IsNegative) 761 Result = Builder.CreateNeg(Result); 762 return Result; 763 } 764 765 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 766 InstCombiner::BuilderTy &Builder) { 767 if (!Cmp->hasOneUse()) 768 return nullptr; 769 770 // Match unsigned saturated add with constant. 771 Value *Cmp0 = Cmp->getOperand(0); 772 Value *Cmp1 = Cmp->getOperand(1); 773 ICmpInst::Predicate Pred = Cmp->getPredicate(); 774 Value *X; 775 const APInt *C, *CmpC; 776 if (Pred == ICmpInst::ICMP_ULT && 777 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 778 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 779 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 780 return Builder.CreateBinaryIntrinsic( 781 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 782 } 783 784 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 785 // There are 8 commuted variants. 786 // Canonicalize -1 (saturated result) to true value of the select. Just 787 // swapping the compare operands is legal, because the selected value is the 788 // same in case of equality, so we can interchange u< and u<=. 789 if (match(FVal, m_AllOnes())) { 790 std::swap(TVal, FVal); 791 std::swap(Cmp0, Cmp1); 792 } 793 if (!match(TVal, m_AllOnes())) 794 return nullptr; 795 796 // Canonicalize predicate to 'ULT'. 797 if (Pred == ICmpInst::ICMP_UGT) { 798 Pred = ICmpInst::ICMP_ULT; 799 std::swap(Cmp0, Cmp1); 800 } 801 if (Pred != ICmpInst::ICMP_ULT) 802 return nullptr; 803 804 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 805 Value *Y; 806 if (match(Cmp0, m_Not(m_Value(X))) && 807 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 808 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 809 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 810 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 811 } 812 // The 'not' op may be included in the sum but not the compare. 813 X = Cmp0; 814 Y = Cmp1; 815 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 816 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 817 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 818 BinaryOperator *BO = cast<BinaryOperator>(FVal); 819 return Builder.CreateBinaryIntrinsic( 820 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 821 } 822 // The overflow may be detected via the add wrapping round. 823 if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 824 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 825 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 826 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 827 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 828 } 829 830 return nullptr; 831 } 832 833 /// Fold the following code sequence: 834 /// \code 835 /// int a = ctlz(x & -x); 836 // x ? 31 - a : a; 837 /// \code 838 /// 839 /// into: 840 /// cttz(x) 841 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 842 Value *FalseVal, 843 InstCombiner::BuilderTy &Builder) { 844 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 845 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 846 return nullptr; 847 848 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 849 std::swap(TrueVal, FalseVal); 850 851 if (!match(FalseVal, 852 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 853 return nullptr; 854 855 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 856 return nullptr; 857 858 Value *X = ICI->getOperand(0); 859 auto *II = cast<IntrinsicInst>(TrueVal); 860 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 861 return nullptr; 862 863 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 864 II->getType()); 865 return CallInst::Create(F, {X, II->getArgOperand(1)}); 866 } 867 868 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 869 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 870 /// 871 /// For example, we can fold the following code sequence: 872 /// \code 873 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 874 /// %1 = icmp ne i32 %x, 0 875 /// %2 = select i1 %1, i32 %0, i32 32 876 /// \code 877 /// 878 /// into: 879 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 880 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 881 InstCombiner::BuilderTy &Builder) { 882 ICmpInst::Predicate Pred = ICI->getPredicate(); 883 Value *CmpLHS = ICI->getOperand(0); 884 Value *CmpRHS = ICI->getOperand(1); 885 886 // Check if the condition value compares a value for equality against zero. 887 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 888 return nullptr; 889 890 Value *SelectArg = FalseVal; 891 Value *ValueOnZero = TrueVal; 892 if (Pred == ICmpInst::ICMP_NE) 893 std::swap(SelectArg, ValueOnZero); 894 895 // Skip zero extend/truncate. 896 Value *Count = nullptr; 897 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 898 !match(SelectArg, m_Trunc(m_Value(Count)))) 899 Count = SelectArg; 900 901 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 902 // input to the cttz/ctlz is used as LHS for the compare instruction. 903 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 904 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 905 return nullptr; 906 907 IntrinsicInst *II = cast<IntrinsicInst>(Count); 908 909 // Check if the value propagated on zero is a constant number equal to the 910 // sizeof in bits of 'Count'. 911 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 912 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 913 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from 914 // true to false on this flag, so we can replace it for all users. 915 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 916 return SelectArg; 917 } 918 919 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 920 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 921 // not be used if the input is zero. Relax to 'undef_on_zero' for that case. 922 if (II->hasOneUse() && SelectArg->hasOneUse() && 923 !match(II->getArgOperand(1), m_One())) 924 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 925 926 return nullptr; 927 } 928 929 /// Return true if we find and adjust an icmp+select pattern where the compare 930 /// is with a constant that can be incremented or decremented to match the 931 /// minimum or maximum idiom. 932 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 933 ICmpInst::Predicate Pred = Cmp.getPredicate(); 934 Value *CmpLHS = Cmp.getOperand(0); 935 Value *CmpRHS = Cmp.getOperand(1); 936 Value *TrueVal = Sel.getTrueValue(); 937 Value *FalseVal = Sel.getFalseValue(); 938 939 // We may move or edit the compare, so make sure the select is the only user. 940 const APInt *CmpC; 941 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 942 return false; 943 944 // These transforms only work for selects of integers or vector selects of 945 // integer vectors. 946 Type *SelTy = Sel.getType(); 947 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 948 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 949 return false; 950 951 Constant *AdjustedRHS; 952 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 953 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 954 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 955 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 956 else 957 return false; 958 959 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 960 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 961 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 962 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 963 ; // Nothing to do here. Values match without any sign/zero extension. 964 } 965 // Types do not match. Instead of calculating this with mixed types, promote 966 // all to the larger type. This enables scalar evolution to analyze this 967 // expression. 968 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 969 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 970 971 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 972 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 973 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 974 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 975 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 976 CmpLHS = TrueVal; 977 AdjustedRHS = SextRHS; 978 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 979 SextRHS == TrueVal) { 980 CmpLHS = FalseVal; 981 AdjustedRHS = SextRHS; 982 } else if (Cmp.isUnsigned()) { 983 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 984 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 985 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 986 // zext + signed compare cannot be changed: 987 // 0xff <s 0x00, but 0x00ff >s 0x0000 988 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 989 CmpLHS = TrueVal; 990 AdjustedRHS = ZextRHS; 991 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 992 ZextRHS == TrueVal) { 993 CmpLHS = FalseVal; 994 AdjustedRHS = ZextRHS; 995 } else { 996 return false; 997 } 998 } else { 999 return false; 1000 } 1001 } else { 1002 return false; 1003 } 1004 1005 Pred = ICmpInst::getSwappedPredicate(Pred); 1006 CmpRHS = AdjustedRHS; 1007 std::swap(FalseVal, TrueVal); 1008 Cmp.setPredicate(Pred); 1009 Cmp.setOperand(0, CmpLHS); 1010 Cmp.setOperand(1, CmpRHS); 1011 Sel.setOperand(1, TrueVal); 1012 Sel.setOperand(2, FalseVal); 1013 Sel.swapProfMetadata(); 1014 1015 // Move the compare instruction right before the select instruction. Otherwise 1016 // the sext/zext value may be defined after the compare instruction uses it. 1017 Cmp.moveBefore(&Sel); 1018 1019 return true; 1020 } 1021 1022 /// If this is an integer min/max (icmp + select) with a constant operand, 1023 /// create the canonical icmp for the min/max operation and canonicalize the 1024 /// constant to the 'false' operand of the select: 1025 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1026 /// Note: if C1 != C2, this will change the icmp constant to the existing 1027 /// constant operand of the select. 1028 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1029 ICmpInst &Cmp, 1030 InstCombinerImpl &IC) { 1031 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1032 return nullptr; 1033 1034 // Canonicalize the compare predicate based on whether we have min or max. 1035 Value *LHS, *RHS; 1036 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1037 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1038 return nullptr; 1039 1040 // Is this already canonical? 1041 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1042 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1043 Cmp.getPredicate() == CanonicalPred) 1044 return nullptr; 1045 1046 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1047 // as this may cause an infinite combine loop. Let the sub be folded first. 1048 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1049 match(RHS, m_Sub(m_Value(), m_Zero()))) 1050 return nullptr; 1051 1052 // Create the canonical compare and plug it into the select. 1053 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1054 1055 // If the select operands did not change, we're done. 1056 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1057 return &Sel; 1058 1059 // If we are swapping the select operands, swap the metadata too. 1060 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1061 "Unexpected results from matchSelectPattern"); 1062 Sel.swapValues(); 1063 Sel.swapProfMetadata(); 1064 return &Sel; 1065 } 1066 1067 /// There are many select variants for each of ABS/NABS. 1068 /// In matchSelectPattern(), there are different compare constants, compare 1069 /// predicates/operands and select operands. 1070 /// In isKnownNegation(), there are different formats of negated operands. 1071 /// Canonicalize all these variants to 1 pattern. 1072 /// This makes CSE more likely. 1073 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1074 InstCombinerImpl &IC) { 1075 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1076 return nullptr; 1077 1078 // Choose a sign-bit check for the compare (likely simpler for codegen). 1079 // ABS: (X <s 0) ? -X : X 1080 // NABS: (X <s 0) ? X : -X 1081 Value *LHS, *RHS; 1082 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1083 if (SPF != SelectPatternFlavor::SPF_ABS && 1084 SPF != SelectPatternFlavor::SPF_NABS) 1085 return nullptr; 1086 1087 Value *TVal = Sel.getTrueValue(); 1088 Value *FVal = Sel.getFalseValue(); 1089 assert(isKnownNegation(TVal, FVal) && 1090 "Unexpected result from matchSelectPattern"); 1091 1092 // The compare may use the negated abs()/nabs() operand, or it may use 1093 // negation in non-canonical form such as: sub A, B. 1094 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 1095 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 1096 1097 bool CmpCanonicalized = !CmpUsesNegatedOp && 1098 match(Cmp.getOperand(1), m_ZeroInt()) && 1099 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 1100 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 1101 1102 // Is this already canonical? 1103 if (CmpCanonicalized && RHSCanonicalized) 1104 return nullptr; 1105 1106 // If RHS is not canonical but is used by other instructions, don't 1107 // canonicalize it and potentially increase the instruction count. 1108 if (!RHSCanonicalized) 1109 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 1110 return nullptr; 1111 1112 // Create the canonical compare: icmp slt LHS 0. 1113 if (!CmpCanonicalized) { 1114 Cmp.setPredicate(ICmpInst::ICMP_SLT); 1115 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 1116 if (CmpUsesNegatedOp) 1117 Cmp.setOperand(0, LHS); 1118 } 1119 1120 // Create the canonical RHS: RHS = sub (0, LHS). 1121 if (!RHSCanonicalized) { 1122 assert(RHS->hasOneUse() && "RHS use number is not right"); 1123 RHS = IC.Builder.CreateNeg(LHS); 1124 if (TVal == LHS) { 1125 // Replace false value. 1126 IC.replaceOperand(Sel, 2, RHS); 1127 FVal = RHS; 1128 } else { 1129 // Replace true value. 1130 IC.replaceOperand(Sel, 1, RHS); 1131 TVal = RHS; 1132 } 1133 } 1134 1135 // If the select operands do not change, we're done. 1136 if (SPF == SelectPatternFlavor::SPF_NABS) { 1137 if (TVal == LHS) 1138 return &Sel; 1139 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 1140 } else { 1141 if (FVal == LHS) 1142 return &Sel; 1143 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 1144 } 1145 1146 // We are swapping the select operands, so swap the metadata too. 1147 Sel.swapValues(); 1148 Sel.swapProfMetadata(); 1149 return &Sel; 1150 } 1151 1152 /// If we have a select with an equality comparison, then we know the value in 1153 /// one of the arms of the select. See if substituting this value into an arm 1154 /// and simplifying the result yields the same value as the other arm. 1155 /// 1156 /// To make this transform safe, we must drop poison-generating flags 1157 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1158 /// that poison from propagating. If the existing binop already had no 1159 /// poison-generating flags, then this transform can be done by instsimplify. 1160 /// 1161 /// Consider: 1162 /// %cmp = icmp eq i32 %x, 2147483647 1163 /// %add = add nsw i32 %x, 1 1164 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1165 /// 1166 /// We can't replace %sel with %add unless we strip away the flags. 1167 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1168 static Instruction *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp, 1169 const SimplifyQuery &Q, 1170 InstCombiner &IC) { 1171 if (!Cmp.isEquality()) 1172 return nullptr; 1173 1174 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1175 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1176 bool Swapped = false; 1177 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1178 std::swap(TrueVal, FalseVal); 1179 Swapped = true; 1180 } 1181 1182 // In X == Y ? f(X) : Z, try to evaluate f(X) and replace the operand. 1183 // Take care to avoid replacing X == Y ? X : Z with X == Y ? Y : Z, as that 1184 // would lead to an infinite replacement cycle. 1185 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1186 if (TrueVal != CmpLHS) 1187 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 1188 /* AllowRefinement */ true)) 1189 return IC.replaceOperand(Sel, Swapped ? 2 : 1, V); 1190 if (TrueVal != CmpRHS) 1191 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 1192 /* AllowRefinement */ true)) 1193 return IC.replaceOperand(Sel, Swapped ? 2 : 1, V); 1194 1195 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1196 if (!FalseInst) 1197 return nullptr; 1198 1199 // InstSimplify already performed this fold if it was possible subject to 1200 // current poison-generating flags. Try the transform again with 1201 // poison-generating flags temporarily dropped. 1202 bool WasNUW = false, WasNSW = false, WasExact = false; 1203 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1204 WasNUW = OBO->hasNoUnsignedWrap(); 1205 WasNSW = OBO->hasNoSignedWrap(); 1206 FalseInst->setHasNoUnsignedWrap(false); 1207 FalseInst->setHasNoSignedWrap(false); 1208 } 1209 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1210 WasExact = PEO->isExact(); 1211 FalseInst->setIsExact(false); 1212 } 1213 1214 // Try each equivalence substitution possibility. 1215 // We have an 'EQ' comparison, so the select's false value will propagate. 1216 // Example: 1217 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1218 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 1219 /* AllowRefinement */ false) == TrueVal || 1220 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 1221 /* AllowRefinement */ false) == TrueVal) { 1222 return IC.replaceInstUsesWith(Sel, FalseVal); 1223 } 1224 1225 // Restore poison-generating flags if the transform did not apply. 1226 if (WasNUW) 1227 FalseInst->setHasNoUnsignedWrap(); 1228 if (WasNSW) 1229 FalseInst->setHasNoSignedWrap(); 1230 if (WasExact) 1231 FalseInst->setIsExact(); 1232 1233 return nullptr; 1234 } 1235 1236 // See if this is a pattern like: 1237 // %old_cmp1 = icmp slt i32 %x, C2 1238 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1239 // %old_x_offseted = add i32 %x, C1 1240 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1241 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1242 // This can be rewritten as more canonical pattern: 1243 // %new_cmp1 = icmp slt i32 %x, -C1 1244 // %new_cmp2 = icmp sge i32 %x, C0-C1 1245 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1246 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1247 // Iff -C1 s<= C2 s<= C0-C1 1248 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1249 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1250 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1251 InstCombiner::BuilderTy &Builder) { 1252 Value *X = Sel0.getTrueValue(); 1253 Value *Sel1 = Sel0.getFalseValue(); 1254 1255 // First match the condition of the outermost select. 1256 // Said condition must be one-use. 1257 if (!Cmp0.hasOneUse()) 1258 return nullptr; 1259 Value *Cmp00 = Cmp0.getOperand(0); 1260 Constant *C0; 1261 if (!match(Cmp0.getOperand(1), 1262 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1263 return nullptr; 1264 // Canonicalize Cmp0 into the form we expect. 1265 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1266 switch (Cmp0.getPredicate()) { 1267 case ICmpInst::Predicate::ICMP_ULT: 1268 break; // Great! 1269 case ICmpInst::Predicate::ICMP_ULE: 1270 // We'd have to increment C0 by one, and for that it must not have all-ones 1271 // element, but then it would have been canonicalized to 'ult' before 1272 // we get here. So we can't do anything useful with 'ule'. 1273 return nullptr; 1274 case ICmpInst::Predicate::ICMP_UGT: 1275 // We want to canonicalize it to 'ult', so we'll need to increment C0, 1276 // which again means it must not have any all-ones elements. 1277 if (!match(C0, 1278 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1279 APInt::getAllOnesValue( 1280 C0->getType()->getScalarSizeInBits())))) 1281 return nullptr; // Can't do, have all-ones element[s]. 1282 C0 = InstCombiner::AddOne(C0); 1283 std::swap(X, Sel1); 1284 break; 1285 case ICmpInst::Predicate::ICMP_UGE: 1286 // The only way we'd get this predicate if this `icmp` has extra uses, 1287 // but then we won't be able to do this fold. 1288 return nullptr; 1289 default: 1290 return nullptr; // Unknown predicate. 1291 } 1292 1293 // Now that we've canonicalized the ICmp, we know the X we expect; 1294 // the select in other hand should be one-use. 1295 if (!Sel1->hasOneUse()) 1296 return nullptr; 1297 1298 // We now can finish matching the condition of the outermost select: 1299 // it should either be the X itself, or an addition of some constant to X. 1300 Constant *C1; 1301 if (Cmp00 == X) 1302 C1 = ConstantInt::getNullValue(Sel0.getType()); 1303 else if (!match(Cmp00, 1304 m_Add(m_Specific(X), 1305 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1306 return nullptr; 1307 1308 Value *Cmp1; 1309 ICmpInst::Predicate Pred1; 1310 Constant *C2; 1311 Value *ReplacementLow, *ReplacementHigh; 1312 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1313 m_Value(ReplacementHigh))) || 1314 !match(Cmp1, 1315 m_ICmp(Pred1, m_Specific(X), 1316 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1317 return nullptr; 1318 1319 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1320 return nullptr; // Not enough one-use instructions for the fold. 1321 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1322 // two comparisons we'll need to build. 1323 1324 // Canonicalize Cmp1 into the form we expect. 1325 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1326 switch (Pred1) { 1327 case ICmpInst::Predicate::ICMP_SLT: 1328 break; 1329 case ICmpInst::Predicate::ICMP_SLE: 1330 // We'd have to increment C2 by one, and for that it must not have signed 1331 // max element, but then it would have been canonicalized to 'slt' before 1332 // we get here. So we can't do anything useful with 'sle'. 1333 return nullptr; 1334 case ICmpInst::Predicate::ICMP_SGT: 1335 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1336 // which again means it must not have any signed max elements. 1337 if (!match(C2, 1338 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1339 APInt::getSignedMaxValue( 1340 C2->getType()->getScalarSizeInBits())))) 1341 return nullptr; // Can't do, have signed max element[s]. 1342 C2 = InstCombiner::AddOne(C2); 1343 LLVM_FALLTHROUGH; 1344 case ICmpInst::Predicate::ICMP_SGE: 1345 // Also non-canonical, but here we don't need to change C2, 1346 // so we don't have any restrictions on C2, so we can just handle it. 1347 std::swap(ReplacementLow, ReplacementHigh); 1348 break; 1349 default: 1350 return nullptr; // Unknown predicate. 1351 } 1352 1353 // The thresholds of this clamp-like pattern. 1354 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1355 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1356 1357 // The fold has a precondition 1: C2 s>= ThresholdLow 1358 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1359 ThresholdLowIncl); 1360 if (!match(Precond1, m_One())) 1361 return nullptr; 1362 // The fold has a precondition 2: C2 s<= ThresholdHigh 1363 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1364 ThresholdHighExcl); 1365 if (!match(Precond2, m_One())) 1366 return nullptr; 1367 1368 // All good, finally emit the new pattern. 1369 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1370 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1371 Value *MaybeReplacedLow = 1372 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1373 Instruction *MaybeReplacedHigh = 1374 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1375 1376 return MaybeReplacedHigh; 1377 } 1378 1379 // If we have 1380 // %cmp = icmp [canonical predicate] i32 %x, C0 1381 // %r = select i1 %cmp, i32 %y, i32 C1 1382 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1383 // will have if we flip the strictness of the predicate (i.e. without changing 1384 // the result) is identical to the C1 in select. If it matches we can change 1385 // original comparison to one with swapped predicate, reuse the constant, 1386 // and swap the hands of select. 1387 static Instruction * 1388 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1389 InstCombinerImpl &IC) { 1390 ICmpInst::Predicate Pred; 1391 Value *X; 1392 Constant *C0; 1393 if (!match(&Cmp, m_OneUse(m_ICmp( 1394 Pred, m_Value(X), 1395 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1396 return nullptr; 1397 1398 // If comparison predicate is non-relational, we won't be able to do anything. 1399 if (ICmpInst::isEquality(Pred)) 1400 return nullptr; 1401 1402 // If comparison predicate is non-canonical, then we certainly won't be able 1403 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1404 if (!InstCombiner::isCanonicalPredicate(Pred)) 1405 return nullptr; 1406 1407 // If the [input] type of comparison and select type are different, lets abort 1408 // for now. We could try to compare constants with trunc/[zs]ext though. 1409 if (C0->getType() != Sel.getType()) 1410 return nullptr; 1411 1412 // FIXME: are there any magic icmp predicate+constant pairs we must not touch? 1413 1414 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1415 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1416 // At least one of these values we are selecting between must be a constant 1417 // else we'll never succeed. 1418 if (!match(SelVal0, m_AnyIntegralConstant()) && 1419 !match(SelVal1, m_AnyIntegralConstant())) 1420 return nullptr; 1421 1422 // Does this constant C match any of the `select` values? 1423 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1424 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1425 }; 1426 1427 // If C0 *already* matches true/false value of select, we are done. 1428 if (MatchesSelectValue(C0)) 1429 return nullptr; 1430 1431 // Check the constant we'd have with flipped-strictness predicate. 1432 auto FlippedStrictness = 1433 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1434 if (!FlippedStrictness) 1435 return nullptr; 1436 1437 // If said constant doesn't match either, then there is no hope, 1438 if (!MatchesSelectValue(FlippedStrictness->second)) 1439 return nullptr; 1440 1441 // It matched! Lets insert the new comparison just before select. 1442 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1443 IC.Builder.SetInsertPoint(&Sel); 1444 1445 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1446 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1447 Cmp.getName() + ".inv"); 1448 IC.replaceOperand(Sel, 0, NewCmp); 1449 Sel.swapValues(); 1450 Sel.swapProfMetadata(); 1451 1452 return &Sel; 1453 } 1454 1455 /// Visit a SelectInst that has an ICmpInst as its first operand. 1456 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1457 ICmpInst *ICI) { 1458 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI, SQ, *this)) 1459 return NewSel; 1460 1461 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1462 return NewSel; 1463 1464 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1465 return NewAbs; 1466 1467 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) 1468 return NewAbs; 1469 1470 if (Instruction *NewSel = 1471 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1472 return NewSel; 1473 1474 bool Changed = adjustMinMax(SI, *ICI); 1475 1476 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1477 return replaceInstUsesWith(SI, V); 1478 1479 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1480 Value *TrueVal = SI.getTrueValue(); 1481 Value *FalseVal = SI.getFalseValue(); 1482 ICmpInst::Predicate Pred = ICI->getPredicate(); 1483 Value *CmpLHS = ICI->getOperand(0); 1484 Value *CmpRHS = ICI->getOperand(1); 1485 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1486 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1487 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1488 SI.setOperand(1, CmpRHS); 1489 Changed = true; 1490 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1491 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1492 SI.setOperand(2, CmpRHS); 1493 Changed = true; 1494 } 1495 } 1496 1497 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1498 // decomposeBitTestICmp() might help. 1499 { 1500 unsigned BitWidth = 1501 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1502 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1503 Value *X; 1504 const APInt *Y, *C; 1505 bool TrueWhenUnset; 1506 bool IsBitTest = false; 1507 if (ICmpInst::isEquality(Pred) && 1508 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1509 match(CmpRHS, m_Zero())) { 1510 IsBitTest = true; 1511 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1512 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1513 X = CmpLHS; 1514 Y = &MinSignedValue; 1515 IsBitTest = true; 1516 TrueWhenUnset = false; 1517 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1518 X = CmpLHS; 1519 Y = &MinSignedValue; 1520 IsBitTest = true; 1521 TrueWhenUnset = true; 1522 } 1523 if (IsBitTest) { 1524 Value *V = nullptr; 1525 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1526 if (TrueWhenUnset && TrueVal == X && 1527 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1528 V = Builder.CreateAnd(X, ~(*Y)); 1529 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1530 else if (!TrueWhenUnset && FalseVal == X && 1531 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1532 V = Builder.CreateAnd(X, ~(*Y)); 1533 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1534 else if (TrueWhenUnset && FalseVal == X && 1535 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1536 V = Builder.CreateOr(X, *Y); 1537 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1538 else if (!TrueWhenUnset && TrueVal == X && 1539 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1540 V = Builder.CreateOr(X, *Y); 1541 1542 if (V) 1543 return replaceInstUsesWith(SI, V); 1544 } 1545 } 1546 1547 if (Instruction *V = 1548 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1549 return V; 1550 1551 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1552 return V; 1553 1554 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1555 return replaceInstUsesWith(SI, V); 1556 1557 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1558 return replaceInstUsesWith(SI, V); 1559 1560 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1561 return replaceInstUsesWith(SI, V); 1562 1563 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1564 return replaceInstUsesWith(SI, V); 1565 1566 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1567 return replaceInstUsesWith(SI, V); 1568 1569 return Changed ? &SI : nullptr; 1570 } 1571 1572 /// SI is a select whose condition is a PHI node (but the two may be in 1573 /// different blocks). See if the true/false values (V) are live in all of the 1574 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1575 /// 1576 /// X = phi [ C1, BB1], [C2, BB2] 1577 /// Y = add 1578 /// Z = select X, Y, 0 1579 /// 1580 /// because Y is not live in BB1/BB2. 1581 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1582 const SelectInst &SI) { 1583 // If the value is a non-instruction value like a constant or argument, it 1584 // can always be mapped. 1585 const Instruction *I = dyn_cast<Instruction>(V); 1586 if (!I) return true; 1587 1588 // If V is a PHI node defined in the same block as the condition PHI, we can 1589 // map the arguments. 1590 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1591 1592 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1593 if (VP->getParent() == CondPHI->getParent()) 1594 return true; 1595 1596 // Otherwise, if the PHI and select are defined in the same block and if V is 1597 // defined in a different block, then we can transform it. 1598 if (SI.getParent() == CondPHI->getParent() && 1599 I->getParent() != CondPHI->getParent()) 1600 return true; 1601 1602 // Otherwise we have a 'hard' case and we can't tell without doing more 1603 // detailed dominator based analysis, punt. 1604 return false; 1605 } 1606 1607 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1608 /// SPF2(SPF1(A, B), C) 1609 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1610 SelectPatternFlavor SPF1, Value *A, 1611 Value *B, Instruction &Outer, 1612 SelectPatternFlavor SPF2, 1613 Value *C) { 1614 if (Outer.getType() != Inner->getType()) 1615 return nullptr; 1616 1617 if (C == A || C == B) { 1618 // MAX(MAX(A, B), B) -> MAX(A, B) 1619 // MIN(MIN(a, b), a) -> MIN(a, b) 1620 // TODO: This could be done in instsimplify. 1621 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1622 return replaceInstUsesWith(Outer, Inner); 1623 1624 // MAX(MIN(a, b), a) -> a 1625 // MIN(MAX(a, b), a) -> a 1626 // TODO: This could be done in instsimplify. 1627 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1628 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1629 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1630 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1631 return replaceInstUsesWith(Outer, C); 1632 } 1633 1634 if (SPF1 == SPF2) { 1635 const APInt *CB, *CC; 1636 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1637 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1638 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1639 // TODO: This could be done in instsimplify. 1640 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1641 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1642 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1643 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1644 return replaceInstUsesWith(Outer, Inner); 1645 1646 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1647 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1648 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1649 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1650 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1651 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1652 Outer.replaceUsesOfWith(Inner, A); 1653 return &Outer; 1654 } 1655 } 1656 } 1657 1658 // max(max(A, B), min(A, B)) --> max(A, B) 1659 // min(min(A, B), max(A, B)) --> min(A, B) 1660 // TODO: This could be done in instsimplify. 1661 if (SPF1 == SPF2 && 1662 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1663 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1664 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1665 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1666 return replaceInstUsesWith(Outer, Inner); 1667 1668 // ABS(ABS(X)) -> ABS(X) 1669 // NABS(NABS(X)) -> NABS(X) 1670 // TODO: This could be done in instsimplify. 1671 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1672 return replaceInstUsesWith(Outer, Inner); 1673 } 1674 1675 // ABS(NABS(X)) -> ABS(X) 1676 // NABS(ABS(X)) -> NABS(X) 1677 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1678 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1679 SelectInst *SI = cast<SelectInst>(Inner); 1680 Value *NewSI = 1681 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1682 SI->getTrueValue(), SI->getName(), SI); 1683 return replaceInstUsesWith(Outer, NewSI); 1684 } 1685 1686 auto IsFreeOrProfitableToInvert = 1687 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1688 if (match(V, m_Not(m_Value(NotV)))) { 1689 // If V has at most 2 uses then we can get rid of the xor operation 1690 // entirely. 1691 ElidesXor |= !V->hasNUsesOrMore(3); 1692 return true; 1693 } 1694 1695 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1696 NotV = nullptr; 1697 return true; 1698 } 1699 1700 return false; 1701 }; 1702 1703 Value *NotA, *NotB, *NotC; 1704 bool ElidesXor = false; 1705 1706 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1707 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1708 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1709 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1710 // 1711 // This transform is performance neutral if we can elide at least one xor from 1712 // the set of three operands, since we'll be tacking on an xor at the very 1713 // end. 1714 if (SelectPatternResult::isMinOrMax(SPF1) && 1715 SelectPatternResult::isMinOrMax(SPF2) && 1716 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1717 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1718 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1719 if (!NotA) 1720 NotA = Builder.CreateNot(A); 1721 if (!NotB) 1722 NotB = Builder.CreateNot(B); 1723 if (!NotC) 1724 NotC = Builder.CreateNot(C); 1725 1726 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1727 NotB); 1728 Value *NewOuter = Builder.CreateNot( 1729 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1730 return replaceInstUsesWith(Outer, NewOuter); 1731 } 1732 1733 return nullptr; 1734 } 1735 1736 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1737 /// This is even legal for FP. 1738 static Instruction *foldAddSubSelect(SelectInst &SI, 1739 InstCombiner::BuilderTy &Builder) { 1740 Value *CondVal = SI.getCondition(); 1741 Value *TrueVal = SI.getTrueValue(); 1742 Value *FalseVal = SI.getFalseValue(); 1743 auto *TI = dyn_cast<Instruction>(TrueVal); 1744 auto *FI = dyn_cast<Instruction>(FalseVal); 1745 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1746 return nullptr; 1747 1748 Instruction *AddOp = nullptr, *SubOp = nullptr; 1749 if ((TI->getOpcode() == Instruction::Sub && 1750 FI->getOpcode() == Instruction::Add) || 1751 (TI->getOpcode() == Instruction::FSub && 1752 FI->getOpcode() == Instruction::FAdd)) { 1753 AddOp = FI; 1754 SubOp = TI; 1755 } else if ((FI->getOpcode() == Instruction::Sub && 1756 TI->getOpcode() == Instruction::Add) || 1757 (FI->getOpcode() == Instruction::FSub && 1758 TI->getOpcode() == Instruction::FAdd)) { 1759 AddOp = TI; 1760 SubOp = FI; 1761 } 1762 1763 if (AddOp) { 1764 Value *OtherAddOp = nullptr; 1765 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1766 OtherAddOp = AddOp->getOperand(1); 1767 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1768 OtherAddOp = AddOp->getOperand(0); 1769 } 1770 1771 if (OtherAddOp) { 1772 // So at this point we know we have (Y -> OtherAddOp): 1773 // select C, (add X, Y), (sub X, Z) 1774 Value *NegVal; // Compute -Z 1775 if (SI.getType()->isFPOrFPVectorTy()) { 1776 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1777 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1778 FastMathFlags Flags = AddOp->getFastMathFlags(); 1779 Flags &= SubOp->getFastMathFlags(); 1780 NegInst->setFastMathFlags(Flags); 1781 } 1782 } else { 1783 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1784 } 1785 1786 Value *NewTrueOp = OtherAddOp; 1787 Value *NewFalseOp = NegVal; 1788 if (AddOp != TI) 1789 std::swap(NewTrueOp, NewFalseOp); 1790 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1791 SI.getName() + ".p", &SI); 1792 1793 if (SI.getType()->isFPOrFPVectorTy()) { 1794 Instruction *RI = 1795 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1796 1797 FastMathFlags Flags = AddOp->getFastMathFlags(); 1798 Flags &= SubOp->getFastMathFlags(); 1799 RI->setFastMathFlags(Flags); 1800 return RI; 1801 } else 1802 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1803 } 1804 } 1805 return nullptr; 1806 } 1807 1808 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1809 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1810 /// Along with a number of patterns similar to: 1811 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1812 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1813 static Instruction * 1814 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1815 Value *CondVal = SI.getCondition(); 1816 Value *TrueVal = SI.getTrueValue(); 1817 Value *FalseVal = SI.getFalseValue(); 1818 1819 WithOverflowInst *II; 1820 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1821 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1822 return nullptr; 1823 1824 Value *X = II->getLHS(); 1825 Value *Y = II->getRHS(); 1826 1827 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1828 Type *Ty = Limit->getType(); 1829 1830 ICmpInst::Predicate Pred; 1831 Value *TrueVal, *FalseVal, *Op; 1832 const APInt *C; 1833 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1834 m_Value(TrueVal), m_Value(FalseVal)))) 1835 return false; 1836 1837 auto IsZeroOrOne = [](const APInt &C) { 1838 return C.isNullValue() || C.isOneValue(); 1839 }; 1840 auto IsMinMax = [&](Value *Min, Value *Max) { 1841 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1842 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1843 return match(Min, m_SpecificInt(MinVal)) && 1844 match(Max, m_SpecificInt(MaxVal)); 1845 }; 1846 1847 if (Op != X && Op != Y) 1848 return false; 1849 1850 if (IsAdd) { 1851 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1852 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1853 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1854 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1855 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1856 IsMinMax(TrueVal, FalseVal)) 1857 return true; 1858 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1859 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1860 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1861 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1862 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1863 IsMinMax(FalseVal, TrueVal)) 1864 return true; 1865 } else { 1866 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1867 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1868 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1869 IsMinMax(TrueVal, FalseVal)) 1870 return true; 1871 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1872 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1873 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1874 IsMinMax(FalseVal, TrueVal)) 1875 return true; 1876 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1877 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1878 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1879 IsMinMax(FalseVal, TrueVal)) 1880 return true; 1881 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1882 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1883 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1884 IsMinMax(TrueVal, FalseVal)) 1885 return true; 1886 } 1887 1888 return false; 1889 }; 1890 1891 Intrinsic::ID NewIntrinsicID; 1892 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1893 match(TrueVal, m_AllOnes())) 1894 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1895 NewIntrinsicID = Intrinsic::uadd_sat; 1896 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1897 match(TrueVal, m_Zero())) 1898 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1899 NewIntrinsicID = Intrinsic::usub_sat; 1900 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1901 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1902 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1903 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1904 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1905 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1906 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1907 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1908 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1909 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1910 NewIntrinsicID = Intrinsic::sadd_sat; 1911 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1912 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1913 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1914 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1915 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1916 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1917 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1918 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1919 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1920 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1921 NewIntrinsicID = Intrinsic::ssub_sat; 1922 else 1923 return nullptr; 1924 1925 Function *F = 1926 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1927 return CallInst::Create(F, {X, Y}); 1928 } 1929 1930 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 1931 Constant *C; 1932 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1933 !match(Sel.getFalseValue(), m_Constant(C))) 1934 return nullptr; 1935 1936 Instruction *ExtInst; 1937 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1938 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1939 return nullptr; 1940 1941 auto ExtOpcode = ExtInst->getOpcode(); 1942 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1943 return nullptr; 1944 1945 // If we are extending from a boolean type or if we can create a select that 1946 // has the same size operands as its condition, try to narrow the select. 1947 Value *X = ExtInst->getOperand(0); 1948 Type *SmallType = X->getType(); 1949 Value *Cond = Sel.getCondition(); 1950 auto *Cmp = dyn_cast<CmpInst>(Cond); 1951 if (!SmallType->isIntOrIntVectorTy(1) && 1952 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1953 return nullptr; 1954 1955 // If the constant is the same after truncation to the smaller type and 1956 // extension to the original type, we can narrow the select. 1957 Type *SelType = Sel.getType(); 1958 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1959 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1960 if (ExtC == C && ExtInst->hasOneUse()) { 1961 Value *TruncCVal = cast<Value>(TruncC); 1962 if (ExtInst == Sel.getFalseValue()) 1963 std::swap(X, TruncCVal); 1964 1965 // select Cond, (ext X), C --> ext(select Cond, X, C') 1966 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1967 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1968 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1969 } 1970 1971 // If one arm of the select is the extend of the condition, replace that arm 1972 // with the extension of the appropriate known bool value. 1973 if (Cond == X) { 1974 if (ExtInst == Sel.getTrueValue()) { 1975 // select X, (sext X), C --> select X, -1, C 1976 // select X, (zext X), C --> select X, 1, C 1977 Constant *One = ConstantInt::getTrue(SmallType); 1978 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1979 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1980 } else { 1981 // select X, C, (sext X) --> select X, C, 0 1982 // select X, C, (zext X) --> select X, C, 0 1983 Constant *Zero = ConstantInt::getNullValue(SelType); 1984 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1985 } 1986 } 1987 1988 return nullptr; 1989 } 1990 1991 /// Try to transform a vector select with a constant condition vector into a 1992 /// shuffle for easier combining with other shuffles and insert/extract. 1993 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1994 Value *CondVal = SI.getCondition(); 1995 Constant *CondC; 1996 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1997 return nullptr; 1998 1999 unsigned NumElts = 2000 cast<FixedVectorType>(CondVal->getType())->getNumElements(); 2001 SmallVector<int, 16> Mask; 2002 Mask.reserve(NumElts); 2003 for (unsigned i = 0; i != NumElts; ++i) { 2004 Constant *Elt = CondC->getAggregateElement(i); 2005 if (!Elt) 2006 return nullptr; 2007 2008 if (Elt->isOneValue()) { 2009 // If the select condition element is true, choose from the 1st vector. 2010 Mask.push_back(i); 2011 } else if (Elt->isNullValue()) { 2012 // If the select condition element is false, choose from the 2nd vector. 2013 Mask.push_back(i + NumElts); 2014 } else if (isa<UndefValue>(Elt)) { 2015 // Undef in a select condition (choose one of the operands) does not mean 2016 // the same thing as undef in a shuffle mask (any value is acceptable), so 2017 // give up. 2018 return nullptr; 2019 } else { 2020 // Bail out on a constant expression. 2021 return nullptr; 2022 } 2023 } 2024 2025 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2026 } 2027 2028 /// If we have a select of vectors with a scalar condition, try to convert that 2029 /// to a vector select by splatting the condition. A splat may get folded with 2030 /// other operations in IR and having all operands of a select be vector types 2031 /// is likely better for vector codegen. 2032 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2033 InstCombinerImpl &IC) { 2034 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2035 if (!Ty) 2036 return nullptr; 2037 2038 // We can replace a single-use extract with constant index. 2039 Value *Cond = Sel.getCondition(); 2040 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2041 return nullptr; 2042 2043 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2044 // Splatting the extracted condition reduces code (we could directly create a 2045 // splat shuffle of the source vector to eliminate the intermediate step). 2046 return IC.replaceOperand( 2047 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2048 } 2049 2050 /// Reuse bitcasted operands between a compare and select: 2051 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2052 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2053 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2054 InstCombiner::BuilderTy &Builder) { 2055 Value *Cond = Sel.getCondition(); 2056 Value *TVal = Sel.getTrueValue(); 2057 Value *FVal = Sel.getFalseValue(); 2058 2059 CmpInst::Predicate Pred; 2060 Value *A, *B; 2061 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2062 return nullptr; 2063 2064 // The select condition is a compare instruction. If the select's true/false 2065 // values are already the same as the compare operands, there's nothing to do. 2066 if (TVal == A || TVal == B || FVal == A || FVal == B) 2067 return nullptr; 2068 2069 Value *C, *D; 2070 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2071 return nullptr; 2072 2073 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2074 Value *TSrc, *FSrc; 2075 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2076 !match(FVal, m_BitCast(m_Value(FSrc)))) 2077 return nullptr; 2078 2079 // If the select true/false values are *different bitcasts* of the same source 2080 // operands, make the select operands the same as the compare operands and 2081 // cast the result. This is the canonical select form for min/max. 2082 Value *NewSel; 2083 if (TSrc == C && FSrc == D) { 2084 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2085 // bitcast (select (cmp A, B), A, B) 2086 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2087 } else if (TSrc == D && FSrc == C) { 2088 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2089 // bitcast (select (cmp A, B), B, A) 2090 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2091 } else { 2092 return nullptr; 2093 } 2094 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2095 } 2096 2097 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2098 /// instructions. 2099 /// 2100 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2101 /// selects between the returned value of the cmpxchg instruction its compare 2102 /// operand, the result of the select will always be equal to its false value. 2103 /// For example: 2104 /// 2105 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2106 /// %1 = extractvalue { i64, i1 } %0, 1 2107 /// %2 = extractvalue { i64, i1 } %0, 0 2108 /// %3 = select i1 %1, i64 %compare, i64 %2 2109 /// ret i64 %3 2110 /// 2111 /// The returned value of the cmpxchg instruction (%2) is the original value 2112 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2113 /// must have been equal to %compare. Thus, the result of the select is always 2114 /// equal to %2, and the code can be simplified to: 2115 /// 2116 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2117 /// %1 = extractvalue { i64, i1 } %0, 0 2118 /// ret i64 %1 2119 /// 2120 static Value *foldSelectCmpXchg(SelectInst &SI) { 2121 // A helper that determines if V is an extractvalue instruction whose 2122 // aggregate operand is a cmpxchg instruction and whose single index is equal 2123 // to I. If such conditions are true, the helper returns the cmpxchg 2124 // instruction; otherwise, a nullptr is returned. 2125 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2126 auto *Extract = dyn_cast<ExtractValueInst>(V); 2127 if (!Extract) 2128 return nullptr; 2129 if (Extract->getIndices()[0] != I) 2130 return nullptr; 2131 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2132 }; 2133 2134 // If the select has a single user, and this user is a select instruction that 2135 // we can simplify, skip the cmpxchg simplification for now. 2136 if (SI.hasOneUse()) 2137 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2138 if (Select->getCondition() == SI.getCondition()) 2139 if (Select->getFalseValue() == SI.getTrueValue() || 2140 Select->getTrueValue() == SI.getFalseValue()) 2141 return nullptr; 2142 2143 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2144 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2145 if (!CmpXchg) 2146 return nullptr; 2147 2148 // Check the true value case: The true value of the select is the returned 2149 // value of the same cmpxchg used by the condition, and the false value is the 2150 // cmpxchg instruction's compare operand. 2151 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2152 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2153 return SI.getFalseValue(); 2154 2155 // Check the false value case: The false value of the select is the returned 2156 // value of the same cmpxchg used by the condition, and the true value is the 2157 // cmpxchg instruction's compare operand. 2158 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2159 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2160 return SI.getFalseValue(); 2161 2162 return nullptr; 2163 } 2164 2165 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2166 Value *Y, 2167 InstCombiner::BuilderTy &Builder) { 2168 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2169 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2170 SPF == SelectPatternFlavor::SPF_UMAX; 2171 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2172 // the constant value check to an assert. 2173 Value *A; 2174 const APInt *C1, *C2; 2175 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2176 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2177 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2178 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2179 Value *NewMinMax = createMinMax(Builder, SPF, A, 2180 ConstantInt::get(X->getType(), *C2 - *C1)); 2181 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2182 ConstantInt::get(X->getType(), *C1)); 2183 } 2184 2185 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2186 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2187 bool Overflow; 2188 APInt Diff = C2->ssub_ov(*C1, Overflow); 2189 if (!Overflow) { 2190 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2191 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2192 Value *NewMinMax = createMinMax(Builder, SPF, A, 2193 ConstantInt::get(X->getType(), Diff)); 2194 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2195 ConstantInt::get(X->getType(), *C1)); 2196 } 2197 } 2198 2199 return nullptr; 2200 } 2201 2202 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2203 Instruction *InstCombinerImpl::matchSAddSubSat(SelectInst &MinMax1) { 2204 Type *Ty = MinMax1.getType(); 2205 2206 // We are looking for a tree of: 2207 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2208 // Where the min and max could be reversed 2209 Instruction *MinMax2; 2210 BinaryOperator *AddSub; 2211 const APInt *MinValue, *MaxValue; 2212 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2213 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2214 return nullptr; 2215 } else if (match(&MinMax1, 2216 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2217 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2218 return nullptr; 2219 } else 2220 return nullptr; 2221 2222 // Check that the constants clamp a saturate, and that the new type would be 2223 // sensible to convert to. 2224 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2225 return nullptr; 2226 // In what bitwidth can this be treated as saturating arithmetics? 2227 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2228 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2229 // good first approximation for what should be done there. 2230 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2231 return nullptr; 2232 2233 // Also make sure that the number of uses is as expected. The "3"s are for the 2234 // the two items of min/max (the compare and the select). 2235 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3)) 2236 return nullptr; 2237 2238 // Create the new type (which can be a vector type) 2239 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2240 // Match the two extends from the add/sub 2241 Value *A, *B; 2242 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B))))) 2243 return nullptr; 2244 // And check the incoming values are of a type smaller than or equal to the 2245 // size of the saturation. Otherwise the higher bits can cause different 2246 // results. 2247 if (A->getType()->getScalarSizeInBits() > NewBitWidth || 2248 B->getType()->getScalarSizeInBits() > NewBitWidth) 2249 return nullptr; 2250 2251 Intrinsic::ID IntrinsicID; 2252 if (AddSub->getOpcode() == Instruction::Add) 2253 IntrinsicID = Intrinsic::sadd_sat; 2254 else if (AddSub->getOpcode() == Instruction::Sub) 2255 IntrinsicID = Intrinsic::ssub_sat; 2256 else 2257 return nullptr; 2258 2259 // Finally create and return the sat intrinsic, truncated to the new type 2260 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2261 Value *AT = Builder.CreateSExt(A, NewTy); 2262 Value *BT = Builder.CreateSExt(B, NewTy); 2263 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2264 return CastInst::Create(Instruction::SExt, Sat, Ty); 2265 } 2266 2267 /// Reduce a sequence of min/max with a common operand. 2268 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2269 Value *RHS, 2270 InstCombiner::BuilderTy &Builder) { 2271 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2272 // TODO: Allow FP min/max with nnan/nsz. 2273 if (!LHS->getType()->isIntOrIntVectorTy()) 2274 return nullptr; 2275 2276 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2277 Value *A, *B, *C, *D; 2278 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2279 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2280 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2281 return nullptr; 2282 2283 // Look for a common operand. The use checks are different than usual because 2284 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2285 // the select. 2286 Value *MinMaxOp = nullptr; 2287 Value *ThirdOp = nullptr; 2288 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2289 // If the LHS is only used in this chain and the RHS is used outside of it, 2290 // reuse the RHS min/max because that will eliminate the LHS. 2291 if (D == A || C == A) { 2292 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2293 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2294 MinMaxOp = RHS; 2295 ThirdOp = B; 2296 } else if (D == B || C == B) { 2297 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2298 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2299 MinMaxOp = RHS; 2300 ThirdOp = A; 2301 } 2302 } else if (!RHS->hasNUsesOrMore(3)) { 2303 // Reuse the LHS. This will eliminate the RHS. 2304 if (D == A || D == B) { 2305 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2306 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2307 MinMaxOp = LHS; 2308 ThirdOp = C; 2309 } else if (C == A || C == B) { 2310 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2311 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2312 MinMaxOp = LHS; 2313 ThirdOp = D; 2314 } 2315 } 2316 if (!MinMaxOp || !ThirdOp) 2317 return nullptr; 2318 2319 CmpInst::Predicate P = getMinMaxPred(SPF); 2320 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2321 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2322 } 2323 2324 /// Try to reduce a rotate pattern that includes a compare and select into a 2325 /// funnel shift intrinsic. Example: 2326 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2327 /// --> call llvm.fshl.i32(a, a, b) 2328 static Instruction *foldSelectRotate(SelectInst &Sel, 2329 InstCombiner::BuilderTy &Builder) { 2330 // The false value of the select must be a rotate of the true value. 2331 Value *Or0, *Or1; 2332 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 2333 return nullptr; 2334 2335 Value *TVal = Sel.getTrueValue(); 2336 Value *SA0, *SA1; 2337 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), 2338 m_ZExtOrSelf(m_Value(SA0))))) || 2339 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), 2340 m_ZExtOrSelf(m_Value(SA1)))))) 2341 return nullptr; 2342 2343 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 2344 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 2345 if (ShiftOpcode0 == ShiftOpcode1) 2346 return nullptr; 2347 2348 // We have one of these patterns so far: 2349 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) 2350 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) 2351 // This must be a power-of-2 rotate for a bitmasking transform to be valid. 2352 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2353 if (!isPowerOf2_32(Width)) 2354 return nullptr; 2355 2356 // Check the shift amounts to see if they are an opposite pair. 2357 Value *ShAmt; 2358 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2359 ShAmt = SA0; 2360 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2361 ShAmt = SA1; 2362 else 2363 return nullptr; 2364 2365 // Finally, see if the select is filtering out a shift-by-zero. 2366 Value *Cond = Sel.getCondition(); 2367 ICmpInst::Predicate Pred; 2368 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2369 Pred != ICmpInst::ICMP_EQ) 2370 return nullptr; 2371 2372 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2373 // Convert to funnel shift intrinsic. 2374 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || 2375 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); 2376 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2377 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2378 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2379 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); 2380 } 2381 2382 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2383 InstCombiner::BuilderTy &Builder) { 2384 Value *Cond = Sel.getCondition(); 2385 Value *TVal = Sel.getTrueValue(); 2386 Value *FVal = Sel.getFalseValue(); 2387 Type *SelType = Sel.getType(); 2388 2389 // Match select ?, TC, FC where the constants are equal but negated. 2390 // TODO: Generalize to handle a negated variable operand? 2391 const APFloat *TC, *FC; 2392 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2393 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2394 return nullptr; 2395 2396 assert(TC != FC && "Expected equal select arms to simplify"); 2397 2398 Value *X; 2399 const APInt *C; 2400 bool IsTrueIfSignSet; 2401 ICmpInst::Predicate Pred; 2402 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2403 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2404 X->getType() != SelType) 2405 return nullptr; 2406 2407 // If needed, negate the value that will be the sign argument of the copysign: 2408 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2409 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2410 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2411 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2412 if (IsTrueIfSignSet ^ TC->isNegative()) 2413 X = Builder.CreateFNegFMF(X, &Sel); 2414 2415 // Canonicalize the magnitude argument as the positive constant since we do 2416 // not care about its sign. 2417 Value *MagArg = TC->isNegative() ? FVal : TVal; 2418 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2419 Sel.getType()); 2420 Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X }); 2421 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2422 return CopySign; 2423 } 2424 2425 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2426 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2427 if (!VecTy) 2428 return nullptr; 2429 2430 unsigned NumElts = VecTy->getNumElements(); 2431 APInt UndefElts(NumElts, 0); 2432 APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts)); 2433 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2434 if (V != &Sel) 2435 return replaceInstUsesWith(Sel, V); 2436 return &Sel; 2437 } 2438 2439 // A select of a "select shuffle" with a common operand can be rearranged 2440 // to select followed by "select shuffle". Because of poison, this only works 2441 // in the case of a shuffle with no undefined mask elements. 2442 Value *Cond = Sel.getCondition(); 2443 Value *TVal = Sel.getTrueValue(); 2444 Value *FVal = Sel.getFalseValue(); 2445 Value *X, *Y; 2446 ArrayRef<int> Mask; 2447 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2448 !is_contained(Mask, UndefMaskElem) && 2449 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2450 if (X == FVal) { 2451 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2452 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2453 return new ShuffleVectorInst(X, NewSel, Mask); 2454 } 2455 if (Y == FVal) { 2456 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2457 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2458 return new ShuffleVectorInst(NewSel, Y, Mask); 2459 } 2460 } 2461 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2462 !is_contained(Mask, UndefMaskElem) && 2463 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2464 if (X == TVal) { 2465 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2466 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2467 return new ShuffleVectorInst(X, NewSel, Mask); 2468 } 2469 if (Y == TVal) { 2470 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2471 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2472 return new ShuffleVectorInst(NewSel, Y, Mask); 2473 } 2474 } 2475 2476 return nullptr; 2477 } 2478 2479 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2480 const DominatorTree &DT, 2481 InstCombiner::BuilderTy &Builder) { 2482 // Find the block's immediate dominator that ends with a conditional branch 2483 // that matches select's condition (maybe inverted). 2484 auto *IDomNode = DT[BB]->getIDom(); 2485 if (!IDomNode) 2486 return nullptr; 2487 BasicBlock *IDom = IDomNode->getBlock(); 2488 2489 Value *Cond = Sel.getCondition(); 2490 Value *IfTrue, *IfFalse; 2491 BasicBlock *TrueSucc, *FalseSucc; 2492 if (match(IDom->getTerminator(), 2493 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2494 m_BasicBlock(FalseSucc)))) { 2495 IfTrue = Sel.getTrueValue(); 2496 IfFalse = Sel.getFalseValue(); 2497 } else if (match(IDom->getTerminator(), 2498 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2499 m_BasicBlock(FalseSucc)))) { 2500 IfTrue = Sel.getFalseValue(); 2501 IfFalse = Sel.getTrueValue(); 2502 } else 2503 return nullptr; 2504 2505 // Make sure the branches are actually different. 2506 if (TrueSucc == FalseSucc) 2507 return nullptr; 2508 2509 // We want to replace select %cond, %a, %b with a phi that takes value %a 2510 // for all incoming edges that are dominated by condition `%cond == true`, 2511 // and value %b for edges dominated by condition `%cond == false`. If %a 2512 // or %b are also phis from the same basic block, we can go further and take 2513 // their incoming values from the corresponding blocks. 2514 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2515 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2516 DenseMap<BasicBlock *, Value *> Inputs; 2517 for (auto *Pred : predecessors(BB)) { 2518 // Check implication. 2519 BasicBlockEdge Incoming(Pred, BB); 2520 if (DT.dominates(TrueEdge, Incoming)) 2521 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2522 else if (DT.dominates(FalseEdge, Incoming)) 2523 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2524 else 2525 return nullptr; 2526 // Check availability. 2527 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2528 if (!DT.dominates(Insn, Pred->getTerminator())) 2529 return nullptr; 2530 } 2531 2532 Builder.SetInsertPoint(&*BB->begin()); 2533 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2534 for (auto *Pred : predecessors(BB)) 2535 PN->addIncoming(Inputs[Pred], Pred); 2536 PN->takeName(&Sel); 2537 return PN; 2538 } 2539 2540 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2541 InstCombiner::BuilderTy &Builder) { 2542 // Try to replace this select with Phi in one of these blocks. 2543 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2544 CandidateBlocks.insert(Sel.getParent()); 2545 for (Value *V : Sel.operands()) 2546 if (auto *I = dyn_cast<Instruction>(V)) 2547 CandidateBlocks.insert(I->getParent()); 2548 2549 for (BasicBlock *BB : CandidateBlocks) 2550 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2551 return PN; 2552 return nullptr; 2553 } 2554 2555 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2556 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2557 if (!FI) 2558 return nullptr; 2559 2560 Value *Cond = FI->getOperand(0); 2561 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2562 2563 // select (freeze(x == y)), x, y --> y 2564 // select (freeze(x != y)), x, y --> x 2565 // The freeze should be only used by this select. Otherwise, remaining uses of 2566 // the freeze can observe a contradictory value. 2567 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2568 // a = select c, x, y ; 2569 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2570 // ; to y, this can happen. 2571 CmpInst::Predicate Pred; 2572 if (FI->hasOneUse() && 2573 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2574 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2575 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2576 } 2577 2578 return nullptr; 2579 } 2580 2581 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2582 Value *CondVal = SI.getCondition(); 2583 Value *TrueVal = SI.getTrueValue(); 2584 Value *FalseVal = SI.getFalseValue(); 2585 Type *SelType = SI.getType(); 2586 2587 // FIXME: Remove this workaround when freeze related patches are done. 2588 // For select with undef operand which feeds into an equality comparison, 2589 // don't simplify it so loop unswitch can know the equality comparison 2590 // may have an undef operand. This is a workaround for PR31652 caused by 2591 // descrepancy about branch on undef between LoopUnswitch and GVN. 2592 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 2593 if (llvm::any_of(SI.users(), [&](User *U) { 2594 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2595 if (CI && CI->isEquality()) 2596 return true; 2597 return false; 2598 })) { 2599 return nullptr; 2600 } 2601 } 2602 2603 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2604 SQ.getWithInstruction(&SI))) 2605 return replaceInstUsesWith(SI, V); 2606 2607 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2608 return I; 2609 2610 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2611 return I; 2612 2613 CmpInst::Predicate Pred; 2614 2615 if (SelType->isIntOrIntVectorTy(1) && 2616 TrueVal->getType() == CondVal->getType()) { 2617 if (match(TrueVal, m_One())) { 2618 // Change: A = select B, true, C --> A = or B, C 2619 return BinaryOperator::CreateOr(CondVal, FalseVal); 2620 } 2621 if (match(TrueVal, m_Zero())) { 2622 // Change: A = select B, false, C --> A = and !B, C 2623 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2624 return BinaryOperator::CreateAnd(NotCond, FalseVal); 2625 } 2626 if (match(FalseVal, m_Zero())) { 2627 // Change: A = select B, C, false --> A = and B, C 2628 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2629 } 2630 if (match(FalseVal, m_One())) { 2631 // Change: A = select B, C, true --> A = or !B, C 2632 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2633 return BinaryOperator::CreateOr(NotCond, TrueVal); 2634 } 2635 2636 // select a, a, b -> a | b 2637 // select a, b, a -> a & b 2638 if (CondVal == TrueVal) 2639 return BinaryOperator::CreateOr(CondVal, FalseVal); 2640 if (CondVal == FalseVal) 2641 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2642 2643 // select a, ~a, b -> (~a) & b 2644 // select a, b, ~a -> (~a) | b 2645 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2646 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 2647 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2648 return BinaryOperator::CreateOr(TrueVal, FalseVal); 2649 } 2650 2651 // Selecting between two integer or vector splat integer constants? 2652 // 2653 // Note that we don't handle a scalar select of vectors: 2654 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2655 // because that may need 3 instructions to splat the condition value: 2656 // extend, insertelement, shufflevector. 2657 if (SelType->isIntOrIntVectorTy() && 2658 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2659 // select C, 1, 0 -> zext C to int 2660 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2661 return new ZExtInst(CondVal, SelType); 2662 2663 // select C, -1, 0 -> sext C to int 2664 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2665 return new SExtInst(CondVal, SelType); 2666 2667 // select C, 0, 1 -> zext !C to int 2668 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2669 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2670 return new ZExtInst(NotCond, SelType); 2671 } 2672 2673 // select C, 0, -1 -> sext !C to int 2674 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2675 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2676 return new SExtInst(NotCond, SelType); 2677 } 2678 } 2679 2680 // See if we are selecting two values based on a comparison of the two values. 2681 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 2682 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1); 2683 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2684 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2685 // Canonicalize to use ordered comparisons by swapping the select 2686 // operands. 2687 // 2688 // e.g. 2689 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2690 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 2691 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 2692 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2693 // FIXME: The FMF should propagate from the select, not the fcmp. 2694 Builder.setFastMathFlags(FCI->getFastMathFlags()); 2695 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2696 FCI->getName() + ".inv"); 2697 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2698 return replaceInstUsesWith(SI, NewSel); 2699 } 2700 2701 // NOTE: if we wanted to, this is where to detect MIN/MAX 2702 } 2703 } 2704 2705 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2706 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 2707 // also require nnan because we do not want to unintentionally change the 2708 // sign of a NaN value. 2709 // FIXME: These folds should test/propagate FMF from the select, not the 2710 // fsub or fneg. 2711 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2712 Instruction *FSub; 2713 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2714 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2715 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2716 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2717 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub); 2718 return replaceInstUsesWith(SI, Fabs); 2719 } 2720 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2721 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2722 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2723 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2724 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2725 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub); 2726 return replaceInstUsesWith(SI, Fabs); 2727 } 2728 // With nnan and nsz: 2729 // (X < +/-0.0) ? -X : X --> fabs(X) 2730 // (X <= +/-0.0) ? -X : X --> fabs(X) 2731 Instruction *FNeg; 2732 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2733 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && 2734 match(TrueVal, m_Instruction(FNeg)) && 2735 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2736 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2737 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2738 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg); 2739 return replaceInstUsesWith(SI, Fabs); 2740 } 2741 // With nnan and nsz: 2742 // (X > +/-0.0) ? X : -X --> fabs(X) 2743 // (X >= +/-0.0) ? X : -X --> fabs(X) 2744 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2745 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && 2746 match(FalseVal, m_Instruction(FNeg)) && 2747 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2748 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2749 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2750 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg); 2751 return replaceInstUsesWith(SI, Fabs); 2752 } 2753 2754 // See if we are selecting two values based on a comparison of the two values. 2755 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2756 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2757 return Result; 2758 2759 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2760 return Add; 2761 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2762 return Add; 2763 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2764 return Or; 2765 2766 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2767 auto *TI = dyn_cast<Instruction>(TrueVal); 2768 auto *FI = dyn_cast<Instruction>(FalseVal); 2769 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2770 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2771 return IV; 2772 2773 if (Instruction *I = foldSelectExtConst(SI)) 2774 return I; 2775 2776 // See if we can fold the select into one of our operands. 2777 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2778 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2779 return FoldI; 2780 2781 Value *LHS, *RHS; 2782 Instruction::CastOps CastOp; 2783 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2784 auto SPF = SPR.Flavor; 2785 if (SPF) { 2786 Value *LHS2, *RHS2; 2787 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2788 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2789 RHS2, SI, SPF, RHS)) 2790 return R; 2791 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2792 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2793 RHS2, SI, SPF, LHS)) 2794 return R; 2795 // TODO. 2796 // ABS(-X) -> ABS(X) 2797 } 2798 2799 if (SelectPatternResult::isMinOrMax(SPF)) { 2800 // Canonicalize so that 2801 // - type casts are outside select patterns. 2802 // - float clamp is transformed to min/max pattern 2803 2804 bool IsCastNeeded = LHS->getType() != SelType; 2805 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2806 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2807 if (IsCastNeeded || 2808 (LHS->getType()->isFPOrFPVectorTy() && 2809 ((CmpLHS != LHS && CmpLHS != RHS) || 2810 (CmpRHS != LHS && CmpRHS != RHS)))) { 2811 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2812 2813 Value *Cmp; 2814 if (CmpInst::isIntPredicate(MinMaxPred)) { 2815 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2816 } else { 2817 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2818 auto FMF = 2819 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2820 Builder.setFastMathFlags(FMF); 2821 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2822 } 2823 2824 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2825 if (!IsCastNeeded) 2826 return replaceInstUsesWith(SI, NewSI); 2827 2828 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2829 return replaceInstUsesWith(SI, NewCast); 2830 } 2831 2832 // MAX(~a, ~b) -> ~MIN(a, b) 2833 // MAX(~a, C) -> ~MIN(a, ~C) 2834 // MIN(~a, ~b) -> ~MAX(a, b) 2835 // MIN(~a, C) -> ~MAX(a, ~C) 2836 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 2837 Value *A; 2838 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 2839 !isFreeToInvert(A, A->hasOneUse()) && 2840 // Passing false to only consider m_Not and constants. 2841 isFreeToInvert(Y, false)) { 2842 Value *B = Builder.CreateNot(Y); 2843 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 2844 A, B); 2845 // Copy the profile metadata. 2846 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 2847 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 2848 // Swap the metadata if the operands are swapped. 2849 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 2850 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 2851 } 2852 2853 return BinaryOperator::CreateNot(NewMinMax); 2854 } 2855 2856 return nullptr; 2857 }; 2858 2859 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 2860 return I; 2861 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2862 return I; 2863 2864 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2865 return I; 2866 2867 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2868 return I; 2869 if (Instruction *I = matchSAddSubSat(SI)) 2870 return I; 2871 } 2872 } 2873 2874 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2875 // minnum/maxnum intrinsics. 2876 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2877 Value *X, *Y; 2878 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2879 return replaceInstUsesWith( 2880 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2881 2882 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2883 return replaceInstUsesWith( 2884 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 2885 } 2886 2887 // See if we can fold the select into a phi node if the condition is a select. 2888 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2889 // The true/false values have to be live in the PHI predecessor's blocks. 2890 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2891 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2892 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2893 return NV; 2894 2895 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2896 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2897 // select(C, select(C, a, b), c) -> select(C, a, c) 2898 if (TrueSI->getCondition() == CondVal) { 2899 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2900 return nullptr; 2901 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 2902 } 2903 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2904 // We choose this as normal form to enable folding on the And and 2905 // shortening paths for the values (this helps getUnderlyingObjects() for 2906 // example). 2907 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2908 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 2909 replaceOperand(SI, 0, And); 2910 replaceOperand(SI, 1, TrueSI->getTrueValue()); 2911 return &SI; 2912 } 2913 } 2914 } 2915 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2916 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2917 // select(C, a, select(C, b, c)) -> select(C, a, c) 2918 if (FalseSI->getCondition() == CondVal) { 2919 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2920 return nullptr; 2921 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 2922 } 2923 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2924 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2925 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 2926 replaceOperand(SI, 0, Or); 2927 replaceOperand(SI, 2, FalseSI->getFalseValue()); 2928 return &SI; 2929 } 2930 } 2931 } 2932 2933 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2934 // The select might be preventing a division by 0. 2935 switch (BO->getOpcode()) { 2936 default: 2937 return true; 2938 case Instruction::SRem: 2939 case Instruction::URem: 2940 case Instruction::SDiv: 2941 case Instruction::UDiv: 2942 return false; 2943 } 2944 }; 2945 2946 // Try to simplify a binop sandwiched between 2 selects with the same 2947 // condition. 2948 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 2949 BinaryOperator *TrueBO; 2950 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 2951 canMergeSelectThroughBinop(TrueBO)) { 2952 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 2953 if (TrueBOSI->getCondition() == CondVal) { 2954 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 2955 Worklist.push(TrueBO); 2956 return &SI; 2957 } 2958 } 2959 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 2960 if (TrueBOSI->getCondition() == CondVal) { 2961 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 2962 Worklist.push(TrueBO); 2963 return &SI; 2964 } 2965 } 2966 } 2967 2968 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2969 BinaryOperator *FalseBO; 2970 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2971 canMergeSelectThroughBinop(FalseBO)) { 2972 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2973 if (FalseBOSI->getCondition() == CondVal) { 2974 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 2975 Worklist.push(FalseBO); 2976 return &SI; 2977 } 2978 } 2979 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2980 if (FalseBOSI->getCondition() == CondVal) { 2981 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 2982 Worklist.push(FalseBO); 2983 return &SI; 2984 } 2985 } 2986 } 2987 2988 Value *NotCond; 2989 if (match(CondVal, m_Not(m_Value(NotCond)))) { 2990 replaceOperand(SI, 0, NotCond); 2991 SI.swapValues(); 2992 SI.swapProfMetadata(); 2993 return &SI; 2994 } 2995 2996 if (Instruction *I = foldVectorSelect(SI)) 2997 return I; 2998 2999 // If we can compute the condition, there's no need for a select. 3000 // Like the above fold, we are attempting to reduce compile-time cost by 3001 // putting this fold here with limitations rather than in InstSimplify. 3002 // The motivation for this call into value tracking is to take advantage of 3003 // the assumption cache, so make sure that is populated. 3004 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3005 KnownBits Known(1); 3006 computeKnownBits(CondVal, Known, 0, &SI); 3007 if (Known.One.isOneValue()) 3008 return replaceInstUsesWith(SI, TrueVal); 3009 if (Known.Zero.isOneValue()) 3010 return replaceInstUsesWith(SI, FalseVal); 3011 } 3012 3013 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3014 return BitCastSel; 3015 3016 // Simplify selects that test the returned flag of cmpxchg instructions. 3017 if (Value *V = foldSelectCmpXchg(SI)) 3018 return replaceInstUsesWith(SI, V); 3019 3020 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3021 return Select; 3022 3023 if (Instruction *Rot = foldSelectRotate(SI, Builder)) 3024 return Rot; 3025 3026 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3027 return Copysign; 3028 3029 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3030 return replaceInstUsesWith(SI, PN); 3031 3032 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3033 return replaceInstUsesWith(SI, Fr); 3034 3035 return nullptr; 3036 } 3037