1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CmpInstAnalysis.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 42 #include <cassert> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 51 SelectPatternFlavor SPF, Value *A, Value *B) { 52 CmpInst::Predicate Pred = getMinMaxPred(SPF); 53 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 54 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 55 } 56 57 /// This folds: 58 /// select (icmp eq (and X, C1)), TC, FC 59 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 60 /// To something like: 61 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 62 /// Or: 63 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 64 /// With some variations depending if FC is larger than TC, or the shift 65 /// isn't needed, or the bit widths don't match. 66 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 67 InstCombiner::BuilderTy &Builder) { 68 const APInt *SelTC, *SelFC; 69 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 70 !match(Sel.getFalseValue(), m_APInt(SelFC))) 71 return nullptr; 72 73 // If this is a vector select, we need a vector compare. 74 Type *SelType = Sel.getType(); 75 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 76 return nullptr; 77 78 Value *V; 79 APInt AndMask; 80 bool CreateAnd = false; 81 ICmpInst::Predicate Pred = Cmp->getPredicate(); 82 if (ICmpInst::isEquality(Pred)) { 83 if (!match(Cmp->getOperand(1), m_Zero())) 84 return nullptr; 85 86 V = Cmp->getOperand(0); 87 const APInt *AndRHS; 88 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 89 return nullptr; 90 91 AndMask = *AndRHS; 92 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 93 Pred, V, AndMask)) { 94 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 95 if (!AndMask.isPowerOf2()) 96 return nullptr; 97 98 CreateAnd = true; 99 } else { 100 return nullptr; 101 } 102 103 // In general, when both constants are non-zero, we would need an offset to 104 // replace the select. This would require more instructions than we started 105 // with. But there's one special-case that we handle here because it can 106 // simplify/reduce the instructions. 107 APInt TC = *SelTC; 108 APInt FC = *SelFC; 109 if (!TC.isNullValue() && !FC.isNullValue()) { 110 // If the select constants differ by exactly one bit and that's the same 111 // bit that is masked and checked by the select condition, the select can 112 // be replaced by bitwise logic to set/clear one bit of the constant result. 113 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 114 return nullptr; 115 if (CreateAnd) { 116 // If we have to create an 'and', then we must kill the cmp to not 117 // increase the instruction count. 118 if (!Cmp->hasOneUse()) 119 return nullptr; 120 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 121 } 122 bool ExtraBitInTC = TC.ugt(FC); 123 if (Pred == ICmpInst::ICMP_EQ) { 124 // If the masked bit in V is clear, clear or set the bit in the result: 125 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 126 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 127 Constant *C = ConstantInt::get(SelType, TC); 128 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 129 } 130 if (Pred == ICmpInst::ICMP_NE) { 131 // If the masked bit in V is set, set or clear the bit in the result: 132 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 133 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 134 Constant *C = ConstantInt::get(SelType, FC); 135 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 136 } 137 llvm_unreachable("Only expecting equality predicates"); 138 } 139 140 // Make sure one of the select arms is a power-of-2. 141 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 142 return nullptr; 143 144 // Determine which shift is needed to transform result of the 'and' into the 145 // desired result. 146 const APInt &ValC = !TC.isNullValue() ? TC : FC; 147 unsigned ValZeros = ValC.logBase2(); 148 unsigned AndZeros = AndMask.logBase2(); 149 150 // Insert the 'and' instruction on the input to the truncate. 151 if (CreateAnd) 152 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 153 154 // If types don't match, we can still convert the select by introducing a zext 155 // or a trunc of the 'and'. 156 if (ValZeros > AndZeros) { 157 V = Builder.CreateZExtOrTrunc(V, SelType); 158 V = Builder.CreateShl(V, ValZeros - AndZeros); 159 } else if (ValZeros < AndZeros) { 160 V = Builder.CreateLShr(V, AndZeros - ValZeros); 161 V = Builder.CreateZExtOrTrunc(V, SelType); 162 } else { 163 V = Builder.CreateZExtOrTrunc(V, SelType); 164 } 165 166 // Okay, now we know that everything is set up, we just don't know whether we 167 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 168 bool ShouldNotVal = !TC.isNullValue(); 169 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 170 if (ShouldNotVal) 171 V = Builder.CreateXor(V, ValC); 172 173 return V; 174 } 175 176 /// We want to turn code that looks like this: 177 /// %C = or %A, %B 178 /// %D = select %cond, %C, %A 179 /// into: 180 /// %C = select %cond, %B, 0 181 /// %D = or %A, %C 182 /// 183 /// Assuming that the specified instruction is an operand to the select, return 184 /// a bitmask indicating which operands of this instruction are foldable if they 185 /// equal the other incoming value of the select. 186 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 187 switch (I->getOpcode()) { 188 case Instruction::Add: 189 case Instruction::Mul: 190 case Instruction::And: 191 case Instruction::Or: 192 case Instruction::Xor: 193 return 3; // Can fold through either operand. 194 case Instruction::Sub: // Can only fold on the amount subtracted. 195 case Instruction::Shl: // Can only fold on the shift amount. 196 case Instruction::LShr: 197 case Instruction::AShr: 198 return 1; 199 default: 200 return 0; // Cannot fold 201 } 202 } 203 204 /// For the same transformation as the previous function, return the identity 205 /// constant that goes into the select. 206 static APInt getSelectFoldableConstant(BinaryOperator *I) { 207 switch (I->getOpcode()) { 208 default: llvm_unreachable("This cannot happen!"); 209 case Instruction::Add: 210 case Instruction::Sub: 211 case Instruction::Or: 212 case Instruction::Xor: 213 case Instruction::Shl: 214 case Instruction::LShr: 215 case Instruction::AShr: 216 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 217 case Instruction::And: 218 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 219 case Instruction::Mul: 220 return APInt(I->getType()->getScalarSizeInBits(), 1); 221 } 222 } 223 224 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 225 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 226 Instruction *FI) { 227 // Don't break up min/max patterns. The hasOneUse checks below prevent that 228 // for most cases, but vector min/max with bitcasts can be transformed. If the 229 // one-use restrictions are eased for other patterns, we still don't want to 230 // obfuscate min/max. 231 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 232 match(&SI, m_SMax(m_Value(), m_Value())) || 233 match(&SI, m_UMin(m_Value(), m_Value())) || 234 match(&SI, m_UMax(m_Value(), m_Value())))) 235 return nullptr; 236 237 // If this is a cast from the same type, merge. 238 if (TI->getNumOperands() == 1 && TI->isCast()) { 239 Type *FIOpndTy = FI->getOperand(0)->getType(); 240 if (TI->getOperand(0)->getType() != FIOpndTy) 241 return nullptr; 242 243 // The select condition may be a vector. We may only change the operand 244 // type if the vector width remains the same (and matches the condition). 245 Type *CondTy = SI.getCondition()->getType(); 246 if (CondTy->isVectorTy()) { 247 if (!FIOpndTy->isVectorTy()) 248 return nullptr; 249 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 250 return nullptr; 251 252 // TODO: If the backend knew how to deal with casts better, we could 253 // remove this limitation. For now, there's too much potential to create 254 // worse codegen by promoting the select ahead of size-altering casts 255 // (PR28160). 256 // 257 // Note that ValueTracking's matchSelectPattern() looks through casts 258 // without checking 'hasOneUse' when it matches min/max patterns, so this 259 // transform may end up happening anyway. 260 if (TI->getOpcode() != Instruction::BitCast && 261 (!TI->hasOneUse() || !FI->hasOneUse())) 262 return nullptr; 263 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 264 // TODO: The one-use restrictions for a scalar select could be eased if 265 // the fold of a select in visitLoadInst() was enhanced to match a pattern 266 // that includes a cast. 267 return nullptr; 268 } 269 270 // Fold this by inserting a select from the input values. 271 Value *NewSI = 272 Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), 273 FI->getOperand(0), SI.getName() + ".v", &SI); 274 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 275 TI->getType()); 276 } 277 278 // Only handle binary operators (including two-operand getelementptr) with 279 // one-use here. As with the cast case above, it may be possible to relax the 280 // one-use constraint, but that needs be examined carefully since it may not 281 // reduce the total number of instructions. 282 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 283 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 284 !TI->hasOneUse() || !FI->hasOneUse()) 285 return nullptr; 286 287 // Figure out if the operations have any operands in common. 288 Value *MatchOp, *OtherOpT, *OtherOpF; 289 bool MatchIsOpZero; 290 if (TI->getOperand(0) == FI->getOperand(0)) { 291 MatchOp = TI->getOperand(0); 292 OtherOpT = TI->getOperand(1); 293 OtherOpF = FI->getOperand(1); 294 MatchIsOpZero = true; 295 } else if (TI->getOperand(1) == FI->getOperand(1)) { 296 MatchOp = TI->getOperand(1); 297 OtherOpT = TI->getOperand(0); 298 OtherOpF = FI->getOperand(0); 299 MatchIsOpZero = false; 300 } else if (!TI->isCommutative()) { 301 return nullptr; 302 } else if (TI->getOperand(0) == FI->getOperand(1)) { 303 MatchOp = TI->getOperand(0); 304 OtherOpT = TI->getOperand(1); 305 OtherOpF = FI->getOperand(0); 306 MatchIsOpZero = true; 307 } else if (TI->getOperand(1) == FI->getOperand(0)) { 308 MatchOp = TI->getOperand(1); 309 OtherOpT = TI->getOperand(0); 310 OtherOpF = FI->getOperand(1); 311 MatchIsOpZero = true; 312 } else { 313 return nullptr; 314 } 315 316 // If we reach here, they do have operations in common. 317 Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 318 SI.getName() + ".v", &SI); 319 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 320 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 321 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 322 return BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 323 } 324 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 325 auto *FGEP = cast<GetElementPtrInst>(FI); 326 Type *ElementType = TGEP->getResultElementType(); 327 return TGEP->isInBounds() && FGEP->isInBounds() 328 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 329 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 330 } 331 llvm_unreachable("Expected BinaryOperator or GEP"); 332 return nullptr; 333 } 334 335 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 336 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 337 return false; 338 return C1I.isOneValue() || C1I.isAllOnesValue() || 339 C2I.isOneValue() || C2I.isAllOnesValue(); 340 } 341 342 /// Try to fold the select into one of the operands to allow further 343 /// optimization. 344 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 345 Value *FalseVal) { 346 // See the comment above GetSelectFoldableOperands for a description of the 347 // transformation we are doing here. 348 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 349 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 350 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 351 unsigned OpToFold = 0; 352 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 353 OpToFold = 1; 354 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 355 OpToFold = 2; 356 } 357 358 if (OpToFold) { 359 APInt CI = getSelectFoldableConstant(TVI); 360 Value *OOp = TVI->getOperand(2-OpToFold); 361 // Avoid creating select between 2 constants unless it's selecting 362 // between 0, 1 and -1. 363 const APInt *OOpC; 364 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 365 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 366 Value *C = ConstantInt::get(OOp->getType(), CI); 367 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 368 NewSel->takeName(TVI); 369 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 370 FalseVal, NewSel); 371 BO->copyIRFlags(TVI); 372 return BO; 373 } 374 } 375 } 376 } 377 } 378 379 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 380 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 381 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 382 unsigned OpToFold = 0; 383 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 384 OpToFold = 1; 385 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 386 OpToFold = 2; 387 } 388 389 if (OpToFold) { 390 APInt CI = getSelectFoldableConstant(FVI); 391 Value *OOp = FVI->getOperand(2-OpToFold); 392 // Avoid creating select between 2 constants unless it's selecting 393 // between 0, 1 and -1. 394 const APInt *OOpC; 395 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 396 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 397 Value *C = ConstantInt::get(OOp->getType(), CI); 398 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 399 NewSel->takeName(FVI); 400 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 401 TrueVal, NewSel); 402 BO->copyIRFlags(FVI); 403 return BO; 404 } 405 } 406 } 407 } 408 } 409 410 return nullptr; 411 } 412 413 /// We want to turn: 414 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 415 /// into: 416 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 417 /// Note: 418 /// Z may be 0 if lshr is missing. 419 /// Worst-case scenario is that we will replace 5 instructions with 5 different 420 /// instructions, but we got rid of select. 421 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 422 Value *TVal, Value *FVal, 423 InstCombiner::BuilderTy &Builder) { 424 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 425 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 426 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 427 return nullptr; 428 429 // The TrueVal has general form of: and %B, 1 430 Value *B; 431 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 432 return nullptr; 433 434 // Where %B may be optionally shifted: lshr %X, %Z. 435 Value *X, *Z; 436 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 437 if (!HasShift) 438 X = B; 439 440 Value *Y; 441 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 442 return nullptr; 443 444 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 445 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 446 Constant *One = ConstantInt::get(SelType, 1); 447 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 448 Value *FullMask = Builder.CreateOr(Y, MaskB); 449 Value *MaskedX = Builder.CreateAnd(X, FullMask); 450 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 451 return new ZExtInst(ICmpNeZero, SelType); 452 } 453 454 /// We want to turn: 455 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 456 /// into: 457 /// (or (shl (and X, C1), C3), Y) 458 /// iff: 459 /// C1 and C2 are both powers of 2 460 /// where: 461 /// C3 = Log(C2) - Log(C1) 462 /// 463 /// This transform handles cases where: 464 /// 1. The icmp predicate is inverted 465 /// 2. The select operands are reversed 466 /// 3. The magnitude of C2 and C1 are flipped 467 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 468 Value *FalseVal, 469 InstCombiner::BuilderTy &Builder) { 470 // Only handle integer compares. Also, if this is a vector select, we need a 471 // vector compare. 472 if (!TrueVal->getType()->isIntOrIntVectorTy() || 473 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 474 return nullptr; 475 476 Value *CmpLHS = IC->getOperand(0); 477 Value *CmpRHS = IC->getOperand(1); 478 479 Value *V; 480 unsigned C1Log; 481 bool IsEqualZero; 482 bool NeedAnd = false; 483 if (IC->isEquality()) { 484 if (!match(CmpRHS, m_Zero())) 485 return nullptr; 486 487 const APInt *C1; 488 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 489 return nullptr; 490 491 V = CmpLHS; 492 C1Log = C1->logBase2(); 493 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 494 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 495 IC->getPredicate() == ICmpInst::ICMP_SGT) { 496 // We also need to recognize (icmp slt (trunc (X)), 0) and 497 // (icmp sgt (trunc (X)), -1). 498 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 499 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 500 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 501 return nullptr; 502 503 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 504 return nullptr; 505 506 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 507 NeedAnd = true; 508 } else { 509 return nullptr; 510 } 511 512 const APInt *C2; 513 bool OrOnTrueVal = false; 514 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 515 if (!OrOnFalseVal) 516 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 517 518 if (!OrOnFalseVal && !OrOnTrueVal) 519 return nullptr; 520 521 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 522 523 unsigned C2Log = C2->logBase2(); 524 525 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 526 bool NeedShift = C1Log != C2Log; 527 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 528 V->getType()->getScalarSizeInBits(); 529 530 // Make sure we don't create more instructions than we save. 531 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 532 if ((NeedShift + NeedXor + NeedZExtTrunc) > 533 (IC->hasOneUse() + Or->hasOneUse())) 534 return nullptr; 535 536 if (NeedAnd) { 537 // Insert the AND instruction on the input to the truncate. 538 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 539 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 540 } 541 542 if (C2Log > C1Log) { 543 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 544 V = Builder.CreateShl(V, C2Log - C1Log); 545 } else if (C1Log > C2Log) { 546 V = Builder.CreateLShr(V, C1Log - C2Log); 547 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 548 } else 549 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 550 551 if (NeedXor) 552 V = Builder.CreateXor(V, *C2); 553 554 return Builder.CreateOr(V, Y); 555 } 556 557 /// Transform patterns such as: (a > b) ? a - b : 0 558 /// into: ((a > b) ? a : b) - b) 559 /// This produces a canonical max pattern that is more easily recognized by the 560 /// backend and converted into saturated subtraction instructions if those 561 /// exist. 562 /// There are 8 commuted/swapped variants of this pattern. 563 /// TODO: Also support a - UMIN(a,b) patterns. 564 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 565 const Value *TrueVal, 566 const Value *FalseVal, 567 InstCombiner::BuilderTy &Builder) { 568 ICmpInst::Predicate Pred = ICI->getPredicate(); 569 if (!ICmpInst::isUnsigned(Pred)) 570 return nullptr; 571 572 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 573 if (match(TrueVal, m_Zero())) { 574 Pred = ICmpInst::getInversePredicate(Pred); 575 std::swap(TrueVal, FalseVal); 576 } 577 if (!match(FalseVal, m_Zero())) 578 return nullptr; 579 580 Value *A = ICI->getOperand(0); 581 Value *B = ICI->getOperand(1); 582 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 583 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 584 std::swap(A, B); 585 Pred = ICmpInst::getSwappedPredicate(Pred); 586 } 587 588 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 589 "Unexpected isUnsigned predicate!"); 590 591 // Account for swapped form of subtraction: ((a > b) ? b - a : 0). 592 bool IsNegative = false; 593 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A)))) 594 IsNegative = true; 595 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B)))) 596 return nullptr; 597 598 // If sub is used anywhere else, we wouldn't be able to eliminate it 599 // afterwards. 600 if (!TrueVal->hasOneUse()) 601 return nullptr; 602 603 // All checks passed, convert to canonical unsigned saturated subtraction 604 // form: sub(max()). 605 // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b) 606 Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 607 return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B); 608 } 609 610 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 611 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 612 /// 613 /// For example, we can fold the following code sequence: 614 /// \code 615 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 616 /// %1 = icmp ne i32 %x, 0 617 /// %2 = select i1 %1, i32 %0, i32 32 618 /// \code 619 /// 620 /// into: 621 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 622 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 623 InstCombiner::BuilderTy &Builder) { 624 ICmpInst::Predicate Pred = ICI->getPredicate(); 625 Value *CmpLHS = ICI->getOperand(0); 626 Value *CmpRHS = ICI->getOperand(1); 627 628 // Check if the condition value compares a value for equality against zero. 629 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 630 return nullptr; 631 632 Value *Count = FalseVal; 633 Value *ValueOnZero = TrueVal; 634 if (Pred == ICmpInst::ICMP_NE) 635 std::swap(Count, ValueOnZero); 636 637 // Skip zero extend/truncate. 638 Value *V = nullptr; 639 if (match(Count, m_ZExt(m_Value(V))) || 640 match(Count, m_Trunc(m_Value(V)))) 641 Count = V; 642 643 // Check if the value propagated on zero is a constant number equal to the 644 // sizeof in bits of 'Count'. 645 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 646 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 647 return nullptr; 648 649 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 650 // input to the cttz/ctlz is used as LHS for the compare instruction. 651 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 652 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 653 IntrinsicInst *II = cast<IntrinsicInst>(Count); 654 // Explicitly clear the 'undef_on_zero' flag. 655 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 656 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 657 Builder.Insert(NewI); 658 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 659 } 660 661 return nullptr; 662 } 663 664 /// Return true if we find and adjust an icmp+select pattern where the compare 665 /// is with a constant that can be incremented or decremented to match the 666 /// minimum or maximum idiom. 667 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 668 ICmpInst::Predicate Pred = Cmp.getPredicate(); 669 Value *CmpLHS = Cmp.getOperand(0); 670 Value *CmpRHS = Cmp.getOperand(1); 671 Value *TrueVal = Sel.getTrueValue(); 672 Value *FalseVal = Sel.getFalseValue(); 673 674 // We may move or edit the compare, so make sure the select is the only user. 675 const APInt *CmpC; 676 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 677 return false; 678 679 // These transforms only work for selects of integers or vector selects of 680 // integer vectors. 681 Type *SelTy = Sel.getType(); 682 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 683 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 684 return false; 685 686 Constant *AdjustedRHS; 687 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 688 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 689 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 690 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 691 else 692 return false; 693 694 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 695 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 696 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 697 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 698 ; // Nothing to do here. Values match without any sign/zero extension. 699 } 700 // Types do not match. Instead of calculating this with mixed types, promote 701 // all to the larger type. This enables scalar evolution to analyze this 702 // expression. 703 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 704 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 705 706 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 707 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 708 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 709 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 710 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 711 CmpLHS = TrueVal; 712 AdjustedRHS = SextRHS; 713 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 714 SextRHS == TrueVal) { 715 CmpLHS = FalseVal; 716 AdjustedRHS = SextRHS; 717 } else if (Cmp.isUnsigned()) { 718 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 719 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 720 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 721 // zext + signed compare cannot be changed: 722 // 0xff <s 0x00, but 0x00ff >s 0x0000 723 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 724 CmpLHS = TrueVal; 725 AdjustedRHS = ZextRHS; 726 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 727 ZextRHS == TrueVal) { 728 CmpLHS = FalseVal; 729 AdjustedRHS = ZextRHS; 730 } else { 731 return false; 732 } 733 } else { 734 return false; 735 } 736 } else { 737 return false; 738 } 739 740 Pred = ICmpInst::getSwappedPredicate(Pred); 741 CmpRHS = AdjustedRHS; 742 std::swap(FalseVal, TrueVal); 743 Cmp.setPredicate(Pred); 744 Cmp.setOperand(0, CmpLHS); 745 Cmp.setOperand(1, CmpRHS); 746 Sel.setOperand(1, TrueVal); 747 Sel.setOperand(2, FalseVal); 748 Sel.swapProfMetadata(); 749 750 // Move the compare instruction right before the select instruction. Otherwise 751 // the sext/zext value may be defined after the compare instruction uses it. 752 Cmp.moveBefore(&Sel); 753 754 return true; 755 } 756 757 /// If this is an integer min/max (icmp + select) with a constant operand, 758 /// create the canonical icmp for the min/max operation and canonicalize the 759 /// constant to the 'false' operand of the select: 760 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 761 /// Note: if C1 != C2, this will change the icmp constant to the existing 762 /// constant operand of the select. 763 static Instruction * 764 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 765 InstCombiner::BuilderTy &Builder) { 766 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 767 return nullptr; 768 769 // Canonicalize the compare predicate based on whether we have min or max. 770 Value *LHS, *RHS; 771 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 772 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 773 return nullptr; 774 775 // Is this already canonical? 776 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 777 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 778 Cmp.getPredicate() == CanonicalPred) 779 return nullptr; 780 781 // Create the canonical compare and plug it into the select. 782 Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); 783 784 // If the select operands did not change, we're done. 785 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 786 return &Sel; 787 788 // If we are swapping the select operands, swap the metadata too. 789 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 790 "Unexpected results from matchSelectPattern"); 791 Sel.setTrueValue(LHS); 792 Sel.setFalseValue(RHS); 793 Sel.swapProfMetadata(); 794 return &Sel; 795 } 796 797 /// There are 4 select variants for each of ABS/NABS (different compare 798 /// constants, compare predicates, select operands). Canonicalize to 1 pattern. 799 /// This makes CSE more likely. 800 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 801 InstCombiner::BuilderTy &Builder) { 802 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 803 return nullptr; 804 805 // Choose a sign-bit check for the compare (likely simpler for codegen). 806 // ABS: (X <s 0) ? -X : X 807 // NABS: (X <s 0) ? X : -X 808 Value *LHS, *RHS; 809 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 810 if (SPF != SelectPatternFlavor::SPF_ABS && 811 SPF != SelectPatternFlavor::SPF_NABS) 812 return nullptr; 813 814 // Is this already canonical? 815 if (match(Cmp.getOperand(1), m_ZeroInt()) && 816 Cmp.getPredicate() == ICmpInst::ICMP_SLT) 817 return nullptr; 818 819 // Create the canonical compare. 820 Cmp.setPredicate(ICmpInst::ICMP_SLT); 821 Cmp.setOperand(1, ConstantInt::getNullValue(LHS->getType())); 822 823 // If the select operands do not change, we're done. 824 Value *TVal = Sel.getTrueValue(); 825 Value *FVal = Sel.getFalseValue(); 826 if (SPF == SelectPatternFlavor::SPF_NABS) { 827 if (TVal == LHS && match(FVal, m_Neg(m_Specific(TVal)))) 828 return &Sel; 829 assert(FVal == LHS && match(TVal, m_Neg(m_Specific(FVal))) && 830 "Unexpected results from matchSelectPattern"); 831 } else { 832 if (FVal == LHS && match(TVal, m_Neg(m_Specific(FVal)))) 833 return &Sel; 834 assert(TVal == LHS && match(FVal, m_Neg(m_Specific(TVal))) && 835 "Unexpected results from matchSelectPattern"); 836 } 837 838 // We are swapping the select operands, so swap the metadata too. 839 Sel.setTrueValue(FVal); 840 Sel.setFalseValue(TVal); 841 Sel.swapProfMetadata(); 842 return &Sel; 843 } 844 845 /// Visit a SelectInst that has an ICmpInst as its first operand. 846 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 847 ICmpInst *ICI) { 848 Value *TrueVal = SI.getTrueValue(); 849 Value *FalseVal = SI.getFalseValue(); 850 851 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 852 return NewSel; 853 854 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) 855 return NewAbs; 856 857 bool Changed = adjustMinMax(SI, *ICI); 858 859 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 860 return replaceInstUsesWith(SI, V); 861 862 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 863 ICmpInst::Predicate Pred = ICI->getPredicate(); 864 Value *CmpLHS = ICI->getOperand(0); 865 Value *CmpRHS = ICI->getOperand(1); 866 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 867 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 868 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 869 SI.setOperand(1, CmpRHS); 870 Changed = true; 871 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 872 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 873 SI.setOperand(2, CmpRHS); 874 Changed = true; 875 } 876 } 877 878 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 879 // decomposeBitTestICmp() might help. 880 { 881 unsigned BitWidth = 882 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 883 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 884 Value *X; 885 const APInt *Y, *C; 886 bool TrueWhenUnset; 887 bool IsBitTest = false; 888 if (ICmpInst::isEquality(Pred) && 889 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 890 match(CmpRHS, m_Zero())) { 891 IsBitTest = true; 892 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 893 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 894 X = CmpLHS; 895 Y = &MinSignedValue; 896 IsBitTest = true; 897 TrueWhenUnset = false; 898 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 899 X = CmpLHS; 900 Y = &MinSignedValue; 901 IsBitTest = true; 902 TrueWhenUnset = true; 903 } 904 if (IsBitTest) { 905 Value *V = nullptr; 906 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 907 if (TrueWhenUnset && TrueVal == X && 908 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 909 V = Builder.CreateAnd(X, ~(*Y)); 910 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 911 else if (!TrueWhenUnset && FalseVal == X && 912 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 913 V = Builder.CreateAnd(X, ~(*Y)); 914 // (X & Y) == 0 ? X ^ Y : X --> X | Y 915 else if (TrueWhenUnset && FalseVal == X && 916 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 917 V = Builder.CreateOr(X, *Y); 918 // (X & Y) != 0 ? X : X ^ Y --> X | Y 919 else if (!TrueWhenUnset && TrueVal == X && 920 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 921 V = Builder.CreateOr(X, *Y); 922 923 if (V) 924 return replaceInstUsesWith(SI, V); 925 } 926 } 927 928 if (Instruction *V = 929 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 930 return V; 931 932 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 933 return replaceInstUsesWith(SI, V); 934 935 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 936 return replaceInstUsesWith(SI, V); 937 938 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 939 return replaceInstUsesWith(SI, V); 940 941 return Changed ? &SI : nullptr; 942 } 943 944 /// SI is a select whose condition is a PHI node (but the two may be in 945 /// different blocks). See if the true/false values (V) are live in all of the 946 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 947 /// 948 /// X = phi [ C1, BB1], [C2, BB2] 949 /// Y = add 950 /// Z = select X, Y, 0 951 /// 952 /// because Y is not live in BB1/BB2. 953 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 954 const SelectInst &SI) { 955 // If the value is a non-instruction value like a constant or argument, it 956 // can always be mapped. 957 const Instruction *I = dyn_cast<Instruction>(V); 958 if (!I) return true; 959 960 // If V is a PHI node defined in the same block as the condition PHI, we can 961 // map the arguments. 962 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 963 964 if (const PHINode *VP = dyn_cast<PHINode>(I)) 965 if (VP->getParent() == CondPHI->getParent()) 966 return true; 967 968 // Otherwise, if the PHI and select are defined in the same block and if V is 969 // defined in a different block, then we can transform it. 970 if (SI.getParent() == CondPHI->getParent() && 971 I->getParent() != CondPHI->getParent()) 972 return true; 973 974 // Otherwise we have a 'hard' case and we can't tell without doing more 975 // detailed dominator based analysis, punt. 976 return false; 977 } 978 979 /// We have an SPF (e.g. a min or max) of an SPF of the form: 980 /// SPF2(SPF1(A, B), C) 981 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 982 SelectPatternFlavor SPF1, 983 Value *A, Value *B, 984 Instruction &Outer, 985 SelectPatternFlavor SPF2, Value *C) { 986 if (Outer.getType() != Inner->getType()) 987 return nullptr; 988 989 if (C == A || C == B) { 990 // MAX(MAX(A, B), B) -> MAX(A, B) 991 // MIN(MIN(a, b), a) -> MIN(a, b) 992 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 993 return replaceInstUsesWith(Outer, Inner); 994 995 // MAX(MIN(a, b), a) -> a 996 // MIN(MAX(a, b), a) -> a 997 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 998 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 999 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1000 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1001 return replaceInstUsesWith(Outer, C); 1002 } 1003 1004 if (SPF1 == SPF2) { 1005 const APInt *CB, *CC; 1006 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1007 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1008 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1009 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1010 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1011 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1012 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1013 return replaceInstUsesWith(Outer, Inner); 1014 1015 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1016 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1017 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1018 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1019 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1020 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1021 Outer.replaceUsesOfWith(Inner, A); 1022 return &Outer; 1023 } 1024 } 1025 } 1026 1027 // ABS(ABS(X)) -> ABS(X) 1028 // NABS(NABS(X)) -> NABS(X) 1029 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1030 return replaceInstUsesWith(Outer, Inner); 1031 } 1032 1033 // ABS(NABS(X)) -> ABS(X) 1034 // NABS(ABS(X)) -> NABS(X) 1035 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1036 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1037 SelectInst *SI = cast<SelectInst>(Inner); 1038 Value *NewSI = 1039 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1040 SI->getTrueValue(), SI->getName(), SI); 1041 return replaceInstUsesWith(Outer, NewSI); 1042 } 1043 1044 auto IsFreeOrProfitableToInvert = 1045 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1046 if (match(V, m_Not(m_Value(NotV)))) { 1047 // If V has at most 2 uses then we can get rid of the xor operation 1048 // entirely. 1049 ElidesXor |= !V->hasNUsesOrMore(3); 1050 return true; 1051 } 1052 1053 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1054 NotV = nullptr; 1055 return true; 1056 } 1057 1058 return false; 1059 }; 1060 1061 Value *NotA, *NotB, *NotC; 1062 bool ElidesXor = false; 1063 1064 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1065 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1066 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1067 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1068 // 1069 // This transform is performance neutral if we can elide at least one xor from 1070 // the set of three operands, since we'll be tacking on an xor at the very 1071 // end. 1072 if (SelectPatternResult::isMinOrMax(SPF1) && 1073 SelectPatternResult::isMinOrMax(SPF2) && 1074 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1075 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1076 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1077 if (!NotA) 1078 NotA = Builder.CreateNot(A); 1079 if (!NotB) 1080 NotB = Builder.CreateNot(B); 1081 if (!NotC) 1082 NotC = Builder.CreateNot(C); 1083 1084 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1085 NotB); 1086 Value *NewOuter = Builder.CreateNot( 1087 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1088 return replaceInstUsesWith(Outer, NewOuter); 1089 } 1090 1091 return nullptr; 1092 } 1093 1094 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1095 /// This is even legal for FP. 1096 static Instruction *foldAddSubSelect(SelectInst &SI, 1097 InstCombiner::BuilderTy &Builder) { 1098 Value *CondVal = SI.getCondition(); 1099 Value *TrueVal = SI.getTrueValue(); 1100 Value *FalseVal = SI.getFalseValue(); 1101 auto *TI = dyn_cast<Instruction>(TrueVal); 1102 auto *FI = dyn_cast<Instruction>(FalseVal); 1103 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1104 return nullptr; 1105 1106 Instruction *AddOp = nullptr, *SubOp = nullptr; 1107 if ((TI->getOpcode() == Instruction::Sub && 1108 FI->getOpcode() == Instruction::Add) || 1109 (TI->getOpcode() == Instruction::FSub && 1110 FI->getOpcode() == Instruction::FAdd)) { 1111 AddOp = FI; 1112 SubOp = TI; 1113 } else if ((FI->getOpcode() == Instruction::Sub && 1114 TI->getOpcode() == Instruction::Add) || 1115 (FI->getOpcode() == Instruction::FSub && 1116 TI->getOpcode() == Instruction::FAdd)) { 1117 AddOp = TI; 1118 SubOp = FI; 1119 } 1120 1121 if (AddOp) { 1122 Value *OtherAddOp = nullptr; 1123 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1124 OtherAddOp = AddOp->getOperand(1); 1125 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1126 OtherAddOp = AddOp->getOperand(0); 1127 } 1128 1129 if (OtherAddOp) { 1130 // So at this point we know we have (Y -> OtherAddOp): 1131 // select C, (add X, Y), (sub X, Z) 1132 Value *NegVal; // Compute -Z 1133 if (SI.getType()->isFPOrFPVectorTy()) { 1134 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1135 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1136 FastMathFlags Flags = AddOp->getFastMathFlags(); 1137 Flags &= SubOp->getFastMathFlags(); 1138 NegInst->setFastMathFlags(Flags); 1139 } 1140 } else { 1141 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1142 } 1143 1144 Value *NewTrueOp = OtherAddOp; 1145 Value *NewFalseOp = NegVal; 1146 if (AddOp != TI) 1147 std::swap(NewTrueOp, NewFalseOp); 1148 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1149 SI.getName() + ".p", &SI); 1150 1151 if (SI.getType()->isFPOrFPVectorTy()) { 1152 Instruction *RI = 1153 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1154 1155 FastMathFlags Flags = AddOp->getFastMathFlags(); 1156 Flags &= SubOp->getFastMathFlags(); 1157 RI->setFastMathFlags(Flags); 1158 return RI; 1159 } else 1160 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1161 } 1162 } 1163 return nullptr; 1164 } 1165 1166 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1167 Constant *C; 1168 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1169 !match(Sel.getFalseValue(), m_Constant(C))) 1170 return nullptr; 1171 1172 Instruction *ExtInst; 1173 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1174 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1175 return nullptr; 1176 1177 auto ExtOpcode = ExtInst->getOpcode(); 1178 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1179 return nullptr; 1180 1181 // If we are extending from a boolean type or if we can create a select that 1182 // has the same size operands as its condition, try to narrow the select. 1183 Value *X = ExtInst->getOperand(0); 1184 Type *SmallType = X->getType(); 1185 Value *Cond = Sel.getCondition(); 1186 auto *Cmp = dyn_cast<CmpInst>(Cond); 1187 if (!SmallType->isIntOrIntVectorTy(1) && 1188 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1189 return nullptr; 1190 1191 // If the constant is the same after truncation to the smaller type and 1192 // extension to the original type, we can narrow the select. 1193 Type *SelType = Sel.getType(); 1194 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1195 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1196 if (ExtC == C) { 1197 Value *TruncCVal = cast<Value>(TruncC); 1198 if (ExtInst == Sel.getFalseValue()) 1199 std::swap(X, TruncCVal); 1200 1201 // select Cond, (ext X), C --> ext(select Cond, X, C') 1202 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1203 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1204 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1205 } 1206 1207 // If one arm of the select is the extend of the condition, replace that arm 1208 // with the extension of the appropriate known bool value. 1209 if (Cond == X) { 1210 if (ExtInst == Sel.getTrueValue()) { 1211 // select X, (sext X), C --> select X, -1, C 1212 // select X, (zext X), C --> select X, 1, C 1213 Constant *One = ConstantInt::getTrue(SmallType); 1214 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1215 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1216 } else { 1217 // select X, C, (sext X) --> select X, C, 0 1218 // select X, C, (zext X) --> select X, C, 0 1219 Constant *Zero = ConstantInt::getNullValue(SelType); 1220 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1221 } 1222 } 1223 1224 return nullptr; 1225 } 1226 1227 /// Try to transform a vector select with a constant condition vector into a 1228 /// shuffle for easier combining with other shuffles and insert/extract. 1229 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1230 Value *CondVal = SI.getCondition(); 1231 Constant *CondC; 1232 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1233 return nullptr; 1234 1235 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1236 SmallVector<Constant *, 16> Mask; 1237 Mask.reserve(NumElts); 1238 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1239 for (unsigned i = 0; i != NumElts; ++i) { 1240 Constant *Elt = CondC->getAggregateElement(i); 1241 if (!Elt) 1242 return nullptr; 1243 1244 if (Elt->isOneValue()) { 1245 // If the select condition element is true, choose from the 1st vector. 1246 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1247 } else if (Elt->isNullValue()) { 1248 // If the select condition element is false, choose from the 2nd vector. 1249 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1250 } else if (isa<UndefValue>(Elt)) { 1251 // Undef in a select condition (choose one of the operands) does not mean 1252 // the same thing as undef in a shuffle mask (any value is acceptable), so 1253 // give up. 1254 return nullptr; 1255 } else { 1256 // Bail out on a constant expression. 1257 return nullptr; 1258 } 1259 } 1260 1261 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1262 ConstantVector::get(Mask)); 1263 } 1264 1265 /// Reuse bitcasted operands between a compare and select: 1266 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1267 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1268 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1269 InstCombiner::BuilderTy &Builder) { 1270 Value *Cond = Sel.getCondition(); 1271 Value *TVal = Sel.getTrueValue(); 1272 Value *FVal = Sel.getFalseValue(); 1273 1274 CmpInst::Predicate Pred; 1275 Value *A, *B; 1276 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1277 return nullptr; 1278 1279 // The select condition is a compare instruction. If the select's true/false 1280 // values are already the same as the compare operands, there's nothing to do. 1281 if (TVal == A || TVal == B || FVal == A || FVal == B) 1282 return nullptr; 1283 1284 Value *C, *D; 1285 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1286 return nullptr; 1287 1288 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1289 Value *TSrc, *FSrc; 1290 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1291 !match(FVal, m_BitCast(m_Value(FSrc)))) 1292 return nullptr; 1293 1294 // If the select true/false values are *different bitcasts* of the same source 1295 // operands, make the select operands the same as the compare operands and 1296 // cast the result. This is the canonical select form for min/max. 1297 Value *NewSel; 1298 if (TSrc == C && FSrc == D) { 1299 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1300 // bitcast (select (cmp A, B), A, B) 1301 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1302 } else if (TSrc == D && FSrc == C) { 1303 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1304 // bitcast (select (cmp A, B), B, A) 1305 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1306 } else { 1307 return nullptr; 1308 } 1309 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1310 } 1311 1312 /// Try to eliminate select instructions that test the returned flag of cmpxchg 1313 /// instructions. 1314 /// 1315 /// If a select instruction tests the returned flag of a cmpxchg instruction and 1316 /// selects between the returned value of the cmpxchg instruction its compare 1317 /// operand, the result of the select will always be equal to its false value. 1318 /// For example: 1319 /// 1320 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1321 /// %1 = extractvalue { i64, i1 } %0, 1 1322 /// %2 = extractvalue { i64, i1 } %0, 0 1323 /// %3 = select i1 %1, i64 %compare, i64 %2 1324 /// ret i64 %3 1325 /// 1326 /// The returned value of the cmpxchg instruction (%2) is the original value 1327 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 1328 /// must have been equal to %compare. Thus, the result of the select is always 1329 /// equal to %2, and the code can be simplified to: 1330 /// 1331 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1332 /// %1 = extractvalue { i64, i1 } %0, 0 1333 /// ret i64 %1 1334 /// 1335 static Instruction *foldSelectCmpXchg(SelectInst &SI) { 1336 // A helper that determines if V is an extractvalue instruction whose 1337 // aggregate operand is a cmpxchg instruction and whose single index is equal 1338 // to I. If such conditions are true, the helper returns the cmpxchg 1339 // instruction; otherwise, a nullptr is returned. 1340 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 1341 auto *Extract = dyn_cast<ExtractValueInst>(V); 1342 if (!Extract) 1343 return nullptr; 1344 if (Extract->getIndices()[0] != I) 1345 return nullptr; 1346 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 1347 }; 1348 1349 // If the select has a single user, and this user is a select instruction that 1350 // we can simplify, skip the cmpxchg simplification for now. 1351 if (SI.hasOneUse()) 1352 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 1353 if (Select->getCondition() == SI.getCondition()) 1354 if (Select->getFalseValue() == SI.getTrueValue() || 1355 Select->getTrueValue() == SI.getFalseValue()) 1356 return nullptr; 1357 1358 // Ensure the select condition is the returned flag of a cmpxchg instruction. 1359 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 1360 if (!CmpXchg) 1361 return nullptr; 1362 1363 // Check the true value case: The true value of the select is the returned 1364 // value of the same cmpxchg used by the condition, and the false value is the 1365 // cmpxchg instruction's compare operand. 1366 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 1367 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { 1368 SI.setTrueValue(SI.getFalseValue()); 1369 return &SI; 1370 } 1371 1372 // Check the false value case: The false value of the select is the returned 1373 // value of the same cmpxchg used by the condition, and the true value is the 1374 // cmpxchg instruction's compare operand. 1375 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 1376 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { 1377 SI.setTrueValue(SI.getFalseValue()); 1378 return &SI; 1379 } 1380 1381 return nullptr; 1382 } 1383 1384 /// Reduce a sequence of min/max with a common operand. 1385 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 1386 Value *RHS, 1387 InstCombiner::BuilderTy &Builder) { 1388 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 1389 // TODO: Allow FP min/max with nnan/nsz. 1390 if (!LHS->getType()->isIntOrIntVectorTy()) 1391 return nullptr; 1392 1393 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1394 Value *A, *B, *C, *D; 1395 SelectPatternResult L = matchSelectPattern(LHS, A, B); 1396 SelectPatternResult R = matchSelectPattern(RHS, C, D); 1397 if (SPF != L.Flavor || L.Flavor != R.Flavor) 1398 return nullptr; 1399 1400 // Look for a common operand. The use checks are different than usual because 1401 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 1402 // the select. 1403 Value *MinMaxOp = nullptr; 1404 Value *ThirdOp = nullptr; 1405 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 1406 // If the LHS is only used in this chain and the RHS is used outside of it, 1407 // reuse the RHS min/max because that will eliminate the LHS. 1408 if (D == A || C == A) { 1409 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1410 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1411 MinMaxOp = RHS; 1412 ThirdOp = B; 1413 } else if (D == B || C == B) { 1414 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1415 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1416 MinMaxOp = RHS; 1417 ThirdOp = A; 1418 } 1419 } else if (!RHS->hasNUsesOrMore(3)) { 1420 // Reuse the LHS. This will eliminate the RHS. 1421 if (D == A || D == B) { 1422 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1423 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1424 MinMaxOp = LHS; 1425 ThirdOp = C; 1426 } else if (C == A || C == B) { 1427 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1428 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1429 MinMaxOp = LHS; 1430 ThirdOp = D; 1431 } 1432 } 1433 if (!MinMaxOp || !ThirdOp) 1434 return nullptr; 1435 1436 CmpInst::Predicate P = getMinMaxPred(SPF); 1437 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 1438 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 1439 } 1440 1441 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1442 Value *CondVal = SI.getCondition(); 1443 Value *TrueVal = SI.getTrueValue(); 1444 Value *FalseVal = SI.getFalseValue(); 1445 Type *SelType = SI.getType(); 1446 1447 // FIXME: Remove this workaround when freeze related patches are done. 1448 // For select with undef operand which feeds into an equality comparison, 1449 // don't simplify it so loop unswitch can know the equality comparison 1450 // may have an undef operand. This is a workaround for PR31652 caused by 1451 // descrepancy about branch on undef between LoopUnswitch and GVN. 1452 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1453 if (llvm::any_of(SI.users(), [&](User *U) { 1454 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1455 if (CI && CI->isEquality()) 1456 return true; 1457 return false; 1458 })) { 1459 return nullptr; 1460 } 1461 } 1462 1463 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1464 SQ.getWithInstruction(&SI))) 1465 return replaceInstUsesWith(SI, V); 1466 1467 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1468 return I; 1469 1470 // Canonicalize a one-use integer compare with a non-canonical predicate by 1471 // inverting the predicate and swapping the select operands. This matches a 1472 // compare canonicalization for conditional branches. 1473 // TODO: Should we do the same for FP compares? 1474 CmpInst::Predicate Pred; 1475 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 1476 !isCanonicalPredicate(Pred)) { 1477 // Swap true/false values and condition. 1478 CmpInst *Cond = cast<CmpInst>(CondVal); 1479 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 1480 SI.setOperand(1, FalseVal); 1481 SI.setOperand(2, TrueVal); 1482 SI.swapProfMetadata(); 1483 Worklist.Add(Cond); 1484 return &SI; 1485 } 1486 1487 if (SelType->isIntOrIntVectorTy(1) && 1488 TrueVal->getType() == CondVal->getType()) { 1489 if (match(TrueVal, m_One())) { 1490 // Change: A = select B, true, C --> A = or B, C 1491 return BinaryOperator::CreateOr(CondVal, FalseVal); 1492 } 1493 if (match(TrueVal, m_Zero())) { 1494 // Change: A = select B, false, C --> A = and !B, C 1495 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1496 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1497 } 1498 if (match(FalseVal, m_Zero())) { 1499 // Change: A = select B, C, false --> A = and B, C 1500 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1501 } 1502 if (match(FalseVal, m_One())) { 1503 // Change: A = select B, C, true --> A = or !B, C 1504 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1505 return BinaryOperator::CreateOr(NotCond, TrueVal); 1506 } 1507 1508 // select a, a, b -> a | b 1509 // select a, b, a -> a & b 1510 if (CondVal == TrueVal) 1511 return BinaryOperator::CreateOr(CondVal, FalseVal); 1512 if (CondVal == FalseVal) 1513 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1514 1515 // select a, ~a, b -> (~a) & b 1516 // select a, b, ~a -> (~a) | b 1517 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1518 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1519 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1520 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1521 } 1522 1523 // Selecting between two integer or vector splat integer constants? 1524 // 1525 // Note that we don't handle a scalar select of vectors: 1526 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1527 // because that may need 3 instructions to splat the condition value: 1528 // extend, insertelement, shufflevector. 1529 if (SelType->isIntOrIntVectorTy() && 1530 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1531 // select C, 1, 0 -> zext C to int 1532 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1533 return new ZExtInst(CondVal, SelType); 1534 1535 // select C, -1, 0 -> sext C to int 1536 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1537 return new SExtInst(CondVal, SelType); 1538 1539 // select C, 0, 1 -> zext !C to int 1540 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1541 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1542 return new ZExtInst(NotCond, SelType); 1543 } 1544 1545 // select C, 0, -1 -> sext !C to int 1546 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1547 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1548 return new SExtInst(NotCond, SelType); 1549 } 1550 } 1551 1552 // See if we are selecting two values based on a comparison of the two values. 1553 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1554 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1555 // Transform (X == Y) ? X : Y -> Y 1556 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1557 // This is not safe in general for floating point: 1558 // consider X== -0, Y== +0. 1559 // It becomes safe if either operand is a nonzero constant. 1560 ConstantFP *CFPt, *CFPf; 1561 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1562 !CFPt->getValueAPF().isZero()) || 1563 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1564 !CFPf->getValueAPF().isZero())) 1565 return replaceInstUsesWith(SI, FalseVal); 1566 } 1567 // Transform (X une Y) ? X : Y -> X 1568 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1569 // This is not safe in general for floating point: 1570 // consider X== -0, Y== +0. 1571 // It becomes safe if either operand is a nonzero constant. 1572 ConstantFP *CFPt, *CFPf; 1573 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1574 !CFPt->getValueAPF().isZero()) || 1575 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1576 !CFPf->getValueAPF().isZero())) 1577 return replaceInstUsesWith(SI, TrueVal); 1578 } 1579 1580 // Canonicalize to use ordered comparisons by swapping the select 1581 // operands. 1582 // 1583 // e.g. 1584 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1585 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1586 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1587 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1588 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1589 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 1590 FCI->getName() + ".inv"); 1591 1592 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1593 SI.getName() + ".p"); 1594 } 1595 1596 // NOTE: if we wanted to, this is where to detect MIN/MAX 1597 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1598 // Transform (X == Y) ? Y : X -> X 1599 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1600 // This is not safe in general for floating point: 1601 // consider X== -0, Y== +0. 1602 // It becomes safe if either operand is a nonzero constant. 1603 ConstantFP *CFPt, *CFPf; 1604 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1605 !CFPt->getValueAPF().isZero()) || 1606 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1607 !CFPf->getValueAPF().isZero())) 1608 return replaceInstUsesWith(SI, FalseVal); 1609 } 1610 // Transform (X une Y) ? Y : X -> Y 1611 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1612 // This is not safe in general for floating point: 1613 // consider X== -0, Y== +0. 1614 // It becomes safe if either operand is a nonzero constant. 1615 ConstantFP *CFPt, *CFPf; 1616 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1617 !CFPt->getValueAPF().isZero()) || 1618 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1619 !CFPf->getValueAPF().isZero())) 1620 return replaceInstUsesWith(SI, TrueVal); 1621 } 1622 1623 // Canonicalize to use ordered comparisons by swapping the select 1624 // operands. 1625 // 1626 // e.g. 1627 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1628 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1629 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1630 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1631 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1632 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 1633 FCI->getName() + ".inv"); 1634 1635 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1636 SI.getName() + ".p"); 1637 } 1638 1639 // NOTE: if we wanted to, this is where to detect MIN/MAX 1640 } 1641 1642 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 1643 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 1644 // also require nnan because we do not want to unintentionally change the 1645 // sign of a NaN value. 1646 Value *X = FCI->getOperand(0); 1647 FCmpInst::Predicate Pred = FCI->getPredicate(); 1648 if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) { 1649 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 1650 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 1651 if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE && 1652 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) || 1653 (X == TrueVal && Pred == FCmpInst::FCMP_OGT && 1654 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) { 1655 Value *Fabs = Builder.CreateIntrinsic(Intrinsic::fabs, { X }, FCI); 1656 return replaceInstUsesWith(SI, Fabs); 1657 } 1658 // With nsz: 1659 // (X < +/-0.0) ? -X : X --> fabs(X) 1660 // (X <= +/-0.0) ? -X : X --> fabs(X) 1661 // (X > +/-0.0) ? X : -X --> fabs(X) 1662 // (X >= +/-0.0) ? X : -X --> fabs(X) 1663 if (FCI->hasNoSignedZeros() && 1664 ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) && 1665 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) || 1666 (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) && 1667 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) { 1668 Value *Fabs = Builder.CreateIntrinsic(Intrinsic::fabs, { X }, FCI); 1669 return replaceInstUsesWith(SI, Fabs); 1670 } 1671 } 1672 } 1673 1674 // See if we are selecting two values based on a comparison of the two values. 1675 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1676 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1677 return Result; 1678 1679 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 1680 return Add; 1681 1682 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1683 auto *TI = dyn_cast<Instruction>(TrueVal); 1684 auto *FI = dyn_cast<Instruction>(FalseVal); 1685 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1686 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1687 return IV; 1688 1689 if (Instruction *I = foldSelectExtConst(SI)) 1690 return I; 1691 1692 // See if we can fold the select into one of our operands. 1693 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1694 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1695 return FoldI; 1696 1697 Value *LHS, *RHS, *LHS2, *RHS2; 1698 Instruction::CastOps CastOp; 1699 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1700 auto SPF = SPR.Flavor; 1701 1702 if (SelectPatternResult::isMinOrMax(SPF)) { 1703 // Canonicalize so that 1704 // - type casts are outside select patterns. 1705 // - float clamp is transformed to min/max pattern 1706 1707 bool IsCastNeeded = LHS->getType() != SelType; 1708 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 1709 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 1710 if (IsCastNeeded || 1711 (LHS->getType()->isFPOrFPVectorTy() && 1712 ((CmpLHS != LHS && CmpLHS != RHS) || 1713 (CmpRHS != LHS && CmpRHS != RHS)))) { 1714 CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered); 1715 1716 Value *Cmp; 1717 if (CmpInst::isIntPredicate(Pred)) { 1718 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 1719 } else { 1720 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1721 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1722 Builder.setFastMathFlags(FMF); 1723 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 1724 } 1725 1726 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 1727 if (!IsCastNeeded) 1728 return replaceInstUsesWith(SI, NewSI); 1729 1730 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 1731 return replaceInstUsesWith(SI, NewCast); 1732 } 1733 1734 // MAX(~a, ~b) -> ~MIN(a, b) 1735 // MIN(~a, ~b) -> ~MAX(a, b) 1736 Value *A, *B; 1737 if (match(LHS, m_Not(m_Value(A))) && match(RHS, m_Not(m_Value(B))) && 1738 (LHS->getNumUses() <= 2 || RHS->getNumUses() <= 2)) { 1739 CmpInst::Predicate InvertedPred = getInverseMinMaxPred(SPF); 1740 Value *InvertedCmp = Builder.CreateICmp(InvertedPred, A, B); 1741 Value *NewSel = Builder.CreateSelect(InvertedCmp, A, B); 1742 return BinaryOperator::CreateNot(NewSel); 1743 } 1744 1745 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 1746 return I; 1747 } 1748 1749 if (SPF) { 1750 // MAX(MAX(a, b), a) -> MAX(a, b) 1751 // MIN(MIN(a, b), a) -> MIN(a, b) 1752 // MAX(MIN(a, b), a) -> a 1753 // MIN(MAX(a, b), a) -> a 1754 // ABS(ABS(a)) -> ABS(a) 1755 // NABS(NABS(a)) -> NABS(a) 1756 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1757 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 1758 SI, SPF, RHS)) 1759 return R; 1760 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1761 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 1762 SI, SPF, LHS)) 1763 return R; 1764 } 1765 1766 // TODO. 1767 // ABS(-X) -> ABS(X) 1768 } 1769 1770 // See if we can fold the select into a phi node if the condition is a select. 1771 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 1772 // The true/false values have to be live in the PHI predecessor's blocks. 1773 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1774 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1775 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 1776 return NV; 1777 1778 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1779 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1780 // select(C, select(C, a, b), c) -> select(C, a, c) 1781 if (TrueSI->getCondition() == CondVal) { 1782 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1783 return nullptr; 1784 SI.setOperand(1, TrueSI->getTrueValue()); 1785 return &SI; 1786 } 1787 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1788 // We choose this as normal form to enable folding on the And and shortening 1789 // paths for the values (this helps GetUnderlyingObjects() for example). 1790 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1791 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 1792 SI.setOperand(0, And); 1793 SI.setOperand(1, TrueSI->getTrueValue()); 1794 return &SI; 1795 } 1796 } 1797 } 1798 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1799 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1800 // select(C, a, select(C, b, c)) -> select(C, a, c) 1801 if (FalseSI->getCondition() == CondVal) { 1802 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1803 return nullptr; 1804 SI.setOperand(2, FalseSI->getFalseValue()); 1805 return &SI; 1806 } 1807 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1808 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1809 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 1810 SI.setOperand(0, Or); 1811 SI.setOperand(2, FalseSI->getFalseValue()); 1812 return &SI; 1813 } 1814 } 1815 } 1816 1817 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 1818 // The select might be preventing a division by 0. 1819 switch (BO->getOpcode()) { 1820 default: 1821 return true; 1822 case Instruction::SRem: 1823 case Instruction::URem: 1824 case Instruction::SDiv: 1825 case Instruction::UDiv: 1826 return false; 1827 } 1828 }; 1829 1830 // Try to simplify a binop sandwiched between 2 selects with the same 1831 // condition. 1832 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 1833 BinaryOperator *TrueBO; 1834 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 1835 canMergeSelectThroughBinop(TrueBO)) { 1836 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 1837 if (TrueBOSI->getCondition() == CondVal) { 1838 TrueBO->setOperand(0, TrueBOSI->getTrueValue()); 1839 Worklist.Add(TrueBO); 1840 return &SI; 1841 } 1842 } 1843 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 1844 if (TrueBOSI->getCondition() == CondVal) { 1845 TrueBO->setOperand(1, TrueBOSI->getTrueValue()); 1846 Worklist.Add(TrueBO); 1847 return &SI; 1848 } 1849 } 1850 } 1851 1852 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 1853 BinaryOperator *FalseBO; 1854 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 1855 canMergeSelectThroughBinop(FalseBO)) { 1856 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 1857 if (FalseBOSI->getCondition() == CondVal) { 1858 FalseBO->setOperand(0, FalseBOSI->getFalseValue()); 1859 Worklist.Add(FalseBO); 1860 return &SI; 1861 } 1862 } 1863 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 1864 if (FalseBOSI->getCondition() == CondVal) { 1865 FalseBO->setOperand(1, FalseBOSI->getFalseValue()); 1866 Worklist.Add(FalseBO); 1867 return &SI; 1868 } 1869 } 1870 } 1871 1872 if (BinaryOperator::isNot(CondVal)) { 1873 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1874 SI.setOperand(1, FalseVal); 1875 SI.setOperand(2, TrueVal); 1876 return &SI; 1877 } 1878 1879 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 1880 unsigned VWidth = VecTy->getNumElements(); 1881 APInt UndefElts(VWidth, 0); 1882 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1883 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 1884 if (V != &SI) 1885 return replaceInstUsesWith(SI, V); 1886 return &SI; 1887 } 1888 } 1889 1890 // See if we can determine the result of this select based on a dominating 1891 // condition. 1892 BasicBlock *Parent = SI.getParent(); 1893 if (BasicBlock *Dom = Parent->getSinglePredecessor()) { 1894 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 1895 if (PBI && PBI->isConditional() && 1896 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 1897 (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { 1898 bool CondIsTrue = PBI->getSuccessor(0) == Parent; 1899 Optional<bool> Implication = isImpliedCondition( 1900 PBI->getCondition(), SI.getCondition(), DL, CondIsTrue); 1901 if (Implication) { 1902 Value *V = *Implication ? TrueVal : FalseVal; 1903 return replaceInstUsesWith(SI, V); 1904 } 1905 } 1906 } 1907 1908 // If we can compute the condition, there's no need for a select. 1909 // Like the above fold, we are attempting to reduce compile-time cost by 1910 // putting this fold here with limitations rather than in InstSimplify. 1911 // The motivation for this call into value tracking is to take advantage of 1912 // the assumption cache, so make sure that is populated. 1913 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 1914 KnownBits Known(1); 1915 computeKnownBits(CondVal, Known, 0, &SI); 1916 if (Known.One.isOneValue()) 1917 return replaceInstUsesWith(SI, TrueVal); 1918 if (Known.Zero.isOneValue()) 1919 return replaceInstUsesWith(SI, FalseVal); 1920 } 1921 1922 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 1923 return BitCastSel; 1924 1925 // Simplify selects that test the returned flag of cmpxchg instructions. 1926 if (Instruction *Select = foldSelectCmpXchg(SI)) 1927 return Select; 1928 1929 return nullptr; 1930 } 1931