1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41 #include <cassert>
42 #include <utility>
43 
44 using namespace llvm;
45 using namespace PatternMatch;
46 
47 #define DEBUG_TYPE "instcombine"
48 
49 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
50                            SelectPatternFlavor SPF, Value *A, Value *B) {
51   CmpInst::Predicate Pred = getMinMaxPred(SPF);
52   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
53   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
54 }
55 
56 /// Replace a select operand based on an equality comparison with the identity
57 /// constant of a binop.
58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
59                                             const TargetLibraryInfo &TLI) {
60   // The select condition must be an equality compare with a constant operand.
61   Value *X;
62   Constant *C;
63   CmpInst::Predicate Pred;
64   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
65     return nullptr;
66 
67   bool IsEq;
68   if (ICmpInst::isEquality(Pred))
69     IsEq = Pred == ICmpInst::ICMP_EQ;
70   else if (Pred == FCmpInst::FCMP_OEQ)
71     IsEq = true;
72   else if (Pred == FCmpInst::FCMP_UNE)
73     IsEq = false;
74   else
75     return nullptr;
76 
77   // A select operand must be a binop.
78   BinaryOperator *BO;
79   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
80     return nullptr;
81 
82   // The compare constant must be the identity constant for that binop.
83   // If this a floating-point compare with 0.0, any zero constant will do.
84   Type *Ty = BO->getType();
85   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
86   if (IdC != C) {
87     if (!IdC || !CmpInst::isFPPredicate(Pred))
88       return nullptr;
89     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
90       return nullptr;
91   }
92 
93   // Last, match the compare variable operand with a binop operand.
94   Value *Y;
95   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
96     return nullptr;
97   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
98     return nullptr;
99 
100   // +0.0 compares equal to -0.0, and so it does not behave as required for this
101   // transform. Bail out if we can not exclude that possibility.
102   if (isa<FPMathOperator>(BO))
103     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
104       return nullptr;
105 
106   // BO = binop Y, X
107   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
108   // =>
109   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
110   Sel.setOperand(IsEq ? 1 : 2, Y);
111   return &Sel;
112 }
113 
114 /// This folds:
115 ///  select (icmp eq (and X, C1)), TC, FC
116 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
117 /// To something like:
118 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
119 /// Or:
120 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
121 /// With some variations depending if FC is larger than TC, or the shift
122 /// isn't needed, or the bit widths don't match.
123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
124                                 InstCombiner::BuilderTy &Builder) {
125   const APInt *SelTC, *SelFC;
126   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
127       !match(Sel.getFalseValue(), m_APInt(SelFC)))
128     return nullptr;
129 
130   // If this is a vector select, we need a vector compare.
131   Type *SelType = Sel.getType();
132   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
133     return nullptr;
134 
135   Value *V;
136   APInt AndMask;
137   bool CreateAnd = false;
138   ICmpInst::Predicate Pred = Cmp->getPredicate();
139   if (ICmpInst::isEquality(Pred)) {
140     if (!match(Cmp->getOperand(1), m_Zero()))
141       return nullptr;
142 
143     V = Cmp->getOperand(0);
144     const APInt *AndRHS;
145     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
146       return nullptr;
147 
148     AndMask = *AndRHS;
149   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
150                                   Pred, V, AndMask)) {
151     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
152     if (!AndMask.isPowerOf2())
153       return nullptr;
154 
155     CreateAnd = true;
156   } else {
157     return nullptr;
158   }
159 
160   // In general, when both constants are non-zero, we would need an offset to
161   // replace the select. This would require more instructions than we started
162   // with. But there's one special-case that we handle here because it can
163   // simplify/reduce the instructions.
164   APInt TC = *SelTC;
165   APInt FC = *SelFC;
166   if (!TC.isNullValue() && !FC.isNullValue()) {
167     // If the select constants differ by exactly one bit and that's the same
168     // bit that is masked and checked by the select condition, the select can
169     // be replaced by bitwise logic to set/clear one bit of the constant result.
170     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
171       return nullptr;
172     if (CreateAnd) {
173       // If we have to create an 'and', then we must kill the cmp to not
174       // increase the instruction count.
175       if (!Cmp->hasOneUse())
176         return nullptr;
177       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
178     }
179     bool ExtraBitInTC = TC.ugt(FC);
180     if (Pred == ICmpInst::ICMP_EQ) {
181       // If the masked bit in V is clear, clear or set the bit in the result:
182       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
183       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
184       Constant *C = ConstantInt::get(SelType, TC);
185       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
186     }
187     if (Pred == ICmpInst::ICMP_NE) {
188       // If the masked bit in V is set, set or clear the bit in the result:
189       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
190       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
191       Constant *C = ConstantInt::get(SelType, FC);
192       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
193     }
194     llvm_unreachable("Only expecting equality predicates");
195   }
196 
197   // Make sure one of the select arms is a power-of-2.
198   if (!TC.isPowerOf2() && !FC.isPowerOf2())
199     return nullptr;
200 
201   // Determine which shift is needed to transform result of the 'and' into the
202   // desired result.
203   const APInt &ValC = !TC.isNullValue() ? TC : FC;
204   unsigned ValZeros = ValC.logBase2();
205   unsigned AndZeros = AndMask.logBase2();
206 
207   // Insert the 'and' instruction on the input to the truncate.
208   if (CreateAnd)
209     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
210 
211   // If types don't match, we can still convert the select by introducing a zext
212   // or a trunc of the 'and'.
213   if (ValZeros > AndZeros) {
214     V = Builder.CreateZExtOrTrunc(V, SelType);
215     V = Builder.CreateShl(V, ValZeros - AndZeros);
216   } else if (ValZeros < AndZeros) {
217     V = Builder.CreateLShr(V, AndZeros - ValZeros);
218     V = Builder.CreateZExtOrTrunc(V, SelType);
219   } else {
220     V = Builder.CreateZExtOrTrunc(V, SelType);
221   }
222 
223   // Okay, now we know that everything is set up, we just don't know whether we
224   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
225   bool ShouldNotVal = !TC.isNullValue();
226   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
227   if (ShouldNotVal)
228     V = Builder.CreateXor(V, ValC);
229 
230   return V;
231 }
232 
233 /// We want to turn code that looks like this:
234 ///   %C = or %A, %B
235 ///   %D = select %cond, %C, %A
236 /// into:
237 ///   %C = select %cond, %B, 0
238 ///   %D = or %A, %C
239 ///
240 /// Assuming that the specified instruction is an operand to the select, return
241 /// a bitmask indicating which operands of this instruction are foldable if they
242 /// equal the other incoming value of the select.
243 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
244   switch (I->getOpcode()) {
245   case Instruction::Add:
246   case Instruction::Mul:
247   case Instruction::And:
248   case Instruction::Or:
249   case Instruction::Xor:
250     return 3;              // Can fold through either operand.
251   case Instruction::Sub:   // Can only fold on the amount subtracted.
252   case Instruction::Shl:   // Can only fold on the shift amount.
253   case Instruction::LShr:
254   case Instruction::AShr:
255     return 1;
256   default:
257     return 0;              // Cannot fold
258   }
259 }
260 
261 /// For the same transformation as the previous function, return the identity
262 /// constant that goes into the select.
263 static APInt getSelectFoldableConstant(BinaryOperator *I) {
264   switch (I->getOpcode()) {
265   default: llvm_unreachable("This cannot happen!");
266   case Instruction::Add:
267   case Instruction::Sub:
268   case Instruction::Or:
269   case Instruction::Xor:
270   case Instruction::Shl:
271   case Instruction::LShr:
272   case Instruction::AShr:
273     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
274   case Instruction::And:
275     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
276   case Instruction::Mul:
277     return APInt(I->getType()->getScalarSizeInBits(), 1);
278   }
279 }
280 
281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
283                                           Instruction *FI) {
284   // Don't break up min/max patterns. The hasOneUse checks below prevent that
285   // for most cases, but vector min/max with bitcasts can be transformed. If the
286   // one-use restrictions are eased for other patterns, we still don't want to
287   // obfuscate min/max.
288   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
289        match(&SI, m_SMax(m_Value(), m_Value())) ||
290        match(&SI, m_UMin(m_Value(), m_Value())) ||
291        match(&SI, m_UMax(m_Value(), m_Value()))))
292     return nullptr;
293 
294   // If this is a cast from the same type, merge.
295   Value *Cond = SI.getCondition();
296   Type *CondTy = Cond->getType();
297   if (TI->getNumOperands() == 1 && TI->isCast()) {
298     Type *FIOpndTy = FI->getOperand(0)->getType();
299     if (TI->getOperand(0)->getType() != FIOpndTy)
300       return nullptr;
301 
302     // The select condition may be a vector. We may only change the operand
303     // type if the vector width remains the same (and matches the condition).
304     if (CondTy->isVectorTy()) {
305       if (!FIOpndTy->isVectorTy())
306         return nullptr;
307       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308         return nullptr;
309 
310       // TODO: If the backend knew how to deal with casts better, we could
311       // remove this limitation. For now, there's too much potential to create
312       // worse codegen by promoting the select ahead of size-altering casts
313       // (PR28160).
314       //
315       // Note that ValueTracking's matchSelectPattern() looks through casts
316       // without checking 'hasOneUse' when it matches min/max patterns, so this
317       // transform may end up happening anyway.
318       if (TI->getOpcode() != Instruction::BitCast &&
319           (!TI->hasOneUse() || !FI->hasOneUse()))
320         return nullptr;
321     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322       // TODO: The one-use restrictions for a scalar select could be eased if
323       // the fold of a select in visitLoadInst() was enhanced to match a pattern
324       // that includes a cast.
325       return nullptr;
326     }
327 
328     // Fold this by inserting a select from the input values.
329     Value *NewSI =
330         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
331                              SI.getName() + ".v", &SI);
332     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333                             TI->getType());
334   }
335 
336   // Cond ? -X : -Y --> -(Cond ? X : Y)
337   Value *X, *Y;
338   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
339       (TI->hasOneUse() || FI->hasOneUse())) {
340     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
341     // TODO: Remove the hack for the binop form when the unary op is optimized
342     //       properly with all IR passes.
343     if (TI->getOpcode() != Instruction::FNeg)
344       return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI));
345     return UnaryOperator::CreateFNeg(NewSel);
346   }
347 
348   // Only handle binary operators (including two-operand getelementptr) with
349   // one-use here. As with the cast case above, it may be possible to relax the
350   // one-use constraint, but that needs be examined carefully since it may not
351   // reduce the total number of instructions.
352   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
353       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
354       !TI->hasOneUse() || !FI->hasOneUse())
355     return nullptr;
356 
357   // Figure out if the operations have any operands in common.
358   Value *MatchOp, *OtherOpT, *OtherOpF;
359   bool MatchIsOpZero;
360   if (TI->getOperand(0) == FI->getOperand(0)) {
361     MatchOp  = TI->getOperand(0);
362     OtherOpT = TI->getOperand(1);
363     OtherOpF = FI->getOperand(1);
364     MatchIsOpZero = true;
365   } else if (TI->getOperand(1) == FI->getOperand(1)) {
366     MatchOp  = TI->getOperand(1);
367     OtherOpT = TI->getOperand(0);
368     OtherOpF = FI->getOperand(0);
369     MatchIsOpZero = false;
370   } else if (!TI->isCommutative()) {
371     return nullptr;
372   } else if (TI->getOperand(0) == FI->getOperand(1)) {
373     MatchOp  = TI->getOperand(0);
374     OtherOpT = TI->getOperand(1);
375     OtherOpF = FI->getOperand(0);
376     MatchIsOpZero = true;
377   } else if (TI->getOperand(1) == FI->getOperand(0)) {
378     MatchOp  = TI->getOperand(1);
379     OtherOpT = TI->getOperand(0);
380     OtherOpF = FI->getOperand(1);
381     MatchIsOpZero = true;
382   } else {
383     return nullptr;
384   }
385 
386   // If the select condition is a vector, the operands of the original select's
387   // operands also must be vectors. This may not be the case for getelementptr
388   // for example.
389   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
390                                !OtherOpF->getType()->isVectorTy()))
391     return nullptr;
392 
393   // If we reach here, they do have operations in common.
394   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
395                                       SI.getName() + ".v", &SI);
396   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
397   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
398   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
399     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
400     NewBO->copyIRFlags(TI);
401     NewBO->andIRFlags(FI);
402     return NewBO;
403   }
404   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
405     auto *FGEP = cast<GetElementPtrInst>(FI);
406     Type *ElementType = TGEP->getResultElementType();
407     return TGEP->isInBounds() && FGEP->isInBounds()
408                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
409                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
410   }
411   llvm_unreachable("Expected BinaryOperator or GEP");
412   return nullptr;
413 }
414 
415 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
416   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
417     return false;
418   return C1I.isOneValue() || C1I.isAllOnesValue() ||
419          C2I.isOneValue() || C2I.isAllOnesValue();
420 }
421 
422 /// Try to fold the select into one of the operands to allow further
423 /// optimization.
424 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
425                                             Value *FalseVal) {
426   // See the comment above GetSelectFoldableOperands for a description of the
427   // transformation we are doing here.
428   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
429     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
430       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
431         unsigned OpToFold = 0;
432         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
433           OpToFold = 1;
434         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
435           OpToFold = 2;
436         }
437 
438         if (OpToFold) {
439           APInt CI = getSelectFoldableConstant(TVI);
440           Value *OOp = TVI->getOperand(2-OpToFold);
441           // Avoid creating select between 2 constants unless it's selecting
442           // between 0, 1 and -1.
443           const APInt *OOpC;
444           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
445           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
446             Value *C = ConstantInt::get(OOp->getType(), CI);
447             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
448             NewSel->takeName(TVI);
449             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
450                                                         FalseVal, NewSel);
451             BO->copyIRFlags(TVI);
452             return BO;
453           }
454         }
455       }
456     }
457   }
458 
459   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
460     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
461       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
462         unsigned OpToFold = 0;
463         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
464           OpToFold = 1;
465         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
466           OpToFold = 2;
467         }
468 
469         if (OpToFold) {
470           APInt CI = getSelectFoldableConstant(FVI);
471           Value *OOp = FVI->getOperand(2-OpToFold);
472           // Avoid creating select between 2 constants unless it's selecting
473           // between 0, 1 and -1.
474           const APInt *OOpC;
475           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
476           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
477             Value *C = ConstantInt::get(OOp->getType(), CI);
478             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
479             NewSel->takeName(FVI);
480             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
481                                                         TrueVal, NewSel);
482             BO->copyIRFlags(FVI);
483             return BO;
484           }
485         }
486       }
487     }
488   }
489 
490   return nullptr;
491 }
492 
493 /// We want to turn:
494 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
495 /// into:
496 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
497 /// Note:
498 ///   Z may be 0 if lshr is missing.
499 /// Worst-case scenario is that we will replace 5 instructions with 5 different
500 /// instructions, but we got rid of select.
501 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
502                                          Value *TVal, Value *FVal,
503                                          InstCombiner::BuilderTy &Builder) {
504   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
505         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
506         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
507     return nullptr;
508 
509   // The TrueVal has general form of:  and %B, 1
510   Value *B;
511   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
512     return nullptr;
513 
514   // Where %B may be optionally shifted:  lshr %X, %Z.
515   Value *X, *Z;
516   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
517   if (!HasShift)
518     X = B;
519 
520   Value *Y;
521   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
522     return nullptr;
523 
524   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
525   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
526   Constant *One = ConstantInt::get(SelType, 1);
527   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
528   Value *FullMask = Builder.CreateOr(Y, MaskB);
529   Value *MaskedX = Builder.CreateAnd(X, FullMask);
530   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
531   return new ZExtInst(ICmpNeZero, SelType);
532 }
533 
534 /// We want to turn:
535 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
536 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
537 /// into:
538 ///   ashr (X, Y)
539 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
540                                      Value *FalseVal,
541                                      InstCombiner::BuilderTy &Builder) {
542   ICmpInst::Predicate Pred = IC->getPredicate();
543   Value *CmpLHS = IC->getOperand(0);
544   Value *CmpRHS = IC->getOperand(1);
545   if (!CmpRHS->getType()->isIntOrIntVectorTy())
546     return nullptr;
547 
548   Value *X, *Y;
549   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
550   if ((Pred != ICmpInst::ICMP_SGT ||
551        !match(CmpRHS,
552               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
553       (Pred != ICmpInst::ICMP_SLT ||
554        !match(CmpRHS,
555               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
556     return nullptr;
557 
558   // Canonicalize so that ashr is in FalseVal.
559   if (Pred == ICmpInst::ICMP_SLT)
560     std::swap(TrueVal, FalseVal);
561 
562   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
563       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
564       match(CmpLHS, m_Specific(X))) {
565     const auto *Ashr = cast<Instruction>(FalseVal);
566     // if lshr is not exact and ashr is, this new ashr must not be exact.
567     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
568     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
569   }
570 
571   return nullptr;
572 }
573 
574 /// We want to turn:
575 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
576 /// into:
577 ///   (or (shl (and X, C1), C3), Y)
578 /// iff:
579 ///   C1 and C2 are both powers of 2
580 /// where:
581 ///   C3 = Log(C2) - Log(C1)
582 ///
583 /// This transform handles cases where:
584 /// 1. The icmp predicate is inverted
585 /// 2. The select operands are reversed
586 /// 3. The magnitude of C2 and C1 are flipped
587 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
588                                   Value *FalseVal,
589                                   InstCombiner::BuilderTy &Builder) {
590   // Only handle integer compares. Also, if this is a vector select, we need a
591   // vector compare.
592   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
593       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
594     return nullptr;
595 
596   Value *CmpLHS = IC->getOperand(0);
597   Value *CmpRHS = IC->getOperand(1);
598 
599   Value *V;
600   unsigned C1Log;
601   bool IsEqualZero;
602   bool NeedAnd = false;
603   if (IC->isEquality()) {
604     if (!match(CmpRHS, m_Zero()))
605       return nullptr;
606 
607     const APInt *C1;
608     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
609       return nullptr;
610 
611     V = CmpLHS;
612     C1Log = C1->logBase2();
613     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
614   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
615              IC->getPredicate() == ICmpInst::ICMP_SGT) {
616     // We also need to recognize (icmp slt (trunc (X)), 0) and
617     // (icmp sgt (trunc (X)), -1).
618     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
619     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
620         (!IsEqualZero && !match(CmpRHS, m_Zero())))
621       return nullptr;
622 
623     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
624       return nullptr;
625 
626     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
627     NeedAnd = true;
628   } else {
629     return nullptr;
630   }
631 
632   const APInt *C2;
633   bool OrOnTrueVal = false;
634   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
635   if (!OrOnFalseVal)
636     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
637 
638   if (!OrOnFalseVal && !OrOnTrueVal)
639     return nullptr;
640 
641   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
642 
643   unsigned C2Log = C2->logBase2();
644 
645   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
646   bool NeedShift = C1Log != C2Log;
647   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
648                        V->getType()->getScalarSizeInBits();
649 
650   // Make sure we don't create more instructions than we save.
651   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
652   if ((NeedShift + NeedXor + NeedZExtTrunc) >
653       (IC->hasOneUse() + Or->hasOneUse()))
654     return nullptr;
655 
656   if (NeedAnd) {
657     // Insert the AND instruction on the input to the truncate.
658     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
659     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
660   }
661 
662   if (C2Log > C1Log) {
663     V = Builder.CreateZExtOrTrunc(V, Y->getType());
664     V = Builder.CreateShl(V, C2Log - C1Log);
665   } else if (C1Log > C2Log) {
666     V = Builder.CreateLShr(V, C1Log - C2Log);
667     V = Builder.CreateZExtOrTrunc(V, Y->getType());
668   } else
669     V = Builder.CreateZExtOrTrunc(V, Y->getType());
670 
671   if (NeedXor)
672     V = Builder.CreateXor(V, *C2);
673 
674   return Builder.CreateOr(V, Y);
675 }
676 
677 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
678 /// There are 8 commuted/swapped variants of this pattern.
679 /// TODO: Also support a - UMIN(a,b) patterns.
680 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
681                                             const Value *TrueVal,
682                                             const Value *FalseVal,
683                                             InstCombiner::BuilderTy &Builder) {
684   ICmpInst::Predicate Pred = ICI->getPredicate();
685   if (!ICmpInst::isUnsigned(Pred))
686     return nullptr;
687 
688   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
689   if (match(TrueVal, m_Zero())) {
690     Pred = ICmpInst::getInversePredicate(Pred);
691     std::swap(TrueVal, FalseVal);
692   }
693   if (!match(FalseVal, m_Zero()))
694     return nullptr;
695 
696   Value *A = ICI->getOperand(0);
697   Value *B = ICI->getOperand(1);
698   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
699     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
700     std::swap(A, B);
701     Pred = ICmpInst::getSwappedPredicate(Pred);
702   }
703 
704   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
705          "Unexpected isUnsigned predicate!");
706 
707   // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
708   bool IsNegative = false;
709   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
710     IsNegative = true;
711   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
712     return nullptr;
713 
714   // If sub is used anywhere else, we wouldn't be able to eliminate it
715   // afterwards.
716   if (!TrueVal->hasOneUse())
717     return nullptr;
718 
719   // (a > b) ? a - b : 0 -> usub.sat(a, b)
720   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
721   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
722   if (IsNegative)
723     Result = Builder.CreateNeg(Result);
724   return Result;
725 }
726 
727 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
728                                        InstCombiner::BuilderTy &Builder) {
729   if (!Cmp->hasOneUse())
730     return nullptr;
731 
732   // Match unsigned saturated add with constant.
733   Value *Cmp0 = Cmp->getOperand(0);
734   Value *Cmp1 = Cmp->getOperand(1);
735   ICmpInst::Predicate Pred = Cmp->getPredicate();
736   Value *X;
737   const APInt *C, *CmpC;
738   if (Pred == ICmpInst::ICMP_ULT &&
739       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
740       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
741     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
742     return Builder.CreateBinaryIntrinsic(
743         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
744   }
745 
746   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
747   // There are 8 commuted variants.
748   // Canonicalize -1 (saturated result) to true value of the select. Just
749   // swapping the compare operands is legal, because the selected value is the
750   // same in case of equality, so we can interchange u< and u<=.
751   if (match(FVal, m_AllOnes())) {
752     std::swap(TVal, FVal);
753     std::swap(Cmp0, Cmp1);
754   }
755   if (!match(TVal, m_AllOnes()))
756     return nullptr;
757 
758   // Canonicalize predicate to 'ULT'.
759   if (Pred == ICmpInst::ICMP_UGT) {
760     Pred = ICmpInst::ICMP_ULT;
761     std::swap(Cmp0, Cmp1);
762   }
763   if (Pred != ICmpInst::ICMP_ULT)
764     return nullptr;
765 
766   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
767   Value *Y;
768   if (match(Cmp0, m_Not(m_Value(X))) &&
769       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
770     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
771     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
772     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
773   }
774   // The 'not' op may be included in the sum but not the compare.
775   X = Cmp0;
776   Y = Cmp1;
777   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
778     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
779     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
780     BinaryOperator *BO = cast<BinaryOperator>(FVal);
781     return Builder.CreateBinaryIntrinsic(
782         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
783   }
784 
785   return nullptr;
786 }
787 
788 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
789 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
790 ///
791 /// For example, we can fold the following code sequence:
792 /// \code
793 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
794 ///   %1 = icmp ne i32 %x, 0
795 ///   %2 = select i1 %1, i32 %0, i32 32
796 /// \code
797 ///
798 /// into:
799 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
800 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
801                                  InstCombiner::BuilderTy &Builder) {
802   ICmpInst::Predicate Pred = ICI->getPredicate();
803   Value *CmpLHS = ICI->getOperand(0);
804   Value *CmpRHS = ICI->getOperand(1);
805 
806   // Check if the condition value compares a value for equality against zero.
807   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
808     return nullptr;
809 
810   Value *Count = FalseVal;
811   Value *ValueOnZero = TrueVal;
812   if (Pred == ICmpInst::ICMP_NE)
813     std::swap(Count, ValueOnZero);
814 
815   // Skip zero extend/truncate.
816   Value *V = nullptr;
817   if (match(Count, m_ZExt(m_Value(V))) ||
818       match(Count, m_Trunc(m_Value(V))))
819     Count = V;
820 
821   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
822   // input to the cttz/ctlz is used as LHS for the compare instruction.
823   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
824       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
825     return nullptr;
826 
827   IntrinsicInst *II = cast<IntrinsicInst>(Count);
828 
829   // Check if the value propagated on zero is a constant number equal to the
830   // sizeof in bits of 'Count'.
831   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
832   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
833     // Explicitly clear the 'undef_on_zero' flag.
834     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
835     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
836     Builder.Insert(NewI);
837     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
838   }
839 
840   // If the ValueOnZero is not the bitwidth, we can at least make use of the
841   // fact that the cttz/ctlz result will not be used if the input is zero, so
842   // it's okay to relax it to undef for that case.
843   if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
844     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
845 
846   return nullptr;
847 }
848 
849 /// Return true if we find and adjust an icmp+select pattern where the compare
850 /// is with a constant that can be incremented or decremented to match the
851 /// minimum or maximum idiom.
852 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
853   ICmpInst::Predicate Pred = Cmp.getPredicate();
854   Value *CmpLHS = Cmp.getOperand(0);
855   Value *CmpRHS = Cmp.getOperand(1);
856   Value *TrueVal = Sel.getTrueValue();
857   Value *FalseVal = Sel.getFalseValue();
858 
859   // We may move or edit the compare, so make sure the select is the only user.
860   const APInt *CmpC;
861   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
862     return false;
863 
864   // These transforms only work for selects of integers or vector selects of
865   // integer vectors.
866   Type *SelTy = Sel.getType();
867   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
868   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
869     return false;
870 
871   Constant *AdjustedRHS;
872   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
873     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
874   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
875     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
876   else
877     return false;
878 
879   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
880   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
881   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
882       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
883     ; // Nothing to do here. Values match without any sign/zero extension.
884   }
885   // Types do not match. Instead of calculating this with mixed types, promote
886   // all to the larger type. This enables scalar evolution to analyze this
887   // expression.
888   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
889     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
890 
891     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
892     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
893     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
894     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
895     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
896       CmpLHS = TrueVal;
897       AdjustedRHS = SextRHS;
898     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
899                SextRHS == TrueVal) {
900       CmpLHS = FalseVal;
901       AdjustedRHS = SextRHS;
902     } else if (Cmp.isUnsigned()) {
903       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
904       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
905       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
906       // zext + signed compare cannot be changed:
907       //    0xff <s 0x00, but 0x00ff >s 0x0000
908       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
909         CmpLHS = TrueVal;
910         AdjustedRHS = ZextRHS;
911       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
912                  ZextRHS == TrueVal) {
913         CmpLHS = FalseVal;
914         AdjustedRHS = ZextRHS;
915       } else {
916         return false;
917       }
918     } else {
919       return false;
920     }
921   } else {
922     return false;
923   }
924 
925   Pred = ICmpInst::getSwappedPredicate(Pred);
926   CmpRHS = AdjustedRHS;
927   std::swap(FalseVal, TrueVal);
928   Cmp.setPredicate(Pred);
929   Cmp.setOperand(0, CmpLHS);
930   Cmp.setOperand(1, CmpRHS);
931   Sel.setOperand(1, TrueVal);
932   Sel.setOperand(2, FalseVal);
933   Sel.swapProfMetadata();
934 
935   // Move the compare instruction right before the select instruction. Otherwise
936   // the sext/zext value may be defined after the compare instruction uses it.
937   Cmp.moveBefore(&Sel);
938 
939   return true;
940 }
941 
942 /// If this is an integer min/max (icmp + select) with a constant operand,
943 /// create the canonical icmp for the min/max operation and canonicalize the
944 /// constant to the 'false' operand of the select:
945 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
946 /// Note: if C1 != C2, this will change the icmp constant to the existing
947 /// constant operand of the select.
948 static Instruction *
949 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
950                                InstCombiner::BuilderTy &Builder) {
951   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
952     return nullptr;
953 
954   // Canonicalize the compare predicate based on whether we have min or max.
955   Value *LHS, *RHS;
956   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
957   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
958     return nullptr;
959 
960   // Is this already canonical?
961   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
962   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
963       Cmp.getPredicate() == CanonicalPred)
964     return nullptr;
965 
966   // Create the canonical compare and plug it into the select.
967   Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
968 
969   // If the select operands did not change, we're done.
970   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
971     return &Sel;
972 
973   // If we are swapping the select operands, swap the metadata too.
974   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
975          "Unexpected results from matchSelectPattern");
976   Sel.swapValues();
977   Sel.swapProfMetadata();
978   return &Sel;
979 }
980 
981 /// There are many select variants for each of ABS/NABS.
982 /// In matchSelectPattern(), there are different compare constants, compare
983 /// predicates/operands and select operands.
984 /// In isKnownNegation(), there are different formats of negated operands.
985 /// Canonicalize all these variants to 1 pattern.
986 /// This makes CSE more likely.
987 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
988                                         InstCombiner::BuilderTy &Builder) {
989   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
990     return nullptr;
991 
992   // Choose a sign-bit check for the compare (likely simpler for codegen).
993   // ABS:  (X <s 0) ? -X : X
994   // NABS: (X <s 0) ? X : -X
995   Value *LHS, *RHS;
996   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
997   if (SPF != SelectPatternFlavor::SPF_ABS &&
998       SPF != SelectPatternFlavor::SPF_NABS)
999     return nullptr;
1000 
1001   Value *TVal = Sel.getTrueValue();
1002   Value *FVal = Sel.getFalseValue();
1003   assert(isKnownNegation(TVal, FVal) &&
1004          "Unexpected result from matchSelectPattern");
1005 
1006   // The compare may use the negated abs()/nabs() operand, or it may use
1007   // negation in non-canonical form such as: sub A, B.
1008   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1009                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1010 
1011   bool CmpCanonicalized = !CmpUsesNegatedOp &&
1012                           match(Cmp.getOperand(1), m_ZeroInt()) &&
1013                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1014   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1015 
1016   // Is this already canonical?
1017   if (CmpCanonicalized && RHSCanonicalized)
1018     return nullptr;
1019 
1020   // If RHS is used by other instructions except compare and select, don't
1021   // canonicalize it to not increase the instruction count.
1022   if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1023     return nullptr;
1024 
1025   // Create the canonical compare: icmp slt LHS 0.
1026   if (!CmpCanonicalized) {
1027     Cmp.setPredicate(ICmpInst::ICMP_SLT);
1028     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1029     if (CmpUsesNegatedOp)
1030       Cmp.setOperand(0, LHS);
1031   }
1032 
1033   // Create the canonical RHS: RHS = sub (0, LHS).
1034   if (!RHSCanonicalized) {
1035     assert(RHS->hasOneUse() && "RHS use number is not right");
1036     RHS = Builder.CreateNeg(LHS);
1037     if (TVal == LHS) {
1038       Sel.setFalseValue(RHS);
1039       FVal = RHS;
1040     } else {
1041       Sel.setTrueValue(RHS);
1042       TVal = RHS;
1043     }
1044   }
1045 
1046   // If the select operands do not change, we're done.
1047   if (SPF == SelectPatternFlavor::SPF_NABS) {
1048     if (TVal == LHS)
1049       return &Sel;
1050     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1051   } else {
1052     if (FVal == LHS)
1053       return &Sel;
1054     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1055   }
1056 
1057   // We are swapping the select operands, so swap the metadata too.
1058   Sel.swapValues();
1059   Sel.swapProfMetadata();
1060   return &Sel;
1061 }
1062 
1063 /// Visit a SelectInst that has an ICmpInst as its first operand.
1064 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
1065                                                   ICmpInst *ICI) {
1066   Value *TrueVal = SI.getTrueValue();
1067   Value *FalseVal = SI.getFalseValue();
1068 
1069   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
1070     return NewSel;
1071 
1072   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
1073     return NewAbs;
1074 
1075   bool Changed = adjustMinMax(SI, *ICI);
1076 
1077   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1078     return replaceInstUsesWith(SI, V);
1079 
1080   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1081   ICmpInst::Predicate Pred = ICI->getPredicate();
1082   Value *CmpLHS = ICI->getOperand(0);
1083   Value *CmpRHS = ICI->getOperand(1);
1084   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1085     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1086       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1087       SI.setOperand(1, CmpRHS);
1088       Changed = true;
1089     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1090       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1091       SI.setOperand(2, CmpRHS);
1092       Changed = true;
1093     }
1094   }
1095 
1096   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1097   // decomposeBitTestICmp() might help.
1098   {
1099     unsigned BitWidth =
1100         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1101     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1102     Value *X;
1103     const APInt *Y, *C;
1104     bool TrueWhenUnset;
1105     bool IsBitTest = false;
1106     if (ICmpInst::isEquality(Pred) &&
1107         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1108         match(CmpRHS, m_Zero())) {
1109       IsBitTest = true;
1110       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1111     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1112       X = CmpLHS;
1113       Y = &MinSignedValue;
1114       IsBitTest = true;
1115       TrueWhenUnset = false;
1116     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1117       X = CmpLHS;
1118       Y = &MinSignedValue;
1119       IsBitTest = true;
1120       TrueWhenUnset = true;
1121     }
1122     if (IsBitTest) {
1123       Value *V = nullptr;
1124       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1125       if (TrueWhenUnset && TrueVal == X &&
1126           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1127         V = Builder.CreateAnd(X, ~(*Y));
1128       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1129       else if (!TrueWhenUnset && FalseVal == X &&
1130                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1131         V = Builder.CreateAnd(X, ~(*Y));
1132       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1133       else if (TrueWhenUnset && FalseVal == X &&
1134                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1135         V = Builder.CreateOr(X, *Y);
1136       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1137       else if (!TrueWhenUnset && TrueVal == X &&
1138                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1139         V = Builder.CreateOr(X, *Y);
1140 
1141       if (V)
1142         return replaceInstUsesWith(SI, V);
1143     }
1144   }
1145 
1146   if (Instruction *V =
1147           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1148     return V;
1149 
1150   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1151     return replaceInstUsesWith(SI, V);
1152 
1153   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1154     return replaceInstUsesWith(SI, V);
1155 
1156   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1157     return replaceInstUsesWith(SI, V);
1158 
1159   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1160     return replaceInstUsesWith(SI, V);
1161 
1162   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1163     return replaceInstUsesWith(SI, V);
1164 
1165   return Changed ? &SI : nullptr;
1166 }
1167 
1168 /// SI is a select whose condition is a PHI node (but the two may be in
1169 /// different blocks). See if the true/false values (V) are live in all of the
1170 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1171 ///
1172 ///   X = phi [ C1, BB1], [C2, BB2]
1173 ///   Y = add
1174 ///   Z = select X, Y, 0
1175 ///
1176 /// because Y is not live in BB1/BB2.
1177 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1178                                                    const SelectInst &SI) {
1179   // If the value is a non-instruction value like a constant or argument, it
1180   // can always be mapped.
1181   const Instruction *I = dyn_cast<Instruction>(V);
1182   if (!I) return true;
1183 
1184   // If V is a PHI node defined in the same block as the condition PHI, we can
1185   // map the arguments.
1186   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1187 
1188   if (const PHINode *VP = dyn_cast<PHINode>(I))
1189     if (VP->getParent() == CondPHI->getParent())
1190       return true;
1191 
1192   // Otherwise, if the PHI and select are defined in the same block and if V is
1193   // defined in a different block, then we can transform it.
1194   if (SI.getParent() == CondPHI->getParent() &&
1195       I->getParent() != CondPHI->getParent())
1196     return true;
1197 
1198   // Otherwise we have a 'hard' case and we can't tell without doing more
1199   // detailed dominator based analysis, punt.
1200   return false;
1201 }
1202 
1203 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1204 ///   SPF2(SPF1(A, B), C)
1205 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1206                                         SelectPatternFlavor SPF1,
1207                                         Value *A, Value *B,
1208                                         Instruction &Outer,
1209                                         SelectPatternFlavor SPF2, Value *C) {
1210   if (Outer.getType() != Inner->getType())
1211     return nullptr;
1212 
1213   if (C == A || C == B) {
1214     // MAX(MAX(A, B), B) -> MAX(A, B)
1215     // MIN(MIN(a, b), a) -> MIN(a, b)
1216     // TODO: This could be done in instsimplify.
1217     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1218       return replaceInstUsesWith(Outer, Inner);
1219 
1220     // MAX(MIN(a, b), a) -> a
1221     // MIN(MAX(a, b), a) -> a
1222     // TODO: This could be done in instsimplify.
1223     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1224         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1225         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1226         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1227       return replaceInstUsesWith(Outer, C);
1228   }
1229 
1230   if (SPF1 == SPF2) {
1231     const APInt *CB, *CC;
1232     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1233       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1234       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1235       // TODO: This could be done in instsimplify.
1236       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1237           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1238           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1239           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1240         return replaceInstUsesWith(Outer, Inner);
1241 
1242       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1243       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1244       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1245           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1246           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1247           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1248         Outer.replaceUsesOfWith(Inner, A);
1249         return &Outer;
1250       }
1251     }
1252   }
1253 
1254   // ABS(ABS(X)) -> ABS(X)
1255   // NABS(NABS(X)) -> NABS(X)
1256   // TODO: This could be done in instsimplify.
1257   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1258     return replaceInstUsesWith(Outer, Inner);
1259   }
1260 
1261   // ABS(NABS(X)) -> ABS(X)
1262   // NABS(ABS(X)) -> NABS(X)
1263   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1264       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1265     SelectInst *SI = cast<SelectInst>(Inner);
1266     Value *NewSI =
1267         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1268                              SI->getTrueValue(), SI->getName(), SI);
1269     return replaceInstUsesWith(Outer, NewSI);
1270   }
1271 
1272   auto IsFreeOrProfitableToInvert =
1273       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1274     if (match(V, m_Not(m_Value(NotV)))) {
1275       // If V has at most 2 uses then we can get rid of the xor operation
1276       // entirely.
1277       ElidesXor |= !V->hasNUsesOrMore(3);
1278       return true;
1279     }
1280 
1281     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1282       NotV = nullptr;
1283       return true;
1284     }
1285 
1286     return false;
1287   };
1288 
1289   Value *NotA, *NotB, *NotC;
1290   bool ElidesXor = false;
1291 
1292   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1293   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1294   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1295   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1296   //
1297   // This transform is performance neutral if we can elide at least one xor from
1298   // the set of three operands, since we'll be tacking on an xor at the very
1299   // end.
1300   if (SelectPatternResult::isMinOrMax(SPF1) &&
1301       SelectPatternResult::isMinOrMax(SPF2) &&
1302       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1303       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1304       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1305     if (!NotA)
1306       NotA = Builder.CreateNot(A);
1307     if (!NotB)
1308       NotB = Builder.CreateNot(B);
1309     if (!NotC)
1310       NotC = Builder.CreateNot(C);
1311 
1312     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1313                                    NotB);
1314     Value *NewOuter = Builder.CreateNot(
1315         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1316     return replaceInstUsesWith(Outer, NewOuter);
1317   }
1318 
1319   return nullptr;
1320 }
1321 
1322 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1323 /// This is even legal for FP.
1324 static Instruction *foldAddSubSelect(SelectInst &SI,
1325                                      InstCombiner::BuilderTy &Builder) {
1326   Value *CondVal = SI.getCondition();
1327   Value *TrueVal = SI.getTrueValue();
1328   Value *FalseVal = SI.getFalseValue();
1329   auto *TI = dyn_cast<Instruction>(TrueVal);
1330   auto *FI = dyn_cast<Instruction>(FalseVal);
1331   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1332     return nullptr;
1333 
1334   Instruction *AddOp = nullptr, *SubOp = nullptr;
1335   if ((TI->getOpcode() == Instruction::Sub &&
1336        FI->getOpcode() == Instruction::Add) ||
1337       (TI->getOpcode() == Instruction::FSub &&
1338        FI->getOpcode() == Instruction::FAdd)) {
1339     AddOp = FI;
1340     SubOp = TI;
1341   } else if ((FI->getOpcode() == Instruction::Sub &&
1342               TI->getOpcode() == Instruction::Add) ||
1343              (FI->getOpcode() == Instruction::FSub &&
1344               TI->getOpcode() == Instruction::FAdd)) {
1345     AddOp = TI;
1346     SubOp = FI;
1347   }
1348 
1349   if (AddOp) {
1350     Value *OtherAddOp = nullptr;
1351     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1352       OtherAddOp = AddOp->getOperand(1);
1353     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1354       OtherAddOp = AddOp->getOperand(0);
1355     }
1356 
1357     if (OtherAddOp) {
1358       // So at this point we know we have (Y -> OtherAddOp):
1359       //        select C, (add X, Y), (sub X, Z)
1360       Value *NegVal; // Compute -Z
1361       if (SI.getType()->isFPOrFPVectorTy()) {
1362         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1363         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1364           FastMathFlags Flags = AddOp->getFastMathFlags();
1365           Flags &= SubOp->getFastMathFlags();
1366           NegInst->setFastMathFlags(Flags);
1367         }
1368       } else {
1369         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1370       }
1371 
1372       Value *NewTrueOp = OtherAddOp;
1373       Value *NewFalseOp = NegVal;
1374       if (AddOp != TI)
1375         std::swap(NewTrueOp, NewFalseOp);
1376       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1377                                            SI.getName() + ".p", &SI);
1378 
1379       if (SI.getType()->isFPOrFPVectorTy()) {
1380         Instruction *RI =
1381             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1382 
1383         FastMathFlags Flags = AddOp->getFastMathFlags();
1384         Flags &= SubOp->getFastMathFlags();
1385         RI->setFastMathFlags(Flags);
1386         return RI;
1387       } else
1388         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1389     }
1390   }
1391   return nullptr;
1392 }
1393 
1394 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1395   Constant *C;
1396   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1397       !match(Sel.getFalseValue(), m_Constant(C)))
1398     return nullptr;
1399 
1400   Instruction *ExtInst;
1401   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1402       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1403     return nullptr;
1404 
1405   auto ExtOpcode = ExtInst->getOpcode();
1406   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1407     return nullptr;
1408 
1409   // If we are extending from a boolean type or if we can create a select that
1410   // has the same size operands as its condition, try to narrow the select.
1411   Value *X = ExtInst->getOperand(0);
1412   Type *SmallType = X->getType();
1413   Value *Cond = Sel.getCondition();
1414   auto *Cmp = dyn_cast<CmpInst>(Cond);
1415   if (!SmallType->isIntOrIntVectorTy(1) &&
1416       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1417     return nullptr;
1418 
1419   // If the constant is the same after truncation to the smaller type and
1420   // extension to the original type, we can narrow the select.
1421   Type *SelType = Sel.getType();
1422   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1423   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1424   if (ExtC == C) {
1425     Value *TruncCVal = cast<Value>(TruncC);
1426     if (ExtInst == Sel.getFalseValue())
1427       std::swap(X, TruncCVal);
1428 
1429     // select Cond, (ext X), C --> ext(select Cond, X, C')
1430     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1431     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1432     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1433   }
1434 
1435   // If one arm of the select is the extend of the condition, replace that arm
1436   // with the extension of the appropriate known bool value.
1437   if (Cond == X) {
1438     if (ExtInst == Sel.getTrueValue()) {
1439       // select X, (sext X), C --> select X, -1, C
1440       // select X, (zext X), C --> select X,  1, C
1441       Constant *One = ConstantInt::getTrue(SmallType);
1442       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1443       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1444     } else {
1445       // select X, C, (sext X) --> select X, C, 0
1446       // select X, C, (zext X) --> select X, C, 0
1447       Constant *Zero = ConstantInt::getNullValue(SelType);
1448       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1449     }
1450   }
1451 
1452   return nullptr;
1453 }
1454 
1455 /// Try to transform a vector select with a constant condition vector into a
1456 /// shuffle for easier combining with other shuffles and insert/extract.
1457 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1458   Value *CondVal = SI.getCondition();
1459   Constant *CondC;
1460   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1461     return nullptr;
1462 
1463   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1464   SmallVector<Constant *, 16> Mask;
1465   Mask.reserve(NumElts);
1466   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1467   for (unsigned i = 0; i != NumElts; ++i) {
1468     Constant *Elt = CondC->getAggregateElement(i);
1469     if (!Elt)
1470       return nullptr;
1471 
1472     if (Elt->isOneValue()) {
1473       // If the select condition element is true, choose from the 1st vector.
1474       Mask.push_back(ConstantInt::get(Int32Ty, i));
1475     } else if (Elt->isNullValue()) {
1476       // If the select condition element is false, choose from the 2nd vector.
1477       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1478     } else if (isa<UndefValue>(Elt)) {
1479       // Undef in a select condition (choose one of the operands) does not mean
1480       // the same thing as undef in a shuffle mask (any value is acceptable), so
1481       // give up.
1482       return nullptr;
1483     } else {
1484       // Bail out on a constant expression.
1485       return nullptr;
1486     }
1487   }
1488 
1489   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1490                                ConstantVector::get(Mask));
1491 }
1492 
1493 /// Reuse bitcasted operands between a compare and select:
1494 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1495 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1496 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1497                                           InstCombiner::BuilderTy &Builder) {
1498   Value *Cond = Sel.getCondition();
1499   Value *TVal = Sel.getTrueValue();
1500   Value *FVal = Sel.getFalseValue();
1501 
1502   CmpInst::Predicate Pred;
1503   Value *A, *B;
1504   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1505     return nullptr;
1506 
1507   // The select condition is a compare instruction. If the select's true/false
1508   // values are already the same as the compare operands, there's nothing to do.
1509   if (TVal == A || TVal == B || FVal == A || FVal == B)
1510     return nullptr;
1511 
1512   Value *C, *D;
1513   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1514     return nullptr;
1515 
1516   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1517   Value *TSrc, *FSrc;
1518   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1519       !match(FVal, m_BitCast(m_Value(FSrc))))
1520     return nullptr;
1521 
1522   // If the select true/false values are *different bitcasts* of the same source
1523   // operands, make the select operands the same as the compare operands and
1524   // cast the result. This is the canonical select form for min/max.
1525   Value *NewSel;
1526   if (TSrc == C && FSrc == D) {
1527     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1528     // bitcast (select (cmp A, B), A, B)
1529     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1530   } else if (TSrc == D && FSrc == C) {
1531     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1532     // bitcast (select (cmp A, B), B, A)
1533     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1534   } else {
1535     return nullptr;
1536   }
1537   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1538 }
1539 
1540 /// Try to eliminate select instructions that test the returned flag of cmpxchg
1541 /// instructions.
1542 ///
1543 /// If a select instruction tests the returned flag of a cmpxchg instruction and
1544 /// selects between the returned value of the cmpxchg instruction its compare
1545 /// operand, the result of the select will always be equal to its false value.
1546 /// For example:
1547 ///
1548 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1549 ///   %1 = extractvalue { i64, i1 } %0, 1
1550 ///   %2 = extractvalue { i64, i1 } %0, 0
1551 ///   %3 = select i1 %1, i64 %compare, i64 %2
1552 ///   ret i64 %3
1553 ///
1554 /// The returned value of the cmpxchg instruction (%2) is the original value
1555 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
1556 /// must have been equal to %compare. Thus, the result of the select is always
1557 /// equal to %2, and the code can be simplified to:
1558 ///
1559 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1560 ///   %1 = extractvalue { i64, i1 } %0, 0
1561 ///   ret i64 %1
1562 ///
1563 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
1564   // A helper that determines if V is an extractvalue instruction whose
1565   // aggregate operand is a cmpxchg instruction and whose single index is equal
1566   // to I. If such conditions are true, the helper returns the cmpxchg
1567   // instruction; otherwise, a nullptr is returned.
1568   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
1569     auto *Extract = dyn_cast<ExtractValueInst>(V);
1570     if (!Extract)
1571       return nullptr;
1572     if (Extract->getIndices()[0] != I)
1573       return nullptr;
1574     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
1575   };
1576 
1577   // If the select has a single user, and this user is a select instruction that
1578   // we can simplify, skip the cmpxchg simplification for now.
1579   if (SI.hasOneUse())
1580     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
1581       if (Select->getCondition() == SI.getCondition())
1582         if (Select->getFalseValue() == SI.getTrueValue() ||
1583             Select->getTrueValue() == SI.getFalseValue())
1584           return nullptr;
1585 
1586   // Ensure the select condition is the returned flag of a cmpxchg instruction.
1587   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
1588   if (!CmpXchg)
1589     return nullptr;
1590 
1591   // Check the true value case: The true value of the select is the returned
1592   // value of the same cmpxchg used by the condition, and the false value is the
1593   // cmpxchg instruction's compare operand.
1594   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
1595     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
1596       SI.setTrueValue(SI.getFalseValue());
1597       return &SI;
1598     }
1599 
1600   // Check the false value case: The false value of the select is the returned
1601   // value of the same cmpxchg used by the condition, and the true value is the
1602   // cmpxchg instruction's compare operand.
1603   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
1604     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
1605       SI.setTrueValue(SI.getFalseValue());
1606       return &SI;
1607     }
1608 
1609   return nullptr;
1610 }
1611 
1612 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
1613                                        Value *Y,
1614                                        InstCombiner::BuilderTy &Builder) {
1615   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
1616   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
1617                     SPF == SelectPatternFlavor::SPF_UMAX;
1618   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
1619   // the constant value check to an assert.
1620   Value *A;
1621   const APInt *C1, *C2;
1622   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
1623       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
1624     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
1625     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
1626     Value *NewMinMax = createMinMax(Builder, SPF, A,
1627                                     ConstantInt::get(X->getType(), *C2 - *C1));
1628     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
1629                                      ConstantInt::get(X->getType(), *C1));
1630   }
1631 
1632   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
1633       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
1634     bool Overflow;
1635     APInt Diff = C2->ssub_ov(*C1, Overflow);
1636     if (!Overflow) {
1637       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
1638       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
1639       Value *NewMinMax = createMinMax(Builder, SPF, A,
1640                                       ConstantInt::get(X->getType(), Diff));
1641       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
1642                                        ConstantInt::get(X->getType(), *C1));
1643     }
1644   }
1645 
1646   return nullptr;
1647 }
1648 
1649 /// Reduce a sequence of min/max with a common operand.
1650 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
1651                                         Value *RHS,
1652                                         InstCombiner::BuilderTy &Builder) {
1653   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
1654   // TODO: Allow FP min/max with nnan/nsz.
1655   if (!LHS->getType()->isIntOrIntVectorTy())
1656     return nullptr;
1657 
1658   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1659   Value *A, *B, *C, *D;
1660   SelectPatternResult L = matchSelectPattern(LHS, A, B);
1661   SelectPatternResult R = matchSelectPattern(RHS, C, D);
1662   if (SPF != L.Flavor || L.Flavor != R.Flavor)
1663     return nullptr;
1664 
1665   // Look for a common operand. The use checks are different than usual because
1666   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
1667   // the select.
1668   Value *MinMaxOp = nullptr;
1669   Value *ThirdOp = nullptr;
1670   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
1671     // If the LHS is only used in this chain and the RHS is used outside of it,
1672     // reuse the RHS min/max because that will eliminate the LHS.
1673     if (D == A || C == A) {
1674       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1675       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1676       MinMaxOp = RHS;
1677       ThirdOp = B;
1678     } else if (D == B || C == B) {
1679       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1680       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1681       MinMaxOp = RHS;
1682       ThirdOp = A;
1683     }
1684   } else if (!RHS->hasNUsesOrMore(3)) {
1685     // Reuse the LHS. This will eliminate the RHS.
1686     if (D == A || D == B) {
1687       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1688       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1689       MinMaxOp = LHS;
1690       ThirdOp = C;
1691     } else if (C == A || C == B) {
1692       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1693       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1694       MinMaxOp = LHS;
1695       ThirdOp = D;
1696     }
1697   }
1698   if (!MinMaxOp || !ThirdOp)
1699     return nullptr;
1700 
1701   CmpInst::Predicate P = getMinMaxPred(SPF);
1702   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
1703   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
1704 }
1705 
1706 /// Try to reduce a rotate pattern that includes a compare and select into a
1707 /// funnel shift intrinsic. Example:
1708 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
1709 ///              --> call llvm.fshl.i32(a, a, b)
1710 static Instruction *foldSelectRotate(SelectInst &Sel) {
1711   // The false value of the select must be a rotate of the true value.
1712   Value *Or0, *Or1;
1713   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
1714     return nullptr;
1715 
1716   Value *TVal = Sel.getTrueValue();
1717   Value *SA0, *SA1;
1718   if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
1719       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
1720     return nullptr;
1721 
1722   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
1723   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
1724   if (ShiftOpcode0 == ShiftOpcode1)
1725     return nullptr;
1726 
1727   // We have one of these patterns so far:
1728   // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
1729   // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
1730   // This must be a power-of-2 rotate for a bitmasking transform to be valid.
1731   unsigned Width = Sel.getType()->getScalarSizeInBits();
1732   if (!isPowerOf2_32(Width))
1733     return nullptr;
1734 
1735   // Check the shift amounts to see if they are an opposite pair.
1736   Value *ShAmt;
1737   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
1738     ShAmt = SA0;
1739   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
1740     ShAmt = SA1;
1741   else
1742     return nullptr;
1743 
1744   // Finally, see if the select is filtering out a shift-by-zero.
1745   Value *Cond = Sel.getCondition();
1746   ICmpInst::Predicate Pred;
1747   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
1748       Pred != ICmpInst::ICMP_EQ)
1749     return nullptr;
1750 
1751   // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
1752   // Convert to funnel shift intrinsic.
1753   bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
1754                 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
1755   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
1756   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
1757   return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
1758 }
1759 
1760 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
1761   Value *CondVal = SI.getCondition();
1762   Value *TrueVal = SI.getTrueValue();
1763   Value *FalseVal = SI.getFalseValue();
1764   Type *SelType = SI.getType();
1765 
1766   // FIXME: Remove this workaround when freeze related patches are done.
1767   // For select with undef operand which feeds into an equality comparison,
1768   // don't simplify it so loop unswitch can know the equality comparison
1769   // may have an undef operand. This is a workaround for PR31652 caused by
1770   // descrepancy about branch on undef between LoopUnswitch and GVN.
1771   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
1772     if (llvm::any_of(SI.users(), [&](User *U) {
1773           ICmpInst *CI = dyn_cast<ICmpInst>(U);
1774           if (CI && CI->isEquality())
1775             return true;
1776           return false;
1777         })) {
1778       return nullptr;
1779     }
1780   }
1781 
1782   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
1783                                     SQ.getWithInstruction(&SI)))
1784     return replaceInstUsesWith(SI, V);
1785 
1786   if (Instruction *I = canonicalizeSelectToShuffle(SI))
1787     return I;
1788 
1789   // Canonicalize a one-use integer compare with a non-canonical predicate by
1790   // inverting the predicate and swapping the select operands. This matches a
1791   // compare canonicalization for conditional branches.
1792   // TODO: Should we do the same for FP compares?
1793   CmpInst::Predicate Pred;
1794   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
1795       !isCanonicalPredicate(Pred)) {
1796     // Swap true/false values and condition.
1797     CmpInst *Cond = cast<CmpInst>(CondVal);
1798     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
1799     SI.setOperand(1, FalseVal);
1800     SI.setOperand(2, TrueVal);
1801     SI.swapProfMetadata();
1802     Worklist.Add(Cond);
1803     return &SI;
1804   }
1805 
1806   if (SelType->isIntOrIntVectorTy(1) &&
1807       TrueVal->getType() == CondVal->getType()) {
1808     if (match(TrueVal, m_One())) {
1809       // Change: A = select B, true, C --> A = or B, C
1810       return BinaryOperator::CreateOr(CondVal, FalseVal);
1811     }
1812     if (match(TrueVal, m_Zero())) {
1813       // Change: A = select B, false, C --> A = and !B, C
1814       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1815       return BinaryOperator::CreateAnd(NotCond, FalseVal);
1816     }
1817     if (match(FalseVal, m_Zero())) {
1818       // Change: A = select B, C, false --> A = and B, C
1819       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1820     }
1821     if (match(FalseVal, m_One())) {
1822       // Change: A = select B, C, true --> A = or !B, C
1823       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1824       return BinaryOperator::CreateOr(NotCond, TrueVal);
1825     }
1826 
1827     // select a, a, b  -> a | b
1828     // select a, b, a  -> a & b
1829     if (CondVal == TrueVal)
1830       return BinaryOperator::CreateOr(CondVal, FalseVal);
1831     if (CondVal == FalseVal)
1832       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1833 
1834     // select a, ~a, b -> (~a) & b
1835     // select a, b, ~a -> (~a) | b
1836     if (match(TrueVal, m_Not(m_Specific(CondVal))))
1837       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
1838     if (match(FalseVal, m_Not(m_Specific(CondVal))))
1839       return BinaryOperator::CreateOr(TrueVal, FalseVal);
1840   }
1841 
1842   // Selecting between two integer or vector splat integer constants?
1843   //
1844   // Note that we don't handle a scalar select of vectors:
1845   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
1846   // because that may need 3 instructions to splat the condition value:
1847   // extend, insertelement, shufflevector.
1848   if (SelType->isIntOrIntVectorTy() &&
1849       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
1850     // select C, 1, 0 -> zext C to int
1851     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
1852       return new ZExtInst(CondVal, SelType);
1853 
1854     // select C, -1, 0 -> sext C to int
1855     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
1856       return new SExtInst(CondVal, SelType);
1857 
1858     // select C, 0, 1 -> zext !C to int
1859     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
1860       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1861       return new ZExtInst(NotCond, SelType);
1862     }
1863 
1864     // select C, 0, -1 -> sext !C to int
1865     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
1866       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1867       return new SExtInst(NotCond, SelType);
1868     }
1869   }
1870 
1871   // See if we are selecting two values based on a comparison of the two values.
1872   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
1873     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
1874       // Canonicalize to use ordered comparisons by swapping the select
1875       // operands.
1876       //
1877       // e.g.
1878       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1879       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1880         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1881         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1882         Builder.setFastMathFlags(FCI->getFastMathFlags());
1883         Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
1884                                             FCI->getName() + ".inv");
1885 
1886         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1887                                   SI.getName() + ".p");
1888       }
1889 
1890       // NOTE: if we wanted to, this is where to detect MIN/MAX
1891     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1892       // Canonicalize to use ordered comparisons by swapping the select
1893       // operands.
1894       //
1895       // e.g.
1896       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1897       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1898         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1899         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1900         Builder.setFastMathFlags(FCI->getFastMathFlags());
1901         Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
1902                                             FCI->getName() + ".inv");
1903 
1904         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1905                                   SI.getName() + ".p");
1906       }
1907 
1908       // NOTE: if we wanted to, this is where to detect MIN/MAX
1909     }
1910   }
1911 
1912   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
1913   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
1914   // also require nnan because we do not want to unintentionally change the
1915   // sign of a NaN value.
1916   // FIXME: These folds should test/propagate FMF from the select, not the
1917   //        fsub or fneg.
1918   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
1919   Instruction *FSub;
1920   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
1921       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
1922       match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
1923       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
1924     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
1925     return replaceInstUsesWith(SI, Fabs);
1926   }
1927   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
1928   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
1929       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
1930       match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
1931       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
1932     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
1933     return replaceInstUsesWith(SI, Fabs);
1934   }
1935   // With nnan and nsz:
1936   // (X <  +/-0.0) ? -X : X --> fabs(X)
1937   // (X <= +/-0.0) ? -X : X --> fabs(X)
1938   Instruction *FNeg;
1939   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
1940       match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
1941       match(TrueVal, m_Instruction(FNeg)) &&
1942       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
1943       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
1944        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
1945     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
1946     return replaceInstUsesWith(SI, Fabs);
1947   }
1948   // With nnan and nsz:
1949   // (X >  +/-0.0) ? X : -X --> fabs(X)
1950   // (X >= +/-0.0) ? X : -X --> fabs(X)
1951   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
1952       match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
1953       match(FalseVal, m_Instruction(FNeg)) &&
1954       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
1955       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
1956        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
1957     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
1958     return replaceInstUsesWith(SI, Fabs);
1959   }
1960 
1961   // See if we are selecting two values based on a comparison of the two values.
1962   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1963     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
1964       return Result;
1965 
1966   if (Instruction *Add = foldAddSubSelect(SI, Builder))
1967     return Add;
1968 
1969   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1970   auto *TI = dyn_cast<Instruction>(TrueVal);
1971   auto *FI = dyn_cast<Instruction>(FalseVal);
1972   if (TI && FI && TI->getOpcode() == FI->getOpcode())
1973     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
1974       return IV;
1975 
1976   if (Instruction *I = foldSelectExtConst(SI))
1977     return I;
1978 
1979   // See if we can fold the select into one of our operands.
1980   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1981     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
1982       return FoldI;
1983 
1984     Value *LHS, *RHS;
1985     Instruction::CastOps CastOp;
1986     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1987     auto SPF = SPR.Flavor;
1988     if (SPF) {
1989       Value *LHS2, *RHS2;
1990       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1991         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
1992                                           RHS2, SI, SPF, RHS))
1993           return R;
1994       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1995         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
1996                                           RHS2, SI, SPF, LHS))
1997           return R;
1998       // TODO.
1999       // ABS(-X) -> ABS(X)
2000     }
2001 
2002     if (SelectPatternResult::isMinOrMax(SPF)) {
2003       // Canonicalize so that
2004       // - type casts are outside select patterns.
2005       // - float clamp is transformed to min/max pattern
2006 
2007       bool IsCastNeeded = LHS->getType() != SelType;
2008       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2009       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2010       if (IsCastNeeded ||
2011           (LHS->getType()->isFPOrFPVectorTy() &&
2012            ((CmpLHS != LHS && CmpLHS != RHS) ||
2013             (CmpRHS != LHS && CmpRHS != RHS)))) {
2014         CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered);
2015 
2016         Value *Cmp;
2017         if (CmpInst::isIntPredicate(Pred)) {
2018           Cmp = Builder.CreateICmp(Pred, LHS, RHS);
2019         } else {
2020           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2021           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2022           Builder.setFastMathFlags(FMF);
2023           Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
2024         }
2025 
2026         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2027         if (!IsCastNeeded)
2028           return replaceInstUsesWith(SI, NewSI);
2029 
2030         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2031         return replaceInstUsesWith(SI, NewCast);
2032       }
2033 
2034       // MAX(~a, ~b) -> ~MIN(a, b)
2035       // MAX(~a, C)  -> ~MIN(a, ~C)
2036       // MIN(~a, ~b) -> ~MAX(a, b)
2037       // MIN(~a, C)  -> ~MAX(a, ~C)
2038       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2039         Value *A;
2040         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2041             !IsFreeToInvert(A, A->hasOneUse()) &&
2042             // Passing false to only consider m_Not and constants.
2043             IsFreeToInvert(Y, false)) {
2044           Value *B = Builder.CreateNot(Y);
2045           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2046                                           A, B);
2047           // Copy the profile metadata.
2048           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2049             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2050             // Swap the metadata if the operands are swapped.
2051             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2052               cast<SelectInst>(NewMinMax)->swapProfMetadata();
2053           }
2054 
2055           return BinaryOperator::CreateNot(NewMinMax);
2056         }
2057 
2058         return nullptr;
2059       };
2060 
2061       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2062         return I;
2063       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2064         return I;
2065 
2066       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2067         return I;
2068 
2069       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2070         return I;
2071     }
2072   }
2073 
2074   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2075   // minnum/maxnum intrinsics.
2076   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2077     Value *X, *Y;
2078     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2079       return replaceInstUsesWith(
2080           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2081 
2082     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2083       return replaceInstUsesWith(
2084           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2085   }
2086 
2087   // See if we can fold the select into a phi node if the condition is a select.
2088   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2089     // The true/false values have to be live in the PHI predecessor's blocks.
2090     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2091         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2092       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2093         return NV;
2094 
2095   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2096     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2097       // select(C, select(C, a, b), c) -> select(C, a, c)
2098       if (TrueSI->getCondition() == CondVal) {
2099         if (SI.getTrueValue() == TrueSI->getTrueValue())
2100           return nullptr;
2101         SI.setOperand(1, TrueSI->getTrueValue());
2102         return &SI;
2103       }
2104       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2105       // We choose this as normal form to enable folding on the And and shortening
2106       // paths for the values (this helps GetUnderlyingObjects() for example).
2107       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2108         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2109         SI.setOperand(0, And);
2110         SI.setOperand(1, TrueSI->getTrueValue());
2111         return &SI;
2112       }
2113     }
2114   }
2115   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2116     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2117       // select(C, a, select(C, b, c)) -> select(C, a, c)
2118       if (FalseSI->getCondition() == CondVal) {
2119         if (SI.getFalseValue() == FalseSI->getFalseValue())
2120           return nullptr;
2121         SI.setOperand(2, FalseSI->getFalseValue());
2122         return &SI;
2123       }
2124       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2125       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2126         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2127         SI.setOperand(0, Or);
2128         SI.setOperand(2, FalseSI->getFalseValue());
2129         return &SI;
2130       }
2131     }
2132   }
2133 
2134   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2135     // The select might be preventing a division by 0.
2136     switch (BO->getOpcode()) {
2137     default:
2138       return true;
2139     case Instruction::SRem:
2140     case Instruction::URem:
2141     case Instruction::SDiv:
2142     case Instruction::UDiv:
2143       return false;
2144     }
2145   };
2146 
2147   // Try to simplify a binop sandwiched between 2 selects with the same
2148   // condition.
2149   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2150   BinaryOperator *TrueBO;
2151   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2152       canMergeSelectThroughBinop(TrueBO)) {
2153     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2154       if (TrueBOSI->getCondition() == CondVal) {
2155         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
2156         Worklist.Add(TrueBO);
2157         return &SI;
2158       }
2159     }
2160     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2161       if (TrueBOSI->getCondition() == CondVal) {
2162         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
2163         Worklist.Add(TrueBO);
2164         return &SI;
2165       }
2166     }
2167   }
2168 
2169   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2170   BinaryOperator *FalseBO;
2171   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2172       canMergeSelectThroughBinop(FalseBO)) {
2173     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2174       if (FalseBOSI->getCondition() == CondVal) {
2175         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
2176         Worklist.Add(FalseBO);
2177         return &SI;
2178       }
2179     }
2180     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2181       if (FalseBOSI->getCondition() == CondVal) {
2182         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
2183         Worklist.Add(FalseBO);
2184         return &SI;
2185       }
2186     }
2187   }
2188 
2189   Value *NotCond;
2190   if (match(CondVal, m_Not(m_Value(NotCond)))) {
2191     SI.setOperand(0, NotCond);
2192     SI.setOperand(1, FalseVal);
2193     SI.setOperand(2, TrueVal);
2194     SI.swapProfMetadata();
2195     return &SI;
2196   }
2197 
2198   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2199     unsigned VWidth = VecTy->getNumElements();
2200     APInt UndefElts(VWidth, 0);
2201     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2202     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2203       if (V != &SI)
2204         return replaceInstUsesWith(SI, V);
2205       return &SI;
2206     }
2207   }
2208 
2209   // If we can compute the condition, there's no need for a select.
2210   // Like the above fold, we are attempting to reduce compile-time cost by
2211   // putting this fold here with limitations rather than in InstSimplify.
2212   // The motivation for this call into value tracking is to take advantage of
2213   // the assumption cache, so make sure that is populated.
2214   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2215     KnownBits Known(1);
2216     computeKnownBits(CondVal, Known, 0, &SI);
2217     if (Known.One.isOneValue())
2218       return replaceInstUsesWith(SI, TrueVal);
2219     if (Known.Zero.isOneValue())
2220       return replaceInstUsesWith(SI, FalseVal);
2221   }
2222 
2223   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2224     return BitCastSel;
2225 
2226   // Simplify selects that test the returned flag of cmpxchg instructions.
2227   if (Instruction *Select = foldSelectCmpXchg(SI))
2228     return Select;
2229 
2230   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2231     return Select;
2232 
2233   if (Instruction *Rot = foldSelectRotate(SI))
2234     return Rot;
2235 
2236   return nullptr;
2237 }
2238