1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/OverflowInstAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/KnownBits.h" 42 #include "llvm/Transforms/InstCombine/InstCombiner.h" 43 #include <cassert> 44 #include <utility> 45 46 #define DEBUG_TYPE "instcombine" 47 #include "llvm/Transforms/Utils/InstructionWorklist.h" 48 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 53 /// Replace a select operand based on an equality comparison with the identity 54 /// constant of a binop. 55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 56 const TargetLibraryInfo &TLI, 57 InstCombinerImpl &IC) { 58 // The select condition must be an equality compare with a constant operand. 59 Value *X; 60 Constant *C; 61 CmpInst::Predicate Pred; 62 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 63 return nullptr; 64 65 bool IsEq; 66 if (ICmpInst::isEquality(Pred)) 67 IsEq = Pred == ICmpInst::ICMP_EQ; 68 else if (Pred == FCmpInst::FCMP_OEQ) 69 IsEq = true; 70 else if (Pred == FCmpInst::FCMP_UNE) 71 IsEq = false; 72 else 73 return nullptr; 74 75 // A select operand must be a binop. 76 BinaryOperator *BO; 77 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 78 return nullptr; 79 80 // The compare constant must be the identity constant for that binop. 81 // If this a floating-point compare with 0.0, any zero constant will do. 82 Type *Ty = BO->getType(); 83 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 84 if (IdC != C) { 85 if (!IdC || !CmpInst::isFPPredicate(Pred)) 86 return nullptr; 87 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 88 return nullptr; 89 } 90 91 // Last, match the compare variable operand with a binop operand. 92 Value *Y; 93 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 94 return nullptr; 95 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 98 // +0.0 compares equal to -0.0, and so it does not behave as required for this 99 // transform. Bail out if we can not exclude that possibility. 100 if (isa<FPMathOperator>(BO)) 101 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 102 return nullptr; 103 104 // BO = binop Y, X 105 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 106 // => 107 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 108 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 109 } 110 111 /// This folds: 112 /// select (icmp eq (and X, C1)), TC, FC 113 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 114 /// To something like: 115 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 116 /// Or: 117 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 118 /// With some variations depending if FC is larger than TC, or the shift 119 /// isn't needed, or the bit widths don't match. 120 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 121 InstCombiner::BuilderTy &Builder) { 122 const APInt *SelTC, *SelFC; 123 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 124 !match(Sel.getFalseValue(), m_APInt(SelFC))) 125 return nullptr; 126 127 // If this is a vector select, we need a vector compare. 128 Type *SelType = Sel.getType(); 129 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 130 return nullptr; 131 132 Value *V; 133 APInt AndMask; 134 bool CreateAnd = false; 135 ICmpInst::Predicate Pred = Cmp->getPredicate(); 136 if (ICmpInst::isEquality(Pred)) { 137 if (!match(Cmp->getOperand(1), m_Zero())) 138 return nullptr; 139 140 V = Cmp->getOperand(0); 141 const APInt *AndRHS; 142 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 143 return nullptr; 144 145 AndMask = *AndRHS; 146 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 147 Pred, V, AndMask)) { 148 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 149 if (!AndMask.isPowerOf2()) 150 return nullptr; 151 152 CreateAnd = true; 153 } else { 154 return nullptr; 155 } 156 157 // In general, when both constants are non-zero, we would need an offset to 158 // replace the select. This would require more instructions than we started 159 // with. But there's one special-case that we handle here because it can 160 // simplify/reduce the instructions. 161 APInt TC = *SelTC; 162 APInt FC = *SelFC; 163 if (!TC.isZero() && !FC.isZero()) { 164 // If the select constants differ by exactly one bit and that's the same 165 // bit that is masked and checked by the select condition, the select can 166 // be replaced by bitwise logic to set/clear one bit of the constant result. 167 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 168 return nullptr; 169 if (CreateAnd) { 170 // If we have to create an 'and', then we must kill the cmp to not 171 // increase the instruction count. 172 if (!Cmp->hasOneUse()) 173 return nullptr; 174 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 175 } 176 bool ExtraBitInTC = TC.ugt(FC); 177 if (Pred == ICmpInst::ICMP_EQ) { 178 // If the masked bit in V is clear, clear or set the bit in the result: 179 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 180 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 181 Constant *C = ConstantInt::get(SelType, TC); 182 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 183 } 184 if (Pred == ICmpInst::ICMP_NE) { 185 // If the masked bit in V is set, set or clear the bit in the result: 186 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 187 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 188 Constant *C = ConstantInt::get(SelType, FC); 189 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 190 } 191 llvm_unreachable("Only expecting equality predicates"); 192 } 193 194 // Make sure one of the select arms is a power-of-2. 195 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 196 return nullptr; 197 198 // Determine which shift is needed to transform result of the 'and' into the 199 // desired result. 200 const APInt &ValC = !TC.isZero() ? TC : FC; 201 unsigned ValZeros = ValC.logBase2(); 202 unsigned AndZeros = AndMask.logBase2(); 203 204 // Insert the 'and' instruction on the input to the truncate. 205 if (CreateAnd) 206 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 207 208 // If types don't match, we can still convert the select by introducing a zext 209 // or a trunc of the 'and'. 210 if (ValZeros > AndZeros) { 211 V = Builder.CreateZExtOrTrunc(V, SelType); 212 V = Builder.CreateShl(V, ValZeros - AndZeros); 213 } else if (ValZeros < AndZeros) { 214 V = Builder.CreateLShr(V, AndZeros - ValZeros); 215 V = Builder.CreateZExtOrTrunc(V, SelType); 216 } else { 217 V = Builder.CreateZExtOrTrunc(V, SelType); 218 } 219 220 // Okay, now we know that everything is set up, we just don't know whether we 221 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 222 bool ShouldNotVal = !TC.isZero(); 223 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 224 if (ShouldNotVal) 225 V = Builder.CreateXor(V, ValC); 226 227 return V; 228 } 229 230 /// We want to turn code that looks like this: 231 /// %C = or %A, %B 232 /// %D = select %cond, %C, %A 233 /// into: 234 /// %C = select %cond, %B, 0 235 /// %D = or %A, %C 236 /// 237 /// Assuming that the specified instruction is an operand to the select, return 238 /// a bitmask indicating which operands of this instruction are foldable if they 239 /// equal the other incoming value of the select. 240 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 241 switch (I->getOpcode()) { 242 case Instruction::Add: 243 case Instruction::FAdd: 244 case Instruction::Mul: 245 case Instruction::FMul: 246 case Instruction::And: 247 case Instruction::Or: 248 case Instruction::Xor: 249 return 3; // Can fold through either operand. 250 case Instruction::Sub: // Can only fold on the amount subtracted. 251 case Instruction::FSub: 252 case Instruction::FDiv: // Can only fold on the divisor amount. 253 case Instruction::Shl: // Can only fold on the shift amount. 254 case Instruction::LShr: 255 case Instruction::AShr: 256 return 1; 257 default: 258 return 0; // Cannot fold 259 } 260 } 261 262 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 263 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 264 Instruction *FI) { 265 // Don't break up min/max patterns. The hasOneUse checks below prevent that 266 // for most cases, but vector min/max with bitcasts can be transformed. If the 267 // one-use restrictions are eased for other patterns, we still don't want to 268 // obfuscate min/max. 269 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 270 match(&SI, m_SMax(m_Value(), m_Value())) || 271 match(&SI, m_UMin(m_Value(), m_Value())) || 272 match(&SI, m_UMax(m_Value(), m_Value())))) 273 return nullptr; 274 275 // If this is a cast from the same type, merge. 276 Value *Cond = SI.getCondition(); 277 Type *CondTy = Cond->getType(); 278 if (TI->getNumOperands() == 1 && TI->isCast()) { 279 Type *FIOpndTy = FI->getOperand(0)->getType(); 280 if (TI->getOperand(0)->getType() != FIOpndTy) 281 return nullptr; 282 283 // The select condition may be a vector. We may only change the operand 284 // type if the vector width remains the same (and matches the condition). 285 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 286 if (!FIOpndTy->isVectorTy() || 287 CondVTy->getElementCount() != 288 cast<VectorType>(FIOpndTy)->getElementCount()) 289 return nullptr; 290 291 // TODO: If the backend knew how to deal with casts better, we could 292 // remove this limitation. For now, there's too much potential to create 293 // worse codegen by promoting the select ahead of size-altering casts 294 // (PR28160). 295 // 296 // Note that ValueTracking's matchSelectPattern() looks through casts 297 // without checking 'hasOneUse' when it matches min/max patterns, so this 298 // transform may end up happening anyway. 299 if (TI->getOpcode() != Instruction::BitCast && 300 (!TI->hasOneUse() || !FI->hasOneUse())) 301 return nullptr; 302 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 303 // TODO: The one-use restrictions for a scalar select could be eased if 304 // the fold of a select in visitLoadInst() was enhanced to match a pattern 305 // that includes a cast. 306 return nullptr; 307 } 308 309 // Fold this by inserting a select from the input values. 310 Value *NewSI = 311 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 312 SI.getName() + ".v", &SI); 313 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 314 TI->getType()); 315 } 316 317 // Cond ? -X : -Y --> -(Cond ? X : Y) 318 Value *X, *Y; 319 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 320 (TI->hasOneUse() || FI->hasOneUse())) { 321 // Intersect FMF from the fneg instructions and union those with the select. 322 FastMathFlags FMF = TI->getFastMathFlags(); 323 FMF &= FI->getFastMathFlags(); 324 FMF |= SI.getFastMathFlags(); 325 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 326 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 327 NewSelI->setFastMathFlags(FMF); 328 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 329 NewFNeg->setFastMathFlags(FMF); 330 return NewFNeg; 331 } 332 333 // Min/max intrinsic with a common operand can have the common operand pulled 334 // after the select. This is the same transform as below for binops, but 335 // specialized for intrinsic matching and without the restrictive uses clause. 336 auto *TII = dyn_cast<IntrinsicInst>(TI); 337 auto *FII = dyn_cast<IntrinsicInst>(FI); 338 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() && 339 (TII->hasOneUse() || FII->hasOneUse())) { 340 Value *T0, *T1, *F0, *F1; 341 if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) && 342 match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) { 343 if (T0 == F0) { 344 Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI); 345 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 346 } 347 if (T0 == F1) { 348 Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI); 349 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 350 } 351 if (T1 == F0) { 352 Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI); 353 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 354 } 355 if (T1 == F1) { 356 Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI); 357 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 358 } 359 } 360 } 361 362 // Only handle binary operators (including two-operand getelementptr) with 363 // one-use here. As with the cast case above, it may be possible to relax the 364 // one-use constraint, but that needs be examined carefully since it may not 365 // reduce the total number of instructions. 366 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 367 !TI->isSameOperationAs(FI) || 368 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 369 !TI->hasOneUse() || !FI->hasOneUse()) 370 return nullptr; 371 372 // Figure out if the operations have any operands in common. 373 Value *MatchOp, *OtherOpT, *OtherOpF; 374 bool MatchIsOpZero; 375 if (TI->getOperand(0) == FI->getOperand(0)) { 376 MatchOp = TI->getOperand(0); 377 OtherOpT = TI->getOperand(1); 378 OtherOpF = FI->getOperand(1); 379 MatchIsOpZero = true; 380 } else if (TI->getOperand(1) == FI->getOperand(1)) { 381 MatchOp = TI->getOperand(1); 382 OtherOpT = TI->getOperand(0); 383 OtherOpF = FI->getOperand(0); 384 MatchIsOpZero = false; 385 } else if (!TI->isCommutative()) { 386 return nullptr; 387 } else if (TI->getOperand(0) == FI->getOperand(1)) { 388 MatchOp = TI->getOperand(0); 389 OtherOpT = TI->getOperand(1); 390 OtherOpF = FI->getOperand(0); 391 MatchIsOpZero = true; 392 } else if (TI->getOperand(1) == FI->getOperand(0)) { 393 MatchOp = TI->getOperand(1); 394 OtherOpT = TI->getOperand(0); 395 OtherOpF = FI->getOperand(1); 396 MatchIsOpZero = true; 397 } else { 398 return nullptr; 399 } 400 401 // If the select condition is a vector, the operands of the original select's 402 // operands also must be vectors. This may not be the case for getelementptr 403 // for example. 404 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 405 !OtherOpF->getType()->isVectorTy())) 406 return nullptr; 407 408 // If we reach here, they do have operations in common. 409 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 410 SI.getName() + ".v", &SI); 411 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 412 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 413 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 414 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 415 NewBO->copyIRFlags(TI); 416 NewBO->andIRFlags(FI); 417 return NewBO; 418 } 419 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 420 auto *FGEP = cast<GetElementPtrInst>(FI); 421 Type *ElementType = TGEP->getResultElementType(); 422 return TGEP->isInBounds() && FGEP->isInBounds() 423 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 424 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 425 } 426 llvm_unreachable("Expected BinaryOperator or GEP"); 427 return nullptr; 428 } 429 430 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 431 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. 432 return false; 433 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); 434 } 435 436 /// Try to fold the select into one of the operands to allow further 437 /// optimization. 438 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 439 Value *FalseVal) { 440 // See the comment above GetSelectFoldableOperands for a description of the 441 // transformation we are doing here. 442 auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal, 443 Value *FalseVal, 444 bool Swapped) -> Instruction * { 445 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 446 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 447 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 448 unsigned OpToFold = 0; 449 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) 450 OpToFold = 1; 451 else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) 452 OpToFold = 2; 453 454 if (OpToFold) { 455 FastMathFlags FMF; 456 // TODO: We probably ought to revisit cases where the select and FP 457 // instructions have different flags and add tests to ensure the 458 // behaviour is correct. 459 if (isa<FPMathOperator>(&SI)) 460 FMF = SI.getFastMathFlags(); 461 Constant *C = ConstantExpr::getBinOpIdentity( 462 TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros()); 463 Value *OOp = TVI->getOperand(2 - OpToFold); 464 // Avoid creating select between 2 constants unless it's selecting 465 // between 0, 1 and -1. 466 const APInt *OOpC; 467 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 468 if (!isa<Constant>(OOp) || 469 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 470 Value *NewSel = Builder.CreateSelect( 471 SI.getCondition(), Swapped ? C : OOp, Swapped ? OOp : C); 472 if (isa<FPMathOperator>(&SI)) 473 cast<Instruction>(NewSel)->setFastMathFlags(FMF); 474 NewSel->takeName(TVI); 475 BinaryOperator *BO = 476 BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel); 477 BO->copyIRFlags(TVI); 478 return BO; 479 } 480 } 481 } 482 } 483 } 484 return nullptr; 485 }; 486 487 if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false)) 488 return R; 489 490 if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true)) 491 return R; 492 493 return nullptr; 494 } 495 496 /// We want to turn: 497 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 498 /// into: 499 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 500 /// Note: 501 /// Z may be 0 if lshr is missing. 502 /// Worst-case scenario is that we will replace 5 instructions with 5 different 503 /// instructions, but we got rid of select. 504 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 505 Value *TVal, Value *FVal, 506 InstCombiner::BuilderTy &Builder) { 507 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 508 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 509 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 510 return nullptr; 511 512 // The TrueVal has general form of: and %B, 1 513 Value *B; 514 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 515 return nullptr; 516 517 // Where %B may be optionally shifted: lshr %X, %Z. 518 Value *X, *Z; 519 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 520 if (!HasShift) 521 X = B; 522 523 Value *Y; 524 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 525 return nullptr; 526 527 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 528 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 529 Constant *One = ConstantInt::get(SelType, 1); 530 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 531 Value *FullMask = Builder.CreateOr(Y, MaskB); 532 Value *MaskedX = Builder.CreateAnd(X, FullMask); 533 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 534 return new ZExtInst(ICmpNeZero, SelType); 535 } 536 537 /// We want to turn: 538 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 539 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 540 /// into: 541 /// ashr (X, Y) 542 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 543 Value *FalseVal, 544 InstCombiner::BuilderTy &Builder) { 545 ICmpInst::Predicate Pred = IC->getPredicate(); 546 Value *CmpLHS = IC->getOperand(0); 547 Value *CmpRHS = IC->getOperand(1); 548 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 549 return nullptr; 550 551 Value *X, *Y; 552 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 553 if ((Pred != ICmpInst::ICMP_SGT || 554 !match(CmpRHS, 555 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 556 (Pred != ICmpInst::ICMP_SLT || 557 !match(CmpRHS, 558 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 559 return nullptr; 560 561 // Canonicalize so that ashr is in FalseVal. 562 if (Pred == ICmpInst::ICMP_SLT) 563 std::swap(TrueVal, FalseVal); 564 565 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 566 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 567 match(CmpLHS, m_Specific(X))) { 568 const auto *Ashr = cast<Instruction>(FalseVal); 569 // if lshr is not exact and ashr is, this new ashr must not be exact. 570 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 571 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 572 } 573 574 return nullptr; 575 } 576 577 /// We want to turn: 578 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 579 /// into: 580 /// (or (shl (and X, C1), C3), Y) 581 /// iff: 582 /// C1 and C2 are both powers of 2 583 /// where: 584 /// C3 = Log(C2) - Log(C1) 585 /// 586 /// This transform handles cases where: 587 /// 1. The icmp predicate is inverted 588 /// 2. The select operands are reversed 589 /// 3. The magnitude of C2 and C1 are flipped 590 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 591 Value *FalseVal, 592 InstCombiner::BuilderTy &Builder) { 593 // Only handle integer compares. Also, if this is a vector select, we need a 594 // vector compare. 595 if (!TrueVal->getType()->isIntOrIntVectorTy() || 596 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 597 return nullptr; 598 599 Value *CmpLHS = IC->getOperand(0); 600 Value *CmpRHS = IC->getOperand(1); 601 602 Value *V; 603 unsigned C1Log; 604 bool IsEqualZero; 605 bool NeedAnd = false; 606 if (IC->isEquality()) { 607 if (!match(CmpRHS, m_Zero())) 608 return nullptr; 609 610 const APInt *C1; 611 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 612 return nullptr; 613 614 V = CmpLHS; 615 C1Log = C1->logBase2(); 616 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 617 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 618 IC->getPredicate() == ICmpInst::ICMP_SGT) { 619 // We also need to recognize (icmp slt (trunc (X)), 0) and 620 // (icmp sgt (trunc (X)), -1). 621 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 622 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 623 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 624 return nullptr; 625 626 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 627 return nullptr; 628 629 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 630 NeedAnd = true; 631 } else { 632 return nullptr; 633 } 634 635 const APInt *C2; 636 bool OrOnTrueVal = false; 637 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 638 if (!OrOnFalseVal) 639 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 640 641 if (!OrOnFalseVal && !OrOnTrueVal) 642 return nullptr; 643 644 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 645 646 unsigned C2Log = C2->logBase2(); 647 648 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 649 bool NeedShift = C1Log != C2Log; 650 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 651 V->getType()->getScalarSizeInBits(); 652 653 // Make sure we don't create more instructions than we save. 654 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 655 if ((NeedShift + NeedXor + NeedZExtTrunc) > 656 (IC->hasOneUse() + Or->hasOneUse())) 657 return nullptr; 658 659 if (NeedAnd) { 660 // Insert the AND instruction on the input to the truncate. 661 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 662 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 663 } 664 665 if (C2Log > C1Log) { 666 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 667 V = Builder.CreateShl(V, C2Log - C1Log); 668 } else if (C1Log > C2Log) { 669 V = Builder.CreateLShr(V, C1Log - C2Log); 670 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 671 } else 672 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 673 674 if (NeedXor) 675 V = Builder.CreateXor(V, *C2); 676 677 return Builder.CreateOr(V, Y); 678 } 679 680 /// Canonicalize a set or clear of a masked set of constant bits to 681 /// select-of-constants form. 682 static Instruction *foldSetClearBits(SelectInst &Sel, 683 InstCombiner::BuilderTy &Builder) { 684 Value *Cond = Sel.getCondition(); 685 Value *T = Sel.getTrueValue(); 686 Value *F = Sel.getFalseValue(); 687 Type *Ty = Sel.getType(); 688 Value *X; 689 const APInt *NotC, *C; 690 691 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 692 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 693 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 694 Constant *Zero = ConstantInt::getNullValue(Ty); 695 Constant *OrC = ConstantInt::get(Ty, *C); 696 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 697 return BinaryOperator::CreateOr(T, NewSel); 698 } 699 700 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 701 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 702 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 703 Constant *Zero = ConstantInt::getNullValue(Ty); 704 Constant *OrC = ConstantInt::get(Ty, *C); 705 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 706 return BinaryOperator::CreateOr(F, NewSel); 707 } 708 709 return nullptr; 710 } 711 712 // select (x == 0), 0, x * y --> freeze(y) * x 713 // select (y == 0), 0, x * y --> freeze(x) * y 714 // select (x == 0), undef, x * y --> freeze(y) * x 715 // select (x == undef), 0, x * y --> freeze(y) * x 716 // Usage of mul instead of 0 will make the result more poisonous, 717 // so the operand that was not checked in the condition should be frozen. 718 // The latter folding is applied only when a constant compared with x is 719 // is a vector consisting of 0 and undefs. If a constant compared with x 720 // is a scalar undefined value or undefined vector then an expression 721 // should be already folded into a constant. 722 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { 723 auto *CondVal = SI.getCondition(); 724 auto *TrueVal = SI.getTrueValue(); 725 auto *FalseVal = SI.getFalseValue(); 726 Value *X, *Y; 727 ICmpInst::Predicate Predicate; 728 729 // Assuming that constant compared with zero is not undef (but it may be 730 // a vector with some undef elements). Otherwise (when a constant is undef) 731 // the select expression should be already simplified. 732 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || 733 !ICmpInst::isEquality(Predicate)) 734 return nullptr; 735 736 if (Predicate == ICmpInst::ICMP_NE) 737 std::swap(TrueVal, FalseVal); 738 739 // Check that TrueVal is a constant instead of matching it with m_Zero() 740 // to handle the case when it is a scalar undef value or a vector containing 741 // non-zero elements that are masked by undef elements in the compare 742 // constant. 743 auto *TrueValC = dyn_cast<Constant>(TrueVal); 744 if (TrueValC == nullptr || 745 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || 746 !isa<Instruction>(FalseVal)) 747 return nullptr; 748 749 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); 750 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); 751 // If X is compared with 0 then TrueVal could be either zero or undef. 752 // m_Zero match vectors containing some undef elements, but for scalars 753 // m_Undef should be used explicitly. 754 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) 755 return nullptr; 756 757 auto *FalseValI = cast<Instruction>(FalseVal); 758 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), 759 *FalseValI); 760 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); 761 return IC.replaceInstUsesWith(SI, FalseValI); 762 } 763 764 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 765 /// There are 8 commuted/swapped variants of this pattern. 766 /// TODO: Also support a - UMIN(a,b) patterns. 767 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 768 const Value *TrueVal, 769 const Value *FalseVal, 770 InstCombiner::BuilderTy &Builder) { 771 ICmpInst::Predicate Pred = ICI->getPredicate(); 772 if (!ICmpInst::isUnsigned(Pred)) 773 return nullptr; 774 775 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 776 if (match(TrueVal, m_Zero())) { 777 Pred = ICmpInst::getInversePredicate(Pred); 778 std::swap(TrueVal, FalseVal); 779 } 780 if (!match(FalseVal, m_Zero())) 781 return nullptr; 782 783 Value *A = ICI->getOperand(0); 784 Value *B = ICI->getOperand(1); 785 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 786 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 787 std::swap(A, B); 788 Pred = ICmpInst::getSwappedPredicate(Pred); 789 } 790 791 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 792 "Unexpected isUnsigned predicate!"); 793 794 // Ensure the sub is of the form: 795 // (a > b) ? a - b : 0 -> usub.sat(a, b) 796 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 797 // Checking for both a-b and a+(-b) as a constant. 798 bool IsNegative = false; 799 const APInt *C; 800 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 801 (match(A, m_APInt(C)) && 802 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 803 IsNegative = true; 804 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 805 !(match(B, m_APInt(C)) && 806 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 807 return nullptr; 808 809 // If we are adding a negate and the sub and icmp are used anywhere else, we 810 // would end up with more instructions. 811 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 812 return nullptr; 813 814 // (a > b) ? a - b : 0 -> usub.sat(a, b) 815 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 816 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 817 if (IsNegative) 818 Result = Builder.CreateNeg(Result); 819 return Result; 820 } 821 822 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 823 InstCombiner::BuilderTy &Builder) { 824 if (!Cmp->hasOneUse()) 825 return nullptr; 826 827 // Match unsigned saturated add with constant. 828 Value *Cmp0 = Cmp->getOperand(0); 829 Value *Cmp1 = Cmp->getOperand(1); 830 ICmpInst::Predicate Pred = Cmp->getPredicate(); 831 Value *X; 832 const APInt *C, *CmpC; 833 if (Pred == ICmpInst::ICMP_ULT && 834 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 835 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 836 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 837 return Builder.CreateBinaryIntrinsic( 838 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 839 } 840 841 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 842 // There are 8 commuted variants. 843 // Canonicalize -1 (saturated result) to true value of the select. 844 if (match(FVal, m_AllOnes())) { 845 std::swap(TVal, FVal); 846 Pred = CmpInst::getInversePredicate(Pred); 847 } 848 if (!match(TVal, m_AllOnes())) 849 return nullptr; 850 851 // Canonicalize predicate to less-than or less-or-equal-than. 852 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 853 std::swap(Cmp0, Cmp1); 854 Pred = CmpInst::getSwappedPredicate(Pred); 855 } 856 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 857 return nullptr; 858 859 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 860 // Strictness of the comparison is irrelevant. 861 Value *Y; 862 if (match(Cmp0, m_Not(m_Value(X))) && 863 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 864 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 865 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 866 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 867 } 868 // The 'not' op may be included in the sum but not the compare. 869 // Strictness of the comparison is irrelevant. 870 X = Cmp0; 871 Y = Cmp1; 872 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 873 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 874 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 875 BinaryOperator *BO = cast<BinaryOperator>(FVal); 876 return Builder.CreateBinaryIntrinsic( 877 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 878 } 879 // The overflow may be detected via the add wrapping round. 880 // This is only valid for strict comparison! 881 if (Pred == ICmpInst::ICMP_ULT && 882 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 883 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 884 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 885 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 886 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 887 } 888 889 return nullptr; 890 } 891 892 /// Fold the following code sequence: 893 /// \code 894 /// int a = ctlz(x & -x); 895 // x ? 31 - a : a; 896 /// \code 897 /// 898 /// into: 899 /// cttz(x) 900 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 901 Value *FalseVal, 902 InstCombiner::BuilderTy &Builder) { 903 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 904 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 905 return nullptr; 906 907 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 908 std::swap(TrueVal, FalseVal); 909 910 if (!match(FalseVal, 911 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 912 return nullptr; 913 914 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 915 return nullptr; 916 917 Value *X = ICI->getOperand(0); 918 auto *II = cast<IntrinsicInst>(TrueVal); 919 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 920 return nullptr; 921 922 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 923 II->getType()); 924 return CallInst::Create(F, {X, II->getArgOperand(1)}); 925 } 926 927 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 928 /// call to cttz/ctlz with flag 'is_zero_poison' cleared. 929 /// 930 /// For example, we can fold the following code sequence: 931 /// \code 932 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 933 /// %1 = icmp ne i32 %x, 0 934 /// %2 = select i1 %1, i32 %0, i32 32 935 /// \code 936 /// 937 /// into: 938 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 939 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 940 InstCombiner::BuilderTy &Builder) { 941 ICmpInst::Predicate Pred = ICI->getPredicate(); 942 Value *CmpLHS = ICI->getOperand(0); 943 Value *CmpRHS = ICI->getOperand(1); 944 945 // Check if the condition value compares a value for equality against zero. 946 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 947 return nullptr; 948 949 Value *SelectArg = FalseVal; 950 Value *ValueOnZero = TrueVal; 951 if (Pred == ICmpInst::ICMP_NE) 952 std::swap(SelectArg, ValueOnZero); 953 954 // Skip zero extend/truncate. 955 Value *Count = nullptr; 956 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 957 !match(SelectArg, m_Trunc(m_Value(Count)))) 958 Count = SelectArg; 959 960 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 961 // input to the cttz/ctlz is used as LHS for the compare instruction. 962 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 963 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 964 return nullptr; 965 966 IntrinsicInst *II = cast<IntrinsicInst>(Count); 967 968 // Check if the value propagated on zero is a constant number equal to the 969 // sizeof in bits of 'Count'. 970 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 971 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 972 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from 973 // true to false on this flag, so we can replace it for all users. 974 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 975 return SelectArg; 976 } 977 978 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 979 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 980 // not be used if the input is zero. Relax to 'zero is poison' for that case. 981 if (II->hasOneUse() && SelectArg->hasOneUse() && 982 !match(II->getArgOperand(1), m_One())) 983 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 984 985 return nullptr; 986 } 987 988 /// Return true if we find and adjust an icmp+select pattern where the compare 989 /// is with a constant that can be incremented or decremented to match the 990 /// minimum or maximum idiom. 991 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 992 ICmpInst::Predicate Pred = Cmp.getPredicate(); 993 Value *CmpLHS = Cmp.getOperand(0); 994 Value *CmpRHS = Cmp.getOperand(1); 995 Value *TrueVal = Sel.getTrueValue(); 996 Value *FalseVal = Sel.getFalseValue(); 997 998 // We may move or edit the compare, so make sure the select is the only user. 999 const APInt *CmpC; 1000 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 1001 return false; 1002 1003 // These transforms only work for selects of integers or vector selects of 1004 // integer vectors. 1005 Type *SelTy = Sel.getType(); 1006 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 1007 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 1008 return false; 1009 1010 Constant *AdjustedRHS; 1011 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 1012 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 1013 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 1014 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 1015 else 1016 return false; 1017 1018 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 1019 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 1020 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 1021 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 1022 ; // Nothing to do here. Values match without any sign/zero extension. 1023 } 1024 // Types do not match. Instead of calculating this with mixed types, promote 1025 // all to the larger type. This enables scalar evolution to analyze this 1026 // expression. 1027 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 1028 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 1029 1030 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 1031 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 1032 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 1033 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 1034 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 1035 CmpLHS = TrueVal; 1036 AdjustedRHS = SextRHS; 1037 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 1038 SextRHS == TrueVal) { 1039 CmpLHS = FalseVal; 1040 AdjustedRHS = SextRHS; 1041 } else if (Cmp.isUnsigned()) { 1042 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 1043 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 1044 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 1045 // zext + signed compare cannot be changed: 1046 // 0xff <s 0x00, but 0x00ff >s 0x0000 1047 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 1048 CmpLHS = TrueVal; 1049 AdjustedRHS = ZextRHS; 1050 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 1051 ZextRHS == TrueVal) { 1052 CmpLHS = FalseVal; 1053 AdjustedRHS = ZextRHS; 1054 } else { 1055 return false; 1056 } 1057 } else { 1058 return false; 1059 } 1060 } else { 1061 return false; 1062 } 1063 1064 Pred = ICmpInst::getSwappedPredicate(Pred); 1065 CmpRHS = AdjustedRHS; 1066 std::swap(FalseVal, TrueVal); 1067 Cmp.setPredicate(Pred); 1068 Cmp.setOperand(0, CmpLHS); 1069 Cmp.setOperand(1, CmpRHS); 1070 Sel.setOperand(1, TrueVal); 1071 Sel.setOperand(2, FalseVal); 1072 Sel.swapProfMetadata(); 1073 1074 // Move the compare instruction right before the select instruction. Otherwise 1075 // the sext/zext value may be defined after the compare instruction uses it. 1076 Cmp.moveBefore(&Sel); 1077 1078 return true; 1079 } 1080 1081 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp, 1082 InstCombinerImpl &IC) { 1083 Value *LHS, *RHS; 1084 // TODO: What to do with pointer min/max patterns? 1085 if (!Sel.getType()->isIntOrIntVectorTy()) 1086 return nullptr; 1087 1088 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1089 if (SPF == SelectPatternFlavor::SPF_ABS || 1090 SPF == SelectPatternFlavor::SPF_NABS) { 1091 if (!Cmp.hasOneUse() && !RHS->hasOneUse()) 1092 return nullptr; // TODO: Relax this restriction. 1093 1094 // Note that NSW flag can only be propagated for normal, non-negated abs! 1095 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1096 match(RHS, m_NSWNeg(m_Specific(LHS))); 1097 Constant *IntMinIsPoisonC = 1098 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1099 Instruction *Abs = 1100 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1101 1102 if (SPF == SelectPatternFlavor::SPF_NABS) 1103 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1104 return IC.replaceInstUsesWith(Sel, Abs); 1105 } 1106 1107 if (SelectPatternResult::isMinOrMax(SPF)) { 1108 Intrinsic::ID IntrinsicID; 1109 switch (SPF) { 1110 case SelectPatternFlavor::SPF_UMIN: 1111 IntrinsicID = Intrinsic::umin; 1112 break; 1113 case SelectPatternFlavor::SPF_UMAX: 1114 IntrinsicID = Intrinsic::umax; 1115 break; 1116 case SelectPatternFlavor::SPF_SMIN: 1117 IntrinsicID = Intrinsic::smin; 1118 break; 1119 case SelectPatternFlavor::SPF_SMAX: 1120 IntrinsicID = Intrinsic::smax; 1121 break; 1122 default: 1123 llvm_unreachable("Unexpected SPF"); 1124 } 1125 return IC.replaceInstUsesWith( 1126 Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS)); 1127 } 1128 1129 return nullptr; 1130 } 1131 1132 /// If we have a select with an equality comparison, then we know the value in 1133 /// one of the arms of the select. See if substituting this value into an arm 1134 /// and simplifying the result yields the same value as the other arm. 1135 /// 1136 /// To make this transform safe, we must drop poison-generating flags 1137 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1138 /// that poison from propagating. If the existing binop already had no 1139 /// poison-generating flags, then this transform can be done by instsimplify. 1140 /// 1141 /// Consider: 1142 /// %cmp = icmp eq i32 %x, 2147483647 1143 /// %add = add nsw i32 %x, 1 1144 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1145 /// 1146 /// We can't replace %sel with %add unless we strip away the flags. 1147 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1148 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1149 ICmpInst &Cmp) { 1150 // Value equivalence substitution requires an all-or-nothing replacement. 1151 // It does not make sense for a vector compare where each lane is chosen 1152 // independently. 1153 if (!Cmp.isEquality() || Cmp.getType()->isVectorTy()) 1154 return nullptr; 1155 1156 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1157 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1158 bool Swapped = false; 1159 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1160 std::swap(TrueVal, FalseVal); 1161 Swapped = true; 1162 } 1163 1164 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1165 // Make sure Y cannot be undef though, as we might pick different values for 1166 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1167 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1168 // replacement cycle. 1169 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1170 if (TrueVal != CmpLHS && 1171 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1172 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1173 /* AllowRefinement */ true)) 1174 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1175 1176 // Even if TrueVal does not simplify, we can directly replace a use of 1177 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1178 // else and is safe to speculatively execute (we may end up executing it 1179 // with different operands, which should not cause side-effects or trigger 1180 // undefined behavior). Only do this if CmpRHS is a constant, as 1181 // profitability is not clear for other cases. 1182 // FIXME: The replacement could be performed recursively. 1183 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant())) 1184 if (auto *I = dyn_cast<Instruction>(TrueVal)) 1185 if (I->hasOneUse() && isSafeToSpeculativelyExecute(I)) 1186 for (Use &U : I->operands()) 1187 if (U == CmpLHS) { 1188 replaceUse(U, CmpRHS); 1189 return &Sel; 1190 } 1191 } 1192 if (TrueVal != CmpRHS && 1193 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1194 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1195 /* AllowRefinement */ true)) 1196 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1197 1198 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1199 if (!FalseInst) 1200 return nullptr; 1201 1202 // InstSimplify already performed this fold if it was possible subject to 1203 // current poison-generating flags. Try the transform again with 1204 // poison-generating flags temporarily dropped. 1205 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1206 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1207 WasNUW = OBO->hasNoUnsignedWrap(); 1208 WasNSW = OBO->hasNoSignedWrap(); 1209 FalseInst->setHasNoUnsignedWrap(false); 1210 FalseInst->setHasNoSignedWrap(false); 1211 } 1212 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1213 WasExact = PEO->isExact(); 1214 FalseInst->setIsExact(false); 1215 } 1216 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1217 WasInBounds = GEP->isInBounds(); 1218 GEP->setIsInBounds(false); 1219 } 1220 1221 // Try each equivalence substitution possibility. 1222 // We have an 'EQ' comparison, so the select's false value will propagate. 1223 // Example: 1224 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1225 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1226 /* AllowRefinement */ false) == TrueVal || 1227 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1228 /* AllowRefinement */ false) == TrueVal) { 1229 return replaceInstUsesWith(Sel, FalseVal); 1230 } 1231 1232 // Restore poison-generating flags if the transform did not apply. 1233 if (WasNUW) 1234 FalseInst->setHasNoUnsignedWrap(); 1235 if (WasNSW) 1236 FalseInst->setHasNoSignedWrap(); 1237 if (WasExact) 1238 FalseInst->setIsExact(); 1239 if (WasInBounds) 1240 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1241 1242 return nullptr; 1243 } 1244 1245 // See if this is a pattern like: 1246 // %old_cmp1 = icmp slt i32 %x, C2 1247 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1248 // %old_x_offseted = add i32 %x, C1 1249 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1250 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1251 // This can be rewritten as more canonical pattern: 1252 // %new_cmp1 = icmp slt i32 %x, -C1 1253 // %new_cmp2 = icmp sge i32 %x, C0-C1 1254 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1255 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1256 // Iff -C1 s<= C2 s<= C0-C1 1257 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1258 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1259 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1260 InstCombiner::BuilderTy &Builder) { 1261 Value *X = Sel0.getTrueValue(); 1262 Value *Sel1 = Sel0.getFalseValue(); 1263 1264 // First match the condition of the outermost select. 1265 // Said condition must be one-use. 1266 if (!Cmp0.hasOneUse()) 1267 return nullptr; 1268 ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); 1269 Value *Cmp00 = Cmp0.getOperand(0); 1270 Constant *C0; 1271 if (!match(Cmp0.getOperand(1), 1272 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1273 return nullptr; 1274 1275 if (!isa<SelectInst>(Sel1)) { 1276 Pred0 = ICmpInst::getInversePredicate(Pred0); 1277 std::swap(X, Sel1); 1278 } 1279 1280 // Canonicalize Cmp0 into ult or uge. 1281 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1282 switch (Pred0) { 1283 case ICmpInst::Predicate::ICMP_ULT: 1284 case ICmpInst::Predicate::ICMP_UGE: 1285 // Although icmp ult %x, 0 is an unusual thing to try and should generally 1286 // have been simplified, it does not verify with undef inputs so ensure we 1287 // are not in a strange state. 1288 if (!match(C0, m_SpecificInt_ICMP( 1289 ICmpInst::Predicate::ICMP_NE, 1290 APInt::getZero(C0->getType()->getScalarSizeInBits())))) 1291 return nullptr; 1292 break; // Great! 1293 case ICmpInst::Predicate::ICMP_ULE: 1294 case ICmpInst::Predicate::ICMP_UGT: 1295 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment 1296 // C0, which again means it must not have any all-ones elements. 1297 if (!match(C0, 1298 m_SpecificInt_ICMP( 1299 ICmpInst::Predicate::ICMP_NE, 1300 APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) 1301 return nullptr; // Can't do, have all-ones element[s]. 1302 Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0); 1303 C0 = InstCombiner::AddOne(C0); 1304 break; 1305 default: 1306 return nullptr; // Unknown predicate. 1307 } 1308 1309 // Now that we've canonicalized the ICmp, we know the X we expect; 1310 // the select in other hand should be one-use. 1311 if (!Sel1->hasOneUse()) 1312 return nullptr; 1313 1314 // If the types do not match, look through any truncs to the underlying 1315 // instruction. 1316 if (Cmp00->getType() != X->getType() && X->hasOneUse()) 1317 match(X, m_TruncOrSelf(m_Value(X))); 1318 1319 // We now can finish matching the condition of the outermost select: 1320 // it should either be the X itself, or an addition of some constant to X. 1321 Constant *C1; 1322 if (Cmp00 == X) 1323 C1 = ConstantInt::getNullValue(X->getType()); 1324 else if (!match(Cmp00, 1325 m_Add(m_Specific(X), 1326 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1327 return nullptr; 1328 1329 Value *Cmp1; 1330 ICmpInst::Predicate Pred1; 1331 Constant *C2; 1332 Value *ReplacementLow, *ReplacementHigh; 1333 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1334 m_Value(ReplacementHigh))) || 1335 !match(Cmp1, 1336 m_ICmp(Pred1, m_Specific(X), 1337 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1338 return nullptr; 1339 1340 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1341 return nullptr; // Not enough one-use instructions for the fold. 1342 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1343 // two comparisons we'll need to build. 1344 1345 // Canonicalize Cmp1 into the form we expect. 1346 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1347 switch (Pred1) { 1348 case ICmpInst::Predicate::ICMP_SLT: 1349 break; 1350 case ICmpInst::Predicate::ICMP_SLE: 1351 // We'd have to increment C2 by one, and for that it must not have signed 1352 // max element, but then it would have been canonicalized to 'slt' before 1353 // we get here. So we can't do anything useful with 'sle'. 1354 return nullptr; 1355 case ICmpInst::Predicate::ICMP_SGT: 1356 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1357 // which again means it must not have any signed max elements. 1358 if (!match(C2, 1359 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1360 APInt::getSignedMaxValue( 1361 C2->getType()->getScalarSizeInBits())))) 1362 return nullptr; // Can't do, have signed max element[s]. 1363 C2 = InstCombiner::AddOne(C2); 1364 LLVM_FALLTHROUGH; 1365 case ICmpInst::Predicate::ICMP_SGE: 1366 // Also non-canonical, but here we don't need to change C2, 1367 // so we don't have any restrictions on C2, so we can just handle it. 1368 Pred1 = ICmpInst::Predicate::ICMP_SLT; 1369 std::swap(ReplacementLow, ReplacementHigh); 1370 break; 1371 default: 1372 return nullptr; // Unknown predicate. 1373 } 1374 assert(Pred1 == ICmpInst::Predicate::ICMP_SLT && 1375 "Unexpected predicate type."); 1376 1377 // The thresholds of this clamp-like pattern. 1378 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1379 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1380 1381 assert((Pred0 == ICmpInst::Predicate::ICMP_ULT || 1382 Pred0 == ICmpInst::Predicate::ICMP_UGE) && 1383 "Unexpected predicate type."); 1384 if (Pred0 == ICmpInst::Predicate::ICMP_UGE) 1385 std::swap(ThresholdLowIncl, ThresholdHighExcl); 1386 1387 // The fold has a precondition 1: C2 s>= ThresholdLow 1388 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1389 ThresholdLowIncl); 1390 if (!match(Precond1, m_One())) 1391 return nullptr; 1392 // The fold has a precondition 2: C2 s<= ThresholdHigh 1393 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1394 ThresholdHighExcl); 1395 if (!match(Precond2, m_One())) 1396 return nullptr; 1397 1398 // If we are matching from a truncated input, we need to sext the 1399 // ReplacementLow and ReplacementHigh values. Only do the transform if they 1400 // are free to extend due to being constants. 1401 if (X->getType() != Sel0.getType()) { 1402 Constant *LowC, *HighC; 1403 if (!match(ReplacementLow, m_ImmConstant(LowC)) || 1404 !match(ReplacementHigh, m_ImmConstant(HighC))) 1405 return nullptr; 1406 ReplacementLow = ConstantExpr::getSExt(LowC, X->getType()); 1407 ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType()); 1408 } 1409 1410 // All good, finally emit the new pattern. 1411 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1412 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1413 Value *MaybeReplacedLow = 1414 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1415 1416 // Create the final select. If we looked through a truncate above, we will 1417 // need to retruncate the result. 1418 Value *MaybeReplacedHigh = Builder.CreateSelect( 1419 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1420 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); 1421 } 1422 1423 // If we have 1424 // %cmp = icmp [canonical predicate] i32 %x, C0 1425 // %r = select i1 %cmp, i32 %y, i32 C1 1426 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1427 // will have if we flip the strictness of the predicate (i.e. without changing 1428 // the result) is identical to the C1 in select. If it matches we can change 1429 // original comparison to one with swapped predicate, reuse the constant, 1430 // and swap the hands of select. 1431 static Instruction * 1432 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1433 InstCombinerImpl &IC) { 1434 ICmpInst::Predicate Pred; 1435 Value *X; 1436 Constant *C0; 1437 if (!match(&Cmp, m_OneUse(m_ICmp( 1438 Pred, m_Value(X), 1439 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1440 return nullptr; 1441 1442 // If comparison predicate is non-relational, we won't be able to do anything. 1443 if (ICmpInst::isEquality(Pred)) 1444 return nullptr; 1445 1446 // If comparison predicate is non-canonical, then we certainly won't be able 1447 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1448 if (!InstCombiner::isCanonicalPredicate(Pred)) 1449 return nullptr; 1450 1451 // If the [input] type of comparison and select type are different, lets abort 1452 // for now. We could try to compare constants with trunc/[zs]ext though. 1453 if (C0->getType() != Sel.getType()) 1454 return nullptr; 1455 1456 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). 1457 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? 1458 // Or should we just abandon this transform entirely? 1459 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) 1460 return nullptr; 1461 1462 1463 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1464 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1465 // At least one of these values we are selecting between must be a constant 1466 // else we'll never succeed. 1467 if (!match(SelVal0, m_AnyIntegralConstant()) && 1468 !match(SelVal1, m_AnyIntegralConstant())) 1469 return nullptr; 1470 1471 // Does this constant C match any of the `select` values? 1472 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1473 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1474 }; 1475 1476 // If C0 *already* matches true/false value of select, we are done. 1477 if (MatchesSelectValue(C0)) 1478 return nullptr; 1479 1480 // Check the constant we'd have with flipped-strictness predicate. 1481 auto FlippedStrictness = 1482 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1483 if (!FlippedStrictness) 1484 return nullptr; 1485 1486 // If said constant doesn't match either, then there is no hope, 1487 if (!MatchesSelectValue(FlippedStrictness->second)) 1488 return nullptr; 1489 1490 // It matched! Lets insert the new comparison just before select. 1491 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1492 IC.Builder.SetInsertPoint(&Sel); 1493 1494 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1495 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1496 Cmp.getName() + ".inv"); 1497 IC.replaceOperand(Sel, 0, NewCmp); 1498 Sel.swapValues(); 1499 Sel.swapProfMetadata(); 1500 1501 return &Sel; 1502 } 1503 1504 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal, 1505 Value *FVal, 1506 InstCombiner::BuilderTy &Builder) { 1507 if (!Cmp->hasOneUse()) 1508 return nullptr; 1509 1510 const APInt *CmpC; 1511 if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC))) 1512 return nullptr; 1513 1514 // (X u< 2) ? -X : -1 --> sext (X != 0) 1515 Value *X = Cmp->getOperand(0); 1516 if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 && 1517 match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes())) 1518 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1519 1520 // (X u> 1) ? -1 : -X --> sext (X != 0) 1521 if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 && 1522 match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes())) 1523 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1524 1525 return nullptr; 1526 } 1527 1528 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI) { 1529 const APInt *CmpC; 1530 Value *V; 1531 CmpInst::Predicate Pred; 1532 if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC)))) 1533 return nullptr; 1534 1535 BinaryOperator *BO; 1536 const APInt *C; 1537 CmpInst::Predicate CPred; 1538 if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO)))) 1539 CPred = ICI->getPredicate(); 1540 else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C)))) 1541 CPred = ICI->getInversePredicate(); 1542 else 1543 return nullptr; 1544 1545 const APInt *BinOpC; 1546 if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC)))) 1547 return nullptr; 1548 1549 ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC) 1550 .binaryOp(BO->getOpcode(), *BinOpC); 1551 if (R == *C) { 1552 BO->dropPoisonGeneratingFlags(); 1553 return BO; 1554 } 1555 return nullptr; 1556 } 1557 1558 /// Visit a SelectInst that has an ICmpInst as its first operand. 1559 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1560 ICmpInst *ICI) { 1561 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1562 return NewSel; 1563 1564 if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this)) 1565 return NewSPF; 1566 1567 if (Value *V = foldSelectInstWithICmpConst(SI, ICI)) 1568 return replaceInstUsesWith(SI, V); 1569 1570 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder)) 1571 return replaceInstUsesWith(SI, V); 1572 1573 if (Instruction *NewSel = 1574 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1575 return NewSel; 1576 1577 bool Changed = adjustMinMax(SI, *ICI); 1578 1579 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1580 return replaceInstUsesWith(SI, V); 1581 1582 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1583 Value *TrueVal = SI.getTrueValue(); 1584 Value *FalseVal = SI.getFalseValue(); 1585 ICmpInst::Predicate Pred = ICI->getPredicate(); 1586 Value *CmpLHS = ICI->getOperand(0); 1587 Value *CmpRHS = ICI->getOperand(1); 1588 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1589 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1590 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1591 SI.setOperand(1, CmpRHS); 1592 Changed = true; 1593 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1594 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1595 SI.setOperand(2, CmpRHS); 1596 Changed = true; 1597 } 1598 } 1599 1600 // Canonicalize a signbit condition to use zero constant by swapping: 1601 // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV 1602 // To avoid conflicts (infinite loops) with other canonicalizations, this is 1603 // not applied with any constant select arm. 1604 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) && 1605 !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) && 1606 ICI->hasOneUse()) { 1607 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); 1608 Builder.SetInsertPoint(&SI); 1609 Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName()); 1610 replaceOperand(SI, 0, IsNeg); 1611 SI.swapValues(); 1612 SI.swapProfMetadata(); 1613 return &SI; 1614 } 1615 1616 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1617 // decomposeBitTestICmp() might help. 1618 { 1619 unsigned BitWidth = 1620 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1621 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1622 Value *X; 1623 const APInt *Y, *C; 1624 bool TrueWhenUnset; 1625 bool IsBitTest = false; 1626 if (ICmpInst::isEquality(Pred) && 1627 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1628 match(CmpRHS, m_Zero())) { 1629 IsBitTest = true; 1630 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1631 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1632 X = CmpLHS; 1633 Y = &MinSignedValue; 1634 IsBitTest = true; 1635 TrueWhenUnset = false; 1636 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1637 X = CmpLHS; 1638 Y = &MinSignedValue; 1639 IsBitTest = true; 1640 TrueWhenUnset = true; 1641 } 1642 if (IsBitTest) { 1643 Value *V = nullptr; 1644 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1645 if (TrueWhenUnset && TrueVal == X && 1646 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1647 V = Builder.CreateAnd(X, ~(*Y)); 1648 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1649 else if (!TrueWhenUnset && FalseVal == X && 1650 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1651 V = Builder.CreateAnd(X, ~(*Y)); 1652 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1653 else if (TrueWhenUnset && FalseVal == X && 1654 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1655 V = Builder.CreateOr(X, *Y); 1656 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1657 else if (!TrueWhenUnset && TrueVal == X && 1658 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1659 V = Builder.CreateOr(X, *Y); 1660 1661 if (V) 1662 return replaceInstUsesWith(SI, V); 1663 } 1664 } 1665 1666 if (Instruction *V = 1667 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1668 return V; 1669 1670 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1671 return V; 1672 1673 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder)) 1674 return V; 1675 1676 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1677 return replaceInstUsesWith(SI, V); 1678 1679 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1680 return replaceInstUsesWith(SI, V); 1681 1682 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1683 return replaceInstUsesWith(SI, V); 1684 1685 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1686 return replaceInstUsesWith(SI, V); 1687 1688 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1689 return replaceInstUsesWith(SI, V); 1690 1691 return Changed ? &SI : nullptr; 1692 } 1693 1694 /// SI is a select whose condition is a PHI node (but the two may be in 1695 /// different blocks). See if the true/false values (V) are live in all of the 1696 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1697 /// 1698 /// X = phi [ C1, BB1], [C2, BB2] 1699 /// Y = add 1700 /// Z = select X, Y, 0 1701 /// 1702 /// because Y is not live in BB1/BB2. 1703 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1704 const SelectInst &SI) { 1705 // If the value is a non-instruction value like a constant or argument, it 1706 // can always be mapped. 1707 const Instruction *I = dyn_cast<Instruction>(V); 1708 if (!I) return true; 1709 1710 // If V is a PHI node defined in the same block as the condition PHI, we can 1711 // map the arguments. 1712 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1713 1714 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1715 if (VP->getParent() == CondPHI->getParent()) 1716 return true; 1717 1718 // Otherwise, if the PHI and select are defined in the same block and if V is 1719 // defined in a different block, then we can transform it. 1720 if (SI.getParent() == CondPHI->getParent() && 1721 I->getParent() != CondPHI->getParent()) 1722 return true; 1723 1724 // Otherwise we have a 'hard' case and we can't tell without doing more 1725 // detailed dominator based analysis, punt. 1726 return false; 1727 } 1728 1729 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1730 /// SPF2(SPF1(A, B), C) 1731 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1732 SelectPatternFlavor SPF1, Value *A, 1733 Value *B, Instruction &Outer, 1734 SelectPatternFlavor SPF2, 1735 Value *C) { 1736 if (Outer.getType() != Inner->getType()) 1737 return nullptr; 1738 1739 if (C == A || C == B) { 1740 // MAX(MAX(A, B), B) -> MAX(A, B) 1741 // MIN(MIN(a, b), a) -> MIN(a, b) 1742 // TODO: This could be done in instsimplify. 1743 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1744 return replaceInstUsesWith(Outer, Inner); 1745 } 1746 1747 return nullptr; 1748 } 1749 1750 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1751 /// This is even legal for FP. 1752 static Instruction *foldAddSubSelect(SelectInst &SI, 1753 InstCombiner::BuilderTy &Builder) { 1754 Value *CondVal = SI.getCondition(); 1755 Value *TrueVal = SI.getTrueValue(); 1756 Value *FalseVal = SI.getFalseValue(); 1757 auto *TI = dyn_cast<Instruction>(TrueVal); 1758 auto *FI = dyn_cast<Instruction>(FalseVal); 1759 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1760 return nullptr; 1761 1762 Instruction *AddOp = nullptr, *SubOp = nullptr; 1763 if ((TI->getOpcode() == Instruction::Sub && 1764 FI->getOpcode() == Instruction::Add) || 1765 (TI->getOpcode() == Instruction::FSub && 1766 FI->getOpcode() == Instruction::FAdd)) { 1767 AddOp = FI; 1768 SubOp = TI; 1769 } else if ((FI->getOpcode() == Instruction::Sub && 1770 TI->getOpcode() == Instruction::Add) || 1771 (FI->getOpcode() == Instruction::FSub && 1772 TI->getOpcode() == Instruction::FAdd)) { 1773 AddOp = TI; 1774 SubOp = FI; 1775 } 1776 1777 if (AddOp) { 1778 Value *OtherAddOp = nullptr; 1779 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1780 OtherAddOp = AddOp->getOperand(1); 1781 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1782 OtherAddOp = AddOp->getOperand(0); 1783 } 1784 1785 if (OtherAddOp) { 1786 // So at this point we know we have (Y -> OtherAddOp): 1787 // select C, (add X, Y), (sub X, Z) 1788 Value *NegVal; // Compute -Z 1789 if (SI.getType()->isFPOrFPVectorTy()) { 1790 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1791 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1792 FastMathFlags Flags = AddOp->getFastMathFlags(); 1793 Flags &= SubOp->getFastMathFlags(); 1794 NegInst->setFastMathFlags(Flags); 1795 } 1796 } else { 1797 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1798 } 1799 1800 Value *NewTrueOp = OtherAddOp; 1801 Value *NewFalseOp = NegVal; 1802 if (AddOp != TI) 1803 std::swap(NewTrueOp, NewFalseOp); 1804 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1805 SI.getName() + ".p", &SI); 1806 1807 if (SI.getType()->isFPOrFPVectorTy()) { 1808 Instruction *RI = 1809 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1810 1811 FastMathFlags Flags = AddOp->getFastMathFlags(); 1812 Flags &= SubOp->getFastMathFlags(); 1813 RI->setFastMathFlags(Flags); 1814 return RI; 1815 } else 1816 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1817 } 1818 } 1819 return nullptr; 1820 } 1821 1822 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1823 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1824 /// Along with a number of patterns similar to: 1825 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1826 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1827 static Instruction * 1828 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1829 Value *CondVal = SI.getCondition(); 1830 Value *TrueVal = SI.getTrueValue(); 1831 Value *FalseVal = SI.getFalseValue(); 1832 1833 WithOverflowInst *II; 1834 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1835 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1836 return nullptr; 1837 1838 Value *X = II->getLHS(); 1839 Value *Y = II->getRHS(); 1840 1841 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1842 Type *Ty = Limit->getType(); 1843 1844 ICmpInst::Predicate Pred; 1845 Value *TrueVal, *FalseVal, *Op; 1846 const APInt *C; 1847 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1848 m_Value(TrueVal), m_Value(FalseVal)))) 1849 return false; 1850 1851 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; 1852 auto IsMinMax = [&](Value *Min, Value *Max) { 1853 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1854 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1855 return match(Min, m_SpecificInt(MinVal)) && 1856 match(Max, m_SpecificInt(MaxVal)); 1857 }; 1858 1859 if (Op != X && Op != Y) 1860 return false; 1861 1862 if (IsAdd) { 1863 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1864 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1865 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1866 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1867 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1868 IsMinMax(TrueVal, FalseVal)) 1869 return true; 1870 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1871 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1872 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1873 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1874 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1875 IsMinMax(FalseVal, TrueVal)) 1876 return true; 1877 } else { 1878 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1879 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1880 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1881 IsMinMax(TrueVal, FalseVal)) 1882 return true; 1883 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1884 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1885 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1886 IsMinMax(FalseVal, TrueVal)) 1887 return true; 1888 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1889 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1890 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1891 IsMinMax(FalseVal, TrueVal)) 1892 return true; 1893 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1894 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1895 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1896 IsMinMax(TrueVal, FalseVal)) 1897 return true; 1898 } 1899 1900 return false; 1901 }; 1902 1903 Intrinsic::ID NewIntrinsicID; 1904 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1905 match(TrueVal, m_AllOnes())) 1906 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1907 NewIntrinsicID = Intrinsic::uadd_sat; 1908 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1909 match(TrueVal, m_Zero())) 1910 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1911 NewIntrinsicID = Intrinsic::usub_sat; 1912 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1913 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1914 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1915 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1916 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1917 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1918 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1919 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1920 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1921 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1922 NewIntrinsicID = Intrinsic::sadd_sat; 1923 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1924 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1925 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1926 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1927 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1928 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1929 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1930 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1931 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1932 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1933 NewIntrinsicID = Intrinsic::ssub_sat; 1934 else 1935 return nullptr; 1936 1937 Function *F = 1938 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1939 return CallInst::Create(F, {X, Y}); 1940 } 1941 1942 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 1943 Constant *C; 1944 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1945 !match(Sel.getFalseValue(), m_Constant(C))) 1946 return nullptr; 1947 1948 Instruction *ExtInst; 1949 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1950 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1951 return nullptr; 1952 1953 auto ExtOpcode = ExtInst->getOpcode(); 1954 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1955 return nullptr; 1956 1957 // If we are extending from a boolean type or if we can create a select that 1958 // has the same size operands as its condition, try to narrow the select. 1959 Value *X = ExtInst->getOperand(0); 1960 Type *SmallType = X->getType(); 1961 Value *Cond = Sel.getCondition(); 1962 auto *Cmp = dyn_cast<CmpInst>(Cond); 1963 if (!SmallType->isIntOrIntVectorTy(1) && 1964 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1965 return nullptr; 1966 1967 // If the constant is the same after truncation to the smaller type and 1968 // extension to the original type, we can narrow the select. 1969 Type *SelType = Sel.getType(); 1970 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1971 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1972 if (ExtC == C && ExtInst->hasOneUse()) { 1973 Value *TruncCVal = cast<Value>(TruncC); 1974 if (ExtInst == Sel.getFalseValue()) 1975 std::swap(X, TruncCVal); 1976 1977 // select Cond, (ext X), C --> ext(select Cond, X, C') 1978 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1979 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1980 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1981 } 1982 1983 // If one arm of the select is the extend of the condition, replace that arm 1984 // with the extension of the appropriate known bool value. 1985 if (Cond == X) { 1986 if (ExtInst == Sel.getTrueValue()) { 1987 // select X, (sext X), C --> select X, -1, C 1988 // select X, (zext X), C --> select X, 1, C 1989 Constant *One = ConstantInt::getTrue(SmallType); 1990 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1991 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1992 } else { 1993 // select X, C, (sext X) --> select X, C, 0 1994 // select X, C, (zext X) --> select X, C, 0 1995 Constant *Zero = ConstantInt::getNullValue(SelType); 1996 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1997 } 1998 } 1999 2000 return nullptr; 2001 } 2002 2003 /// Try to transform a vector select with a constant condition vector into a 2004 /// shuffle for easier combining with other shuffles and insert/extract. 2005 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 2006 Value *CondVal = SI.getCondition(); 2007 Constant *CondC; 2008 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 2009 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 2010 return nullptr; 2011 2012 unsigned NumElts = CondValTy->getNumElements(); 2013 SmallVector<int, 16> Mask; 2014 Mask.reserve(NumElts); 2015 for (unsigned i = 0; i != NumElts; ++i) { 2016 Constant *Elt = CondC->getAggregateElement(i); 2017 if (!Elt) 2018 return nullptr; 2019 2020 if (Elt->isOneValue()) { 2021 // If the select condition element is true, choose from the 1st vector. 2022 Mask.push_back(i); 2023 } else if (Elt->isNullValue()) { 2024 // If the select condition element is false, choose from the 2nd vector. 2025 Mask.push_back(i + NumElts); 2026 } else if (isa<UndefValue>(Elt)) { 2027 // Undef in a select condition (choose one of the operands) does not mean 2028 // the same thing as undef in a shuffle mask (any value is acceptable), so 2029 // give up. 2030 return nullptr; 2031 } else { 2032 // Bail out on a constant expression. 2033 return nullptr; 2034 } 2035 } 2036 2037 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2038 } 2039 2040 /// If we have a select of vectors with a scalar condition, try to convert that 2041 /// to a vector select by splatting the condition. A splat may get folded with 2042 /// other operations in IR and having all operands of a select be vector types 2043 /// is likely better for vector codegen. 2044 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2045 InstCombinerImpl &IC) { 2046 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2047 if (!Ty) 2048 return nullptr; 2049 2050 // We can replace a single-use extract with constant index. 2051 Value *Cond = Sel.getCondition(); 2052 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2053 return nullptr; 2054 2055 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2056 // Splatting the extracted condition reduces code (we could directly create a 2057 // splat shuffle of the source vector to eliminate the intermediate step). 2058 return IC.replaceOperand( 2059 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2060 } 2061 2062 /// Reuse bitcasted operands between a compare and select: 2063 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2064 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2065 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2066 InstCombiner::BuilderTy &Builder) { 2067 Value *Cond = Sel.getCondition(); 2068 Value *TVal = Sel.getTrueValue(); 2069 Value *FVal = Sel.getFalseValue(); 2070 2071 CmpInst::Predicate Pred; 2072 Value *A, *B; 2073 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2074 return nullptr; 2075 2076 // The select condition is a compare instruction. If the select's true/false 2077 // values are already the same as the compare operands, there's nothing to do. 2078 if (TVal == A || TVal == B || FVal == A || FVal == B) 2079 return nullptr; 2080 2081 Value *C, *D; 2082 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2083 return nullptr; 2084 2085 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2086 Value *TSrc, *FSrc; 2087 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2088 !match(FVal, m_BitCast(m_Value(FSrc)))) 2089 return nullptr; 2090 2091 // If the select true/false values are *different bitcasts* of the same source 2092 // operands, make the select operands the same as the compare operands and 2093 // cast the result. This is the canonical select form for min/max. 2094 Value *NewSel; 2095 if (TSrc == C && FSrc == D) { 2096 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2097 // bitcast (select (cmp A, B), A, B) 2098 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2099 } else if (TSrc == D && FSrc == C) { 2100 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2101 // bitcast (select (cmp A, B), B, A) 2102 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2103 } else { 2104 return nullptr; 2105 } 2106 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2107 } 2108 2109 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2110 /// instructions. 2111 /// 2112 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2113 /// selects between the returned value of the cmpxchg instruction its compare 2114 /// operand, the result of the select will always be equal to its false value. 2115 /// For example: 2116 /// 2117 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2118 /// %1 = extractvalue { i64, i1 } %0, 1 2119 /// %2 = extractvalue { i64, i1 } %0, 0 2120 /// %3 = select i1 %1, i64 %compare, i64 %2 2121 /// ret i64 %3 2122 /// 2123 /// The returned value of the cmpxchg instruction (%2) is the original value 2124 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2125 /// must have been equal to %compare. Thus, the result of the select is always 2126 /// equal to %2, and the code can be simplified to: 2127 /// 2128 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2129 /// %1 = extractvalue { i64, i1 } %0, 0 2130 /// ret i64 %1 2131 /// 2132 static Value *foldSelectCmpXchg(SelectInst &SI) { 2133 // A helper that determines if V is an extractvalue instruction whose 2134 // aggregate operand is a cmpxchg instruction and whose single index is equal 2135 // to I. If such conditions are true, the helper returns the cmpxchg 2136 // instruction; otherwise, a nullptr is returned. 2137 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2138 auto *Extract = dyn_cast<ExtractValueInst>(V); 2139 if (!Extract) 2140 return nullptr; 2141 if (Extract->getIndices()[0] != I) 2142 return nullptr; 2143 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2144 }; 2145 2146 // If the select has a single user, and this user is a select instruction that 2147 // we can simplify, skip the cmpxchg simplification for now. 2148 if (SI.hasOneUse()) 2149 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2150 if (Select->getCondition() == SI.getCondition()) 2151 if (Select->getFalseValue() == SI.getTrueValue() || 2152 Select->getTrueValue() == SI.getFalseValue()) 2153 return nullptr; 2154 2155 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2156 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2157 if (!CmpXchg) 2158 return nullptr; 2159 2160 // Check the true value case: The true value of the select is the returned 2161 // value of the same cmpxchg used by the condition, and the false value is the 2162 // cmpxchg instruction's compare operand. 2163 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2164 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2165 return SI.getFalseValue(); 2166 2167 // Check the false value case: The false value of the select is the returned 2168 // value of the same cmpxchg used by the condition, and the true value is the 2169 // cmpxchg instruction's compare operand. 2170 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2171 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2172 return SI.getFalseValue(); 2173 2174 return nullptr; 2175 } 2176 2177 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2178 /// into a funnel shift intrinsic. Example: 2179 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2180 /// --> call llvm.fshl.i32(a, a, b) 2181 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2182 /// --> call llvm.fshl.i32(a, b, c) 2183 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2184 /// --> call llvm.fshr.i32(a, b, c) 2185 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2186 InstCombiner::BuilderTy &Builder) { 2187 // This must be a power-of-2 type for a bitmasking transform to be valid. 2188 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2189 if (!isPowerOf2_32(Width)) 2190 return nullptr; 2191 2192 BinaryOperator *Or0, *Or1; 2193 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2194 return nullptr; 2195 2196 Value *SV0, *SV1, *SA0, *SA1; 2197 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2198 m_ZExtOrSelf(m_Value(SA0))))) || 2199 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2200 m_ZExtOrSelf(m_Value(SA1))))) || 2201 Or0->getOpcode() == Or1->getOpcode()) 2202 return nullptr; 2203 2204 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2205 if (Or0->getOpcode() == BinaryOperator::LShr) { 2206 std::swap(Or0, Or1); 2207 std::swap(SV0, SV1); 2208 std::swap(SA0, SA1); 2209 } 2210 assert(Or0->getOpcode() == BinaryOperator::Shl && 2211 Or1->getOpcode() == BinaryOperator::LShr && 2212 "Illegal or(shift,shift) pair"); 2213 2214 // Check the shift amounts to see if they are an opposite pair. 2215 Value *ShAmt; 2216 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2217 ShAmt = SA0; 2218 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2219 ShAmt = SA1; 2220 else 2221 return nullptr; 2222 2223 // We should now have this pattern: 2224 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2225 // The false value of the select must be a funnel-shift of the true value: 2226 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2227 bool IsFshl = (ShAmt == SA0); 2228 Value *TVal = Sel.getTrueValue(); 2229 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2230 return nullptr; 2231 2232 // Finally, see if the select is filtering out a shift-by-zero. 2233 Value *Cond = Sel.getCondition(); 2234 ICmpInst::Predicate Pred; 2235 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2236 Pred != ICmpInst::ICMP_EQ) 2237 return nullptr; 2238 2239 // If this is not a rotate then the select was blocking poison from the 2240 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2241 if (SV0 != SV1) { 2242 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2243 SV1 = Builder.CreateFreeze(SV1); 2244 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2245 SV0 = Builder.CreateFreeze(SV0); 2246 } 2247 2248 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2249 // Convert to funnel shift intrinsic. 2250 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2251 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2252 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2253 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2254 } 2255 2256 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2257 InstCombiner::BuilderTy &Builder) { 2258 Value *Cond = Sel.getCondition(); 2259 Value *TVal = Sel.getTrueValue(); 2260 Value *FVal = Sel.getFalseValue(); 2261 Type *SelType = Sel.getType(); 2262 2263 // Match select ?, TC, FC where the constants are equal but negated. 2264 // TODO: Generalize to handle a negated variable operand? 2265 const APFloat *TC, *FC; 2266 if (!match(TVal, m_APFloatAllowUndef(TC)) || 2267 !match(FVal, m_APFloatAllowUndef(FC)) || 2268 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2269 return nullptr; 2270 2271 assert(TC != FC && "Expected equal select arms to simplify"); 2272 2273 Value *X; 2274 const APInt *C; 2275 bool IsTrueIfSignSet; 2276 ICmpInst::Predicate Pred; 2277 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2278 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2279 X->getType() != SelType) 2280 return nullptr; 2281 2282 // If needed, negate the value that will be the sign argument of the copysign: 2283 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2284 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2285 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2286 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2287 // Note: FMF from the select can not be propagated to the new instructions. 2288 if (IsTrueIfSignSet ^ TC->isNegative()) 2289 X = Builder.CreateFNeg(X); 2290 2291 // Canonicalize the magnitude argument as the positive constant since we do 2292 // not care about its sign. 2293 Value *MagArg = ConstantFP::get(SelType, abs(*TC)); 2294 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2295 Sel.getType()); 2296 return CallInst::Create(F, { MagArg, X }); 2297 } 2298 2299 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2300 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2301 if (!VecTy) 2302 return nullptr; 2303 2304 unsigned NumElts = VecTy->getNumElements(); 2305 APInt UndefElts(NumElts, 0); 2306 APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); 2307 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2308 if (V != &Sel) 2309 return replaceInstUsesWith(Sel, V); 2310 return &Sel; 2311 } 2312 2313 // A select of a "select shuffle" with a common operand can be rearranged 2314 // to select followed by "select shuffle". Because of poison, this only works 2315 // in the case of a shuffle with no undefined mask elements. 2316 Value *Cond = Sel.getCondition(); 2317 Value *TVal = Sel.getTrueValue(); 2318 Value *FVal = Sel.getFalseValue(); 2319 Value *X, *Y; 2320 ArrayRef<int> Mask; 2321 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2322 !is_contained(Mask, UndefMaskElem) && 2323 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2324 if (X == FVal) { 2325 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2326 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2327 return new ShuffleVectorInst(X, NewSel, Mask); 2328 } 2329 if (Y == FVal) { 2330 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2331 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2332 return new ShuffleVectorInst(NewSel, Y, Mask); 2333 } 2334 } 2335 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2336 !is_contained(Mask, UndefMaskElem) && 2337 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2338 if (X == TVal) { 2339 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2340 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2341 return new ShuffleVectorInst(X, NewSel, Mask); 2342 } 2343 if (Y == TVal) { 2344 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2345 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2346 return new ShuffleVectorInst(NewSel, Y, Mask); 2347 } 2348 } 2349 2350 return nullptr; 2351 } 2352 2353 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2354 const DominatorTree &DT, 2355 InstCombiner::BuilderTy &Builder) { 2356 // Find the block's immediate dominator that ends with a conditional branch 2357 // that matches select's condition (maybe inverted). 2358 auto *IDomNode = DT[BB]->getIDom(); 2359 if (!IDomNode) 2360 return nullptr; 2361 BasicBlock *IDom = IDomNode->getBlock(); 2362 2363 Value *Cond = Sel.getCondition(); 2364 Value *IfTrue, *IfFalse; 2365 BasicBlock *TrueSucc, *FalseSucc; 2366 if (match(IDom->getTerminator(), 2367 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2368 m_BasicBlock(FalseSucc)))) { 2369 IfTrue = Sel.getTrueValue(); 2370 IfFalse = Sel.getFalseValue(); 2371 } else if (match(IDom->getTerminator(), 2372 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2373 m_BasicBlock(FalseSucc)))) { 2374 IfTrue = Sel.getFalseValue(); 2375 IfFalse = Sel.getTrueValue(); 2376 } else 2377 return nullptr; 2378 2379 // Make sure the branches are actually different. 2380 if (TrueSucc == FalseSucc) 2381 return nullptr; 2382 2383 // We want to replace select %cond, %a, %b with a phi that takes value %a 2384 // for all incoming edges that are dominated by condition `%cond == true`, 2385 // and value %b for edges dominated by condition `%cond == false`. If %a 2386 // or %b are also phis from the same basic block, we can go further and take 2387 // their incoming values from the corresponding blocks. 2388 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2389 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2390 DenseMap<BasicBlock *, Value *> Inputs; 2391 for (auto *Pred : predecessors(BB)) { 2392 // Check implication. 2393 BasicBlockEdge Incoming(Pred, BB); 2394 if (DT.dominates(TrueEdge, Incoming)) 2395 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2396 else if (DT.dominates(FalseEdge, Incoming)) 2397 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2398 else 2399 return nullptr; 2400 // Check availability. 2401 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2402 if (!DT.dominates(Insn, Pred->getTerminator())) 2403 return nullptr; 2404 } 2405 2406 Builder.SetInsertPoint(&*BB->begin()); 2407 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2408 for (auto *Pred : predecessors(BB)) 2409 PN->addIncoming(Inputs[Pred], Pred); 2410 PN->takeName(&Sel); 2411 return PN; 2412 } 2413 2414 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2415 InstCombiner::BuilderTy &Builder) { 2416 // Try to replace this select with Phi in one of these blocks. 2417 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2418 CandidateBlocks.insert(Sel.getParent()); 2419 for (Value *V : Sel.operands()) 2420 if (auto *I = dyn_cast<Instruction>(V)) 2421 CandidateBlocks.insert(I->getParent()); 2422 2423 for (BasicBlock *BB : CandidateBlocks) 2424 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2425 return PN; 2426 return nullptr; 2427 } 2428 2429 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2430 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2431 if (!FI) 2432 return nullptr; 2433 2434 Value *Cond = FI->getOperand(0); 2435 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2436 2437 // select (freeze(x == y)), x, y --> y 2438 // select (freeze(x != y)), x, y --> x 2439 // The freeze should be only used by this select. Otherwise, remaining uses of 2440 // the freeze can observe a contradictory value. 2441 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2442 // a = select c, x, y ; 2443 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2444 // ; to y, this can happen. 2445 CmpInst::Predicate Pred; 2446 if (FI->hasOneUse() && 2447 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2448 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2449 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2450 } 2451 2452 return nullptr; 2453 } 2454 2455 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2456 SelectInst &SI, 2457 bool IsAnd) { 2458 Value *CondVal = SI.getCondition(); 2459 Value *A = SI.getTrueValue(); 2460 Value *B = SI.getFalseValue(); 2461 2462 assert(Op->getType()->isIntOrIntVectorTy(1) && 2463 "Op must be either i1 or vector of i1."); 2464 2465 Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd); 2466 if (!Res) 2467 return nullptr; 2468 2469 Value *Zero = Constant::getNullValue(A->getType()); 2470 Value *One = Constant::getAllOnesValue(A->getType()); 2471 2472 if (*Res == true) { 2473 if (IsAnd) 2474 // select op, (select cond, A, B), false => select op, A, false 2475 // and op, (select cond, A, B) => select op, A, false 2476 // if op = true implies condval = true. 2477 return SelectInst::Create(Op, A, Zero); 2478 else 2479 // select op, true, (select cond, A, B) => select op, true, A 2480 // or op, (select cond, A, B) => select op, true, A 2481 // if op = false implies condval = true. 2482 return SelectInst::Create(Op, One, A); 2483 } else { 2484 if (IsAnd) 2485 // select op, (select cond, A, B), false => select op, B, false 2486 // and op, (select cond, A, B) => select op, B, false 2487 // if op = true implies condval = false. 2488 return SelectInst::Create(Op, B, Zero); 2489 else 2490 // select op, true, (select cond, A, B) => select op, true, B 2491 // or op, (select cond, A, B) => select op, true, B 2492 // if op = false implies condval = false. 2493 return SelectInst::Create(Op, One, B); 2494 } 2495 } 2496 2497 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2498 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2499 static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI, 2500 InstCombinerImpl &IC) { 2501 Value *CondVal = SI.getCondition(); 2502 2503 for (bool Swap : {false, true}) { 2504 Value *TrueVal = SI.getTrueValue(); 2505 Value *X = SI.getFalseValue(); 2506 CmpInst::Predicate Pred; 2507 2508 if (Swap) 2509 std::swap(TrueVal, X); 2510 2511 if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP()))) 2512 continue; 2513 2514 // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false 2515 // fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true 2516 if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) { 2517 if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2518 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2519 return IC.replaceInstUsesWith(SI, Fabs); 2520 } 2521 if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2522 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2523 return IC.replaceInstUsesWith(SI, Fabs); 2524 } 2525 } 2526 2527 // With nsz, when 'Swap' is false: 2528 // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X) 2529 // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x) 2530 // when 'Swap' is true: 2531 // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X) 2532 // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X) 2533 if (!match(TrueVal, m_FNeg(m_Specific(X))) || !SI.hasNoSignedZeros()) 2534 return nullptr; 2535 2536 if (Swap) 2537 Pred = FCmpInst::getSwappedPredicate(Pred); 2538 2539 bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2540 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE; 2541 bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2542 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE; 2543 2544 if (IsLTOrLE) { 2545 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2546 return IC.replaceInstUsesWith(SI, Fabs); 2547 } 2548 if (IsGTOrGE) { 2549 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2550 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs); 2551 NewFNeg->setFastMathFlags(SI.getFastMathFlags()); 2552 return NewFNeg; 2553 } 2554 } 2555 2556 return nullptr; 2557 } 2558 2559 // Match the following IR pattern: 2560 // %x.lowbits = and i8 %x, %lowbitmask 2561 // %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0 2562 // %x.biased = add i8 %x, %bias 2563 // %x.biased.highbits = and i8 %x.biased, %highbitmask 2564 // %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits 2565 // Define: 2566 // %alignment = add i8 %lowbitmask, 1 2567 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask) 2568 // and 2. %bias is equal to either %lowbitmask or %alignment, 2569 // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment) 2570 // then this pattern can be transformed into: 2571 // %x.offset = add i8 %x, %lowbitmask 2572 // %x.roundedup = and i8 %x.offset, %highbitmask 2573 static Value * 2574 foldRoundUpIntegerWithPow2Alignment(SelectInst &SI, 2575 InstCombiner::BuilderTy &Builder) { 2576 Value *Cond = SI.getCondition(); 2577 Value *X = SI.getTrueValue(); 2578 Value *XBiasedHighBits = SI.getFalseValue(); 2579 2580 ICmpInst::Predicate Pred; 2581 Value *XLowBits; 2582 if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) || 2583 !ICmpInst::isEquality(Pred)) 2584 return nullptr; 2585 2586 if (Pred == ICmpInst::Predicate::ICMP_NE) 2587 std::swap(X, XBiasedHighBits); 2588 2589 // FIXME: we could support non non-splats here. 2590 2591 const APInt *LowBitMaskCst; 2592 if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowUndef(LowBitMaskCst)))) 2593 return nullptr; 2594 2595 const APInt *BiasCst, *HighBitMaskCst; 2596 if (!match(XBiasedHighBits, 2597 m_And(m_Add(m_Specific(X), m_APIntAllowUndef(BiasCst)), 2598 m_APIntAllowUndef(HighBitMaskCst)))) 2599 return nullptr; 2600 2601 if (!LowBitMaskCst->isMask()) 2602 return nullptr; 2603 2604 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst; 2605 if (InvertedLowBitMaskCst != *HighBitMaskCst) 2606 return nullptr; 2607 2608 APInt AlignmentCst = *LowBitMaskCst + 1; 2609 2610 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst) 2611 return nullptr; 2612 2613 if (!XBiasedHighBits->hasOneUse()) { 2614 if (*BiasCst == *LowBitMaskCst) 2615 return XBiasedHighBits; 2616 return nullptr; 2617 } 2618 2619 // FIXME: could we preserve undef's here? 2620 Type *Ty = X->getType(); 2621 Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst), 2622 X->getName() + ".biased"); 2623 Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst)); 2624 R->takeName(&SI); 2625 return R; 2626 } 2627 2628 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2629 Value *CondVal = SI.getCondition(); 2630 Value *TrueVal = SI.getTrueValue(); 2631 Value *FalseVal = SI.getFalseValue(); 2632 Type *SelType = SI.getType(); 2633 2634 if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal, 2635 SQ.getWithInstruction(&SI))) 2636 return replaceInstUsesWith(SI, V); 2637 2638 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2639 return I; 2640 2641 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2642 return I; 2643 2644 // Avoid potential infinite loops by checking for non-constant condition. 2645 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 2646 // Scalar select must have simplified? 2647 if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) && 2648 TrueVal->getType() == CondVal->getType()) { 2649 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 2650 // checks whether folding it does not convert a well-defined value into 2651 // poison. 2652 if (match(TrueVal, m_One())) { 2653 if (impliesPoison(FalseVal, CondVal)) { 2654 // Change: A = select B, true, C --> A = or B, C 2655 return BinaryOperator::CreateOr(CondVal, FalseVal); 2656 } 2657 2658 if (auto *LHS = dyn_cast<FCmpInst>(CondVal)) 2659 if (auto *RHS = dyn_cast<FCmpInst>(FalseVal)) 2660 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false, 2661 /*IsSelectLogical*/ true)) 2662 return replaceInstUsesWith(SI, V); 2663 } 2664 if (match(FalseVal, m_Zero())) { 2665 if (impliesPoison(TrueVal, CondVal)) { 2666 // Change: A = select B, C, false --> A = and B, C 2667 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2668 } 2669 2670 if (auto *LHS = dyn_cast<FCmpInst>(CondVal)) 2671 if (auto *RHS = dyn_cast<FCmpInst>(TrueVal)) 2672 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true, 2673 /*IsSelectLogical*/ true)) 2674 return replaceInstUsesWith(SI, V); 2675 } 2676 2677 auto *One = ConstantInt::getTrue(SelType); 2678 auto *Zero = ConstantInt::getFalse(SelType); 2679 2680 // We match the "full" 0 or 1 constant here to avoid a potential infinite 2681 // loop with vectors that may have undefined/poison elements. 2682 // select a, false, b -> select !a, b, false 2683 if (match(TrueVal, m_Specific(Zero))) { 2684 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2685 return SelectInst::Create(NotCond, FalseVal, Zero); 2686 } 2687 // select a, b, true -> select !a, true, b 2688 if (match(FalseVal, m_Specific(One))) { 2689 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2690 return SelectInst::Create(NotCond, One, TrueVal); 2691 } 2692 2693 // select a, a, b -> select a, true, b 2694 if (CondVal == TrueVal) 2695 return replaceOperand(SI, 1, One); 2696 // select a, b, a -> select a, b, false 2697 if (CondVal == FalseVal) 2698 return replaceOperand(SI, 2, Zero); 2699 2700 // select a, !a, b -> select !a, b, false 2701 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2702 return SelectInst::Create(TrueVal, FalseVal, Zero); 2703 // select a, b, !a -> select !a, true, b 2704 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2705 return SelectInst::Create(FalseVal, One, TrueVal); 2706 2707 Value *A, *B; 2708 2709 // DeMorgan in select form: !a && !b --> !(a || b) 2710 // select !a, !b, false --> not (select a, true, b) 2711 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2712 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 2713 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2714 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 2715 2716 // DeMorgan in select form: !a || !b --> !(a && b) 2717 // select !a, true, !b --> not (select a, b, false) 2718 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2719 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 2720 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2721 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 2722 2723 // select (select a, true, b), true, b -> select a, true, b 2724 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2725 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 2726 return replaceOperand(SI, 0, A); 2727 // select (select a, b, false), b, false -> select a, b, false 2728 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2729 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 2730 return replaceOperand(SI, 0, A); 2731 2732 Value *C; 2733 // select (~a | c), a, b -> and a, (or c, freeze(b)) 2734 if (match(CondVal, m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))) && 2735 CondVal->hasOneUse()) { 2736 FalseVal = Builder.CreateFreeze(FalseVal); 2737 return BinaryOperator::CreateAnd(TrueVal, Builder.CreateOr(C, FalseVal)); 2738 } 2739 // select (~c & b), a, b -> and b, (or freeze(a), c) 2740 if (match(CondVal, m_c_And(m_Not(m_Value(C)), m_Specific(FalseVal))) && 2741 CondVal->hasOneUse()) { 2742 TrueVal = Builder.CreateFreeze(TrueVal); 2743 return BinaryOperator::CreateAnd(FalseVal, Builder.CreateOr(C, TrueVal)); 2744 } 2745 2746 if (!SelType->isVectorTy()) { 2747 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ, 2748 /* AllowRefinement */ true)) 2749 return replaceOperand(SI, 1, S); 2750 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ, 2751 /* AllowRefinement */ true)) 2752 return replaceOperand(SI, 2, S); 2753 } 2754 2755 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 2756 Use *Y = nullptr; 2757 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 2758 Value *Op1 = IsAnd ? TrueVal : FalseVal; 2759 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 2760 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 2761 InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser())); 2762 replaceUse(*Y, FI); 2763 return replaceInstUsesWith(SI, Op1); 2764 } 2765 2766 if (auto *Op1SI = dyn_cast<SelectInst>(Op1)) 2767 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI, 2768 /* IsAnd */ IsAnd)) 2769 return I; 2770 2771 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) 2772 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) 2773 if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd, 2774 /* IsLogical */ true)) 2775 return replaceInstUsesWith(SI, V); 2776 } 2777 2778 // select (select a, true, b), c, false -> select a, c, false 2779 // select c, (select a, true, b), false -> select c, a, false 2780 // if c implies that b is false. 2781 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2782 match(FalseVal, m_Zero())) { 2783 Optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 2784 if (Res && *Res == false) 2785 return replaceOperand(SI, 0, A); 2786 } 2787 if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2788 match(FalseVal, m_Zero())) { 2789 Optional<bool> Res = isImpliedCondition(CondVal, B, DL); 2790 if (Res && *Res == false) 2791 return replaceOperand(SI, 1, A); 2792 } 2793 // select c, true, (select a, b, false) -> select c, true, a 2794 // select (select a, b, false), true, c -> select a, true, c 2795 // if c = false implies that b = true 2796 if (match(TrueVal, m_One()) && 2797 match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) { 2798 Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 2799 if (Res && *Res == true) 2800 return replaceOperand(SI, 2, A); 2801 } 2802 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2803 match(TrueVal, m_One())) { 2804 Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 2805 if (Res && *Res == true) 2806 return replaceOperand(SI, 0, A); 2807 } 2808 2809 // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b 2810 // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a 2811 Value *C1, *C2; 2812 if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) && 2813 match(TrueVal, m_One()) && 2814 match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) { 2815 if (match(C2, m_Not(m_Specific(C1)))) // first case 2816 return SelectInst::Create(C1, A, B); 2817 else if (match(C1, m_Not(m_Specific(C2)))) // second case 2818 return SelectInst::Create(C2, B, A); 2819 } 2820 } 2821 2822 // Selecting between two integer or vector splat integer constants? 2823 // 2824 // Note that we don't handle a scalar select of vectors: 2825 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2826 // because that may need 3 instructions to splat the condition value: 2827 // extend, insertelement, shufflevector. 2828 // 2829 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2830 // zext/sext i1 to i1. 2831 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2832 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2833 // select C, 1, 0 -> zext C to int 2834 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2835 return new ZExtInst(CondVal, SelType); 2836 2837 // select C, -1, 0 -> sext C to int 2838 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2839 return new SExtInst(CondVal, SelType); 2840 2841 // select C, 0, 1 -> zext !C to int 2842 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2843 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2844 return new ZExtInst(NotCond, SelType); 2845 } 2846 2847 // select C, 0, -1 -> sext !C to int 2848 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2849 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2850 return new SExtInst(NotCond, SelType); 2851 } 2852 } 2853 2854 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 2855 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 2856 // Are we selecting a value based on a comparison of the two values? 2857 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2858 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2859 // Canonicalize to use ordered comparisons by swapping the select 2860 // operands. 2861 // 2862 // e.g. 2863 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2864 if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) { 2865 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 2866 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2867 // FIXME: The FMF should propagate from the select, not the fcmp. 2868 Builder.setFastMathFlags(FCmp->getFastMathFlags()); 2869 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2870 FCmp->getName() + ".inv"); 2871 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2872 return replaceInstUsesWith(SI, NewSel); 2873 } 2874 2875 // NOTE: if we wanted to, this is where to detect MIN/MAX 2876 } 2877 } 2878 2879 // Fold selecting to fabs. 2880 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this)) 2881 return Fabs; 2882 2883 // See if we are selecting two values based on a comparison of the two values. 2884 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2885 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2886 return Result; 2887 2888 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2889 return Add; 2890 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2891 return Add; 2892 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2893 return Or; 2894 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) 2895 return Mul; 2896 2897 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2898 auto *TI = dyn_cast<Instruction>(TrueVal); 2899 auto *FI = dyn_cast<Instruction>(FalseVal); 2900 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2901 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2902 return IV; 2903 2904 if (Instruction *I = foldSelectExtConst(SI)) 2905 return I; 2906 2907 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 2908 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 2909 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 2910 bool Swap) -> GetElementPtrInst * { 2911 Value *Ptr = Gep->getPointerOperand(); 2912 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 2913 !Gep->hasOneUse()) 2914 return nullptr; 2915 Value *Idx = Gep->getOperand(1); 2916 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType())) 2917 return nullptr; 2918 Type *ElementType = Gep->getResultElementType(); 2919 Value *NewT = Idx; 2920 Value *NewF = Constant::getNullValue(Idx->getType()); 2921 if (Swap) 2922 std::swap(NewT, NewF); 2923 Value *NewSI = 2924 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 2925 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI}); 2926 }; 2927 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 2928 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 2929 return NewGep; 2930 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 2931 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 2932 return NewGep; 2933 2934 // See if we can fold the select into one of our operands. 2935 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2936 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2937 return FoldI; 2938 2939 Value *LHS, *RHS; 2940 Instruction::CastOps CastOp; 2941 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2942 auto SPF = SPR.Flavor; 2943 if (SPF) { 2944 Value *LHS2, *RHS2; 2945 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2946 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2947 RHS2, SI, SPF, RHS)) 2948 return R; 2949 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2950 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2951 RHS2, SI, SPF, LHS)) 2952 return R; 2953 } 2954 2955 if (SelectPatternResult::isMinOrMax(SPF)) { 2956 // Canonicalize so that 2957 // - type casts are outside select patterns. 2958 // - float clamp is transformed to min/max pattern 2959 2960 bool IsCastNeeded = LHS->getType() != SelType; 2961 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2962 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2963 if (IsCastNeeded || 2964 (LHS->getType()->isFPOrFPVectorTy() && 2965 ((CmpLHS != LHS && CmpLHS != RHS) || 2966 (CmpRHS != LHS && CmpRHS != RHS)))) { 2967 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2968 2969 Value *Cmp; 2970 if (CmpInst::isIntPredicate(MinMaxPred)) { 2971 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2972 } else { 2973 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2974 auto FMF = 2975 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2976 Builder.setFastMathFlags(FMF); 2977 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2978 } 2979 2980 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2981 if (!IsCastNeeded) 2982 return replaceInstUsesWith(SI, NewSI); 2983 2984 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2985 return replaceInstUsesWith(SI, NewCast); 2986 } 2987 } 2988 } 2989 2990 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2991 // minnum/maxnum intrinsics. 2992 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2993 Value *X, *Y; 2994 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2995 return replaceInstUsesWith( 2996 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2997 2998 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2999 return replaceInstUsesWith( 3000 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 3001 } 3002 3003 // See if we can fold the select into a phi node if the condition is a select. 3004 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 3005 // The true/false values have to be live in the PHI predecessor's blocks. 3006 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 3007 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 3008 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 3009 return NV; 3010 3011 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 3012 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 3013 // select(C, select(C, a, b), c) -> select(C, a, c) 3014 if (TrueSI->getCondition() == CondVal) { 3015 if (SI.getTrueValue() == TrueSI->getTrueValue()) 3016 return nullptr; 3017 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 3018 } 3019 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 3020 // We choose this as normal form to enable folding on the And and 3021 // shortening paths for the values (this helps getUnderlyingObjects() for 3022 // example). 3023 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 3024 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 3025 replaceOperand(SI, 0, And); 3026 replaceOperand(SI, 1, TrueSI->getTrueValue()); 3027 return &SI; 3028 } 3029 } 3030 } 3031 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 3032 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 3033 // select(C, a, select(C, b, c)) -> select(C, a, c) 3034 if (FalseSI->getCondition() == CondVal) { 3035 if (SI.getFalseValue() == FalseSI->getFalseValue()) 3036 return nullptr; 3037 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 3038 } 3039 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3040 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3041 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3042 replaceOperand(SI, 0, Or); 3043 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3044 return &SI; 3045 } 3046 } 3047 } 3048 3049 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 3050 // The select might be preventing a division by 0. 3051 switch (BO->getOpcode()) { 3052 default: 3053 return true; 3054 case Instruction::SRem: 3055 case Instruction::URem: 3056 case Instruction::SDiv: 3057 case Instruction::UDiv: 3058 return false; 3059 } 3060 }; 3061 3062 // Try to simplify a binop sandwiched between 2 selects with the same 3063 // condition. 3064 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3065 BinaryOperator *TrueBO; 3066 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 3067 canMergeSelectThroughBinop(TrueBO)) { 3068 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3069 if (TrueBOSI->getCondition() == CondVal) { 3070 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3071 Worklist.push(TrueBO); 3072 return &SI; 3073 } 3074 } 3075 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3076 if (TrueBOSI->getCondition() == CondVal) { 3077 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3078 Worklist.push(TrueBO); 3079 return &SI; 3080 } 3081 } 3082 } 3083 3084 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3085 BinaryOperator *FalseBO; 3086 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 3087 canMergeSelectThroughBinop(FalseBO)) { 3088 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3089 if (FalseBOSI->getCondition() == CondVal) { 3090 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3091 Worklist.push(FalseBO); 3092 return &SI; 3093 } 3094 } 3095 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3096 if (FalseBOSI->getCondition() == CondVal) { 3097 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3098 Worklist.push(FalseBO); 3099 return &SI; 3100 } 3101 } 3102 } 3103 3104 Value *NotCond; 3105 if (match(CondVal, m_Not(m_Value(NotCond))) && 3106 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3107 replaceOperand(SI, 0, NotCond); 3108 SI.swapValues(); 3109 SI.swapProfMetadata(); 3110 return &SI; 3111 } 3112 3113 if (Instruction *I = foldVectorSelect(SI)) 3114 return I; 3115 3116 // If we can compute the condition, there's no need for a select. 3117 // Like the above fold, we are attempting to reduce compile-time cost by 3118 // putting this fold here with limitations rather than in InstSimplify. 3119 // The motivation for this call into value tracking is to take advantage of 3120 // the assumption cache, so make sure that is populated. 3121 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3122 KnownBits Known(1); 3123 computeKnownBits(CondVal, Known, 0, &SI); 3124 if (Known.One.isOne()) 3125 return replaceInstUsesWith(SI, TrueVal); 3126 if (Known.Zero.isOne()) 3127 return replaceInstUsesWith(SI, FalseVal); 3128 } 3129 3130 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3131 return BitCastSel; 3132 3133 // Simplify selects that test the returned flag of cmpxchg instructions. 3134 if (Value *V = foldSelectCmpXchg(SI)) 3135 return replaceInstUsesWith(SI, V); 3136 3137 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3138 return Select; 3139 3140 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3141 return Funnel; 3142 3143 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3144 return Copysign; 3145 3146 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3147 return replaceInstUsesWith(SI, PN); 3148 3149 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3150 return replaceInstUsesWith(SI, Fr); 3151 3152 if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder)) 3153 return replaceInstUsesWith(SI, V); 3154 3155 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 3156 // Load inst is intentionally not checked for hasOneUse() 3157 if (match(FalseVal, m_Zero()) && 3158 (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 3159 m_CombineOr(m_Undef(), m_Zero()))) || 3160 match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal), 3161 m_CombineOr(m_Undef(), m_Zero()))))) { 3162 auto *MaskedInst = cast<IntrinsicInst>(TrueVal); 3163 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 3164 MaskedInst->setArgOperand(3, FalseVal /* Zero */); 3165 return replaceInstUsesWith(SI, MaskedInst); 3166 } 3167 3168 Value *Mask; 3169 if (match(TrueVal, m_Zero()) && 3170 (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 3171 m_CombineOr(m_Undef(), m_Zero()))) || 3172 match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask), 3173 m_CombineOr(m_Undef(), m_Zero())))) && 3174 (CondVal->getType() == Mask->getType())) { 3175 // We can remove the select by ensuring the load zeros all lanes the 3176 // select would have. We determine this by proving there is no overlap 3177 // between the load and select masks. 3178 // (i.e (load_mask & select_mask) == 0 == no overlap) 3179 bool CanMergeSelectIntoLoad = false; 3180 if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 3181 CanMergeSelectIntoLoad = match(V, m_Zero()); 3182 3183 if (CanMergeSelectIntoLoad) { 3184 auto *MaskedInst = cast<IntrinsicInst>(FalseVal); 3185 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 3186 MaskedInst->setArgOperand(3, TrueVal /* Zero */); 3187 return replaceInstUsesWith(SI, MaskedInst); 3188 } 3189 } 3190 3191 return nullptr; 3192 } 3193